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The interaction of an object with an unsteady flow is non-trivial and is still far from
being fully understood. When an aerofoil or hydrofoil, for example, undergoes time-
dependent motion, nonlinear flow phenomena such as dynamic stall can emerge. The
present work experimentally investigates the interaction between a hydrofoil and surface
gravity waves. The waves impose periodic fluctuations of the velocity magnitude and
orientation, causing a steadily translating hydrofoil to be susceptible to dynamic stall
at large wave forcing amplitudes. Simultaneous measurement of both the forces acting
on the hydrofoil and the flow around it by means of particle image velocimetry (PIV)
are performed, to properly characterise the hydrofoil–wave interaction. In an attempt at
alleviating the impact of the flow unsteadiness via passive flow control, a bio-inspired
tubercle geometry is applied along the hydrofoil leading edge. This geometry is known
to delay stall in steady cases but has scarcely been studied in unsteady flow conditions.
The vortex structures associated with dynamic stall are identified, and their trajectories,
dimension and strength characterised. This analysis is performed for both straight- and
tubercled-leading-edge geometries, with tubercles found to qualitatively modify the flow
behaviour during dynamic stall. In contrast to previous studies, direct measurements of
lift do not evidence any strong modification by tubercles. Drag-driven horizontal force
fluctuations, however, which have not previously been measured in this context, are found
to be strongly attenuated. This decrease is quantified and a physical model based on the
flow observations is finally proposed.
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1. Introduction
A hydrofoil, or aerofoil, in a steady flow is a configuration with obvious industrial
relevance, for example, in aerospace or wind energy applications. It therefore represents
one of the most widely studied flows over the last century (Abbott & Von Doenhoff 1959;
Clancy 1975). In comparison, studies on the impact of an unsteady flow are relatively new
and evidence different flow behaviours emerging when a foil undergoes strong angle-of-
attack variation. In the unsteady aerodynamics literature, such variation is often stylised
as pitching, heaving or surging motions, or a combination of these (Eldredge & Jones
2019). Such variations, when they are of sufficient magnitude and rate, lead to dynamic
stall, wherein flow separates from the foil leading edge and a stall vortex is formed. Lift
and drag are in this case temporarily increased over the time scale of dynamic stall vortex
formation and shedding (Carr 1988; Ekaterinaris & Platzer 1998; Mulleners & Raffel 2012;
Choudhry et al. 2014). Dynamic stall-related phenomena are important to several fields
of aerodynamics, including insect flight, wherein organisms leverage high instantaneous
force generation for manoeuvrability (Ellington et al. 1996; Dickinson, Lehmann & Sane
1999), wind energy, where oscillatory loading is relevant to fatigue (Ferreira et al. 2009;
Buchner et al. 2018), and helicopter rotor aerodynamics, where it limits the forward flight
speed (Carr, McAlister & McCroskey 1977).

Instead of foil motion, dynamic stall can instead be triggered by unsteady variation
in the imposed flow, such as due to wind gusts or wave action. Surface gravity waves
induce an orbital motion of the fluid beneath them, characterised by strong and successive
variations of the flow direction and magnitude. These variations can be expected to vary
drag, lift and added-mass effects acting on the hydrofoil (Morison et al. 1950) over time,
leading to a complex unsteadiness. To the best of our knowledge, a characterisation of
the dynamic stall regime generated by the action of waves on a horizontal foil has not
previously been reported in the scientific literature. The combination of periodic variations
in both flow magnitude and direction makes this a fundamentally different case than
any of the combinations of the aforementioned pitch/heave/surge stylisations of unsteady
motion which have been previously investigated in the literature. That is not to say that
no literature exists on the interaction of a body with waves. Indeed, this is a key driver
of hydrodynamics research in offshore engineering. Forces generated by waves acting
on an immersed cylinder have, for example, been extensively characterised and found to
be driven by drag and inertia (Sarpkaya 1977; Chaplin 1984; Chaplin & Subbiah 1997;
Venugopal, Varyani & Westlake 2009; Bai, Ma & Gu 2017). Forces acting on an immersed
vessel under linear waves have also been described numerically, showing the importance
of surge and heave forces as well as of pitch moment (Malik, Guang & Yanan 2013). There
also exists literature on the effect of waves on tidal (hydrokinetic) turbines, where it has
been experimentally (Galloway, Myers & Bahaj 2014) and numerically (Scarlett & Viola
2020) shown that the wave frequency and the wave amplitude drive the force fluctuations
that act on a turbine. The average axial load and torque experienced by a tidal turbine
are similar with or without small amplitude waves, but wave-induced oscillatory force
fluctuations can be harmful as they can increase the fatigue of the turbine structure
(Guo et al. 2018; Draycott et al. 2019). Understanding to what extent surface waves
impact a turbine is therefore essential for predicting turbine performance and modelling
fatigue, and for optimising turbine design and operation to avoid the negative aspects of
unsteady hydrodynamic forcing. The unsteadiness could even represent an opportunity
for performance gain, given the right strategy (Wei, New & Cui 2015). This motivates
an investigation into the unsteady mechanisms governing the effect of wave-induced
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flows on submerged objects. Here, we consider the problem of a horizontally mounted
hydrofoil under wave action. This represents a model system for understanding wave-
induced dynamic stall, while avoiding the complexity associated with more complicated
geometries or kinematics, such as those associated with hydrokinetic turbines. Interaction
between a hydrofoil and solitary internal waves has previously been studied by imaging the
flow and measuring how forces acting on the foil vary (Zou et al. 2023), but this work did
not include data in a stall regime. The present work focuses first on how dynamic stall can
be generated on a hydrofoil moving steadily at a constant horizontal speed by the orbital
flow induced by waves. This is done experimentally by measuring the forces acting on
the hydrofoil using a six-component force balance, and by simultaneously visualising the
flow, driven by waves, around the hydrofoil via particle image velocimetry (PIV). These
two measurements, simultaneously performed, enable a direct link to be drawn between
the flow behaviour and the resulting force generation. To this end, detailed analysis of the
generation and evolution of vortex structures in the flow will follow.

As waves could be expected to cause potentially large magnitude temporal force
variation, including as a result of dynamic stall, their action could damage an immersed
hydrofoil, for example, one fitted to a hydrokinetic turbine, via increased fatigue (Guo et al.
2018; Draycott et al. 2019). This motivates consideration of methods for the mitigation
of dynamic stall effects. Several previous attempts have been made in this regard. Self-
supplying air jet vortex generators (Krzysiak 2013) or adaptive leading-edge geometry
(Kerho 2007), for example, have been employed to effectuate flow control in an active way.
Passive flow control has also been attempted, involving fixed modification of the leading-
edge geometry. Spanwise-periodic modulation of the leading-edge geometry, for example,
is commonly known as ‘tubercles’ (Fish & Battle 1995). This class of leading-edge-
geometry modification is inspired by the pectoral fins of the humpback whale, Megaptera
novaeangliae, where a series of leading-edge protuberances has been shown to improve
their swimming capacity by enhancing the animal manoeuvrability via delayed stall, and
some resulting combination of increased lift or drag force generation (Miklosovic et al.
2004). The fluid dynamic effect of this geometry has been characterised on foils in steady
flow both experimentally (Johari et al. 2007; Wei et al. 2015; Shi et al. 2016; Fan et al.
2022) and numerically (Shi et al. 2016; Fan et al. 2022). Tubercles have been found to
act as vortex generators that create streamwise vortices which enhance surface-normal
momentum transfer, thus energising the boundary layer over the foil’s suction surface
(Wei et al. 2015; Shi et al. 2016; Fan et al. 2022). This modification in the flow delays
flow separation (stall) and so increases the generation of lift force at large angle of attack
(Miklosovic et al. 2004; Johari et al. 2007). This increase of lift is even observed in
cavitating flow (Simanto et al. 2025), while the incidence of cavitation at high Reynolds
number is itself also potentially affected (Li, Duan & Sun 2023). Tubercles have also been
used on rotating turbines, in which case, the boundary layer was also found to remain
attached to the blades longer when compared with a straight-leading-edge geometry. This
resulted in an observed increase in harvested power, as long as the tip speed-ratio stays
small enough (Shi, Atlar & Norman 2017; Fan et al. 2023). The use of tubercles in unsteady
flow applications has, however, been quite scarcely investigated. Two recent works address
this problem, focusing on the effects of tubercles on dynamic stall of a pitching aerofoil
(Hrynuk & Bohl 2020; Badia et al. 2025). The two studies are not in the exact same range
of pitch rate, but both observed similar qualitative dynamic stall behaviour, showing that
stall occurs first between tubercles before progressing to other planes. Hrynuk & Bohl
(2020) hypothesised that, with the use of tubercles, the lift is enhanced by the presence of
a dynamic stall vortex that is closer to the hydrofoil surface and with greater circulation,
whereas in the regime studied by Badia et al. (2025), tubercles are found to mitigate
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dynamic stall and to decrease the lift fluctuations. These differences demonstrate the lack
of coherent understanding in the current state-of-art of the effect of tubercles on dynamic
stall. The present study applies the tubercle geometry to a hydrofoil in a wave-induced
oscillatory flow. The wave flow being a unique method of generating dynamic stall, the
application of tubercles will act as a passive flow technique that could increase lift forces
(Hrynuk & Bohl 2020) and/or reduce force fluctuations (Badia et al. 2025), both results
being advantageous regarding the use of a potential hydrokinetic turbine. The novelty of
the current work is due not only to the use of waves to trigger dynamic stall, but also
by the simultaneous use of force measurements and of flow visualisation, which was not
done in the previous works on unsteady effects and tubercles by Hrynuk & Bohl (2020)
and Badia et al. (2025). Additional novelty is lent by our focus on low angular rates and
kinematics which only marginally enter a stall regime. Unsteady stall has previously been
loosely classified as ‘dynamic’ when, at high angular rates, leading-edge separation and
vortex formation dominate. ‘Quasi-static’ stall, however, occurs at lower angular rates and
is characterised by initial separation in the suction-surface boundary layer near the trailing
edge, prior to the occurrence of leading-edge separation (Choudhry et al. 2014; Buchner
et al. 2018). The quasi-static regime has not previously been characterised for tubercled
geometries.

The present study has two core objectives. First, the goal is to quantify the flow field
driven by waves around a hydrofoil and the fluctuating forces generated by this flow. This
quantification is performed across a range of wave conditions including both attached
flow and dynamic stall. The parameters, chosen to correspond to actual conditions in
nature, lead to small Keulegan–Carpenter numbers KC, meaning that added mass effects
dominate over drag (Keulegan & Carpenter 1958), and intermediate pitch rates Ω∗,
meaning that a transition from quasi-static stall to dynamic stall can occur across the
chosen parameter range and within each wave period (Hrynuk & Bohl 2020). Second,
tubercles are introduced with the objective to investigate to what extent they can act as
a means to modify the flow and, consequently, the forces. In § 2, the flow field induced
by waves is detailed and the expected results are theoretically discussed. Then, in § 3, the
experimental approach based on the use of a 142 m long water tank facility, is presented.
In § 4, results regarding the characterisation of the hydrofoil–wave interaction are detailed.
The horizontal and vertical force variations are shown, and the flow field is quantified by
means of PIV. Subsequently, the implementation of tubercles on the hydrofoil leading-edge
and the hydrodynamic effects of these tubercles’ presence are discussed in § 5. Sections 6
and 7 analyse the vorticity generation and behaviour more in-depth, comparing the two
hydrofoils with differing leading-edge geometry. Conclusions are provided in § 8.

2. Theoretical background
The present study considers the superposition of a steady horizontal flow of velocity
u0 = u0ex with an unsteady flow u′ = u′

x (t, x, z)ex + u′
z(t, x, z)ez imposed by the orbital

velocity of gravity surface waves. The wave dispersion relation of the gravity surface waves
in the deep-water approximation, accounting for a Doppler shift, reads

(ωr − u0k)2 = gk, (2.1)

with ωr = 2π f the angular velocity and f the wave frequency perceived by the hydrofoil,
k = 2π/λ the wavenumber and λ the wavelength. Additionally, g = 9.81 m s−2 is the
gravitational acceleration. The wave amplitude, A, is quantified by the wave steepness
ε = 2A/λ. The orbital motion of radius R(z) = Ae2π z/λ and its tangential velocity
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Figure 1. Theoretical velocity field expected at a fixed abscissa x , under surface waves calculated using
potential flow theory with u0 = 0.75 m s−1, λ= 4 m and ε = 0.04. The locations of the extrema of velocity
magnitude, acceleration and angle of attack are shown. Inset shows a schema of the hydrofoil used with the
direction of the different forces indicated.

u′(z) =R(z)ω, with ω = √
gk given by (2.1) for u0 = 0 m s−1, decrease exponentially

with depth z (here, negative).
The total velocity field u0 + u′ in the flow is estimated using linear potential flow theory

and is represented in figure 1 for a selected test condition of u0 = 0.75 m s−1, λ= 4 m and
ε = 0.04. The presence of a large constant velocity component u0 dominates the wave-
induced orbital motions, with an immersed object experiencing successive variations of
relative velocity magnitude and direction about the mean flow u0. The relative velocity
magnitude is maximum at the wave peaks and minimum at their trough locations,
implying a maximal and minimal acceleration on the rising and descending wave slopes,
respectively. The direction of the local velocity vector that will induce an angle of attack
between the flow and the hydrofoil is estimated as

tan (α) = uz

ux
= Rω sin(kx − ωr t)

Rω cos(kx − ωr t) + u0
, (2.2)

where ux = u0 + u′
x and uz = u′

z are respectively the horizontal and vertical velocity
components of the flow seen by the hydrofoil. The amplitude of the flow velocity
fluctuation in the vertical direction z is hence given by R tan(α). Note that the flow field
shown here is calculated through linear approximation, so waves with large amplitude
(typically ε ≥ 0.04) will exhibit nonlinearities not taken into account in the present
estimation.

The expected horizontal and vertical forces Fx and Fz experienced by the immersed
hydrofoil follow from the Morison equation (Morison et al. 1950; Chaplin & Subbiah
1997) accounting for steady-state drag and lift, and inertia effects. They are constructed as

Fx = 1
2

Cd(β)ρcsu2 cos(α) + 1
2

Cl(β)ρcsu2 sin(α) + Cmx (β)ρV
∂u

∂t
+ Ff ,

Fz = −1
2

Cl(β)ρcsu2 cos(α) + 1
2

Cd(β)ρcsu2 sin(α) − Cmz(β)ρV
∂u

∂t
,

(2.3)

where ρ is the liquid density, V the hydrofoil volume, and β = α0 − α the angle of attack
between the flow and the hydrofoil. Here, α0 is the static pitch angle of the hydrofoil.
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Additionally, Cd , Cl , Cmx and Cmz are respectively the steady-state drag and lift, and
horizontal and vertical inertia coefficients. Here, Cd and Cl are defined respectively
parallel and perpendicular to the instantaneous local flow velocity vector. Henceforth,
we consider the forces Fx and Fz , parallel and normal, respectively, to the mean steady
velocity, u0. A constant force Ff is added to the horizontal component to account for the
friction of the end plates that are used to mount the hydrofoil in the water and enforce
quasi-two dimensionality in the flow. The directions of the different forces acting on
the hydrofoil are represented in the inset of figure 1. Note that because of experimental
constraints, detailed later, the hydrofoil is mounted upside down, implying a negative lift
and the use of β = α0 − α as angle of attack. The drag and the lift are defined respectively
to be aligned and perpendicular with the local flow vector, whereas the inertia forces are
defined along the global x and z coordinates. The force coefficients depend on the angle
of attack between the hydrofoil and the local flow velocity, which also varies with time.
As indicated by (2.3), the flow velocity, acceleration and angle of attack will all affect the
total force generation. Competition between these external parameters, which are not in
phase with one another, drives variation in Fx and Fz .

3. Experimental set-up
Experiments were performed in a 142 m long towing tank of depth H = 2.3 m at Delft
University of Technology. The experimental set-up is shown in figure 2(a), where the
hydrofoil shape is represented as a yellow outline. The hydrofoil is mounted with a baseline
angle of attack of α0 = 10◦ to a translating platform that moves along the tank at a constant
speed u0 = 0.75 m s−1. This constant angle is chosen to be less than the theoretical
steady stall angle of the foil section of approximately 16◦, but sufficiently close to it to
enable the observation of both attached flow and wave-triggered stall conditions across
the tested parameter space and within each wave period. This constant speed imposes
a steady constant flow on the hydrofoil. The hydrofoil (NACA4415), also represented in
figure 2(b) and shown in figure 2(c), of chord length c = 0.16 m � λ (scaling not respected
in figure 2a) and span s = 0.48 m, is immersed in water at a constant distance from
the mean free-surface height of h = 0.4 m. The immersion depth being 2.5 times larger
than the chord length, free-surface effects are negligible and do not significantly affect
hydrodynamic forces (Pernod et al. 2023). A larger depth may further reduce free surface
interaction, but the wave-induced orbital flow, which decreases exponentially with depth,
would be less pronounced. Elliptical end plates of principal axes 360 and 200 mm are
used to attenuate any transverse flow component, mimicking a two-dimensional (2-D)
flow in the (x, z) plane. Although a minor transverse flow appears in steady cases,
likely due to slight misalignment, the flow will be considered 2-D in the following. Two
different models are tested. First, one with a uniform leading edge, as in figure 2(b–c),
and then a model fitted with tubercles, shown in figure 2(d). The cross-sectional profile
of the two hydrofoils can be seen in figures 5 and 8 (yellow outlines). The tubercle
geometry used is spanwise sinusoidal, with amplitude a = 0.1c = 16 mm and wavelength
l = 0.25c = 40 mm, following the geometry described by Wei et al. (2015) and used by
Hrynuk & Bohl (2020) and Badia et al. (2025). Note that the wavelength of the tubercles
l should not be confused with the wavelength of the incident waves λ.

At one extremity of the tank, a wave generator creates sinusoidal gravity waves of
chosen wave length λ ∈ [2, 6] m and amplitude, i.e. of chosen steepness ε ∈ [0.02, 0.06].
At the other extremity of the tank, a parabolic beach is used to dissipate the waves,
thus avoiding most reflections. An example of typical waves generated, with λ= 4 m and
ε = 0.04, is shown in figure 2(e). The wave surface elevation η(t) is measured using an
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Figure 2. (a) Experimental set-up, implemented in a 142 m long towing tank of H = 2.3 m water depth.
A hydrofoil (yellow outline) is immersed in water between two end plates and attached to a translating platform
that moves along the tank at a speed u0. Waves are generated by a wavemaker, implying an orbital flow u′.
(b) Model of the set-up in which the PIV system (cameras and laser sheet) is fully represented. The location of
the force transducers is indicated. The hexapod to which the model is mounted does not impose any motion in
the currently reported experiment. (c) Photograph of the immersed model, with the PIV system in operation.
(d) Photograph of hydrofoil with tubercles at its leading edge. The three planes in which PIV measurements
are taken are represented by green vertical lines. The baseline straight leading edge location is depicted, for
reference, as a red dashed line. (e) Photograph of the towing tank with waves of wavelength λ= 4 m and
steepness ε = 0.04.

acoustic sensor, which is traversed with the hydrofoil, at an acquisition rate of 1 kHz.
The waves, as observed in a reference frame co-translating with the hydrofoil, impose an
orbital velocity field u′(z, t) that makes the total flow field u = u0 + u′ experienced by
the hydrofoil unsteady (see figure 1). To quantify the flow variation, a stereoscopic PIV
system is suspended from the translating platform. The PIV set-up, shown in figure 2(b)
and in operation in figure 2(c), includes two cameras mounted in a torpedo structure to
the side of the hydrofoil and a laser sheet projected from the downstream direction in the
(x, z) plane. Because the end plates obscure the flow around the hydrofoil, measurements
are made from 31◦ below the horizontal, with 58◦ subtended between camera optical axes
about the z-coordinate; the hydrofoil was mounted upside down for this purpose. The
focal plane of the cameras was aligned with the measurement plane using Scheimpflug
adapters and the measurement plane was accurately mapped to the camera sensors via a
pinhole calibration, a typical approach in PIV experiments (Adrian & Westerweel 2011).
Frame pairs, separated by 1 ms, are recorded by the two cameras at an acquisition rate of
45 Hz. Velocity fields are computed using DaVis 10.2.1.90519, via cross-correlation using
an initial interrogation window of 96 × 96 pixels and a final of 64 × 64 pixels, with 50 %
overlap, yielding a final vector spacing of 3.4 mm, or approximately 50 vectors per chord
length of the hydrofoil. Although both in-plane and spanwise velocity components are
measured, we focus in the present paper on in-plane phenomena, while the y-direction
component is left for future treatment. The horizontal, Fx , and vertical, Fz , forces acting
on the hydrofoil are obtained from a six-component force balance at an acquisition rate
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λ ε αmin αmax ux,min ux,max uz,min uz,max KC Ω∗

0 m 0 0◦ 0◦ 0.80 m s−1 0.80 m s−1 0 m s−1 0 m s−1 0 0
2 m 0.02 −1.4◦ 1.4◦ 0.78 m s−1 0.81 m s−1 −0.02 m s−1 0.02 m s−1 0.15 0.01
2 m 0.04 −2.3◦ 2.5◦ 0.77 m s−1 0.83 m s−1 −0.03 m s−1 0.04 m s−1 0.30 0.02
2 m 0.06 −3.0◦ 3.5◦ 0.75 m s−1 0.85 m s−1 −0.04 m s−1 0.05 m s−1 0.50 0.03
4 m 0.02 −3.5◦ 3.9◦ 0.74 m s−1 0.86 m s−1 −0.05 m s−1 0.05 m s−1 0.93 0.02
4 m 0.04 −6.7◦ 7.4◦ 0.68 m s−1 0.91 m s−1 −0.10 m s−1 0.10 m s−1 1.77 0.04
4 m 0.06 −10.1◦ 10.9◦ 0.64 m s−1 0.96 m s−1 −0.15 m s−1 0.14 m s−1 2.47 0.06
6 m 0.02 −5.5◦ 6.1◦ 0.69 m s−1 0.90 m s−1 −0.08 m s−1 0.08 m s−1 2.08 0.03
6 m 0.04 −12.1◦ 13.4◦ 0.60 m s−1 1.00 m s−1 −0.17 m s−1 0.18 m s−1 3.97 0.06

Table 1. Experimental conditions.

of 1 kHz. A low-pass filter, with cut-off frequency 5 Hz, is used to remove noise that
mainly originates from high-frequency vibrations of the towing platform. Measurements
are performed on both hydrofoil models for a range of different wave conditions.

The parameters chosen here result in a Reynolds number Re = u0c/ν ≈ 1.2 × 105, with
ν = 10−6 m2 s−1 the water kinematic viscosity. The Reynolds number is a consequence
of the value, u0, of the steady translational velocity, which was chosen to ensure the
desired wave-induced unsteadiness relative to the steady translation, inducing stall and
reattachment each wave period. To quantify the unsteady effects of waves on the hydrofoil,
the Keulegan–Carpenter number, KC = Δux/(fc) ∈ [0.15, 3.97], is used, with Δux the
amplitude of velocity variation and f the wave encounter frequency of the hydrofoil. The
values of KC in this experiment indicate that inertia forces (i.e. added mass) dominate or
are of similar order to steady drag forces (Keulegan & Carpenter 1958). The rate of change
of angle of attack can be expressed as a pitch rate (Hrynuk & Bohl 2020; Badia et al.
2025), non-dimensionalised as Ω∗ = Δα f c/U0 ∈ [0.01, 0.06], with Δα the amplitude of
variation of the angle of attack. Unsteady effects associated with vortex formation are
expected to emerge from Ω∗ > 0.005, whereas from Ω∗ ≥ 0.05, a quasi-static description
is no longer valid and a dynamic stall regime dominated by unsteady aerodynamic effects
is achieved (Choudhry et al. 2014). Considering the experimental parameters chosen here,
both regimes should be observable. The various experimental conditions used in the
present work are summarised in table 1. The maximum and minimum phase-averaged
values of the imposed velocity components, ux and uz , and of the flow orientation, α, are
estimated via PIV in an area upstream of the leading edge at one chord length below
the hydrofoil. This location is considered to represent the external flow field, as it is
far enough from the hydrofoil so as to barely be influenced by the hydrofoil’s presence.
The case without waves (first row of table 1) shows this to not be precisely true for the
horizontal velocity component ux = 0.8 m s−1, which is slightly larger than the constant
value u0 = 0.75 m s−1 expected for this case. The value of ux is thus slightly overestimated
in our measurements. As the hydrofoil is upside down with a baseline pitch angle α0 = 10◦,
the angle of attack is given by β = α0 − α. Note that the amplitude of variation of the
angle of attack is here at most 25◦, which is smaller than the values of 30◦ and 50◦ used
by Hrynuk & Bohl (2020) and Badia et al. (2025), respectively. Note also that the case
λ= 6 m, ε = 0.06 is not tested because the large wave amplitude led to indications of
wave-breaking phenomena in our experimental facility.
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Figure 3. Time history of (a) the surface elevation η(t), (b) the horizontal force component Fx and (c) the
vertical force component Fz for λ= 4 m and various wave amplitudes: ε = 0 (black dashed lines), 0.02 (blue
solid lines), 0.04 (green solid lines) and 0.06 (red solid lines). (d,e, f ) Phase-averaged data over 40 wave periods
of the same. Coloured dashed lines correspond to the standard deviation of the average. Vertical black dashed
lines correspond to time instants shown in figure 5.

4. Effects of waves on a regular hydrofoil
We first focus on how waves interact with a hydrofoil with a straight-leading-edge
geometry. Simultaneous time histories of the surface elevation η(t) (panel a), and of the
horizontal and vertical forces Fx (t) and Fz(t) (panels b and c) are plotted in figure 3, for
λ= 4 m and various wave amplitudes, ε = 0, i.e. no waves, (black dashed lines), 0.02 (blue
solid lines), 0.04 (green solid lines) and 0.06 (red solid lines). Phase-averaged data over
40 wave periods of the same quantities are plotted in figure 3(d–f ) (solid lines) with their
standard deviation (dashed lines), where the time t∗ is non-dimensionalised by the wave
period T = 2π/ωr . Time histories of other incident wave lengths are plotted in figures S1
and S2 of the supplementary material available at https://doi.org/10.1017/jfm.2025.1112,
and evidence similar results. As previously indicated, precise definition of the external
flow velocity is difficult given the limited upstream field of view. For this reason, we
present the measured forces in dimensional form, thereby avoiding additional uncertainty
in non-dimensionalisation.

In the case ε = 0, no wave is generated, so the angle of attack is only given by
the baseline pitch angle β = α0 = 10◦. The quantities η = 0 mm, Fx ≈ 2.1 N and Fz ≈
−23.8 N remain constant over time as the flow field is only driven by the constant velocity
u0. Note that Fz is negative because the hydrofoil is mounted upside down. Here, Fx ,
respectively Fz , are coincident with the steady drag, respectively lift, i.e. by (2.3) with
α = 0◦, β = α0 = 10◦ and u = u0. The coefficients Cd = 0.04 and Cl = 1.17 are obtained
using Xfoil (Drela 1989) with a steady angle of attack α0. To calculate these coefficients,
a transition to turbulence in the boundary layer is assumed to occur near the leading edge
(specifically, at 5 % of the chord length) due to the roughness of the hydrofoil surface.
Knowing the value of Cd for the hydrofoil enables, by subtraction in this steady test case,
an estimate of the viscous friction drag Ff = 1.3 N added by the end plates. This value
agrees with the order of magnitude of the friction drag generated by rough plates of similar
dimension parallel to a flow (White 1991). For simplicity, we assume that the viscous drag
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on the end plates varies minimally under wave conditions, and take its value to be constant.
The lift coefficient Cl obtained using XFoil agrees well with the experimental value of 1.11
found here at α0 = 10◦.

Adding waves to the steady flow generates, as expected, variations over time of the force
components Fx and Fz that follow the wave periodicity. The larger the wave amplitude
is, the greater the magnitude of the force fluctuation. Only small linear force variations
appear for small incident waves (blue curves), whereas large nonlinear variations with
the emergence of local peaks are observed for waves of large amplitude (red curves).
During these variations, a competition occurs between drag, lift and inertia forces, which
are driven by the velocity magnitude, the angle of attack and the flow acceleration. As
shown in figure 1, the flow velocity is in phase with the wave amplitude, whereas both the
flow acceleration and the angle of attack have an offset of π/2. In our case, as the hydrofoil
is upside down, the maximum angle of attack is achieved on the descending slope of the
waves where the deceleration of the flow is maximum.

We observe that Fx has a π/2 offset with η; its minimal values are achieved when
the deceleration and the angle of attack are maximum, and its maximal values are when
the acceleration is maximum and the angle of attack minimum. This implies that the
fluctuations are mostly driven by inertial effects, i.e. added-mass, consistent with the
small Keulegan–Carpenter number KC ∈ [0.15, 3.97]. In particular, the importance of
inertia makes the horizontal force component highly negative during the flow deceleration,
despite a flow moving in the positive direction. We can also note that Fx does not vary
symmetrically around its stationary value of Fx ≈ 2.1 N and deviates more at its minima
compared with its maxima. This is due to the angle of attack that, when it is maximal,
increases the value of Cmx and hence inertia effects, which here occur during the flow
deceleration, and decreases Fx . Temporal variation of the vertical force component Fz is
close to being in phase opposition with η, meaning that a larger flow velocity will result
in a smaller Fz . The shift observed between Fz and η is due to the angle of attack that
increases lift effects on the descendant wave slope. This indicates that Fz is mostly driven
by the lift (which is negative) and influenced by the angle of attack. Note also that for
the highest wave steepness presented, ε = 0.06, Fz does not experience a single maximum
each wave period, but remains elevated (i.e. at its minimal lift) for a longer fraction of
the wave period. The hydrofoil responses to different wave forcing are also quantified via
probability density functions (p.d.f.) in figure S3.

A theoretical estimate, using (2.3), of the time-varying force components Fx (t) and
Fz(t) is shown in figure 4. For the purposes of this estimate, the values of the external
velocity u and of its orientation α are measured by PIV as previously described in § 3.
Then, the steady time-averaged coefficients of drag and lift, Cd and Cl , that vary with
α are obtained using Xfoil (Drela 1989) and plotted in figure 4(c). The coefficients of
inertia, Cmx and Cmz, which include Froude–Krylov and added mass forces (Faltinsen
1993), are estimated using potential flow theory around a cylinder and the Kármán–Trefftz
transform (Milne-Thomson 1973) to approximate the NACA4415 closely. They are plotted
as a function of the angle of attack β in figure 4(d). The theoretically predicted value
of Cmx at the baseline angle of attack is close to the value found experimentally during
an acceleration of the hydrofoil along the water tank. The theoretical force predictions
obtained from (2.3) are then plotted in figure 4(a,b) (dashed lines) and compared with the
experimental data (solid lines) for weak and strong forcing cases, ε = 0.02 and 0.06.
The order of magnitude of the force variation is well captured by the model, especially for
the weak forcing, but is not fully in agreement with the measurements. The discrepancy
stems mainly from the estimation of the coefficients. The numerical estimations of Cd and
Cl are indeed based on steady cases, and do not take into account the dynamics present in
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Figure 4. Theoretical model of the force variations (a) Fx (t) and (b) Fz(t). Experimentally measured values
are plotted as solid lines and the theoretical prediction as dashed lines, for selected cases λ= 4 m and ε = 0
(black), ε = 0.02 (blue) and ε = 0.06 (red). (c,d) Variation of the steady-state drag and lift coefficients obtained
using Xfoil, as well as the added mass coefficients obtained via potential theory, with the angle of attack β. The
vertical dashed lines are indicative of the minimum and maximum angles of attack encountered in the different
cases ε = 0.02 (blue), ε = 0.04 (green) and ε = 0.06 (red).

our system. Furthermore, the estimation of the inertia coefficients is based on linear poten-
tial flow theory, which is known to not be valid at long time and to not accurately represent
the physics in stalled conditions (Chaplin & Subbiah 1997; Grift et al. 2019; Reijtenbagh,
Tummers & Westerweel 2023) where nonlinear effects occur, which is expected under
large amplitude wave forcing. The different components (drag + lift and inertia) from (2.3)
are plotted in figure S4. These evidence how inertia effects dominate the minimum value of
Fx and how lift (and a small drag component) drive the variation of Fz . The mean influence
of the flow-aligned end-plates has been accounted for here, and their role in unsteady flow
assumed to be equivalent to that in steady flow, i.e. the presence of a roughly constant fric-
tion force in the horizontal direction. This assumption, while not precise, is supported by
the larger velocity component in the horizontal compared with the vertical direction, and
does not directly influence comparison between test cases. Further numerical, experimen-
tal and theoretical works, which are beyond the scope of the present study, would be needed
to properly define the coefficients and accurately model the force variations in this way.

What is clear from the discrepancies observed in figure 4 is that linear flow theory
fails to capture the intricacies of the unsteady hydrodynamics of a hydrofoil under wave
forcing. This motivates an in-depth experimental characterisation of the unsteady flow
which produces these forces. Contours of the phase-averaged spanwise vorticity, Ωy , are
plotted for several times t∗ ∈ [0.3, 0.6] for the case of λ= 4 m, and wave amplitudes
ε = 0.02, 0.04 and 0.06 in figure 5. The corresponding phase-averaged velocity fields are
represented by black arrows. Areas of high positive (anticlockwise) vorticity are shown
in red (negative in blue) and the Q-criterion is used to discriminate between shear and
vortices. Black solid curves represent the contours of the Q-criterion, set as Q = 100 s−2

(threshold chosen to avoid noise influence), and enclose regions of positive Q-criterion,
which we refer to as vortices. Any areas of Q > 100 s−2 smaller than 2.3 cm2 are attributed
to measurement noise and not taken into account. The centre of vortex rotation (black
cross) as well as the geometric centroid of the vortex (black dot) are plotted for every
vortex and discussed in § 6. The time instants represented in this figure correspond to key
moments in the development of stall, indicated by vertical dashed lines in figure 3(d–f ).
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Figure 5. Phase-averaged spanwise vorticity Ωy at selected non-dimensional times t∗ = 0.3, 0.45, 0.6 and 0.75
(from left to right), corresponding to the vertical dashed black lines in figure 3(d–f ), for λ= 4 m, and wave
amplitudes ε = 0.02, 0.04 and 0.06 (from top to bottom). The hydrofoil here has a straight leading-edge and
is not equipped with tubercles. Black solid lines represent isocontours of Q-criterion at an arbitrarily chosen
value Q = 100 s−2, which thus enclose regions of high vorticity, which we consider as vortices. Black cross,
centre of vortex rotation (maximum of Γ1, following Michard et al. (1997)); black dot, geometric centroid of
the vortex. Every second velocity vector is skipped, for clarity.

The full temporal evolution of the velocity and vorticity fields for this case and other
forcing can be seen in the supplementary movies 1–8, in which all time instants t∗ ∈ [0, 1]
are shown. In the interval t∗ ∈ [0, 0.3] ∪ [0.6, 1], no relevant variation of the flow occurs
as the angle of attack is close to 0◦. When ε = 0.02 (top row), no signs of boundary layer
separation appear, as the angle of attack variations are small. Increasing the wave steepness
to ε = 0.04 (middle row), generates angles of attack of greater amplitude and thus flow
velocity fluctuations that induce a thickening of the vortical region near the trailing edge
corresponding to the early stage of stall. Such trailing-edge boundary layer thickening and
incipient separation is typical of quasi-steady stall phenomena. Finally, when the forcing
amplitude is large, ε = 0.06 (last row), a compact accumulation of vorticity is observed
near the leading edge. Significant boundary layer separation and roll-up is simultaneously
observed near the trailing edge. The two vortices emerge at approximately t∗ = 0.45, when
the angle of attack is large, and are then advected along the hydrofoil while remaining
close to its surface. These observations indicate an intermediate, quasi-static type of stall,
but with significant roll-up of the boundary layer near the trailing edge of the suction
surface. This is in contrast to the deep dynamic stall regime, characterised by a single
large leading-edge vortex, as reported by Hrynuk & Bohl (2020) and Badia et al. (2025).
The deep dynamic stall regime is not observed on the straight-leading-edge hydrofoil in
any of the wave forcing cases studied here, because the angle variation imposed by the
waves is relatively limited.

5. Effects of leading-edge tubercles
In this section, the hydrodynamic behaviour of our second model, i.e. a hydrofoil equipped
with leading edge tubercles, is tested and compared with the straight-leading-edge case.
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Figure 6. Time history of (a) the surface elevation η(t), (b) the horizontal force component Fx and (c) the
vertical force component Fz for waves of wavelength λ= 4 m and steepness ε = 0.06. Data are given for a
hydrofoil with straight leading-edge (blue solid lines) and a hydrofoil with leading-edge tubercles (red solid
lines). (d,e, f ) Phase-averaged data over 40 wave periods of the same. Coloured dashed lines correspond to the
standard deviation of the average. Vertical black dashed lines correspond to time instants shown in figure 8.

The tubercled geometry is expected to modify the flow behaviour, including the dynamic
stall characteristics (Hrynuk & Bohl 2020; Badia et al. 2025). The effect of tubercles
on the generation of hydrodynamic force is quantified in figure 6, where the surface
elevation, η(t), and the horizontal and vertical force components, Fx (t) and Fz(t), are
plotted over time for each of the two geometries. The steady case with no waves (dashed
lines) and a selected wave-forced case, with λ= 4 m and ε = 0.06 (solid lines), are shown.
The same quantities, phase averaged over 40 wave periods (solid lines) along with the
corresponding standard deviation (dashed lines), are plotted in figure 6(d–f ). This large
amplitude case is plotted here because it corresponds to conditions where the effects of
tubercles are most visible. Other weaker wave forcing cases are plotted in figures S5
and S6. For the steady case, with no waves, Fx ≈ 2.1 ± 0.1 N for the straight-leading-
edge case and F tub

x ≈ 2.4 ± 0.1 N for the tubercled hydrofoil, meaning that tubercles
increase the steady-state drag force by approximately 14 %. This drag increase could
preclude the use of tubercles in some contexts, but is relatively small compared with the
observed magnitude of the Fx fluctuations under wave forcing. Regarding the vertical force
component, Fz ≈ −23.8 ± 0.2 N and F tub

z ≈ −22.1 ± 0.2 N, so an increase (i.e. decreased
lift) of approximately 7 % is observed with tubercles. These two observations, i.e. small
increase of drag and small decrease of lift, correspond to what has been observed before in
steady cases for angles of attack smaller than the stall angle (Johari et al. 2007; Fan et al.
2022).

Under unsteady wave forcing, just as in the straight-leading-edge case, variation of
the force components Fx and Fz emerges, following the wave periodicity. A comparison
with the hydrodynamic forces generated in the straight-leading-edge case reveals that the
primary effect of tubercles appears in the Fx (t) component (figure 6b,e). Fluctuations of
Fx (t) are attenuated by approximately 35 % when leading-edge tubercles are introduced.
This effect is quantified for several wave conditions in figure 7, where the difference
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x tubercles, for (a) λ= 2 m, (b) λ= 4 m and (c) λ= 6 m,

for wave steepness ε = 0.02 (blue), ε = 0.04 (green) and ε = 0.06 (red). Note the differing scales of the vertical
axes.

F str
x − F tub

x between the horizontal forces for the two hydrofoils is plotted over the non-
dimensional time t∗. The force difference becomes non-negligible (deviation above 15 %
of the initial value) when t∗ ∈ [0.2, 0.8], which corresponds to the period during which
the hydrofoil experiences a large angle of attack and where stall occurs. Outside of this
interval, where the angle of attack is small, the flow remains attached to the hydrofoil
and F str

x − F tub
x ≈ 0 N. This implies that the hydrodynamic effect of tubercles under wave-

induced forcing is primarily driven by their mediation of hydrofoil stall dynamics. It is of
practical interest to note that the observed reduction in force fluctuation magnitude could
be beneficial with regards to reducing structural fatigue, but at the cost of an increased
mean drag. The impact of tubercles on horizontal forces generated during dynamic stall
has, to our knowledge, never been previously investigated, as former studies focused
primarily on vertical forces (Hrynuk & Bohl 2020; Badia et al. 2025).

We observe only a minor impact of the presence of tubercles on the vertical force
component, Fz . The strong increase in lift expected at large angle of attack in steady
cases (Johari et al. 2007; Fan et al. 2022) is not observed here. The effect of tubercles
on lift generation under dynamic stall has not previously been measured. Hrynuk & Bohl
(2020) did not directly measure forces and the authors only assumed a tubercle-induced
increase of lift based on a greater measured circulation in the leading-edge stall vortex.
Although our measurements agree with Hrynuk & Bohl (2020) that circulation in the
leading-edge vortex is increased by the presence of tubercles, we show by direct force
measurement that this does not translate to an increased lift force. Indeed, it is the total
associated with the foil, both bound and shed, that contributes to lift force generation
and this is not well captured under any usual definition of vortex. Indeed, the numerical
simulations of Badia et al. (2025) indicate that tubercles decrease the peak lift experienced
by a foil undergoing dynamic stall induced by a linear pitch-up manoeuvre. This, they
attribute to a decrease in circulation which was experimentally observed in the same
paper. The apparent inconsistency between the two papers might be due to the differing
pitch rate ranges they investigated (Ω∗ > 0.1 for Hrynuk & Bohl 2020 and Ω∗ = 0.05
for Badia et al. 2025), although the absence of direct force measurements in either study
prevents definitive conclusions. In the present study, the effect of tubercles on the vertical
force is minimal, with the exception of a small deviation near the maximal values of
Fz . The vertical force in the straight-leading-edge case peaks twice per wave period,
while with tubercles, the first peak is attenuated and the second enhanced, resulting in
a single, asymmetric peak in Fz . Because of the slight period-to-period variability in the
wave forcing, this deviation in Fz is best observed via the phase-averaged force curves in
figure 6(d–f ) as well as in probability density functions (p.d.f.s) of the measured force
signals, which are included in figure S7. The apparent discrepancy between the present
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Figure 8. Phase-averaged spanwise vorticity Ωy below a hydrofoil fitted with leading-edge tubercles, at
selected non-dimensional times t∗ = 0.15, 0.3, 0.45 and 0.6 (from left to right), corresponding to the vertical
dashed black lines in figure 6(d–f ), for λ= 4 m and wave amplitude ε = 0.06. Three separate measurement
planes are shown: at a tubercle peak, halfway between tubercle peak and trough, and at the trough between two
tubercles (from top to bottom). Black solid lines represent isocontours of Q-criterion at an arbitrarily chosen
value Q = 100 s−2, which thus enclose regions of high vorticity, which we consider as vortices. Black cross,
centre of vortex rotation (maximum of Γ1, following Michard et al. (1997)); black dot, geometric centroid of
the vortex. Every second velocity vector is skipped, for clarity. The black double arrow illustrates the typical
length scale, Rv , discussed in § 7.

observations on peak lift and those of Badia et al. (2025) can likely be attributed to the
relatively small amplitude of the angle of attack variations investigated here. A divergence
between the lift coefficient computed in the straight-leading-edge and tubercled cases is
not observed by Badia et al. (2025) until the foil is beyond the maximum angle of attack
we achieve in the present study. Although the foil section used in the two studies differs,
this strongly suggests that we should indeed not see a significant effect of tubercles on lift
at these angles.

To better understand how the flow is affected by tubercles, the phase-averaged spanwise
vorticity Ωy around the hydrofoil for the case of wavelength λ= 4 m and large wave
steepness ε = 0.06 is plotted in figure 8 for selected dimensionless times t∗ ∈ [0.15, 0.6],
corresponding to the instants of interest indicated by vertical dashed lines in figure 6(d–f ).
The three planes in which measurements were taken (at a tubercle peak, half-way between
tubercle peak and trough, and at the trough between two tubercles) are represented in the
figure (from top to bottom). Comparing the vorticity contours in this figure to those in
figure 5 demonstrates that the flow is strongly altered by the presence of tubercles. The
corresponding videos over the complete wave period t∗ ∈ [0, 1], including for cases of
weaker wave forcing amplitude and larger wavelength, can be found in supplementary
movies 1–8. A concentrated region of spanwise vorticity first emerges near the leading
edge in the planes of measurement located between the tubercles and half-way between
tubercle peak and trough (figure 8, bottom two rows). At t∗ = 0.3, the leading-edge vortex
has not yet appeared in the tubercle peak measurement plane, indicating that the initial
boundary layer separation and stall vortex roll-up are localised phenomena associated with
the tubercle troughs and the stall vortex is, in its early stages, spanwise discontinuous.
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By t∗ = 0.45, the leading-edge vortex appears in all measurement planes and remains at
this stage attached to the leading edge via a strong shear layer. This large vortex continues
to grow over time, both spatially and in strength, and then detaches and is advected
along the hydrofoil from approximately t∗ = 0.6. The leading-edge vortex generated in
the tubercled case is much greater in spatial extent than that observed in the straight-
leading-edge case. Because of the limited angle-of-attack variation amplitude (20◦ for
λ= 4 m and ε = 0.06 in our most extreme forcing case, against 30◦ of Badia et al. 2025
and 50◦ of Hrynuk & Bohl 2020) in the present work, deep stall is not fully achieved in the
case of straight-leading-edge geometry, placing our experiments close to a quasi-static stall
regime. When tubercles are applied, however, behaviour similar to the other studies occurs,
i.e. vortex generation initiates between tubercles at smaller angle of attack and leads to
the generation of a more diffuse large leading-edge vortex structure. This means that,
although the angle-of-attack variation is here too small to trigger a deep stall regime on
the straight-leading-edge hydrofoil, the presence of tubercles initiates early dynamic stall
at the leading edge, leading eventually to a large leading-edge vortex present across the
span. This indicates that, for relatively small angle variations and rates, tubercles’ primary
effect is that of enforcing a transition to a qualitatively different flow regime, which could,
depending on application and design objective, be deleterious to the operation of such a
hydrofoil. It would be of interest to ascertain whether stall is also triggered early in the
case of a pitching foil and to quantify comprehensively for which unsteady motion classes
tubercles can be beneficial or not.

6. Analysis of the vortex motion
This section presents a more quantitative in-depth analysis of dynamic stall vortex
initiation and evolution on a hydrofoil under action of waves, and examines the effect
of leading-edge tubercles on the dynamic stall process. We first examine the tangential
velocity of the flow along the suction surface of each hydrofoil, defined as ut = u · t ,
where t are the vectors locally tangent to the hydrofoil suction surface. The values of ut are
plotted as a function of space and time in figure 9 for the straight-leading-edge hydrofoil
(panel a) and the tubercled hydrofoil (panels b–d) , for the case of λ= 4 m and ε = 0.06.
Black solid contours delimit the spatio-temporal locations at which reverse flow occurs,
i.e. where ut < 0. Discrete instances of reverse, or near-reverse, flow are marked using
magenta ellipses and labelled alphabetically to ease description. Corresponding figures
for other wave forcing cases, λ= 4 m, ε = 0.04 and λ= 6 m, ε = 0.04 are given in figures
S8 and S9, where similar behaviour is displayed.

During the time intervals t∗ ∈ [0, 0.2] ∪ [0.8, 1], which correspond to angles of attack
close to 0◦, ut is similarly distributed (correlation coefficient approximately 0.8) for the
two hydrofoils. A streamwise acceleration from the leading edge to a maximum value
of ut ≈ 1.25 m s−1 at approximately x/c ≈ 0.25 and then subsequent deceleration. No
reverse flow is present during these time intervals. In the straight-leading-edge case, a
reverse flow first appears near the trailing edge, x/c ≈ 0.75, in the zone marked ‘A’.
This is followed by the emergence of a nearly reversed flow (zone B) near the leading
edge, which subsequently propagates towards the hydrofoil’s trailing edge. It should be
noted that, because of the finite resolution of the PIV measurement, ut is obtained at
approximately 4 mm offset from the actual surface of the hydrofoil, and the boundary
layer is not well resolved. For comparison, this offset is of similar order to the thickness
0.16c/Re1/7 ≈ 4.7 mm of a fully turbulent boundary layer over a flat plate of length c
(Schlichting & Kestin 1961). As such, values of ut are indicative of the approximate
magnitude of the outer flow velocity and its direction, but may not accurately capture
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Figure 9. Spatio-temporal variations of the non-dimensional phase-averaged velocity, ut/u0, tangent to the
hydrofoil suction surface at non-dimensional times t∗ ∈ [0, 1] for λ= 4 m and ε = 0.06. The two cases of (a)
straight leading edge and (b–d) with tubercles are shown. Panel (b) shows the measurement plane on a tubercle
peak, panel (c) half-way between tubercle peak and trough, and panel (d) at the trough between tubercles. Black
solid curves delimit spatio-temporal regions in which ut < 0. Alphabetically labelled magenta ellipses indicate
zones of interest to ease description.

very localised, small-scale, flow reversal within the boundary layer. This means that there
is uncertainty as to whether flow reversal actually occurs or not in zone B. The initial onset
of flow reversal near the trailing edge is typical of static, or quasi-static, stall phenomena
(Buchner et al. 2018), which is not unexpected due to the low dimensionless pitch rates
Ω∗ ∈ [0.01, 0.06] studied here. The subsequent leading edge (near-)reversal and associated
vortex roll-up (figure 5) indicate, however, that incipient dynamic stall behaviour is also
present.

As seen in § 5, the addition of tubercles modifies the flow. First, for a short instant, ut
is observed to increase on tubercles at t∗ = 0.25 and x/c = 0.2 (figure 9b). At the same
streamwise location, a reverse flow emerges very shortly thereafter between the tubercles
(zone C in figure 9d). The emergence of this reverse flow is presumably triggered by
three-dimensional flows that correspond to streamwise vortices (Badia et al. 2025) and
corresponds temporally with the moment at which the horizontal force in the tubercled
case deviates most significantly from that in the straight-leading-edge case (figures 6e and
7b). The reverse flow of zone C corresponds to the accumulation of vorticity observed
previously in figure 8 and remains at an approximately constant x/c ≈ 0.3 location
until t∗ ≈ 0.6. This relatively stationary leading-edge-attached vorticity accumulation,
and associated reverse flow region, is distinct from the primary leading-edge vortex
structure and appears related to the shear layer connecting the leading-edge vortex to the
leading edge. The signature of the leading-edge vortex on the surface-tangential velocity
is observed in a distinct region (zone D) of reverse flow, which presents at all measured
planes along the spanwise direction from t∗ ∈ [0.4, 0.75]. In this time interval, the reverse
flow in zone D is observed to advect downstream at an approximately constant rate. The
observed behaviour of zone D is qualitatively similar to the slightly earlier evolution of
zone B in the straight-leading-edge case, but of a clearly larger magnitude. The advection
of these separated flow structures past the trailing edge at t∗ ≈ 0.75 corresponds roughly
with the moment at which the horizontal force measurements re-converge in figures 6(e)
and 7(b). Note also the presence of a trailing-edge separation in figure 9(d), x/c ≈ 0.8,
which is qualitatively similar to the quasi-static stall observed in the straight-leading-edge
case (zone A in figure 9a). This separation does not appear in the on-tubercle measurement
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Figure 10. Location of the (a–c) geometric centres and (d–f ) centres of rotation of each identified vortex, for
t∗ ∈ [0, 1]. Three cases of wave forcing are shown: (a,d) λ= 4 m, ε = 0.04; (b,e) λ= 4 m, ε = 0.06; and (c, f )
λ= 6 m, ε = 0.04. Symbol shape and colour indicate different planes of measurement, i.e. straight leading edge
(black diamonds), measurement plane coincident with a tubercle peak (red dots), measurement plane coincident
with a tubercle trough (blue dots), and measurement plane halfway between tubercle peak and trough (green
dots). Empty symbols correspond to the structures from zones A and C, and full symbols to zones B and D.
Hydrofoil shape and location are indicated via black solid outline.

plane (figure 9b), as the streamwise vortices created by the tubercles induce a wall-normal
flux of momentum towards the surface in that plane, but not in the plane situated between
tubercles (Badia et al. 2025).

Individual phase-averaged vortices are identified and tracked over time from the
PIV measurement data, using a method similar to that used by Fiscaletti, Kat &
Ganapathisubramani (2018) with two separate definitions: vortex locations can be
extracted as the geometric centres of regions in which Q > 100 s−2 (black dots in figures 5
and 8), or the locations can alternatively be found using the Γ1 method, described by
Michard et al. (1997), which computes the centres of rotation of the region in which Q >

100 s−2 (black crosses in figures 5 and 8). We focus here on tracking and characterising
those vortex structures with an origin at leading edge or in the suction-surface boundary
layer. The clockwise-rotating trailing edge vortex that appears in some large-amplitude
test cases is not considered in this analysis. The tracked vortex locations, defined by the
geometric centres, are plotted in figure 10(a–c), and as defined by the centres of rotation
in figure 10(d–f ), for three separate wave forcing cases: (a,d) λ= 4 m, ε = 0.04, (b,d)
λ= 4 m, ε = 0.06 and (c, f ) λ= 6 m, ε = 0.04. These three cases correspond to wave
forcing of sufficient magnitude such that stall vortices can form and be detected in our
measurement. Each marker’s shape and colour indicates the leading-edge geometry and
measurement plane to which it relates. Empty symbols relate to the vortex structures
associated with zones A and C, and full symbols to the vortex structures associated
with zones B and D that are defined in figure 9. In the case of a straight leading edge
(black diamonds), almost no vortex emerges for λ= 4 m, ε = 0.04 (panels a, d), as the
maximum achieved angle of attack of 17◦ in this case is too small to generate measurable
dynamic stall over the time scale of wave forcing, only the boundary layer thickening
and roll-up near the trailing-edge (zone A, empty diamonds) tends to emerge. Increasing
the wave steepness to ε = 0.06 (panels b, e) produces the quasi-static stall case where
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Figure 11. Variation of the (a–c) x and (d–f ) z location of vortex geometric centroid with the non-dimensional
time tux/c, for the three wave forcing cases (a,d) λ= 4 m, ε = 0.04; (b,e) λ= 4 m, ε = 0.06; and (c, f )
λ= 6 m, ε = 0.04. Symbol shape and colour indicate different planes of measurement, i.e. straight leading
edge (black diamonds), measurement plane coincident with a tubercle peak (red dots), measurement plane
coincident with a tubercle trough (blue dots), and measurement plane half-way between tubercle peak and
trough (green dots). Black dash-dotted lines, linear best fits. Alphabetically labelled ellipses indicate zones of
interest to ease description, with labelling identical to that used in figure 9. Black ellipses relate to the case of
the straight-leading-edge hydrofoil, while data for tubercled hydrofoils are delineated using magenta ellipses.
Empty symbols correspond to the vortices from zones A and C and full symbols to zones B and D. Vertical
dashed magenta lines refer to the instants of maximal and minimal horizontal velocity ux (wave peak and
trough) and the blue vertical dashed lines to the instants of maximal and minimal angle of attack β.

flow separation, boundary layer roll-up and resulting vortex structures occur near both the
trailing edge (zone A, empty diamonds in x/c ∈ [0.8, 1]) and the leading edge (zone B,
full diamonds in x/c ∈ [0.2, 1]). Wave forcing at longer wavelength, λ= 6 m (panels c, f ),
implies larger variation of the angle of attack leading to stronger reverse flow and therefore
stall. When tubercles are present at the leading edge, vorticity accumulation near the
leading edge at x/c ≈ 0.2 (zone C) is detected, in all plotted cases, in between tubercles
(blue empty markers) and in the measurement plane half-way between tubercle trough and
peak (green empty markers). The emergence of the large leading-edge vortex, indicating
a dynamic stall regime, is detected in all measurement planes (full blue, green and red
markers) at x/c ∈ [0.4, 1]. This vortex forms farther from the hydrofoil leading edge, at
x/c ≈ 0.45, than in the straight-leading-edge hydrofoil wherein it forms at x/c ≈ 0.2. The
two methods of vortex detection employed here yield similar results to one another, with
the only difference being that the vortices’ centres of rotation are located closer to the
hydrofoil surface than their geometric centres. This indicates a vortex asymmetry, which is
also clear in figure 8. We select only the geometric centroid for use in subsequent analysis.

Figure 10 indicates detected vortex locations in space, for various measurement times,
but without explicitly including temporal information. In figure 11, the horizontal x (panels
a–c) and vertical z (panels d–f ) locations of the vortices are plotted over time, indicating
similar dynamics for the three different wave forcing cases that are shown here, despite
different flow conditions. Note that here, the time axis is non-dimensionalised using the
convective time, c/ux , with ux the horizontal flow velocity measured by PIV, instead of
the wave period, T = 1/ fr . This non-dimensionalisation is appropriate here as motion of
the vortices post-detachment is driven by the external flow velocity. It should be noted,
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however, that the use of the non-dimensionalisation t∗ = t/T yields similar results, as
the horizontal velocity ux depends on the wave period as ux ∼ u0 ±Rω. The horizontal
advective velocity of the vortices is inferred by a linear fit to the experimentally observed
variation of x (dash-dotted lines). In the same way as in figure 9, various features of
interest in figure 11 are indicated by black (straight leading edge) and magenta (tubercled
leading edge) ellipses, keeping consistent alphabetic notation. As was observed previously
in the case of a straight leading edge, except for in the case λ= 4 m and ε = 0.04, vortices
are formed both near the trailing edge (zone A) and the leading edge (zone B), and are
advected following roughly the hydrofoil surface. With tubercles present, the vorticity
accumulation (zone C) near the leading edge appears early and remains closely associated
with the leading edge for the duration of the measurement. Its motion is characterised
only by a small horizontal velocity of magnitude between 0.04ux and 0.11ux , and a slight
decrease over time of its z coordinate, related to its spatial growth. Some time later,
the large leading-edge vortex (zone D) forms and is observed to travel horizontally at
a velocity of approximately 0.47 ± 0.09ux , similar to the advective velocity in straight-
leading-edge case (zone B) despite a much earlier emergence. The vortex convection speed
and its earlier emergence compared with the straight leading-edge case are found to be
similar for the different cases. This similarity demonstrates the quantitative repeatability
of the phenomenon despite the different flow unsteadiness applied. Except for in the
case of λ= 4 m and ε = 0.04, this large leading-edge vortex moves only negligibly in
the vertical direction, remaining located at z/c ≈ 0.1, and does not follow the hydrofoil
shape, which is in contrast to the behaviour observed in the straight-leading-edge case.
The difference is also easily observed in figure 10. This observation differs from that of
Hrynuk & Bohl (2020), where tubercles make the vortex travel closer to the hydrofoil
surface compared with the straight-leading-edge case. This difference could be due to the
difference between using wave-induced flow motion rather than a pitching movement to
trigger dynamic stall. Note also that from tux/c > 3.5, the leading-edge vortex (zone D)
has been advected beyond the tubercled hydrofoil’s trailing edge, whereas it is still present
in the straight-leading-edge case (zone B). This difference in the length of time over which
the leading-edge vortex resides in the vicinity of the hydrofoil suction surface may relate
to the small qualitative difference in the vertical force Fz time history creating the two
peaks observed previously in figure 6(c) at each period.

The circulation contained within the identified vortex structures is calculated as

Γ =
∫

Q>100
Ωy dx dz (6.1)

and plotted for the three different wave forcing conditions over time in figure 12. The
Q-criterion threshold, Q > 100 s−2, was found to qualitatively capture the main features
of the vortex structures in our flow well. It should also be noted that, by construction,
Q-criterion only captures regions in which rotation dominates over strain, thus omitting
shear and boundary layers, and serving here as a quantifiable definition delineating
the primary vortex structures associated with flow separation. Care must be taken in
the interpretation of these structures, as any chosen threshold value of the Q-criterion
is necessarily arbitrary and will never perfectly capture all relevant vorticity (see e.g.
figures 5 and 8 at t∗ = 0.45 on the plane halfway between tubercle peak and trough).
This source of uncertainty, linked to experimental noise, can cause scatter in computed
circulation values when applying the analysis to experimental data, as is done here.
Circulation contributions from the various vortex structures are plotted separately, zone
A (panels a, b, c), zone C (panels d, e, f ), and zone B and D (panels g, h, i), whereas
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Figure 12. Evolution of the circulation Γ as function of non-dimensional time t∗ for the three wave forcing
cases: (a,d,g,j) λ= 4 m, ε = 0.04; (b,e,h,k) λ= 4 m, ε = 0.06; and (c, f ,i,l) λ= 6 m, ε = 0.04. The different
contributions are represented separately: (a,b,c) zone A; (d,e, f ) zone C; and (g,h,i) zones B and D; and (j,k,l)
the total circulation Γtot including all contributions. Symbol shape and colour indicate different planes of
measurement, i.e. straight leading edge (black diamonds), measurement plane coincident with a tubercle peak
(red dots), measurement plane coincident with a tubercle trough (blue dots), and measurement plane half-way
between tubercle peak and trough (green dots). Vertical dashed magenta lines refer to the instants of maximal
and minimal horizontal velocity ux (wave peak and trough) and the blue vertical dashed lines to the instants of
maximal and minimal angle of attack β. Note the varying y-axis scale.

the total circulation Γtot, with every contribution included, is reported in panels (j, k, l).
Vortices that start to leave the measurement domain are no longer taken into account.

The time-evolution of shed circulation in figure 12 is qualitatively similar across
the various cases; only the magnitude changes, increasing with wave forcing intensity
(wavelength and steepness). In the straight-leading-edge case (black diamonds),
circulation increases first because of the near-trailing-edge boundary layer roll-up
(zone A), then subsequently because of the formation of the leading-edge vortex (zone
B). The two structures, once they are fully formed, have a similar circulation magnitude
to one another, and so both contribute substantially to the total circulation Γtot. In the case
of the tubercled hydrofoil, circulation appears first at the measurement planes between
tubercles and half-way between tubercle peaks and troughs because of the leading-edge
vorticity accumulation (zone C). The circulation contained within this structure then
decreases from t∗ ≈ 0.35 as the angle of attack decreases and circulation is transferred
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to the large leading-edge vortex (zone D). The rate of increase of circulation in the
leading-edge vortex is similar in all three planes of measurement. This leading-edge
vortex contains a much greater circulation (approximately four times greater magnitude)
compared with that observed in the straight-leading-edge case (zone B) (figure 12h,i). The
increase in total circulation in the plane coincident with the tubercle peaks lags behind that
in the other measurement planes, as the circulation in the leading-edge vortex primarily
originates from flow separation in the tubercle troughs, where a stronger shear layer is
observed. Upon reduction in the strength of the feeding shear layer in between tubercles
and in the half-tubercle plane from t∗ ≈ 0.5, the total circulation measured in those planes
reduces gradually towards parity with the circulation in the tubercle-coincident plane.
Thereafter, Γtot is approximately identical for the three planes, as it consists almost entirely
of circulation in the large diffuse leading-edge vortex. Direct comparison with previous
studies on the effect of tubercles on dynamic stall (Hrynuk & Bohl 2020; Badia et al.
2025) is difficult due to differing parameter ranges. We nevertheless observe concurrence
with Hrynuk & Bohl (2020), in that the circulation is of greater magnitude between
tubercles than on a tubercle. They observe that, as time progresses, the circulation in the
tubercle peak plane becomes greater, a discrepancy with our observations which might be
attributed to the non-dimensional pitching rate Ω∗ being more than twice in that work
than in the present study. As is common in the study of steady flow around a foil, it
has previously been assumed that circulation in the separated vortex structures under
dynamic stall is directly linked to lift force generation (Hrynuk & Bohl 2020; Badia
et al. 2025). In the present work, the measured circulation in the leading-edge vortex
structures is greater in the presence of tubercles, but the time history of the vertical force,
Fz , is similar for both leading-edge geometries (figure 6c). This seemingly contradicts
earlier works’ assumptions that tubercles’ effects on leading-edge stall structures would
significantly impact lift force, pointing to nuance in the role of shed circulation on force
generation. Indeed, by Kelvin’s circulation theorem, identical kinematics will generate
identical circulation, differing only in spatial distribution, and allocation between shed
and bound vorticity. So long as this total circulation remains closely associated with
the hydrofoil, the lift force should be unaffected. One must recognise however that
not all generated circulation is included in computing the strength of what we call
vortex structures, depending on the ‘vortex’ definition used. Such definitions, including
Q-criterion, typically exclude the circulation-containing boundary and shear layers, and
are subject to noise, and therefore computed values’ relation to lift force generation should
be interpreted with care.

To fully characterise the vortices’ formation, we must also consider their spatial
dimension over time. We define vortex size by computing an effective radius r , defined
as r = √A/π , where A is the measured area in which Q > 100 s−2. This radius can be
compared with R, the theoretical typical length scale of the wave-induced flow, which is
defined as the vertical displacement,

R =R tan αm, (6.2)

made by a fluid particle over a half-period of the wave forcing, at the hydrofoil
nominal immersion depth, z = −h, with R= Ae−2πh/λ and tan(αm) =Rω/u0 given
by the amplitude of variation of the angle α from (2.2). The variation of r/R with
non-dimensional time t∗ is plotted in figure 13 for the different vortex structures: zone
A(panels a, b, c), zone C (panels d, e, f ), and zones B and D (panels g, h, i) and for the
different wave forcing conditions. Data are given for each vortex up to the moment that the
vortex begins to leave the measurement domain. For the straight-leading-edge hydrofoil
(black diamonds), the two vortices (boundary layer roll up at trailing edge, zone A, and
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Figure 13. Evolution of the non-dimensional effective radius, r/R, of the different vortex structures as a
function of the non-dimensional time t∗ for the three wave forcing cases: (a,d,g) λ= 4 m, ε = 0.04; (b,e,h)
λ= 4 m, ε = 0.06; and (c, f ,i) λ= 6 m,ε = 0.04. The different vortices are represented separately: (a,b,c)
zone A; (d,e, f ) zone C; and (g,h,i) zones B and D. Symbol shape and colour indicate different planes of
measurement, i.e. straight leading edge (black diamonds), measurement plane coincident with a tubercle peak
(red dots), measurement plane coincident with a tubercle trough (blue dots), and measurement plane half-way
between tubercle peak and trough (green dots). Vertical dashed magenta lines refer to the instants of maximal
and minimal horizontal velocity ux (wave peak and trough) and the blue vertical dashed lines to the instants of
maximal and minimal angle of attack β.

leading-edge vortex, zone B) quickly grow until approximately equivalent radii of r ≈
0.6R. For the tubercled hydrofoil, the leading-edge region of vorticity accumulation (zone
C) first grows in spatial extent, before shrinking from t∗ ≈ 0.4 both between tubercles and
in the half-tubercle measurement plane (blue and green, respectively). The large leading-
edge vortex (zone D) emerges subsequently in every measurement plane at the same
time. For λ= 4 m and ε = 0.04 (figure 13g), the vortex radius increases over time until
r/R ≈ 1.5, with experimental data being relatively spread. For the two other cases (panels
b and c), the large diffused leading-edge vortex grows from t∗ ≈ 0.35 to t∗ ≈ 0.5 in every
measurement plane. Its radius grows until r ≈ R and tends to maintain this value until the
vortex leaves the measurement domain. As seen in figure 10(b,c), in the tubercled cases,
the leading-edge vortex is advected almost horizontally, without following the hydrofoil
surface. The tendency of the vortex effective radius to converge to r = R supports an
interpretation that the spatial extent of leading-edge vortex formation is linked to the
vertical displacement length scale of the wave induced fluctuating flow. This length scale
appears to play a more direct role in the case of the tubercled leading edge, where the
wave-induced vertical velocity component can penetrate between tubercles.
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7. Quantification of the increased drag due to tubercles
We can now use our observations of the flow behaviour to mechanistically explain
the effect of tubercles on the generation of horizontal force Fx , which is plotted in
figures 6 and 7. The observed difference in Fx occurs primarily in the time interval
t∗ ∈ [0.2, 0.6], which corresponds to conditions where the angle of attack is maximum
and the vortex structures on the suction side of the hydrofoil are in their early stages of
formation. As observed in figure 6, the effect of tubercles on the value of Fx in the steady
case (without waves) is small compared with the magnitude of the force fluctuations in
the unsteady cases. We, therefore, for expediency in modelling the effect of tubercles,
assume that the steady-state drag coefficient is approximately identical for the two leading-
edge geometries. We hypothesise the same for added mass, given that the planform
areas of the two hydrofoil models are identical and the tubercles represent a relatively
minor perturbation to the overall geometry. Under these assumptions, the observed force
difference between straight- and tubercled-leading-edge cases can primarily be attributed
to modified stall behaviour in the presence of tubercles. The primary qualitative flow
difference between the straight-leading-edge and tubercled cases investigated here is an
accumulation of vorticity near the leading edge, within the first third of the chord length.
This accumulation relates to the separated shear layer which will later form the leading-
edge vortex; however, in the tubercled case, it emerges earlier within each wave period,
remains distinct from the leading-edge vortex as indicated by the Q-criterion and exhibits
minimal downstream advection. The downstream advection rate uv observed is only
between 0.04ux and 0.11ux in t∗ ∈ [0.2, 0.6] (figure 11a–c). The motion of this vortex
structure with the hydrofoil, near its leading edge, presents an additional obstruction to
the horizontal passage of the external flow. We evaluate the consequence for the drag
force if we make the simplistic assumption that this structure’s effect can be considered
analogous to that of a bluff body of equivalent dimension, given by its effective radius
Rv = r(x/c < 1/3), moving at the observed advective velocity uv . As an illustrative
example, the length scale Rv is shown in figure 8 between tubercles at t∗ = 0.45, and
corresponds to zone C discussed in § 6. To model this assumption, we introduce an
additional steady-state drag term,

F tub
x − F str

x = Cdv Rvρ(u − uv)
2s, (7.1)

with Cdv = 1, according to the order of magnitude expected for a bluff body, such as a
circular cylinder (Heddleson, Brown & Cliffe 1957). If these assumptions are sufficiently
accurate to explain the observed horizontal force difference between straight-leading-edge
and tubercled cases, the constructed length scale F tub

x − F str
x /[ρ(u − uv)

2s] should be
equal to the observed effective radius Rv of the accumulation of leading-edge vorticity.
Figure 14 shows the relationship between the experimentally determined values of these
two variables. A linear regression on the data for the three cases, λ= 4 m, ε = 0.04 (black
dots); λ= 4 m, ε = 0.06 (red squares); and λ= 6 m, ε = 0.04 (green diamonds) yields
a slope of 0.98 ± 0.18 and vertical-axis intercept of 0.35 ± 2.39, with R-square of 0.74
(dashed line). The solid line of slope 1 represents the prediction of (7.1), and lies well
within the 95 % confidence interval (blue shading) of the linear regression. The few clear
outliers (markers with magenta borders) originate from the sensitivity of the Q = 100 s−2

contour to experimental measurement noise, which in occasional cases can artificially
displace the estimated vortex centre by a large amount (see supplementary movies 5, 7
and 8). These outliers are not taken into account in the linear fit. Including these outliers
in the linear regression yields a similar slope of 0.89 ± 0.26, intercept of 1.73 ± 3.47,
with R-square of 0.48. The prediction of (7.1) remains in that case well within the 95 %
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Figure 14. Effective length scale of the leading-edge vorticity accumulation region, as predicted by the
difference in observed horizontal force between straight leading edge and tubercles hydrofoils, following (7.1)
and assuming Cdv = 1. The three stall cases are represented here as: λ= 4 m, ε = 0.04 (black dots); λ= 4 m,
ε = 0.06 (red squares); and λ= 6 m, ε = 0.04 (green diamonds). The black dashed line is a best linear fit to the
experimental data and yields to a slope of 0.98 ± 0.18 and vertical-axis intercept of 0.35 ± 2.39, with R-square
of 0.74. The clear outliers outlined in magenta are not taken into account in the fit. Blue shading indicates the
95 % confidence interval of the fit. The black solid line (slope 1) is the prediction of (7.1).

confidence interval of the fit. This surprisingly simplistic model explains much of the
variation in force caused by stall in the presence of large amplitude wave forcing, using
only knowledge of the dynamic stall vortex dimensions and velocity. Force variation in
unstalled conditions, λ= 2 m in figure 7(a) for example, cannot of course be accounted for
by this method. Further study is needed to better understand the bounds of the assumptions
made in this work, and extend it across a greater range of forcing conditions and stall
regimes. Nevertheless, the present work quantifies for the first time with direct force
measurements how tubercles modify horizontal forces on a foil undergoing dynamic
stall. Furthermore, we propose a simple model, which explains to a first approximation
tubercles’ effect on horizontal force generation by reference to experimentally observed
flow behaviour.

8. Conclusion
In this study, we have described the hydrodynamic interaction of a horizontally oriented
hydrofoil with the flow field imposed by gravity waves, through which it was traversed at
a constant speed. The focus was on wave forcing conditions spanning regimes of unsteady
attached flow, weak quasi-static stall phenomena and dynamic stall with leading-edge
boundary-layer separation. Both force generation and the flow field over the hydrofoil
suction surface were quantified.

A hydrofoil with a straight leading edge was first considered. A comparison was then
made with an equivalently dimensioned hydrofoil fitted with leading-edge tubercles:
a passive flow-control technique, which has been widely studied under steady flow
conditions, but for which there exists a dearth of information regarding their effect in
unsteady flow. In the present work, we have extended the extant data on the operating
principles and effects of leading-edge tubercles in unsteady flow by examining their
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interaction with the flow induced by wave forcing; a flow which exhibits multi-component
unsteadiness, and one which has obvious relevance to marine applications in naval
engineering, offshore flow energy harvesting and even with regards to understanding the
hydrodynamics of the humpback whale, M. novaeangliae, which inspired the tubercle
geometry.

The data used in this investigation were generated by experiments performed in a
142 m long towing tank equipped with highly resolved measurement systems, including
force transducers and a submerged, torpedo-mounted PIV system. The horizontal and
vertical forces acting on the hydrofoil were measured, while PIV-based flow observation
and quantification was simultaneously performed. This measurement pairing, which has
never, to the best of our knowledge, previously been performed in describing dynamic
stall generated by gravity waves, enabled us to link the observed force generations
mechanistically with unsteady flow features.

We observed that the waves impose temporal variation of the local flow orientation
and speed at the location of the hydrofoil. The interaction of this fluctuating flow with
the hydrofoil induces forces acting on the hydrofoil. Adding steady-state lift and drag
estimates based on instantaneous flow velocity and angle of attack to a potential-derived
added-mass component proved inadequate to capture the observed force variations at large
wave forcing amplitudes. It is under these large amplitude wave forcing conditions that
dynamic stall is triggered. In the dynamic stall regime, an accumulation of vorticity near
the leading edge develops as the hydrofoil’s angle of attack is dynamically increased. This
vorticity accumulation intensifies until the flow near the hydrofoil surface reverses and
a classical leading-edge vortex is formed. Since our experiments span a range of wave
forcing amplitudes, we also observed intermediate cases between unsteady attached flow
and dynamic stall. We refer to these intermediate cases and their related flow phenomena
as ‘quasi-static’ stall, due to the low dimensionless pitch rates at which these phenomena
occur. The primary marker of the quasi-static stall regime is an initial boundary-layer-
separation location close to the trailing edge, which progressively migrates forward. If
leading-edge separation occurs during this separation line migration, the resulting leading-
edge vortex can perturb the separated flow near the trailing edge. In our case, this
provokes shear-layer roll-up and the formation of a second vortex on the suction surface,
downstream of the primary leading-edge vortex structure.

By applying a spanwise-sinusoidal tubercle geometry to the leading edge, the evolution
of the separated flow structures was modified. The initial leading-edge accumulation
of vorticity emerges first in the troughs between tubercles. This accumulation appeared
earlier in our measurements, prior to t∗ = 0.3, in the tubercled case than in the case
with a straight leading edge. The early presence of this vorticity accumulation appears
to prevent trailing-edge separation from occurring. The consequence of this is that the
circulation, which in the straight-leading-edge case is distributed across two vortices, is
in the tubercled-leading-edge case concentrated in a single, larger, leading-edge vortex.
Interestingly, despite the spanwise varying leading-edge geometry, the leading-edge vortex
location appears largely spanwise invariant.

The leading-edge vortex remains attached to the leading edge via a shear layer, as
is typical in dynamic stall flows, for a significant portion of the wave period. Notably,
however, the near-leading-edge vorticity accumulation, at the origin of this shear layer,
remains in place, displaying minimal downstream advection. In this vortical region, the
Q-criterion is positive in a region distinct from the primary leading-edge vortex, indicating
a localised dominance of rotation over shear. Here, we have thus considered this region as
a distinct vortex structure, whose spatial characteristics can be used to predict the modified
force generation due to the presence of tubercles.
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The two extant studies on the dynamic stall of foils with leading-edge tubercles
(Hrynuk & Bohl 2020; Badia et al. 2025) reported an effect of tubercles on the leading-
edge vortex circulation, and supposed that this would also translate to an effect on lift. Only
Badia et al. (2025) supported this with a numerical computation of the lift of a pitching
tubercled foil. Our direct experimental force measurements indicate a different behaviour.
The leading-edge vortex is strengthened by the presence of tubercles, but lift generation is
not impacted to a practically relevant degree. The negligible lift generation effect follows
from Kelvin’s circulation theorem and the application of the classic Kutta–Joukowski lift
theorem. Here, we have also provided the first experimental quantification of the effect
of tubercles on drag force production, which was not considered in the two previous
dynamic stall studies (Hrynuk & Bohl 2020; Badia et al. 2025). A simple quasi-steady
linear model for the force generation indicates that, under wave forcing, the horizontal
force on a hydrofoil is dominated by added-mass effects, leading to periodic fluctuations
in the horizontal force of sufficient magnitude as to even provide negative drag at certain
periods of the wave forcing. When tubercles are introduced, these negative drag peaks
are attenuated in the interval t∗ ∈ [0.2, 0.6], effectively reducing the magnitude of the
temporal drag force fluctuations. The introduction of tubercles thus has clear potential to
practically benefit any submerged structure or turbine blade by diminishing fatigue loading
due to waves, at the expense of an increased average drag.

The phase of wave forcing in which increased drag was observed on the tubercled
hydrofoil corresponds to the period in which the dynamic stall vortex develops. Observing
that the vorticity accumulation near the leading edge barely advects downstream, we
modelled its effect on drag via analogy to the effect of a bluff body of comparable
dimension. This rather simplistic model was surprisingly good at predicting the drag
increase due to tubercle-induced flow field modification, thus establishing a mechanistic
explanation for the observed drag increase based on the observed unsteadily separating
flow behaviour.

The present work provides, hence, a first observation and quantification of hydrofoil
interaction with gravity waves, while demonstrating passive manipulation of the flow
and forces arising from this interaction. Our efforts at passive flow control have
successfully attenuated the magnitude of horizontal force fluctuations, with potential
practical significance with regards to fatigue mitigation for hydrodynamic devices. Future
work will turn attention to spanwise flow effects and extend to the more complex case
of hydrofoil rotation within the wave field, such as is relevant to hydrokinetic turbine
applications.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.11112.
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