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Abstract

Tensegrity is a structural form that is defined as a set of rigid elements suspended in a net
of continuous tension. This structure shows potential for compliance, impact tolerance
and mechanical robustness. However, its non-linear coupled dynamics and often complex
geometry require advanced control strategies. An actuator reference planning strategy to
bring tensegrity robots closer to controlled full body movements was proposed by Guido
Tournois [56] in 2017. This strategy, called the Full Body Reference Planner (FBRP), finds a
sequence of equilibrium configurations for a tensegrity structure, predominantly to follow
a trajectory in space. However, the method is incapable of incorporating inequality con-
straints while obtaining said equilibrium configurations. This is a problem when dealing
with certain restrictions, e.g., actuator limitations and stability of the structure.

In this thesis we implemented a robust way to account for inequality constraints while
utilizing the FBRP. That was done by means of optimization, i.e., an implementation of a Se-
quential Quadratic Programming method to ensure inequality constraints were respected
for each configuration. The approach was validated in scenarios related to practical ap-
plications where inequality constraints were enforced. The results showed advancements
towards practical feasibility. Furthermore, the robustness, efficiency and accuracy of the
method were validated. The extended implementation depicted robustness to parameter
variations and good results in terms of accuracy. However, given the iterative nature of the
method, it was more computationally expensive than its precursor.
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1
Introduction

In the past decade, a special bioinspired structure has caught the eye of robotics researchers.
This structural form is called tensegrity and can be found on many levels in nature and daily
life, from molecular biology [24] to man-made architecture such as the Kurilpa Bridge seen
in Figure 1.1.

Figure 1.1. Example of tensegrity in Architecture. Source: [10].

The word tensegrity is a portmanteau of the term tensional integrity. In literature, Buck-
minister Fuller [15] is often considered to be the inventor of the structure as he was the first
to coin the word itself. However, Kenneth Snelson published an article in 1996 [51] claiming
he was the original inventor of the structure. Tensegrity is defined as a set of rigid elements
suspended in a net of continuous tension. The rigid elements are subject to continuous
compression which results in no bending moment acting on any structural members of
the tensegrity.

Among the reasons why tensegrity structures have caught the eye of researchers is their
potential for compliance, impact tolerance and mechanical robustness. However, this bioin-
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2 1. Introduction

spired structure poses a difficult problem when it comes to controls; its nonlinear cou-
pled dynamics and often complex geometry require advanced control strategies. Moreover,
tensegrities are often underactuated, i.e., they have more degrees of freedom than actua-
tors which underpins the challenging nature of controlling such a structure.

Tensegrity structures can take various shapes and forms. For example, the simplest
form, a 3-prism can be seen in Figure 1.2a. A further complex geometry in the form of the
tetrahedron can be seen in Figure 1.2c. As the structures become more intricate, the more
compression and tension elements are present which results in more complex dynamics.

a. 3-prism. Source: [2] b. Icosahedron. Source: [5] c. Tetrahedron. Source: [6]

Figure 1.2. Common tensegrity structures.

1.1. Tensegrity Robots
In the year 2000, Sultan et. al [52] proposed a tensegrity approach for a flight simulator,
implicitly linking tensegrity to robotics. Three years later, Aldrich et. al [1] became first
to explicitly link the structure to robotics by demonstrating control of a tethered tenseg-
rity robotic arm. Since then many robots have been developed based on the principle of
tensegrity. Examples include climbing, crawling and rolling robots [7, 13, 48, 55]. These
types of robots could be used in near future space exploration where its feasibility has
been addressed in a thesis by Hong in 2014 [23]. Space exploration by means of tenseg-
rity robots has also motivated research by the NASA Ames Research Center’s Intelligent
Robotics Group [7, 47, 48] where Figure 1.3 shows one of their prototypes.

Figure 1.3. Fully assembled prototype of the robot SUPERBall, developed at DTRL, NASA.
Source: [48], with author’s consent.
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Furthermore, with their compliant body properties, tensegrities open up opportunities for
application in human-robot interaction [31]. Current robots that interact with humans are
often heavy, rigid and powerful, which may result in hazardous interaction. Inspection of
areas unreachable to humans is also a field of application that has been researched, e.g.,
climbing in tight areas for duct inspection [13, 14].

Several factors need to be taken into consideration when designing a robot, from me-
chanical design to control strategies. For example, a key component in any robot build
are actuators and tensegrity robots are no exception there. Many different actuators have
been utilized in tensegrity builds found in literature. For example, shape memory alloys
[41, 50], pneumatic artifical muscles [9, 32], twisted and coiled polymer muscles (TCPM)
[21, 59] and linear DC motors [30]. These actuators all have limitations which need to be
taken into account when building and controlling the robot (e.g., stroke, torque and speed
constraints). A specified practical example of the limitations of TCPMs can be found in
Appendix B.

1.2. Tensegrity Control
Initially, control strategies for tensegrity structures were classical open loop control schemes
[1, 37] but soon the field started leaning towards artificial intelligence as an answer to the
structures’ complexity. In 2013 Iscen et. al [26] compared two different machine learn-
ing control approaches to a hand coded solution, single-agent learning and multi-agent
learning. Control of tensegrity via Central Pattern Generators (CPGs) has been explored
in a tensegrity swimmer [3] and on the robots Tetraspine & ReCTeR [7, 55] which showed
promising results in simulation.

Another area of control for tensegrity robots are vibration-driven tensegrity robots. Khaz-
anov et. al [28, 29] combined morphological computation with vibration actuation to ex-
ploit the tensegrity’s complexity to achieve robot locomotion. In contrast, Böhm et. al [4]
explored locomotion by a single vibration driven actuator to simplify all controls.

The robot ReCTeR was tested with various control strategies such as coevolutionary
control, bioinspired control and physical reservoir computing [7]. The open loop coevolu-
tionary control was adapted from prior work by Panait [42] to icosahedral tensegrity robots
by Iscen et. al [25]. This demonstrated that machine learning controls can elicit robust
rolling locomotion of icosahedral robots without actual understanding of the robot’s ana-
lytical dynamics. The bioinspired control approach was divided in three different methods:
reactive controls, inverse kinematics controls and CPG-based controls, all of which being
closed loop approaches. All these strategies had the same underlying principle where the
robot’s speed and heading were controlled by shifting its center of mass.

The spherical tensegrity robot developed by Böhm et. al was also tested with a closed
loop control approach. In principle, the method shifts the robot’s centre of mass (CoM)
outside its base of support via internal mass movement. That was done to achieve tip over
motion and if applied in sequence, rolling locomotion was realized.

By definition, the base of support (BoS) is the area encompassed by every point of con-
tact an object makes with its supporting surface. Furthermore, a common way of defining
stability in locomotion is: an object has to confine its CoM within the BoS so that while
standing the body remains balanced [11, 34, 43]. This can be important in tensegrity loco-
motion as for example a traversing tensegrity icosahedron robot rolls by shifting its centre
of mass outside its base of support. That results in a new supporting triangle i.e. three con-
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tact nodes defining a new base of support. By sequencing this operation in a controlled
manner robot rolling can be realized.

Koizumi, Hirai & Shibata (2012-13) [22, 32] used their proposed principle from 2009 [50]
to demonstrate open loop control of their icosahedron robot. The principle states that the
gravitational potential energy of the robot system is at a minimum during a naturally stable
state. By actuating the muscles of the structure a nonlinear force distribution occurs, result-
ing in a bending moment around the robot’s contact base with the ground. This bending
moment induces a tip over step from one contact triangle to another which is again the
same principle mentioned above. Due to the complexity of the robot dynamics the authors
did not attempt an analytical prediction of which muscles needed activation at each time to
make a goal-directed step. Kim et. al (2014) [30] used a similar principle of open loop con-
trol on their rapid prototyping kit for icosahedron tensegrity robots. Wu et. al (2016) [59]
also exhibited open loop control of their icosahedron robot in a similar fashion to Koizumi
et. al, but directed focus more towards twisted and coiled polymer muscle actuation than
contact modelling.

The robot DuCTT (v1-2) achieved climbing locomotion via a force density method for
inverse kinematic control policy [13, 14]. This open loop control strategy has showed promis-
ing results and is built on the same principles as the Full Body Reference Planner described
in the following section.

1.3. Full Body Reference Planner
In 2017, Guido Tournois proposed an actuator reference planning strategy to bring tenseg-
rity robots closer to controlled full body movements [56]. He called his method the Full
Body Reference Planner (FBRP). This strategy is a numerical reference planner that gener-
ates a sequence of equilibrium configurations for a given task. Firstly, static equilibrium
equations are obtained via force density theory. Combined with kinematic equality con-
straints the method defines a system of equations which establishes an equilibrium mani-
fold [44].

The FBRP is an efficient method of finding a sequence of equilibrium configurations for
a tensegrity structure, namely to follow a trajectory in space. However, it can be augmented
when it comes to respecting inequality constraints. As has been mentioned it can incorpo-
rate equality constraints in an efficient manner but fails with inequalities as they are not
differentiable. This is a problem when dealing with certain restrictions, e.g., actuator limi-
tations and stability concerns.

1.4. Contribution
The contribution of this thesis project is to implement a robust way to account for inequal-
ity constraints while utilizing the Full Body Reference Planner. That is done by means of im-
plementing a Sequential Quadratic Programming method to ensure inequality constraints
are respected. The extended implementation is meant to make the FBRP more feasible
in practice. This approach is finally validated with various practical applications such as
constraining a structure’s cable force changes and centre of mass position in space. That
can, for instance, ensure that physical limitations of actuators are respected. Furthermore,
constraining the structure’s CoM can aid with stability. That is done by confining the CoM
within its base of support while tracking a trajectory.



2
Background - Full Body Reference Planner

In this chapter the FBRP for tensegrity trajectory tracking is derived as proposed by Guido
Tournois in 2017 [56]. The input of the FBRP is a desired set of tensegrity states, namely
a trajectory formulated in nodal coordinates. The planner then renders a change in state
variables to achieve a set of equilibrium configurations while tracking this desired trajec-
tory. The remainder of this thesis uses the following assumptions:

• Cables are massless

• Rods are assumed infinitely stiff relative to cables

• Influence of rod thickness ignored

• Quasi-static behaviour, i.e., velocities and accelerations are zero

• Member forces act only on nodes

• External forces other than gravitational force and their reactions are neglected

• Tension forces are regarded as positive and compression forces as negative

2.1. Equilibrium Force Equations
A tensegrity structure is modelled with points in space, denoted as nodes. They are con-
nected by the rigid members under compression, denoted as rods, and elastic members
under tension, denoted as cables. Let us define a Cartesian coordinate system with x, y, z as
dimensions. In this system we model a tensegrity structure with N nodes and M members
(rods and cables). Coordinates of i th node are defined as

(
xi , yi , zi

)
. External forces acting

on node i are defined as F ext
i ,x , F ext

i ,y and F ext
i ,z acting in their respective dimensions. As stated

5



6 2. Background - Full Body Reference Planner

in force-density theory [12], the force equilibrium equations for node i can be written as

m∑
j=1

((
x j −xi

)
qi , j

)+F ext
i ,x = 0 (2.1a)

m∑
j=1

((
y j − yi

)
qi , j

)+F ext
i ,y = 0 (2.1b)

m∑
j=1

((
z j − zi

)
qi , j

)+F ext
i ,z = 0 , (2.1c)

where according to tensegrity form-finding [12, 57, 61, 62] we define qi , j := fi , j /li , j as the
force-density of a member connecting node i to node j . Note that fi , j and li , j are the force
and length of the member between node i and a node j .

Next we define an incidence matrix C ∈ 2R(M×N ) [62] to compress the 3N force equi-
librium equations. This matrix contains information about member connections to each
node of the tensegrity and is constructed as

Ck,p =


1 for p = i

−1 for p = j

0 for other cases ,

(2.2)

where k indexes a matrix row that represents connection information of kth member of the
tensegrity. Next, we define a set of nodal coordinate vectors in our Cartesian coordinate
system. For N nodes the vectors are denoted

x = (x1, x2, . . . , xN )T ∈RN (2.3a)

y = (y1, y2, . . . , yN )T ∈RN (2.3b)

z = (z1, z2, . . . , zN )T ∈RN . (2.3c)

Furthermore, we define a force-density vector for M members as q = (q1, q2, ..., qM )T ∈ RM

[12, 57, 61, 62]. Then equation (2.1) can be rewritten for N nodes as [54, 62]

CT QCx +F ext
x = 0 (2.4a)

CT QCy +F ext
y = 0 (2.4b)

CT QCz +F ext
z = 0 , (2.4c)

where Q is a diagonal force density matrix with q on the diagonal and F ext
x , F ext

y and F ext
z

are external forces acting on each node in their respective dimensions.
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2.2. Reference Planner
The configuration of a tensegrity structure is described by a set of internal states. These
states are represented by the nodal coordinate and force-density vectors. Let us define
vector ξ to represent the configuration and degrees of freedom of a tensegrity structure

ξ= (
xT , y T , z T , q T )T

.

Now we can rewrite 2.4 as a nonlinear function f :R3N+M →R3N of ξ

f (ξ) = 0 . (2.5)

As stated in the previously listed assumptions, we set F ext
x = F ext

y = 0 and assume cables
are massless. In the z-direction gravitational forces and ground reaction forces (GRF) are
taken into account. We assume even mass distribution of rods such that gravity is equally
distributed between two nodes on each rod

F ext
i ,z = F ext

j ,z = mrg

2
, (2.6)

where mr is the rod mass and g gravity.
The GRFs are modelled such that they support the full weight of the tensegrity structure.
The equilibrium equations that correspond to a contact node nc are summed up and equated
to the negative gravitational force

∑(
fnc

)=−mrg . (2.7)

Let
(
g1 (ξ) = 0, . . . , gh (ξ)

)
be h continuous equality constraint equations. Then a system of

equations J :R3N+M →R3N+h can be defined as

J (ξ) =


f (ξ)

g1 (ξ)
...

gh (ξ)

 . (2.8)

If a configuration satisfies J = 0, the tensegrity is in a state of equilibrium. Therefore, J
transforms the configuration space of the tensegrity into an implicitly defined equilibrium
manifold.

To track desired nodal trajectories we need to determine S number of equilibrium con-
figurations along that path. Let ξc denote the set of controlled state variables with a subset
of desired nodal coordinates ξc,d. Next the states are split into task variables and free vari-

ables ξ= (
ξT

c ,ξT
f

)T
where the latter are not restrained to tracking trajectories.

For the assumption of quasi-static behavior to hold J needs to be zero at all times, in-
cluding when changing between equilibrium configurations. The states of the tensegrity
have a linear relation in their velocity as J is a second order system [45]. The change in J is
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then approximated by the first order derivative with respect to ξ times the discrete change
in configuration states

∆J ≈ δJ

δξ
∆ξ= 0 , (2.9)

where δJ
δξ

is a Jacobian matrix. Given that ∆ξ is small enough, this relationship can be ex-
ploited to determine the state changes necessary to follow a nodal trajectory while staying
bounded on the equilibrium manifold. States ξc,d for a desired trajectory are discretized in
S+1 steps in order to achieve S number of desirable state changes. Note that to exploit this
relation, inequality constraints can not be included in J as they are not differentiable. Next
we refactor equation 2.9 with respect to task and free state variables

∆J = δJ

δξc
∆ξc,d +

δJ

δξf
∆ξf = 0 , (2.10)

that allows us to connect the change in tracking variables to the change in free variables

δJ

δξf
∆ξf =− δJ

δξc
∆ξc,d . (2.11)

The Jacobian matrices δJ
δξf

and δJ
δξc

have a column rank deficiency and are therefore singu-
lar. This also means that these equations are underdetermined and have an infinitude of
solutions. The Moore-Penrose pseudoinverse gives a solution

∆ξf =
(
δJ

δξf

)† (
− δJ

δξc
∆ξc,d

)
. (2.12)

Now the change in all state variables from configuration ξs can be determined to ensure a
consecutive equilibrium configuration

ξs+1 = ξs +
[
∆ξc,d

∆ξf

]
s→s+1

. (2.13)

Since the change in state is determined by a first order approximation, numerical errors
are inevitable. These errors might lead to ill-conditioning of the Jacobian δJ

δξf
. That can

cause a very inaccurate approximation of ξs+1 to be obtained. The pseudoinverse can be
composed by use of singular value decomposition to mitigate these numerical errors where
singular values below a set tolerance are set to zero [19].

2.3. Initial Conditions
To make use of the Reference Planner an initial equilibrium configuration ξ0 needs to be
determined. This configuration can be determined by the following optimization problem

min
ξ

{
f (ξ) ,‖ξd −ξ‖

}
(2.14a)

s.t. g (ξ) = 0, (2.14b)

ξlb ≤ ξ≤ ξub, (2.14c)
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where ξd is the set of desired states, g (ξ) are constraints and ξlb and ξub are the bounds of
the nodal coordinates and member force densities.





3
Method

This chapter outlines the method for full body control of a tensegrity structure while re-
specting a set of inequality constraints. The structure control is realized by a full body
reference planner which calculates a sequence of equilibrium configurations for a desired
trajectory. This method is based on force density theory [12] and tensegrity form-finding
[12, 57, 61, 62]. Due to the nature of this method it can not incorporate inequality con-
straints directly. The planner is extended to incorporate inequality constraints to deal with
limitations, as described previously, in practical applications. That is accomplished by
means of a Sequential Quadratic Programming method based on theory by Gill and Murray
(1978) [16], Schmid and Biegler (1994) [49] and Nocedal and Wright (2006) [39]. It iteratively
solves Karush-Kuhn-Tucker (KKT) conditions [33] of a Quadratic Program and then uses a
line search method for a second order correction. Each step is solved by means of an active
set method [16, 18, 49]. Note that the remainder of this thesis builds on the same assump-
tions as listed in Chapter 2.

3.1. Adding Inequality Constraints
In this section the method of incorporating inequality constraints into the reference plan-
ner is depicted. As stated before, inequality constraints are not differentiable and can
therefore not be added in equation (2.8). Also, the set of equations in (2.12) is an under-
determined system with an infinite number of solutions. Let us rewrite equation (2.12) for
shorthand convenience

d = A†r , (3.1)

where ∆ξf = d ,
(
δJ
δξf

)
= A and

(
− δJ
δξc
∆ξc,d

)
= r . In accordance to generalized inverse theory

[27], if a linear system of equations has any solutions they are all given by

d = A†r +
(
I−A†A

)
w , (3.2)

where I is the identity matrix and w an arbitrary vector. Solution(s) exist if and only if
AA†r = r . If a solution exists, it is unique if and only if A has full column rank. In that case

11



12 3. Method

(
I−A†A

)
is a null matrix. Here A has column rank deficiency and the system in (3.1) is,

as mentioned before, underdetermined. Hence, all of the infinite number of solutions are
given by equation (3.2). Next let us rewrite equation (3.2) with M = (

I−A†A
)

for shorthand
convenience

d = A†r +Mw . (3.3)

Now we can tailor arbitrary vector w to obtain a solution that meets certain criteria. We can
determine w in an iterative manner by means of minimizing d T d . This gives freedom to
implement not differentiable inequality constraints. The optimization problem is defined

min
w

(
A†r +Mw

)T (
A†r +Mw

)
(3.4a)

s.t. ci ≥ 0 , (3.4b)

where ci can be n number of inequality constraints where {n ∈Z : n ≥ 0}. Extending the
objective function and dropping expressions without w the following is obtained

min
w

f (w ) = w T MT Mw +2w T MT A†r (3.5a)

s.t. ci (w ) ≥ 0 . (3.5b)

This is now a Quadratic Programming (QP) problem and can be solved via optimization.
With this method we can now obtain a set of equilibrium configurations for a desired trajec-
tory whilst respecting inequality constraints. This also allows for the possibility to enforce
various constraints, e.g., to respect actuator limitations and aid with stability. To solve this
problem we implement a robust Sequential Quadratic Programming (SQP) method.

3.2. Sequential Quadratic Programming
Sequential Quadratic Programming is an effective method for optimization problems sub-
ject to nonlinear constraints. It is based on the principle of iteratively solving a Quadratic
Programming subproblem until optimality is realized. In this implementation the QP sub-
problem is solved at each iteration by means of an active set method defined in Section
3.3. That solution is then corrected using a line search method to increase robustness and
efficiency [58]. The approach can be viewed as a generalized version of Newton’s method.
A Newton step for a function g at step k is defined as

g (xk )+∇g (xk )T ∆x = 0 . (3.6)

For this implementation, the function g would correspond to KKT conditions for a given
Lagrangian function. Let us firstly define the Lagrangian for our problem in (3.5)

L (w ,λ) = f (w )−λT c (w ) , (3.7)
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where λ is a vector of Lagrange multipliers. Optimality is obtained by solving its corre-
sponding KKT conditions. They are defined in matrix form as

K (w ,λ) =
[∇w L (w ,λ)
∇λL (w ,λ)

]
=

[∇ f (w )−∇c (w )λ
−c (w )

]
.

(3.8)

The corresponding gradient is

∇K (w ,λ) =
[∇2

w w L (w ,λ) −∇c (w )
−∇c (w )T 0

]
, (3.9)

where

∇2
w w L (w ,λ) =∇2 f (w )−

n∑
i=1

λi∇2ci (w ) . (3.10)

Now we can write the Newton step as

[∇2
w w L (w ,λ) −∇c (w )
−∇c (w )T 0

][
w
∆λ

]
=−

[∇ f (w )−∇c (w )λ
−c (w )

]
, (3.11)

with a corresponding Quadratic Program

min
w

1

2
w T∇2

w w L (w ,λ) w +∇w L (w ,λ)T w (3.12a)

s.t. ∇c (w )T w ≥−c (w ) . (3.12b)

According to Gill and Wong (2012) [17], we can now simplify the KKT system by inserting
∆λ=µ−λ

[∇2
w w L (w ,λ) −∇c (w )
−∇c (w )T 0

][
w
µ

]
=−

[∇ f (w )
−c (w )

]
. (3.13)

This simplified system now corresponds to a Quadratic Program which is then solved at
each iteration using an active set method

min
w

1

2
w T∇2

w w L (w ,λ) w +∇ f (w )T w (3.14a)

s.t. ∇c (w )T w ≥−c (w ) . (3.14b)
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3.2.1. Line Search
Let us define a merit function Ψ and consider a step wk +αk pk using a correction αk and
step direction pk

Ψ
(
wk +αk pk , µ

)= f
(
wk +αk pk

)+ n∑
i=1

µi
∣∣ci

(
wk +αk pk

)∣∣ . (3.15)

Next we calculate a directional derivative DpΨ in the direction pk

DpΨ
(
wk ,µ

)=∇ f T pk −
n∑

i=1
µi

∣∣ci
(
wk +αk pk

)∣∣ . (3.16)

Now we can define a second order correction step

hk =−CT
k

(
Ck CT

k

)−1
c
(
wk +pk

)
, (3.17)

where C =∇c (w ) and follow the iterative procedure defined in Algorithm 1.

Algorithm 1: Line Search

// Choose parameters β ∈ (0,0.5) and τ1, τ2 with 0 < τ1 < τ2 < 1;
// Evaluate fk,∇ fk,ck,Ck;
// Obtain step direction pk by means of active set method (3.3);
// Set αk ← 1

1 while NOT STOP do
2 ifΨ

(
wk +αk pk

)≤Ψ (wk )+βαk DpΨ (wk ) then
// Set wk+1 ← wk +αk pk

// STOP;

3 else if αk = 1 then
// Compute hk from (3.17);

4 ifΨ
(
wk +pk +hk

)≤Ψ (wk )+βDpΨ (wk ) then
// Set wk+1 ← wk +pk +hk;
// STOP;

5 end
// Choose new αk ∈ [τ1αk ,τ2αk ];

6 else
// Choose new αk ∈ [τ1αk ,τ2αk ];

7 end
8 end

3.2.2. Hessian Approximation
The Hessian of the Lagrangian ∇2

w w L (w ,λ) is computationally expensive to obtain and
therefore an approximation is used. Estimation Gk of the Hessian of the Lagrangian can be
obtained based on the secant condition where
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s = w k+1 −w k (3.18)

y =∇L
(

w k+1,λk+1
)
−∇L

(
w k ,λk+1

)
(3.19)

Gk+1 = Gk +
yyT

yT s
− Gk ssT Gk

sT Gk s
. (3.20)

If Gk is positive definite and yT s > 0 then Gk+1 will be positive definite. By replacing y in
the BFGS-update formula we employ the Powell-SQP update (damped BFGS-update) [46]
with

ŷ = θy+ (1−θ)Gk s , θ ∈ [0,1] , (3.21)

which ensures yT s > 0 and therefore positive definiteness of the approximated Hessian.

3.2.3. Algorithm - Sequential Quadratic Programming
Algorithm 2 defines the Sequential Quadratic Programming method in terms of an iterative
approach.

Algorithm 2: SQP Method

// Evaluate f0,∇ f ,c0,C0,λ0;
1 while NOT STOP do

// Obtain solution
[

w ,µ
]T

by means of active set method (3.3)
2 if

(|∇ f T w |+ |µT c0| = 0
)

then
// STOP - Optimal solution found

3 else
// Obtain step size α by utilizing line search method (3.2.1)
// Make step w ← w (α)
// Evaluate fk,∇ fk,ck,Ck;
// Compute

4 λ=λ0 +α
(
µ−λ0

)
// Approximate Hessian Gk+1 using Damped BFGS update (3.2.2)

5 end
6 end
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3.3. Active Set Method
This section details the active set method used to solve the QP at each iteration of the SQP
method. This active set method is based on theory by [16, 18, 39, 49].

3.3.1. Predefinition
The corresponding QP is defined as

min
w

f (w ) = 1

2
w T Gw +aT w (3.22a)

s.t. si (w ) = cT
i w −bi ≥ 0 i ∈N , (3.22b)

where G is our Hessian approximation and a =∇ f (w ). We define a Lagrangian function

L
(
w ,µ

)= 1

2
w T Gw +aT w − ∑

i∈N

µi
(
cT

i w −bi
)

(3.23)

and a coinciding maximization problem or dual program as

max
w,µ

L
(
w ,µ

)= 1

2
w T Gw +aT w − ∑

i∈N

µi
(
cT

i w −bi
)

(3.24a)

s.t. Gw +a − ∑
i∈N

µi ci = 0 (3.24b)

µi ≥ 0 i ∈N . (3.24c)

The Karush-Kuhn-Tucker conditions of the dual program (3.24) can be defined

Gw∗+a − ∑
i∈N

µ∗
i ci = 0 (3.25a)

si
(
w∗)= cT

i w∗−bi = 0 i ∈A
(
w∗)

(3.25b)

si
(
w∗)= cT

i w∗−bi ≥ 0 i ∈N \A
(
w∗)

(3.25c)

µi ≥ 0 i ∈N ∩A
(
w∗)

. (3.25d)

A key element of the active set method is to keep track of a working set A where constraints
in this set satisfy the following conditions

Gw +a − ∑
i∈A

µi ci = 0 (3.26a)

si (w ) = cT
i w −bi = 0 i ∈A (w ) (3.26b)

µi ≥ 0 i ∈A (w ) . (3.26c)
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In addition, Lagrange multipliers that correspond to constraints that are not in the current
working set are defined as zero. The basic approach of the method can be briefly summa-
rized in three steps. In Phase 0 we determine an initial guess w0 as defined in Section 3.3.2.
In Phase 1 we check whether there are any violated constraints. If there are none violated,
our solution is feasible and optimal. If there are any violated constraints we choose one
and continue. Phase 2 is where we calculate a new solution by means of determining step
direction (Section 3.3.3) and step length (Sec. 3.3.4). Finally, in this phase we determine
which step length to use and whether to drop or add constraints to our working set (Sec-
tion 3.3.5), all while maintaining feasibility. Phases 1 and 2 are repeated until an optimal
solution is found.

3.3.2. Initial Guess
In order to obtain an initial guess for the active set method, we start with an empty working
set and all Lagrange multipliers as zero

A =; (3.27)

µi = 0 . (3.28)

With this we can easily determine a reasonable starting guess by solving

w0 =−G−1a , (3.29)

which is an unconstrained KKT system (3.25a).

3.3.3. Step Direction
If we have not obtained an optimal solution at iteration n a constraint sr is violated. In
order to satisfy the violated constraint we need to make a step while maintaining feasibility.

The aim is to obtain a step direction
[

p , v
]T by solving a system of equations on matrix

form. That is done by utilizing a null space method which is described in Appendix A.
Furthermore, for this section we presume the following:

• C = [
ci

]
i∈A

has full column rank

• G is symmetric and positive definite

• µ̄= [
µ̄i

]
i∈A

• cr is the violated constraint and µr is the corresponding Lagrangian multiplier

Let us define a new step

w̄ = w + z = w + t p (3.30a)

µ̄i =µi +ui =µi + t vi i ∈A (3.30b)

µ̄r =µr + t , (3.30c)



18 3. Method

where t is the step length and

[
z
u

]
=

[
p
v

]
t . (3.31)

Let us write (3.24b) and (3.26b) in matrix form

[
G −C

−CT 0

][
w̄
µ̄

]
+

[
a
b

]
−

[
cr

0

]
µ̄r = 0 , (3.32)

and expand:

[
G −C

−CT 0

][
w
µ

]
+

[
a
b

]
−

[
cr

0

]
µr +

[
G −C

−CT 0

][
z
u

]
−

[
cr

0

]
t = 0 . (3.33)

As per the conditions from (3.24b) and (3.26b), equation (3.33) reduces to

[
G −C

−CT 0

][
z
u

]
−

[
cr

0

]
t = 0 . (3.34)

We then substitute (3.31) and obtain our desired system

[
G −C

−CT 0

][
p
v

]
=

[
cr

0

]
. (3.35)

3.3.4. Step Length
Here we describe how to determine the step length t . First let us define what we call partial
step length t1

t1 = min

(
∞, min

i ;vi<0

−µi

vi

)
≥ 0 , (3.36)

which is the maximum step in dual space without violating dual feasibility. Next we need
to look at a full step length t2 which is the minimum step in primal space such that vio-
lated constraint sr becomes feasible. To derive t2 we need to look at the effect on the dual
program. Focusing only our violated constraint, let us observe the Lagrangian at

(
w̄ ,µ̄

)
L

(
w̄ ,µ̄

)−L
(
w ,µ

)=−1

2
t 2cT

r p − t sr (w ) . (3.37)

Next we determine the largest increment of the dual program with respect to t

dL

dt
=−tcT

r p − sr (w ) . (3.38)
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From this we can derive our full step length t2

t2 = −sr (w )

cT
r p

. (3.39)

Finally, in case of cT
r p 6= 0 then the step length t , chosen as the minimum of the two t1 and

t2 is

t = min(t1, t2) . (3.40)

3.3.5. Adding and Dropping Constraints
In this section we examine when to add and drop constraints from the working set A . It
has been stated that we can only solve the system in (3.35) if the following holds:

• G is positive definite

• C has full column rank

Let us look at when a constraint needs to be dropped from working set A i.e. when the
second condition does not hold. That occurs when the constraints in C = [ci ]i∈A and cr

are linearly dependent. This poses a problem when keeping track of the working set and
constraint cr needs to be added to C. This is dealt with by dropping a constraint j from A

in order to maintain full column rank of C after adding cr . When a constraint needs to be
dropped, we identify it and obtain its index j by

j = argmin
j ;v j<0

−µ j

v j
. (3.41)

Now let us look at when a constraint is added to the working set A . That occurs when a
step

(
w ,µ

) → (
w̄ ,µ̄

)
is infeasible i.e. cT

r p 6= 0. In case of this occurring we add index r to
A and make the largest possible step t in dual space from

(
w ,µ

)
until said constraint cr

blocks us.

3.3.6. Algorithm - Active Set Method
Algorithm 3 defines the active set method in terms of an iterative approach.
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Algorithm 3: Active Set Method

// Obtain initial guess via unconstrained minimum w0 =−G−1a. Set
A =;, µi = 0.

1 while NOT STOP do
2 if si (w ) ≥ 0, i ∈N then

// STOP - Optimal solution found
3 else

// Choose violated constraint sr (w ) < 0
4 end
5 while sr (w ) < 0 do

// Determine step direction
[

p , v
]T

6 if cT
r p = 0 then

7 if vi ≥ 0, i ∈A then
// STOP - Problem is infeasible

8 else
// Compute step length t via (3.36) and identify constraint

j via (3.41) and set:
9 µi ←µi + t vi , i ∈A

10 µr ←µr + t
// Remove constraint j from A

11 A ←A \ j
12 end
13 else

// Compute step length t1 via (3.36) and t2 (3.39) and identify
constraint j via (3.41)

14 if t2 ≤ t1 then
// Take step

15 w ← w + t2p
16 µi ←µi + t2vi

17 µr ←µr + t2

// Append constraint r to A

18 A ←A ∪ r
19 else

// Take step
20 w ← w + t1p
21 µi ←µi + t1vi

22 µr ←µr + t1

// Remove constraint j from A

23 A ←A \ j
24 end
25 end
26 end
27 end



4
Validation

This chapter describes the validation procedures and results for the method implemented
in Chapter 3.

4.1. Setup
In this validation process the extended reference planner was implemented numerically
in MATLAB®, version 9.3 (2017b) [38]. MATLAB® was chosen for this implementation due
to its availability and competency with algorithms and numerical analysis. It is validated
on a 3-prism, which is the simplest form of a tensegrity structure. Figure 1.2a and Figure
4.1 illustrate this structure. Its simplicity allows for a clear presentation of information. As
the number of elements in a tensegrity increase, it quickly becomes intricate. The 3-prism
consists of a total of twelve elements of which three are rods and nine are massless cables.
Furthermore, nodes 1, 2 and 3 in Figure 3.1 were constrained to their initial position. For
this validation, nodes 4, 5 and 6 were unconstrained. Table 4.1 lists some general numer-
ical values used for this implementation. These values are based on a desktop prototype
made up of polylactic acid rods and thin string cables. Table 4.2 shows parameter settings
used for the Full Body Reference Planner and its SQP extension. Note that if the algorithm
converges, all prescribed trajectories are accurately tracked by the FBRP.

21
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Figure 4.1. Node numbering for numerical implementation. In this graphical representa-
tion nodes are black, rods red and cables blue.

Table 4.1. Numerical values for implementation.

Component Value
Gravity 9.81m/s2

Rod radius 1.00cm
Rod length 15.00cm
Rod mass 10.00g
Initial top/bottom cable length 8.66cm
Initial diagonal cable length 11.76cm
Cable mass Massless
Structure mass 30.00g

Table 4.2. Algorithm input parameters, both for FBRP and SQP.

Method Parameter Value Description
ns 250 No. of discrete steps for trajectory tracking.

FBRP
ε 5 ·10−5 Tolerance on force equilibrium equations for initial configuration.
τ 5 ·10−5 Tolerance on termination criteria.

SQP
im 1000 Max iterations for SQP and active set methods.
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4.2. Functionality Part I
The first part of this validation demonstrates the method’s functionality and practicality. It
confirms that this method indeed enables the FBRP to deal with inequality constraints.

In this part, the planner had to track the circular trajectory shown in Figure 4.2. In this
scenario the set of inequality constraints consisted of a maximum allowed change in cable
forces between states. A total of nine constraints were defined according to convention in
equation (3.5b); one for the force change of each of the structure’s cables. This, for example,
represents having to deal with actuator limitations. Maximum allowed force change was set
to δFm = 0.07N based on examples in Appendix B and Fc,i was defined as the force change
for i th cable. The constraints are formulated as

ci ≥ 0 (4.1a)

ci = δFm −δFc,i , i ∈ {1, . . . ,9} . (4.1b)
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Figure 4.2. Top and isometric views of the nodal trajectory (magenta) tracked in this vali-
dation section.
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Figure 4.3. Results where the tensegrity’s cable force changes are constrained to not ex-
ceed δFm. All while tracking a prescribed trajectory.

Figure 4.3a shows that only one cable was close to surpassing the force change limitations.
This corresponds to one out of nine constraints being activated briefly during the trajectory
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tracking. In Figure 4.3b the change in force can be seen when no constraints are enforced.
The Lagrange multipliers in Figure 4.3c confirm that one constraint was activated for this
run. Note that on Figure 4.3d it can be seen that the tensegrity’s centre of mass reaches
outside the base of support.

4.3. Functionality Part II
This part of the validation was aimed at further depicting the functionality of the extended
planner. This was done by enforcing a set of inequality constraints on the structure’s cen-
tre of mass. Assuming that the structure’s mass is distributed equally among its nodes, the
centre of mass coordinates are defined as the average of the nodal coordinates in each di-
rection

Xcm =
∑6

i=1 xi

6
(4.2)

Ycm =
∑6

i=1 yi

6
(4.3)

Zcm =
∑6

i=1 zi

6
. (4.4)

As mentioned in Chapter 1, for a structure to maintain stability its centre of mass must
stay within the confines of its base of support. The centre of mass was only constrained
in the x-y plane. For this validation, a total of three constraints were defined according to
convention in equation (3.5b). These are marked as c1, c2 & c3 in Figure 4.4 along with the
corner points of the base of support

(
x1, y1

)
,
(
x2, y2

)
and

(
x3, y3

)
. For this, the basic slope-

intercept equation of a line y = mx+b is utilized, where b is the y-intercept and m the line’s
slope. Let us define

m1 = y2 − y1

x2 −x1
(4.5)

m2 = y3 − y1

x3 −x1
(4.6)

b1 = y2 −m1x2 (4.7)

b2 = y3 −m2x3 . (4.8)

The three constraints can now be written as

c1 ≥ 0 (4.9a)

c1 = Xcm −x2 (4.9b)

c2 ≥ 0 (4.9c)

c2 =−Ycm +b1 +m1Xcm (4.9d)

c3 ≥ 0 (4.9e)

c3 = Ycm −b2 −m2Xcm . (4.9f)
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These constraints were to enforce the CoM to stay within the BoS while tracking a trajectory
that well reached outside that area. The trajectory can be seen in Figure 4.5.
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Figure 4.4. Graphical portrayal of constraints to contain the tensegrity’s centre of mass
within its base of support.
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Figure 4.5. Top and isometric views of the nodal trajectory (magenta) tracked in this vali-
dation of the base of support constraints.

Figure 4.6a shows the results of the tracking where constraints (4.9) were enforced. The pre-
scribed trajectory was tracked successfully while the centre of mass was confined within the
base of support. As previously mentioned, if the algorithm converges then the prescribed
trajectory is accurately tracked. In contrast, Figure 4.6b shows results where the trajectory
is tracked without any constraints. Constraints c1 and c3 were active during the run and
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which indeed be confirmed by Lagrange multipliers in Figure 4.6c. In a case where the al-
gorithm does not converge the problem is either deemed over constrained or the trajectory
infeasible. Either way it results in high constraint errors, instability and state configurations
that do not lie on the equilibrium manifold (force imbalance).
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Figure 4.6. Results showing the path of the strucure’s centre of mass alongside the tracked
trajectory. It also highlights the contrast between constraining the centre of mass and not.

4.4. Efficiency and Robustness
For the third part of the validation, a simple efficiency analysis was carried out. Further-
more, robustness of the method against slight parameter variations was tested. I did not
include any repeatability validations in this chapter since the method is intrinsically de-
terministic i.e. the output results should be consistent given the same input parameters.
However, sanity checks regarding repeatability can be found in Appendix C.

The efficiency analysis was performed by defining a measure of computational effort.
This effort was quantified in terms of computational time Tc for tracking a prescribed tra-
jectory. In other words, the sum of the time it takes to calculate a sequence of n equilibrium
configurations. This measure was then compared between using the FBRP with inequal-
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ity constraints and without them. This test was run on a machine utilizing Intel® Core™

i7-4710MQ @ 2.50GHz processor and 8GB RAM @ 1600Hz.
Firstly, I measured the computational time under the same conditions in Section 4.2 i.e.

the trajectory on Figure 4.2. Both with and without the constraints in (4.1). Secondly, I ran
the same measurements under the conditions detailed in Section 4.3. Computational time
was collected 20 times and averaged across these 20 runs. This was to mitigate variations
due to processor and memory availability at each time. The results from these measure-
ments are listed in Table 4.3.

Table 4.3. Results for computational time.

Section 4.2 4.3
Constraints No Yes No Yes
Tc (in s) 9.38 991.97 8.67 507.36

Secondly, the robustness of the method was tested by slightly varying input parameters in
Table 4.2. This validation was to get an indication of the method’s reliability during typ-
ical usage. I used the same conditions as in Section 4.2 i.e. the trajectory on Figure 4.2
and the constraints in (4.1). The parameters ns, τ and im were increased and decreased by
2% respectively. Table 4.4 shows the parameter values with slight deviation applied. The
expectations were that the method would prove successful regardless of the slight varia-
tions in the optimization tuning parameters. The parameter ns stands for the amount of
discrete equilibrium configuration the prescribed trajectory is divided into and increasing
it will cause each step to become smaller. This was expected to provide more accurate re-
sults due to the first order approximation in equation (2.9) of the FBRP. This equation is a
linear approximation of a system of equations made up of force equilibrium equations and
equality constraints. This estimate becomes more precise with smaller step sizes. With an
increase in maximum number of iterations and constraint error termination criteria, the
expectations were to obtain greater accuracy. That is mainly due to the stricter termina-
tion criteria. The algorithm generally does not require many iterations if the optimization
problem is feasible. With a decrease in parameter values, lowered accuracy was expected.
Fewer steps or greater step size will cause equation (2.9) to become less precise along with
the termination criteria being more lenient.

Table 4.4. Parameter variation values.

+2% −2%
ns 255 245
τ 5.1 ·10−5 4.9 ·10−5

im 1020 980

The results from increasing input parameters by 2% can be seen in Figure 4.7. They indeed
confirm the method being successful regardless of the slight parameter deviation. They
also show a decrease in constraint error. Figure 4.7c shows that there is no constraint er-
ror. Moreover, Figure 4.8 depicts results from decreasing input parameters by 2%. Again
they confirm the method being successful regardless of the slight parameter deviation. An
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increase in constraint error can also be observed. This increase in error can be seen when
Figure 4.8c is compared to Figures 4.3e and 4.7c.
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Figure 4.7. Results from executing the extended planner with 2% increase in input param-
eters, showing the cable force changes, Lagrange multipliers and constraint error.
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Figure 4.8. Results from executing the extended planner with 2% decrease in input pa-
rameters, showing the cable force changes, Lagrange multipliers and constraint error.

4.5. Accuracy
For the fourth and final part of the validation the aim was to depict accuracy of the extended
planner. The accuracy of the method was quantified in terms of the constraint error. This
was observed for various nodal trajectories. Two trajectories with a radius of 0.035 m and
0.05 m respectively were chosen for each of the three top nodes (4, 5 and 6) to track. These
trajectories can be observed in Figures 4.9 - 4.11. The constraints from equation (4.9) were
utilized for this validation. The graphical representation can be seen as before in Figure 4.4.
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Figure 4.9. Top view of the two trajectories tracked on node 4 for validation of the method’s
accuracy.
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Figure 4.10. Top view of the two trajectories tracked on node 5 for validation of the
method’s accuracy.
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Figure 4.11. Top view of the two trajectories tracked on node 6 for validation of the
method’s accuracy.

0 50 100 150 200 250

Step

0

1

2

3

4

5

6

7

E
rr

o
r 

in
 m

10-18 Constraint Error

c
1

c
2

c
3

a. Results with trajectory radius of 0.035 m

0 50 100 150 200 250

Step

0

1

2

3

4

5

6

7

E
rr

o
r 

in
 m

10-18 Constraint Error

c
1

c
2

c
3

b. Results with trajectory radius of 0.05 m

Figure 4.12. Constraint errors for trajectory tracking on node 4 while enforcing constraints
on the tensegrity’s centre of mass.
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Figure 4.13. Constraint errors for trajectory tracking on node 5 while enforcing constraints
on the tensegrity’s centre of mass.
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Figure 4.14. Constraint errors for trajectory tracking on node 6 while enforcing constraints
on the tensegrity’s centre of mass.
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Discussion

This chapter will recapitulate each area of the validation process along with providing a
discussion on the results. Furthermore, limitations of the method detailed in Chapter 3 are
discussed and disputed.

5.1. Functionality Part I
In Section 4.2 the aim was to depict functionality of the extended planner in a practical
application. The example used was setting limits on allowed force changes in the cable
elements. The constraints were based on actuator limitations obtained in Appendix B. For
the chosen trajectory 4.2 it can be seen that only one out of the nine cables is affected by
the constraints. This particular cable is stretched the most and is the only one pushing to
exceed the maximum force change. This is confirmed by looking at the Lagrange multiplier
values throughout the sequence in Figure 4.3c. An interesting comparison is made between
using constraints and no constraints in Figures 4.3a-4.3b. The latter shows force changes
for a run without constraints. It is clearly visible from the graph that cable 7 would have
exceeded the force change limitations. It can also be seen that constraint activation on that
cable steered cable 9 away from approaching maximum force change. These results give
us the confidence to plan a sequence of equilibrium configurations while respecting for
example actuators limitations by enforcing inequality constraints.

5.2. Functionality Part II
In Section 4.3 the aim was to show a different type of practical functionality to that de-
picted in Section 4.2. This was done by setting constraints on the tensegrity’s centre of
mass which entailed keeping it within the structure’s base of support. These constraints
are visualized in Figure 4.4. Keeping the centre of mass within the base of support is a criti-
cal part in maintaining stability while generating a sequence of equilibrium configurations.
The trajectory chosen can be observed in Figure 4.5. On Figure 4.6a, it can be seen that two
constraints, c1 and c3, were activated at separate times. It is interesting to compare this to
tracking the same trajectory without any constraints. It clearly shows in Figure 4.6b that the
centre of mass ventures outside the base of support. In reality this would cause instability
in the structure. The activation of the two constraints can indeed be confirmed by look-
ing at the Lagrange multiplier values throughout the sequence in Figure 4.6c. These results
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show that enforcing inequality constraints on the centre of mass can aid in ensuring stabil-
ity of the tensegrity structure. It also gives us confidence in utilizing the extended planner
for practical applications in tensegrity robots.

5.3. Efficiency and Robustness
In Section 4.4 efficiency and robustness of the extended planner was validated. The effi-
ciency was quantified in terms of computational time which was then measured both with
and without constraints. This was done with conditions from both Section 4.2 and 4.3. The
results showed that the computational cost of using constraints was far greater then not us-
ing them. For the conditions set in Section 4.2, the computational cost was approximately
100 times greater when enforcing constraints. As for the conditions set in Section 4.3, the
cost was about 60 times higher when enforcing constraints. Some of this difference can
be attributed to code implementation and time could be reduced by refactoring the code.
However, these results do confirm that there is a substantial difference in computational
time when enforcing constraints. This was expected to an extent since the SQP method is
an iterative optimization procedure.

The robustness of the method to small parameter variations was validated by varying
parameters ns, τ and im. They were increased and decreased by 2% respectively. The re-
sults show that the method is robust enough to handle input parameter variations. It ap-
pears that decrease in parameters causes growth in constraint error whereas an increase
in parameters reduces error. This can be explained by several factors. Firstly, if maximum
number of iterations and constraint error termination criteria are increased it will force
more iterations along with a stricter accuracy criteria. This results in lower constraint error.
Decreasing those parameters will have an opposite effect or cause reduction in accuracy.
Secondly, the FBRP uses a first order approximation in (2.9) which means that smaller steps
result in better accuracy, i.e., the approximation is more accurate. Incrementing the param-
eter ns means increasing the amount of steps for a trajectory which will cause each step to
become smaller.

5.4. Accuracy
In section 4.5 the aim was to demonstrate the accuracy of the method. This was done by
tracking two different trajectories for nodes 4, 5 and 6. Constraints were enforced on the
structure’s centre of mass and accuracy was quantified in terms of constraint error. It was
expected to consistently obtain values less than the set SQP termination criteria τ = 5 ·
10−5. In Figures 4.12 - 4.14 it can be observed that indeed for all different trajectories the
error is less than set tolerance. Based on these results we can be confident in the method’s
accuracy. It can be noted that for a trajectory with r = 0.05m on node 6 (Fig. 4.14b) the error
is greater compared to other cases. This can be explained by the fact that this trajectory,
compared to others, causes the most strain on the constraints. That is due to the amount
of mass shifting over the precipice of the base of support. Possibly a larger trajectory would
push the method to its limits and cause eventual failure. However, that would indicate an
infeasible and impractical trajectory within the current set of constraints.
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5.5. Method Limitations
5.5.1. Stability
A limitation of the proposed methodology is that a desired change in state variables may
result in a configuration that does not lie on the equilibrium manifold. This occurs when a
prescribed trajectory is infeasible. This phenomenon can be overcome by adaptive trajec-
tory correction, i.e., adjusting the trajectory dynamically to avoid configurations that result
in an unstable tensegrity. Another limitation of force density methods in general is that it
can be difficult to predict the outcome for a prescribed set of force densities as they are not
necessarily always intuitive quantities [20, 40, 53].

5.5.2. Efficiency
If the tensegrity structure that is being controlled has many elements the process of finding
a solution becomes very intricate. This does not severely affect the full body reference plan-
ner as it is computationally effective. However, this is an issue for the SQP method, namely
due to a computationally expensive constraint gradient matrix. In this code implemen-
tation of the SQP extension it can increase computational time a hundredfold. However,
the FBRP assumes a quasi-static process and therefore large computation times are not of
major concern.

5.5.3. Maratos Effect
A known limiting behaviour of the SQP method is often called the Maratos effect [36]. This
behaviour is characterized by the SQP method repeatedly rejecting steps that would make
significant advancements towards a solution. This occurs due to the curvature of the con-
straints not being sufficiently represented when linearized in the SQP model. This phe-
nomenon is addressed in Section 3.2.1 by a second order correction technique applied to a
line search method.

5.5.4. Gradient Rank Requirement
Another known limitation of SQP methods is the condition of a full rank constraint gradient
matrix. However, this is addressed in Section 3.3.5 by adding and removing constraints
from the QP subproblem.
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Conclusion

The research goal of this thesis was to enhance and build upon a Full Body Reference Plan-
ner, a strategy aimed at bringing tensegrity robots closer to controlled full body move-
ments. The enhancement was to implement a robust way to deal with inequality con-
straints within the planner, i.e., to compute an equilibrium configuration that satisfies cer-
tain constraints. Before, only equality constraints could be incorporated. The enhance-
ment was realized by a Sequential Quadratic Programming optimization for each step de-
tailed in Chapter 3.

6.1. Validation Conclusions
This approach was validated using a numerical implementation detailed in Chapter 4. For
the purpose of clarity, the validation was applied to the simplest form of tensegrity, a 3-
prism. The validation consisted of two different practical applications, efficiency and ro-
bustness tests and finally accuracy affirmation.

The first practical application was applying inequality constraints on the maximum
force change allowed in the cable elements of the tensegrity robot. This was to represent a
scenario where one could take into account actuator limitations when controlling a tenseg-
rity robot. The second practical application was to constrain the centre of mass of a tenseg-
rity structure within its base of support. This was to illustrate a scenario where stability of
the structure would need to be ensured. Both of these validations produced results that
support this method being applied in practice.

Efficiency of the method was considered by measuring computational time of the ex-
tended FBRP with and without inequality constraints. In its current form, the SQP method
did cause a substantial increase in computational time. This was expected due to the iter-
ative nature of the method and the current non-optimized code implementation.

Robustness of the method to parameter variations was tested by running previous tests
with different input parameters. The method proved to be successful in enforcing inequal-
ity constraints with various input parameters. However, there were some notable but ex-
plainable changes in accuracy.

Lastly, accuracy of the method was quantified in terms of constraint error. Various
nodal trajectories were tracked while enforcing constraints on the tensegrity structure’s
centre of mass. For all trajectories in question the constraint errors were within the set
tolerance, affirming the accuracy of the approach.
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6.2. General Conclusions
In accordance with the set goal of this thesis we now have means of applying the Full Body
Reference Planner for tensegrity nodal control while enforcing inequality constraints. Al-
though the proposed method has some limitations such as computational efficiency it does
bring us a step closer to controlled full body movements for tensegrity robots in practice.
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A
Null-Space Method

This appendix outlines the Null-Space procedure based on implementations by Gill et al.
[16] and Nocedal & Wright [39]. It is used to solve the KKT system in every iteration of the
active-set method. Given the following KKT system of a quadratic program

[
G −C

−CT 0

][
p
v

]
=−

[
a
b

]
, (A.1)

where C is a n ×m matrix with full column rank. By definition the QR decomposition of C
is

C = Q
[

R
0

]
= [

Y Z
][

R
0

]
, (A.2)

where Z is the n × (n −m) null space matrix of C and Y is any n ×m matrix to ensure Q is
nonsingular. This method does not require the Hessian matrix G to be nonsingular. Let us
presume that the vector p can be partitioned

p = Yp y +Zpz . (A.3)

If we substitute this into (A.1) and use the fact that CT Z = 0 as per Z being the null space of
C. Now the second equation becomes

CT Yp y = b , (A.4)

where p y can be obtained via back substitution due to the aforementioned full rank and
nonsingular properties of C and Y. The second equation of the KKT system is

GYp y +GZpz −Cv =−a . (A.5)

If we multiply by ZT and again use the fact that CT Z = 0, we obtain
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48 A. Null-Space Method

(
ZT GZ

)
pz =−ZT (

GYp y +a
)

. (A.6)

now that we know p y , pz can be solved for via Cholesky factorization of the reduced Hes-
sian matrix ZT GZ. The reduced Hessian is positive definite which ensures local optima.
Finally to obtain v we multiply the first equation of (A.1) by YT :

YT Cv = YT GYp y +YT GZ pz +YT a (A.7)

⇒ YT Cv = YT (
Gp +a

)
(A.8)

which again can be solved via back substitution. Now the vector
[

p v
]T

has been obtained
which concludes this Null-Space procedure.



B
Actuators

This appendix describes an experiment to indicate physical limitations of actuators used
in tensegrity robots. The twisted and coiled polymer muscle is used as an example. They
have good applicability in tensegrities as they can serve not only as actuators but also as
passive structural elements. TCPM have also shown to have low manufacturing cost, next
to no hysteretic behaviour and a high cycle life [21]. Experiments have demonstrated that
it can exceed the maximum tensile stroke of skeletal muscles in vivo by approximately 20%
[21, 35]. However, TCPM are known to have low speed of contraction and low efficiency
in terms of thermal actuation is [8]. Generally, there exist two types of twisted and coiled
polymer muscles which are distinguished by the means of achieving coils in the precursor
fibre (nylon fibre):

• Autocoiling: inserting twist in the precursor fibre to achieve coiling due to mechani-
cal instability

• Mandrel coiling: inserting twist in the precursor fibre right until mechanical instabil-
ity is reached, then wrapping the fibre around a mandrel

To have an idea of the limitations of TCPM in practical application let us look closer at man-
drel coiled muscles. They are known to have certain limitations depending on production
method, material selection, means of actuation and geometry. Mandrel coiled muscles
have reduced load carrying capacity compared to autocoiled but can achieve larger stroke
due to distance between adjacent coils [21]. An experiment was conducted to character-
ize the force increase for a mandrel coiled muscle by means of Joule-Heating. For a given
power input the TCPM will reach a steady-state force when the internal rate of heating
matches the external rate of cooling [60]. If a given steady state temperature surpasses the
heat deflection temperature of the precursor fibre the TCPM is damaged. If one were to
apply a mandrel coiled muscle in a tensegrity robot it would be useful to incorporate safety
limits of the actuator in the control strategy. In this section the production method of a
mandrel wrapped TCPM is described. Next, experimental details are recounted and finally
results are interpreted.
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B.1. Manufacturing of Twisted & Coiled Polymer Muscles
The TCPM is constructed of two materials, a 1 m long Nylon 6 fibre with a diameter of
0.6 mm and an iron resistance wire of same length and 0.2 mm diameter. Fiber and wire are
tied together at both ends. One end is attached to a rotary mechanism driven by a drilling
machine and the other to a 300 g weight which is suspended in air with a pulley system.
This enforces, by gravitational force, a constant tension in the fibre and wire. The constant
tension is to prevent entangling of the fibre and resistance wire. Next, the drilling machine
is driven to insert twist. That is done until autocoiling occurs which is when maximum
turns per unit length is reached.

The twisted fibre and wire are then wrapped around a mandrel while keeping the afore-
mentioned tension applied. The direction of wrapping determines whether the muscle will
be homochiral or heterochiral. When heated, homochiral muscles contract but heterochi-
ral elongate [8]. For this project, homochiral muscles were produced. The coil diameter of
the produced muscle is defined by the mandrel diameter. After the fibre and wire have been
securely wrapped and attached to the mandrel they are thermally annealed. Annealing is
performed in the following manner:

• One hour in a traditional oven at 155◦C.

• One hour in a traditional fridge at 6◦C.

B.2. Experiment
The equipment used for this experiment is as follows:

• Mark-10 Tensile Tester with a force gauge.

• CALTEK PSA30/3B power supply.

• One TCPM manufactured as described.

• PCB board for current control.

The muscle is actuated under isometric strain, i.e. the length is kept constant while it is
Joule-Heated. The displacement d is varied from 20−55mm with 5mm increments. First
the muscle is placed in the tensile tester while slacked. Then it is stretched to the desired
displacement and allowed to rest for 180s to mitigate dynamic effects. Finally a 12 V direct
current is fed through at 30% Duty Cycle for 120s, this procedure is repeated for a 60% Duty
Cycle. Force data is collected from the tensile tester force gauge.

B.3. Experimental Results
Figures B.1a-B.1b show force measurements for 30% Duty Cycle and 60% Duty Cycle re-
spectively. As can be observed there is a saturation of force change after a certain Joule-
Heating on-time. It can also be observed that for 30% Duty Cycle the force does reach
steady-state whereas for 60% Duty Cycle the force curve does fluctuate substantially.

Table B.1 shows the maximum force change achieved by Joule-Heating at 30% Duty
Cycle and 60% Duty Cycle at 12V direct current. As can be seen a greater change in force
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is achieved at larger Duty Cycle. The maximum change at 30% Duty Cycle is 0.068N and
0.093N at 60% Duty Cycle.

Table B.1. Maximum force change achieved through Joule-Heating of the TCPM

30% Duty Cycle @ 12V
d (in mm) 20 25 30 35 40 45 50 55
δFm (in N) 0.068 0.059 0.056 0.056 0.057 0.053 0.053 0.049

60% Duty Cycle @ 12V
d (in mm) 20 25 30 35 40 45 50 55
δFm (in N) 0.087 0.093 0.089 0.085 0.064 0.069 0.072 0.077
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a. 30% Duty Cycle

b. 60% Duty Cycle

Figure B.1. Force-Time relationship of Joule-Heated TCPM at different displacement



C
Validation

This appendix details repeatability sanity checks. To determine repeatability the method
was run ten times with the same input variables, i.e. a fixed set of parameter settings, start-
ing configuration and trajectory to track. The goal was to achieve the same outcome every
run to confirm the method’s deterministic nature. Input variables were set as defined in
Table 4.2 and the outcome variables monitored were no. of iterations, Lagrange multipli-
ers, objective function value and constraint errors. The trajectory tracked was the one seen
in Figure 4.2. The constraints used were defined to confine the structure’s centre of mass
within its base of support.

For each of the ten runs, the trajectory was divided in 250 steps. As can be seen in Figure
C.1 only constraint 2 is active for this tracked trajectory. As was expected across ten runs
with the same set of input variables the output results were indeed the same, underpinning
the deterministic nature of the algorithm. A table comparing results for each step across
all runs can be seen in Appendix C. These tables report values for steps where constraints
were active.
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Figure C.1. Result of a single repeatability run. Showing tracked trajectory and activated
constraint.
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The following tables contain the variables; constraint error, objective function value, La-
grange multiplier value and iteration counts for both the SQP and active set method.

Table C.1. Constraint error across 10 runs. Only shown for operative constraint g2 when
active.

Runs

Steps

0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
-3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18
-3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
-3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18
-6.94E-18 -6.94E-18 -6.94E-18 -6.94E-18 -6.94E-18 -6.94E-18 -6.94E-18 -6.94E-18 -6.94E-18 -6.94E-18
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
-3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
-3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18
-3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
-6.94E-18 -6.94E-18 -6.94E-18 -6.94E-18 -6.94E-18 -6.94E-18 -6.94E-18 -6.94E-18 -6.94E-18 -6.94E-18
-3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18
-3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18 -3.47E-18
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Table C.2. Objective function values across 10 runs. Only shown when constraint was
active.

Runs

Steps

2.12E-06 2.12E-06 2.12E-06 2.12E-06 2.12E-06 2.12E-06 2.12E-06 2.12E-06 2.12E-06 2.12E-06
1.52E-04 1.52E-04 1.52E-04 1.52E-04 1.52E-04 1.52E-04 1.52E-04 1.52E-04 1.52E-04 1.52E-04
1.40E-04 1.40E-04 1.40E-04 1.40E-04 1.40E-04 1.40E-04 1.40E-04 1.40E-04 1.40E-04 1.40E-04
1.30E-04 1.30E-04 1.30E-04 1.30E-04 1.30E-04 1.30E-04 1.30E-04 1.30E-04 1.30E-04 1.30E-04
1.20E-04 1.20E-04 1.20E-04 1.20E-04 1.20E-04 1.20E-04 1.20E-04 1.20E-04 1.20E-04 1.20E-04
1.11E-04 1.11E-04 1.11E-04 1.11E-04 1.11E-04 1.11E-04 1.11E-04 1.11E-04 1.11E-04 1.11E-04
1.02E-04 1.02E-04 1.02E-04 1.02E-04 1.02E-04 1.02E-04 1.02E-04 1.02E-04 1.02E-04 1.02E-04
9.43E-05 9.43E-05 9.43E-05 9.43E-05 9.43E-05 9.43E-05 9.43E-05 9.43E-05 9.43E-05 9.43E-05
8.65E-05 8.65E-05 8.65E-05 8.65E-05 8.65E-05 8.65E-05 8.65E-05 8.65E-05 8.65E-05 8.65E-05
7.91E-05 7.91E-05 7.91E-05 7.91E-05 7.91E-05 7.91E-05 7.91E-05 7.91E-05 7.91E-05 7.91E-05
7.21E-05 7.21E-05 7.21E-05 7.21E-05 7.21E-05 7.21E-05 7.21E-05 7.21E-05 7.21E-05 7.21E-05
6.55E-05 6.55E-05 6.55E-05 6.55E-05 6.55E-05 6.55E-05 6.55E-05 6.55E-05 6.55E-05 6.55E-05
5.93E-05 5.93E-05 5.93E-05 5.93E-05 5.93E-05 5.93E-05 5.93E-05 5.93E-05 5.93E-05 5.93E-05
5.34E-05 5.34E-05 5.34E-05 5.34E-05 5.34E-05 5.34E-05 5.34E-05 5.34E-05 5.34E-05 5.34E-05
4.79E-05 4.79E-05 4.79E-05 4.79E-05 4.79E-05 4.79E-05 4.79E-05 4.79E-05 4.79E-05 4.79E-05
4.27E-05 4.27E-05 4.27E-05 4.27E-05 4.27E-05 4.27E-05 4.27E-05 4.27E-05 4.27E-05 4.27E-05
3.78E-05 3.78E-05 3.78E-05 3.78E-05 3.78E-05 3.78E-05 3.78E-05 3.78E-05 3.78E-05 3.78E-05
3.33E-05 3.33E-05 3.33E-05 3.33E-05 3.33E-05 3.33E-05 3.33E-05 3.33E-05 3.33E-05 3.33E-05
2.91E-05 2.91E-05 2.91E-05 2.91E-05 2.91E-05 2.91E-05 2.91E-05 2.91E-05 2.91E-05 2.91E-05
2.51E-05 2.51E-05 2.51E-05 2.51E-05 2.51E-05 2.51E-05 2.51E-05 2.51E-05 2.51E-05 2.51E-05
2.15E-05 2.15E-05 2.15E-05 2.15E-05 2.15E-05 2.15E-05 2.15E-05 2.15E-05 2.15E-05 2.15E-05
1.82E-05 1.82E-05 1.82E-05 1.82E-05 1.82E-05 1.82E-05 1.82E-05 1.82E-05 1.82E-05 1.82E-05
1.52E-05 1.52E-05 1.52E-05 1.52E-05 1.52E-05 1.52E-05 1.52E-05 1.52E-05 1.52E-05 1.52E-05
1.24E-05 1.24E-05 1.24E-05 1.24E-05 1.24E-05 1.24E-05 1.24E-05 1.24E-05 1.24E-05 1.24E-05
9.96E-06 9.96E-06 9.96E-06 9.96E-06 9.96E-06 9.96E-06 9.96E-06 9.96E-06 9.96E-06 9.96E-06
7.77E-06 7.77E-06 7.77E-06 7.77E-06 7.77E-06 7.77E-06 7.77E-06 7.77E-06 7.77E-06 7.77E-06
5.85E-06 5.85E-06 5.85E-06 5.85E-06 5.85E-06 5.85E-06 5.85E-06 5.85E-06 5.85E-06 5.85E-06
4.21E-06 4.21E-06 4.21E-06 4.21E-06 4.21E-06 4.21E-06 4.21E-06 4.21E-06 4.21E-06 4.21E-06
2.84E-06 2.84E-06 2.84E-06 2.84E-06 2.84E-06 2.84E-06 2.84E-06 2.84E-06 2.84E-06 2.84E-06
1.74E-06 1.74E-06 1.74E-06 1.74E-06 1.74E-06 1.74E-06 1.74E-06 1.74E-06 1.74E-06 1.74E-06
9.08E-07 9.08E-07 9.08E-07 9.08E-07 9.08E-07 9.08E-07 9.08E-07 9.08E-07 9.08E-07 9.08E-07
3.44E-07 3.44E-07 3.44E-07 3.44E-07 3.44E-07 3.44E-07 3.44E-07 3.44E-07 3.44E-07 3.44E-07
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Table C.3. Iteration count for SQP across 10 runs. Only shown when constraint was active.

Runs

Steps

2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
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Table C.4. Iteration count for active set across 10 runs. Only shown when constraint was
active.

Runs

Steps

2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
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Table C.5. Lagrange multiplier λ2 values across 10 runs. Only shown when constraint was
active.

Runs

Steps

0.1105 0.1105 0.1105 0.1105 0.1105 0.1105 0.1105 0.1105 0.1105 0.1105
0.9339 0.9339 0.9339 0.9339 0.9339 0.9339 0.9339 0.9339 0.9339 0.9339
0.8882 0.8882 0.8882 0.8882 0.8882 0.8882 0.8882 0.8882 0.8882 0.8882
0.8493 0.8493 0.8493 0.8493 0.8493 0.8493 0.8493 0.8493 0.8493 0.8493
0.8115 0.8115 0.8115 0.8115 0.8115 0.8115 0.8115 0.8115 0.8115 0.8115
0.7749 0.7749 0.7749 0.7749 0.7749 0.7749 0.7749 0.7749 0.7749 0.7749
0.7393 0.7393 0.7393 0.7393 0.7393 0.7393 0.7393 0.7393 0.7393 0.7393
0.7046 0.7046 0.7046 0.7046 0.7046 0.7046 0.7046 0.7046 0.7046 0.7046
0.6709 0.6709 0.6709 0.6709 0.6709 0.6709 0.6709 0.6709 0.6709 0.6709
0.6381 0.6381 0.6381 0.6381 0.6381 0.6381 0.6381 0.6381 0.6381 0.6381
0.6060 0.6060 0.6060 0.6060 0.6060 0.6060 0.6060 0.6060 0.6060 0.6060
0.5748 0.5748 0.5748 0.5748 0.5748 0.5748 0.5748 0.5748 0.5748 0.5748
0.5442 0.5442 0.5442 0.5442 0.5442 0.5442 0.5442 0.5442 0.5442 0.5442
0.5142 0.5142 0.5142 0.5142 0.5142 0.5142 0.5142 0.5142 0.5142 0.5142
0.4849 0.4849 0.4849 0.4849 0.4849 0.4849 0.4849 0.4849 0.4849 0.4849
0.4561 0.4561 0.4561 0.4561 0.4561 0.4561 0.4561 0.4561 0.4561 0.4561
0.4278 0.4278 0.4278 0.4278 0.4278 0.4278 0.4278 0.4278 0.4278 0.4278
0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000
0.3727 0.3727 0.3727 0.3727 0.3727 0.3727 0.3727 0.3727 0.3727 0.3727
0.3457 0.3457 0.3457 0.3457 0.3457 0.3457 0.3457 0.3457 0.3457 0.3457
0.3191 0.3191 0.3191 0.3191 0.3191 0.3191 0.3191 0.3191 0.3191 0.3191
0.2928 0.2928 0.2928 0.2928 0.2928 0.2928 0.2928 0.2928 0.2928 0.2928
0.2667 0.2667 0.2667 0.2667 0.2667 0.2667 0.2667 0.2667 0.2667 0.2667
0.2409 0.2409 0.2409 0.2409 0.2409 0.2409 0.2409 0.2409 0.2409 0.2409
0.2154 0.2154 0.2154 0.2154 0.2154 0.2154 0.2154 0.2154 0.2154 0.2154
0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900
0.1648 0.1648 0.1648 0.1648 0.1648 0.1648 0.1648 0.1648 0.1648 0.1648
0.1397 0.1397 0.1397 0.1397 0.1397 0.1397 0.1397 0.1397 0.1397 0.1397
0.1147 0.1147 0.1147 0.1147 0.1147 0.1147 0.1147 0.1147 0.1147 0.1147
0.0897 0.0897 0.0897 0.0897 0.0897 0.0897 0.0897 0.0897 0.0897 0.0897
0.0648 0.0648 0.0648 0.0648 0.0648 0.0648 0.0648 0.0648 0.0648 0.0648
0.0399 0.0399 0.0399 0.0399 0.0399 0.0399 0.0399 0.0399 0.0399 0.0399
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