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Abstract

Advanced tools such as machine learning are slowly finding their way into the modern scientist’s
toolbox . In the design of mechanical systems however hardly any machine learning applications
are being used. Research into the viability of such an application is therefore necessary.

We have performed such research, using a specific type of machine learning, known as
reinforcement learning, for the synthesis of kinematic mechanisms. Reinforcement learning
is an experience-based learning strategy which has proven particularly successful in learning
to play games, like chess, blackjack or Go. In this research it is shown that the sequentially
alternating nature of game-playing between actions and reward can also be observed in
mechanism design by posing design challenges in a game-like format. We have used a decision-
tree based mechanism representation developed by Lipson [1] to create such a game-like world
in which mechanisms can be designed. To train an actor to navigate this game-like world
both Monte Carlo and Temporal Di�erence learning have been applied, in combination with a
neural network as nonlinear value function approximator. Moreover a kinematic simulator
and scoring modules have been implemented to evaluate synthesized mechanisms.

We demonstrated the successful implementation of the framework and learning algorithm by
synthesizing mechanism for two separate path tracing objectives: straight lines and figure-
eights. A set of recommended algorithm settings was extracted from a parameter sweep
and grid search including a total of 560 test runs. Straight line mechanisms were obtained
with a fixed maximum number of 10 nodes, drawing lines with aspect ratios up to 1:1168.
Additionally a mechanism was synthesized capable of drawing figure-eight patterns.

We conclude that the use of reinforcement learning in the context of mechanical system design
is viable. More specifically using the presented method kinematic synthesis for path tracing
objectives can be performed. The current research cultivates the land for future e�orts to
bridge the gap between the challenges faced by mechanical system design groups and the
advancing solutions developed by the computer sciences.
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Preface

Computers, at some point in the future, might be able to pass the Turing test and conceive
of thoughts equally or more complex than those of humans. Does that mean they are alive?
Does that mean a computer can have a character, a will, a soul? And in that case how do
we, humans, di�er from computers, except for our physical appearance? Such unanswered
questions have fueled my fascination with machine learning over the last few years.

It was under the influence of this fascination that I found myself looking for a thesis assignment
that could merge my mechanical engineering background with this newborn interest in machine
learning. During an exploratory session with Phd students about possible thesis assignments I
met Reinier, who explained he had only recently graduated on the synthesis of mechanisms
using evolutionary algorithms. Together we decided to use my literature study to research the
possibilities of using generative approaches in the synthesis of compliant mechanisms.

During the literature phase of my research I became enthusiastic about a specific learning
method known as reinforcement learning, even though this concept had never been applied to
anything remotely connected to mechanical engineering. After discussing with Reinier and
Just (the chairing professor) I decided to focus on the application of this learning method to
mechanical system design. After a lot of reading, experimenting and waiting an algorithm
came about that actually showed some first signs of success. A series of iterations culminated
into the results presented in this report.

As it turned out, I found the whole process of doing research, designing an algorithm and
actually developing and testing it more enjoyable than anticipated. This enjoyment was
not in the least place fueled by my supervisor Reinier, whom I cannot thank enough for his
enthusiasm, flexibility and academic guidance. I have come to consider Reinier a friend next
to being my supervisor: a worthwhile combination.

Finally I would like to say thanks to my chairing professor Just Herder. His trust in and
support of this research have been vital. Moreover his questions forced me to zoom out, away
from the algorithms, papers and scripts and to see the context of this thesis and my place in
the annals of science.

Delft, University of Technology K.M. Vermeer
December 15, 2017
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Chapter 1

Introduction

The ability of mankind to analyze and solve mechanical problems has driven technology
throughout the ages, from the invention of the combustion engine to more recent advantages in
micro-electromechanical systems (MEMS). Fundamental to these successes are well-executed
design processes. As the boundaries of technology are pushed towards higher levels of
complexity, the challenge of designing the incorporating systems has grown accordingly.
Fortunately, mechanical system design does not stand alone in facing the challenges modern
times have brought about.

Throughout several research fields a parallel movement towards machine learning can be
witnessed as researchers’ answer to increasingly complex challenges. Machine learning is
finding applications by the dozens [2–4] as a potential way to get a grip on increasingly
complex research questions. Defined in 1959 by Arthur Samuel [5] as the “field of study
that gives computers the ability to learn without being explicitly programmed”, machine
learning has the potential to achieve (super)human levels of artificial understanding in complex
manners like performing real-time translation [6], mastering helicopter aerobatics [7], coloring
black-and white images [8] or beating the world champion in Go [9], an ancient Chinese war
game featuring 10170 possible board positions. For comparison Fig. 1-1 shows the relative
levels of performance machine learning can achieve on 49 di�erent games with respect to
human level capabilities. Its ability to understand complex matters on a level equal to or
beyond human capacity makes machine learning a potentially powerful aid to researchers and
engineers in dealing with modern-day’s complex challenges.

This brings about the question whether machine learning’s potential can also be applied to
mechanical system design. Design robots could assist human designers by exploring the solution
space and generating inspiring designs, based on design goals and constraints described by the
human designer. This type of design process, in which designer input is limited to the goal and
constraints of the design challenge, is coined generative design. Currently, generative design
has been mostly applied to the design of structures, in which topology optimization [11] and
evolutionary algorithms [12] are proving their value. The trend towards increased complexity
urges researchers to look further, exposing mechanism design to the potential benefits it may
reap from advancements in machine learning.
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2 Introduction

Figure 1-1: Relative performance on 49 di�erent games by two types of machine learning with
respect to a professional level human player (100%). Image reproduced from [10].
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The approaches used in game playing or robot learning may serve as inspiration, but are
unfortunately not easily transfered to mechanism design. Most notably, the examples given
can all be formalized into a numerical description and/or sets of rules: one’s position in a
game environment, a robot’s state et cetera. Mechanism design, however, is not strictly bound
to a given set of rules or a limited solution space, making it a di�cult subject to treat in a
numeric sense without limiting design freedom. Furthermore, the experience and feeling of
respected mechanism designers cannot be expressed in terms of bits and bytes and therefore
cannot serve as reference to learn from. This makes mechanism design an atypical application
for machine learning. Bridging the gap towards mechanism design is therefore a challenging
but vital endeavour in an e�ort to tap into new applications of machine learning.
To support this cause the current thesis work initialized with a literature survey, exploring the
possibilities of generatively synthesizing mechanisms. A summary of this survey is presented
hereafter. From this summary the current thesis subject is extracted, which will be presented
in the subsequent section. Finally the contents of the report will be discussed in this chapter’s
final paragraph.

Literature survey

The survey considered using generative synthesis methods for the design of a specific type
of mechanisms featuring compliant members. Such compliant mechanisms (CMs) yield
advantages in terms of production cost and performance [13] over conventional mechanisms.
Because of the coupled force-deflection behavior in CMs however, designing them is challenging.
Computerized help could o�er relieve. The goal of this literature survey was to separately
inquire into three important prerequisites for a generative CM design approach culminating into
a comprehensive table (Table 1-5), indicating potentially fruitful and symbiotic combinations
as well as incompatible setups. The three mentioned prerequisites are :

• Numeric mechanism representation: a formal description of a mechanism

• Optimization algorithm: a smart search strategy for finding the optimal design

• Compliance modeling: a way to model and evaluate the behavior of CMs

A compact summary of the review is given in this introduction, although the full survey
is available in appendix G. The approach used to compare di�erent methods within each
prerequisite will be treated here briefly. An extensive description of the method used to combine
these results, alongside more detailed descriptions of the individual evaluation procedures,
are also treated in the appendix (mechanism representations: appendix G-3, optimization
algorithms: appendix G-4, compliance modeling: appendix G-5).

Numeric mechanism representation

Balakrishnan and Honavar [14] formulated nine characteristics by which to evaluate neural
networks. Kuppens [15] showed the wider applicability of this framework, also covering
mechanism representations. A selection of these characteristics has served as the basis for
evaluating mechanisms representation methods. They are related to three core values:

Master of Science Thesis K.M. Vermeer



4 Introduction

• Creative Freedom: the ability to support any type of possible design outcome without
imposing design limits. Creative Freedom is required to uncouple generative design from
our preconceived notions about CM so as to avoid biasing the generative process.

• Comprehensiveness: the ability to take all aspects of mechanism design into account.
Only when topology, size and shape are described can a representation be comprehensive.

• Optimization perspective: the ability of a representation method to be deployed in
combination with an optimization or learning algorithm.

Let us denote the total universe of mechanisms that may be described by a certain represen-
tation as the solution space. Some representations rely on the discretization of this solution
space. In general, this means the total solution space for mechanisms is replaced by a grid-type
solution space, with distinct nodes and connections. Examples of such representations are the
building block approach [16–18] or the truss-based ground structure representation [19], which
was extended with a set of optimizable parameters by [20].

Another important segment of the discretized solutions relies on density-based representations
[21,22]. Used extensively in topology optimization, density based representations use an entirely
discretized solution space in which each sub-domain is assigned a density value. Material
is distributed over the solution space‘s continuum structure by assigning each sub-domain
(square) a binary or continuous density value.

Sticking with the realm of topology optimization, one may also adopt the notion of level-set
methods introduced by Sethian and Wiegmann [23]. In level-set methods a function’s iso-line
is used to describe material distribution. Material distribution can be changed by adapting
the iso-line level or changing the level-set function. A structured review of research into this
subject was given by Van Dijk [24].

Alternatively, Lipson [1] proposed a decision-tree representation to describe a series of opera-
tions resulting in a unique kinematic structure. Lipson distinguished two di�erent operators:
T and D, describing a mechanism as an initial design and a set of subsequent operations.

Finally graph theory has been used prolifically in generative mechanism design [15,19,25–29].
Graph descriptions can be easily extended to include all sorts of extra information besides its
topological content. It is however prone to isomorphisms: for each unique mechanism several
graphs exist describing the mechanism correctly.

All presented mechanisms have been scored on their merits with respect to each of the three
core values. The weighted sum of these scores has led to an overall score and classification of
each representation. The results are shown in Table 1-1.

Optimization algorithm

Numerous optimization algorithms exist, ranging from topology optimization to advanced
machine learning concepts. Again, a set of potential solutions has been evaluated based on
three core values. These values are:

• Creative Freedom: the ability to support any type of possible design outcome without
imposing design limits.

K.M. Vermeer Master of Science Thesis
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• Optimization speed: the ability to quickly converge towards the right solution.

• Design compatibility: the ability of an optimization algorithm to optimize for something
as complex as mechanism designs.

In the case of generative mechanism design, objective functions are typically subject to discrete
variables and therefore non-di�erentiable. This limits the scope of usable algorithms severely,
explaining why in literature only a limited number of algorithms has been found.
The most frequently used optimization techniques in generative CM design is Topology
Optimization (TO) . TO as introduced by Bendsoe [30] in 1988, determines the optimal
topology and shape of a structure for a specific objective. Most TO routines use a density-
based approaches like the homogenization [30] and SIMP methods [31]. These methods
often use a Finite Element Method (FEM) to evaluate a fine mesh of elements. By using
a large number of elements a continuum is approximated. This makes TO compatible with
gradient-based optimization algorithms after all.
Alternatively evolutionary algorithms (EAs) have been applied to cope with non-di�erentiable
objectives. EAs were first introduced by Holland [32] and emulate nature’ s evolutionary forces
of selection, combination and mutation to fulfill their objectives in all sorts of engineering
fields [1, 33]. EAs rely on simulation-based fitness evaluation and a set of stochastic rules
rather than on direct gradient information.
As a third alternative, machine learning (ML) approaches have been researched. The field of
ML can be split into three parts: supervised learning, unsupervised learning and reinforcement
learning. The former two types of ML rely on large datasets to learn. The latter type,
reinforcement learning, was described by Kaelbling et al. [34] as behavioral learning by
trial-and-error interactions with a dynamic environment, ergo using experience instead of
datasets. Large datsets concerning mechanisms are not readily available and learning from
human-designed examples would defeat the purpose of computer-aided generative design.
Table 1-2 shows the evaluation results for the optimization algorithms:

Compliance modeling

Modeling compliant structures and mechanisms involves numerous challenges. First of all
designing CMs requires considering multiple objectives [35] since the resulting designs should

Table 1-1: Scores and classifications per representation: Building blocks, truss-based ground
structures, Zhou‘s [20] approach, density-based approach, Lipson‘s [1] decision tree, level-set
methods, graphs and extended graphs.

Value BB Truss Zhou Density DT LSM Ext.graph Weight

CF -3 -3 2 2 2 3 3 3
Comp. 0 1 2 2 3 3 4 2
Optim. 2 3 -1 0 1 -2 -3 1

Score -7 -4 9 10 13 13 14
Class - - +/- + + + +
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6 Introduction

Table 1-2: Overview of characteristics optimization algorithms. TO = topology optimization,
EA = evolutionary algorithms, SL = supervised learning, USL = unsupervised learning and RL =
reinforcement learning.

Characteristic TO EA SL USL RL Weight

Creative freedom X/◊ X ◊ ◊ X 3
Optimization speed X /◊ ◊ - - X/◊ 1
Design compatibility X X ◊ ◊ X/◊ 2

Score 8 10 -5 -5 9
Class +/- + - - +/-

be both flexible to achieve deflections, and sti� to retain structural integrity whilst withstand
reaction forces. Therefore a number of objectives can be considered, like the mechanical
advantage [36] or geometric advantage [37]. In 1970, Shield and Prager proposed another
alternative using a mechanism’s mutual potential energy [38]. For a more thorough analysis of
these and other design objectives the reader is redirected to appendix G-5-2.

For simulating the kinematic behavior of a CM, only approximation methods are considered,
given that exact solutions only exist for specific shapes whereas a general solution is sought.
In literature, two distinctive approaches for the modeling of compliant kinematics are being
used extensively: the Finite Element Analysis (FEA) [17,20,37,39–42] and Pseudo-Rigid-Body
(PRB) models [43–47].

In FEA a continuous structure is modeled as a collection of discrete elements of finite length.
Elements can be of all shapes and sizes, but are usually geometrically simple shapes like beam
and bar elements. When performing the analysis, the behavior of each separate element is
determined by solving the partial di�erential equations governing elastic deformation. The
equations are solved exactly in a set of precision points, referred to as nodes, and interpolated
using shape functions throughout the structure. Within FEA, a major distinction can be
made between linear and non- linear FEA. Since compliant mechanism by trait go through
large deflections, the use of linear FEA has been deemed infeasible.

In 1996 Howell and Midha [43] proposed a method in which a compliant mechanisms is
accurately approximated by an equivalent rigid-body model. This so-called pseudo rigid body
(PRB) method introduces all well-known rigid-body mechanism theory into the compliant
mechanism design domain. As a result fast and exact computations can be made with respect
to the CM’s approximate PRB model.

As a result of elaborate evaluation, described in appendix G-5-2, the characteristics of both
compliance modeling methods have been determined (Table 1-3).

Overview

To capture all three subjects in a two dimensional overview, the mechanism representations
and compliance modeling methods have been combined as described in appendix G-6. Each
of these combinations has been scored in terms of synergy ranging from ≠ for a mismatch
to + for synergistic combinations. Intermediate combinations have been scored +/≠ and

K.M. Vermeer Master of Science Thesis
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Table 1-3: Characteristics of FEA and PRB models for compliance

Characteristic FEA PRB Weight

Speed ◊ X 1
Accuracy X X 2
Versatility X ◊ 2

Score 7 4
Class +/- +/-

incompatibilities have been denoted with a ¶. All fourteen pairs have subsequently been
combined with the selection of optimization algorithms and received a similar synergy score.
In parallel, the individual scores, based on the core-values, should be taken into account to
determine which combinations of solutions are both synergistic and endorse the core values.
The resulting table is shown in Table 1-4.
Derived from the overview in Table 1-4 come three potentially synergistic solutions, which are
tabulated in Table 1-5.
By dividing the large challenge of generative design into three subproblems, solutions for these
subproblems have been researched without being distracted by the overarching problem. As a
result, solutions applied in other research fields have been introduced in the context of the
current research and have shown to be promising. Interestingly, two out of the three promising
configurations break precedent on several issues. Most daringly, the use of level-set methods
and reinforcement learning in mechanism synthesis are both unheard of, even though their
resulting evaluation scores are high. Also, by elucidating the method used and argumentations
applied to the scoring procedure this table can be extended at any time in future work.

Thesis subject

Based on the propositions resulting from the literature study, a solution direction has been
selected for further development. Because of its unique nature and great compatibility, we
have chosen to pursue a generative design algorithm combining Lipson’s [1] decision tree
with reinforcement learning. Additionally, the current focus on reinforcement learning in the
scientific community, by for instance the DeepMind lab [9,48], has added to the expectation
that a thesis on this subject may result in a valuable scientific contribution. The main goal
of this thesis is to asses the possibility of using reinforcement learning as an e�ective tool in
designing mechanisms. Unfortunately incorporating compliance modeling would have stretched
past the limits of a thesis assignment. Therefore, the scope has been limited to the design of
two-dimensional kinematic linkages. A path-tracing objective has been selected as running
example. Three subgoals have been defined to address the general objective:

a Posing the design problem: Mechanisms will be represented by Lipson’s decision tree
method [1]. During learning, an agent is required to choose the best operation given the
current design. A series of decisions results in a sequence of operations, which in turn lead
to a design. The first goal is therefore to create a framework that can interpret decision
trees, take in new operations and determine fitness with respect to the design goal.

Master of Science Thesis K.M. Vermeer



8 Introduction

Table 1-4: Overview table of mechanism representations, compliance modeling and optimization
methods and their mutual synergies. Scores from individual analysis based on core values are
provided. Representations: BB = Building Block method, Truss is Truss-based ground structures,
Zhou is Zhou‘s [20] method using a flexible truss-based ground structure description, Density =
density-based approach, DT = Lispon‘s [1] decision tree description, LSM = level-set method, Ext.
graph = Extended graph representation, using labels to enhance comprehensiveness of graphs.
Sub-zero scoring optimization algorithms and mechanism representations have been grayed out.

Representations Compliance Optimization
+/- + - - +/-

Method Class Method Synergy TO EA SL USL RL
FEA ¶ ¶ + ¶ ¶ ¶BB -
PRB ¶ ¶ + ¶ ¶ ¶
FEA + + +/- ¶ ¶ ¶Truss -
PRB +/- - +/- ¶ ¶ ¶
FEA + + +/- ¶ ¶ ¶Zhou +/-
PRB +/- - +/- ¶ ¶ ¶
FEA + + - ¶ ¶ ¶Density +
PRB - - - ¶ ¶ ¶
FEA + ¶ + ¶ ¶ +DT +
PRB +/- ¶ + ¶ ¶ +
FEA + + - ¶ ¶ ¶LSM +
PRB - - - ¶ ¶ ¶
FEA +/- ¶ + ¶ ¶ ¶Ext. graph +
PRB + ¶ + ¶ ¶ ¶

K.M. Vermeer Master of Science Thesis
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Table 1-5: Three most promising solution combinations extracted from Table 1-4.

Mechanism representation Compliance modeling Optimization or learning method
Level-set method Finite element analysis Topology optimization
Decision tree method Pseudo-rigid body EA or RL
Extended graph method Pseudo-rigid body Evolutionary algorithm

b Creating a learning algorithm: Once the environment represented by the framework
from the previous subgoal is in place, a learning agent can start to interact with it. Therefore
the second goal is to implement an actor that is able to learn within the bounds of the given
framework.

c Demonstrate the algorithm: Once a learning algorithm is created it should be demon-
strated on an example problem. Once learning has been demonstrated, the framework can
be used to assess a second learning problem and demonstrate its general applicability.

Contents of report

The means and ends to these (sub)goals are condensed into a scientific paper presented
hereafter. Subsequently a series of closing remarks is given in chapter 3. For readers interested
in a level of detail beyond the paper’s scope, extended work is presented in the appendices.
The included subjects are shown in Table 1-6, including the paper sections they relate to (if
applicable):

Table 1-6: Overview of appendix subjects. Paper sections are referred to for the applicable
subjects.

Appendix Subject Paper section
A A background study on the subject of machine learning -
B Derivation of backpropagation algorithm II-C-1
C Elaboration on neural network implementation II-C-1
D Elaboration on Markov Decision Process framework II & III
E Elaboration on sensitivity methods III-E & IV-D
F Overview of experimental results IV
G Literature survey -

Master of Science Thesis K.M. Vermeer
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Kinematic Synthesis using Reinforcement Learning
Kaz M. Vermeer, Reinier P. Kuppens, Just L. Herder

Abstract—The presented research explores the possibility of
applying feature-based reinforcement learning to the synthesis of
two-dimensional kinematic mechanisms. As a running example
the classic challenge of designing a straight-line mechanism is
adopted: a mechanism capable of tracing a straight line as part
of its trajectory. This paper presents a basic framework, consist-
ing of elements such as mechanism representations, kinematic
simulations and learning algorithms, as well as some of the
resulting mechanisms and a comparative benchmark to prior
art. A sensitivity analysis is performed to analyze the neural
network’s considerations with respect to the selected features.
Finally the general applicability of the algorithm is tested and
validated by adopting a second design goal.

I. INTRODUCTION

MACHINE learning has quickly gained popularity in
a wide variety of research fields since the early 21st

century [1]–[4]. In the synthesis of mechanical systems however
hardly any machine learning applications are being used.
Research into such an application is therefore necessary to
expose mechanism synthesis to the potential benefits it may
reap from advancements in machine learning.

Over the past years research has been conducted on the
synthesis of mechanisms by means of topology optimization
[5]. In most cases, the optimization process starts with a
fully connected homogeneous structure from which pieces of
material are gradually eliminated until a mechanism is found
that fits the needs of the designer. The prerequisite of having a
fully connected starting structure however limits its applications.
Research involving constructive approaches, adding elements
rather then eliminating them, has thus far mainly relied on
evolutionary algorithms [6]–[9]. These algorithms initiate a
quasi-random population of individual designs and perform a
series of stochastic selections, combinations and mutations to
evolve the population into a group of functioning designs.

None of these efforts however apply reinforcement learning
(RL), an experience-based learning concept currently researched
in other fields [10]–[12]. This method is capable of coping
with levels of complexity evolutionary algorithms cannot
accommodate [13]. RL is specifically well-suited for game-
like situations [14] in which decisions have to be made and
rewards may be obtained. Application of RL onto mechanism
design therefore requires the development of an inventive new
framework in which design challenges are posed in a game-
like fashion. This research presents just that in an attempt to
bridge the gap between the challenges faced by the field of
modern mechanical system design and the advancing solutions
developed by the computer sciences.

The present paper offers a method implementing RL in
kinematic synthesis using a decision-tree-based mechanism
representation and nonlinear value function approximation. To

demonstrate this method the challenge of designing a straight-
line mechanism has been adopted. This has resulted in a series
of successful straight-line mechanisms being synthesized using
RL. The applied method has been developed independently
of the adopted design goal and should therefore generalize
to other goals as well. To demonstrate this ability a second
design goal has been introduced. Using the same features and
settings, the algorithm obtained similarly successful results on
the second design goal.

The method used in this research is presented in section
II after which the experiment is described in section III. The
results from the experiment are presented in section IV and
discussed in section V. Finally the conclusion is given in
section VI.

II. METHOD

A. Mechanism representation
In order to synthesize, interpret, evaluate and manipulate

mechanism designs, a numeric system, i.e. a computer, has to
be able to communicate about such objects. This requires
a befitting language, or in formal terms a numeric repre-
sentation of designs. Additionally the representation should
be convertible into the visual domain easily for purposes of
human inspection. Literature study [15] provides an overview
of methods for such representations and of algorithms for
manipulation and evaluation. This study also indicates that
one specific representation method exists that forms a strong
synergistic combination with reinforcement learning. This
representation was first introduced in 2008 by Hod Lipson
[6].

Lipson [6] proposed a decision tree representation to describe
a series of decisions resulting in a unique kinematic mechanism.
In each decision one of two operations is performed: T or D.
Given a kinematic system of interconnected links and nodes,
both operators act on a specified target link when executed.
The operators introduce a new node and connect it to the the
target link’s endpoints. In case of a T operator, the target
link is subsequently replaced by a connecting link between
the new node and its nearest non-connecting neighbor. A D
operator simply leaves the target link untouched. Using Fig. 1
one may compare the different results of these operators. Both
T and D have the particularly useful property of conserving a
mechanism’s number of degrees of freedom (DOF). This means
these operators are intrinsically restricting the design space to
include only feasible domain. This method therefore prevents
efforts being poured into a forlorn search through infeasible
designs. This is in contrast to most other representations, like
graphs, which do allow over- and under-constraint mechanisms
to occur, as was the case in [7].

Given an initial mechanism as starting point, a series of T
and D operators fully describes a new design. The sequence
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Fig. 1: Example of different outcomes for D and T operations
on link number 3.

of operators can be represented as a decision tree, depicted
in Fig. 2. In Lipson’s implementation [6], the operators are
accompanied by an integer, indicating the target link, and a
local coordinate, describing the placement of the new node
relative to the target link’s position.

B. Kinematic simulation

In the presented framework all generated mechanisms have
to be automatically evaluated for performance. To evaluate a
mechanism’s path-tracing performance in terms of accuracy,
kinematic analysis is required. Since no a priori knowledge
of the synthesized mechanisms is available, a robust analysis
method is needed which can handle any conceivable mecha-
nism within the representation’s domain. Therefore numeric
simulation is used. Fig. 3 shows the initial configuration of
an example mechanism. The bottom two nodes are both fixed.
The curved arrow indicates the input link. During simulation
the input link is rotated a full circle in 300 equally spaced
steps by prescribing its position. After each perturbation the
positions of the free nodes are determined by solving the
position problem. Finally, the infeasible domain is removed
and a smooth trajectory extracted. Applying this treatment to
the mechanism presented in Fig. 3 leads to the curved trajectory
shown by the dashed blue line.

1) Solving the position problem: Since the position problem
has to be solved tens of millions of times whilst learning, a
simple, general and computationally cheap method is desired.
Moreover the method should be able to cope with and detect
infeasible domain. Avilés et al.’s method [16] presents just
that, involving a reduced form stiffness matrix known as the
geometric stiffness matrix [g] for fast computation and an
elastic potential error-function to detect and cope with infeasible
domain. In this method mechanisms are modeled using rod-
type finite elements with revolute joints on both ends, allowing
only axial deformation. In each time step the position problem
is solved numerically by determining and minimizing the error
function: the system’s elastic potential V . The error function
for a linkage with a total of b links of length Le equals:

V (x) = 1/2
bX

e=1

(le(x)� Le)
2 = 1/2

bX

e=1

✓q
xT [ḡ]ex� Le

◆2

(1)

in which le(x) represents the length of element e as a function
of the nodal coordinates in x. During iteration, le might not be
equal to Le, introducing elastic potential and thereby error. As
in Avilés et al.’s [16] approach Newton’s second-order method
[17] is adopted to solve the optimization problem, minimizing
V with respect to x. Iterative updates of x continue until the
error V drops below a predefined tolerance of 1 · 10�3 or the
iteration count exceeds 100, after which the position problem
is considered solved.

2) Detecting infeasible domain and singularities: Depending
on the geometry of a mechanism, the input link may not
be able to turn a full circle. During numeric analysis, such
infeasible domain can be detected by high levels of elastic
potential. By removing trajectory points with high elastic
potential only the feasible domain remains. In the limit cases,
i.e. mechanisms with dimensions just slightly preventing it
from entering infeasible domain, singularities can occur. In
such cases somewhere along the trajectory two or more links
become aligned resulting in locking behavior, effectively losing
one degree of freedom. Such an unstable mechanism position
results in large gradients of the potential energy. Accordingly,
the gradient and Hessian matrices in Newton’s second-order
method become ill-conditioned. To deal with the resulting large
gradients an adaptive learning rate is employed, preventing
overshoots whilst searching for an equilibrium position. This
adaptive learning rate ↵ is cut in half whenever the error is
rising instead of falling. No updates of x are performed in this
case until the error ceases to rise.

C. Learning approach
Reinforcement learning (RL) is described by Kaelbling et al.

[14] as behavioral learning by “trial-and-error interactions with
a dynamic environment”. RL can be applied when no data is
available a priori, but instead a reward signal is received after
each experienced data point. Hence a machine can learn by
taking actions, assessing the resulting rewards and adapting
its decision policy accordingly. Through iteration, the machine
can learn to take the actions that maximize the total reward.

As explained by Sutton and Barto [18], in RL the learner is
named the actor. The actor gains experience through taking
actions that lead to interactions with its environment. After
every interaction, the actor is faced with a new situation, or
state, from which it may perform the next action. As part of the
interactions, the actor may receive rewards. The actor’s goal
is to choose actions such that it maximizes the total reward.
In a more formal manner, one can say that for every time-step
t the actor is in state St. After taking action At, it ends up in
state St+1 with probability PStAt(St+1) and receives a reward
Rt+1. A schematic of this process is shown in Fig. 4. Over
time, the actor’s total return Gt equals the sum of all future
rewards:

Gt = Rt+1 + �Rt+2 + �
2
Rt+3 + ... =

1X

k=0

�
k
Rt+k+1 (2)

A discount factor � is introduced as a means to promote fast
results. This procedure is governed by the five-element tuple
(S,A, P, �, R). Decision processes described by such a tuple
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Fig. 2: Example of a decision tree. The initial mechanism in (a) features three operable links: 1, 2 and 3. A D operation is
performed on link number 2, resulting in mechanism (b) and its corresponding decision tree. Subsequently, two new decisions
are made by performing T operators on both links 3 and 5, resulting in mechanism (c). This tree and its corresponding
mechanism may continue to grow as more decisions are being made. Image inspired by Fig. 3 in [6].

are sometimes referred to as Markov Decision Processes (MDP)
[19], referring to their adherence to the Markovian property
[20] and inclusion of both deterministic and stochastic elements.
Using the tuple’s elements, one can define the value function
V⇡(s) as the expected return G of being in state s and following
policy ⇡ until termination [18]:

V⇡(s) = E⇡ [Gt|St = s]

= E⇡

" 1X

k=0

�
k
Rt+k+1

�����St = s] (3)

Since one is usually concerned with choosing the right action,
it is common practice [18], [19] to include both the state and
the action as variables of the value-function, leading to the
state-action value-function Q:

Q⇡(s, a) = E⇡ [Gt|St = s,At = a]

= E⇡

" 1X

k=0

�
k
Rt+k+1

�����St = s,At = a] (4)

For a known MDP, the fixed point theorem [21] shows
that V⇡ can always be found in a recursive fashion. In reality
however, the MDP is never fully known and V or Q can only be

estimated. Several algorithms exist that can be used to improve
an estimation of V or Q after each completed series of states
and actions also known as an episode. To improve efficiency,
one can bootstrap by updating after each time-step instead of
after each episode. The former method is referred to as Monte
Carlo learning (MC), whereas the latter is known as Temporal
Difference learning (TD). Both methods are described in depth
by Sutton and Barto [18].

The Q-function becomes more and more accurate by
learning, which can be exploited to make sound decisions and
therefore maximize reward Rt. Always choosing the action
that maximizes expected reward in t+ 1 is known as a greedy
policy. Such a policy however is short-sighted and likely to get
stuck in local optima. To prevent such behavior a policy called
✏-greedy [18], [22], [23] is adopted. This policy introduces
randomly selected actions with a probability of ✏ to encourage
exploration of the action space. In the current application ✏

is initialized as high as 0.5 and diminishes throughout the
learning process.

For the current application TD learning is chosen, since
this method is found to generally converge faster then its MC
counterpart [18]. The simplest and best-known TD algorithm
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Fig. 3: The starting point: a basic four-bar mechanism with
two grounded nodes. The arrow indicates the input link. The
top link, often named coupler link, transfers the input motion
to output link. The blue dashed line depicts the output link’s
path, moving back and forth along the same trajectory.

is SARSA, its pseudocode shown in algorithm 1. In each time-
step t an error term between the true and expected reward
is determined. Afterwards the approximation of Q(St, At) is
adjusted in the direction of the true value by a small step of
size ⌫.

Initialization;
Q arbitrary;

foreach Episode do
Initialize S;
Choose A from S using ✏-greedy policy and Q;
foreach Step in the episode do

Take action A, receive R and S
0;

Choose action A
0 from S

0 using ✏-greedy policy
and Q;

Q(St, At) Q(St, At) +
⌫ [Rt+1 + �Q(St+1, At+1)�Q(St, At)];

S  S
0 ; A A

0;
end

end
Algorithm 1: SARSA using TD learning from [18]

1) Value function approximation: In the SARSA algorithm
Q(S,A) is calculated and adjusted. In a practical sense,
this means Q should be an entity that can take a state
and action as input and produce an expectation as output.
Several embodiments exists for such an entity: closed-form
mathematical functions, lookup-tables and (non)linear function
approximation.

Closed-form mathematical functions, used to calculate Q

as f(S,A), are not a fitting choice as they generally are not
compatible with state-descriptions and discrete actions as inputs.
Secondly, iterative updates of closed-form functions can only
materialize by means of parameter adjustments. Selecting the
right parameters to include in the function however requires a
priori knowledge of the desired function approximator, which
is unavailable.

Secondly, one could represent Q(S,A) in a tabular fashion,
keeping track of a separate Q value for each unique state-action
pair [18]. For specific applications this method can be effective
[24]. However, besides the obvious memory limitation to small
state and action spaces, the tabular approach also fails in what
is known as the generalization of states [25]: the ability to

Fig. 4: Schematic showing the cyclical life of an RL actor.
Image reproduced from [18].

use experience gained in state-action pair (S,A) for decision
making in closely related state-action pairs. In a table each state-
action pair is treated as a perfectly separated individual, such
that experience from visiting state-action pair (S,A) is only
valuable for future visits to that exact same pair. Neighboring
pairs however, with states and actions much alike S and A, may
also benefit from the (S,A) experience. Tabular representation
cannot facilitate such cross-border sharing of experience.

Fortunately a third solution exists that does: estimating
Q(S,A) by using linear function approximation. A set of
features f(S,A) can be obtained and combined linearly using
weights w to approximate Q(S,A):

Q(S,A) = w1f1 + w2f2 + ...+ wnfn = wifi , (5)

adopting Einstein’s summation notation for a total of n weights
and features. A suitable feature list serves as a summary of
the current state-action pair, containing only the information
significant for decision making. A unique mapping exists from a
state-action pair to its feature list. Comparable state-action pairs
however may result in similar or identical features. Therefore
linear function approximation allows for the generalization of
states, in contrast to the tabular approach. Experience gained
in state-action pair (S,A) is valuable for visits to comparable
state-action pairs Ŝ, Â too, as long as their feature values
f(S,A) and f(Ŝ, Â) are similar. During learning, the weights
wi from equation 5 are updated according to the update rule
in algorithm 1. We used linear function approximation in
the current research as a first step and produced working
mechanisms. Linear combinations are however unable to detect
complex nonlinear relations between features or groups of
features and the outputted value.

To cope with such complex relations an alternative solution
is used in this research, replacing the linear combination with
a neural network (NN). Using the feature values as inputs,
the NN’s single hidden layer and output node are used to
approximate Q(S,A). A schematic of the NN is shown in Fig.
5. After each time-step backpropagation is performed: the error
calculated in algorithm 1 is propagated backwards through the
NN to determine the gradient of each weight with respect to
the error. The weights are thereafter updated according to the
acquired gradient information [26]. The used NN features bias
terms in both the input and hidden layer and is subject to L1

and L2 regularization [27].
2) Feature selection: The feature set used to approximate

Q(S,A) should reflect on the current state S and action A. This
reflection should distinguishably identify unique (S,A)-pairs
whilst labeling highly correlated pairs correspondingly. Whilst
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Fig. 5: Example of neural network architecture with a single
hidden layer. In the proposed optimal settings the input, hidden
and output layers feature respectively 314, 236 and 1 node(s)
for mechanisms consisting of up to 16 links.

the former is a requirement to serve as a basis for decisions,
the latter facilitates feature sets to generalize over (S,A)-pairs.

A major downside of using feature-based value-function
approximation is the requirement for hand-crafted features.
This requirement introduces a dependence on designer-insight
in a context further dominated by artificial intelligence. This is
particularly troublesome since the relation between the NN’s
input and output is in itself the subject of study. This relation
is therefore not known a priori and hence cannot be used to
determine which features are of significant value. To circumvent
the issue of selection a wide variety of features have been used
in this research. Table I presents an overview of all features.
Feature selection has been trusted to the NN itself by means
of regularization [28]. This self-selecting character contributes
to the network’s general applicability by adapting the features
used to the design goal it is faced with. Hence, the initial
features have been hand-crafted entirely independent from the
adopted design goal.

Listed as ‘Graph characteristics of St+1’ in Table I is a large
number of features based on graph theoretical characteristics.
Included are each node’s degree, betweenness, closeness, page
rank, eigenvector, laplacian eigenvector, eccentricity and cluster
coefficient as well as the graph’s density, mean distance,
efficiency, number of spanning trees, spectral gap, Fiedler
value, radius, diameter, number of cycles, longest cycle length
and shortest cycle length. All features in Table I have been
scaled to fit the NN’s recommended operating range between
-1 and 1.

III. EXPERIMENT

In this section we will first elaborate on the selected
kinematic challenge and introduce a restriction imposed on the
algorithm. Then two design goals are presented by means of
which the effectiveness of the algorithm can be demonstrated.
Thirdly a number of design variables and algorithmic variations
will be introduced, for which optimal values have to be
established using a parameter sweep and grid search. Finally a

TABLE I: Overview of all included features, their value type
and number of values in each feature. Some feature sizes are
dependent on the maximum number of nodes N or links L. The
total number of features equals ||f || = 7L+ 14N +

�N
2

�
+ 17.

Since the transformation probabilities in this application are
uniform, ergo the outcome of action a is always a known new
state St+1, numerous features based on St+1 are included. For
mechanisms featuring 10 nodes, 314 features are used.

Feature Value type Entries

Operator selection (T or D ) Boolean 2
Link is selected as target Boolean L
Existence of target link Boolean 1
Number of connections to target link Integer 1
Number of active links in St+1 Integer 1
Number of active nodes in St+1 Integer 1
Link is active in St+1 Boolean L
Node is active in St+1 Boolean N
Relative link lengths in St+1 Real L
Relative node angles in St+1 Real N
Relative nodal positions in St+1 Real 2N
Shortest path betwn. each nodal pair in St+1 Real

�N
2

�

Graph characteristics of St+1 Miscellaneous 8N + 11
Node is part of center in St+1 Boolean N
Node is part of periphery in St+1 Boolean N
Link is connected to ground in St+1 Boolean L
Link is part of longest cycle in St+1 Boolean L
Link is part of shortest cycle in St+1 Boolean L
Link is part of min. spanning tree in St+1 Boolean L

sensitivity analysis is proposed to gain insight in the relevance
of the selected features.

A. A game of mechanism design
Every episode starts with the same initial mechanism shown

in Fig. 3. Subsequently the actor is allowed to choose an
operator (T or D ) and a link number to operate on at each
time-step t. Choices are made by performing an exhaustive
sweep over all possible actions At and ✏-greedily selecting the
action with the highest predicted state-action value Q(St, At).
Taking an action leads to a new state St+1. The actor receives a
reward Rt+1 for the new design described by St+1, calculated
by the scoring module. This process repeats n times until the
terminal state is reached and the episode ends. n equals 6 by
default, but can be changed as a design variable.

B. Restrictions and simplifications
Reinforcement learning theory shows great potential for

complex learning problems, as demonstrated by others using
deep neural networks [29] and actor-critic models for contin-
uous action spaces [23], [30]. However before indulging in
such advanced applications the viability of RL in mechanism
design should be demonstrated, as this research attempts to
do. Therefore complexity in the RL algorithm is deliberately
avoided. To this end a restriction in the mechanism design game
is put into place: the operators’ accompanying local coordinates
are not included in learning. Instead, new nodes are placed
automatically such that they form an isosceles triangle with
their respective target link. The resulting triangle’s height is set
equal to the target link’s length and the new node is preferable
placed in the periphery of the existing mechanism.
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C. Design goal
The current research takes on one of the oldest and best

known problems in kinematic synthesis: the straight-line
problem [31]. This problem serves as a useful example since
several solutions to it have already been devised [32], [33].
Moreover straight-lines mechanisms have served as design
a challenge for computerized synthesis before [6], [7]. This
design goal therefore facilitates comparative benchmarking to
prior art.

A module has been developed in order to determine a
mechanism’s straight-lines tracing score. The module analyses
the trajectory of each node by determining the straightest
section of each trajectory and fitting a minimum-surface box
around the section. The aspect ratio of this box serves as a
measure of the section’s straightness. The final score is the
product of the aspect ratio and the section’s length, divided by
100 for scaling purposes.

The current method was developed independently from
the design goal, and should therefore be able to synthesize
other types of tracing mechanisms as well. To demonstrate
this a second scoring module has been developed, pursuing
to design figure-eights-tracing mechanisms. Because of the
circular nature of a figure-eight, any feasible tracing mechanism
should facilitate a complete circular input motion of 2⇡ radians.
Therefore mechanisms resulting in any form of infeasible
domain are immediately disregarded by the scoring module.
After disregarding such mechanisms, the module finds the
remaining trajectories’ principle axes and fits a scaled figure-
eight on each one. An intermediary performance score is
established per trajectory as the reciprocal of the normalized
mean shortest distance between the trajectory points and
the figure-eight. Finally the trajectories are searched for the
characteristic figure-eight center crossing. The final score per
trajectory is established based on the intermediate score and
whether or not such a crossing is present. Figure 9b visualizes
the scoring module’s procedure for one trajectory. The lines
between the blue dashed trajectory and the magenta figure-eight
scatter plot represent the closest euclidean distance between
the trajectories. The star is plotted to mark a detected crossing.

D. Variations in settings and algorithms
During the experiment a number of settings with regard

to the NN has been varied. These so-called hyper-parameters
are the hidden layer type, learning rate ⌫, number of hidden
nodes, the L1 and L2 regularization rates and the selected
training algorithm. Additionally tests have been performed
using dropout [34] in both the input and hidden layer, which
did not increase performance. Hence dropout has been omitted
in further testing and experiments. Besides the hyper-parameters
two other design variables have been varied: the decay rate for
✏ (exploration factor) and the level of penalty for infeasible
actions and designs. The decay rates �1 and �2 used in the
Adam algorithm are conform recommended settings [35] and
kept constant throughout the experiments.

During the experiment each specific setting has been varied
over its attainable values, whilst the remaining parameters
have been kept constant according to the basic settings, both

TABLE II: Basic settings used during parameter sweep. In each
experiment these settings are adopted by all but one parameter,
which is the swept parameter. The third column lists the values
included in the sweep. LReLU refers to Leaky ReLU, SGD
to Stochastic Gradient Descent and SGDNM to Stochastic
Gradient Descent with Nesterov Momentum.

Parameter Basic value Sweep values

Learning rate ⌫ 1 · 10�1 [10�3, 10�2, 100]
Hidden layer style Sigmoid [ReLU, LReLU, tanh [36]]
Hidden layer size 3

m4 of input layer size [0.25, 0.5, 4, 16]
Regularization �L1 = 0, �L2 = 0 [10�4, 10�3, 10�2]
Training algorithm Adam [35] [SGD, SGDNM [37]]
Decay rates �1 = 0.90, �2 = 0.99 [-]
Infeasibility penalty 5 [0, 1, 25]
Exploration factor 100 [30, 300]

TABLE III: Combinations of algorithm choices (TD or MC)
and reward structure (accumulated or end-only) are visited in
a grid search. The possible combinations are denoted as A,B,
C and D.

Temporal Difference Monte Carlo

End-only reward A B
Accumulated reward C D

shown in Table II. Parallel to this parameter sweep a grid-
search is conducted by varying the learning algorithm and
reward scheme, resulting in four different setups (Table III).
The variations A,B, C and D learn either by adopting the TD
method, or by following an MC procedure. Moreover they
adopt either one of two reward-schemes, accumulating rewards
throughout an episode or relying solely on the episode’s final
reward.

E. Sensitivity analysis

The use of a neural network obscures the input-output
relation between the features and the Q-value estimation. In
order to gain an understanding of the added value of each
feature, several sensitivity analyses have been performed. The
relative importance of the features was firstly established using
the weights method, introduced by Garson [38]. This method
is based on partitioning the hidden-to-output weights of each
hidden node into components associated with the input-to-
hidden weights [39]. Using basic arithmetic operations this
method leads to a relative importance score of each feature.
Secondly, Lek’s [40] profiling method has been applied. In
this method one feature value is kept fixed while all other
inputs step from their minimum to their maximum value in
a set amount of steps. The median of the resulting Q(S,A)-
value is saved. This process is repeated throughout a range of
values for the fixed feature, and subsequently repeated for all
features. The results are used to compose a profile graph for
each feature, indicating how the output varies with respect to
the feature’s value. Thirdly, a very basic approach has been used
by simply taking the mean absolute input-to-hidden weight for
each feature. Finally a finite-difference sensitivity analysis has
been performed. During finite-difference analysis features are
exposed one-by-one to a tiny increase � and a tiny decrease
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Fig. 6: Boxplot showing the reward distribution for settings that are present in at least one of the top-tens pertaining to the
highest accumulated reward (top) or end reward (bottom). The setting abbreviations are TD for Temporal Difference and MC
for Monte Carlo learning. Furthermore pnl = negative reward penalty, L1 = L1 regularization parameter, L2 = L2 regularization
parameter, EF = Exploration factor, LR = Learning rate ⌫, HLS = hidden layer size. The distributions are based on experiments
in fivefold. Results are marked as outliers when deviating more than 2� from the mean, illustrated by the red plus-signs. The
mean values are represented by the circles. Triple circle markers indicate settings present in both top-tens. Double circle markers
represent top-ten settings unique to the figure’s corresponding reward scheme. Single circle markers represent settings scoring
below top-ten.

��, after which the NN output O is evaluated. The feature
sensitivity is calculated as:

vf =
O

+ �O�
2�

, (6)

where O
+ refers to the output after a positive perturbation and

O
� after a negative one.

IV. RESULTS

A. Results from parameter sweep
With a parameter sweep counting 28 design variations and a

grid-search of 4 algorithm-reward combinations a total of 112
unique setups has been tested in fivefold for 5000 episodes. The
results were averaged per setup in order to limit the influence
of outliers. The reward distribution in the top-ten settings of
both reward schemes is shown in Fig. 6. In both cases the
highest median and mean is reached by the TD algorithm,
although MC in combination with a low Exploration Factor
(EF), equal to high levels of exploration, shows the ability to

produce high-scoring but unrepeatable individuals. Combining
the best scoring settings with the basic setup from Table II,
recommended settings are extracted and shown in Table IV. Fig.
7 demonstrates convergence of one specific test run by means of
a semilogarithmic plot of the mean-squared error propagation.
The error converges towards zero with values stabilizing aroundp
10�3 after after some 2500 episodes. Convergence showed to

deteriorate for longer games featuring more than 6 operations
per episode.

B. Resulting structures
The developed algorithm has synthesized a collection of

functional designs, of which three well-performing individuals
are shown in Fig. 8. The outer two structures (figures 8a
and 8c) were limited to a maximum of eight nodes, whereas
the structure in Fig. 8b features ten nodes. The latter design,
drawing the straightest line with an aspect ratio of 1:1168,
resembles Hoecken’s design [41], characterized by the large
structure on top of the coupler link. Interestingly, the other two



8

0 1000 2000 3000 4000 5000 6000

Episode number[-]

10-10

10-8

10-6

10-4

10-2

100

102

M
in

im
a

l M
S

E
 in

 b
u

ck
e

t[
-]

Mean squared error versus episodes

Fig. 7: Semilogarithmic plot showing the propagation of the
mean squared error through a series of episodes. Random
events, caused by exploration, result in high error spikes.
Therefore, the minimum errors per bucket of 20 error-values
are shown in this figure.

TABLE IV: Recommended settings after performing an exten-
sive search through 112 unique setups.

Parameter Value

Algorithm SARSA
Reward scheme Reward after each time-step
Learning rate ⌫ 1 · 10�2

Hidden layer style Sigmoid
Hidden layer size 3

4 of input layer size
Regularization �L1 = 1 · 10�3, �L2 = 1 · 10�3

Training algorithm Adam
Decay rates �1 = 0.90, �2 = 0.99
Infeasibility penalty 25
Exploration factor 30

structures use different approaches leading to straight lines with
aspect ratios of approximately 1:410. More specifically, the
structure in Fig. 8a contains a diamond shaped subset, of which
the green top node passes through a straight section. While
following the radial motion of the input link, the diamond
folds in and out, counteracting movement perpendicular to the
straight section. The same technique was used by Peaucellier
in 1873 [32] in his perfect straight-line mechanism.

C. Benchmarking
In an earlier attempt to synthesize straight-line mechanisms

Lipson [6] adopted a comparable scoring method to the
one presented in this paper. This allows for a quantitative
comparison between the current RL approach and Lipson’s
evolutionary algorithm (EA). In his paper [6] Lipson describes
most of the resulting structures exceeded aspect ratios of 1:1000,
with outliers as high as 1:28340. The results in Fig. 8 show
aspect ratios of respectively 1:415, 1:1168 and 1:406. Therefore
the straightness in the current results do not challenge the
levels of straightness achieved by Lipson. Computational times
are difficult to compare because of technological advances in
the last ten years, but do remain within the same order of
magnitude, i.e. approximately 10 hours.

The contrast between these results is mostly due to three
discrepancies in the comparison: the restriction introduced
in this paper, differences between the objective functions
used and the issue of numerical inaccuracy during kinematic
simulation. First of all a restriction was introduced in section
III-B. More specifically the relative coordinates introduced by
Lipson were omitted and replaced by an automatic choice of
location for new nodes. Hence the current solution is not as
free in its design choices as Lipson’s, therefore ruling out a
large number of possible configurations. Secondly the current
solution evaluates a trajectory on both straightness and length,
whereas Lipson’s solution adheres to the aspect ratio only. Thus
a discrepancy exists between the algorithms’ optimization goals,
complicating the comparison. Thirdly minuscule inaccuracies
in the calculated trajectories, through numeric simulation, may
disturb an otherwise high aspect ratio. To test this hypothesis
the current numeric simulator was used to determine the aspect
ratio of a Peaucellier machine’s trajectory, which is known to
be perfectly straight. Upon analyzing the trajectory an aspect
ratio of 1:1947 was obtained. This indicates the simulator’s
accuracy is insufficient to measure aspect ratios in this extreme
region.

Because of these three reasons no convincing verdict can be
given about the optimal algorithm for kinematic synthesis.

D. Sensitivity analysis
The use of four different sensitivity analyses, as described

in III-E, has resulted in four slightly different results. There
are however five features that belong to the ten most sensitive
features in all analyses. These are shown, in arbitrary order, in
Table V.

TABLE V: Most sensitive features with respect to Q.

Feature Relation to Q

Existence of target link Positive
Link 6 is selected as target Positive
Link 4 is selected as target Negative
Link 7 is part of longest cycle Positive
Relative vertical position of node 4 Negative

The order of merit between these features varies over
the different analysis methods and is therefore not included.
Nonetheless, the table yields interesting results. The strong
positive relation found between Q and the existence of the
target link is rather trivial, since actions on non-existing links
lead directly to an infeasibility penalty. The next two however
are peculiar: apparently operating on link 6 leads to increased
results, whereas operations on link 4 are negatively related
to the expected reward. These sensitivities have no obvious
explanation: while both Fig. 8a and Fig.8b are the result of an
operation on link 6 , they started out with an operation on
link 4.

E. Generality of algorithm
The learning algorithm has been tested using a second

design goal as presented in III-C, utilizing the same settings
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(a) (b) (c)

Fig. 8: Three structures as created by the algorithm. The thick, dark blue dashed lines represent the trajectories featuring a
straight section, highlighted by a full green line. The large green nodes represent each structure’s straight-line tracing node. The
aspect ratios of the straight sections are (a) 1:415, (b) 1:1168 and (c) 1:406.
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(b)

Fig. 9: Example of the application of the proposed algorithm adopting a figure-eight design goal. Figure (a) shows the resulting
structure, in which the green node (lower-right corner) traces a blue thick dashed figure-eight pattern. Figure (b) shows how the
trajectory is compared to a true figure-eight. The colored lines display the shortest distance between each trajectory point and
the true figure-eight. In this case, the mean euclidean distance equals 0.203. The green star indicates a detected crossing.

and features used to synthesize straight-line mechanisms. The
resulting design is shown in Fig. 9a. The depicted mechanism
clearly traces a figure-eight, albeit curved. Even though the
imposed restrictions do not allow for the creation of a perfect
figure-eight trajectory, the results demonstrate the algorithm’s
capability of adapting to other design goals.

I proof I prove

V. DISCUSSION

The results presented in this paper prove that RL can be
applied to synthesize straight-line mechanisms. Therefore this
demonstration broadens the mechanical system design spectrum
of tools and gives future researchers an extra angle to consider
whilst choosing a fitting synthesis technique. Moreover, by
successfully applying the presented method on a second design
goal, the method’s general applicability to mechanism design
has been indicated. The current research may serve as a

stimulant for the engineering world to start adopting machine
learning into its range of design tools.

Zooming out, one sees how this paper opens the door to
a new area of application for the heavily researched field of
RL. DeepMind’s David Silver [42] recently said: “Now we
can start to tackle some of the most challenging and impactful
problems of humanity”, after having presented a breakthrough
in RL. Such an announcement indicates a movement in the RL
community towards the application of its skills to other research
fields. By demonstrating the viability of RL in mechanical
engineering this research removes a barrier for scientists like
Silver to apply their craft to mechanical system design.

Extensions on the current results could be made by removing
the imposed restrictions on Hod Lipsons’s [6] T and D
operators. A first step would be to extend the actor’s freedom in
choosing the location of new nodes. A paramount improvement
however could be made by adopting a learning algorithm capa-
ble of coping with a continuous action space. Such algorithms
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(policy gradient [29], actor-critic models [23], [30]) do not
use an argmax operator to perform greedy action selection,
but instead estimate a stochastic reward distribution over the
action space and select an action accordingly, decoupling
computational time from the size of the action space. The
resulting algorithm could search a continuous design space
from which it may obtain designs that achieve more accurate
performance. Secondly the value function approximator could
be improved by further researching the ideal set of features. The
presented result from the sensitivity analyses has introduced
only limited insight in the inner workings of the network.
The effect of individually important features may have been
outweighed by a combined effort from less important features.
Also, Q might be very sensitive to certain groups of features
moving together. Unfortunately both of these phenomena cannot
be detected by the applied analysis methods. As a first step
towards feature selection however, the presented methods can
be used to remove obsolete features, increasing the algorithm’s
efficiency. Besides the issues concerning feature selection, the
neural network’s layer depth may be extended. Such a deep
neural network would be able to detect more complex relations
between sets of features and the expected reward, leading to
increased algorithm performance. Finally some post-processing
steps may be developed to clean up the algorithm’s results. For
example, post-processing could remove obsolete triangles or
adapt dimensions to improve aesthetics and producability of the
designs. The resulting software may be directly applicable to
the design of mechanisms for specific kinematic goals, whether
it be tracing trajectories, amplifying motion or other kinematic
challenges.

VI. CONCLUSION

The current research demonstrates the added value of
reinforcement learning in mechanism design, which has thus far
been uncultivated ground. In this paper a method is presented
by which kinematic synthesis can be molded into a game-like
process compatible with reinforcement learning algorithms.
Building on previous research by Lipson [6] the presented
process starts out with a basic four-bar mechanism on which
a series of operations can be performed. After each operation
the resulting design’s performance is evaluated and compared
to the design goal. This experience serves as input for the
reinforcement learning algorithm whilst slowly converging
towards a reliable state-action value-function approximation.

This research has explored the use of value-function ap-
proximation by a neural network to predict the performance
of a kinematic mechanism. Herein fertile groundwork is laid
by proving this concept, although proper feature selection
and experimentation with the neural network architecture may
further enhance the presented results.

By means of an extensive parameter search a list of
recommended algorithm and hyper-parameter settings has been
devised and a series of straight-line mechanisms has been
successfully and independently produced by the developed
algorithm. Although not drawing as perfectly straight as
Peaucellier’s exact solution or Lipson’s designs, the resulting
designs are unmistakably straight-line mechanisms and in

specific cases adopt the working principles behind Peaucellier’s
[32] and Hoecken’s [41] mechanisms.

Quantitative benchmarking showed room for improvement
on the part of the design accuracy of the proposed algorithm.
However the imposed restriction on the algorithmic design
freedom impairs the fairness of comparison, as did small
inaccuracies of the obtained kinematic simulation results.

Finally, using a second design goal, a demonstration was
given of the algorithm’s adaptability. The successful handling
of a second design goal indicates the algorithm’s potential as a
general solution for a variety of kinematic synthesis challenges.

In future work the applied SARSA algorithm can be
upgraded to an actor-critic or policy gradient model, effectively
alleviating the necessity of the current restrictive measures
on the nodal placement and thereby increasing the algorithms
design freedom. Combined with further work on feature selec-
tion and neural network architecture, reinforcement learning
should be regarded as a promising means for the synthesis of
mechanical systems.
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Chapter 3

Closing remarks

In the introduction a journey was presented, initiating with a broad interest in the automation
of mechanism design and turning into a research goal pertaining to the synthesis of compliant
mechanisms. The subsequent literature study contained research into three important and
individually treated subjects, consciously looking for separate solutions to each sub-problem.
As a result solutions applied in distant research fields have been embraced in the context of
mechanism synthesis, leading to unexpected and exciting possibilities. The literature survey
therefore served as an important stepping stone towards the thesis subject and final results.

After extracting a thesis subject from the recommendations in the literature survey, three
goals have been introduced. The first goal answers to the challenge of fitting the seemingly
incompatible worlds of mechanism design and reinforcement learning together. To achieve this
goal a framework is presented in which mechanism design is casted in a game-like mold. Played
as a game, kinematic synthesis fits right into the niche of reinforcement learning problems.
The presented paper clearly demonstrates the viability of this concept by performing successful
kinematic synthesis using the framework presented.

Secondly a learning algorithm is required in order to be able to learn within the bounds of
the developed framework. Using the SARSA algorithm (algorithm 3 in appendix A-2-2),
Temporal Di�erence Learning has been implemented, optimizing the neural network weights
of a value-function approximator.

Finally the viability and succesfull implementation of the developed algorithm has been
demonstrated on two di�erent design goals. Using a second design goal not only the viability
but also the general applicability of the developed algorithm has been demonstrated. To
summarize:

X Posing the design problem

X Creating a learning algorithm

X Demonstrate the algorithm

Master of Science Thesis K.M. Vermeer
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By achieving all imposed goals, this thesis and the current research may therefore be considered
a success.
For those readers interested in a level of detail beyond the scope of the presented paper a
number of appendices is included in this thesis report (Appendix B to F), each supporting a
di�erent section of the paper as the titles indicate. Additionally a thorough overview of the
field of machine learning is included in appendix A, as well as the full literature review in
appendix G. It would however be a shame to merely look inwards to this thesis, whereas it is
the outside world that may benefit from this research. Let us therefore zoom out and reflect
on the relevance of this thesis work within the scientific context.
The current research has demonstrated the value machine learning, more specifically rein-
forcement learning, may have on mechanism synthesis. From literature study it was shown
that by ‘forgetting’ the mechanical engineering context of this research, machine learning is
rather an obvious choice for the subgoal of optimization or learning. Perhaps the presented
demonstration is a first step towards loosing the need to ‘forget’, as it shows why machine
learning and mechanical engineering can actually be united quite easily. The adoption of
machine learning by the mechanical engineering community serves its best interests as smart
design tools will be of great supportive value to the design of advanced mechanisms.
The presented research could induce a likewise movement in the opposite direction: having
proven its viability, specialized machine learning researchers may now enter the mechanical
domain to apply their knowledge and skill. In a recent video presentation [49] David Silver,
DeepMind’s lead reinforcement learning researcher, said: “Now we can start to tackle some
of the most challenging and impactful problems of humanity”. He spoke these words after
presenting a breakthrough in reinforcement learning, indicating his eagerness to start applying
artificial intelligence’s capabilities to other research fields. By demonstrating the viability of
reinforcement learning in mechanical engineering, the way is paved for researchers like Silver
to explore the “impactful” domain mechanical system design yields.
Further research may extend the current work by adopting advanced algorithms, like policy
gradients [50], or actor-critic models [51,52]. Such algorithms do not rely on an ‘-greedy policy
and therefore do not require an exhaustive search through all possible actions. Instead, these
algorithms produce a probability distribution over all actions, which can easily cope with a
continuous action space. Adopting such an action space the restrictions imposed on Lipson’s
operators in the current research are removed. The resulting algorithm would have full freedom
of placing new nodes wherever it sees fit, greatly enhancing its creative capabilities.
If such and other improvements could be made, as proposed in the paper, the result would
be a pragmatic design tool for everyday use. Such a tool could serve mechanical engineers
by generating a number of functioning mechanisms as a starting point for complex design
challenges. Additionally, this synthesis tool could be used as a turnkey application for the
start-to-end design of simple mechanisms. Such an application would make engineering and
designing accessible for the majority of people who have not had formal engineering training.
Such a development would strongly support the ongoing 3D printer-induced trend towards
decentralized manufacturing.
Of course one can only speculate about the future impact of machine learning on mechanism
design. However, the results rendered by this research outline an artificial-intelligence aided
future in which engineering innovations will emanate from joint e�orts of both man and,
increasingly so, machine.

K.M. Vermeer Master of Science Thesis



Appendix A

Background: Machine Learning

The field of Machine Learning (ML) originates from computer-science and has started to
develop in the 1950s with the first neural network, built by Minsky and Edmonds, and Arthur
Samuel’s checkers playing machine [5], demonstrated on television in 1956 (figure G-11). In
those early days of the field, computer power was still limited and the true potential of
many breakthrough articles did not become apparent until decades later. Slow progress and
disappointing results amounted to severe criticism in and on the Artificial Intelligence (AI)
community. Starting in the 1970s, a period of limited funding and progress initiated, which
has later been coined the "AI Winter", lasting until the start of the 20th century. In the last
decades, computational power has grown exponentially and concepts like deep learning have
become feasible. With increased feasibility, AI has become a highly active research field as
well as an industry standard in data-driven companies.

Figure A-1: A 1956 television demonstration of Arthur Samuel’s Checkers program, played against
by Robert Nealey on the IBM 7094. Nealey lost from this milestone program. Image courtesy to
IBM.

Master of Science Thesis K.M. Vermeer
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Figure A-2: Schematic showing the three categories that ML comprises of. Image reproduced
from [53].

A-1 Machine Learning categories

Within ML a distinction is made between several di�erent concepts. These concepts can be
generally divided into three categories, shown in figure A-2. These categories are supervised,
unsupervised and reinforcement learning. To get a fundamental understanding of the ML field,
each of these categories will be discussed briefly.

A-1-1 Supervised Learning

In Machine Learning, most applications are based on learning by experience. In such ap-
plications a machine trains by internalizing many examples, consisting of inputs and their
according outputs. During training, the machine develops a model of the relation between
inputs and outputs it witnesses in the examples. Subsequently, the model can be used to
predict outputs for new input data.

This type of training, requiring a large dataset of data with known inputs and corresponding
outputs, is called supervised learning. Such complete datasets are known as labeled data.
Examples of supervised learning are ample in image detection [54], tra�c-flow predictions [55]
and medical predictions [56]. The most important algorithms in supervised learning are
Support Vector Machines (SVM), Neural Networks (NN), Gaussian Process Regression (GPR),
Random Forests and linear classifiers like regression models.

Generally, a labeled data set is split in two parts: a training set and a testing set. During
supervised learning, the algorithm is trained on the training set and subsequently tested on
the test set. Since the test true outputs are known, the algorithm’s accuracy can be evaluated.

K.M. Vermeer Master of Science Thesis
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A-1-2 Unsupervised Learning

As the name indicates, this second type of ML is similar to the first category, except for the
loss of data labels, or supervision. Jain [57] distinguishes unsupervised learning by the absence
of category information, or labels, in the target data set. Even with the limited remaining
information, unsupervised learning algorithms are able to detect patterns and describe hidden
structures in the data. Therefore, unsupervised learning is mainly used for data clustering
and anomaly detection. Data clustering alone is being applied to a broad range of topics [57],
ranging from character recognition in handwriting [58] to customer segmentation for marketing
purposes [59]. A well-known example of an unsupervised leaning algorithm is the K-means
clustering algorithm, which aims to segment a dataset in such a way that every data-point is
considered to be part of the cluster with the nearest mean.

A-1-3 Reinforcement Learning

Reinforcement learning (RL) is described by Kaelbling et al. [34] as behavioral learning by
trial-and-error interactions with a dynamic environment. Sutton [60] gave an even more formal
definition: ’Reinforcement learning is the learning of a mapping from situations to actions so
as to maximize a scalar reward or reinforcement signal’. RL can be applied when no labeled
data is available, but outputs can be given a measure of success. In such a case, a machine
can learn by taking actions, assessing the results and adapting its perceptions accordingly.
Through iteration, the machine can learn to take the right actions resulting in the highest
rewards.

Rewards play an important role in reinforcement learning. The machine’s goal is to maximize
its expected cumulative reward over (pseudo)time. Machine’s therefore take into consideration
the e�ect of their current move on their cumulative reward by making predictions of future
rewards [61]. Instantaneous rewards are usually valued more than possible future rewards,
which is referred to in literature as the problem of delayed rewards [62]. The trial-and-
error search and delayed rewards are the two most distinguishing features of reinforcement
learning [60] and make it suitable for sequential decision making.

Because of its distinctive character, RL finds applications in di�erent types of fields than
(un)supervised learning. Applications range from learning a robot to walk [63] to playing
ATARI games [64] and minimizing elevator waiting time [65].

A-1-4 ML and generative design

Crudely, one can say that both supervised and unsupervised learning require large datasets to
train on, whereas reinforcement learning relies on experience gained from interaction with its
environment. When designing mechanisms, reliance on datasets can be consider bad practice
for two reasons:

• Datasets are not readily available. Atlases, containing large numbers of mechanisms,
have been developed [66], but performance indicators are still to be determined for every
single design. As such, creating a su�ciently large labeled dataset of mechanisms and
their performance is an arduous if not impossible task. Also, performance labels are
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Figure A-3: Schematic showing the cyclical life of an RL actor. Image reproduced from [67].

dependent on the formulation of the goal, and therefore new labels are required for every
new design goal.

• The necessity of using ML to perform design task is born out of limitations in human
design capacity. It would therefore be unwise to train a machine on designs resulting
from the same limited human designer. Doing so decreases the chance of generative
design algorithms to come up with truly original designs, which can be seen as a goal in
its own right.

If reliance on datasets is not considered valid, both supervised and unsupervised learning
are ruled out, leaving only Reinforcement Learning as a valid option. As mentioned, RL
requires an environment to interact with in order to gain experience and learn. For mechanism
design environment interaction can be regarded as prototyping: materializing a design in
order to assess its performance. Of course, physical models are not mandatory in this type
of prototyping: using computational simulations performance indicators can be gained. By
feeding these indicators back into the RL algorithm as a reward signal, all prerequisites are in
place to create a generative design algorithm.

A-2 Reinforcement Learning

In RL, the learner is named the actor. The actor gains experience through taking actions that
lead to interactions with its environment. After every interaction, the actor is faced with a
new situation, or state, from which it may perform the next action. As part of the interactions,
the actor may receive rewards. The actor’s goal is to choose actions such that it maximizes
the total reward. In a more formal manner, one can say that for every timestep t the actor is
in state St. After taking action At, it ends up in state St+1 and receives a reward Rt+1. Over
time, the actor’s total return Gt equals the sum of all future rewards up to the final time-step
· :

Gt = Rt+1 + Rt+2 + Rt+3 + ... + R· (A-1)

In most applications of RL, it is desirable to gain these rewards as fast as possible. Therefore,
a discount factor “ is introduced, ranging between 0 and 1. “ can be seen as an interest rate,
making rewards earned now more valuable than rewards earned in the future. Taking the “
into account, equation A-1 becomes:

Gt = Rt+1 + “Rt+2 + “2Rt+3 + ... =
Œÿ

k=0
“kRt+k+1 (A-2)
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In each time step, the agent has to choose an action based on the state its in. To do so,
the agent implements a mapping fit: S æ A. This mapping is called the policy and fit(a|s)
describes the probability of taking action a at timestep t in state s.

A-2-1 Markov Decission Processes

RL problems are usually posed in the form of a Markov Decision Process (MDP) [68]. MDP’s
are denoted with a tuple (S, A, P, “, R) containing five elements:

• S: a set of all possible states in which the actor may be.

• A: a set of actions the actor can take.

• P : the state transition probabilities. Psa(sÕ) gives the probability of transitioning to
state sÕ by performing action a in state s.

• “: the discount rate for future rewards.

• R: the reward function.

Furthermore, MDPs describe stochastic processes that comply with the Markov property
of being memoryless. This means that probability distributions of future states are only
dependent upon the current state and not on any previous states.
In an MDP, the actor starts out in a state s0 and takes an action a0. It transitions to state s1
under probability Ps0a0 . From this new state, it can take a new action and keep repeating
this cycle. In each state, the actor receives a reward R(s). The expected accumulative reward
is subject to devaluation over time and is described by equation A-2.
In order to maximize the total reward, RL algorithms need to be able to estimate the value
of Gt give a certain state or action. This estimation serves as an input in determining
whether certain states are desirable to be in, or which actions will lead to the highest rewards.
These estimations are called Value Functions. Given a certain policy /pit, the state-value
function V/pit

(s) equals the expected reward of being in state s and following policy /pit until
termination:

Vfi(s) = Efi [Gt|St = s] = Efit

C Œÿ

k=0
“kRt+k+1

-----St = s

D

(A-3)

Since one is often concerned with choosing the right action, it is common practice to include the
current choice of action the value function as well, leading to the state-action-value function:

Qfi(s) = Efi [Gt|St = s, At = a] = Efit

C Œÿ

k=0
“kRt+k+1

-----St = s, At = a

D

(A-4)

Both value functions have a recursive character:

Vfi(s) = Efit [Gt|St = s] = Efi [Rt+1 + “Gt+1|St = s] (A-5)

Taking into account the state-transition probabilities P , one can write equation A-3 as:

Vfi(s) = R(s) + “
ÿ

sÕœS

Psfi(s)(sÕ)V fi(sÕ) (A-6)
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This is the Bellman equation, which considers all possible new states sÕ given the current state
s and the probability distribution according to policy fi. The value function Vfi is the unique
solution to its Bellman functions, and can be found using the recursive character of equation
G-6. The right-hand side of equation G-6 can be seen as a mathematical operator T fi, mapping
V fi(sÕ) to V fi(s). The fixed point theorem [69] shows that V fi can be found by iteratively
applying operator T fi to a initial value function V . For a more exhaustive derivation of the
Bellman equations, the reader is referred to [67,68,70] .

In RL, the objective is to find a policy fiú that maximizes the value function V (s) by prescribing
the optimal action a for each state s, resulting in V ú(s). Again, V ú(s) can be derived by
applying T ú iteratively to an initial value function V (s). Once V ú(s) is known, fiú can be
computed. This method is coined value iteration [70].

Alternatively, one can apply a random initial policy fi and iteratively update the policy
until the optimum is found: policy iteration. In practice, value iteration is most commonly
applied [68].

A-2-2 Model-free MDPs

Both value iteration and policy iteration are methods that can solve a known MDP. However,
a mechanism design challenge typically does not have a known MDP: the actor does not know
how its environment works and has to find out on the go. This type of problem is called
model-free, referring to the fact that no accurate model of the environment is given. In fact,
most real-life applications of RL are based on model-free algorithms and such algorithms
have become the main reason why RL is being used. Without fully knowing the MDP, it
is impossible to solve it exactly. It is however possible to estimate the value function of an
unknown MDP. Two of the most important algorithms for doing so are presented here: Monte
Carlo learning and Temporal Di�erence learning.

Monte Carlo Learning

In most RL cases, one can distinguish steps from episodes. A step is simply going from t to
t + 1 by taking an action a and transitioning from s to sÕ. In many cases however the number
of steps is limited by the environment. Take for instance the game Mario: an actor playing a
level of Mario can keep performing actions until it reaches a terminal state: either reaching
the end of the level or dying. Such a streak of actions is called an episode. During an episode,
the actor visits numerous states and may even visit certain states multiple times. In Monte
Carlo (MC) methods, value estimates and policies are updated after every full episode.

The value of a state is the total expected return starting from that specific state. Therefore,
the simplest way of estimating this value per state is to simply average the results of all
episodes in which this state is visited. Sutton and Barto [67] captured the algorithm in the
following pseudo-code:

By following Algorithm 1, one can estimate the value function for all states s given the policy
fi. However, in practice one is most often interested in finding the optimal policy fiú for which
the reward is maximized. To find out which action a to take in a given state s, one can use
the state-action-value function Q(s, a). Using a greedy policy, the actor always chooses the
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Algorithm 1: Monte Carlo policy evaluation from [67]
1 Initialization;
2 fi Ω policy to be evaluated;
3 V Ω an arbitrary state-value function;
4 Returns(s) Ω empty list for all s;
5 while not converged do

6 Generate an episode under policy fi;
7 foreach s do

8 G Ω return following the first occurance of s;
9 Append G to Returns(s);

10 V (s) Ω average(Returns(s))

action a with the highest state-action-value, simply be trying out al actions and perceiving the
resulting state-action-values. Selecting the action with the highest state-action-value equals
the following policy:

fi(s) = argmax
a

Q(s, a) (A-7)

If one can find a good estimate for the state-action-value function, the optimal policy follows
out of equation A-7. As a result of using Q(s, a) instead of V (s), the algorithm will have
to assign rewards to state-action pairs, instead of over states. The state-action-value of a
state-action pair equals the average reward of all episodes in which the state-action pair was
visited.

Algorithm 2: Monte Carlo control from [67]
1 Initialization;
2 fi Ω arbitrary;
3 Q Ω arbitrary;
4 Returns(s, a) Ω empty list for all s and a;
5 while not converged do

6 Play an episode under policy fi ;
7 foreach s, a pair in the episode do

8 G Ω return following the first occurance of s, a;
9 Append G to Returns(s, a);

10 Q(s, a) Ω average(Returns(s, a))
11 foreach s in the episode do

12 fi(s) = argmax
a

Q(s, a)

Convergence for a MC control algorithm along the lines of 2 is considered inevitable [67], but
has not been proven formally.

Master of Science Thesis K.M. Vermeer



30 Background: Machine Learning

Temporal Di�erence Learning

In Monte Carlo learning, the policy is not a�ected until after a full episode has been completed.
A more e�cient way of learning is introduced in the Temporal Di�erence (TD) Learning
method, which can update policies before terminating the episode. The practice of updating
estimates before ending the episode can significantly increase an algorithm’s convergence rate.

Since TD methods do not wait until the end of the episode, they cannot use the return G to
update. Instead, TD relies on the recurrent character of the value function (equation A-5) to
establish the update. The following holds true for the recurrent value function V (s):

V (St) = Rt+1 + “V (St+1) (A-8)

Since V (s) is estimated in model-free RL, equation A-8 will not hold as long as the true
function is not found. After each time step, the error between the two sides of the equation
can be determined and V (St) can be adjusted towards equilibrium. The update is usually
performed according to equation A-9, using a step size parameter – to stabilize the algorithm.

V (St) Ω V (St) + – [Rt+1 + “V (St+1) ≠ V (St)] (A-9)

Note that the only ‘ground truth’ in equation A-9 is Rt+1, since it comes directly from the
environment. This makes the right hand side of equation A-8 slightly more trustworthy than
the left hand side, hence the updates adjust the left hand side value V (St). Overall, this
slowly converges towards the true value function V (s).

The practice of updating estimates on the basis of other estimates is called bootstrapping.
The heavy reliance on estimates gives a feeling of insecurity and intuitively gives rise to
questions about divergence. Fortunately, Sutton already proved the convergence of the basic
TD algorithm in 1988 [71]. His proof was extended for the general case of TD algorithms in
1992 by Dayan [72].

The previous section has only considered prediction methods, focusing on the value function
V (s). In a similar fashion to MC learning this can be extended towards TD control by replacing
the state-value function by the state-action-value function Q(s, a). This means the update
rule (equation A-9) becomes:

Q(St, At) Ω Q(St, At) + – [Rt+1 + “Q(St+1, At+1) ≠ Q(St, At)] (A-10)

So to perform this update, the information in tuple < St, At, Rt+1, St+1, At+1 > is required.
The algorithm that performs this type of update is therefore coined Sarsa. The outline of the
Sarsa algorithm, as proposed in [67], is shown in algorithm 3.

TD(⁄): the middle ground

In the previous section, it was shown that TD learning updates after every step based on the
return Rt+1 in equation A-9. Of course it would also be possible to update after two steps,
such that the update becomes:

V (St) Ω V (St) + –
Ë
Rt+1 + “Rt+2 + “2V (St+2) ≠ V (St)

È
(A-11)
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Algorithm 3: Sarsa using TD learning from [67]
1 Initialization;
2 Q Ω arbitrary;
3 foreach Episode do

4 Initialize S;
5 Choose A from S using Q and a greedy policy;
6 foreach Step in the episode do

7 Take action A, receive R and SÕ;
8 Choose action AÕ from SÕ using Q and a greedy policy;
9 Q(St, At) Ω Q(St, At) + – [Rt+1 + “Q(St+1, At+1) ≠ Q(St, At)];

10 S Ω SÕ ; A Ω AÕ;

In principle it is possible to update after any number of steps n, as long as n does not exceed
the total number of steps in the episode. In the extreme case, where n equals the total
number of steps in the episode, the resulting algorithms is exactly the same as MC learning.
This concept is called n-step TD learning. Extending on this concept, one may also combine
information from two di�erent n-step updates. For example, one might update using the
average of the updates from taking one step, two steps and four steps. Taking the extreme
case, one can combine the updates from all possible step-sizes using a weighting function ⁄.

This type of update, TD(⁄) can smoothly transition between basic TD, therefore also called
TD(0), learning and MC learning, equivalent to TD(1).

A-2-3 Exploration versus exploitation

During a learning process, two conflicting interests occur. First of all, the agent prefers to
choose takens it has taken before and that it knows will lead to a strong reward. On the other
hand, the only way to discover such rewarding actions is by trying them out a first time. The
result is a vicious circle in which the actor has to exploit its experience in order to choose the
right actions, but simultaneously needs to explore the possibilities to build strong experience.
Pursuing either one of these tasks while neglecting the other will never result in success. The
actor will have to balance exploration and exploitation in a way that progressively favors the
best action without overlooking potentially rewarding undiscovered actions.

The balance between exploration and exploitation has to be struck whilst processing reward
signals and choosing new actions. In the previous sections the actions were chosen greedily
with respect to Q(s, a). This type of greedy selection is purely exploititive and does no leave
any room for exploration. Therefore, equation A-7 is usually adapted to include a stochastic
element. An e�ective and popular means to introduce exploration in the action selection is by
adopting an ‘-greedy policy. Such a policy introduces a stochastic element that chooses the
greedy action most of the time, but prefers a random action every now and then. ‘ represents
the probability of selecting a random action. This makes fi a stochastic policy where the
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chance of taking action a given state s equals:

fi(a|s) =

Y
_]

_[

‘
m + 1 ≠ ‘, if argmax

a
Q(s, a).

‘
m , otherwise.

(A-12)

.

A-3 Determining Q-values

The Monte Carlo algorithm described in 2 features a state-action value Q(s, a). If a certain
state-action-pair (si, ai) is visited during an episode the resulting reward G from that episode
is added to the state-action-pair’s list of returns. The mean value of this list is assigned to
Q(si, ai). This approach, coined ‘table-lookup’, requires keeping track of reward lists for all
state-action-pairs. There are two major downsides to this approach.

A-3-1 Table-lookup: curse of dimensionality

If we denote the total number of possibly reachable states by ns and the total number of
possible actions by na, the lookup approach requires ns x na separate Q-values to be stored
and updated throughout the learning process. Taking, for instance, a simplified version of
black jack. In this game a dealer can be showing 10 di�erent playing cards, and the sum of
the player’s hand can vary from 12 to 21, assuming hands under 12 automatically call for
a hit. This results in 100 di�erent states (10 by 10). With only two possible actions this
means Q-values can be stored in a 10-by-10-by-2 3D matrix, consisting of 200 cells. Playing
a few thousand games should be su�cient to get a reasonable feel for the value of each
state-action-pair.

Unfortunately, it turns out that many real-life applications of reinforcement learning are not
as easily tabulated as a game of black jack. Staying in the gaming environment, a match of
backgammon can feature as many as 1020 state, whereas the board game Go even features 10170

unique states [53]. Tabulating state-spaces of such a size would require enormous amounts
of memory to store the Q-values, let alone the amount of games required to have visited all
state-action-pairs su�ciently often. Finally many problems exists for which a continuous state-
space should be considered, as is the case with autonomous vehicles. Therefore, table-lookup
approaches are limited to problems with discrete state spaces. These problems are the result
of what is called the curse of dimensionality: more-dimensional spaces quickly growing to
infeasible sizes.

A-3-2 Table-lookup: lack of generality

A second drawback of using lookup-tables can be found in their lack of generality: each
state-action-pair is considered an independent situation. Therefore, neighboring or related
state-action-pairs do not learn from the rewards gained by their peers. A common example
given to demonstrate this lack of generality can be found in a game of Pac-man. Consider the
two states in figure A-4. The only di�erence between the states is the presence of a white
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Figure A-4: Two very similar, but slightly di�erent states in a game of Pac-man. The only
di�erence is the piece of food in the lower-left corner being present or not. As these two states
are di�erent, they will be handled as entirely independent situations when using table lookup.

food dot in the lower-left corner. Looking at these images, the states are clearly related, and
learnings from either one of the two states are most likely directly applicable in the other state.
Using table-lookup however, both states refer to a di�erent cell in Q(s, a) and are therefore
treated as entirely independent individual entries.

A-4 Value function approximation

The presented downsides of table-lookup limits its applicability to only a niche type of problems.
The large state-space examples have however been accomplished by RL (Backgammon using
TD learning [73], Ms. Pac-Man [74] and in an impressive breakthrough paper Go [48]). Indeed
none of these three used a table-lookup approach. Instead they al relied on using a set of
hand-crafted features to describe the current game state. These feature values can be used
as input for a function approximator that determines Q. In the simplest form this can be a
linear combination of features, in more advanced examples like [48] a deep neural network
was used. Using this approach, Q-values no longer need to be stored. Also, the state-space
is no longer required to be discrete, as function approximators can generally work well with
continuous inputs.
Instead, the features have to be calculated every time Q requires evaluation. Also, the goal of
training is no longer to establish a trustworthy lookup table with state-action-values for all
(s, a) coordinates, but to find the right parameters for the function approximator to generate
an accurate value of Q(s, a) given the feature values stemming from (s, a).
To elucidate the concept using features, let us take another look at the Pac-Man example
shown in figure A-4. Sensible features might be:
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• Distance to nearest ghost

• Presence of food in each possible direction (booleans)

• Presence of walls in each possible direction (booleans)

• ...

Strikingly, these features would have equal values for both examples in figure A-4. The function
approximator does not distinguish between the two situations in the figure, and therefore
the results from the top situation fully generalize to the bottom one. Using value function
approximation, experience from every single state-action-pair is valuable for a whole set of
similar state-action-pairs, even unseen states.

A-4-1 Drawbacks of value function approximation

Unfortunately, value function approximation introduces a number of downsides. First of all
the approximations can only be as good as the quality of the input features. Therefore features
should be hand-picked, requiring a significant amount of insight in the problem at hand from
the engineer implementing the algorithm.

Secondly, accurate value function approximation can become a very di�cult, if not impossible
task, when the relation between features and the true state-action-value is non-linear. A method
for dealing with such non-linear relations is given next, but such methods do significantly
increase the complexity of the resulting algorithm.

A-5 Function approximation methods

A large number of function approximation method are available throughout literature, although
in machine learning the most common examples are linear feature combinations and neural
networks. After a short introduction on linear feature combination approximators, a thorough
overview of neural networks will be given.

A-5-1 Linear feature combinations

Having hand-crafted a set of features, the feature values can be stored in a feature vector „.
This vector from the input of any function approximator one might use. In the simplest case
a linear combination of the features is used to approximate Q:

Q̂(s, a) = wi„i(s, a) (A-13)

with weight vector w. Einstein’s summation convention is adopted, e�ectively turning equation
A-13 into the dot product between vectors „ and w. During learning, weights in w are updated
such that Q̂ approaches Q. Defining the approximation error as ” = Q ≠ Q̂, the weight update
can be determined as:

�w = –”
ˆ”

ˆw
(A-14)
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In which – represents the update step size. The partial derivative of the error with respect to
the weights is dependent on Q̂ only:

ˆ”

ˆw
= ˆQ̂

ˆw
= „ (A-15)

and substituting the result back to A-14 results in:

�w = –”„ (A-16)

During learning, the real Q is unknown (hence the e�ort to approximate it). However during
training rewards are received. The state-action values should reflect these rewards since for
each time step:

Rt+1 + “Q(St+1, At+1) = Q(st, at) (A-17)

The left-hand-side of the equation is referred to as the target. In TD-learning (algorithm 3)
the di�erence between the target and approximated value is checked after each time-step and
the resulting error used to update the weights of the linear function approximator:

�w = –[Rt+1 + “Q(St+1, At+1) ≠ Q(st, at)]„ (A-18)

For di�erent algorithms, like the Monte Carlo algorithm, the target is specified di�erently, but
the same principles adhere.

A-5-2 Neural networks

Another more complex approach to function approximation is known as a neural network
(NN). NNs are inspired by nature’s example: the nervous system. A nervous system consists
of neurons that are interconnected via axons and together form a complex network. Signals
propagate through the nervous system by delivering a small impulse to a neuron. If the charge
is large enough, the neuron is activated and emits a new impulse. Using this domino-type
interaction, enhanced by some of nature’s cleverest tricks: Myelin sheaths, the nervous system
is able to transmit signals at a great speed through a complex network.

Forward pass

Inspired on nature NNs were developed to perform complex function approximation. An
exemplary NN is shown in figure A-5a. The colored dots are the neurons, the blue and black
lines are the axons. Each vertical row of dots is referred to as a layer. The first layer is always
the input layer, the last layer is always the output layer. Currently, there is only one layer in
between: the hidden layer. The total number of layers can be varied by adding more hidden
layers. When all parameters are correct, when the neural network has been trained previously,
a function can be approximated by performing what is known as a forward pass. In such a
forward pass the function features are loaded onto the input layer. This implies the input layer
is of the same size as the feature vector „. The feature values are passed forwards towards the
hidden layer, through the blue lines. The lines have weights attached to them, and during
transportation each feature is multiplied by the weight value. The weighted sum then enters
node j as xi. In the node the value xi is put through an activation function, also known as
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(a) (b)

Figure A-5: (a): An example of a neural network. The example features an input layer with 3
nodes, a hidden layer with 4 nodes and an output layer of 2 nodes. (b):An example of a neural
network’s hidden layer’s neuron j. Values from the preceding layer are sent to neuron j. The value
from node i in the preceding layer is referred to as xi. The weighted sum of all input values x is
taken and serves as input for activation function f(x). The output from f(x) is node j’s output:
yjk, k indicating the output node it is attached to.

squashing function. Such a function ‘squashes’ the input value to fit a value at either one end
of an extreme spectrum. As an example a famous activation function is plotted in figure A-6.
In a full forward pass, the data is loaded into the input layer and subsequently moved through
all layers, following the procedure as just described, until the values at the output layer are
known.

back propagation

Input values can be forwarded to calculate the neural network’s outputs. Let us imagine the
neural network is not yet trained and after moving through a forward pass, the network’s
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Figure A-6: The sigmoid function squashes all values towards 0 or 1.
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outputs do not match the correct values. In such a case an error E is present in the output,
indicating that the network’s weights are incorrect. In correspondence with most optimization
techniques the best way of adapting the weights would be to find the derivative of the error with
respect to each individual weight, such that all weights can be updated in the direction that
minimizes the error. Using this approach, known as steepest descent, the correct weights can
be obtained after cycling through numerous iterations. Obtaining this derivative information
is possible through a process called back propagation, in which the error is propagated through
the network in reverse direction, relying heavily on the chain rule of di�erentiation to come to
the desired derivatives. An algebraic derivation of the back propagation process is given in
appendix B.
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Appendix B

Addendum to paper Section II - C - 1:

Derivation of backpropagation

algorithm

The backpropagation procedure can be derived using a series of chain-rule governed steps [75].
An example network is shown in figures B-1a and B-1b, to which will be referred in the
following derivation. Extending this derivation to larger networks is however possible. We
will refer to the k input values as pk. For the j hidden layer nodes the weighted and summed
inputs are defined as xj and the outputs as hj . The i output nodes are fed a weighted sum of
hidden layer outputs si and output values yi. Weights between the input and hidden layer are
referred to as wkj . The error E is the result of a cost or loss function:

E = 1
2

ÿ

i

(ŷi ≠ yi)2 (B-1)

in which ŷ indicates the desired output value and y the network’s outputs. The desired weight
update following steepest descent can be expressed like:

wab = wab ≠ –
ˆE

ˆwab
(B-2)

with stepsize – for each layer ab. Looking at the hidden-to-output weights first, one can state
that:

ˆE

ˆwji
= ˆE

ˆyi

ˆyi

ˆsi

ˆsi

ˆwji
(B-3)

where
ˆE

ˆyi
= ≠(ŷi ≠ yi) = yi ≠ ŷi (B-4)

ˆyi

ˆsi
= f Õ(yi) (B-5)
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(a) (b)

Figure B-1: (a): An example of a neural network. The example features an input layer with 3
nodes, a hidden layer with 4 nodes and an output layer of 2 nodes. (b):An example of a neural
network’s hidden layer’s neuron j. Values from the preceding layer are sent to neuron j. The value
from node i in the preceding layer is referred to as xi. The weighted sum of all input values x is
taken and serves as input for activation function f(x). The output from f(x) is node j’s output:
yjk, k indicating the output node it is attached to.

ˆsi

ˆwji
= hj (B-6)

such that
ˆE

ˆwji
= (yi ≠ ŷi)f Õ(yi)hj (B-7)

Note that the derivative of the transfer function f(x) was used to determine ˆyi/̂ si. It useful
to denote ”i as

”i = ˆE

ˆyi

ˆyi

ˆsi
= (yi ≠ ŷi)f Õ(yi) (B-8)

such that
ˆE

ˆwji
= ”ihj (B-9)

For the other layer of weighs, from inputs to hidden the derivation is slightly more complex
since the error now has to pass through a series of layers and weights before it can be related
to the weights:

ˆE

ˆwkj
= ˆE

ˆhj

ˆhj

ˆxj

ˆxj

ˆwkj
(B-10)

The derivative of the error with respect to the hidden node-outputs can be determined as a
chain-rule

ˆE

ˆhj
= ˆE

ˆsi

ˆsi

ˆhj
= ”iwji (B-11)

Such that equation B-10 becomes

ˆE

ˆwkj
= ”iwjif Õ(hj)pk (B-12)
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Let us define another ” as:
”k = ”iwjif Õ(hj) (B-13)

We can now generalize these equations by stating that for each layer from b to a with input

wab = wab ≠ –”ayb (B-14)

Wherein yb represents the outputs of layer b; in the example case hj for the hidden layer and
pk for the input layer. ”a is defined as:

”a =

Y
_]

_[
(ya ≠ ŷa)f Õ(ya), if a is the output layer

”bwbaf Õ(ya), else
(B-15)

In which ”b represents the delta-term corresponding to the layer b, one row ahead in the
forward pass from a.
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Appendix C

Addendum to paper section II - C - 1:

The Neural Network implementation

Many Neural Network (NN) packages exist that can be easily obtained and used to create and
train a NN in just a few lines of code. By using such packages however one abstains from the
detailed workings of such a network. For one this means it is impossible to make adjustments
in the network implementation itself and secondly the profound understanding gained from
self-programming such a network is lost. Therefore the current implementation was developed
in matlab without the use of any NN packages. In practice this means functions have been
developed to perform activation functions, perform a forward-pass, perform back-propagation
and implement an e�ective strategy for updated the NN’s weights. These implementations,
especially that of backpropagation, is a tedious work and very much error-prone. It is therefore
generally advised to test the implementation, which has been done in twofold in the current
research: by testing the implementation on a simple supervised learning problem and by
performing a derivative check.

C-1 Supervised learning example

The easiest way of testing the NN implementation is by programing it in a modular fashion,
such that the NN module can be decoupled from the learning challenge at hand, and connected
to a simple learning problem with a known correct outcome. In this case the choice was
made to use the NN implementation module to learn the XOR problem. This is a supervised
learning problem in which a simple network is required to learn the behavior of an XOR logical
operator which returns a TRUE if, and only if, either one of its two inputs is TRUE while the
other is FALSE. An overview of possible inputs and associated output is given in table C-1.

This logical operator is well-suited to serve as test-case for the NN implementation, since one
can easily generate a large number of examples with their associated correct outputs, and use
these to train the network. If the network’s implementation is correct, such training should
be completed within a few thousand iterations. During learning the mean squared error has
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Table C-1: Output table for the XOR operator, stating all possible configurations of its two
boolean inputs A and B and the associated correct outputs.

A B Out
0 0 0
1 0 1
0 1 1
1 1 0

been tracked. Training was automatically halted once the moving squared average error over
the last 50 values, reached a value below 1 · 10≠3. The error propagation has been plotted
in figure C-1 for four di�erent training algorithms. As the image clearly shows convergence
occurs, which endorses the notion of a correct implementation.

C-2 Update algorithms

Several update algorithms have been tested before adopting the Adam algorithm as was
presented in the paper. These algorithms primarily describe how the results from back
propagation, e.g. the gradient information, should be used to update the weights of the
network. As shown in figure C-1, four di�erent algorithms were implemented and tested: SGD,
SGD with momentum, SGD with Nesterov momenteum and Adams. All four will be discussed
briefly in this section.

C-2-1 Stochastic gradient descent

Stochastic gradient descent, or SGD, is the simplest form of weight updates one may image.
The gradient of the error with respect to the weights describes how each weight a�ects the error
in the current state, around which is being linearized. Therefore the error can be minimized by
moving in opposite direction of this gradient. This direction is called the direction of steepest
descent, as it is the fastest way to minimize the error. However keep in mind this gradient is
the dependent on the linearization point and therefore only reliable close to this point. To
prevent overshooting out of the reliability zone around the linearization point, a stepsize µ is
introduced. The update rule according to SGD equals:

�W = ≠µ
ˆE

ˆW
(C-1)

C-2-2 Momentum and Nesterov momentum

The stepsize µ prevents the SGD approach from overshooting, but by doing so also limits
the update speed once a reliable gradient is found. Visually this can be seen in the long
and near-linear error descent in figure C-1a. To speed up learning an extra term is therefore
proposed in the form of a fraction m of the previous weight update �w(t ≠ 1) [76]. This extra

K.M. Vermeer Master of Science Thesis



C-2 Update algorithms 45

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Iterations

0

0.05

0.1

0.15

0.2

0.25

M
S

E

MSE vs iterations

(a)

0 100 200 300 400 500 600 700

Iterations

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

M
S

E

MSE vs iterations

(b)

0 100 200 300 400 500 600 700 800

Iterations

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

M
S

E

MSE vs iterations

(c)

0 50 100 150 200 250

Iterations

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

M
S

E

MSE vs iterations

(d)

Figure C-1: Mean squared error versus iteration count while training NN using four di�erent
training algorithms. (a) shows the result of using basic steepest gradient descent (SGD). In (b) a
momentum term is added, clearly expediting the learning process. Similar results are obtained
by using Nesterov momentum (c). Finally the advanced Adam algorithm (d) shows the highest
convergence rates. Convergences occurred respectively after 4222, 639, 777 and 176 iterations.
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term is added to the update step, introducing the numerical variant of inertia:

�W (t) = ≠
3

µ
ˆE

ˆW (t) + m�w(t ≠ 1)
4

(C-2)

Especially when consecutively similar gradients are found the momentum term increases
exponentially, thereby quickly picking up speed in the opposite direction of the stable gradient.
This means that by adopting momentum, the learning speed will rise whenever relatively
stable gradients are found and decrease along more turbulent trajectories. The update step
described in equation C-2 relies on gradient in the current time-step t and a momentum term
based on the previous time-step t ≠ 1. Nesterov [77] noted that the momentum term does not
depend on the current gradient information, therefore leaving potential for a higher-quality
gradient direction by performing the momentum-part of the update before determining the
new gradient ˆE/̂ W (t). As the results in figures C-1b and C-1c show, adding the momentum
term significantly speeds up the learning process, reaching a converged state after only 1/6th of
the required iterations without momentum.

Adam

The name Adam is an acronym for Adaptive Moment Estimation [78]. The Adam algorithm
makes both the learning rate µ and the momentum term m parameter-dependent. That is: it
uses a momentum style update on all the weights, but adapts the parameters µ and m based
on the update frequency of each parameter. Infrequent parameters receive larger updates
whilst frequent parameters’ updates are kept small. The adaptiveness of both the learning
rate µ and momentum term m prevents the need for specifying the right rates upfront for all
parameters. Figure C-1d shows Adam’s fast convergence, reaching convergence a factor 3.5
earlier than both momentum-enhanced SGD examples.

C-3 Gradient check

The results of back propagation process is the gradient of the error term E with respect to
the weights, as is shown in appendix B. Since this process is such tedious work a separate
check for the implementation of this section has been performed. The checking procedure
consists of determining numeric finite-di�erences gradients and comparing them to the analytic
derivatives resulting from back propagation. These values should be similar. As an example,
both gradients are shown in figure C-2. To clarify, the shown values are the derivatives of the
error E with respect to the weights connecting the XOR’s second input (B) to 30 hidden layer
nodes. Gradients of the other weights show similar results. Visually, the two sets of gradients
seem to completely overlap. Indeed, the overall mean absolute di�erence between the two sets
of gradients equals 2.1752 · 10≠5, which is close to nothing. Similar to the previous test, these
results confirm the correct implementation of the Neural Network.

C-4 Extension of basic network

Neural Networks have been researched extensively, resulting in a variety of additions to the
basic concept, all in pursuit of increasing the network’s ability to learn. Several of these
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Figure C-2: This figure shows the calculated gradients of the error termE with respect to a
series of weights. The blue squares represent the analytic result from backpropagation and the red
crosses the numeric results from a finite-di�erence calculation (FD). The results are clearly similar.

additions, for now referred to as trics, have ben adopted in the NN used to produce the results
in the presented paper. These extensions to the basic neural network will be discussed briefly
in this section.

C-4-1 Regularization

Neural networks can be prone to a scenario known as overfitting. Overfitting means that
the network trains in such a way that it scores extremely well at the given training set, but
hardly generalizes to new test examples. Overfitting is generally the result of incorporating
too much complexity in the network, as is the case when using a polynomial of to high an
order when fittgin a small set of data examples. Regularization is a special mechanism that
encourages fitting parameters to be small, i.e. penalizes complexity. Regularization terms are
added to the network’s object function, which subsequently starts optimizing both for the best
fit and for the lowest level of complexity. In the solution presented in the paper, two types
of regularization are present: L1 and L2 regularization. Additionally, experimentation with
dropout, another method of regularization, has been performed.

L1 and L2 regularization

In L1 regularization a penalty term is added to the objective function. This penalty grows
proportionally to the sum of the absolute values of all input parameters. This penalty,
sometimes referred to as the sparsity inducing property of L1 regularization [79], encourages
the network to push non-contributing input parameters to zero, creating a sparse input
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(a)
(b)

Figure C-3: (a) a standard neural network with two hidden layers. (b) a neural network after
several nodes have been dropped out. Image courtesy of Srivastava et al. [81].

parameter vector [80]. In practice this results in feature selection: the process of selecting
only the important features. Similarly in L2 regularization a penalty term is also added to the
objective function. In L2 however this term is proportional to the sum of the squares of the
input parameters. By squaring the input parameters the L2 norm is di�erentiable throughout
its whole range, whereas the L1 term is not. This has computational benefits. The two terms
both have their merits and may be superimposed, as was done in the current implementation.
During a parameter sweep optimal settings for both parameters were found to be 1 · 10≠3 for
both mechanisms.

Dropout

The dropout algorithm, first introduced by Srivastava et al in 2014 [81] attempts to prevent
over fitting by combining the predictions of many di�erent large NNs during test time. This
is achieved by randomly dropping out nodes and their connecting weights from the network
during training. This essentially means a di�erent NN architecture, or thinned network (figure
C-3), is used in each training iteration. This prevents the network from overly relying on a
single prediction strategy and thereby creates a robust and resilient network. At test time
all nodes are active, essentially acting as a large number of parallel thinned networks. The
weights are scaled back during test time to counteract the e�ect of the superimposed thinned
networks. Dropout was implemented in the network and tested both with the XOR example
and its actual application in the presented paper. Unfortunately results did not improve
and performance decreased upon introducing dropout. Whether this is due to a flaw in the
algorithm cannot be stated. However it seems more likely that such poor behavior is the result
of an unknown implementation error on the part of the author.
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Appendix D

Addendum to paper sections II and III:

Design framework

In section II and III of the presented paper the adopted method and performed experiment
are described in a concise manner. A more detailed description of the method and experiment
is given in this appendix in the form of a framework, describing how to pose a design challenge
in a game-like fashion for reinforcement learning.
As mentioned in appendix section A-1-3, Reinforcement learning (RL) is described by Kaelbling
et al. [34] as behavioral learning by trial-and-error interactions with a dynamic environment.
Ergo, when applying RL on mechanism design, there should be some sort of environment that
can interact with the results of the algorithm’s output, such that trial-and-error occurs. Since
the output of the learning algorithm should be a design, the interaction with the environment
will be an assessment of the generated design, resulting in a score. There are several subjects
in need of consideration in order to have an interactive environment that is ready to learn:

1. Mechanism representation

2. Kinematic simulation

3. Scoring

4. States and actions

5. Integration into an interactive environment

In the current chapter, these elements will be elucidated. Together, they form the framework
for the rest of this thesis.

D-1 Addendum to paper section II-A: Mechanism representation

Designs generated by any form of smart algorithm have to be communicated to external
sources in order to have any form of application. This can be a human designer, other
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Figure D-1: Example of a tree-like flow chart, edited from [1].

pieces of software for post-processing, or even a fabrication center for direct materialization
of the generated design. Doing so requires a numeric representation of the design that can
be easily visualized. Literature study [82] has shown there are several ways to perform this
task. However, in combination with RL the study showed clear advantage for one specific
representation style using decision trees as introduced by Hod Lipson in 2008.

D-1-1 Lipson operators

Lispson [1] proposed a tree representation to describe a series of operations resulting in a
unique kinematic chain. When drawing these operations in a schematic manner, the resulting
overview resembles a tree as shown in figure G-6. Both the illustrated top-down approach and a
more abstract bottom-up approach can be used, although Lipson [1] has only demonstrated the
former. Lipson distinguished only two di�erent operators: the T and D operators. Lipson [1]:
"The D operator creates a new node and connects it to both the endpoints of a given link,
essentially creating a rigid triangular component. The T operator replaces a given link with
two links that pass through a newly created node." The illustration in figure D-2 shows how
the two operators di�erentiate when applied on the same link. As the illustrations shows, the
D operator is a simple extension, whereas the T operator is more complex and replaces the
subjected link with a new one.

The rationale behind these operators stems from the fact that both operators keep the
number of degrees of freedom in the system constant. Lipson found most conventional
representations (like graphs) would tend to generate over-constraint, deadlocked mechanisms.
His tree representation approach allows for optimization algorithms to explore the space of
solutions without over or under constraining the mechanisms.

Given a known starting point, a mechanism can be fully described by a series of T and D
operators. The exact placement of the new hinges can be described by relative coordinates,
passed along with the operators.
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Figure D-2: Example of di�erent outcomes for D and T operations on link number 3

D-2 Addendum to paper section II-B: Kinematic simulation

Generated mechanisms will need to be evaluated in order to interact with it. The type of
evaluation required is dependent on the given design goal. This thesis focuses on a path tracing
objective, which means the linkage’s trajectory should be determined and evaluated. Analytical
methods exist to determine the trajectory of linkages, however each method only applies to
subset of the total solution space. A more general solution is obtained by determining the
trajectories numerically through simulation. In such simulations, the trajectories throughout
the linkage’s whole range of motion will be determined by subsequently forcing a small rotation
on the input link and solving for the position of all other links and hinges.

The starting point of a simulation is an initial configuration, like the one shown in figure D-3.
The hinges at the end of the orange bar are both connected to ground and cannot move. The
yellow bar is the input link, which means its rotation will be prescribed once the simulation
begins. During simulation, the input link will be rotated as far as possible in both directions,
to discover the full range of motion of the mechanism. The two resulting ranges of motion,
one from each rotation direction, are stitched together to form a single smooth trajectory.
Applying this treatment to the mechanism presented in figure D-3 leads to the trajectories
shown in the dashed lines.

The linkage is modeled using finite elements and simulated numerically using Newton’s second-
order method. The approach taken to model the elements and solve the positions for each
time-step was proposed by Avilés et al. [83]. They proposed using a reduced form of the
sti�ness matrix called the geometric matrix. Using this matrix results in a simple, general and
computationally cheap solution process. As this process will be executed thousands, if not
millions, of times during RL the computationally e�ciency of this approach is an important
merit.
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Figure D-3: The starting point: a basic four-bar mechanism. The input link is depicted in yellow,
the base in orange. The green transmission link transfers the input link’s motion to the purple
output link. The blue dashes trace the trajectory of the input link’s far end. The red dashes trace
the output link’s path, which moves back and forth along the same trajectory.

D-2-1 Addendum to paper section II-B-1: FEM model

The linkage is modeled as rod type elements, connecting to each other at their nodes. Rod
elements can only be strained in axial direction, since they cannot transfer force in any other
direction through the revolute joints that bind them. Therefore, a rod has four degrees of
freedom in 2D, two for each node, in global coordinates, or two in local coordinates With
surface area Ae and elasticity modulus Ee the sti�ness matrix for the element with local
coordinates xe can be expressed in its familiar form:

[kb]e = AeEe

Le

S

WWWWWU

1 0 ≠1 0
0 0 0 0

≠1 0 1 0
0 0 0 0

T

XXXXXV
(D-1)

The element’s length can be determined by its coordinates x of nodes A and B using simple
trigonometry:

Le =
Ò

(x1B ≠ x1A)2 + (x2B ≠ x2A)2 (D-2)

and the angle ◊e represents the angle of the rod in the global coordinate framework, being
zero when fully horizontal and positive for anti-clockwise rotation. Rotation matrix R can be
utilized to transform [kb]e to global coordinates:

[kb]e = [R]Te [kb]e [R]e (D-3)
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Which after substitution of the rotation matrix’ trigonometric entries leads to the symmetric
sti�ness matrix:

[kb]e = ke

S

WWWWWU

cos2 ◊e cos ◊e sin ◊e ≠ cos2 ◊e ≠ cos ◊e sin ◊e

cos ◊e sin ◊e sin2 ◊e ≠ cos ◊e sin ◊e ≠ sin2 ◊e

≠ cos2 ◊e ≠ cos ◊e sin ◊e cos2 ◊e cos ◊e sin ◊e

≠ cos ◊e sin ◊e ≠ sin2 ◊e cos ◊e sin ◊e sin2 ◊e

T

XXXXXV
= ke[g]e (D-4)

The matrix [g]e in equation D-4 is the geometric matrix of the element. This matrix is
independent of material properties and element lengths, and is only a function of the rod’s
orientation given by ◊e. The sti�ness values ke are all brought back to unit sti�ness, since the
kinematics of the linkage are independent of these sti�nesses. The geometric element matrices
are assembled into the system’s total geometric matrix [G]. The element matrices are ordered
in [G] according to the element number to which they attend.

Numerically, assembly takes place in two steps. First of all, each element matrix [g]e is
expanded: that is [g]e is being placed in null-matrix of the same dimensions as [G], on the
exact same location it should end up in [G]. Avilés et al. [83] refer to expanded matrices by
denoting them with a bar: [ḡ]e. After summation of the expanded matrices the total geomatric
matrix [G] is obtained.

D-2-2 Addendum to paper section II-B-1: Solving the position problem

After perturbing the input link, the distances between the nodes of the system are no longer
equal tot he undeformed length. Finding the new positions of the nodes to satisfy this condition
is referred to as the position problem. To solve the position problem numerically, an error
function is required. In this case the system’s elastic potential V can be used as such. To
solve the problem, the elastic potential must be zero. The error function for a linkage with a
total of b bars of length Le equals

V (x) = 1/2
bÿ

e=1
(le(x) ≠ Le)2 = 1/2

bÿ

e=1

3Ò
xT [ḡ]ex ≠ Le

42
(D-5)

in which le(x) represents the length of element e as a function of the nodal coordinates in x.
During iteration, le might not be equal to Le, introducing elastic potential and thereby error.
The length di�erence equals deformation ”Le, which is caused by parallel action forces ae on
end points A and B of the rod. Since unit sti�ness applies, one can express the action forces
as

ae =

S

UaA

aB

T

V = e”Le

S

WWWWWU

≠ cos ◊e

◊e ≠ sin ◊e

cos ◊e

sin

T

XXXXXV
= ”Lehe (D-6)

in which vector he transforms the forces that cause deformation ”Le to the orientation of the
rod element. It follows that

[ḡ]ex = Leh̄e (D-7)
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and therefore the expanded vector of action forces becomes

āe = ”Le

Le
[ḡ]ex (D-8)

Which can be summed per element to form the system action vector A.

To find the minimum of the error function D-5, Avilés et al [83] rely on Newton’s second-order
method. This requires expending the error function V into a Taylor series around position xq

and truncating the series after the second-order term:

Vq(x) = V (xq) + ÒV T
q Òxq + 1/2ÒxT

q [H]qÒxq (D-9)

with ÒVq being the gradient vector V in xq, [H]q the Hessian matrix in xq and Òxq the nodal
displacement vector x ≠ xq. The nodal displacement vector can be retrieved by solving the
linear system of equations given by:

[H]qÒxq = ≠ÒVq (D-10)

The resulting nodal displacement vector can be used as an update of the nodal coordinates
towards a position of lower elastic potential. Using learning rate – the following update may
be performed iteratively:

xq+1 = xq + –Òxq (D-11)

Once V (xq) reaches a value below a set tolerance ‘, convergence is achieved.

The values in Ò and [H] still have to be determined. Using basic algebra, and again referring
to Avilés et al [83], one can show that:

ÒV (x) = ˆV (x)
ˆx

=
bÿ

e=1
(le(x) ≠ Le)ˆle(x)

ˆx
=

bÿ

e=1
”Le

[ḡ]ex

le
=

bÿ

e=1
”Leh̄e =

bÿ

e=1
āe = A (D-12)

and

[H] = ˆ2V

ˆx2 =
bÿ

e=1

A

ḡe + ”Le
ˆ2le
ˆx2

B

(D-13)

in which the second-order derivative of le with respect to x can be represented as

ˆ2le
ˆx2 = l≠1

e (z̄e ≠ ḡe) (D-14)

with z̄e being the expanded form of symmetric matrix [z]:

[z] =

S

WWWWWU

1 0 ≠1 0
0 1 0 ≠1

≠1 0 1 0
0 ≠1 0 1

T

XXXXXV
(D-15)
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D-2-3 Addendum to paper section II-B-1: Determining the trajectory

To determine the full trajectory of a linkage the proposed method will be performed several
times, each time solving for the position of the free nodes. The free nodes are those nodes
not grounded and whose location is not prescribed by the input link. At the start of each
time-step the input link is perturbed a little, say fi

150 radians, introducing new potential in the
system. The position problem is then solved to find a new equilibrium position. After storing
the node locations the process starts over by perturbing the input a little more. This process
continues until the link has turned a full circle, or when no satisfying solution can be found.
Finally, the mechanism is restored to its original position and solved for a fulll circle in the
opposite direction.

D-2-4 Addendum to paper section II-B-2: Detecting infeasible domain and sin-

gularities.

Depending on the geometry of a linkage, the input link may not be able to turn a full circle. In
a numerical analysis, such infeasible domain can be detected by high levels of elastic potential.
By removing trajectory points with high elastic potential only the feasible domain remains.

A special case occurs when two (or more) bars of a linkage become exactly aligned, e�ectively
losing one degree of freedom. In such a case the linkage becomes unstable, resulting in
large gradients of the potential energy. Accordingly, the matrices in equation D-11 become
ill-conditioned. When minimizing the error for such a position the target is easily overshot, as
a result of the large gradients. To deal with this an adaptive learning rate is employed, cutting
– in half whenever the error is rising instead of falling. No updates of xq are performed in
this case until the error ceases to rise.

D-3 Addendum to paper section III-C: Design goals and scoring

The evaluation of a linkage takes place in two steps. The first step is finding the trajectory
of all nodes, which was discussed in the last paragraph (D-2-2). The second step consists of
comparing these trajectories with the desired end-goal and scoring them for fitness. Since such
end-goals may vary, the scoring module is a separated and independent module. This means
it can be swapped out without influencing the main learning algorithm. An example is giving
for the case in which a straight trajectory is desired.

D-3-1 Scoring for straight lines

The results of this thesis are mainly centered around straight-line-mechanism. To determine
the fitness of such a straight-line-mechanism a scoring module is required that can select the
straightest section of a trajectory and determine its straightness and length. Figure D-4a shows
an example of such a trajectory. The trajectory consists of a number of coordinate points, not
necessarily of equal distance to each other. By inspecting the deviation in x and y direction
between each trajectory point i, the angle of the connecting vector can be determined: ◊i. In
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(a)

(b)

Figure D-4: (a) When the short red link is rotated, each of the hinges in this mechanism start
following their respective trajectories. The trajectory belonging to the yellow top hinge is depicted
by the purple dashes. (b) Example of a minimum-surface box, fitted around a segment of a random
trajectory. The aspect ratio of the shown example is roughly 1:8.

a straight section, all connecting vectors will point in the same direction. Therefore deviations
in the direction of the connecting vectors �◊i are a characteristic of non-straight sections.

�◊i can only be compared fairly when the length of the connecting vectors is equal. Since
this is not the case, �◊i is divided by the distance between point i and i ≠ 1. The normalized
result �◊̄i can be compared for all trajectory points i.

Subsequently, the 25% yielding the lowest normalized deviation �◊̄i are selected. Of these
points, the longest sequence of connected trajectory points is distilled. The resulting sequence
is determined as the straightest section in the trajectory. Subsequently a minimum-surface
box is shaped along the straight section. The aspect ratio of this box can be used as a
measure of straightness: the higher the ratio, the straighter the line. A ratio of 1:1000 is
equal to a line that deviates 1 mm over a distance of 1 meter. The straightness score, or
aspect ratio, is multiplied by the length of the section to come to the trajectories total score.
This score is divided by 100 to prevent higher order-of-magnitude signals in the training
procedure and subsequently outputted. If no significant straight section could be detected, or
if the mechanism is otherwise found to be infeasible, a fixed negative score is registered. The
absolute value of this penalty is set as a design variable at the start of the learning process.

D-3-2 Scoring for figure-eight trajectories

A second scoring module has been developed to test the general applicability of the learning
process. Instead of evaluating trajectories for straightness this module evaluates the trajectories
resemblance on a figure-eight shape. Figure-eights are characterized by a closed, circular
trajectory and a central crossover point. The trajectory of a perfect figure-eight can be
described by a set of two parametric equations:

x = cos(t) (D-16)

y = sin(2t) (D-17)
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Example of figure-eight fitness determination.

Figure D-5: A trajectory is compared to a true figure-eight. The colored lines display the shortest
distance between each trajectory point and the true figure-eight. In this case, the mean euclidean
distance equals 0.203.

To perform such an evaluation, first of all the analyzed trajectory is checked for connectedness:
if the start and end point of the trajectory are significantly far apart, the trajectory is discarded
as unfit. Secondly, the length l and orientation ◊ of the trajectories principle axis is determined
as well as the maximum width around this axis T . This axis is defined as the line between the
two most distant points the trajectory. Once established, this principle length and orientation
are used to generate a figure-eight with the same principle axis:

x = cos(◊)l cos(t) ≠ sin(◊)T sin(2t) (D-18)

y = sin(◊)l cos(t) + cos(◊)T sin(2t) (D-19)

Finally the generated figure-eight trajectory is translated such that it matches the mechanism’s
trajectory. The two trajectories are then checked for resemblance by measuring the euclidian
distance between each point on the mechanism’s trajectory and its nearest neighbor in the
figure-eight trajectory. The resulting distances are averaged after which an intermediate
score p is established as the reciprocal of the average euclidean distance. Finally, a separate
function is called to check for the characterizing center crossing. If such a crossing exists in
the trajectory, the final score equals 1.1p. If such a crossing does not exist, the final score
equals 0.1p.

D-4 Addendum to paper section III-A: States and action

As introduced in section A-2, reinforcement learning problems can be formalized as MDPs.
An important element of such MDPs are states and actions. In this section the definition of
states and actions will be given for the current application.
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Figure D-6: Two example mechanisms represented visually and by means of their incidence and
adjacency matrices. The horizontal bar present in both structured is referred to as the ’ground
bar’ and represented by the g in both incidence matrices I1 and I2.

D-4-1 State

The state of an MDP has to describe the current situation as accurately as possible. In this
case, states refer to mechanisms throughout di�erent steps in their development. Thus, at the
start of the generative design process, the state will represent a basic four-bar linkage. After
executing actions according to policy fi the agent finds itself in a new state, representing a
more complex mechanism. The state should give an unambiguous description of a mechanism,
such that it fully and uniquely describes it.

A full description of a mechanism minimally comprises of two types of information: topology
and shape information. Topology information describes how all elements are connected.
Matrices o�er a great structure to store such information in, as their 2D appearance allows
for a convenient ’from-to’ display. Figure D-6 shows two example linkages and their respective
topology information. Topological relations can be formalized in two di�erent ways:

• Two bars are incident when they share a hinge.

• Two hinges are adjacent when they are connected to the same bar.

The incidence and adjacency relations are captured in logical matrices I and A, shown to the
right of the structures in figure D-6. Both matrices describe the same topology and therefore
only one is required in the state representation. In the current implementation the incidence
matrix is chosen, although using the adjacency would have been equally e�ective.

Both of these matrix representations are widely used in graph theory to describe networks
consisting of vertices (bars in this case) and edges (hinges in this case). For more information
on graph theory and its applications the reader is referred to [84].

Shape information is most easily stored by keeping track of the hinge positions using a
Cartesian coordinate system. The shape information is then an n-by-2 matrix, n being the
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number of hinges. For convenience, the two sources of information are combined in a sparse
state matrix s of fixed size. As the mechanism becomes increasingly complex both I and H
increase in size, filling the state matrix s until pre-imposed size limits are reached.

D-4-2 Actions

Reinforcement learning in its most basic form is a process that learns to find the best state-
action-pair for each given state. Taking the action results in a new state, for which the agent
may proceed to find the optimal state-action-pair again. The state representation has just
been elaborated on, but what about the actions?

The mechanism representation presented in section D-1-1 utilizes two di�erent operators: T
and D. The action space is therefore limited to these two operations. In Lipson’s paper [1]
these operators are accompanied by an integer value and a coordinate. The integer value
describes on which bar the operator should perform its actions. The coordinate describes the
position of the new hinge resulting from the operator.

Without the coordinate this action specification results in 2m possible actions, for m available
bars. The coordinates can viewed as continuous parameters, implying an infinitely large action
space.

Addendum to paper section III-B: Restricting the action space

A common procedure in reinforcement learning is a full sweep of the action space, searching for
the action with the highest resulting reward. This process is only feasible when the total action
space is limited and relatively small. Therefore, algorithms featuring such search procedures
can only work with discrete action spaces. The Lipson operators however feature a continuous
coordinate parameter. To alleviate this seeming mismatch, this relative coordinate is omitted
al together and replaced by a deterministic process for placing new nodes. More specifically,
new nodes are placed on a line perpendicular to the link subject to operation, crossing exactly
through the middle of this link. The node is placed on a distance equal to the length of
the corresponding link. The procedure prefers to create new nodes on the peripheral side of
the link, but will adjust to place it within the center of the mechanism in case of repeated
operations. Operations can therefore only be repeated once, since extra repetitions would lead
to double node placements.

Master of Science Thesis K.M. Vermeer



60 Addendum to paper sections II and III: Design framework

K.M. Vermeer Master of Science Thesis



Appendix E

Addendum to paper section III - E and

IV - D: Sensitivity Analysis

In the presented paper, reference is made to a number of di�erent methods for determining
the sensitivity of the Neural Network’s inputs, the features, with respect to its output, the
Q(s, a) estimation. In this addendum to section III - E in the paper, these methods will be
further elucidated. Finally some notes are given on the selection of the top five as a result of
these methods.

E-1 Weights method

Garson [85] introduced a method to determine the relative importance of Neural Network
inputs known as the weights method, as it only uses the weight values to determine relative
importance. In his method, the sum of products of normalized weights is used as a measure
of importance. To normalize the weights, each input-to-hidden weight is divided by the sum
of all input-to-hidden weights of the hidden node it is connected to. By normalizing Garson
partitions the hidden-to-output weights into components associated with each input node.
As Garson uses the absolute values of weights, this method does not correct for cancellation
of weights due to sign opposition. In Gevery’s review of comparison models for NNs [86] a
simplified algorithm is proposed giving identical results. It consists of two simple calculations:

Qih = |Wih|
qni

i=1 |Wih|
(E-1)

RI =
qnh

h=1 Qihqnh
h=1

qni
i=1 Qih

(E-2)

Equation E-1 describes the process of normalizing the input-to-hidden (ih) weights for each
input i in the total number of inputs ni. Equation E-2 describes how the relative importance
(RI) can be determined based on these normalization results by summing of each hidden layer
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element h and dividing over the sums of each hidden and input node of Qih. The symbol Q in
these two equations is not related to the Q-value estimation of Q(s, a).

This method has been later improved upon by Milne [87], Goh [88] and Gedeon [89].

E-2 Mean weight method

The mean weight method is the most simple method of this list. It simply takes the mean
absolute input-to-hidden weight of all features. It uses this value as an importance measurement.
After normalizing with respect to the sum of al mean input-to-hidden weights a relative
importance measure is obtained. This method, just as the weights method, relies solely on the
network’s weights, making it independent of certain feature values.

E-3 Profiling method

In 1996, Lek [90] introduced a di�erent procedure for determining the relation between input
features and network outputs coined the profiling method. In his method each input variable,
or feature, is studied separately by fixing all other feature values and stepping through a range
of values for the selected feature. To do so, a range of possible values is determined for each
individual feature and a fixed number of precision points generated. Whilst sweeping to the
range of one specific variable, the other variables are subsequently set to their minimum, first
quartile, median, third quartile and maximum values. Therefore five values are obtained for
each point in the specific variable’s range-sweep. The median of these five values is used to
create a profile of the researched variable.

Since the feature values used to determine the profiling scores are all generated by the algorithm,
one can say that this method is also solely reliant on the network’s weights.

E-4 Finite-di�erence method

The finite-di�erence method tests the influence of each feature value on the network’s output
by asserting a slight perturbation on each feature individually and witnessing the resulting
change output. As the paper reads the fine-di�erence output is determined by a simple
formula:

vf = O+ ≠ O≠
2”

(E-3)

where O+ refers to the output after a positive perturbation and O≠ after a negative one. The
result vf can be normalized with respect the sum of all vf values to obtain a measure of relative
importance. One should however take care in adopting these results: where the previous
methods were solely reliant on the network’s weights this method is not. The finite-di�erence
method approximates the partial derivative of the network’s output with respect to each
feature. Since the network is a nonlinear function approximator, this derivative is dependent
on the feature value itself. To give an example, the Q(s, a) value is plotted against several
values of the feature ’no_of_conns’, which describes the number of connections to the selected
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Figure E-1: This scatter plot relates the predicted Q(s, a) value to one of the NN’s features,
whilst keeping all other feature values constant. The figure shows a highly non-linear response.
Hence local derivatives do not generalize into the overall dependence of Q(s, a) on the feature
value vf .

link are already present. All other feature values were kept constant. As the graph clearly
shows the relation between this feature and the Q(s, a) value is very much non-linear. Hence
finite-di�erence derivatives would vary greatly depending on the value of the depicted feature:
vf will be approximately zero when the feature value is 1 or 2, whereas it would be a large
positive number when the number of connections equals 3. Therefore, the zoomed-in results
from finite-di�erence analysis cannot be used to give an overall impression of the relation
between the feature value and the resultingQ(s, a) approximation.

Moreover some feature values are booleans or are otherwise limited to certain discrete values.
In such cases, introducing small perturbations has no practical interpretation.

E-5 Selecting the top five

The weight, mean weight and finite-di�erence method all result in relative importance scores
for all features, form a which a top-ten can be easily extracted. For the profiling method
this is slightly more di�cult, since one would need to compare 2-dimensional profiles instead
of single scores. Therefore the maximum variation in each profile was used as a measure of
importance, which has subsequently be used to determine another top-ten.

In order to select the top five most influential features, as presented in the paper, a series
of steps as performed. First of all the finite-di�erence method was applied to determine the
relative importance of every feature four consecutive times, once after each step in a game of
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mechanism design. All features present in any one of the finite-di�erence top-tens pertaining
to these four data points are pre-selected as potentially important features. Of these features,
23 in total, the five highest rated individual features, based on the weights, mean weights and
profiling method, have been presented and briefly discussed in the paper.
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Addendum to paper section IV:

Overview of parameter sweep results

In the paper a brief overview of the optimal algorithm settings is given. These settings are
the result of an extensive grid search and parameter sweep over a total of 560 runs using 112
unique pairs of settings. A complete overview of these results is given in tables F-2 to F-5.
The first column indicates the algorithm used (Monte Carlo or Temporal Di�erence) and the
type of reward structure (episodic or end-rewards only). The second column describes which
parameter is varied. An explanation of the abbreviations used is shown in Table F-1. The
basic settings, which are fixed whilst changing the specific parameters shown in tables F-2
to F-5, are also tabulated in F-1. The third column shows the accumulated episodic reward
obtained after the run. The final design’s reward is shown in the fourth column. Finally the
runtime in hours over all 5000 episodes is tabulated.

Equations F-1 and F-2 describe how parameter ER is related to the ‘-greedy parameter ‘:

N0 = K

ER (F-1)

‘ = N0
N0 + k

(F-2)

where ‘ is the ‘-greedy parameter, K the total number of episodes in a run and k the current
episode number.

Equation F-3 describes how parameter HLS prescribes the hidden layer size:

||h|| = HLS · round(||f ||) (F-3)

where h is the vector of hidden nodes and f the vector of all features. The HLS parameter
describes the size of the hidden layer with respect to the input layer.

The top-5 high scorers in terms of accumulated episodic reward are:

1. TD - Episodic with Infeasibility penalty -25
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Table F-1: Explanation of abbreviations used in tables F-2 to F-5 and basic values throughout
parameter sweep

Acronym Explanation Basic value
DR1 Dropout rate in input layer 0
DR2 Dropout rate in hidden layer 0
L1 L1 regularization 0
L2 L2 regularization 0
LR Learning rate µ 0.1
ER Exploration rate in F-1 100
HLS Hidden layer size according to F-3 0.75
HLT Hidden layer type Sigmoid
Penalty Penalty value for infeasible designs -5
Trainer Updating algorithm used during NN training Adam

2. TD - Episodic with L1 = 0.001

3. TD - Episodic with Infeasibility penalty 0

4. TD - Episodic with L2 = 0.001

5. TD - Episodic with L2 = 0.0001

The top-5 high scorers in terms of final design reward are:

1. TD - Episodic with Infeasibility penalty -25

2. TD - Episodic with LR = 0.01

3. MC - Episodic with ER = 30

4. TD - Episodic with L1 = 0.001

5. TD - Episodic width HLS = 0.25

Based on these two lists the selection of recommended settings as appears in the paper was
chosen. Interestingly the runtime in hours is mostly constant around 8 hours, except for
experiments with large hidden layers. In all runs with HLS = 16, that is the hidden layer has
16 times more nodes than features, the runtime exceeds 10 hours. Speed di�erences between
MC and TD cannot be extracted from the tables, since all entries are based on 5000 runs.

An example of the development of the accumulated episodic reward throughout a full run is
shown in figure F-1. The figure shows a quick rise in reward throughout the first 500 episodes.
The spikey behavior of the graph is a direct result of the ‘-greedy policy, resulting in random
exploration actions that often result in low rewards.
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Table F-2: Recommended settings after performing an extensive search through 112 unique
setups.

Algo - Reward Parameter Value Total reward End reward Runtime [hrs]
MC - Episodic DR1 0.1 ≠18.93 2.09 6.69
MC - Episodic DR1 0.2 ≠17.30 2.29 6.59
MC - Episodic DR2 0.3 7.39 4.34 7.21
MC - Episodic DR2 0.5 30.49 5.29 7.23
MC - Episodic L1 0.0001 ≠2.09 3.34 8.82
MC - Episodic L1 0.001 7.82 5.57 9.27
MC - Episodic L1 0.01 20.73 6.59 8.92
MC - Episodic L2 0.0001 16.79 6.37 8.78
MC - Episodic L2 0.001 19.29 6.14 9.14
MC - Episodic L2 0.01 2.27 4.33 8.48
MC - Episodic LR 0.001 2.92 3.77 8.29
MC - Episodic LR 0.01 7.09 2.89 8.73
MC - Episodic LR 1 ≠18.78 1.39 7.04
MC - Episodic ER 300 7.05 3.91 8.38
MC - Episodic ER 30 49.36 21.06 7.95
MC - Episodic HLS 0.25 19.37 5.50 9.01
MC - Episodic HLS 0.5 31.78 14.08 8.57
MC - Episodic HLS 16 ≠0.80 1.61 10.41
MC - Episodic HLS 4 27.27 9.21 9.21
MC - Episodic HLT ReLU ≠1.46 1.03 7.07
MC - Episodic HLT ReLU ≠32.81 0.14 5.44
MC - Episodic HLT tanh ≠24.58 0.14 5.96
MC - Episodic Penalty -1 30.45 5.85 8.34
MC - Episodic Penalty -25 22.95 6.65 8.46
MC - Episodic Penalty 0 15.55 3.39 7.87
MC - Episodic Trainer Adam 11.54 6.04 7.87
MC - Episodic Trainer SGD 9.09 5.73 7.50
MC - Episodic Trainer SGD NM 12.88 4.32 8.31
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Table F-3: Recommended settings after performing an extensive search through 112 unique
setups.

Algo - Reward Parameter Value Total reward End reward Runtime [hrs]
MC - End only DR1 0.1 ≠5.00 ≠0.89 7.43
MC - End only DR1 0.2 ≠5.00 0.14 7.44
MC - End only DR2 0.3 ≠5.00 ≠0.47 6.73
MC - End only DR2 0.5 ≠5.00 0.48 6.53
MC - End only L1 0.0001 3.68 4.71 7.23
MC - End only L1 0.001 2.14 4.20 7.39
MC - End only L1 0.01 1.01 4.41 7.42
MC - End only L2 0.0001 1.62 4.93 6.67
MC - End only L2 0.001 ≠2.32 0.97 6.68
MC - End only L2 0.01 2.24 3.27 6.65
MC - End only LR 0.001 8.32 8.32 8.99
MC - End only LR 0.01 7.42 9.70 9.14
MC - End only LR 1 ≠5.00 ≠1.92 7.42
MC - End only ER 30 8.13 8.13 8.04
MC - End only ER 300 8.03 11.18 7.28
MC - End only HLS 0.25 ≠0.14 2.95 7.83
MC - End only HLS 0.5 3.51 3.51 7.98
MC - End only HLS 16 ≠5.00 1.09 9.25
MC - End only HLS 4 ≠5.00 ≠0.89 7.53
MC - End only HLT ReLU ≠5.00 0.14 7.34
MC - End only HLT ReLU ≠5.00 ≠0.89 6.06
MC - End only HLT tanh ≠5.00 0.14 7.25
MC - End only Penalty -1 1.19 0.84 8.01
MC - End only Penalty -25 ≠0.96 8.07 7.82
MC - End only Penalty 0 0.00 ≠0.86 7.72
MC - End only Trainer Adam 6.41 7.44 7.94
MC - End only Trainer SGD 2.89 3.92 8.94
MC - End only Trainer SGD NM 4.61 4.61 8.89
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Table F-4: Recommended settings after performing an extensive search through 112 unique
setups.

Algo - Reward Parameter Value Total reward End reward Runtime [hrs]
TD - Episodic DR1 0.1 ≠28.15 ≠0.97 7.04
TD - Episodic DR1 0.2 ≠27.97 0.37 6.97
TD - Episodic DR2 0.3 ≠9.20 1.66 7.93
TD - Episodic DR2 0.5 ≠11.21 ≠0.52 7.62
TD - Episodic L1 0.0001 41.01 9.22 7.66
TD - Episodic L1 0.001 59.65 19.48 7.74
TD - Episodic L1 0.01 33.03 8.97 7.57
TD - Episodic L2 0.0001 52.02 11.58 7.82
TD - Episodic L2 0.001 56.01 11.75 7.68
TD - Episodic L2 0.01 50.03 12.15 8.02
TD - Episodic LR 0.001 16.88 4.48 8.23
TD - Episodic LR 0.01 46.12 21.16 8.15
TD - Episodic LR 1 ≠18.64 ≠0.62 7.87
TD - End only DR1 0.1 ≠3.99 ≠0.91 8.28
TD - Episodic ER 30 21.63 8.20 7.40
TD - Episodic ER 300 48.01 12.21 7.77
TD - Episodic HLS 0.25 36.49 15.84 7.82
TD - Episodic HLS 0.5 38.46 15.24 7.74
TD - Episodic HLS 16 13.78 9.76 10.77
TD - Episodic HLS 4 43.37 9.04 8.56
TD - Episodic HLT ReLU ≠29.58 0.14 6.93
TD - Episodic HLT ReLU ≠30.93 0.36 6.28
TD - Episodic HLT tanh ≠29.58 0.14 7.01
TD - Episodic Penalty -1 49.35 11.94 7.70
TD - Episodic Penalty -25 62.25 26.50 7.86
TD - Episodic Penalty 0 57.50 13.22 8.04
TD - Episodic Trainer Adam 30.88 8.68 7.99
TD - Episodic Trainer SGD ≠2.18 2.78 7.92
TD - Episodic Trainer SGD NM 39.06 8.46 7.62
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Table F-5: Recommended settings after performing an extensive search through 112 unique
setups.

Algo - Reward Parameter Value Total reward End reward Runtime [hrs]
TD - End only DR1 0.2 ≠5.00 0.20 8.40
TD - End only DR2 0.3 ≠5.00 ≠2.95 7.24
TD - End only DR2 0.5 ≠5.00 0.14 7.41
TD - End only L1 0.0001 ≠5.00 ≠1.92 7.52
TD - End only L1 0.001 ≠5.00 ≠1.92 7.18
TD - End only L1 0.01 ≠3.90 ≠0.62 7.46
TD - End only L2 0.0001 ≠5.00 ≠0.56 7.56
TD - End only L2 0.001 ≠5.00 ≠0.69 7.63
TD - End only L2 0.01 ≠5.00 ≠0.89 7.29
TD - End only LR 0.001 7.77 8.80 7.89
TD - End only LR 0.01 3.47 6.56 7.52
TD - End only LR 1 ≠3.79 ≠0.70 8.73
TD - End only ER 30 ≠5.00 ≠1.86 7.38
TD - End only ER 300 ≠5.00 ≠0.71 7.29
TD - End only HLS 0.25 ≠5.00 0.15 7.77
TD - End only HLS 0.5 ≠5.00 ≠2.82 7.62
TD - End only HLS 16 ≠5.00 ≠0.18 11.32
TD - End only HLS 4 ≠5.00 ≠3.86 8.13
TD - End only HLT ReLU ≠5.00 0.14 8.13
TD - End only HLT ReLU ≠5.00 0.34 7.07
TD - End only HLT tanh ≠5.00 ≠0.89 8.16
TD - End only Penalty -1 0.55 2.04 7.56
TD - End only Penalty -25 ≠13.81 3.11 8.05
TD - End only Penalty 0 0.00 0.36 7.72
TD - End only Trainer Adam ≠5.00 ≠0.89 7.51
TD - End only Trainer SGD 2.21 2.21 8.61
TD - End only Trainer SGD NM 3.12 3.12 8.86
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Development of accumulated episodic reward through 5000 episodes

Figure F-1: The development of accumulated episodic rewards throughout a 5000 episode run.
Due to learning the results rapidly rise, until a plateau is reached. Random actions, evoked by the
‘-greedy policy, cause the figure’s curious behavior.
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Appendix G

Literature survey

G-1 Introduction

The ability of mankind to analyze and solve mechanical problems has driven technology
throughout the ages, from the invention of the automobile to more recent advancements in
micro-electromechanical systems (MEMS). Mechanism design has been long studied in an
e�ort to discover best practices and create comprehensive systematical design methods. Ample
methods have been proposed and published, of which some have became industry standards,
like Pahl and Beitz’ systematic design method [91].

More recently, a lot of research has been performed, most notably by Howell [43,92,93], on the
subject of Compliant Mechanisms (CMs). CMs are described by Howell as mechanisms that
gain "at least some of their mobility from the deflection of flexible members rather than from
movable joints only" [94], or as he more wittingly put it in [95]: "If something bends to do what
it is meant to do, then it is compliant." CMs o�er advantages over conventional mechanisms,
resulting in lowered costs and increased performance. Cost reductions have come about by
decreased part count, which results in simplified manufacturing and reduced assembly e�orts.
Also, the decreased part count results in reduced weight, maintenance and wear, increasing
reliability, precision and thereby performance [13]. Finally, CMs inherent capability of storing
elastic energy can be exploited to eliminate the use of external components like stroke return
springs [96], minimizing complexity and weight.

However, CM design is challenging. The main design challenge is caused by the fact that force
and deflection are coupled. Consequently they cannot be considered separately as is done in
conventional mechanism design. Fortunately, this has been resolved by the introduction of
computer-aided design (CAD). The use of CAD in CM design has resulted a large number of
successful applications [97–102].

Computer-aided design still leaves the designer with a large number of decisions to make.
Therefore, the success of the final design will be heavily dependent on the designer’s insights
and design strategy. In an e�ort to find the overall best design for a given objective, the
designer is required to take the whole solution space into account. Since this space is an
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inconceivably large, the need has risen to perform the design process in a computerized fashion:
generative design.

It is however not straightforward to tackle a design challenge with an algorithm. To do so,
one requires three important elements:

• A formal description of a mechanism: mechanism representation.

• A smart search strategy: optimization algorithm

• A way to evaluate the results: a physical mechanism model.

Fortunately, for conventional mechanisms, such prerequisites can be met. As early as 1876,
Reuleaux [103] attempted to classify machinery design in order to break down the complexity
of mechanism design [16]. In 1966 Freudenstein and Dobrjanskyj introduced a new abstraction
of kinematic structures in the form of so-called graphs [104]. After its introduction in the 1960s,
graphs have been used extensively for the analysis and synthesis of mechanisms. Optimization
algorithms, like topology optimization [30], have been continuously developed and numerical
simulations of mechanisms have become easily accessible by Turner’s introduction of the
finite element analysis (FEA) [105]. With all elements in place, generative design has been
demonstrated numerous times for conventional mechanisms [1, 15,18,25–27,37,106].

However, the algorithms developed for conventional mechanisms rarely apply to CMs or limit
themselves to the use of topology optimization [39]. This is unfortunate, since the number of
CM applications is steadily rising and so is the need for generative CM design.

Therefore, we will investigate generative mechanism design algorithms within the context of
CM. More specifically the goal of this work is to create an overview of potential combinations
of mechanism representations, optimization algorithms and compliance models for simula-
tion. This will be most beneficial for mechanism designers developing generative compliant
mechanism design algorithms. The overview created in this paper can be used to explore the
realm of possibilities, or to narrow down the solution space in the case where one or two of
the elements are already in place.

The major di�culty in this subject is the interaction between the three design elements.
The elements are coupled and as such should be treated as an integral design solution.
Understanding the potential synergies (or incompatibilities) between the elements requires a
thorough understanding of each individual element. Also, since CM is still a young field, a lot
of existing representation and optimization methods have never been used in a CM context. In
this paper, the unique characteristics of compliant mechanisms have to be taken into account
whilst exploring such uncultivated ground.

In chapter G-6 the findings from all three pillars are condensed into a single table. Three
promising solutions are extracted and discussed in more detail.

G-2 Method

In the subsequent chapters, numerous mechanism representation methods will be covered
alongside optimization strategies and design-for-compliance research. All three of these subjects
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represent an entire research field on their own. In this research however, they are combined
to find possible solutions towards a single goal: developing a generative design algorithm for
planar compliant mechanisms. Core values can be established for every one of these subjects,
such that the traits of specific methods can be related to generative design. In each individual
chapter, several methods will be evaluated based on the established values.

In the subsequent chapters, methods will be given a numeric score. Since such numeric scores
can give the false impression of precision, the scores will be translated into classes: -, +/- and
+. The classes are determined as follows:

Class =

Y
__]

__[

≠, if Score < 0,

+/≠, if 0 < Score < 10,

+, if Score Ø 10,

Z
__̂

__\
(G-1)

G-2-1 Evaluating mechanism representations

In chapter G-3 several mechanism representation methods are introduced and evaluated based
on their characteristics. A formal approach to characterizing the methods is applied, based
on Balakrishnan and Honavar [14] and explained hereafter. The characteristics are linked to
three core values, such that a character-based-evaluation can be performed.

Mechanism representation characteristics

Balakrishnan and Honavar [14] formulated nine characteristics by which to evaluate neural
networks. Kuppens [107] showed the wider applicability of this framework, also covering
mechanism representations. Therefore, the same framework will be adopted in the current
work. In this framework, a representation method is described by R, the total set of solutions
by S and the representation of a specific solution from S using method R by rn in which the
nominator n is used to distinguish between di�erent solutions or di�erent methods.

Balakrishnan and Honavar defined the following nine characteristics:

1. Completeness: A representation R is considered complete when, in principle, all
possible solutions S can be described by R. Or, equivalently, the set of all solutions S is
a subset of all possible descriptions by R. In addition a representation is only considered
complete when it describes the full set of parameters involved in mechanism design, from
topology to dimensions to shape.

2. Closure: A representation R is considered fully closed when every description results
in a feasible solution S. Representations that are not fully closed can be made so by
adding additional constraints.

3. Compactness: A representation r1 is considered more compact than its alternative r2
when the memory size required to store the descriptions resulting from r1 are smaller
than those resulting from r2.
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4. Scalability: A representation’s scalability describes how its compactness is a�ected by
an increase or decrease in solution size, say by varying the number of links in a solution
S.

5. Multiplicity: A representation can exhibit two types of multiplicity. Firstly, a repre-
sentation R exhibits multiplicity when a single descriptions can decode to more than
one physical solution. Secondly, a representation is considered to exhibit multiplicity
when more than one description exists that maps to a single physical solution.

6. Ontogenetic plasticity: Whenever a representation R is dependent on environment
variables, it is considered to exhibit ontogenetic plasticity. This can be the case when the
representation is subject to learning or an environment-sensitive development process.

7. Modularity: A representation R is considered modular if descriptions resulting from
R are allowed to contain instructions to copy and re-use parts of the description itself.
As a result, modular descriptions may re-use pieces of descriptive information, resulting
in higher compactness and better scalability.

8. Redundancy: A representation R is considered redundant when it contains redundant
information, which can increase the representation’s robustness, which may be of use in
case of an error-prone translation process from description to solution.

9. Complexity: The complexity of a representation R can be interpreted in multiple way.
In one specific interpretation, the complexity describes the amount of computation power
required to work with representation R. In another interpretation, the complexity refers
to the structural complexity of the possible solutions that can be described by R.

The current research describes representation concepts, not detailed methodologies. There-
fore, some characteristics may not be apparent. In chapter G-3, each representation will
be characterized by its completeness, closure, multiplicity, modularity and computational
complexity. Scalability, ontogenetic plasticity and redundancy can only be determined once a
representation R is fully defined and are therefore omitted from this initial overview.

Core values

Not all representation methods may be eligible for generative mechanism design. To evaluate
the eligibility, one has to know what to look for: which values are important in selecting the
right method. On the subject of representation methods, three core values are defined:

• Creative Freedom: the ability to support any type of possible design outcome without
imposing design limits. It is desired that the representation method allows as much
creative freedom as possible, minimizing design limitations and prejudice towards certain
solutions on beforehand. Generative design may serve as the initial creative spark after
which human designers (or other algorithms) can process the spark and turn it into
a feasible final design. Creative Freedom is required to uncouple this spark from our
preconceived notions about CM and lead us to new designs. To evaluate Creative
Freedom, representation methods will be critically analyzed in search of their design
boundaries. These boundaries limit the solution space are therefore a good measure for
Creative Freedom.
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Table G-1: Cross linking representation characteristics with value drivers

Characteristic Creative freedom Comprehensiveness Fitness for numeric optimization
Completeness + + ¶
Closure ¶ + ¶
Multiplicity ¶ ¶ -
Modularity - ¶ +
Complexity + + -

• Comprehensiveness: the ability to take all aspects of mechanism design into account.
Freudenstein and Maki [108] distinguished between structure and function of a mechanism.
A mechanism’s structure, or topology, describes the parts a mechanism consists of and
how these are connected. The structure is a purely mathematical description, which
can be enumerated in an unbiased and systematic manner. Structure however is only
one part of the equation: by changing design parameters of the structure (dimensions)
several mechanisms with totally di�erent functionality may be created. We therefore
do not consider representations comprehensive when they only describe topology. Only
when topology, size and shape are described can a representation be comprehensive.

• Optimization perspective: the ability of a representation method to be deployed
in combination with a numeric optimizer. Unfortunately, some processes may not be
optimized as easily as others and may therefore not be suitable for use in a generative
design algorithm. Whilst evaluating such processes it is important to acknowledge
their incompatibility with (certain) optimization strategies. This value is not simply
binary (yes/no), but may also attain intermediate values for methods that do allow for
optimization but are non ideal, like computationally heavy processes.

Evaluation

In chapter G-3 numerous representation methods are introduced. They are subsequently
characterized using the list of traits in section G-2-1. In order to come to an evaluation
in terms of the core values of section G-2-1, a link between characteristics and values has
to be established. The relations between each characteristic and the core values are shown
in table G-1. Pluses correspond to positive relations, minus signs to negative relations and
circles are put in place for unrelated combinations. At the end of chapter G-3, in section
G-3-5 , the values in this table will be used to translate the characteristics of each individual
representation method into scores in terms of the core values.

The scores are weighted, summed and classified. The philosophy behind the choice of the
chosen weights stems from deliberate consideration. Creative freedom is quintessential in the
mission that generative design is supposed to fulfill: the design of mechanisms unconceivable by
human e�ort only. This value has therefore been appreciated with a weight of 3. Optimization
perspectives has been given the lowest weight (1), since in none of the representations it can
become a fundamental problem. Also, optimization speeds are important in later stages, but
remain a nice-to-have in the current research. Comprehensiveness is regarded more valuable,
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since a lack of it would indeed cause fundamental problems: it has been granted the middle
weight of 2.

G-2-2 Evaluating optimization algorithms

A similar approach is used in evaluating optimization algorithms. In chapter G-4, five di�erent
optimization approaches are introduced and subsequently their application in generative
mechanism design is discussed. Each algorithm is evaluated using a set of core values, similar
to the representation methods. The core values are however chosen slightly di�erent.

Core values

On the subject of optimization algorithms, three core values have been established.

• Creative Freedom: the ability to support any type of possible design outcome without
imposing design limits. This is the same value as mentioned in section G-2-1.

• Optimization speed: the ability to quickly converge towards the right solution. A
high optimization speed makes the generative mechanism design algorithm practically
usable.

• Design compatibility: the ability of an optimization algorithm to optimize designs.
Optimization algorithms require problems to be posed in a pre-defined way in order for
the algorithm to be able to optimize it. Design problems can be posed in numerous ways,
which may or may not prove su�cient to work with specific optimization algorithms.
Literature is of great help here: algorithms that already have been applied to mechanism
synthesis are clearly compatible with design.

Evaluation

All methods in chapter G-4 are scored directly in terms of core values. The scores are weighted
and summed in a similar fashion to the mechanism representation methods. The weights
are also chosen in a similar fashion: creative freedom receives the maximum weight of 3,
whereas optimization speed is of minimal value (weight 1). Design compatibility is assigned
a medium weight of 2, since incompatibility with mechanism design is a severe shortcoming
that undermines the algorithm. Using these weights, every algorithm is assigned a score and
classified accordingly.

G-2-3 Evaluating compliance modeling methods

Chapter G-5 dives into methods for evaluating the performance of compliant mechanisms.
Similar to the optimization algorithms, the compliance modeling methods are evaluated
directly using a set of core values. In a typical optimization process many iteration loops
will be cycled through. In these loops compliance modeling will always be performed after
synthesis of a mechanism. In other words: the mechanisms design is already there when the
analysis is performed. This impacts the core values for compliance modeling.
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Core values

In compliance modeling a slightly adapted set of core values will be used to evaluate the
potential of compliance modeling methods within the context of generative mechanism design.
These values are as follows:

• Speed: the ability to perform a kinematic and dynamic analysis of a compliant mech-
anism’s behavior in a quick manner. As mentioned earlier, compliance modeling is
part of an iterative process used by optimization algorithms. It is no exception that
thousands or even millions of mechanisms are evaluated in order to find the optimal
solution. Therefore, time spent evaluating a mechanism quickly accumulates and should
therefore be minimized.

• Accuracy: the ability to evaluate compliant mechanism behavior in an accurate way. In
the optimization process, the evaluation results stemming from the compliance modeling
method will be the optimizer’s single source of information. It is therefore imperative
that this information is accurate. Upwards from a certain level of accuracy however,
optimization results will only be a�ected negligibly.

• Versatility: the ability to analyze performance of compliant mechanisms with every
shape and size. One of the main objectives in generative mechanism design is to come
up with new mechanisms, presently unknown to mankind. Such mechanisms can only
be evaluated properly when the accuracy of the evaluation method is reliable and thus
independent of the mechanism’s shape. Therefore, the modeling method should be
versatile.

Evaluation

The methods presented in chapter G-5 are evaluated directly according to the just mentioned
core values. The selection of compliance modeling methods is the smallest of all three subjects
with only two alternatives. Numeric scores are given in a similar fashion to the previous
subjects, which are again weighted, summed and classified. The weights in this case are 1
for speed, as speed is more of a convenience then a must-have at this point in generative
mechanism design research, and 2 for both accuracy and robustness, since both of these values
are more important than speed but circumventable when necessary.

G-2-4 Combination of results

The results from chapters G-3 to G-5 are accumulated in chapter G-6. Using a table, the
scores of all individual methods are shown. Also, all combinations of methods are evaluated in
terms of synergistic potential and scored accordingly. The resulting table can be used to select
the most promising combinations of representation, optimization and compliance modeling
methods.
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Figure G-1: Examples of compliant building blocks, reproduced from [17]

G-3 Representation of mechanisms in the computer domain

Mechanisms are most easily caught in technical drawings. Unfortunately, such visual rep-
resentations are not suited for generative mechanism design using numerical analysis. As
Kota and Chiou [16] put it in 1992, the required representation "[...]allows for reasoning with
the abstract function of the primitive mechanisms without cluttering the reasoning process
with unnecessary details." To paraphrase, a representation should describe all the strictly
required variables of a mechanism, but nothing more. In this chapter, an overview will be
created of known representations of mechanisms within literature. The aim of the overview
is to aid algorithm or mechanism designers in choosing the right mechanism representation
for their specific purpose. The representations will be evaluated according to the method
described in G-2-1: each of the representation methods will be characterized using a set of five
characteristics as introduced in section G-2-1 and subsequently evaluated against the values
from section G-2-1.

G-3-1 Representations in discretized solution spaces

Let us denote the total universe of mechanisms that may be described by a certain representa-
tion the solution space. Some representations rely on the discretization of this solution space.
In general, this means the total solution space for mechanisms is replaced by a grid-type
solution space, with distinct nodes and connections. The first example of such a discretized
representation is found in the building block approach.

Examples of the building block approach are available in both conventional and compliant
mechanism design [16–18]. The building block approach limits the solution space of mechanisms
by predefining a set of building block that the resulting mechanism can consist of. Kota [16,18]
created a library of existing mechanism defined their functionality. He then proceeds to
define the Motion Transformation Matrix (MTM) for each building block. Using this matrix
representation, combined with constraint matrices, he was able to formalize the design process
for a desired motion.

In 2002, Moon and Kota [109] proposed a mechanism synthesis method using dual-vector
algebra. Screws are represented by the product of a dual-number and dual-vector, hence
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Table G-2: Characteristics of the Building Block representation

Characteristic Yes/No Reasoning
Completeness ◊ The use of pre-defined building blocks limits the total solution

space
Closure X / ◊ Constraints are required to ensure closure
Multiplicity X Di�erent descriptions may lead to the same solution
Modularity X Building blocks form perfect examples of modular elements
Complexity ◊ The modularity and limited variety of building blocks limits

complexity

Figure G-2: Example of matrix representation and according structure using compliant building
blocks, reproduced from [17].

the name dual-vector algebra. Screws are often used in the kinematic analysis of rigid body
motions, in which the screw’s line represents the orientation and direction of motion and the
screw’s pitch describes transformations from translational to rotational motion. Moon and
Kota use screw theory’s dual-number and dual-vector notation to describe a series of basic
mechanisms and create a library of building blocks. The subsequent mechanism synthesis
follows a similar approach to Kota’s earlier work [16], although the resulting motion from
combinations of building blocks is analyzed using screw theory instead of MTM matrices.

Kota’s approach [16,18,109] used a library of conventional mechanisms to draw building blocks
from. A compliant version of this approach was more recently demonstrated by Bernardoni et
al, [17], who composed compliant building blocks from a 9-by-9 grid, as shown in G-1. After
enumeration of n building blocks with varying configurations, mechanisms can be described
by a design matrix of integers in the [1, n] range. Each entry in the matrix represents a 3-by-3
grid in the available design space, to be filled in with the block specified by the integer. Matrix
entries representing grids out of the design space are filled with zeros. Empty blocks are
also part of the library and are used to model the absence of material. Figure G-2 shows an
example of such a design matrix and the according structure next to it.

The building block approach allows for fast optimization, since the sti�ness matrix for each
block can be determined in advance. After putting the blocks together, the global sti�ness
matrix can be deduced from its components’ matrices with relative ease. As a result, one can
model the behavior of a large number of structures in a relatively low-cost and fast manner: a
trait especially valuable in combination with optimization algorithms. A characterization of
the building block representation is shown in table G-2.
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Figure G-3: Example of truss-based ground structure with a possible solution, reproduced
from [19].

Table G-3: Characteristics of the truss-based ground structure representation

Characteristic Yes/No Reasoning
Completeness ◊ The use of pre-defined building blocks limits the total solution

space, the representation only describes shape.
Closure X Closure can be established by choosing the right building blocks
Multiplicity X Di�erent descriptions may lead to symmetrically identical struc-

tures
Modularity X Building blocks form perfect examples of modular elements
Complexity ◊ The modularity and limited variety of building blocks limits

complexity

Kawamoto [19] chose a slightly di�erent path for the solution space’s discretization. By using
a truss-based ground structure (figure G-3), he limits the solution space to designs that can
be represented by the grid. He then continues to use a graph-theoretical enumeration method
and combines them with further design constraints to come up with a finite set of possible
topologies for the required mechanism. Representing mechanisms on such a grid has similar
merits to the building block approach: the total number of possible designs is brought down
to a manageable number, allowing for an exhaustive search for the global optimum. When all
nodes in the grid are connected to all other nodes, one can speak of a full ground structure, as
used in 3D by Frecker et al. [110] . When nodes are only connected to neighboring nodes (as
in Kawamoto’s example), one may speak of a partial ground structure. Its characteristics are
tabulated in table G-3.

The truss-based ground structure representation is not dependent on user-defined building
blocks and therefore allows for more creative freedom in the structures it produces. However,
this representation only provides topological information. As a result, it is not possible to
perform parallel optimization of the topology and other parameters, like beam thickness or
density of materials: it lacks in comprehensiveness.

Zhou [20] used a more comprehensive representation, which allows for a limited version of
parameter optimization. In his research, spanning tree theory is utilized to detect and remove
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Figure G-4: Example of structural universal and resulting mechanism topology, edited from [20].

Table G-4: Characteristics of Zhou’s [20] representation

Characteristic Yes/No Reasoning
Completeness X/◊ The use of pre-defined building blocks limits the total solution

space. The parameter tuning however increases Completeness.
Closure X/◊ Constraints are required for closure
Multiplicity X Di�erent descriptions may lead to symmetrically identical struc-

tures
Modularity ◊ Elements are not repeated in modular fashion
Complexity ◊ The limited number of variables limits complexity

any invalid disconnected topologies. He then proceeds to describe the topology in a bit string,
specifying beam thickness for each possible beam within the ground structure, referred to by
Zhou as the structural universal. Beam thicknesses are specified by a two-bit bit-string, which
limits the possible thicknesses to a set of 4 distinct values, of which one must be zero. His
representation also allows for the designer to select a number of flexible nodes of which the x
and y coordinate can be varied to induce a variety of beam lengths. Again, only four distinct
values can be chosen from, as the coordinates have to be described by a two-bit element.
Finally, all two-bit elements are concatenated into a (4n + 4i)-bit string, with n the number of
connections in the structural universal and i the number of flexible nodes.

Zhou’s approach allows for parallel optimization of topology and beam parameters. The
resulting designs are highly dependent on the designer’s input, as a designer still has to
determine the possible beam parameters, number and position of flexible nodes and most
importantly the shape of the structural universal. Zhou for example uses the structural
universal from figure G-4 to create the mechanism right of it. The figure clearly shows how
the choice of structural universal has impacted the final design. A characterization of Zhou’s
approach is given in table G-4. Cao et al. [111] expanded this approach by adding compliant
links and joints to the equation. By doing so Zhou’s representation’s applicability is extended
to the design of compliant mechanisms, rigid body mechanisms and hybrid solutions.

A density-based representation has been used extensively in topology optimization and
generative mechanism design, for example by Ansola et al. [21], Saxena and Ananthasuresh [22].
Density based representations use an entirely discretized solution space, in which each sub-
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Figure G-5: Example of continuum structure and a possible mechanism represented by the
structure

Table G-5: Characteristics of density-based representations

Characteristic Yes/No Reasoning
Completeness X/◊ The solution space is limited in size and discretized in nature.

This limits the completeness, although by choosing fine meshes
it is possible to minimize this limitation.

Closure X/◊ Constraints are required for closure
Multiplicity ◊ Descriptions can lead to one, and only one, unique solution
Modularity ◊ Elements are not repeated in modular fashion
Complexity X/◊ Complexity may rise as mesh becomes more and more refined

domain is assigned a density value. An example of such a solution space is shown in figure
G-5. Material is distributed over the solution space’s continuum structure by assigning each
sub-domain (square) a binary density value: 0 or 1. Intermediate density values may also
be used, but their physical interpretation is unclear. Research has been performed on the
use of such intermediate ’grey’ density values, which may result from optimization processes.
In such cases Heavyside step functions may be applied to project grey values onto binary
density values [112] and intermediate values may be penalized as in the Solid Isotropic Material
Penalization (SIMP) method [31]. The visual representation shown in figure G-5 can easily
be converted into a matrix or integer string containing densities. Density-based solutions are
characterized in table G-5.

By using discretized solution spaces, the total number of solutions decreases from infinite to a
manageable number: Kawamoto [19] was even able to find the global optimum by assessing
all possible configurations. Secondly, discretized solutions can facilitate the use of building
blocks who’s sti�ness matrices are determined in advance, making performance analysis of the
resulting global mechanisms computationally cheap. Since optimization algorithms usually
perform such analyses in each one of many iterations, low cost of analysis can be an important
advantage of the building block approach.

Unfortunately the discretized representations share a large dependence on designer input,
whether it is in the form of building blocks or structural universals. As a result, they do not
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Figure G-6: Example of a tree-like flow chart, edited from [1].

facilitate maximal creative freedom. Also, their comprehensiveness is not su�cient by default.
Except for Zhou’s [20] approach, the described representations did not allow the inclusion of
parameters other than the mechanism’s topology.

G-3-2 Tree representation

Lispson [1] proposed a tree representation to describe a series of operations resulting in a unique
kinematic chain. When drawing these operations in a schematic manner, the resulting overview
resembles a tree as shown in figure G-6. Lipson distinguished only two di�erent operators:
the T and D operators. Lipson [1]: "The D operator creates a new node and connects it to
both the endpoints of a given link, essentially creating a rigid triangular component. The T
operator replaces a given link with two links that pass through a newly created node." The
tree representation o�ers optimization algorithms an open design space, in contrast to the
representations in section G-3-1.

Lipson proposes two di�erent approaches to the tree representation: top-down and bottom-up.
The top-down approach describes a kinematic chain by using a simple and set initial design
and prescribing series of T and D operations on members of this mechanism, slowly increasing
its complexity. The initial design, referred to as embryonic mechanism can be transformed
to an arbitrary mechanism whilst retaining a constant number of degrees of freedom. In
the bottom-up approach, the tree’s leaves are the starting point. The starting point for this
approach is a dyad for each tree at the far end of the tree. These dyads, named atomic building
blocks, are hierarchically assembled into a single complex mechanism going up the tree whilst
keeping the total number of degrees of freedom constant by merging of point pairs. Figure
G-7 shows both variations of the tree representation.

Both approaches keep the total number of degrees of freedom constant throughout the process,
which is no coincidence. Lipson found most conventional representations (graphs, see section
G-3-4) would tend to generate over-constraint, deadlocked mechanisms. His tree representation
was developed around a constant number of degrees of freedom requirement. The resulting
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(a) Top-down approach. (b) Bottom-up approach.

Figure G-7: Lipson’s top-down (left) and bottom-up (right) approaches describe the same
mechanism using di�erent starting points and subsequent sets of T and D operations. Edited
from [1].

tree representation allows for optimization algorithms to explore the space of solutions without
over or under constraining the mechanisms.

By selecting the embryonic or atomic building block(s) a mechanism can be fully described by a
tree of T and D operators and the according local coordinates for the new node. Unfortunately,
however, the proposed method only allows for the use of links and rotational hinges. As a
result, it can only be used for kinematic chains. Even though kinematic chains can be powerful
tools in path-generation, no springs or other higher-level components can be incorporated
and no dimensional parameters are available for optimization. This limits the use of the tree
representation to kinematic objectives only, limiting its comprehensiveness and with that the
creative freedom this representation o�ers. A formal characterization is o�ered in table G-6.

Table G-6: Characteristics of the Tree representation

Characteristic Yes/No Reasoning
Completeness ◊ The operators only allow for a subset of the total solution space

to be described.
Closure X The resulting structure is always feasible
Multiplicity X Di�erent descriptions may lead to identical structures
Modularity ◊ Elements are not repeated in modular fashion
Complexity ◊ The limited number of operators limits complexity, also the

constant DOF formulation automatically prevents conceiving of
under- or over-constrained mechanisms.

K.M. Vermeer Master of Science Thesis



G-3 Representation of mechanisms in the computer domain 87

Figure G-8: Example of level-set function with iso-line. By adapting the iso-line level, or changing
the level-set function, di�erent material distributions may be described. Image courtesy to
Wikimedia Commons.

Table G-7: Characteristics of level-set methods

Characteristic Yes/No Reasoning
Completeness X Level set functions can describe, or closely approximate, all

sorts of planar mechanisms
Closure X/◊ Constraints are required to ensure feasible designs
Multiplicity X/◊ Di�erent combinations of level-set functions and height-levels

may cause multiplicity, requiring measures to counteract this
Modularity ◊ Elements are not repeated in modular fashion
Complexity X/◊ Level-set functions are simple by default, but reverse-engineering

of a level-set function description from a given design is di�cult

G-3-3 Level-set methods

Introduced by Sethian and Wiegmann [23], level-set methods are alternatives within topology
optimization to the density-based approaches mentioned in section G-3-1. In level-set methods,
a function’s iso-line is used to describe material distribution. Image G-8 shows how an iso-line
is used to determine material distribution (the grey portions). Adapting the iso-line level
changes the material distribution, as well as changing the level-set function. Even though
research into this subject is relatively young, starting in 2000, already a large number of papers
has been written on this subject, of which a structured reviews was given by Van Dijk [24].

Using level-set methods, smooth material boundaries can be drawn. By superimposing several
local level-set functions, complex iso-lines including holes and multiple pieces can be achieved.
Determining the right function for a specific design is however di�cult. A characterization
overview is given in table G-7
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Figure G-9: Example of an extended graph and the compliant mechanism it represents, reproduced
from [25].

G-3-4 Graph theory

As mentioned in the introduction, Freudenstein and Dobrjanskyj [104] introduced graph theory
to represent kinematic structures in 1966. Since then it has been used prolifically in generative
mechanism design [15,19,25–29,37]. Basic graph theory has been extended to include extra
information on link and hinge types [25] and matrix and bit-string representations [15] have
been developed.

In early graph representations [113] links were represented by edges and joints by vertices,
such that a graph would resemble the mechanism it represents. Dobrjanskyj soon changed
this method and flipped the convention, representing links by vertices and joints by edges, as
present in [114]. The resulting convention results in simpler graphs, but unfortunately also
removes the visual resemblance between a graph and the mechanism it represents [29]. As
such, both conventions still have their specific uses. For the remainder of this paper, the latter
convention is adopted, in which links are represented by vertices and joints by edges.

The basic graph has been extended by the use of edge and vertex labels [15,108] as to distinguish
between di�erent types of joints and links. Murphy et al. [25] proposed the extension of graph
theory towards the inclusion of compliant members. By using labels, he created the possibility
of inserting clamped connections and flexural pivots as joints (edges) and both compliant and
sti� members as links (vertices). Each link is labeled with its segment compliance sc, which is
determined by the number of variables needed to describe the segment’s motion on one end
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when the other is fixed. Figure G-9 shows an exemplary graph using both vertex and edge
labels to describe a compliant mechanism.

Graphs are systematic representations of mechanical systems and are therefore convenient
in the enumeration and synthesis of mechanisms. For computerized synthesis however, a
transformation into the numeric domain is required. In literature the means to this end is
found in di�erent types of matrices, sometimes transformed even further into bit-strings for
DNA-like encoding of genotypes [26].

The most commonly used matrix representation of graphs is found to be the adjacency matrix.
Tsai [115] defines the vertex-to-vertex adjacency matrix A for v vertices as:

ai,j =

Y
]

[
1, if vertex i is adjecent to vertex j,

0, otherwise (including i = j),

Z
^

\ (G-2)

where ai,j denotes the (i, j) element of v ◊ v matrix A. By definition, A is symmetric and has
zero diagonal elements. Using the matrix, a fully defined unique graph can be reconstructed.
The same can be achieved using an edge-to-edge adjacency matrix. The adjacency matrix is
label-dependent, since the position of columns and rows follows from a graph’s labeling order.
In literature the adjacency matrix has been used extensively, examples of which are found
in [25,27,106].

Another popular choice of matrix [15,26] is the incidence matrix. This matrix describes the
vertex-to-edge relations, with v vertices and e edges in a v ◊ e matrix B. Again referring to
Tsai [115] for a definition of B:

bi,j =

Y
]

[
1, if vertex i is an end vertex of edge j,

0, otherwise

Z
^

\ (G-3)

The incidence matrix is has two non-zero entries in each column, since every edge connects two
vertices. Likewise the adjacency matrix, each incidence matrix fully describes a unique graph.

Some authors define their own matrices by adapting an incidence or adjacency matrix.
Murphy et al. [25] proposes the use of an extended adjacency matrix in which part of the
parameterization is included in the matrix. The zero elements on the diagonal a(i, i) are
replaced with the segment compliance sc of the ith link. The resulting matrix is referred to as
the compliant element matrix (CE). Secondly, Murphy et al. propose to substitute the nonzero
non-diagonal elements in the CE matrix for a joint-type indicator integer. The conventions
are summarized in G-4.

CEi,j =

Y
________]

________[

sc(i), if i = j,

3, if sgement i and segment j are connected with a kinematic pair,
2, if segment i and segment j join are connected with a flexural pivot,
1, if segment i is clamped to segment j,

0, otherwise

Z
________̂

________\

(G-4)

Kuppens [15] created another specialized representation using graphs. He proposed to use an
incidence matrix and label both axes to determine the edge type (hinge or spring) and vertex
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Table G-8: Characteristics of the extended graph representation

Characteristic Yes/No Reasoning
Completeness X Using extended notations, a complete representation can be

obtained
Closure X By imposing the right constraints, closure can be ensured
Multiplicity X Di�erent descriptions may lead to identical structures
Modularity ◊ Elements are not repeated in modular fashion
Complexity X Graphs can become very complex and varied

type (mass or ground). For optimization reasons, Kuppens also proposed to systematically
enumerate the possible distributions of the two nonzero entries in the incidence matrix’ columns.
By doing so, Kuppens was able to describe each unique column configuration with an unique
number. The resulting description of a graph consists of a set of integers instead of a full
matrix, resolving a lot of dimensionality problems when pairing mechanisms of di�erent sizes
and complexities in evolutionary optimization. Staal [26] also uses an incidence matrix, but
proposed the use of a directed graph: using 1 and -1 as nonzero entries in each column, she
was able to capture the to-and-from direction of the links. No clear advantage over the use of
an undirected graph was shown. Both Kuppens and Staal combined topology, represented
by a graph, with parameter strings to allow for parallel optimization of both a mechanisms
topology and the parameters of its elements.

As mentioned earlier, a graph describes a unique mechanism. This is, however, not true in the
other direct: a unique mechanism can be described by several graphs. This behavior is coined
isomorphism and forms a challenge in the enumeration of unique mechanisms, as seemingly
di�erent graphs depict the same mechanism, although labeled in a di�erent order. Tsai [115]
describes several ways of detecting isomorphism. Detection and removal of isomorphic graphs
is applied widely [15, 19, 25, 27, 28, 106] as it may reduce the number of feasible designs
considerably without reducing creative freedom. Reduction factors can in the order of 104 are
not unheard of [15].

The use of graph theory is a popular choice in literature and not without a reason. Freuden-
stein’s distinction between a mechanism’s structure and function defines the limited possibilities
of a simple graph: it solely describes the structure of a kinematic chain. By the extensive
use of labeling and the exploitation of matrix characteristics [25] graphs can be extended to
contain more functional parameters. When extended notations like those of Kuppens and
Staal are considered, the comprehensiveness of graphs can be increased to any desired level. In
principle, the use of graphs does not require any restrictions from a designer and therefore has
complete creative freedom. It must be noted however that creative freedom may be restricted
bye prescribing the number of vertices and edges to use. A formal characterization of extended
graphs is given in G-8.

G-3-5 Conclusion

The characterizations of di�erent representations can be compared to one another using the
overview in table G-9. The characterizations have been scored systematically with respect to
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Table G-9: Overview of characteristics per representation. Building blocks, truss-based ground
structures, Zhou’s [20] approach, density-based approach, Lipson’s [1] decision tree, level-set
methods and extended graphs.

Characteristic BB Truss Zhou Density DT LSM Ext. graph
Completeness ◊ ◊ X /◊ X /◊ ◊ X X
Closure X /◊ X X /◊ X /◊ X X /◊ X
Multiplicity X X X ◊ X X /◊ X
Modularity X X ◊ ◊ ◊ ◊ ◊
Complexity ◊ ◊ ◊ X /◊ ◊ X /◊ X

Table G-10: Scores and classifications per representation Building blocks, truss-based ground
structures, Zhou’s [20] approach, density-based approach, Lipson’s [1] decision tree, level-set
methods, graphs and extended graphs.

Value BB Truss Zhou Density DT LSM Ext.graph Weight
CF -3 -3 2 2 2 3 3 3
Comp. 0 1 2 2 3 3 4 2
Optim. 2 3 -1 0 1 -2 -3 1

Score -7 -4 9 10 13 13 14
Class - - +/- + + + +

the three core values. The relation between each characteristic and value has already been
established in table G-1.

The X, ◊ and X/◊ symbols in table G-9 have been replaced by numeric values 2, -1 and
1. Subsequently each representation’s characteristics have been multiplied with -1, 0 or 1,
according to the -1, ¶ and 1 from table G-1. This results in a score per value, shown in table
G-10. In accordance with the method ( G-2-1), weights are assigned to the values and the
final score is determined as the weighted sum of value-scores. The numeric scores are classified
according to equation G-1. The result show a close top-4 in which density methods, decision
trees, level-set methods and extended graphs seem suitable for use in generative design. From
the discrete methods, Zhou’s approach also receives a relatively positive scores and may be
taken into consideration for use in a generative design algorithm.

G-4 Optimization algorithms

Smart mechanism design, whether for compliant or rigid-body mechanisms, requires an
e�ective algorithm to search for the best design possible. Such algorithms, often referred
to as optimization algorithms, are widely spread throughout all sorts of engineering fields.
Within the context of generative mechanism design, Frecker et al. [110] and Mankame and
Ananthasuresh [116] used variations of a technique called ’Topology Optimization’, whereas
Bernardoni et al [17] and Kuppens [15] applied an ’Evolutionary Algorithm’. The first sections
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of this chapter will go in to the distinctive features of optimization algorithms and introduce a
number of algorithms that could be used for generative mechanism design. As an extension,
the topic of Machine Learning is covered in the last section and its potential for generative
mechanism design discussed. Finally all results are summarized in a comparison table (G-16).

G-4-1 Optimization algorithms

A vast amount of optimization algorithms have been developed over the past decades, all with
their own merits and applications.
An important distinction between the di�erent optimization algorithms can be found in their
use of gradient information. Generally in optimization an objective function f(x) is minimized,
using the decision variables xi to do so. Basic optimization algorithms, referred to as Direct
Search algorithms by Hooke [117], search an optimum by evaluating the function value f(x)
many times and changing search direction every time a local minimum is found. More involved
approaches, like the Gradient Descent approach, also incorporate the first derivative of the
objective function with respect to the decision variablesxi. The gradient is used to determine
the optimal search direction for a given point in the objective-space. Algorithms using the
first derivative of the objective function are referred to as first-order algorithms. Second-order
algorithms also exist [118], which use both the first and the second order derivative of f(x)
with respect to x, like Newton’s method.
The di�erentiability of the objective function f(x) is important, since it determines the
compatibility of certain design problems and algorithms. Objective functions may not be
analytically di�erentiable, in which case computationally expensive numeric gradients are
required, or may use discrete variables in which case gradient-based optimization algorithms
cannot be used at all. In the case of generative mechanism design, objective functions are
typically subject to discrete variables and therefore non-di�erentiable. This limits the scope of
usable algorithms severely, explaining why in literature only two di�erent algorithms can be
found.

G-4-2 Optimization algorithms in Generative Mechanism Design

The most frequently used optimization techniques in generative CM design can be categorized
as Topology Optimization (TO) . Topology optimization, as introduced by Bendsoe [30] in
1988, determines the optimal topology and shape of a structure for a specific objective. Most
TO routines use a density-based approaches like the homogenization method [30] and SIMP
method [31]. In such approaches, a material distribution is determined within a discretized
design space. The distribution can be discrete, such that each element is either filled with
material or not, or continuous, such that a range of densities can be assigned to each element.
The elements are analyzed using FEA, as introduced in section G-5-3. A comprehensive
overview of continuous density-based approaches is given by [119]. Alternatively, the level-
set approach can be applied. This approach implicitly describes the geometrical material
boundaries using the iso-contours of a specified function: the level-set function. An extensive
review on this subject is given by Van Dijk [24].
Besides TO, evolutionary algorithms have been applied to mechanism design. Bentley [120]
defined evolutionary algorithms (EA) as the overarching definition for genetic algorithms
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(GA), evolutionary programming (EP), evolutionary strategies (ES) and genetic programming
(GP). GA were first introduced by Holland [32] and emulate nature’s evolutionary forces
of selection, combination and mutation to fulfill their objectives in all sorts of engineering
fields. EA is clearly inspired by nature and uses terms and theory from biology to describe
the optimization process. Solutions (’individuals’) are formally described by a bit string
(’genotype’) to encode their phsycial appearance (’fenotype’) and are part of a larger group
(’population’). The performance of solutions is improved by simulation of nature’s mating
behavior: new individuals are created by recombination of existing genotypes. A stochastic
merit order is applied, providing strong genes with the best chance of reproduction. By
introducing random variations in the genotypes, new search directions are opened up for
investigation.
An important notion in EA is that of exploitation versus exploration [121]: by selective
reproduction the traits of strong individuals are exploited and developed, by random mutation
and recombination the solution space is explored. As a metric, diversity is used, since it
decreases with exploitation and increases with exploration. Premature convergence to local
optima can be prevented by maintaining the right level of diversity in a population [122].
In the next sections, the specific relation between both optimization methods and generative
mechanism design will be treated. Both sections conclude by referring to the three core values
mentioned in section G-2-2: creative freedom, Optimization speed and Design compatibility.
Each section will end with a scoring table. At the end of this chapter, an overview table is
presented.

Topology optimization and generative mechanism design

TO is conventionally used to design structures. It is therefore primarily applied to design for
maximum sti�ness, minimizing weight in structures. Since TO results in monolithic designs,
it was not used in the generative design of conventional, multi-part, mechanisms. However,
as compliant mechanisms research developed, Ananthasuresh et al. [123] used TO to design
flexible structures by adapting the objective of the optimizer. Maximum sti�ness was no longer
the goal and replaced by one of the functional objectives presented in section G-5-2. Sigmund
subsequently designed compliant grippers with TO using a truss-structure discretization [124]
and Larsen et al. [125] used TO to design a compliant mechanism with multiple input and
output ports using continuous TO.
Sigmund [36] explains that conventional TO applications often rely on optimality criterion
methods to solve the TO problem. Such methods are very e�cient when taking into account
a large amount of variables to solve simple objective functions under only one constraint.
Sigmund however posed his compliant mechanism TO problem using a complex objective with
multiple constraints. He therefore resorted to a di�erent optimization algorithm, known as
sequential linear programming, or SLP.
Furthermore, Sigmund reports of two TO-related problems specifically important within the
context of mechanism design. First of all, TO using square elements is prone to ’checkerboard’:
optimal solutions showcasing alternated voids and filled elements in a checkered fashion.
Both Diaz et al [127] and Jog et al. [128] showed how kinematic constraints on the elements
resulted in checkerboard patterns with unrealistic high sti�ness. In the context of compliant
mechanisms, Yin and Ananthasuresh [11] showed how TO for minimal strain energy also
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Figure G-10: Example of numerical instabilities in TO. The same problem (a) is solved with
di�erent resulting solutions. Solution (b) shows a clear checkerboard. Between solutions (c) and
(d) only the number of elements was changed, clearly showing the optimizer’s mesh-dependency.
Image reproduced from [126]

stimulates checkerboard-like behavior in the form of point flexures with artificially low strain
energy. Secondly, Sigmund addresses the issue of mesh-dependency: TO results depend on
how the solution space is discretized. Both of these issues are depicted in figure G-10. They
can both be addressed by regularization. A sensitivity filter was introduced by Sigmund [36]
to perform this regularization. Deepak et al. [129] performed a comparison study with five
di�erent objective formulations to compare their design performance, numeric e�ciency and
handling of point flexures.

Looking at the core values, TO does not allow full creative freedom: the discretization limits
the design space and mesh-dependency makes the optimization dependent on human input. If,
however, computational cost would be no issue and meshes could be made infinitesimally fine,
then TO would allow for full creative freedom. Furthermore, optimization speeds in TO are
governed by the number of elements in the discretization and quickly drops as finer meshes
are used. Finally, TO is perfectly compatible with design objectives, as demonstrated [36,42].

Evolutionary algorithms and generative mechanism design

In literature, several examples [1, 15, 17, 26, 28, 40,106] are available of evolutionary algorithms
being applied to mechanism design. In these examples, EAs are applied on a population of
randomly initialized mechanism designs. The mechanisms are represented using a genome
string, which can take up di�erent forms. Kuppens [15] used a graph representation and
flattened it to a string by applying the schema theorem [130]. Lipson’s [1] based his genomes
on the issued decision tree operators. Bernardoni [17] built the genome out of 2-by-2 matrices
containing integers indicating building blocks.
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Table G-11: Characteristics of Topology Optimization

Characteristic Score Reasoning
Creative freedom X/◊ Topology optimization limits freedom by limiting and dis-

cretizing the design space. Furthermore, mesh-dependency
causes large dependence on human input. Only with large
computational power can these issues be overcome.

Optimization speed X/◊ TO requires FEA for each iteration. Especially with fine
meshes, this induces heavy computational costs and thus
low speed.

Design compatibility X TO is perfectly compatible with generative design as
shown in several examples

Table G-12: Characteristics of Evolutionary Algorithms

Characteristic Score Reasoning
Creative freedom X Evolutionary Algorithms are very robust and widely ap-

plicable. They therefore do not limit the creative freedom.
Optimization speed ◊ As a probabilistic method, evolutionary algorithms have to

run large numbers of iterations, limiting their convergence
speed.

Design compatibility X EA is perfectly compatible with generative design as
shown in several examples

Parsons [35] points out that EAs are characterized by the fact that they search the design
space using a population of solutions instead of performing point-search with only one solution.
Furthermore, they rely on the objective function rather than gradients and on probabilistic
rules, instead of the traditional deterministic rules [32]. As such, EA is very robust and
applicable in many situation: they are in general not limited by discontinuous search spaces,
or the non-existence of derivative information. Looking back at the core values of optimization
introduced in chapter G-2-2, EA’s robustness and versatility allows it to obtain maximal
creative freedom. The lack of gradient information and a deterministic approach however can
cause low convergence speeds. Finally, its compatibility with design challenges has already
been proven [1, 15]. An overview of the scores is shown in Table G-12.

G-4-3 Machine Learning

The field of Machine Learning originates from computer-science and has started to develop in
the 1950s with the first neural network, built by Minsky and Edmonds, and Arthur Samuel’s
checkers playing machine [5], demonstrated on television in 1956 (figure G-11).

An overview will be given of the three main functional categories that exist within the realm
of ML and their applicability to generative mechanism design. These categories are supervised,
unsupervised and reinforcement learning.
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Figure G-11: A 1956 television demonstration of Arthur Samuel’s Checkers program, played
against by Robert Nealey on the IBM 7094. Nealey lost from this milestone program. Image
courtesy to IBM.

Supervised learning

In Machine Learning, most applications are based on learning by experience. In such ap-
plications a machine trains by internalizing many examples, consisting of inputs and their
according outputs. During training, the machine develops a model of the relation between
inputs and outputs it witnesses in the examples. Subsequently, the model can be used to
predict outputs for new input data.

This type of training, requiring a large dataset of data with known inputs and corresponding
outputs, is called supervised learning. Such complete datasets are known as labeled data.
Examples of supervised learning are ample in image detection [54], tra�c-flow predictions [55]
and medical predictions [56]. The most important algorithms in supervised learning are
Support Vector Machines (SVM), Neural Networks (NN), Gaussian Process Regression (GPR),
Random Forests and linear classifiers like regression models.

Generally, a labeled data set is split in two parts: a training set and a testing set. During
supervised learning, the algorithm is trained on the training set and subsequently tested on
the test set. Since the test true outputs are known, the algorithm’s accuracy can be evaluated.

Supervised learning and generative mechanism design

Supervised learning algorithms are only feasible when large amounts of labeled data can be
made available. Within the context of generative mechanism design, such large datasets are
not ready available as-is. Theoretically, if large numbers of successful designs and objectives
were to be made available in a consistent format, generative mechanism design could be posed
as a supervised learning problem. Such a library however is not available as-is and is not
expected to be so within reasonable time.

Secondly, mention of creative freedom was made in section G-2-1 as a core value for generative
design approaches. However, supervised learning promotes learning based on existing examples.
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Table G-13: Characteristics of Supervised Learning in generative mechanism design

Characteristic Score Reasoning
Creative freedom ◊ Learning from examples limits creative freedom.
Optimization speed - No fair comparison can be made with regards to optimiza-

tion speed.
Design compatibility ◊ Posing generative design as a supervised learning problem

is di�cult if not impossible.

It is therefore unlikely, although not impossible, for a supervised learning algorithm to generate
creatively new mechanisms when it is trained on human-designed examples. Using supervised
learning therefore defeats one of the purposes of computer-aided generative mechanism design.
Furthermore, supervised learning is not compatible with generative design and can therefore
not be compared in terms of optimization speed. An overview of scores is given in Table G-13.

Unsupervised learning

Jain [57] distinguishes unsupervised learning by the absence of category information, or labels,
in the target data set. Even with the limited remaining information, unsupervised learning
algorithms are able to detect patterns and describe hidden structures in the data. Since no
labeled data is available, unsupervised learning’s accuracy cannot be evaluated quantitatively.
Unsupervised learning is mainly used for data clustering and anomaly detection. Data
clustering alone is being applied to a broad range of topics [57], ranging from character
recognition in handwriting [58] to customer segmentation for marketing purposes [59].

Unsupervised learning and generative mechanism design

Unsupervised learning, in contrast with its supervised variant, does not su�er from the lack of
creative freedom that learning from examples entails. Its main trait however is the unraveling
of patterns or structures in large amounts of data, which is unfortunately not available within
the context of generative mechanism design. Therefore, unsupervised learning will not be
applicable to generative mechanism design in the strict sense.
There may, however, be applications once a design algorithm is up and running and large
numbers of potential designs can be generated. In such a case, unsupervised learning may be
applicable for clustering the solution space and/or automatically remove anomalies resulting
from numeric instabilities.
The inapplicability of unsupervised learning to generative mechanism design makes a fair
comparison in terms of creative freedom and optimization speed impossible. Therefore a clear
’no’ can be assigned. An overview is given in Table G-14

Reinforcement learning

Reinforcement learning (RL) is decribed by Kaelbling et al. [34] as behavioral learning by
trail-and-error interactions with a dynamic environment. Sutton [60] gave an even more formal
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Table G-14: Characteristics of Unsupervised Learning in generative mechanism design

Characteristic Score Reasoning
Creative freedom ◊ Learning from examples limits creative freedom.
Optimization speed - No fair comparison can be made with regards to optimiza-

tion speed.
Design compatibility ◊ Posing generative design as a supervised learning problem

is di�cult if not impossible.

definition: ’Reinforcement learning is the learning of a mapping from situations to actions so
as to maximize a scalar reward or reinforcement signal’. RL can be applied when no labeled
data is available, but outputs can be given a measure of success. In such a case, a machine
can learn by taking actions, assessing the results and adapting its perceptions accordingly.
Through iteration, the machine can learn to take the right actions resulting in the highest
rewards.

Rewards play an important role in reinforcement learning. The machine’s goal is to maximize
its expected cumulative reward over (pseudo)time. Machine’s therefore take into consideration
the e�ect of their current move on their cumulative reward by making predictions of future
rewards [61]. Instantaneous rewards are usually valued more than possible future rewards,
which is referred to in literature as the problem of delayed rewards [62]. The trial-and-
error search and delayed rewards are the two most distinguishing features of reinforcement
learning [60] and make it suitable for sequential decision making.

Because of its distinctive character, RL finds applications in di�erent types of fields than
(un)supervised learning. Applications range from learning a robot to walk [63] to playing
ATARI games [64] and minimizing elevator waiting time [65].

Formalized description of RL

RL problems are usually posed in the form of a Markov Decision Process (MDP) [68]. MDP’s
are denoted with a tuple (S, A, P, “, R) containing five elements:

• S: a set of all possible states in which the actor may be.

• A: a set of actions the actor can take.

• P : the state transition probabilities. Psa(sÕ) gives the probability of transitioning to
state sÕ by performing action a in state s.

• “: the discount rate for future rewards.

• R: the reward function.

In an MDP, the actor starts out in a state s0 and takes an action a0. It transitions to state s1
under probability Ps0a0 . From this new state, it can take a new action and keep repeating
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this cycle. In each state, the actor receives a reward R(s). The expected accumulative reward
is subject to devaluation over time and is described by:

E
Ë
R(s0) + “R(s1) + “2R(s3) + ...

È
(G-5)

As equation G-5 shows, the rewards from future states are discounted for every time step t
with factor “t.

A set of defined state-to-action decisions is called a policy fi. fi maps S æ A. The expected
rewards of policy fi, starting in state s are described by V fi(s). V fi(s) can be solved [68,70]
for each state s by the set of Bellman equations:

V fi(s) = R(s) + “
ÿ

sÕœS

Psfi(s)(sÕ)V fi(sÕ) (G-6)

The right-hand side of equation G-6 can be seen as a mathematical operator T fi, mapping
V fi(sÕ) to V fi(s). The fixed point theorem [69] shows that V fi can be found by iteratively
applying operator T fi to a initial value function V .

In RL, the objective is to find a policy fiú that maximizes the value function V (s) by prescribing
the optimal action a for each state s, resulting in V ú(s). Again, V ú(s) can be derived by
applying T ú iteratively to an initial value function V (s). Once V ú(s) is known, fiú can be
computed. This method is coined value iteration [70].

Alternatively, one can apply a random initial policy fi and iteratively update the policy
until the optimum is found: policy iteration. In practice, value iteration is most commonly
applied [68].

In most applications, P and R are not known a-priori. In case of a limited number of
possible states and actions it may be su�cient to perform numerous trial runs, and estimate
the maximum likelihood state transition values Psa(sÕ) by inspecting how often actions a
in state s led to state sÕ. In practice however, the number of states is often continuous
and therefore infinite, like the length of a link or a sti�ness value. As such, the number of
states is inexhaustibly large and trials cannot cover them all. For low-dimensional problems,
applying discretization to the state-space may o�er solace. Unfortunately, this leads to
inaccuracies by assuming the value function V (s) constant over each discretization interval.
Secondly, the number of discretization points grows exponential with the state-dimension,
making discretization an unpractical solution for states with more than ¥2 dimensions. As
an alternative to discretization, one may use a model or simulations to perform the state
transition according to the transition probabilities. When no such model is available, one may
resort to fitted value iteration. In this method V (s) is sampled for a finite number of states,
e�ectively creating labeled data. Using a supervised learning algorithm, a function for V (s)
can be approximated.

Reinforcement learning and generative mechanism design

In generative mechanism design, fully described mechanisms will have to be generated at
some point and tested for performance. Such a process fits well with reinforcement learning’s
approach of trial and error, using the mechanism’s performance metric as reward signal. The
sequential character of RL, with series of actions and states, could be put to work by seeing
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Table G-15: Characteristics of Reinforcement Learning in generative mechanism design

Characteristic Score Reasoning
Creative freedom X Trial-and-error learning excludes every form of designer-

input.
Optimization speed X/◊ Reinforcement Learning is known as computationally ex-

pensive.
Design compatibility X/◊ Posing generative mechanism design as a sequential deci-

sion making process is uncultivated ground, although not
decisively impossible.

each completed design as one step along a trial-and-error road towards the optimal mechanism.
Alternatively, a sequential mechanism representation may be adopted, like Lipson’s [1] decision
tree approach in order to grow a mechanism whilst rewarding the algorithm with each new
decision.

In terms of creative freedom, Reinforcement learning is an excellent choice. By nature,
reinforcement learning algorithms develop intuiting and learn all by themselves, without any
designer input. This makes them as creatively free a can be. Secondly, reinforcement learning
is known a computationally expensive way of learning, and as such convergence speeds will
not be high. Finally, the largest challenge for reinforcement learning in generative mechanism
design will be its compatibility. Generative mechanism design is usually not a sequential
decision making process. Therefore the generative mechanism design might be posed in an
unconventional way to fulfill the requirements of reinforcement learning. As no proof points of
this approach are available, success can not be guaranteed.

In the past paragraphs, ML has only been introduced briefly. Detailed explanation of ML
techniques is beyond the scope of the current research. Interested readers are referred to [131]
and [132].

G-4-4 Overview

In the past sections, several optimization methods were addressed and reviewed within the
context of generative mechanism design. For evolutionary algorithms and topology optimization
examples from literature have been provided, proving their usefulness within the generative
mechanism design realm. An outreach towards machine learning has been provided, from
which unseen alternatives may arise. All five optimization methods have been scored on the
core values as introduced in section G-2-2. An overview of these scores is given in Table G-16.
The scoring convention from chapter G-2-2 has been adopted: 2 points for a X, 1 point for
a X/◊ and -1 point for a ◊. Weights have been provided in the table according to section
G-2-2. Missing scores, like the supervised learning score for Optimization speed, receive zero
points. The scores are classified according to the rules in G-1.
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Table G-16: Overview of characteristics optimization algorithms. TO = topology optimization,
EA = evolutionary algorithms, SL = supervised learning, USL = unsupervised learning and RL =
reinforcement learning.

Characteristic TO EA SL USL RL Weight
Creative freedom X/◊ X ◊ ◊ X 3
Optimization speed X /◊ ◊ - - X/◊ 1
Design compatibility X X ◊ ◊ X/◊ 2

Score 8 10 -5 -5 9
Class +/- + - - +/-

G-5 Modeling of compliant behavior

As described in the introduction, the generative design of mechanisms comprises of three major
steps: representing a mechanism in the computer domain, determining a mechanism’s behavior
and finally optimizing the mechanism’s design. The previous chapter gave an overview of
representation methods: the first step. In this chapter we create an overview of methods
for determining mechanism behavior by modeling its kinematics. The chapter starts out
with some background on compliant mechanisms, di�erent types of compliant structures and
possible optimization objectives. Sebsequently the two major categories of modeling methods
will be elaborated upon.

Compliant mechanisms are intrinsically di�erent from conventional mechanisms, most im-
portantly because of their inherent sti�ness and resulting force-deflection coupling. In his
book about Compliant Mechanisms, Howell [13] identifies several di�culties in designing
and analyzing CMs. Mainly, the compliant mechanism’s deflection as a result from applied
forces is dependent on the location and magnitude of the applied forces. Also, since most
compliant mechanisms display large deflections, linear beam does not su�ce for describing the
behavior of deflecting members. More complex descriptions involving elliptic integrals [133]
give accurate results for simple mechanisms, but become very involved for more complex
mechanisms. Implicit solutions are therefore adopted, which are introduced in the upcoming
sections.

G-5-1 Distributed versus lumped compliance

One of the major distinctions in compliant mechanisms can be made between distributed and
lumped compliance. The distinction is based on a mechanism’s e�ective source of flexibility: a
mechanism’s flexibility can be distributed along its members, like in bending beams, or it can
be sourced in specialized small portions of the mechanism. In the first case, one may speak
of distributed compliance, whereas the latter is referred to as lumped compliance (see figure
G-12).

In lumped compliance pivot points can be distinguished, which act as flexural hinges. Stresses in
such mechanisms are highly localized, limiting the allowed range of motion of such mechanisms
[11]. Still, many design synthesis exercises have resulted in such lumped compliance mechanisms.
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Figure G-12: (a) lumped compliance (b) distributed compliance. Reproduced from [39].

Yin and Ananthasuresh [11] explain that most synthesis methods produce lumped compliance
mechanisms because of their dependency on flexibility-sti�ness formulations. By using these
formulations, the strain energy is minimized during the optimization process. Strain energy
will be lowest when using revolute joints, since they generate large motion with zero strain
energy. Optimization algorithms therefore exploit the revolute joint behavior in order to
achieve maximum displacement while minimizing strain energy by lumping all compliance
in a number of flexure hinges. Design of flexural pivots has been, and still is, researched
extensively [134, 135] and pseudo-rigid-body-models of lumped compliance using torsional
springs have been proposed by Howell [92].

Hetrick [41] proposed the use of stress-constraints in order to force solutions to adopt dis-
tributed compliance over lumped compliance. Yin and Ananthasuresh [11] proposed an
alternative algorithm, introducing a new objective function that appreciates uniform deforma-
tion throughout the structure. The algorithm constraints the local relative rotations in the
structure, penalizing the use of concentrated compliance.

G-5-2 Design objectives in compliance

An important notion in compliant mechanism design are the contradictory goals flexibility and
sti�ness. Flexibility is desired in order to create structures that can achieve large deflections
when actuated. Sti�ness however is also required to retain structural integrity of the mechanism
and withstand reaction forces stemming from its application. Therefore, compliant mechanism
design requires consideration of multiple objectives [35].

Flexibility in compliant mechanisms is described by a mechanism’s mechanical advantage, as
proposed by Sigmund [36]:

M = Fo

Fi
(G-7)

This metric characterizes the way a mechanisms translates an input displacement ui, as the
result from input force Fi, into an output displacement uo with the resulting output force Fo.
Mangesha and Lu [37] use the mechanical advantage’s geometric counterpart: the geometric
advantage or GeoA (G-8) when describing the performance of a specific compliant mechanism.

GeoA = uo

ui
(G-8)
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When synthesizing compliant mechanisms, maximization of these advantage metrics can be
used as design objective, as in [36] and [37]. In other applications, the input motion is fixed
and as such the absolute output motion itself can be optimized for [20], instead of a ratio. In
all of these single-objective optimizations, the sti�ness objective is implicitly introduced as a
constraint during optimization.
Shield and Prager, in 1970, [38], introduced the concept of Mutual Potential Energy (MPE):
the potential energy of a structure subjected to two di�erent sets of loadings. Frecker et
al. [110] applied MPE to compliant mechanisms: the external forces being the first load and a
dummy load in the direction and position of the prescribed displacements being the second. In
doing so, the MPE becomes a measure for the structure’s flexibility. Ananthasuresh and Kota
applied this metric to the synthesis of compliant mechanisms in 1994 [123], while applying
constraints to ensure the required structural sti�ness.
Ananthasuresh proposed to use the total strain energy (SE) in the system as a measure for a
CM’s sti�ness: the more strain energy in the mechanism the lower its sti�ness. Ananthasuresh
proposed a multi-criteria optimization method, using a weighted linear combination of the
objectives, to find solutions with maxium MPE and minimum SE. Unfortunately, the absolute
values of both objectives can be of totally di�erent orders, leaving one of the two to dominate
over the other. Finding the right weight factors to balance the objectives has shown to be
di�cult and cannot be generalized. Frecker et al. [110] therefore propose an alternative in
which the ratio between MPE and SE is maximized. Saxena and Anantasuresh [22] extended
the ratio with powers m and n, as in equation G-9.

MPEm

SEn (G-9)

Others, like [40, 116], searched for the optimal CM to for path generation, minimizing the
least-squares error function as their objective.
Elastic deformation in compliant mechanisms cause changes to its kinematic characteristics.
The mechanical advantage of a CM will however remain relatively constant when a CM’s
internal strain energy is lowered as shown by Salamon and Midha [136]. Hetrick and Kota [41]
therefore proposed an alternative, energy-based approach. By minimizing the internal strain
energy during parameter optimization, they provided "near-constant kinematic properties
while operating under a broad range of input deflections and external loads."

G-5-3 Simulating kinematics in optimization context

During optimization, the performance of candidate-mechanisms needs to be evaluated. Thus,
its kinematics have to be determined. The kinematics of mechanisms are very di�cult to
capture in exact analytical expressions. Fortunately, alternative approximate solution methods
are available. In literature, two distinctive approaches to the modeling of compliant kinematics
are being used extensively: the Finite Element models and Pseudo-Rigid-Body models.

Finite Element Analysis

In literature, a large portion of all compliance modeling is performed using Finite Element
Analysis (FEA), also known as Finite Element Method (FEM) [17, 20, 37, 39–42]. In this
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Figure G-13: Example of Finite Element Analysis of beam. The beam is meshed in cube-shaped
elements. Displacements, stresses and strains are subsequently calculated for each cube and
combined. Image courtesy to http://www.codedevelopment.net/3dbeam_brick_sm.html.

method, a continuous structure is modeled as a collection of discrete elements of finite length.
Elements can be of all shapes and sizes, but are usually geometrically simple shapes like beam
and bar elements. When performing the analysis, the behavior of each separate element is
determined by solving the partial di�erential equations governing elastic deformation. The
equations are solved exactly in a set of precision points, referred to as nodes, and interpolated
using shape functions throughout the structure. As long as the element sizes are small, a
pseudo-continuous motion from loading can be modeled.

Linear and non-linear FEA

Within Finite Element Analysis, a major distinction can be made between linear and non-linear
FEA. The di�erential equations governing elastic deformation are captured by the deceptively
simple looking equation G-10.

Kd = f (G-10)

In this equation, K is the sti�ness matrix, d the displacement vector and f the force vector.
When forces and sti�nesses are known, the displacement can be calculated using the inverse
sti�ness matrix K

≠1. The sti�ness matrix can be determined for every separate element.
The elemental matrices can be assembled into the object’s overall sti�ness matrix K. This
approach is referred to as the direct sti�ness method and is used in most commercial FEM
packages. It was first introduced by Turner [105]: Boeing’s head of the Structural Dynamics
Unit.

In linear analysis, one assumes linear sti�ness behavior in the elements. In that case, the direct
sti�ness method can be applied to find K, which can subsequently be used for the rest of the
analysis. As such, K is constant and only needs to be computed once. This type of linear
FEA is computationally inexpensive and will take no more than a few minutes to execute,
even for very large shapes [137].

In reality however, several reasons exist for which sti�ness values can significantly change
throughout analysis: Geometrical nonlinearities may occur when loading results in large
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deflections, material nonlinearities may occur when strains surpass the linear elastic region
in their stress-strain curve or nonlinear sti�ness behavior could result from contact stresses
resulting from displacements [138]. In all these cases, the sti�ness matrix requires updating
throughout the analysis, requiring an iterative approach towards a solution. When this is the
case, one speaks of nonlinear FEA. Nonlinear FEA is much more computationally expensive,
since the sti�ness matrix K and its inverse K

≠1 need to be re-calculated in every iteration.
The use of linear FEA may be perfectly justifiable when nonlinear e�ects are minimal, for
instance when no contact stresses can occur and deflections remain relatively small. When
designing compliant mechanisms however, large deflections will be present and so may be
contact stresses. Therefore, linear FEA can not be used for compliant mechanisms [139].
Mentioning of FEA in this report should always be read as nonlinear FEA, except for when
explicitly mentioned otherwise.

FEA in generative compliant mechanism design

Finite element analysis is used on a wide-scale in combination with truss-based ground
structures or cellular micro-structures, usually referred to as topology optimization and
first applied to compliant mechanisms by Ananthasuresh [123]. In topology optimization, a
compliant mechanism is synthesized on a ground structure and subsequently modeled using
FEA. The resulting kinematic behavior forms the basis for a qualitative assessment of the
mechanism and is, as such, an important input for the optimization algorithm.
Finite element analysis determines a mechanism’s behavior based on elementary deformation
theory, usually applied on a large number of elements. Since FEA models loading behavior
based on fundamental physical principles, it captures compliant behavior well and requires no
upfront knowledge of compliance in order to run a simulation. This makes FEA a versatile
method, but also implies high computational cost. Engineers should therefore be aware of the
method’s limitations and choose parameters, such as element type and size, wisely.

Pseudo-rigid-body models

As early as 1996, Howell and Midha [43] wrote that ’the design of mechanisms often requires
iteration between synthesis and analysis procedures.’ Analysis of compliant mechanisms proved
di�cult and timely, since no exact solution can be found and FEA approximations would
take a long time to run. Howell and Midha therefore proposed a new method in which a
compliant mechanisms is accurately modeled by an equivalent rigid-body mechanisms. This
so-called pseudo rigid body (PRB) method introduces all the well-known rigid-body mechanism
theory to be used in a compliant mechanism design context, including exact solutions and low
computational costs.
Howell and Midha distinguish between two classes of compliance synthesis: Rigid-Body
Replacement synthesis and Synthesis with Compliance.

Rigid-Body Replacement synthesis: kinematics only

Rigid-Body Replacement synthesis is the simplest of the pseudo-rigid body approaches and
su�ces when one is only concerned with kinematics. In Rigid-Body Replacement, a rigid-body
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Figure G-14: Example of pseudo-rigid-body models of well-known compliant members. (a) a rigid
link, (b) lumped compliance, modeled by a torsional spring, (c) continuous compliance modeled
by a spring and characteristic pivot. Reproduced from [43].

mechanism synthesis is performed to determine the geometry of the mechanism, after which
the structural properties of the flexible members can be chosen to meet the required stress and
loading behavior. The biggest challenge is to determine the appropriate pseudo-rigid-body
replacement mechanism. Also, validating design feasibility is an important aspect, since
mechanisms that are feasible as pseudo-rigid-bodies may become infeasible when translated
to a compliant mechanism. A well-known example of such an infeasible compliant design is
the inclusion of flexural pivots, modeled by hinges, deflecting more than a full rotation in the
rigid-body model. Constraints should be applied during optimization to prevent the arise of
such infeasible design.

Rigid-Body Replacement synthesis is the simplest of the pseudo-rigid body approaches and
su�ces when one is only concerned with kinematics. In this type of synthesis, mechanism
geometry is based on a rigid-body design. Rigid members can be substituted for flexible
counterparts to meet required stress and loading behavior. The main challenges in this
approach are the determination of the appropriate pseudo-rigid-body replacements and the
validation of design feasibility. The latter can be seen in a simple example: flexural pivots
may be modeled by hinges while the range of motion of a flexural pivot is limited compared
to that of a hinge. Therefore, constraints should be applied during optimization to prevent
the arise of infeasible design.

Synthesis with Compliance: kinematics and dynamics

Synthesis with Compliance is a more advanced pseudo-rigid-body method and takes dynamics
into account, as well as kinematics. The inclusion of dynamics enables Synthesis with
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Compliance to be used in more sophisticated design tasks, like input/output force amplification
or constant torque motion. By taking the energy stored in compliant members into account,
desired force, torque and energy characteristics can be specified upfront and designed for.
Matthew and Tesar [44] have presented such an extended synthesis method by giving analytical
formulations for the synthesis of springs in planar mechanisms in order to provide balancing
properties. Roth and Huang [45] presented a method for designing spring elements to match
known external forces. Such methods can be utilized in synthesis with compliance. More
recently, Pucheta and Cardona [46] applied synthesis with compliance to the design of bistable
compliant mechanisms, which can be stated as ’a position synthesis problem where the energy
storage characteristics are specified.’ Rosenberg et al. [47] use an energy approach to design a
PRB mechanism, which translates into a statically balanced compliant mechanism.

Pseudo-rigid-body models for lumped and distributed compliance

PRB models can be used to model both lumped and distributed compliance mechanisms.
Lumped compliance mechanisms use flexural pivots, which show close resemblance with spring
loaded hinges. Therefore, Howell [92] proposed the use of a torsional spring with sti�ness EI

l
as derived in beam theory [140]. The torsional spring replaces the flexural member and is
located at half it’s length.

For distributed compliance, more advanced PRB models are proposed by Howell and Midha [93].
In distributed compliance, a flexure bends like an end-loaded large-deflection beam, as depicted
in figure G-15a. The PRB model proposed by Howell and Midha is shown in figure G-15b.
The nearly-circular path of the large-deflection beam is approximated in the PRB by two
rigid links, joined in a spring loaded pivot. The torsional spring yields a non-linear sti�ness
characteristic to resemble the end-loading. The location of the characteristic pivot is chosen
such that the path of large-deflection beam’s endpoint is approximated during rotation. The
resulting factor between the location of the pivot and the beam length l is referred to as the
characteristic radius factor “. Together with the spring sti�ness, this is the most sensitive
design parameter. Howell and Midha [93] have developed an analytical framework for the
determination of the optimal design parameters and resulting approximation errors. Su [141]
extended Howell’s work by proposing a PRB model with three revolute joints, allowing accurate
approximation of deflections over 120¶ with characteristic radi “0=0.1, “1=0.35, “2=0.40 and
“3=0.15. Saxena [142] and Yu et al. [143] also extended the PRB model by including end
moments besides the end force.

G-5-4 Comparison between FEA and PRB

Both FEA and the PRB method can be used to analyse kinematics in a compliant mechanism.
There are however pros and cons to both of these methods in regards to the values described
in section G-2-3: Speed, Accuracy and Robustness.

Speed

FEM analysis loses speed when large numbers of elements are required for accurate modeling.
Computational time can be limited by choosing larger elements, or optimizing element size
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(a) End-loaded large-deflection beam.
Reproduced from [93].

(b) PRB model of distributed compliance.
Reproduced from [93].

across the mechanism, but loss of accuracy may be the result of such an action. Also,
lowering the number of elements makes the FEM prone to the exploitation of loopholes like
checker-boarding [42]. This mesh-dependent behavior is unwanted [36].

PRB models, on the other hand, are governed by a set of explicit equations and can therefore
be solved directly. Direct solutions are much quicker to compute than the implicit type of
solution FEA o�ers.

Accuracy

Using a FEM, a highly accurate analysis of the kinematics of monolithic compliant structures
can be achieved. Especially by choosing small elements, the e�ects of discretization become
negligible and the resulting model highly realistic. Furthermore, the accuracy is not dependent
on the design: in theory any compliant monolithic structure can be modeled and analyzed
with high accuracy, no matter the design.

Pseudo rigid body models can achieve high accuracies when applied correct. Howell and
Midha [93] report path approximation accuracies of over 99.5 % for large deflections (up to
77¶). They have provided parametric equations describing the beam end angular deflection and
load-deflection curves, as well as tables with solutions [93]. For complex mechanisms however,
requiring sequential PRB models, the inaccuracies start to add up. Secondly, high-accuracy
PRB models are available for certain elements only, like flexures and flexural pivots. When
more exotic monolithic shapes are being designed, accuracies become uncertain, or PRB
models might not even be available.

Versatility

The FEA method is very versatile, as long as computational costs are assumed workable. As
mentioned in the previous section, the e�ects of discretization become negligible as long as
elements are chosen su�ciently small. Assuming an infinitely strong computer, one could say
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Table G-17: Characteristics of FEA and PRB models for compliance

Characteristic FEA PRB Weight
Speed ◊ X 1
Accuracy X X 2
Versatility X ◊ 2
Score 7 4
Class +/- +/-

that using FEM every mechanism can be accurately modeled, independent of shape and size.
This is as close to the definition of versatility (section G-2-3) as one can get.

In the pseudo-rigd-body approach however, a library of rigid-body replacements of compliant
elements is used to simulate compliant behavior. In case of lumped compliance, with distinct
members, such a library is highly useful. This library however limits PRB to the use of
pre-conceived sub-structures when modeling a compliant mechanism. When exotic compliant
mechanisms, featuring distributed compliance and an organic shape, require analysis, the
accuracy of the library’s building blocks deters. As such, PRB is less versatile than FEM.

Conclusion

In a nutshell, FEM is more generally applicable and accurate, but is computationally very
costly. PRB models, on the other hand, are not as accurate in general as FEM, but are
computationally a lot more e�cient. As such, both methods have their merits and only in
combinations with optimization procedures and mechanisms representations will their be a
best pick.

The assessment given in the last paragraphs has been summarized and displayed in table G-17.
The weights are distributed according to the method described in section G-2-3.

G-6 Results

The current research has thus far centered around three subjects main subjects that need
combination in order to create an operational generative compliant mechanism design algorithm.
The three subject discussed are:

• Mechanism representations (chapter G-3)

• Optimization algorithms(chapter G-4

• Compliance modeling (chapter G-5)

For each subject literature has been studied and numerous solution alternatives have been
provided. These alternatives have subsequently been subject to evaluation as to determine
to what extent they address the core values stipulated in chapter G-2. Especially for the
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mechanism representations the core value scores spread out widely. In this final section, the
aim is to bring the separated information from chapters G-3 to G-5 together and create an
overview of synergies or incompatibilities between solution combinations. Together with the
core value scores of the mechanism representations, this overview should indicate the most
promising sets of combinations for generative mechanism design algorithms.

G-6-1 Overview table

To capture all three subject in a two dimensional overview, the mechanism representations and
compliance modeling methods have been combined. This results in 14 pairs of representation
methods and compliance modeling methods. Each of these combinations has been scored in
terms of synergy ranging from ≠ for a mismatch to + for synergistic combinations. Intermediate
combinations have been scored +/≠ and incompatibilities have been denoted with a ¶.

All 14 pairs have subsequently been combined with the selection of optimization algorithms
presented in chapter G-4. The resulting 70 combinations all received a similar synergy score.

In parallel, the individual scores based on chapter G-2’s values should be taken into account to
determine which combinations of solutions are both synergistic and endorsing the core values.

The resulting table is shown in table G-18.

Without going in to much detail, the granted synergy scores will be discussed in the following
set of short paragraphs. Each paragraph covers one horizontal set of scores: one for each
representation method. Supervised and unsupervised learning are not mentioned in these
paragraphs, since they are incompatible with all representations for reasons explained in
section G-4-3.

The building-block approach uses pre-defined building blocks, of which the kinematics and
dynamics are assumed to be independent and known. The kinematics and dynamics of
resulting mechanisms are determined by super-positioning principles, which is why two ’not
applicable’ ¶ symbols were inserted. Topology optimization methods (like SIMP) are not
applicable, since only building blocks can be selected. Reinforcement learning is not applicable
since no sequential decision making is occurs. Evolutionary Algorithms are a fitting choice,
since it can handle this type of discrete optimization and building blocks can be arranged in a
DNA string.

Truss-based grounds structures consists of numerous individual members, connected at distinct
nodes. Applying FEA can be as easy as handling every truss as an element. A pseudo-rigid-
body model does not benefit from this characteristic. The combination of FEA and TO is
a proven one and therefore assigned the highest value. Using EA is also possible, since the
description of a mechanism in a truss-based ground structure can be translated to DNA with
discrete optimization possibilities. In combination with PRB.

Zhou’s method is an extension of the truss-based ground structure. It therefore receives the
same type of scores in terms of synergies. However its score as a representation method
is higher than the truss-based ground structure’s, mostly because of the increased creative
freedom resulting from Zhou’s introduction of tunable parameters.

The density method is classically used in topology optimization. It requires a discretized
geometrical solution space, which makes it a great fit with FEA. Using the density methods,

K.M. Vermeer Master of Science Thesis



G-6 Results 111

Table G-18: Overview table of mechanism representations, compliance modeling and optimization
methods and their mutual synergies. Scores from individual analysis based on core values are
provided. Representations: BB = Building Block method, Truss is Truss-based ground structures,
Zhou is Zhou’s [20] method using a flexible truss-based ground structure description, Density =
density-based approach, DT = Lispon’s [1] decision tree description, LSM = level-set method, Ext.
graph = Extended graph representation, using labels to enhance comprehensiveness of graphs.
Sub-zero scoring optimization algorithms and mechanism representations have been grayed out.

Representations Compliance Optimization
+/- + - - +/-

Method Class Method Synergy TO EA SL USL RL
FEA ¶ ¶ + ¶ ¶ ¶BB -
PRB ¶ ¶ + ¶ ¶ ¶
FEA + + +/- ¶ ¶ ¶Truss -
PRB +/- - +/- ¶ ¶ ¶
FEA + + +/- ¶ ¶ ¶Zhou +/-
PRB +/- - +/- ¶ ¶ ¶
FEA + + - ¶ ¶ ¶Density +
PRB - - - ¶ ¶ ¶
FEA + ¶ + ¶ ¶ +DT +
PRB +/- ¶ + ¶ ¶ +
FEA + + - ¶ ¶ ¶LSM +
PRB - - - ¶ ¶ ¶
FEA +/- ¶ + ¶ ¶ ¶Ext. graph +
PRB + ¶ + ¶ ¶ ¶
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semi-organic shapes can be acquired instead of distinct members. This is a desirable option,
since it allows for creative freedom, but such organic shapes are di�cult to describe with PRB.

The decision tree algorithm is a special character in the family of representations. Mechanisms
are described by a string of subsequent decisions that transform a base shape into the desired
structure. The resulting mechanism consists of distinct members, making it a good fit with
FEA. The representation does not provide any sort of ground structure on which to perform TO,
which is therefore incompatible. EA can however be used, as Lispon [1] showed. Interestingly,
the decision tree representation is the only method that uses a sequential description, making
it the only good fit with reinforcement learning.

Representing a structure as an iso-line in level-set methods stems from the family of topology
optimization. It therefore logically fits well with FEA and TO. The resulting shapes from
LSM are usually organic, making it di�cult to model with PRB.

Finally, ther is the graph representation. Just as with DTs, this representation does not
provide any geometrical framework for TO and is therefore incompatible with it. Graphs can
be translated into DNA to work with an evolutionary algorithm, as shown by for example
Kuppens [15]. Since graphs describe distinct connections and members, they can be easily
modeled using PRB. In case of FEA, graphs have to be translated to a physical design,
discretized and analyzed: a cumbersome solution.

G-6-2 Promising combinations for generative design

Representation methods and optimization algorithms with sub-zero core value scores are
discarded as viable options for generative mechanism design and grayed out in table G-18.
Their synergistic values may still be valuable for use in other applications. From the remaining
unmarked rows and columns, several high scoring combinations can be found in table G-18.
In this final section, three possible combinations are extracted and their scores elaborated on.

Option 1: LSM + FEA + TO

The level-set method scored high on Creative Freedom because of its independence of any
predefined structure or size. As such, it has limitless freedom in determining a 2D shape for a
compliant mechanism. Since such shapes are most likely organic, finding a correct pseudo-rigid-
body replacement will be very di�cult. Using FEA however, such shapes can be meshed and
analyzed although computationally it may be challenging. Level-set representations are already
used in topology optimization, which is therefore a strong synergistic optimization strategy.
Relating the performance of a mechanism back to the level-set equation, and improving this
equation based on the mechanism’s behavior will be challenging.

Option 2: DT+PRB+EA/RL

The decision tree method, developed by Lipson [1], features mechanisms described by a series
of T and D operators in combination with some dimensionality parameters attached to
them. Since it creates mechanism with distinct members, compliant versions would be most
easily modeled using pseudo-rigid-body synthesis. Since each mechanism can be described
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with a bit-string (a series of operators and parameters), this method will work well with
Evolutionary Algorithms: the bit-string can serve as DNA for the evolutionary processes.
Besides evolutionary algorithms, a more innovative approach may be taken by exploiting the
‘subsequent decisions character’ of this representation in a reinforcement learning optimizer.
In such a machine learning approach, a machine learns through trial and error what series of
decisions, or operators, lead to an ideal mechanism for a pre-defined design goal. Reinforcement
learning has never been applied to this type of algorithm, which makes this both an exciting
and a challenging exercise.

Option 3: Ext. graph + PRB +EA

Thirdly, the extended graph representation scored highest on the core values, because of its
large creative freedom and comprehensibility scores. Graphs describe mechanisms as distinct
members, which fits well with the pseudo-rigid-body synthesis model. In literature, graphs
have been translated into integer strings [15], which are very well suited for use as DNA in
evolutionary approaches. Murphy et al. [25] have shown an example of how graph descriptions
can be extended to include compliant members. Alternatively, one could use the extended
graphs to directly describe pseudo-rigid-body mechanisms that can be optimized using an
evolutionary algorithm and finally translated to a fully compliant design by inversing the
pseudo-rigid-body synthesis procedure. In order to find truly great solutions, the EA will
have to be carefully conditioned in order to strike the right balance between exploration and
exploitation. This is identified as the largest challenge.

G-7 Discussion

The results from chapters G-3 to G-5 have been condensed into a single table G-18, from
which three promising algorithm designs were extracted. Interestingly, two out of the three
promising configurations break precedent on several issues. Most daringly, the use of level-set
methods and reinforcement learning in mechanism synthesis are both unheard of, even though
their resulting evaluation scores are high.

This can be explained by the method used in this research. The method proposes dividing the
large challenge of generative design into subproblems regarding mechanism representation,
numeric optimization and compliance modeling. Solutions for these subproblems have been
researched separately from the greater problem. As a result, solutions applied in other research
fields (other large problems) have been introduced in the context of the current research and
have shown to be promising. Further investigation will have to prove whether or not these
solutions can flourish in the current contextual atmosphere.

The current solutions are the result of thorough literature study. It is however possible that
solution directions have been accidentally overlooked. In case of such an event, the method
description allows other researcher to complement table G-18 in the spirit of this research
with new additions.

Coming to the research results, objective facts were used for subjective argumentation in
the evaluation of each and every method. The arguments found their basis in the values
described in G-2. The choice of values, even though they were selected based on a foundation
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of arguments, largely influence the evaluation decisions. The current method may be extended
for use in di�erent contexts by adapting the core values to the needs of the specific application
it is being used for.

The results in this research are obtained under certain assumption. Over time however, such
assumptions may no longer be valid and therefore the value of this research declines as it ages.
One major assumption is that no other and better alternative within each individual research
subject is available. In time however, new technologies may be developed that are much more
suited for (for instances) optimization of mechanism designs. Fortunately, such new methods
can be added to the overview in table G-18 and as such keep the research relevant. Also,
computational power has been assumed limited, whereas limits in this specific case seem to
fade quickly. If the cost of computational power keeps declining, the negative value associated
with it in this research should also decline, in which case several scores will need to be revised.

G-8 Conclusion

In this literature survey we have taken an in-depth look into a large number of methods and
techniques that can be used when developing a generative design algorithm for compliant
mechanisms. The methods and techniques have been clustered into three subjects: mechanism
representation, compliance modeling and optimization. Individual methods and techniques
have been scored within each subject based on a set of core-values for generative design
algorithms presented in chapter G-2. These scores have been collected and tabulated in
an extensive overview table (table G-18). The table’s interior is filled with synergy scores,
describing the potential of a certain combination of techniques. The scores should be taken
as qualitative assessments of each combination of methods. Designers of generative design
algorithms can profit from table G-18 in twofold: the value scores of individual methods
may be used to enforce designers in decision making on specific elements of their algorithms,
whereas the synergy scores may aid designers in selecting the final algorithm elements to
supplement their project.

Also, the method by which table G-18 has been constructed, and the argumentation used to
provide scores have been elucidated in this research. As such, the table is not only relevant at
the time of writing, but may be kept relevant by adding new evaluations of new technologies
in the spirit of the original research.

Besides the overview table (G-18) this research has also led to the extraction of three potential
generative design algorithms that break precedent and take the values presented in the method
(chapter G-2) into account.
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