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Chapter 1 

Introduction 

Within the ORTEC Oil&Gas department, a group called 'HCL' has been installed to 
deal with all problems concerning hydrocarbon logistics, which will be discussed in 
the chapter 2. This group (myself inc1uded) functions mainly as a contractor for the 
Shell Oil Company, department Shell International Oil Products (SlOP). 

Practically all of my work at ORTEC was based on a combination of two software 
systems, called Gemms and PlanStar. Gemms has been created by Shell, but since 
May 1996, it is being maintained and developed by ORTEC. It can create an LP­
matrix, give it to an LP-solver and, from the solution, deduce the best possible 
strategy of purchasing and processing crude oil on some oil-refinery, given all its 
market-requirements, refinery structure, transport possibilities, and so forth. PlanStar 
is used for Plannning-data Storage ~d ~etrieval, developed by ORTEC on contract 
for SlOP. Arnongst others, it can be used to maintain Gemms-related data in a 
relational database. Very briefly put, the combination of Gemms and PlanStar works 
as follows: with PlanStar, all relevant planning-data is maintained, from this data, 
input for Gemms is created and Gemms is run. Then, Gemms' ASCII-file output can 
be presented more user-friendly via PlanStar (which calls the Business Objects 
software system to generate reports). Most Shell-refineries which use Gemms for their 
refinery-planning, don't fully operate with PlanStar yet, since it has only just been 
re1eased. 

To gain some insight in the functionality of Gemms, a few aspects of its linear 
modeling are also described in the second chapter. The description is a small draft 
from a confidential document which was written for both ORTEC and SlOP, which 
holds a full descriptiop. ; Gemms' data-handling and matrix-generation. 

Gemms can only create linear modeis. However, some aspects in refinery-planning 
simply are nonlinear by definition. Some of those can be modeled by Gemms with 
penalty sequentiallinear prograrnming (PSLP). The user only has to enter the relevant 
data and switch on Gemms' PSLP-algorithm. In order to gain insight in Gemms' 
nonlinearity-modeling, chapter 3 describes the implementation ofthe PSLP-algorithm, 
which depends on the software used to run it. Throughout this report, this software 
(either OMNI or GSolve), will be referred to as the 'recursion-guide', although this 
term only covers a small part of its actual functionality. Although PSLP seems to give 
satisfactory results in practice, one might expect that the spectacular development in 
nonlinear sol vers should be able to give us more than this recursion, which is, 
mathematically speaking, quite an ancient solving-method. Therefore, a small 
refinery-model was built with several common nonlinearities both in Gemms and in 
the AIMMS modeling language. Gemms solved it with its sequential linear 
prograrnming and AIMMS with its accompanied nonlinear sol ver CONOPT. The 
solving methöd of CONOPT is based on the commonly used Reduced Gradient 
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Method, which will be discussed briefly. Now, because of the fact that the model is 
mostly linear, and probably most importantly, because the objective function remains 
linear (both of which are also the case in actually used modeis), CONOPT performs 
worse than Gemms. The reader should note, however, that the goal of investigating 
Gemms' nonlinearities was not to explicitly mention if nonlinear solvers should be 
used to solve refinery-planning modeis, but just to find out exactly what functionality 
currently is covered by the recursion, and how it has been implemented. Therefore, the 
comparison between Gemms and AIMMS results is based on only one generic model 
which is supposed to be representative for actual models. Probably, AIMMS would 
perform relatively better if the objective function would become nonlinear, since the 
algorithm in most nonlinear solvers is based on the gradient of this function. Then, the 
nonlinear solver would adjust the initial solution in such a way that the objective value 
increases. The PSLP-algorithm in Gemms wouldn't guarantee any such thing, because 
it doesn't adjust the solution directly. Instead, it adjusts the matrix sequentially. 

Although the possible relevance ofnonlinear solvers is acknowledged by the author, it 
falls beyond the scope of this report and is left for future research. Still, with current 
Gemms modeis, there seems no need in using any other algorithm than PSLP. 

The fourth chapter describes a possible extension of the functionality of PlanStar. 
PlanStar not only manipulates and controls data used for refinery-planning, but can 
also steer the optimization. Currently, the only true optimization is based on the 
refinery as a whoie, including all crude oils which could possibly be purchased. After 
optimization, a package of crude oils is presented which gives the maximum refinery­
margin (profit). However, users often wish to evaluate crude oils separate1y or in a 
small combination and examine what the results are if this crude is purchased. 
Furthermore, actual purchases are often based on cargoes, that is, a refinery oil-trader 
purchases a whole oil-tanker full with oil, and not, for example, just three quarters of a 
tanker. Currently, Gemms only uses continuous variables to represent oil-purchase. 
On first sight, especially for a mathematician, it looks like a typical example of simple 
(mixed) integer programming. However, once the wishes of the planners and traders 
in real life are investig.ated, another approach seems more appropriate: the 
enumeration approach. . 

Finally, chapter 5 gives my conclusions on the current implementation of the PSLP 
algorithms and on the possible future implementation of cargo-analysis in PlanStar. 

Appendices are adopted to give examples of Gemms' PSLP algorithm and a piece­
wise linear approximation of a nonlinear relationship and to describe required data­
entries for nonlinear pooling and its implementation in the AIMMS modeling system. 

2 



Chapter 2 

Hydrocarbon Logistics 

The field of hydrocarbon logistics (HCL) covers all difficulties occurring with the 
logistics of oils and gases ('hydrocarbons'). Examples are (oil-)refinery-planning, 
refinery-scheduling and crude-valuation. ORTEC Consultants manages some of these 
aspects as a contractor for the Shell Oil Company, which comes down to maintenance, 
support and development of computer systems within the area ofHCL. 

This chapter first gives some of the logistic problems within the area of oils and gases 
and then briefly describes three software systems, managed by ORTEC, which deal 
with various of these. Sections 2.3 through 2.5 describe two of these, Gemms and 
PlanStar, in more detail because they are at the basics of all research presented in this 
report. 

2.1 Hydrocarbon logistic problems 

Many logistic problems are present at an oil-refinery and it's therefore, that many 
techniques developed in the field of operations research are used. One of the most 
widely used techniques is linear prograrnming, which has proven to be very useful 
within the oil business because of it's easy understanding and little solving time. The 
first is important because decisions must be made based on LP-specific outcomes like 
marginal values, the latter because the people dealing with the LP's often do studies in 
which several model-runs (and solutions) are required in a short period of time. 

Logistic problems occur at various levels of the refinery, like scheduling, planning 
and crude valuation. 

The oil rejinery 

An oil refinery consists of several units (or factories) which all have their specific 
function to convert one set of components into another. For example, a crude 
distillation unit takes in crude oil and distillates it in order to allow other units to 
further process the distillates. The units which process (some of) the distillates coming 
from the crude distilIer cannot process the crude oil itself. When several units have 
processed that what started out as crude oil, components result which can be blended 
(mixed) to obtain final products like kerosene, LPG and gasoline. 

Not all crude oils can be processed by every refinery. Some are just to difficult to 
handle for refineries with only one simple crude distillation unit. Every refinery 
differs from another in its complexity (e.g. number of units present). Of course, the 

3 



Hydrocarbon Logistics Chapter 2 

more complex and complete the refinery, the more crude oils it can process. One of 
the largest oil-refineries in the world is the Shell Oil refinery in Pemis, Holland. 

Typicallogistic questions at a refinery are: 
- which crude oils can be processed by the crude distillation unit? 
- Which units are available in the coming period? 

(Some units may have to be shut down temporarily.) 
- Which extemal transport-possibilities must be used (e.g. pipeline, barge)? 
- Which crude oils are worth the most to this refinery and should therefore 
be purchased (assuming that they can indeed be processed)? 

- How can the already purchased (and soon incoming) crude oils be processed? 
- How should all components be routed through all units? 
- How should components be blended to the final products? 

2.1.1 Scheduling 

Every refinery has its scheduling-departrnent. This departrnent has to make sure that 
all incoming crudes are processed (or transported) by this refinery and that all market 
requirements (for example, contractual kerosene supplies) are met. This means 
leading incoming crudes through the right pipelines at the right time; guiding them 
through the right units at the right time and blending the resulting components 
together in the right way to obtain final products which meet market requirements, as 
well as quality-demands. Scheduling is based on short-term (usually several days). 

2.1.2 Planning 

A refinery-planning departrnent needs to advise the oil-trader which crude oils to 
purchase in order to maximize the refinery margin. Planning-studies mayalso be used 
to determine the 'health' of a refinery (study possible gains and losses when applying 
some specific strategy), or the consequences of unit-shutdowns or breakdowns. 
Planning is either a medium or a long-term study, depending on its purpose (e.g. long­
term studies are used for strategic planning). Medium-term means from about two 
weeks up to a year, and long-term usually means more than a year. 

2.1.3 Crude valuation 

Crude valuation is used to determine the value of some crude oil, relative to all other 
available crudes. The third chapter of this report describes the possible 
implementation of crude-evaluation via cargo analysis, using PlanStar. 

The right method for crude valuation is hard to detect and discussions about it are still 
well alive. Which method to use depends on the reason for the crude valuation. For 
example, when a new crude oil is found during experimental drillings, a marginal 
refinery may be the best way to model the situation to estimate the crude value, 
whereas the value for aspecific refinery may be estimated best by cargo analysis. 

4 



Chapter 2 Hydrocarbon Logistics 

2.2 Operational hydrocarbon logistic tools 

This section describes some of the software programs maintained and developed by 
ORTEC Consultants, which are operational at various refineries ofthe SheU Group. 

2.2.1 CAS: scheduling 

CAS is a Unix-based refinery-scheduling system. The actually purchased crude diet is 
known and must be processed in the best possible way. That is, products must be 
obtained according to their demands (e.g. much gasoline must be blended in the first 
three days due to high demands) and, given the purchased crudes, CAS can optimize 
when to blend the products as weU as how much of each and every component should 
be used for blending. 

CAS offers quite a user-friendly graphical interface and has a more detailed 
representation of the refinery than the model used for planning. 

2.2.2 GemmslPlanStar: planning 

GemmslPlanStar is a combination of two systems which is used as a refinery-planning 
tooI. Simplified, one could say that Gemms handles matrix generation and that 
PlanStar handles data-manipulation, data-control and optimization-contro1. Gemms 
runs under MS-DOS, whereas PlanStar is a Windows 95 and Windows NT compllant 
( database) application. 

Gemms us es a Linear Prograrnming model to decide, amongst others, what amounts 
and types of crude oils (usually abbreviated to 'crudes') a refinery should purchase 
and what amount and type of product it must sell. The model maximizes profit subject 
to several constraints. Gemms is completely data-driven, which means that the 
framework of all models produced and optimized by Gemms is the same, but si ze and 
complexity depend completelyon the entered data. 

The constraints in the model reflect refinery- and market-restrictions, such as quality 
demands (e.g. the octane number of gasoline), unit capacity limits (such as maximum 
throughput) and other specifications that restrict possible purchases, processes and 
supplies. The model may be multi-period, that is, crude can be purchased at the 
beginning of several time-periods and for each of the periods available in the model, a 
decision on purchases and/or refinery-processing must be made. Section 2.3 describes 
the Gemms-model in more detail and sections 2.4 and 2.5 give some more comments 
on the Gemms and PlanStar systems. 

Some of the differences between CAS and Gemms are: 
- Gemms plans for a long period, CAS schedules for a short period. 
- The Gemms refinery-model (description of units) is less accurate than the 

CAS model, because many details are irrelevant for medium- or long-term 
planning (such as tanks). 
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- CAS uses the timing-aspect required for scheduling, whereas Gemms 
doesn't. For example, suppose that components A and B can blend to final 
product P and suppose that component A is produced in the first week and 
component B is produced in the second. This cannot be considered by 
Gemms, which simply allows components A and B to blend together to 
product P. In CAS, however, this wouldn't possible if component A cannot 
be held in a tank, because A and B wouldn't be available for blending at the 
same time (individual blending would remain possible, of course). 

- CAS is mainly simulation, with only the blending process being optimized 
as an LP model, whereas Gemms runs a complete LP maximization. 

2.2.3 CrudeVal: crude valuation 

The software package CrudeVal is used for crude valuation and runs under MS-DOS. 
It is mainly used to estimate the value of some new discovered crude-type, based only 
on its property-values obtained from some sample (or crude assay). It can also 
estimate the relative value of aspecific crude-type for aspecific refinery with respect 
to other crudes. 

2.3 Details of the linear Gemms model 

This section describes some parts of refinery-planning models for the Gemms. A 
complete overview of the Gemms functionality and modeling is confidential and can 
be found in Kreuk [8]. 

The following description of Gemms linear modeling should help the reader enough 
to understand chapters 3 and 4. The Gemms linear model is quite powerful (especially 
because it can be solved rapidly) and can even be used (sequentially) to efficiently 
model various nonlinearities, such as specific Mixed Integer models (chapter 4) and 
nonlinear constraints (chapter 3). 

An overview of the model which Gemms generates for its specified LP-solver reads: 

maximize Profit 
s. t. constraints: 
1 non period-specific 
2 non refinery-specific 
3 unit 
4 balance 
5 quality 
6 limit 
7 pooling 
8 user defined 

6 



Chapter 2 Hydrocarbon Logistics 

This model is completely data-driven. That is, the generation of constraints and the , 
numerous variables and coefficients which they contain, depends complete1y on the 
data-dictionary (a set of data-tables presented by the user as an ASCII-file in OMNI­
format). Therefore, the user determines size, complexity and exact formulation of the 
model at all times. 

2.3.1 Profit maximization 

The total profit of a refinery-complex is defined as the sum of incomes ('netbacks') 
minus the sum of costs of all refineries in all periods available to the system. This 
section describes Gemms' objective function in some detail. 

Income = netbacks of [ {sales} + {product exchange} + others ] 
Cost = costs of [ {product exchange} ] + {stocks} + {purchases} + {operating} + 

{transfers} + {lead} + {blend} + others] 

The largest part of netbacks is obtained by selling products (e.g. gasoline) and/or 
utilities (e.g. electricity) to markets or refineries. Netbacks are given in money units 
(US$ by default) per unit of sale (m3

, barrels(bbls) or metric tons(mt». 

Much of the total cost is due simply to the purchase of crudes. Stock costs are only 
present in multi-period modeis, where they represent the missed interest-revenues per 
stock-entity for a given period and component or product. They are defined as 
(val·d·i/lOO)/365, with val the component- or product-value for stock cost calculation 
for the period, d the length of the period in days and i the interest rate. 

Operating costs occur from activating units for processing, transportation costs result 
from transferring products within a set of refineries and markets and lead costs are 
defined as the given costs per gram Pb/U per m3 times the obtained lead level of a 
product. Blend costs are due to costly mixing several components to produce a final 
grade like gasoline or LPG. 

Other parts of the objective function are taxes, costs of additives, penalties for 
infeasibilities and penalties which are used for a recursive-pooling procedure (see 
chapter 3). 

2.3.2 Variables 

Thousands of variables are usually present in Gernms modeis, though many have the 
same interpretation, such as: 
- amount of component in stock, 
- amount of crude to be purchased, 
- amount of product which should be transferred between refineries and/or markets, 
- amount of product which will be sold to some market, 
- amount of component blending to a specific product, 
- obtained property-values for a specific product. 
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Most variables depend on the refinery, the product and the period in the model. The 
product property-values deserve some further explanation, since they are a large part 
of chapter 3. For each component which can blend to a product, some property-values 
are known (e.g. Sulfur percentage, cloud point or octane number). For the obtained 
products, these aren't known beforehand, since they depend on the components which 
actually blend to them. Restrictions are placed on the product-property values (e.g. a 
maximum octane number of 98 for premium gasoline), so the generated variables are 
required to specify such constraints. Furthermore, the generated variabie is defined 
equal to the mixture of the blending components' property-values, which usually is 
just their weighted average. Sometimes, however, this average doesn't give the correct 
resulting property-value and specific blend-rules are required. For example, if API­
property-values are given instead of densities, they are converted to densities via the 
formula DENS=141.36/(API + 131.5). Then, the DENS property is used in the linear 
blending constraints. 

2.3.3 Constraints 

To demonstrate some of the numerous constraints (usually thousands), this section 
gives two genera! balance constraints, which determine a large part of the actual 
model. 

The first constraint makes sure that crudes which are purchased are also either 
processed by the refinery's units or are put into stock. The second defines balance for 
arefinery's incoming and outgoing components. Some of Gemms' notation is used to 
allow the reader to gain more insight in Gemms' matrix generation and to aid future 
Gemms developers. Comments are stated between parentheses. 

Crude-balance 

For all crude-types X, periods P and refineries R: 

- A(R)(P)(X)OO - L(I)A(R)(P)(X)OO(l) 
{normal purchase and purchase by tier (I) } 

- O(R) 1 (X)OO {opening stock} 
+ F(R)(P)(X)OO {closing stock} 
+ L(UN)L(MODl(R)(P)(UN)(MOD) 

{tota! amount of crude oil processed by the available units 
at the specific refinery} 

+ P(R)(P)(X)OO - N(R)(P)(X)OO 
{feasibility variables: surplus minus deficit} 

=0 

In short: "the amount of crude processed at (or' going out of) the refinery minus the 
amount of crude coming into the refinery equals zero". 

In the generated LP-matrix, every letter or word between round brackets is replaced 
by the appropriate period-number (P), refinery (R), crude (X), tier (I), unit (UN) or 
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unit-mode of operation (MOD). The notation '(X)OO' is predefined Gemms-notation to 
differentiate crudes from other components. 

Summations over J, UN and MOD are only over those tiers, units and processing­
modes which can handle crude X, and all variables are measured in kilotons. 

Opening stocks are given by the Gemms or PlanStar data, but intakes, purchases, 
c10sing and inter-period stocks are decision variables. All of these may be bounded 
(and possibly fixed) by other data-tables. 
Finally, so-called feasibility-variables were mentioned in the crude balance-equation. 
The user can choose whether or not these variables should be generated. If generated, 
they get a very large penalty (by default 9999,000 US dollars) in the objective 
function. Therefore, they will only hold a positive value in the optimal solution if no 
other (and therefore originally feasible) solution can be found without using them. 
This helps the user to deal with infeasible models. 

Component-balance 

Many components (here: other than crudes), can be transferred between refineries by 
various means. They can also be held in stock or blended to products (e.g. component 
butane can blend to LPG). For each component, all of these possibilities, inc1uding 
transportation costs, are entered in the OMNI or PlanStar data-tab les and converted by 
Gemms to the LP-matrix. The resulting constraints can be much more complex than 
those for crudes. 

A general (though not complete) Gemms description for component-balance 
constraints reads: for all components XXX, refineries R and periods P: 

F(R)(P)(XXX) - O(R) 1 (XXX) 
{c1osing minus opening stocks} 

- L(UN)L(MOD)YIELD· {P(R)(P)(UN)(MOD)} 
{ component yields, that is, how much of component XXX is produced at 

unit UN ofrefinery R at period P, with UN processing at mode MOD. 
Summation over all units and modes of operation available to the refinery 
to obtain the total amount of produced component XXX} 

+ L(PR)Y(R)(P)(PR)(XXX) 
{ component-weight blended 'free' to product PR (not by recipe) } 

+ L(PR.I)(r/ l OO)·D(R)(P)(PR)(I) 
{ recipe blending: 

(ri l 00) is the fixed fraction of weight of component XXX which blends to 
product PR via so-called recipe blending (see example 2.l)} 

+ L(M)I(R)(P)(XXX)(F)(M) - L(M)I(F)(P)(XXX)(R)(M) 
{ component transfers out of refinery R minus component transfers into the 

refinery, summed over all transport means M (pipe, barge, etc.) } 
+ P(R)(P)(XXX) - N(R)(P)(XXX) 

{ F easibility surplus minus deficit.} 
=0. 
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In short: "the amount of component going out of the refinery minus the amount of 
component coming into the refinery equals zero". 

Examp/e 2.1 Component recipe-blending on volume 

Suppose that the following OMNI table is entered (or otherwise represented by the 
PlanStar database): 

TABLE A1REC! 
V1PR 

CPl 70 
CP2 10 
CP3 20 

Here, VIPR means 'based on (V)olume (here m3
), recipe-nr 1, blending to product 

PR'. Furthermore, CPI, CP2 and CP3 are defined components and product PR is 
assumed to be sold on weight. 

Gemms now generates a variabie 'D(R)(P)(PR)(I).' (here: 'DAIPRI.') to represent 
the total weight ofblended product PR by recipe 1. This variabie will be present in the 
weight-balance equations of all components CPI, CP2 and CP3, and in the weight­
balance of product PR. In the product's balance it will simply have a coefficient equal 
to -1 , representing produced weight. In the components' balances, its coefficient may 

differ for each and, for component i, is caIculated as ~~jp , wit~ Pi defined as the 
L..J1 ' I 

density of component CPi (used to convert m3 to metric tons), and ri the required 
volume-fraction of component i in the recipe-blend (e.g. r 1=O.70). (So Ljrjpj equals the 
resulting blend-density.) 

2.4 Running the Gemms system 

2.4.1 Building 

First of all, Gemms users build the model by entering data at specific tables. For 
Gemms (standalone), these tables are represented by one or more ASCII-files in 
OMNI-format. For PlanStar, an Oracle database is available and data can be entered in 
windows with table-formats. Then, before Gemms is run, Plan Star must be instructed 
to automatically generate ASCII-files which will hold all relevant OMNI-tables. 
Finally, when all data is available in OMNI-format, Gemms is run to convert all tables 
to an LP-matrix in MPS-format, which can be read by all prominent LP-solvers. 

2.4.2 Solving 

The user can choose which sol ver to use for the optimization (three solvers are usually 
available: HSLP, XPRESS and OSL). The selected solver is called with the matrix­
file as input and the results are saved to an ASCII-file and, if selected in PlanStar, to 
the database. 
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2.4.3 Reporting 

Various reports can be generated by Gemms. Of course, the objective value can be 
reported, as weil as the 'optimal crude diet', that is the package of crude purchases 
which maximizes the refinery-margin (profit). But also other aspects can be shown, 
such as the unit-capacity usage ('which units run at their maximum capacity?'), 
obtained product-properties and product-composition ('which components (and how 
much) should blend to the product?'). 

If the model is infeasible, Gemms shows which constraints are likely to cause the 
problems. 

Gemms can only generate reports in ASCII-files. Via the software systems PlanStar 
and Business Objects, more user-friendly (ad hoc) reports can be created. 

2.5 Running the PlanStar system 

This section briefly des cri bes the PlanStar system, and is adopted in this report only to 
show its connection to the Gemms system, which is required to understand the 
additional functionality developed in chapter 4. 

The PlanStar system is a tooI for refinery-planning datamanagement and contro!. All 
data is kept in a relational Orac1e database. This data can be changed in various data­
entry windows within PlanStar. One of these windows allows the user to enter or 
update commercial transactions (see figure 2.1), such as possible product-exports or 
crude purchases. These transactions are relevant for chapter 4. 

PlanStar can be used to run the Gernms system. If the user chooses to run a Gemms 
LP model, PlanStar converts all data-tables from its database to OMNI-tables in 
various ASCII-files which Gernms us es as data-input. Then, if required, Gernms runs 
its building, solving and reporting steps as described in the previous section. 
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Chapter 3 

Optimization with nonlinear constraints 

This chapter describes how nonlinearities are handled by the linear programming­
based planning-tooI Gemms, and compares it with some results based on nonlinear 
programming. 

3.1 Introduction 

Based on data-tables, Gemms builds an LP-model with a linear objective function, 
which must be maximized subject to linear constraints. The model is written to an 
ASCII-file in 'MPS'-format, a standard format which can be read by all prominent 
LP-solvers. 

Although Gemms only builds linear modeis, users can model some nonlinearities, 
which Gemms solves by a sequence of linear modeis, using an algorithm called 
Penalty Sequential Linear Programming (PSLP). Sections 3.2 and 3.3 give an 
introduction to nonlinear optimization, and briefly describe some general 
characteristics of algorithms present in nonlinear solvers, some specific techniques 
often applied by such solvers, and the PSLP algorithm. 

Further sections go into all detail of the implemented nonlinearities in Gemms. They 
describe all nonlinearities which can be modeled within this system, the 
implementation of the PSLP algorithms which handle them, and a small test on the 
performance of Gemms' PSLP algorithm versus the performance of a Gradient­
technique used by a nonlinear solver within the modeling system AIMMS. Finally, 
conc1usions are presented on resulting performance and on possible advantages or 
disadvantages ofusing a nonlim;ar solver. 

3.2 Solving nonlinearities with nonlinear solvers 

This report doesn't have the intention to discuss possible techniques of solving 
nonlinear optimization problems in great detail. Many of them have already been 
extensively discussed (for example, see Abadie [1] or Abadie and Carpentier [2]). The 
dissertation of Schweigman [12] is specifically devoted to solving a nonlinear 
objective function with nonlinear constraints. 

First, some general characteristics of the commonly implemented algorithms within 
nonlinear sol vers are given. Then, some specific (gradient) methods of solving 
nonlinear optimization problems are briefly described (see also Greene [6] and Abadie 
[I]). 
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3.2.1 General characteristics of algorithms 

Most nonlinear optimization algorithms are implemented to deal with an optimization 
problem which has a nonlinear objective function and linear constraints. Some 
algorithms can also handle nonlinear constraints. 

The easiest solvable nonlinear maximization would be aquadratic objective function 
F(9) = a + b' 9 - ~9' C9, with C a positive definite matrix and no constraints. The 

first-order condition for a maximum is 8F(9) = b -C9 = 0 , a linear set of equations 
as 

with unique solution 9 = C1b. Note that this solution has a closed-forrn, so it can be 
computed directly for any a, b and C. 

In a more general situation, the resulting equations 8F(9) = 0 aren 't linear and cannot 
as 

be solved explicitly for e, leading to a desire for techniques which systematically 
search for a solution. Most of such techniques are basèd on an iterative procedure: 
starting with some initial solution 90' if a solution after iteration t (=0,1,2,3, ... ) isn't 
locally optimal, it is adjusted using a direction vector ~t and step-size At to 9t+1 = 9t + 
A~t· 

3.2.2 Gradient methods in general 

The most wide1y accepted algorithms to deal with nonlinear optimization are gradient 
methods, in which ~t = Hgt, where Ht is a positive definite matrix and gt is the gradient 

of F(9J: gt= g(9J = 8F(9,). The motivation ofusing such a method is as follows: let 
as 

Ft+1 = F(9t+1) = F(9t + A~J and consider its first-order Taylor series approximation 
around A=O: Ft+1 ::::: Ft+ Ag(9J' ~t· Therefore, Ft+I-Ft::::: Agt' ~t = Agt' Hgt for gradient 
methods. Now, ifthe gradient at iteration t isn't 0 and At is small enough, Ft+I-Ft must 
be positive (recall that Ht is assumed to be positive definite), which means that a new 
gradient-type iteration step williead to an increase in the objective function. Note that 
for given vectors ~ and 9t, a secondary optimization is required to find the optimal 
step-size A. Usually, however, this size is approximated by a very simple algorithm. 
The procedure is stopped if the gradient is zero, or if F t+1 is close enough to Ft. Then, 
the resulting 9 is considered the locally optimal solution. 

Two generally used gradient methods are Newton's method (though usually with 
some adjustrnents) and the Generalized Reduced Gradient method. Quite often, parts 
are solved with the simplest technique available: the steepest ascent method. 

3.2.3 Steepest ascent method 

The easiest algorithm to use for a nonlinear maximization problem is the steepest 
ascent method (or descent for minimization), which us es H = I as part of the gradient 
method, so that ~=g. In theory, the greatest advantages of the method are that its 
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search direction is the one with the greatest increase of F, and that the optimal Ic, 

following from fJF(e + À.~) = 0, can be determined (at least near the maximum) by 
fJÀ. 

À= - g' g , with G= fJ 2 F(e) , the Hessian of F. Therefore, the steepest as cent iteration is 
g'Gg aefJe' 

8 - 8 ( g,'g, ) 
1+1- C --- g,. 

g,'G,g, 

This method usually performs quite bad because computing the Hessian can be a 
burdensome task. Furthermore, if G, isn't negative definite (which is likely if 91 is far 
from the maximum), the iteration may diverge. 

The steepest ascent (or descent) method is often just part of a nonlinear solving 
technique. 

3.2.4 Newton's method 

The original Newton's method is quite simple but can be very effective, especially for 
quadratic objective functions, in which it reaches the optimum in only one iteration 
from any starting point. If the problem is approximately quadratic, Newton's method 
usually still works well, and in fact, if a maximum must be found of a globally 
concave function, it has proven to be one of the most efficient algorithms available. 
However, ifthe problem isn't approximately quadratic or ifthe initial solution lies far 
from the optimum (and the objective isn't quadratic), it may perform poorly and even 
fail to converge at all. For such situations, various improvements are found in Greene 
[6]. Here, only the basics are discussed. 

As described earlier, the set of equations to be solved is aF(e) = O. The basis for 
ae 

Newton's method is the first-order Taylor series expansion of this set. Around an 

arbitrary 90, this expansion yields fJF(e)::::: go + Go (e - eo) = 0, with G defined as 
ae 

G= a 2 F(e) and subscript 0 meaning evaluation at 90, The iterative equation for 9 then 
aeae' 

reads 81+1 = 81 - G;lgl, so, for Newton's method, the elernents of the general gradient 
method are defined as: H=_G-1

, L'1=_G-1g, and À=1. 

3.2.5 Generalized Reduced Gradient method 

The Generalized Reduced Gradient (GRG) method for nonlinear prograrnming was 
first introduced by Abadie and Carpentier [2]. For a detailed description of the 
method, as weU as an application, the reader is referred to Abadie [1, pp.191-21O]. 
The key steps, however, are given below. 
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The GRG method is implemented in the nonlinear solver CONOPT (applied by 
AIMMS) which is used in the research described at the end ofthis chapter. Because of 
the usage ofthis solver, the method is described here with the general implementation 
within CONOPT. 

The key steps of the algorithm are 
1. lnitialize the problem and find a feasible solution. 
2. Compute the Jacobian J ofthe constraints. 
3. Select a set of n basic variables Xb, such that B, the submatrix of basic 

columns from J, is nonsingular. Factorize B. The remaining variables Xn are 
referred to as nonbasic. 

4. Solve Bp = aj(x) for the multipliers p. 
8f(xj ) 

5. Compute the reduced gradient r, with r = df/dx - Jp. 
6. If r projected on the bounds is smalI, then stop and the current solution may 

be considered locally optimal. 
7. Otherwise, select the set of superbasic variables Xs as a subset of the 

nonbasic variables, which can be profitably changed, and find a search 
direction ds for the superbasic variables, based on rs and possibly on some 
second order information. 

8. Perform a line search in the direction d. For each step, Xs is changed and xb 

subsequently adjusted to satisfy g(xb, xs)=b in a pseudo-Newton process 
using the factorized B from step 3. 

9. Go to 2. 

The first step, finding a feasible solution, is solved by Newton's method (with some 
modifications ), but can be just as difficult as finding an optimum. If the objective and 
constraints are almost linear in step 7, the steepest ascent (or descent) method is used 
to find a search direction. See [4, pp. 475-477] for more details. 

3.2.6 Sequential Linear Programming 

Sequential linear programming (SLP) methods replace a nonlinear objective function 
by a succession of linear approximations. For linearly constrained optimization 
problems, these approximations allow repeated application oflinear algorithms. These 
algorithms are particularly suitable for linearly constrained optimization problems, but 
can sometimes, by the use of suitable linear approximations, be extended for problems 
with nonlinear constraints. Other, currently popular, sequential algorithms are 
quadratic, which approximate the objective function (or constraints) by a succes sion 
of quadratic functions. In practice, these have proven to be more efficient than their 
linear counterparts, but they can't be applied by the Gemms refinery-planning tooI, 
whereas SLP can. Because of this fact, and the fact that the principle of both methods 
is the same, only the linear methods are discussed here. A survey of sequential 
quadratic approximation methods is found in Powell [10]. 
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The Frank-Wolfe Sequential Linear Approximation Algorithm 

At the basis of SLP lies the algorithm developed by Frank and Wolfe in 1956, 
originally designed to solve quadratic problems, but easily adapted to the case of a 
general concave objective function. The summary below is taken from Hillier and 
Lieberman [7]. An example of the algorithm is found in the same reference, pp. 600-
602. 

Initialization: Find a feasible initial trial solution x(O) and set k= 1. 
Iteration: 

1. Forj=I,2, ... ,n, evaluate the partial derivatives ofthe objective function, 

c. := 8f(x) at x = X(k-I) 

J 8f(xj ) 

2_ Find an optimal solution X(k)' for the following linear prograrnming problem: 
n 

Maximize g(x) = ~>jXj 
) =1 

subject to 
Ax~b and x~O 

3_ For the variabIe t (O~ t ~ 1), set h(t) = j{x), for X=X(k- l) + t(x(k)' - X(k-I», such 
that h(t) gives the value ofj{x) on the line segment between X(k-I) and ~). _ 
Use some search procedure to maximize h(t) over O~ t ~1, and set X(k) equal 
to the corresponding x. Check the convergence criterion_ 

Convergence criterion 
If X(k-I) and X(k) are sufficiently close, stop and use X(k) (or some extrapolation of x(O), x(l), 
._., X(k-I), X(k» as the estimate of an optimal solution. Otherwise, reset k=k+ 1 and go to 
step lofthe next iteration. 

The maximization in step 2 follows from the first-order Taylor expansion, which is 
used to approximatej{x). That is,j{x) is approximated at some point x' as 

n 8f(x') 
f(x) '" f(x')+ I-. -(xj -x/)= f(x')+ V'f(x')(x-x') 

j =" 8x j 

with the partial derivatives evaluated at X=X'. Because j{x') and Vj{x')x' have fixed 
values, they can be dropped to give an equivalent linear optimization problem with 
g(x) as the objective function. 

3.3 Solving nonlinearities with Gemms: PSLP 

Gemms cannot handle a nonlinear objective function, but several constraints can be 
modeled nonlinearly. As for standard nonlinear optimization, solving a model with a 
linear objective function and some nonlinear constraints can result in a local optimum 
(see Example A.2 of appendix A). 

If nonlinear relationships must be modeled and solved, there are really only three 
ways to deal with them: disregard the nonlinearity and assume a linear relationship, 
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apply the mnlinear relationship to calculate coefficients of a linear constraint, or 
approximate the nonlinearity by a sequence oflinear models. 

Of course, the first mentioned method usually doesn't give a very good representation 
of reality, but it may suffice if the actual relationships aren't too relevant for the 
decision process. In Gemms, unit-yields are assumed to increase or decrease linearly 
with the unit 's in;mt. In reality, however, twice as much input doesn't necessarily 
double all yields, because of reduced reaction-times per molecule (the doubled input 
may be processed by the unit in the same time as the original input). 

The second way, caIculation of coefficients with a nonlinear formula, can be used by 
Gemms in blending. This is required when a property-value of a resulting product 
isn't a linear combination of the property-values of the blending components. If the 
formulae give a sufficiently close approximation of resulting product-properties, they 
are should be used instead of recursive techniques, because their little caIculation 
time. 

The third method, a (recursive) sequence of linear models, lies at the basis of this 
chapter. The algorithm in Gemms, Penalty Sequential Linear Prograrnming, which 
applies this sequence, is a modification of the just described standard SLP. 

It can generally be described by the following steps: 

0) derive the Taylor expansion of the nonlinear constraint replace all terms of 
2nd order and higher by adding a surplus-variable and subtracting a deficit­
variable (these variable receive a penalty in the objective function) 

1) initialize coefficients of the linear approximation resulting from 0) and find 
an initial solution 

2) check convergence criteria and go to phase 3 if no convergence has been 
achieved, stop recursions otherwise 

3) adjust coefficients and bounds in the LP-matrix, find an 'optimal' solution 
and enter phase 2 

In practice, PSLP has shown to be quite useful for refinery-planning purposes, 
because, used correctly, caIculation-times are relatively small and results are 
satisfactory. The term 'used correctly' is important here, and this is what initiated the 
research for this chapter. Currently, mainly due to a lack of documentation, Gemms­
user$_ and developers are insufficiently aware of both the implications of using 
recursion to solve a nonlinear problem and the required data-input. 

An example of the PSLP algorithm, as implemented in Gemms, is given in Appendix 
A. This may aid the user to fuUy understand the foUowing section, which describes 
both the theory and the implementation of Gemms' nonlinearity-modeling in fuU 
detail. 
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3.4 Nonlinearities available for Gemms 

Gemms can model two kinds of nonlinearities: pooling and property-blending. 

Pooling is very common at an oil-refinery: a number of components may be kept in a 
tank as a mixture, and later, this mixture can go to various destinations. A nonlinear 
equality arises because of both the beforehand unknown composition of the tank and 
the quantities going to any of the destination. 

Blended products must satisfy various quality conditions. That is, for some product­
property, the obtained value must be higher or lower than a specified value (e.g. a 
minimum density or a maximum sulfur content). The obtained product property-value 
is a combination of the property-values of all components which are used to blend the 
product. For example, the obtained volume of a product is a linear combination of all 
densities and weights of components used to produce it. Then, a minimum density can 
be put in a linear restriction as 'total weight of blended product :s; {min. dens}· {total 
volume of blended product}', with both the weight and volume of blended product 
defined by two more linear equations. For some properties, ca1culating resulting 
values isn't that straightforward and even nonlinear inequalities may result from 
specifications. Some of them are modeled with nonlinear index-values, which are 
assumed to blend linearly. Two, however, can be modeled as nonlinear: cold filter 
plugging point and p-value. 

3.4.1 Pooling 

So-called 'pooling' is the most important nonlinearity which can be modeled by 
Gemms. In Gemms, it is solved by an algorithm of recursive linear prograrnming if 
the required decision parameter 'REPO' is switched on. Parts of the following 
description are taken from Brussaard [5] and Pierce [9] . 

A 'pool' consists of a mixture of several components and can be routed to several 
destinations (e.g. blended to a product or used as unit feed). Therefore, a pool is often 
used to model some tank which can hold several components (e.g. butane and 
propane) for a while and whose contents are later used for final product (e.g. LPG) 
blending. Two things are important for pooling: 

- the contents of the pool, as weIl as the quantity of the pool going to any of 
its possible destinations, are unknown beforehand, 

- any component which is a possible source of a pool can't go to any of this 
pool's destinations by any other means then via this pool. 

Because of these two aspects, the nonlinearity arises: the ratios of source components 
in the pool must be the same as the ratios of these source components in the pool' s 
destinations. Suppose we have a pool which can contain up to mEN components (or 
sources) and can be routed to nEN destinations. This situation is depicted in figure 
3.1. 
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Figure 3.1 the pooling problem 

sourees 

pool 

The equality of ratios leads to the following nonlinear constraint: 
quantity of component i going to destinationj = 

Chapter 3 

{fraction of component i in the pool}· {quantity of pool routed to destinationj}. 

Gernms handles this constraint with penalty sequential linear prograrnming (PSLP). 
The details of this algorithm depend on the user-selected 'recursion-guide', which is 
either OMNI or GSolve. 
A summary on required data-entries to model pooling in Gemms, is given by 
Appendix B. 

3.4.2 Linearization of pooling-constraint 

Define: 
1t := set of available pools, 
op := set of possible destinations (d) of pool p, 
ap := set ofpossible source components (c) for poolp, 
Qc.d := quantity of component c going to destination d, 
Sc.P := quantity of component c in pool p, 
sc.P := fraction of component c in pool p , 
Dp.d := quantity of pool p going to destination d, 
Xp := total quantity ofpoolp. 

For these variables, the following relations hold (see table 3.1 for details) : for allpE1t, 

LDp.d =Xp 
d <i>, 
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For each available pool, we have a nonlinear constraint for all its possible components 
and destinations as mentioned in the 'recursive pooling' introductiono In the just 
defined terms, this reads: 

\ip E1tI\iCECJp, dE8p: Q'od = s'opDPod' 

aquadratic expression for all sources and destinations of all pools, with s, p = S'oP 0 To 
o Xp 

simplify the following linearization, we rewrite this expression as f(x, y) = xy 0 The 
Sequential Linear Programming algorithm approximates this function in a point (xoJ'o) 
by the first-order Taylor-approximation 

f(X,Y)"'f(Xo,Yo)+~af~Yl +d/f~Yl 
= XoYo + (x - Xo )Yo + (y - Yo )xo = XoY + Yo~ , 

or 

\ip E1tI\iCECJp, dE8p: Q'od '" (s' op)ODPod +(Dpod)ods,op 0 

This linear equation will be active in every recursion step (after the first non-pooled 
optimization)o Now, to ensure feasibility in each recursion step, penalty variables HCod 
(deficit) and MCod (surplus) are introduced to get 

with tlscop a new variabie in the LP-formulationo This formulation doesn't complete1y 
cover the nonlinear problem yet, because the new variabie tlscoP depends on both SCoP 
and Xp in a nonlinear fashiono Therefore, the relationship sCoP= (sc)o + tlscoP isn't 
guaranteed, which makes the algorithm worthlesso This relationship will be enforced 
by another equation, again with approximation by the first-order Taylor expansion 

o 0 S (S) 1 (S) 0 

(here, m the pomt (Scp,xp)o): scp =~",~+M ---M~, which can 
o 0 Xp (Xp)o 'oP (Xp)o p (Xp)o 

be rewritten to (Xp)~ds'op-(Xp)oS'op+(S'op)oXp=O, with all 2nd and higher order 
terms neglectedo However, instead of using this equation in the LP-model, a much 

easier restriction can be used: \ipE1tI\i CECJp : L,(M'od - H' od) = 0 (3.2) 
d 

Proof: 
With (301) follows 

\ic: L,Q'od = (s'op )oL,DPod +ds'opL,(Dpod)o + L,(M'od -H'od ) 
d d d d 

and with the previously defined relationships between all variables, we find 

\ic: S'op=(s' op)oXp+(Xp)ods'op+L,(M'od-H'od) or 
d 

\ic: -(Xp)oS,op +(S'op )oXp +(Xp)~ds,op = L,(M'od -H'od ) 
d 

which, with (302), exactly states the required expressiono 0 
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Avoiding numerical problems 

Inserting equations (3.1) and (3.2) into our LP-matrix will result in nurnerical 

problems for small values of (Xp)o, given the fact that (sc.p )o = ; p I. Therefore, 
p 0 

reloltriction (3.1) is scaled by multiplying left- and right-hand-sides by (Xp)o' We keep 
the same notation Hc.d and Mc.d for the feasibility-variables because we can just as weil 
add them only to the constraint after multiplication by (X;,)o, which has no relevant 
consequences for our model. 

One more change is made to the above formulation, before the model is actually 
presented to the LP-solver. That is, equation (3.2) also receives further feasibility­
variables to lead to: 

VpETtVCEcrp : (WMc-WUJ+ ~)MC.d-Hc.d)=O 
dg" 

The penalty-values of WMc and WUc equal the value for parameter PEN2 , entered at the 
control-table. 

Conclusion: added matrix-rows and variables 

The linearized recursion constraints which will become active after the first (non­
pooled) optimization of the model are: 

VpETt VCEcrp'dE8p: 

-(Xp)OQc.d + (Sc.P )ODp.d +(Xp>o(Dp.d)OÓSC.P + MC.d -HC.d = 0 (3.3) 
VpETt VCEcrp : 

(WMc -WUJ + ~)MC.d -Hc.d)=O (3.4) 
dg" 

All values, except for ÓSc.P' are greater than or equal to O. The delta-variable receives 
initial upper- and lower-bounds equal to +1 and -I, respectively. 

The resulting objective function from recursive pooling reads: Obj(with pools) 
Obj(withoutpools) - LL{PEN2.(WMc+WUJ + PENl L(Mc.d+Hc.d)}, 

pat C B! , dEl;, 

with PENl and PEN2 the penalty values given by the pooling-control tabIe. Default 
values are: PENl = I ; PEN2 = lO·PENl. 

Taylor-approximation as recursion 

Gemms iteratively uses the above given first-order Taylor expansion to deal with the 
nonlinear equation. That is, in any iteration, the Gemms model is run with the 
coefficients ofthe linear approximation obtained from the previous iteration (and with 
some initialization for the first run). With superscripts used to indicate the iteration­
nurnber, the recursive equation of the n-th iteration reads 
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Note that variables with superscripts n-l are known before running iteration n. 

Eventually, the series Q~1 and x~n) should converge to some QC.d and Xp, and AI'~~; 

should go to O. For a big part, actual convergence depends on the initial solution. 

3.4.3 Nonlinear property-blending 

Apart from pooling, nonlinearities can also arise when ca1culating resulting properties 
for products which are produced from blending various materiais. 

For example, suppose we blend 1 kiloton of material A with 2 kilotons of material B 
to produce final grade P. Then, for most material-properties (e.g. sulfur-content 
percentage) , the resulting property-value of P will simply be the weighted average 
[l·{property-value of A} + 2·{property-value of B}]/3, possibly corrected with 
material-densities when the property blends linearly on volume. A specification may 
be placed on such a property, e.g. 'Sulfur contents of P must be less than 3 percent', 
which leads to a linear constraint on the quantities of materials A and B blending to P. 

Now, some properties don't blend linearly (neither on weight nor on volume). In such 
a case (e.g. cloud point), Gemms uses indices which are presumed to blend linearly 
(usually on volume). For example, the data contains cloud point values CA and CB for 
materials A and B, respectively. These materials blend to product P and the cloud 
point of P must be less than some value K. Then, Gemms recalculates actual values CA' 

CB and K to indices IA, IB and IK and generates a blending-constraint like the one 
mentioned earlier as if actual material-properties equal IA and IB and as if the 
specification had value IK' 
For two properties, P-value and CFPP, neither the actual property-value nor the index­
value suffices to linearly model their specifications correctly. Therefore, recursive 
calculations can be used. 

3.4.3.1 P-value 

In fuel oil blends, the combination of cracked and straight-run components can cause 
stability problems. To control the stability, the user must specify a minimum 
acceptable so-called P-value, which leads to a nonlinear blend-restriction. Gemms can 
solve this with its PSLP algorithm. 

Required Gemms material-properties for this nonlinear blending are FRMX 
(flocculation ratio), ASPH (asphaltenes), pa (peptizing power) and DENS (density). 
With W; the total weight of material i blending to the product and with VOL the 
product's total blended volume (in m3

) , resulting product-properties are given by: 

FRMX = Lj (FRMX;ASPH;, W;), 
ASPH = Lj (ASPH;, W;), 
pa = Lj (PO;,W/ DENS;), 
VOL = Lj (W/DENS;), 
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with properties with subscript i being constants equal to component i's property-value. 
All variables at the left-hand-sides depend on the refinery, the period and the product. 

A d ' I" b I pO·ASPH A 'fi' h' I . pro uct sp-va ue lS glVen y Pva = . spec1 catlOn on t lS va ue lS 
VOL·FRMX 

always a minimum. Therefore, with a specified minimum p-value, say Ps pee, the 
following must hold: 

Pval ~ Ps pee, or 
PspeeFRMX - pOASPH/VOL ~ 0, (3.6) 

a nonlinear equation in variables FRMX, pa, VOL and ASPH. Note that a variety of 
formulations is possible for (3.6), but, as will be shown by the following section, tbis 
formulation leads to nice results for the linear approximation. 

3.4.3.2 Cold fIlter plugging point 

The Cold Filter Plugging Point (CFPP) is another property wbich doesn't blend 
linearly and which can be approximated using Gemms' PSLP algorithm. 

For all components wbich can blend to a product with a specified CFPP-value, 
required properties are: CFPP or CFPPI (index), MIDP (mid boiling point) and DENS 
(density). The index is assumed to blend linearly on a volume-basis. 

For any component i, either its CFPP-property or its CFPP-index value may be given. 
From the CFPP-property, the index-value is defined as CFPPli = lOF" with 

F =5- (850+MIDP;)(67-CFPP;). 
, 24,000 

For a blended product p, the resulting CFPP-value follows from the same formula: 

C PPI 
F: • h (850+MIDPp )(67-CFPPp ) 

'F p = 10 p ,wit Fp = 5 - , or 
24,000 

CFPPp = 67 - 24000· {5- IOlog (CFPPlp )}/(850 + MIDPp ) (3.7) 

with CFPPlp and MIDPp defined as 

CFPPI = -1-I W;CFPPI; 
p VOLp ; DENS; 

and MIDP = _1_" W;MIDP; 
p VOL ~ DENS ' p , , 

with W; the weight of component i blending to the product, DENS; the density of 
component i and with VOLp= L; (WjDENS;) the total blended volume (here in m3

) of 
product p. Since all W;'s and VOLp are variables, all equations (CFPPp, CFPPIp and 
MIDPp) are nonlinear. In conc1usion, the relevant set of constraints to calculate a 
product's CFPP property reads: 
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1. VOLp= Li (W,IDENS,), 

2. CFPPI = _l-L W,CFPPli 

p VOLp i DENSi 

3. MIDP
p 

= _l-L W,MIDp' , 
VOLp i DENS, 

4. CFPPp = 67 - 24000· {5_IOlog (CFPPIp)}/(850 + MIDP), 

a set with three nonlinear constraints. This can be rewritten to an easier solvable set of 
equations (with the product's subscript left out of the notation), with only one 
nonlinear equation left: 

I. VOLp= Li (W,JDENS,), 

2. CFPPI= L W,CFPPli 

j DENS j 

3. MIDP= L W,MlDp' 
j DENSj 

4. IOl0g (CFPPI/VOL) = 5 - (850 + MIDP/VOL)-(67-CFPP)/24000 

Now, a specification on a product's CFPP-value, say Cs pee, is always a maximum 
value, so CFPP~Cspee. With (3.7) and with the previous set of equations, we can 
replace the nonlinear equation by one with only three variables left, instead of four: 

(850+ MlDP / VOL)( 67 -Cspee ) 
1010g (CFPPI/VOL) - 5 + 24,000 ~ 0 (3.8). 

All variables are refinery-, period- and product-dependent. 

3.4.4 Linear approximation of p-value 

Like pooling, nonlinear fuel oil stability is solved with a PSLP algorithm (if activated 
by decision-parameter FOST). The algorithm uses the first-order Taylor 
approximation. 

To simplify things, we rewrite the p-value constraint with simple names as 
f(x,y,v,w) = ex - vw/y ~ 0 (3 .9) 

with e a constant, and x, v, w and y variables as in (3.6). 

The first order Taylor-expansion now tells us 

f(x,y, v, w) :::: f(xo,yo,vo,wo) + etlX - wo~v/yo - vo~w/yo + vowo~y/y02 
= exo - vowolYo + e(x-xo) - wo(v-vo)/yo - vo(w-wo)/Yo + vowo(y-YO)/y02 

With (3.9), elimination of terms and multiplication by Y02 to allow evaluation at yo=O, 
follows the linearized constraint which will be presented to the LP-solvers: 
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for each combination ofrefinery, period and product, in the n-th iteration step: 

{Pspee . (VOL(n-,) )2} . FRMx(n) - {VOL(n-,) . po(n-I)} . ASPH(n) 

- {VOL(n-,) . ASPH(n-')}. po(n) + {po(n-I) . ASPH(n-')} . VOL(n) _D(n) ~ 0, (3.10) 

with D(n) a deficit-variable to ensure feasibility and with all other variables defined as 
earlier. Note that all values between parentheses are known at the beginning of the n­
th iteration and that no surplus-variable is necessary because of the 'less than' type of 
the inequality. Finally, of course, all variables are refinery, period and product­
dependent and their definitions are part ofthe matrix. 

The deficit-variable highly improves the flexibility and the performance of the 
recursion. The idea ofusing a deficit-variable was already present in Gemms versions 
7.1 and lower, but not yet correctly implemented. This could lead to bad convergence 
speed or to undesired model-infeasibility. Simple tests showed that implementation of 
D(n) is easy, gives much better results and should be present in future Gemms releases. 
Note that creation of this variable is handled by OMNI, no matter whether OMNI or 
GSolve is used to guide the model through the PSLP algorithm. 

3.4.5 Linear approximation of CFPP-value 

The only required linearization is that of equation (3.8), which, with IOlog a = ~, 
!n(lO) 

can be rewritten to 
f{x,y,z) = [ln(xly) - (a.-I)]y + ~z ~ 0, (3.11) 

with x=CFPPI, y=VOL, z=MIDP, 0.= 850·1n(lO)·(67-Cspec) -51n(lO)+1 and 
24,000 

~ (67-Cspec).!n(lO). 
24,000 

A first-order Taylor approximation of equation (3.11) gives 

= (yJxo}x + [ln(xofyo) - a.}y + ~·z 
:;:;0 

In recursive Gemms-notation, for iteration n, the set of CFPP-constraints which will 
be part ofthe LP-matrix reads (for each combination ofrefinery, period and product): 

1. CFPP!")= L W,CFPPli 

i DENSi 

2. MIDpn)= L W,MIDp' 
i DENSi 

3. { VOL(n-') }. CFPP/(n) + {!n(CFPP/(n-,) )-a.}. VOL(n) + A. MlDP(n) _D(n) ~ 0 (3 .12) 
CFPP/(n-') VOL(n I) t-' , 
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with D(n) a deficit-variable (with a penalty-value in the objective function) entered to 
ensure feasibility of the model and to improve the performance of the recursion 
algorithm. 

3.5 General implementation PSLP 

This section describes the implementation of the PSLP algorithm in general and holds 
for both OMNI and GSolve. Furthermore, it holds for all three possible recursions: 
pooling, fuel oil stability and cold filter plugging point. Several details of the 
implementation depend both on which recursion(s) is (are) activated and on which 
recursion-guide is selected (either OMNI or GSolve). These details will be discussed 
later. 

First, we'll give the parameters which are used in the recursion algorithm. Then, the 
algorithm is described by three different phases: finding an initial solution, checking 
convergence, and possibly revising the LP-matrix to solve the model again and go 
back to the convergence check. Generation of matrix-rows which are relevant for the 
recursion are described under 'phase 0', which is no part ofthe actual PSLP algorithm. 

3.5.1 Recursion parameters 

The user is able to steer the HSLP algorithm by setting several parameters. Currently, 
only the first four are actuàlly used by GSolve, whereas all are used by OMNI. The 
following parameters, with their default values given, are available: 

PEN1 = 1 

PEN2 = 10-PEN1 
MAXITER = 20 

DVARBND = 1 

TOLKTON = 0.01 
TOLZERO = 5-10·' 

RCMULT = 1. 3 
RCDIV = 1. 6 

PEN1 and PEN2 are penalty-values which will be the initial coefficients of some surplus­
and deficit-variables in the objective function, except for the deficit-variable of the 
linearized CFPP-row. This variabie receives an initial cost-factor of PEN, equal to this 
entry in the general model-control tabie. MAXITER determines the maximum number of 
recursion steps for OMNI and GSolve. 
In case OMNI is used to guide the recursion, DVARBND, RCMULT and RCDIV determine the 
adjustment of variable-bounds if variables hit their bounds in recursive solution-steps 
and TOLZERO and TOLKTON are used in the convergence checks. 
From these last-mentioned parameters, GSolve only uses DVARBND to initialize bounds 
on the delta-variables of pooling-constraints. Convergence checks are based on an 
internal constant value. 
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3.5.2 Phases of the algorithm 

Phase 0: Matrix-row generation 

Check relevance recursive pooling 

If pools are present in the Gemms model, several pool-specific constraints are 
generated, but only if the pool has more than one destination and more than one 
source. Of course, if a pool contains only one component, there's no need for 
recursion because the complete composition of the pool is known beforehand. Should 
a pool have only one destination, then the fraction of components going from a pool to 
a destination would always be equal for all destinations, so again, recursion wouldn't 
make any sense. 

Gemms detects these composltlons and gives a warning if only one source or 
destination is found (and the component(s) will be treated as if they can go to the 
destination(s) directly, instead of only via the pool). 

Pooling-rows 

Table 3.1 gives all generated pooling-rows. In order to assist future Gemms­
developers, this table also mentions all relevant OMNI-codes. Note that the first four 
rows mentioned by this table would generate a set of mp = 2 + na, + nö, constraints for 

each pool p, with na, and nö, the numbers of possible sources and destinations of the 

pool. If the sixth constraint isn't active, these constraints don't restrict the other parts 
of the model in any way, which can easily be demonstrated with substitution: 

VpE1t: 

with the only further restriction on these variables that they are nonnegative. 

The other thing that follows from the above substitution is that, for each pool, one of 
the mp constraints is redundant. Therefore, Gemms suppresses the · pool-destination 

row D p,d = L Qc.d for the last destination from the matrix. 

The optimization is only truly influenced if the linear approximation is activated (so 
decision-parameter REPO is switched 01,1). Then, the balance rows are no longer 
meaningless, because they restrict Xp and therefore Dp,d and so forth. To obtain an 
initial solution for recursive pooling, the linear approximation won't be active in the 
first optimization. 
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Table 3 I pooling-specific rows 

Row-type ,OMNI-code l
) , Description , Algebraic 

Pool 
: B(R) (p) (PL) 

,The total pool-quantity, 'rfpE1t: LD d = X 
balanee , : has a destination. : d EÖ" P. P 

Pool 
, 

: The total pool-quantity is, 'rfpE1t : 
definition 

: S(R) ( p) (PL) (.) 

: determined by the sourees : X = L S , 
p c,p , , actually in the pool. ' cm", 

Souree , ,The total quantity of a, 'rfpE1t1 'rfCEGp: 
V(R) (P) (PL) (CP) . 

balanee : : source in the pool equals: S = L Q 
C, p c,d 

: : the quantity of this souree : d d5J ., , : routed to the pool's: , , , destinations , 
Destination , ,The total quantity of pool, 'rfpE1t1 'rfdEDp : 

V(R) (P) (PL) • (DE) 

balanee : : going to a destination: D = L Q 
p ,d c,d 

: : equals the quantity of all : cme,p 

, : possible pool-sources: , , , routed to this destination. , 
Delta : W(R) (P) (PL) (CP). : Ensuring As = s - So 

, See (3.4) 
balanee 

, , , , 
Recursive , () ( ), First-order approximation, See (3.5) 

V(R) (P) PL CPD 

pooling : : in current solution-point. : 
') (R), (P), (PL), (CP), (DE) and (CPD) mdlcate references to the refmery, the penod, the pool, the 
source-component, and to the pool-destination and a reference-number, respectively. 

FOST and CFPP rows 

Table 3.2 shows all CFPP- and FOST-(or P-value) specific rows. CFPP- and FOST­
recursions are activated iftheir corresponding decision-parameters are switched on. 

Table 3.2 CFPP- and FOST-specific rows 

Row-type OMNI-code') , Description ,Algebraic 

ASPH 
Q(R) (p) (PR) .FA 

Definition AS PH, which ,ASPH = Lj (ASPH;" W;) 
balanee blends linear on weight. 

, , 
pa 

Q(R) (P) (PR) . FP 
Definition pa, which ,pa = Lj (pO;"W/DENSj ) 

balanee blends linear on volume. 
, , 

FRMX 
Q(R) (P) (PR) .FX 

Definition floc ratio. ,FRMX=LlFRMJ(ASPH;" W J 
balanee 

, , 
Recursive 

Q (R ) ( p) (PR) . FS 
Linearization p-value. ,See (3.10) 

FOST 
, , 

CFPPI 
Q(R) (p ) ( PR) . cc Definition. inde.x cold, CFPPI= L W;CFPPIj 

balanee filter pluggmg pomt.: . DENS , , 
MIDP 

: Q(R) (P) ( PR ) .CV 
' Definition mid-boiling : MIDP= L W;MIDP' 

balanee , : point. , j DENS j 

Recursive 
: Q(R) (P ) (PR). CM 

' Linearization CFFP-value., See (3.12) 
CFPP 

, , , , , 
') (R), (P) and (PR) mdlCate references to the refinery, the penod and to the product, respectlvely. 

Constraints are generated for all relevant refmeries, periods and products. 
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Phase 1: Finding an initial solution 

pooling 

For the first model run, tbe linear approximation for pooling will be present in tbe 
matrix, but will receive a 'Nt indicator in MPS-format, which tells the solver not to use 
this row in its optimization. Still, some initial values for all coefficients are required to 
generate this row. All 00 are simply initialized equal to 1. Then, all rows are 
generated according to the formulae oftable 3.1. 

FOST and CFPP 

Fuel oil stability and CFPP rows are active from the first optimization onwards. Table 
3.3 gives all initial values of the variables used for coefficient-calculation. In current 
Gemms, tbe model will always hold a linearized P-value (or CFPP) constraint if a 
specification is given, even if recursion isn't switched on. This linearization is likely 
to be much different from tbe required nonlinear restriction. Therefore, tbe model 
could be uselessly restricted (if the linearization is binding). This should be eitber 
solved for future Gemms releases, or the user should be explicitly noted on this fact. 
(Then, tbe user can either deactivate the specification or switch on tbe recursion.) 

In table 3.3, the first mentioned value is tried first for initialization. If this value isn 't 
available, tbe second is tried, and so forth. If the evaluation of an initial coefficient 
(between parentheses) is less than 1O.S, it is taken equal to 10-5

• A new constant called 
MlD is introduced to calculate an initial CFPP-index value. 

Table 3 3 Initialization FOST- and CFPP-coefficients 

property I variabie I initial value 
FOST I VOL I I) 11 {reference density} [tabie PRODSj 

I 12) 1 
FOST IPO I I) Reference pO [tabie PRODSj 

I 12) CspecFspec, with Fspec a maximum FRMX 
I I specification on this product I I 
I 13) 30 

FOST I ASPH I 1) Reference ASPH [tabie PRODSj 
I 12) 1 

CFPP IMID I 1) (LOW+HIGH)/2, with entries from tab Ie 
I I CFPPMIDP 
I 12) (220+350)/2 

CFPP I CFPPI I 1) lOF, 
I I with F=5 - (850+MID)(67-Cspec)/24000 

CFPP VOL 1) 1 

With all coefficients initialized as mentioned by the tables, the model is run and tbe 
resulting solution, iflocally optimal, is used as an initial solution for phases 2 and 3. If 
the model is infeasible, tbe recursion is ended. Note that infeasibility cannot be caused 
by anY of the linear approximations, because of the introduced infeasibility-variables 
(which are just variables with a large costs to the LP-solver). 
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Phase 2: Checking convergence criteria 

To start the recursion, first all required parameters which can direct the sequential 
linear prograrnming algorithm are read from the data (either from table SLPVAR in 
OMNI or from the pooling-control of PlanStar's control-parameters section). If for 
some parameter no entry is found, the default value is used. 

When a solution is obtained from phase 1 (or later from phase 3), depending on the 
user's selection, either OMNI or GSolve takes over from the solver and checks 
specific convergence criteria. From OMNI or GSolve, any of four conclusions result: 

- don't start with recursion because the original model is infeasible 
(currently, this is only implemented for OMNI, but should become a part of 
GSolve as weIl, because recursion can never lead to a feasible solution if the 
origina! model isn't feasible), 

- end the recursion because the maximum number iterations has been reached, 
- end the recursion because convergence has been achieved, 
- enter phase 3 ofthe PSLP algorithm' 

Phase 3: Matrix revision 

If the optimal solution hasn't converged, matrix-coefficients and variable-bounds are 
adjusted. Coefficients are simply as given by the Taylor-approximation, so current 
variable-values are used to ca1culate the coefficient-values for the next solve. The 
change ofbounds, however, is somewhat more delicate. It doesn't follow directly from 
the linearization and is only used for practical purposes: to make sure that the solution 
ofthe following solve will at least be close to the one which we have now. The actual 
implementation would really be just a matter of taste. Therefore, it's not so strange 
that the implementation ofthis part differs greatly in GSolve and OMNI. 

In the detailed implementation, we will call the adjustment of coefficients phase 3a, 
and the adjustment ofbounds phase 3b. 

3.6 Detailed implementation PS LP 

This section describes the implementation of the PSLP algorithm in full detail. 
Therefore, sometimes a distinction is required between the two possible recursion­
guides, OMNI aild GSolve. Note that the LP-solver is ofno influence to the algorithm 
itself. 

3.6.1 Defmitions 

During the entire description of the algorithm, the reader who 's familiar with 
GemmslPlanStar must keep in mind that all value-calculations, storage and matrix­
updates are performed for all available right-hand-side modeis. 
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In the following definitions, variabie r is a so-called 'recursion-item', which refers to 
aspecific variabie, depending on the equation in which it is present: 

pooling: either the delta-variable, or any ofthe feasibility-variables 
(so r= Mc.d' Hc.d' WMc, WUc or /),sc.p), 

fuel oil: 
cfpp: 

any ofthe variables in the linearized constraints. 
any ofthe variables in the linearized constraint, except for MIDP. 

Define 
rM 

u;n) 
LSn

) 

Hu;n) 

:= the resulting activity ofvariable rafter the nth iteration, 
:= the upper bound placed on variabie r for the nth solve, 

:= the lower bound placed on variabie r for the nth solve, 

:= the number oftimes-in-a-row that variabie r hit its upper bound 
(not used by GSolve), 

HLSn
) := the number of times-in-a-row that variabie r hit its lower bound 

(not used by GSolve). 
Qnly for fuel oil stability and cfpp: 
v}n) := last increase of obtained value of r (V,(n)=,J0)_,Jn-I», n=I,2,3, ... , 

UB;") := relative upper bound, used to calculate u;n), n=3,4,5, ... , 

LB;n) := relative lower bound, used to calculate LSn) , n=3,4,5, ... , 

0"} max.r := max {I v}n) 1,1 vr(n-')I} , n~2, 
:=max{D;n),D;n-ll }, n~l, 

r(n) + r(n-I) 

2 , n~2, 

3.6.2 Phase 1: fmding an initial solution 

The initialization of the PSLP algorithm is completely implemented in the OMNI 
modeling language and presented either directly to the solver or via GSolve. GSolve 
doesn't change any of the initializations. 

Initialize 
,JO) := 0, 

U;I) := DVARBND, 

LS1
)} := - DVARBND, 

HU;I) :=0, 

:=0, 
:=0. 

to formulate a generic recursive procedure, 
a parameter ofthe pooling-control tabie, 

no bounds are hit yetc 

In the objective function, coefficients for penalty-variables initially equal 
- PENl for Hc.d and Mc.d 
- PEN2 for WMc and WUc 

with PENl and PEN2 given by the pooling-control tabie. 

Coefficients of the linear approximation are as described by the general 
implementation. 
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Because the initialization is exactly the same for bOth OMNI and GSolve, both present 
the exact same matrix to their solvers to obtam an initial solution. Of course, the 
resulting solution may very well differ because most Gemms models don't have a 
unique optimal solution. This has nothing to do with OMNI or GSolve though, but 
only depends on the LP-solver. 

3.6.3 Phase 2: checking convergence criteria 

Convergence checks are implemented quite differently for OMNI and GSolve. 
Therefore, separate discussions are required here. 

3.6.3.1 OMNI + LP-solver 

When OMNI is used to run the PSLP-algorithm, for each recursion-item ,Jo) after 
iteration n, variables are defined and evaluated depending on the type of ,Jn): 

,Jn) part of pooling (delta- or penalty-variable): 
D(n) 

D;n): =1 r(n) 1 and R;n): = _r_, with I': equal to pooling-control parameter 
e 

TOLZERO (default 5.10-5). 

,Jn) part ofFOST or CFPP, but no penalty-variable: 
D(n) 

D;n) := 1 v}n) I, R;n) : = _r - , with e the allowed approximation-error equal to 
e 

pooling-control parameter TOLKTON (default 10-2
). 

The solution is considered converged and locally optimal if m~x R;n) ~ 1. If 

convergence is achieved or the maximum number of iterations has been reached 
(n=MAXITER), the recursion is ended. Otherwise, the algorithm enters phase 3. 

3.6.3.2 GSolve + LP-solver 

In Gsolve, two variables and one constant are used to check convergence of the PSLP 
algorithm: variables PleOST and PENMAX, and constant PENTOL, which equals 10-6 (a simple 
adjustment of source code is preferred to make this constant available in the pooling­
control tabie, either as a new or as an existing parameter (like TOLZERO), because then, 
experienced users can choose their own preferred convergence-settings) . 

check 1: approximated errors 

First of all, all feasibility-variables of all linearized constraints (and of the extra 
pooling constraint to ensure tlsc.P =sc.P-so) are checked. If any of these variables has an 
optimal value larger than PENTOL, the linear approximation isn't good enough and the 
recursion must enter its next iteration (after coefficient- and bound-adjustment). 
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The variabie P1COST equals the sum of all surplus- and deficit-variables. 

check 2: actual errors 

Now the ac/ual errors are calculated, which are the current nonlinearity-violations: 
Define 
l t) := actual infeasibility of linearized row i after the nIh iteration-step 

if i is a pooling - row 

O(n) AS'P'H(n) 
{o P / ·FRMX(n) p ' } max , va VOL(n) if i is fuel oil stability row 

CFPP/(') 
max{O [I +ln( )-0.]. VOL(' ) + fl. MIDP(n)} , VOL(n) I-' 

if i is a cfpp row 

P2 COST = L.
i 
1,(n) , 

PENMAX = maxi {1,(n) } . 

The solution cannotbe considered converged and locally optimal if PENMAX > PENTOL. 

The values of P1COST and of P2COST both in the current and in the previous iteration, as 
well as the current value of PENMAX, are reported in the ASCII-file 'Gsolve.1st'. 

Two quite relevant differences between the implemented convergence checks in 
OMNI and in GSolve are: 

- GSolve solves the model much quicker if the nonlinear fost- or cfpp­
constraints aren't constraining, because GSolve stops the recursion if the 
optimal solution in one iteration of a model with fost- and cfpp constraints 
satisfies the original nonlinear constraints. However, from Bazaraa et al. [3 , 
p. 432], no local optimum can be guaranteed in this manner. In fact, this can 
only be guaranteed if and only if the optimal solution of the current iteration 
also solves the revised model of the next iteration. Therefore, another 
iteration would be required even if the current solution satisfies the original 
nonlinear constraints to prove local optimality. 

- OMNI is more efficient if the linear approximation leads to a locally 
infeasible model. That is, all coefficients of the recursive constraints have 
converged, but some of the infeasibility-variables are still too large. 
Currently, in GSolve, this isn't recognized, so the recursion continues with 
penalty-values being the only difference between to recursion runs. If GSolve 
would also consider the solution converged if coefficients hardly change, this 
problem would be solved, since the solution is presented to OMNI which can 
detect the infeasibility. 

3.6.4 Phase 3: matrix revision 

Like the convergence checks, the actual matrix revision (bounds and coefficients) 
differs for OMNI and GSolve. Especially for bounds-adjustments, these 
implementations aren't much alike. Coefficients are updated according to the 
recursive equations, so are in fact the same for both OMNI and GSolve. 
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3.6.4.1 OMNI + LP-solver 

Coefficient-adjustment 

Adjustment of coefficients is straightforward: calculate the coefficients of all Taylor 
approximations by substituting the solution of the previous solve in the coefficient­
formulae of the appropriate constraints (3.5), (3.10) and (3.12). 

Vital information for developers, however, is how all this is implemented in the 
OMNI modeling language and in GSolve. In OMNI, various different types of 
modification-rows are introduced which are written, as we11 as the appropriate matrix 
row- and column-names, to an ASCII-file ca11ed 'gen.rec' which is used by OMNI to 
build the matrix-modifier file 'gen.rev'. The 'gen.rec' file contains static information 
and is written just once, whereas 'gen.rev' contains dynamic information (new 
coefficient and bound values) and is written after every matrix-solve. 

Table 3.4 describes the files 'gen.rec' and 'gen.rev', the latter holding all evaluations 
of the 'modification' column. The 'Chk' column of the table is used by Gemms to 
check whether or not various other details are required (for example, the number of 
times-in-a-row a variabie hit its upper bound). The name which is mentioned first in 
any ofthe rows of 'gen.rec' is the recursion-item under consideration. 

Table 3.4 OMNI tablefor matrix-modification 

Type I Const I Chk I Names used in 'gen.rec' : modification I) 
I I I 
I I I first : second : third : fourth : 

NE I -- I -- I pool-row I -- I -- I -- I Row-type 'E' 
---,----r--,--- ------r-----.. ----,------r,------------

CL I-I 1-- I Qe.d IPool-rowlX 1-- ,Const·third 
---'----r--,---------r-----I.:J!---,------.. ------------

CL 1+1 I -- I D d I pooi-rowl Sc 1-- I Const·third 
---'----r--,-:·A-------r-----ry---,------.. ------------

MV I + I I -- I Ase I pool-row I D d I X I Const·thirdfourth 
---T'i----r,--,--E:P------r-----,:J''---,-:J!----,,------------

Cl I TOLZERO I I I Ase I pooi-rowl -- I -- I Bounds modified 
---TTOLZEROr,:--,--E:P------r-----,----,------nj-----------

PI I 13 I He.d or Me.d IPool-row l -- 1-- I ---T'i----r--,..,--------r-----'----,..,-----Tj--------- ---
P2 1 TOLZERO I 4 I WMeor WUe I pool-row I -- I -- I ) 

LN I-cl-I 1-- I V I CfpP-roWI CFPPI I V Iln(third/fourth) + 
1 1 1 1 1 1 1 Const 4) 

~---~----}---+--------+-------}-;----+-----+-------------
DV I I 1-- I CFPPI I CfpP-roWI V I CFPPI I third/fourth 
r.---T'i----r,:--,..,--------r-----'----,..,-----,,------------
C2 1 TOLKTON I 2 I V I cfpp-row I -- I -- I Bounds modified 

MV I I 1-- I V I fost-row IPO IASPH I Const·thirdfourth 
I-:---.. ----r--,..,--------r.-----r----,..,-----.. ------------
MV I Pval I -- I FRMX I fost-row I V I V I Const·thirdfourth 
I-:---'----r--,..,--------r.-----,----T-----r,------------
MV I-I 1-- IASPH I fost-row IPO I V I Const·thirdfourth 
(-,,---'----r--,---------r.-----,----T-----r,------------
MV I-I 1-- IPO I fost-row I ASPH I V I Const·thirdfourth 
r----T'i----r,:--,..,--------r.-----,----,..,-----,,------------
C2 1 TOLKTONI 2 I V I fost-row 1-- 1-- I Bounds modified 
The values of the vanables m the thrrd and fourth columns and of the modificatIons are assured not to 
become less than 10"; in absolute value. 
I) Italic words used in this column refer to the consecutive columns. 
2) Penalty-coefficient pen) changed only if {max, l "n)l};~ {O. 75 'max, l"n")I}. Then, p(n+I):=p(n)·RCMULT. 
3) Penalty-coefficient pen) changed only if {max, I"n)w,: {O. 75·max, I"n-I)I}. Then, p (n+ I):=p(n)'RCMULT 
4) If 'CFPPI/V' <10";, then this expression is defined equal to 10-6 
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Bounds-adjustment 

An incredibly large part of the OMNI implementation determines when and how to 
adjust bounds on decision-variables, depending on the recurson-type. 

pooling 

With pooling, bounds are only changed for the delta-variables ru~~, which will 

simply be denoted as ,Jn). Changes of the bounds on ,Jn+l) dep end on the values of ,Jn) 

and are given by table 3.5. To prevent problems with matrix-revision, as weil as to 
make sure that bounds can always be adjusted by multiplication or division, the upper 
and lower bounds of ,Jn+l) are, in absolute value, always greater than zero. 

Table 3.5 Adjusting bounds of delta-variables 

Result 1 Adjustment 1 Comment 
,Jn):::;o 1 u}n+l):=max{IO,o,ur(n)/RcDIv} I Pooling-control parameter RCDIV 

: Hur(n):=o; HL}n):=o : (RCDIV> 1). No bound hit. 
: : Tighten upper bound if obtained value 
I I for r is less than or equal to zero. 

,J"ii)~Ö--;L~(,i1-ïJ:9ÏiInFI0~6J,~{nJ/-;~;~0---;Tightën-löwer-boulidifobtrune<Cvaluë 
: Hu}n):=o; HLr(n):=o : for r is greater than or equal to zero. 

r,J"ii):U}nTijju}n);';jju}n,T)+ï";H(ii)::Ü---;UpperboÜÏÏcthit(U}iiSÜf--------
: if (Hur(n)=3) then : Extend upper bound after third hit-in-
: u r(n+ 1):= U?)'RCMULT : a-row. Use pooling-control parameter 
: and HU?):=O : RCMULT (> 1). 
1 else no change . I 

;rnçi}öï;jj4(iij~HL:n:-'4-ï-:Jiü::n>::Ö---;Lö~ëiboulidïiit(i}ii)<öf--------
: if (HL}n)=3) then : Extend lower bound after third hit-in-

L}n+l ):=L?)'RCMULT : a-row. 
and HL (n)·=o I 

Ir' I 

I else no change I 

fuel oil stability and CFPP 

Especially with bounds-adjustment for FOST or CFPP recursions, much code is used 
in OMNI. Considering the amount of required calculation time and used memory to 
store old variable-values, it's worthwhile to consider whether or not such an incredible 
cumbersome way to adjust bounds is necessary (the implementation of bounds­
adjustment in GSolve much simpier, but seems to workjust as fine). 

In the following, the notation ,Jn) is used for the recursion-item for which bounds are 
adjusted. Here, recursion-items are variables VOL, ASPH, FRMX and pO and bounds 
are only present after the third solve. 
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The bound-adjustment depends on obtained values of ,1n-2), Vn
-
I
), ,1n) and v nl. To try 

and make the following adjustments somewhat more transparent, we introduce some 
extreme points A;n) , B;n) and c ;n) , with A;n) =,1n)_ v,<n) _ v,<n-I) = ,1n-2), B;n) =,1n) 

+ v,<n-l) and with c ;n) = 1'/11} + v,<n) , all with n~3. 

IV(3)1+!V(2) 1 
We initialize UB; 3) :=max{1O-6, ' ' }, LB}3):=_ UB;3) . 

2 

(1) v}n-l) ~o and v}n) ~o 

Note: 
Situation: A;n) ~ ,1n-l) ; ,1n-l) ~ ,1n) ; ,1n) ~ B;n) . 

The activity of r has decreased, whereas it had increased in the previous 
recursion. To keep control on the convergence, OMNI makes sure that 
,1n+l ) won't become greater than halfway between ,1n-l ) andB;n) , nor less 

than halfway between ,1n) and A;n) . 
UB(n) M (n) 

Change the relative upper bound UB;"+I ) to UB;n+l) = min {-:- '~}' with ex 

equal to control-pararneter RCDIV and adjust the upper bound of r to 
u;n+l): = ra<:i + UB;n+l ) . Obviously, increasing ex will reduce the feasible region of 

LB(n) M (n) 
the model. Increase the relative lower bound to LB;n+l) = max{-'-,--'-} and 

a 2 
adjust the lower bound of r to L~n+ l): = ra<:i + LB;n+l) . Hu;n) : = 0 and HL~n): = 0 . 

(2) v,<n-l) ~o and V,(n) ~o 

Note: 
Situation: A;") ~ ,1n-l) ; ,1n-l) ~ ,1n) ; ,1n) ~ B;n) . 

OMNI makes sure that ,1n+l) won't become greater than halfway 
between ,1n) and A;n), nor less than halfway between ,1n-l ) and B;n) . 

Bounds are adjusted as under (I). 

(3) V,(n- l) ~o, v,<n» o and r(n) is not at its upper limit 

Note: 
Situation: A;n) ~ ,1n-1) < ,1n) < c ;n) . 

OMNI makes sure that ,1n+1) won't be greater than halfway between ,1n) 

and c ;n) , nor less than ,1n-l). 

UB(n) 
UB(n+l)= min{- '- v(n)} and define 

r a ' r 
Decrease the relative upper bound to 

LB(n) v (n) 
LB;n+l) = max{-:- ,-~} and update 

the lower bound of r to L~n+ l ) : = ra<:i + LB;n+l) . 

Finally, of course, Hu;n): = 0 and HL~n): = 0 (because no bound was hit). 

(4) v}n-l) ~o, v,<n» o and r(D) is at its upper limit 
Note: 
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Situation as under (3). 
OMNI makes sure that ,.cn+l) won't become less than ,.cn. I) . Tbe upper 
bound for ,.cn+l) is only expanded if its upper limit is hit for the third 
time in a row. (Various applications of sequentiallinear programming 
have shown it worthwhile to expand an upper bound only if it is 
reached 'several' times in a row. Again with a lack of scientific 
argumentation, ' several' has been implemented as '3 ' and cannot be 
changed by the user. GSolve always expands a variable-bound if it is 
hit. 

LB(n) v(n) 
Increase LB;n+l) to max{_r_, _ _ r_ } and update the lower bound of r to 

a 2 
L~n+ I ) : = rd:} + LB;n+l) . Increase the number of times that this variabie hit its upper 

bound: HU;n): = HU;n-l) + 1. Of course, Lu;n): = o. If r hit its upper bound for the 

third time in a row (Hu;n) = 3) , reset the number of hits to 0 and expand the 

relative upper bound to UB;n+l) :=I\." UB;n) , with ')... equal to the value of recursion­
parameter RCMULT (=1.3 by default) which can be changed by the user (but should 
always be greater than I). 

(5) vr(n-I) ~O, v}n) <0 and i n) is not at its lower limit 

Note: 
Situation: A;n) ~ ,.cn- I) > ,.cn) > c;n) . 
OMNI makes sure that ,.cn+l) won't be greater than ,.cn- I) , nor less than 
halfway between ,.cn) and c;n). 

UB(n) v (n) 
Shrink relative upper bound to UB;n+I) :=min{_ r_ ,_r_} and update 

a 2 
LB(n) 

u ;n+I): = ravg(n) + UB;n+I) . Shrink relative lower bound to max {_ r _ _ M (n)} 
Cl' r • 

H u;n) :=Oand HL~n) : = 0 

(6) vr(n-I) ~O, vr( n) <0 and r(n) is at its lower limit 

Note: 
Situation as under (5). 
OMNI makes sure that ,.cn+l) won't become greater than ,.cn-I). Expand 
the lower bound for ,.cn+!) only if its lower limit is hit for the third time 
in arow. 

UB(n) v (n) 
UB(n+l) '=min{ __ r ___ r _}. u (n+I)'=r(n) +UB(n+I). Hu(n)· =o· Lu(n) .= Lu(n-I) + 1 

r ' a ' 2 'T ' Ovg r' r" r' r • 

If r hit its lower bound for the third time in a row (Lu;n) = 3) , reset the number 

of hits to 0 and expand the relative lower bound to LB;n+l) :=').... LB;n) , with ')... as 

under (4). 

OMNI writes the required matrix-changes (coefficients and bounds) to an ASCII-file 
called 'gen.rev' in the OMNI modeling language. Afterwards, the matrix is modified 
by OMNI, handed over to the solver and the algorithm enters phase 2. 
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A small sample of 'gen.rev' is given by the following example for a model with 
recursive pooling activated. 

Example 'gen.rev' 

NAME GEMMS 
ROWS 
MODIFY 

E VAl.0800l. 
E VAl.08002 

. .. etc ... 
COLUMNS 
MODIFY 

YAl.049GB VAl.0800l. 
YAl.04AGB VAl.08002 

... etc ... 
SAl.080l.. VAl.0800l. 
SAl.080l.. VAl.08009 

. .. etc ... 
SAl.08.0l. VAl.0800l. 
SAl.08 . 0l. VAl.08002 

.. . etc ... 
MAl.0800l. OBJl. 
1IAl.0800l. OBJl. 

. .. etc .. . 
WAl.080l.M OBJl. 
WAl.080l.U OBJl. 

... etc .. . 
BOUNDS 
MODIFY 

UP BOUNDl. 
LO BOUNDl. 

SAl.08 0 1. 
SAl.08 0 1. 

... etc ... 
ENDATA 

-59 . 95l.633 
-59.95l.633 

2393 . l.704l. 
240.l.27335 

2.447856 
9 . 98973l. 

-1. 000000 
-l..000000 

- l.0.000000 
-l.0.000000 

0 . 625 
-1. 0 

Under the first MODIFY header, we see that the linear approximation rows VAl.. . . obtain 
type 'E' (equality), so they will become an active part ofthe model. Under the second 
MODIF'f, in each row the first name is the variable-name and the second is the row­
name. The number at the end of the row is the new coefficient for the variabie. Under 
the last MODIFY section, bounds are adjusted. We see that the upper bound of a delta­
variabie SAl.080l.. will become equal to 0.625 (=lIRcDIv) and the lower bound stays -
l.O. Obviously, this variabie obtained a negative value in the initial solve. 

3.6.4.2 GSolve + LP-solver 

Coefficient-adjustment 

Coefficients are adjusted in pretty much the same way as implemented in OMNI, 
since it follows directly from the linearizations, leaving hardly any room for different 
interpretations. Considering required calculation time, the most important difference 
is that GSolve changes matrix-coefficients in its internal memory, instead of writing 
everything to a file, which is much more efficient. 

GSolve also circumvents numerical problems in another way: coefficients are simply 
taken equal to 0 if their evaluation is somewhere in the interval (_10'6,10'6). 

Furthermore, if division by 0, or a logarithm of a value ::; 0 would occur, the result of 
the calculation is defined as equal to O. 
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Another difference between coefficients calculated by OMNI and by GSolve, is the 
coefficient of a penalty-variable. At the first iteration, GSolve initializes penalty­
values for the FOST and CFPP deficit-variables to 106

• Then, GSolve generates a 
quasi-random number between 0.99 and 1.0 which is multiplied by all penalty-values 
to obtain different costs for each penalty-variable. All penalty-variables are defined as 
equal to 0 in the first iteration. 

After every iteration, all penalty-costs are multiplied by 1.5 if the value for PleOST 
(which equals to the sum of values of all recursion-penalty variables) in the previous 
iteration is less than 1.05 times the value for PleOST in the current iteration. 

Bounds-adjustrnent 

Both the implementation and the description of bounds-adjustrnents for GSolve is 
much easier than for OMNI. 

Bounds are adjusted if the fact that the solution hasn't converged yet is only due to the 
fact that PENMAX > PENTOL (so the maximum actual infeasibility is greater than 10.6, but 
all of the infeasibility-variables are less than 10.6). For more details, see the 
description of phase 2 for GSolve. 

Now, suppose that PleOST ~ PENTOL < PENMAX and define l;(D), ,in) and Vn) as before. 
Furtherrnore, define 

c;~l := coefficient value of recursion-variable r in row i at the nth iteration, 

for example c;~J = -{VOL(n-l) . po(n-I)} for r=ASPH, 

Er,; := 1 l;(n) 1 with r a delta-variable in pooling-row i, 
Er,; := l,in). {cr./"+I)-cr./")} 1 with r any of the variables pO, FRMX, ASPH 

or VOL in the fost or cfpp-row i. 

Now, for all r = Ilsc,p in any pooling-linearization i, do: 
if Er,;~max{O.75·PENMAX, PENTOL} then 

[jn+l)r := min{ l,in)/21 ,DVARBND} 

L(n+1)r :=max{ -1,in)/2I, -DVARBND} 

otherwise don't change this variable's bounds. 

Then, for r = pO, FRMX, ASPH and VOL (with VOL either from a fost- or a cfpp­
restriction) and for all active fost- and cfpp-linearizations i, do: 

if Er; ~ max{0.75·PENMAX, PENTOL} then 
, [jn+1)r:= ,in)+10n)/2,1 

L(n+1)r := ,in)-10n)/21, 
otherwise, don't change this variable's bounds. 
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3.6.5 Comments on PSLP implementation 

From the description in the former sections, some comments on the PSLP 
implementations in OMNI and GSolve can be made, which may be interpreted as 
advised improvements for future releases. These comments are listed beIow, followed 
by an indication of required implementation-times. 

Initialization 
1. OMNI takes care of the initialization of the modeis, both for OMNI itself and 

for GSolve. For nonlinear p-value and CFPP blending, vital deficit-variables 
should be generated. 

2. If recursive p-value or cfpp calculations aren't active, the specific quality­
constraints shouldn't be activated. Currently, these constraints could be 
restrictive, even though they don't represent the right nonlinearities. 
PSLP algorithm 

3. OMNI uses much memory and many checks to derive the required adjustrnents 
of bounds. Considering the little influence of such a detailed bounds­
calculation on the recursion-results, it may be worthwhile to check 
performance-improvement when this is simplified. 

4. Following the previous comment, OMNI allows bounds to be extended when 
they are hit three times in a row. However, since bounds on cfpp- or fost­
re1ated variables aren't available before the fourth iteration, for such variables 
this can't happen sooner than after the sixth iteration. Usually, convergence 
will already be achieved or almost achieved by then, which makes it quite 
worthless with respect to the required calculation-time and data-storage. 

5. OMNI allows lower and upper bounds of recursion-variables to differ only 
2.10.6• Due to the number of decimal places in the matrix file, this can lead to a 
fixed bound, and possibly to an infeasible matrix for a feasible model. 

6. GSolve offers little flexibility to the user: bounds on feasibility-variables for 
CFPP or FOST cannot be set and only a few parameters of the control-table 
are used. Specifically, GSolve's tolerance-parameter PEmOL should become 
available to the experienced user. 

7. With pooling, GSolve should recognize an originally infeasible model (with 
deactivated pooling), because then, running the recursion can never result in a 
feasible model. 

8. GSolve should keep track of actual convergence in case of a locally infeasible 
model: if a model is locally infeasible, all coefficients in the linearized 
constraints may have converged, but some recursion-feasibility variable(s) will 
have a positive value, greater than the tolerance. Currently, Gemms checks this 
infeasibility, finds it greater than tolerated, so adjusts the matrix and runs the 
model again. However, since all coefficients are converged, the matrix won't 
change, except for penalty-coefficients, leading to the same solution. This loop 
continues until the maximum number of iterations is reached. 

Required effort 

The first remark should definiteIy be implemented, which is easy, because only a 
small error in the current OMNI souree code must be corrected. Thesecond remark is 
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of less importance, but may be worthwhile. Implementation and testing will be more 
difficult and add-up to about eight hours. 

The comments made for the PSLP algorithm are all relatively easy to implement. The 
improvements of GSolve's recursion will take some more time than the ones for 
OMNI. Although making the convergence parameter available to the user is simpIe, 
both the seventh and the eighth improvement are quite time-consuming (a little more 
than a day, probably). 

All recursion-improvements together will require about four days of implementation 
and testing time. 

3.7 On the convergence ofPSLP 

The philosophy of the PSLP approach was introduced by Griffith and Stewart of the 
Shell Development Company in 1961 and has been widely used since then, especially 
in the oil and chemical industries. The principal advantage of the method is its ease 
and robustness in implementation for large-scale problems, given an efficient and 
stabIe linear prograrnming solver. As shown by Bazaraa et al. [3], ifthe optimum is a 
vertex of the linearized feasible region, then a rapid convergence is obtained. Once the 
algorithm enters a relatively close neighborhood of an optimal solution, it essentially 
behaves like Newton's method with aquadratic convergence rate. Hence, highly 
constrained nonlinear prograrnming problems that have nearly as many linearly 
independent active constraints as variables are very suitable for this class of 
algorithms. Real-world nonlinear refinery models tend to be of this nature and are 
therefore usually solved successfully with PSLP. 

On the negative side, SLP algorithms exhibit slow convergence to nonvertex solutions 
and have the disadvantage of violating the original nonlinear constraints on their route 
to an optimal solution. 

Bazaraa et al. [3] state that it can be shown that the PSLP algorithm either terminates 
finitely or leads to an infinite sequence of solutions {xk } which hasan accumulation 
point under some specific conditions. Every such accumulation point is alocal 
optimal solution. Still, convergence of PSLP cannot be proven in all cases, but has 
shown in practice to be a robust method. For a model with nonlinear constraints (as in 
Gemms), this also holds for the Generalized Reduced Gradient Method as applied by 
many nonlinear prograrnming solvers such as CONOPT. 

3.8 Performance test GRG and PSLP 

This section describes a performance test between various combinations of modeling­
system and nonlinear solving-technique: Gemms with OMNI, Gemms with GSolve 
and Aimms with CONOPT. To gain insight on the performance of the technique, the 
influence of the used LP-solver in Gemms must be eliminated as much as possible. 
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Therefore, if possible, different solvers are used to solve the problem. XPRESS is the 
only solver which can be used both by OMNI and by GSolve. 

The test is based on a simple refinery-model with three pools present, which create the 
nonlinearities in the model. Since pooling probably is the most important and most 
often modeled type of Gemms' nonlinearities, it is assumed sufficient for the test, 
only to model this type. 

Only one basic model is used for the following tests with several small modifications 
between runs, which indicates that a broad test wasn't the aim ofthe research for this 
report. Indeed, the goal of the test here, is to give an indication on whether or not it's 
recommendable to solve refinery-planning models with a nonlinear solver. 

Because ofthe fact that the constraints ofthe model are mainly and that the objective 
function is also linear, the nonlinear solver mightn't be expected to work as efficiently 
as PSLP. As was described in section 3.2, nonlinear solvers nonnally derive their 
search direction from the gradient of the objective function, which, of course, is of no 
use here. Then, the steepest ascent method might be used, which is known to perform 
poorly. Still, since according to Hillier and Lieberman [7] and others, sequentiallinear 
programming is supposed to be particularly suitable for completely linearly 
constrained optimization problems, a comparison of efficiency is worthwhile. 

3.8.1 Description of the testmodel 

basic linear model 

A completely linear model lies at the basis of the test. In this model, no pools are 
present, but they can easily be inserted to blend to various products or to go to stock. 
To activate pooling in Gernms, the user only has to switch on the REPO parameter. In 
AIMMS, the nonlinear pooling-constraints must be activated by removing 
commentary-marks, and the·solving-technique must be set to 'nIp'. In both systems, if 
pooling isn't active, components which had to go to some destination via the pool, can 
now all go straight-run. 

The modeled refinery (which looks somewhat like the actual refinery in Godorf, 
Germany) has only one market. The planning-scope for this refinery is two periods, 
with each period defined with a length of 14 days. The refinery is reasonably 
complex, containing three crude distillers, three high-vacuum units, two platformers, 
two hydro-desulfurizers, a hycon, avisbreaker and two 'TGV's. 

The basics of the model as implemented in the AIMMS modeling language are taken 
from G. J. van Rooijen [11]. These were adjusted to coincide with Gemms 
functionality (for example, implement one of Gemms' intemal formulae in the 
AIMMS model). All data available in the AIMMS model is manually converted to 
OMNI tables, which are presented to Gernms to generate an equivalent model. 
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Typical constraints in the model are: 
- required qualities offinal grades (e.g. minimum density), 
- unit-capacities (e.g. maximum crude oil throughput on a crude-distiller), 
- material-balance (total weight ofproduced component must equal the 
total weight of consumed component, for example in blending), 

- market requirements (contracts with customers must be held), 

Typical variables in the model are 
- quantity of aspecific crude-type purchased in aspecific period, 
- quantities ofblended products in aspecific period, 
- unit-throughput (that is, quantities coming into each unit), running at a 

specific mode of operation in aspecific period. 

The basic model covers 2 periods. At the modeled refinery, 7 different crude-types 
and I condensate can be purchased which can be routed through 14 different units, 
leading to 413 possible components. The refinery can produce 14 final grades, some 
of which only via a pool (if active). These products are sold to only one market. 

Three pools, PMG (premium mogas unleaded), HSHGO (high sulfur gasoil) and 
KERPL (kerosene pool) can be activated, which can blend to several products or go 
into inter-period or closing stock. Here, components which can blend to any of the 
pools, cannot blend to anything else if pooling is activated. Pools (or, in case of the 
basic model, their possible sources) can go into inter-period and closing stock. Inter­
period stocks (end stocks of any period but the last) become attractive because 
purchasing-prices in the second period are assumed higher than in the first, with, just 
for convenience, all other data equal for both periods. Components (pools) in closing 
stock (end stock ofthe last period) are assumed to have no value. All stock-quantities 
are limited. 

A summary ofthe basic model's characteristics is given by the following tabie. 

Table 3.6 Summary relevant characteristics linear testmodel 

Total 
Refineries I 
M~ke~--------------------- rï----
Periods--------------------- ri---­
Prodüc~--------------------- rï4---
Poö~----------------------- r-----
Uclts----------------------- rï4--­

rComponents------------------ r4Ü---

The basic, 2-period, linear model contains about 1200 constraints, 2500 variables and 
17500 non-zeroes. These numbers will differ slightly for both Gemms and AIMMS, 
since specific rows and variables for reporting-purposes or others are present. 

44 



Chapter 3 Optimization with nonlinear constraints 

Modeling pooling in AJMMS 

The basic model can be written as 

with ~ meaning any of~, ~ or =, and with (m x n) matrix A, n-vector x and m-vector b. 
Most variables must be greater than or equal to zero, but some are free. 

The nonlinear constraint with pooling activated can be written as Xdj"(L; x";) = x"j"(L,xd;) 
for all i, d and p, with xd

; the quantity of component i going to destination d and with 
xP; the quantity of component i going into the pool. 

To improve the efficiency of a non-linear solver, such a nonlinear constraint can best 
be written as a combination of constraints: 

Y' = L;XP
j 

wd = L,xd; 
xdj"y=xPj"w, 

because the derivatives of the nonlinear equation, which are used by CONOPT's 
reduced gradient method, have become much easier to compute. Therefore, this is the 
set of constraints which is implemented in AIMMS to represent the possible pools 
(see appendix C for some details). 

The models are validated in section 3.8.2, and the actual performance tests and their 
results are presented in section 3.8.3. 

3.8.2 Model validation 

The basic (linear) model as described above is used for model validation. That is, to 
check if Gemms and AIMMS indeed model the same refinery-structure with the exact 
same details. To check the aspects of multiple periods and stocks, three variations of 
the basic model are run both with Gemms and with AIMMS: 

mode/la: 
mode/lb: 
mode/le: 

1 period ; stocks are possible 
2 periods ; stocks aren't possible 
2 periods ; stocks are possible 

The availability of stocks in a 2-period model makes it much more complex, since 
component-balance constraints for both periods are linked together via the stock 
carry-over. For a l-period model, there's no need to switch stocks on and off, because 
the complexity isn't changed much. 
In order to compare the models implemented in AIMMS and in Gemms, first various 
details (e.g. composition of component-balance constraints and the objective function) 
are checked in detail in the generated matrix-files from both systems. 
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Seeond, resulting objeetive funetions and optimal purehase-quantities are examined. 
Tables 3.7 and 3.8 give the results for all models. Note that the second table doesn't 
differentiate between LP-solvers, sinee erude purehases were all the same when the 
same system was used. (The LP-solvers did differ for some other variables, so the 
model doesn't have a unique solution.) 

Table 3 7 completely linear model 

Modeling-tool Solver Model Iterations I) Solving-time L) Objeetive 
value 

Gemms/OMNI HSLP 1851 31 5821 .68 
r.---------- ------- -------- ---------- ---------Gemms/OMNI Xpress 1422 15 5821.68 
Gemms/GSolve OSL la 1589 26 5821.68 

r.---------- ------- ------ - - ---------- ---------
Gemms/GSolve Xpress 2004 20 5821.68 
AIMMS Cplex 1362 6 5821.87 
r---------- CON-oPT- -------- ---------- ---------AIMMS 2022 66 5821.87 
Gemms/OMNI HSLP 3587 89 4812.36 

r.---------- ------- -------- ---------- ---------Gemms/OMNI Xpress 3429 27 4812.36 
Gemms/GSolve OSL lb 3005 55 4812.36 r----------- ------- -------- ---------- ---------Gemms/GSolve Xpress 3622 29 4812.36 
AIMMS S:~I~~ __ 2709 14 4816.17 r----------- -------- ---------- ---------
AIMMS CONOPT 4017 191 4816.17 
Gemms/OMNI HSLP 5343 147 5159.09 r----------- ------ -------- ---------- ---------Gemms/OMNI Xpress 4429 33 5159.09 
Gemms/GSolve OSL Ic 3163 61 5159.09 r----------- ------ -------- ---------- --------
Gemms/GSolve Xpress , 4101 36 5159.09 
AIMMS S:~1~~ __ 2547 16 5160.84 r----------- -------- ---------- --------
AIMMS CONO~T 5258 299 5160.84 
1) Note that this IS the number of IteratlOns requrred by the Snnplex method (except for CONOPT), not 

to be mixed-up with the number of iterations used for recursion. 
2) Time in seconds. Only the time to solve the model is reported, since matrix generation and reporting 

times aren' t relevant here. 
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Table 3 8 Optimal purchase-quantities in Iinear 2-period model with stocks (J c) 

Crude-type Period Optimal purchase (ktons ) 
Gemms AIMMS 

Arabian Heavy 1 66.9 66.9 
2 79.3 79.3 f-_---------- f------ f------------- ------------

Brent 1 76.4 76.6 
2 0.0 0.0 ------------,...----- ,...------------ ------------

Kuwait 1 0.0 0.0 
2 0.0 0.0 

N igeriafi-ugbi- ,...----- ,...------------ ------------
1 83.5 83.5 
2 0.0 0.0 

SiätfjorcC---- f------ f------------- ------------
1 59.5 59.2 
2 96.6 96.6 

ÖSëberg----- ,...----- f------------- ------------
1 55.6 55.8 
2 54.5 54.6 

Uräf------- ,...------------ ------------
1 0.0 0.0 
2 0.0 0.0 

Conc1usions 

Very small differences were found during the first check (detailed constraint 
comparison), because of differences in decimal places. Therefore, some adjustments 
were made, but some differences in decimal places were considered irrelevant and 
accepted. This also explains the small differences in resulting objective values, found 
in table 3.7. The small differences in crude-purchase can be dec1ared both by 
differences in decimal places and by the fact that the model doesn't have a unique 
solution. 

Therefore, the Gemms and AIMMS implementations of all variations of the basic 
model are accepted as being equivalent and can be used for the performance test in the 
following section. 

Note that table 3.7 shows the influence of the solver used to solve the model. First of 
all, the nonlinear solver CONOPT shows poor performance for a completely linear 
model. This isn't surprising because all intelligence within the solver is based on a 
nonlinear model. Still, it strengthens the expectation that this solver mightn't perform 
to weIl on a nonlinear, but mainly model. Second, the HSLP solver which is 
distributed with the OMNI system, obviously performs bad, re1ative to OSL, XPress 
and CPlex. Because this solver will greatly decrease the performance of a recursive 
run, tests are also done with the XPress solver. Still, neither HSLP nor OSL should be 
left out of the tests, since actual planners at refineries may use (just) one of them. An 
extensive report on efficient mode1ing and solving (inc1uding tests with CPlex, OSL 
and XPress) is found in the thesis ofvan der Tuijn [13). 
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3.8.3 Testresults 

With the linear part accepted to be equal for the Gernms and AIMMS modeis, pooling 
can be activated to look at the performance of the nonlinear solving-methods. The 
added nonlinear constraints in AIMMS are straightforward (see Appendix C) and 
Gernms' PSLP algorithm for pooling has already been validated, so the models may 
still be assumed to define the same refinery-structure with present pools. 

As before, three models are run, now with the three pools active: 

model2a: 
model2h: 
model2c: 

1 period ; stocks are possible 
2 periods ; stocks aren't possible 
2 periods ; stocks are possible (pools only) 

Table 3.9 shows the relevant results for these modeis, which are all run with various 
modeling systems and solvers, if possible. Tables 3.10 through 3.12 show detailed 
pool-related results for the largest and most interesting model, model 2c. The 
composition of the pools is left out of the tabie, in order to remain readability (there 
are about 80 different components which can blend to some ofthe pools). For OMNI, 
GSolve and AIMMS, the results presented in these three tab les are obtained with the 
sol vers XPress, OSL, and CONOPT, respectively. The reasons for this choice are 
practical: with OMNIIHSLP, model 2c can't be solved correctly, and for 
GSolvelXPress, no solution-output routines were available at the time of the tests. 
Other solvers cannot be applied by OMNI or GSolve, and for AIMMS, the only 
available nonlinear solver at the ORTEC premises is CONOPT. 

T bi 39 t dl t d a e non mear mo e: poo mg actzvate 

Modeling-tool Solver Model Recur- Time till Solving- Objective 
sions I) feasible 2) time 3) value 

Gemms/OMNI HSLP 8 -- 145 5702.72 
---------- f-_------ f---- -- f-- ------ f------- -------
Gemms/OMNI Xpress 8 32 5702.75 
Gemms/GSolve OSL 2a 9 -- 34 5702.72 
GemmSiGSöl~ë 

r_------ r----- ------- r------ -------
Xpress 8 28 5702.72 

AIMMS CONOPT -- 48 179 5702:87 

Gemms/OMNI HSLP 8 -- 240 4669.83 
---------- r_------ r----- ------- r------ -------
Gemms/OMNI Xpress 8 135 4669.86 
Gernms/GSolve OSL 2b 8 -- 80 4669.79 
GemmSiGSöl~ë 

f-_------ f------ - ------ f------- -------
Xpress 8 42 4669.79 

AIMMS CONOPT -- 165 442 4672.85 

GemmsiOMNI HSLP 12 - 1440 4823.53 
GemmSioMN"C ------ f------ f-------- f------- -------

Xpress 6 142 4995.65 
Gemms/GSolve OSL 2c 6 -- 96 4995.55 
---------- ------ r----- r------- r------ -------
Gernms/GSolve Xpress 6 52 4995.55 
AIMMS CONOPT -- 340 1140 4996.76 
I ) . .. 

Tbe number of recurSlOns requrred for PSLP m OMNI and m GSolve, mciudmg mlttahzatton . 
2) Times in seconds, required for CONOPT 10 fmd a feasible solulion 10 start its GRG method. 
3) Times are reported in seconds and refer 10 the lotal required time 10 solve the model. 
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The row of table 3.9 with a bold italic font shows a poor perfonnance and result. 
However, no conc1usions concerning the efficiency of the PSLP algorithm can be 
deduced from this result. Further research showed that the bad results are due to a bug 
in the HSLP-solver: in the fifth run, HSLP requires much calculation time (about 15 
minutes) and comes up with the wrong solution and objective value. Of course, from 
then on, further recursions are worthless. The LP-matrix of the fifth run was also 
presented to Xpress and OSL, which did result in the correct objective function of 
4995.65. Then, the recursion ends after only one more run. 

Table 3 10 Pooling results 2-period model with stocks pool PMG 

Solving Period Total Weight (kT) blended to product Weight to 
technique weight (kT) BFS SUP BFN SSP stock (kT) 
OMNI I 63.4 36.4 4.9 5.0 4.0 13.1 
------- ---- r-------- ---- f----- r---------
Gsolve 1 63.4 34.5 4.9 6.9 4.0 13.1 
ÄiMMS--f----- -------- r---- f----- f----------1 63.4 34.5 4.9 6.9 4.0 13.1 
OMNI 2 36.5 22.4 4.3 4.5 5.3 0.0 f-.-------f----- -------- f----- f----- f----- ---------
Gsolve 2 36.5 22.4 4.3 4.5 5.3 0.0 

f-ÄiMMS--f----- -------- f----- f----- f----- ---------
2 36.5 22.4 4.3 4.5 5.3 0.0 

Table 3.11 Pooling results 2-period model with stocks pool HSHGO 

Solving Period Total Weight (kT) blended to product Weight to 
technique weight (kT) AGO IGO stock (kT) 
OMNI 1 21.1 0.0 0.0 21.1 f-.------ f----- -------- ----------- --------- --------
Gsolve 1 21.1 0.0 0.0 21.1 

f-ÄiMMS--; f----- -------- ----------- --------- --------
I 21.1 0.0 0.0 21.1 

OMNI 2 33.0 17.2 15.8 0.0 r:------- r---- -------- ----------- --------- --------
Gsolve 2 33.0 17.2 15.8 0.0 

f-ÄiMMS------- -------- ----------- --------- --------
2 33 .0 17.3 15.7 0.0 

Table 3.12 Pooling results 2-period model with stocks pool KERPL 

Solving Period Total Weight (kT) blended to product Weight to 
technique weight (kT) KERO AGO IGO stock (kT)I) 

OMNI 1 24.2 24.2 0.0 0.0 --r------- ----- -------- r---- --------- --------
Gsolve 1 24.2 24.2 0.0 0.0 --

f-ÄiMMS-- ----- -------- f----- --------- --------
1 24.1 24.1 0.0 0.0 --

OMNI 2 18.7 15.0 3.7 0.0 0.0 r.------- ----- -------- f----- --------- --------
Gsolve 2 18.7 15.0 3.7 0.0 0.0 

rÄiMMS-- ----- -------- r---- --------- --------
2 18.7 15.0 3.7 0.0 0.0 

1) Pool KERPL Isn' t allowed to enter mter-penod stock. 

Conc1usions 

In the following conc1usions, the outlier of solving model 2c with HSLP, is 
disregarded. 
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First, following from table 3.9, the recursion procedures of OMNI and GSolve 
perform equally well, since for every model, the number of recursions required to 
converge is practically equal. The required calculation time, however, highly depends 
on the LP-solver used. Therefore, conc1usions on this can only be based on 
comparisons of results when using the same solver, XPress. Especially for the bigger 
models, GSolve performs much better than OMNI. 

The biggest part of GSolve's benefit relative to OMNI, is dec1ared by the way 
matrices are generated and presented to the solver. GSolve handles everything in 
intemal memory, whereas OMNI creates an ASCII-file to hold the matrix after every 
solve. This file is modified and presented to the LP-solver to run a second iteration. 
For big models (like 2b and 2c), this modification takes ab out 7 seconds, which 
should be disregarded to make solid conc1usions about the actual recursive algorithms. 

Still, disregarding the required time for matrix-modification in mind, GSolve seems to 
perform better than OMNI. This is caused by two things: 

- for recursion-variables, OMNI keeps track ofbounds in a cumbersome way, 
requiring much memory and calculation time 

- GSolve doesn't check convergence ofvariables 
The second reason is likely to have the biggest influence and is in fact missing in 
GSolve's implementation ofPSLP. 

The NLP-solver CONOPT obviously performs worst. Even fi~ding a feasible solution 
is more time-consuming than for the other efficient LP-solvers to conc1ude their 
recursion, and this is only one third of the total required time. CONOPT performs 
relatively worse while the model-size and complexity increases. 

3.8.4 Relevance of pooling 

Activating pooling in a Gemms model may be quite relevant. Usually, the resulting 
optimal crude diet won't be affected much (because it's mostly restricted by other 
aspects of the model like marketing constraints) by pooling, but both the resulting 
objective function and details of the refinery processes wil I. 

The objective function will of course decrease because of the extra constraints, but 
often no more than ab out 1 % (which was found by running several actual refinery­
models with pools). Still, this may very well be in the order of magnitude of half a 
million US dollars. Furthermore, the objective function shouldn't be the item to be 
most interested in. More important are resulting refinery-processing like crude 
purchases and processing, product composition and unit capacity usage. As was 
mentioned before, in actual refinery-models purchases usually aren't influenced much 
by pooling, but other processes are. 

The influence on refinery-processes depends much on the possible pool-destinations. 
First, if a pool can be unit-feed, this unit will be strongly restricted (by specific pool 
feed-ratios), which is likely to lead to a decrease in the unit's capacity usage. This can 
be very important for planning studies. Second, if a pool can blend to a final grade, the 
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product composition in the optimal solution of the pooling-model will differ from the 
one of non-pooled model, whieh leads to a different demand for components. 

In conclusion, for a user it's worthwhile to decide which conclusions her or she 
wishes to draw from the mode1-solution. If erude purchases are the only things in 
which the user is (currently) interested, pooling could be deactivated in order to 
speed-up the solution process. If other details are relevant and pools are present in the 
real-world refinery, it should be modeled. 

3.9 Conclusions 

Possib/e benefit of nonlinear so/ver 

As it appears in the testmodel, using a nonlinear solver doesn't look much promising 
for Gemms modeis. Although the model is simpier than most which are used in 
practice, the basics are the same: thousands of linear rows, a few nonlinear constraints 
and a linear objective function. 

Because of the fact that most nonlinear solvers are dedicated to problems with a 
nonlinear objeetive function (and possibly some nonlinear eonstraints), their 
implemented algorithms are also based to solve such problems with the highest 
efficiency. Therefore, if the model had a nonlinear objeetive function and/or much 
more nonlinear eonstraints, results might very well be complete1y different. Nonlinear 
solvers will benefit from the fact that they adapt a feasible solution in such a way that 
it should move in the direction of maximizing the objective value (using its gradient). 
Sequential linear programming doesn't use any smart way to derive a new solution 
from the current one and is likely to perform worse. Furthermore, if many more 
nonlinear constraints would be present, sequential linear programming may beeome 
less efficient beeause of the (bad) linear approximation of many nonlinear constraints 
in the same initial point. 

In conlusion, although a nonlinear solver doesn't seem very promising for the current 
Gemms nonlinearities, it seems worthwhile to continue research with the AIMMS 
test-case, since this case has now been validated and can easily be extended to hold 
more nonlinearities. Once research is continued, a whole new area of modeling 
becomes available and many more nonlinearities might become worthwhile modeling, 
like: 

- nonlinear influence-function of additives on properties (like octane number 
or viscosity), which Gemms approximates by a step-wise linear function (see 
the example in Appendix D). 

- nonlinear unit-yie1ds, 
- nonlinear property-blending, other than CFPP or p-value 

One might think of hundreds of nonlinearities which could be present in refinery­
planning, but this will definite1y lead to useless models due to huge calculation-times. 
Further research should show how far one can go with nonlinear modeling, given the 
current status of nonlinear solver-efficiency. It must be stressed that efficiency is of 
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the utmost importanee for 'normal ' Gemms runs, considering the little time planners 
have available. (This importanee will be less for strategie studies or studies like cargo 
analysis, which is presented in chapter 4.) 

Be careful when modeling nonlinearities 

If more nonlinearities (e.g. using AIMMS) are modeled, this should be done very 
carefully and one should know how to do this as efficiently as possible. One example 
is the variety of ways to implement the pooling-constraints, and the fact that 
simplifying their resulting derivatives reduces required calculation times. 
Furthermore, the user should still trust the model-outcomes. This trust may decline 
when more nonlinearities are modeled. First of all, the resulting solution will strongly 
depend on the initial solution. A simple example is the maxirnization of X-, for o~ x 
~2 . Most NLP-solvers initialize variables to either zero or one of their bounds. Then, 
the gradient of the objective function is evaluated and if it equals 0, the resulting 
solution is stated locally optimal. For the example, many solvers will return a locally 
optimal solution x=0. To gain insight in the quality of the local optimum, several 
initial solutions should be used, requiring more calculation time. Second, standard LP­
sensitivity analysis is no longer possible (although this also holds when using SLP). 

Recommendationsfor PSLP implementation 

All recommended changes to Gemms' PSLP implementations are given in section 
3.6.5. 
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Modeling cargo purchases 

4.1 Introduction 

In current Gemms, all variables are continuous. Therefore, variables representing the 
number ofkilotons to be purchased ofsome crude-type can have any real value within 
specified bounds. However, crude is always delivered by fully loaded oil-tankers with 
a fixed capacity, which means that crude can only be purchased as fixed cargo-sizes. 

Two possible ways to deal with the fixed cargo-sizes are considered here: 
- using the 'enumeration approach' to evaluate the re1ative value of cargoes, 
- modeling the process as Mixed Integer. 

The goal of cargo evaluation is the same as that of current Gemms: to determine a 
crude diet which maximizes total refinery-profit. 

The two modeling-possibilities differ much. Not only do they solve different 
problems, also their theoretical background differs completely. The first is based on 
planners' experience and describes the way some planners currently tend to make their 
decisions: the software system presents a large list of re1ative cargo values, from 
which the planner him- or herself must choose a cargo diet which is both profitable 
and possible to process. The second is based on mathematical theory and presents just 
one solution: a cargo diet which is optimal for the underlying model. 

This chapter will show the possibility to implement both modeling techniques in 
Plan Star. The required adjustments to allow PlanStar to run the enumeration approach 
will be discussed in full detail, inc1uding required data-entries, database changes, e++ 
source code, and a list of advantages and disadvantages. From this list, along with the 
complete description of the techniques, it should become c1ear to readers and users 
whether or not they wish for the implementation of any or both of them in PlanStar. 

During the development of the technical specifications, required changes to OMNI 
source code have been minimized, because it's likely that this modeling language will 
be replaced in the future. Therefore, any effort in this area is considered a regret 
investment. 
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4.2 The enumeration approach 

4.2.1 Goal 

Usually, the relative value of a cargo (with respect to other cargoes), calculated from 
the LP solution, is more important for the crude-planner than the calculated absolute 
cargo value (gain in the objective function due' to purchase of the cargo). The 
enumeration approach calculates these relative cargo-values and presents a list to the 
user with several important results for specific cargoes or cargo-combinations. Such 
results are the obtained objective function, marginal value, cargo si ze and a so-called 
'cargo value' . 

The goal of the enumeration approach is to give a list of results from which the crude­
planner can more or less easily produce an ordered list of attractive crude-cargoes. 
The results are obtained from a Gemms model of the refinery for which the cargo es 
are evaluated. This section discusses how the enumeration approach should be 
implemented in the PlanStar system. For this, first asolid functional specification of 
the method is required. 

4.2.2 Functional specifications 

This section describes the functionality of the enumeration approach. 

4.2.2.1 Assumptions 

First of all, we assume that an appropriate model of the refinery and its crude­
processing aspects is already available (e.g. the Gemms data-dictionary or PlanStar 
database). The enumeration approach doesn't change this model other than by 
replacing possible purchases to fixed purchases for the cargo es under evaluation. 
Usually, the single-cargo evaluation method is used, which fixates the purchase of 
only one crude-type to its cargo-size. When so-called 'synergetic cargoes' or 'combi­
cargoes' are present, the combi-cargo method is used, which fixates several cargoes. 

The most important assumption made is based on planners' experience: the value of a 
particular cargo doesn 't depend on the fact that part of the remaining cargoes in that 
planning period also have to be processed completely. Of course, the absolute value 
(value of the objective function) of a cargo may change because of differing 
remaining process-obligations, but the resulting sorted 'shopping-list' of attractive 
cargo es is assumed not to be influenced. 

Synergetic and combi-cargoes 

The only time when remaining process-obligations can really influence the crude­
rankings, is when synergetic cargo es are evaluated. Cargoes A and B are synergetic if 
cargo A becomes more valuable when cargo B is also purchased or processed (e.g. a 
high-sulfur crude A and a low-sulfur crude B). Combi-cargoes are crude cargo es 
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which must be purchased together (for example, contractual obligations or two crudes 
on the same oil tanker). In both cases, the combi-cargo method is used, which uses the 
enumeration approach with all synergetic cargoes modeled as fixed crude-purchases. 

4.2.2.2 Running the enumeration 

To run the enumeration approach, the user should enter data in a new PIanStar 
window. This table must contain all relevant information for the cargoes or cargo­
. combinations wbich must be evaluated. For all crudes available in the cargo (possibly 
combi or synergetic),a type must be entered: 

- 'main' for the main crude under evaluation 
- 'combi' iftbis crude is in a combination with the main crude 
- 'reqd': if tbis crude is required to purchase the main crude. That is, the main 

crude can only be purchased if the required crude is also purchased. See section 
4.2.3.3 for an example ofthe PIanStar entry-screens. 

In new cargo-detail tab les, the user can enter which range of cargoes must be 
evaluated for some crude-type. That is, if a minimum number of N and a maximum 
number of Mis entered, then the following models are run: 

- purchase N-l full cargoes (disregard if N=O), 
- purchase N full cargoes, 
- purchase N+ 1 full cargoes, 

- purchase M full cargoes. 

This allows the user to select multiple cargo evaluations by entering just a minimum 
and a maximum number of cargoes. The purchase of K (>0) cargo es is evaluated by 
comparing it with the results of purchasing K-l cargo es (see section 4.2.2.4). In case 
of combi- or synergetic cargo es, a multiplication factor must be entered. This factor 
~qual to j U=O, I ,2, ... ) implies that if K cargoes of the main crude are purchased, then 
('at least' in case of a reqd-type, ' exactly' in case of combi)j-K cargo es ofthe combi­
or required crude must be purchased. If tbis linear relation doesn't hold, the user can 
obtain the required relations by changing the cargo-sizes. By default, the 
multiplication factor for combi-cargo es equaIs 1. 

The cargo-evaluation method is activated by choosing a new 'Run cargo evaluation' 
option of the PIanStar 'Run' menu. Before activating the cargo-evaluation, the user 
should enter all required data-entries in new entry-screens like the ones presented in 
section 4.2.3.3. In tbis tabie, he or she can (de)activate specific rows, wbich enables 
the user to evaluate only several of all available cargoes. Because of the fact that 
PIanStar has a relational database, integrity check are active while entering the cargo­
specific rows (e.g. the entered crude oil must be defined in the reference tables). 

For (combi-)cargo evaluation, first the original LP-model (without any cargo-data) is 
run and then, models are run with alterations for fixed cargo-purchases. Of course, 
because of the full flexibility of the original model, there's no use in fixating the 
purchase of some crude to 0 if it isn't even purchased in the optimal solution of the 
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original run. In practice, however, one tends simply to run all required evaluations, 
inc1uding the original run, despite of the fact that superfluous models are run. For 
now, we'll hold on to this simple procedure. In a later study, if the enumeration 
method will indeed be implemented in PlanStar, it will be worthwhile to estimate the 
required effort to build-in some intelligence in order to prevent useless models from 
being run and to investigate whether or not users see this as a relevant improvement 
(sinee the enumeration can still require hours of ca1culation time). 

The user must select on what basis (currency and weight or volume) the resulting 
cargo and marginal values must be reported. The default unit for cargo value is main 
Gemms-model currency per metric ton. 

Using only multiple runs; no multi-RHSfor multiple cargo evaluations 

The enumeration approach will be run as multiple LP-runs. After each LP-run, 
relevant results are stored and exported OMNI data-tables are updated for the next 
run. Another setup could have been to use Gemms' multi-RHS feature (which is 
currently used by some planners for cargo evaluation). The following paragraph 
explains why the first-mentioned setup is preferred. 

By using more than one RHS to define the various cargo availabilities, more 
evaluations can be run after only one data-export, input reading, matrix-generation 
and sol ving step, which reduces the total amount of required time. The problem is, 
however, that beforehand it's unc1ear how many right-hand-side dependent data can 
be stored in Gemms' or the LP-solver's intemal memory. Technically the number of 
right-hand-sides could be up to 36, but due to the magnitude of the modeis, rarely 
more than 6 different RHS-models can be used. Therefore, the system would have to 
leave it up to the user to guess beforehand how many right-hand-sides can be used. 
Other disadvantages of using multiple RHS for cargo evaluation are all necessary 
data-checks and the loss of modeling flexibility. If multiple right-hand-sides are used 
for cargo-evaluation, the system must check whether or not the original model doesn't 
contain any data for mUlti-RHS runs, since these should be disregarded. Again, it 
could be left up to the user to make sure that multiple RHS aren't used in the original 
LP-model. But then still, the user loses the modeling flexibility of running various 
scenarios (e.g. different prices and/or availabilities). 

If the original model is multi-RHS, the enumeration approach allows the user to run 
cargo evaluations for all available right-hand-sides, just by defining cargo evaluation 
data for the first RHS. Gemms then copies all evaluation data for the first RHS to all 
other RHS automatically, if required. If the original LP-model . is infeasible or 
unbounded, the cargo-evaluation won't be run, since there probably are some data­
errors within the model which would lead to useless cargo-evaluation results. 

Handling commercial constraints 

The presence of commercial constraints and/or transactions adds some difficulties to 
the enumeration method. For example, problems occur if the original model holds a 
PlanStar 'transaction' restriction such as 'minimum purchase of 40,000 barrels 
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Northland Crude by tier 1'. Now, if tbis restriction would remain active during the 
enumeration runs, we wouldn't get any relevant results. For example, if the 
enumeration approach tries to evaluate the purchase of one cargo Northland Crude 
(say 50,000 barrels) with the restriction still active, this would lead to the evaluation 
of a minimum purchase of 90,000 barrels Northland Crude instead of a the evaluation 
ofthe purchase of exactly one cargo (or 50,000 barrels). 

Obviously, these kind of availability-constraints must be removed, either by the user 
or by the system. In this chapter, it is assumed that the system removes them. Below 
follow some advantages and disadvantages ofboth options which led to tbis choice. 

Letting the user remove irrelevant constraints 

This option is currently used at some refineries. The user makes sure that the cargo 
evaluation models are feasible and do indeed model the purchase of the evaluated 
number of cargoes. 

Advantages: 
- obviously, it is the easiest way to implement cargo evaluation for PlanStar, 
- the user can determine which availability-constraints he or she wishes to 

remain within the model used for cargo-evaluation and which constraints can 
be removed, therefore keeping the possibility to remain essential restrictions in 
the model. 

Disadvantages: 
- the user is forced to keep two models up-to-date: the original LP-model and 

the adjusted cargo evaluation 'basic' model 
- the user might not be able to overlook all possible problems which might 

occur, for example the one mentioned in the introduction of this subsection. 
This can lead to misleading results. 

- If the user wants all cargo evaluation runs to be feasible, he or she should 
either remove availability-restrictions for all evaluated crude oils together, 
thereby making the model less realistic, or keep separate availability-data for 
each cargo evaluation (wbich is hardly possible to maintain). 

Letting the system remove constraints 

Constraints wbich must be detected are: 
- commercial transactions like in the example on Northland crude oil, 
- commercial constraints which restrict the purchase of the evaluated crude. If 

one chooses to keep these restrictions (because they may be essential to the 
refinery), the model with fixed cargo purchases may become infeasible. On the 
other hand, if these restrictions are removed, crude-purchase becomes less 
restricted, possibly leading to a solution which is infeasible in practice. 

Considering the fact that most multi-crude commercial constraints are essential 
to the refinery, the first option is adopted here. That is, these constraints are 
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kept within the model and it is left up to the experience of the planner to deal 
with possibly resulting infeasibilities. 

The best way to deal with availabilities of evaluated crudes within PlanStar is to 
remove all of those with the same period/refinery/crude combination as for the crude 
under evaluation. 

Advantages of system intelligence: 
- the user can remain working with his or her original refinery model, since all 

cargo-specific entries can be disregarded when not running the cargo 
evaluation. 

- For each evaluated crude oil, only availabilities conceming this crude and its 
combination(s) must be adjusted. All others can remain active in the model. 

Disadvantages of system intelligence: 
- extra implementation time (and cost) required 
- it isn't trivial which constraints should be removed 

Considering all the above mentioned advantages and disadvantages, it is best to let the 
system decide which constraints should be removed. The main reason is that the user 
shouldn't be bothered with this matter and shouldn't be forced to keep different 
model-versions for both 'normal' and 'cargo' LP-runs. 

4.2.2.3 Required running time 

Without adding any intelligence to the enumeration approach (such as disregarding 
superfluous runs), an LP-model is run 2m +1 times, with m the number of selected 
cargoes to evaluate (which inc1udes both the evaluated crude-types and all cargoes for 
each type). Ifsuperfluous runs are disregarded by the system, between m+1 and 2m+1 
runs are required. The resulting running time, however, probably won't become as 
much as 2m+ 1 times the required time of one model run, because the optimal solution 
of evaluation run i can be used as a basic solution for evaluation run i+ I. 

4.2.2.4 Reporting 

PlanStar should report the following results of the enumeration approach: 
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I. scenario description 
- name of evaluated crude, 
- names of crudes in the combination (if any) 
- number of cargo es evaluated, 
- cargo sizes 

2. objective value when purchasing all, say k cargo es or combinations, 
3. objective value when purchasing k-I cargoes or combinations, 
4. added value, 
5. cargo value, 
6. marginal values for 'first ton or barrel of cargo' and 'last ton or barrel of 

cargo' 
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Here, the following definitions are used: 
added va/ue ofthe JÇh (k=1,2 ,3, ... ) cargo purchased = 

the objective value when purchasing the cargoes minus this value when 
purchasing k-l cargoes. 

cargo va/ue ofthe JÇh (k=1,2,3, ... ) cargo purchased = 
{added value of this cargo} / {total cargo size} 

The user can select the required unit of measurement for these values. This unit will 
also be used for the reporting of marginal values. Therefore, the cargo value of some 
crude oil will always be between the marginal value of the first drop of this crude 
cargo and the marginal value of the last drop. 

For an evaluated combination of cargoes (combi or synergy), no marginal value is 
available. The cargo value is calculated as above, with cargo size equal to the sum of 
all cargo sizes in the combination. The objective function ca1culated when the 
combination isn't purchased is ca1culated by fixating the purchase of all cargoes in the 
combination to one less than in the evaluated case. 

Because of the fixation of some crude purchases, the model might not be feasible for 
some evaluation runs. Then, marginal and cargo values will be reported as -9999. 

4.2.2.5 Report layout 

This section proposes the lay-out of the report generated after running the 
enumeration approach. The actual representation of the reports depends, however, on 
the implementation possibilities within Business Objects, assuming that this will 
become the main reports-application. 

Example generated report after enumeration approach 

Crude Dens Bbl 
factor 

ARH 0.889 6.29 
ARL 0.75 6.29 

1-:----
ARH 1-ö."889 6.29 
ARL 0.75 6.29 
NIL 0.73 6.29 

1------ 1-,--- ---
NIL 0.73 6.29 

1------
NIL 

1-.---
0.73 6:29-

VoM cargo value: 
UoM objective value: 

Cargo Nr 
size 

30 I 
10 2 

1-----
30 2-
10 4 
65 I 

1-.---
65 2-

1-.---
65 f-

USDlbbl 
1000USD 

VoM M.v. Cargo M.v. 
cargo I" value last 

Kmt -- 0.47 --
Kmt 

1-.--- f---- Ö.Ö7-- ----
Kmt -- --
Kmt 
Kmt 0.09 -0.03 -0.10 

1-.--- f---- ---- -O.W-Kmt -0.10 -0.14 
1-----

Kmt 1--9999 -9999- -9999-

Exchange rate NLGIUSD: 1.84 

Obj Obj Added 
- + value 

45678 45858 180 

--- 45883- ----
45858 25 

45678 45668 -10 
45668- 4568- ----

-53 
45615 

---- ----
-- --

In this report, the specific gravity (dens) is reported in order to ca1culate the number of 
barrels per metric ton, from which the marginal and cargo values can be ca1culated by 
Business objects. Furthermore, 'Obj -' and 'Obj +' give the resulting objective values 
when the cargo isn't purchased and is purchased, respectively. 
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In this example, the added and the cargo value are calculated by Business Objects. All 
others result from Gemms' optima! solution. The cargo value (USDlbbl) for the 
second combination of 1 cargo ARH and 2 cargoes ARL is calculated as {added value 
ofthe second combi} / {total cargo size }=25/ {(30·6.29/0.889)+(2·10·6.29/0.75)}=0.07. 

For multiple-refinery and/or multiple-RHS modeis, refinery- and RHS-names or 
numbers must also be presented by the reports, because cargo values will be both 
refinery- and RHS-dependent. 

4.2.3 Technical specifications 

4.2.3.1 Default settings 

The following selections are made by default and can be changed by the user: 
- units for marginal and cargo values are Gemms' main currency per metric ton 
- multiplication factors for combi and main crude equal 1 

The following selections cannot be changed by the user: 
- tier-number of a cargo in the Gemms model equals X 
- 'component-type' of entered cargo equals 'CRUDE' in the database 
- 'transaction-type' of entered cargo equals 'CRG' (newly defined type) in the 

database 

4.2.3.2 Database 

Two new tables are defined to allow for cargo evaluation data-input. Furthermore, the 
existing tables Comm _Transactions and Constr _Commercial are extended with 
possible Trans_Type 'CRG' and two new tables are created to hold all relevant cargo 
evaluation results. For this subsection, the reader is assumed to know the contents of 
available Oracle tab les for PlanStar. 

Below, all new Oracle tables required for the enumeration approach are given. In the 
notation, key-fields are underlined and new fields (not available in current PlanStar) 
have a bold italic font. An example is given by section 4.2.3 .3. 

Tab/es lor cargo-input 

table Cargo _ Defmition 

VERS ION 
CARGO NAME 

MIN CRG 
MAX CRG 
DESCRIPTION 
ACTIVE YN 
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NUMBER(2) 
CHAR(5) 

NUMBBR(l) 

NUMBBR (1) 

CHAR(20) 

CHAR(l) 
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table Cargo_Details 

VERS ION 
CARGO NAME 

MATER TYPE 
MATER LABEL 
CARGO SIZE 

MULTIPLIER 

CARGO TYPE 

NUMBER(2) 
CHAR (5) 

CHAR(12) 
CHAR(4) 
NUMBER (8, 3) 
NUMBER(l) 
CHAR (5) 

New links between tab/es 

The only new links created are: 

Modeling cargo purchases 

/* always equal to CRUDE */ 

/* Main, Reqd or Combi */ 

- tab les Cargo_Details to table Cargo ~efinition (i.e. all cargo es mentioned in the 
cargo-details, must be present in the cargo_definition) 

- tables Cargo_Details to table Components, with the refinery-field of the fust two 
tables linked to the location-field of the latter (i.e. all combinations of Mater_Type 
and Mater_Label specified in the first two tables must be defined by key-fields in 
table MateriaIs). 

Details of a crude within a cargo (e.g. prices and definition of VOL (either m3 or 
barrels)) is held by the current PlanStar Comm_Transactions tabIe, with transaction­
type 'CRG' . 

Then, cargoes which must be evaluated are selected from table Cargo _Definiton 
(those with ACTIVE_YN = 'Y'), crudes present in the cargo are obtained from 
Cargo_Details and refinery-information and other crude-details are obtained from 
Comm _Transactions and Constr _Commercial (from the first tabIe, all crudes in the 
cargo with transaction-type 'CRG' are selected; from the second, the constraint is 
used, ifpresent, with constraint-name equal to CARGO_NAME). 

Tab/es lor cargo-output 

table Cargo_Run _ Actuals 

CASE ID NUMBER(2) 
RUN ID NUMBER(2) 
CARGO ID NUMBER(3) 

CARGO NAME CHAR (5) 

RHS CHAR(4) 
LP STATUS CHAR(4) 
OBJECTIVE_FUNCTION NUMBER(lS,4) 
NUMBER ITER NUMBER(S) 
NUMBER RECUR NUMBER(4) 
NUMBER ROW 
NUMBER COLUMN 

NUMBER(S) 
NUMBER(S) 
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CASE 10 NUMBER (2) 
RUN 10 NUMBER (2) 
CARGO ID NUMBER(3) 

CARGO NAHE CHAR (5) 

RHS CHAR(4) 
REF1NERY CHAR(4) 
PER100 NUMBER(2) 
MATER LABEL CHAR(4) 
CARGOES PURCHASED NUMBER(2) 

UOM CARGO SIZE CHAR (3) - -
MARG1NAL VALUE NUMBER(lO , 4) 
OENS1TY NUMBER(8,3) 
BARRELFACT NUMBER(8,3) 

4.2.3.3 Data Entry Screens (powerBuilder) 

First of all, the PlanStar 'Run' menu must be extended with an option 'Run cargo 
evaluation'. Secondly, the user must be enabled to enter all relevant data in new entry­
windows. These windows will become available in a new subsection 'cargoes' ofthe 
CUITent PlanStar-section 'commercial'. The cargo-section will hold two subsections: 
'cargo-definition' and 'cargo crude details'. The following example will show how 
the user should enter the cargo-specific data and how these will be saved to the 
database. Finally, when removing a mode1-version from the database, the newly 
created tab les must also be removed. 

Example 4.1 

In this example, we assume that the user wants to evaluate two cargoes. The first is 
simpie, it's just a cargo of Northland crude oil, which can be processed by two 
refineries, A and D. The second is more complex: it's a combination of Arab Heavy 
(AH) and Arab Light (AL), which can only be processed if at least two cargoes of 
Northland (NL) crude are purchased. Furthermore, this cargo can only be processed at 
one refinery, say refinery D. The fOllOwing paragraphs show all required data-entries 
and their conversion to the (extended) PlanStar database. The complexity of the 
example (both combi- and synergetic) allows the reader to see what entries would be 
required for more simple cargo-evaluations. 

Cargo crude details 

First, the user can enter all crude-re1ated data in a cargo-availabilities screen which 
looks almost the same as the CUITent crude/feedstock availabilities window. This 
cargo-availability screen is activated when the 'cargo cTUde details' subsection of the 
new 'cargo' section in PlanStar is selected. (PlanStar presents these sections as a tree­
view.) 
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Cargo crude details 

Period Rhs Location Materiallabel 

I I A NL 
r--ï-- r-ï- r--Ö--- ----NC----
r--1-- r-ï- r--Ï>--- ----N"C---­
r--1-- r-ï- r--Ï>--- ----ÄC---­
r--1-- r-ï- r--Ï>--- ----ÄC---­
r---1-- r--ï- --0--- ----AH---­
r--1-- r--2- --0--- ----AH----

Modeling cargo purchases 

Again, as for current availabilities, for each entered row, an entry-table appears for 
detailed infonnation. For the first row, this could read: 

DoM Cargo size bbl 
Price 10.5 

DoM Price bbl 
Platt's type Non 

Currency DLRS 
FOB price YIN N 

Note that because of this setup, the user Can still run various price-scenarios for crude 
evaluation by using Gemms' multiple-RHS feature. 

Cargo-definition 

Another subsection of the cargo section, will be 'cargo-definition'. Here, the user will 
enter the number of cargo es to be evaluated, the crude types present in the cargo 
(including its type: 'main' for the crude which is evaluated, 'combi' for a combi-cargo, 
and 'reqd' for a required crude). Cargo-sizes must also be entered here. 

In the cargo-definition window, the user will first define a cargo-name and cargo­
specifics in the following table (with entries as for our example): 

Cargo-deflnition 

Cargo_ Min # Max# Active Description 
Name 

CG NL I 2 Y Northland cargo 
CG AH 1 1 Y CombiAHIAL 

The entries under 'min #' and 'max #' define the number of cargo es to be evaluated. 

In the same window, below the previous tabie, data can be entered which must hold 
all crude-Iabe1s within the cargo, including their cargo-type, the cargo-si zes and, for 
required (synergetic) crudes, a multiplier which tells how many cargoes of the 
required crude must at least be purchased in order to purchase one cargo of the main 
crude. Changing si zes and multipliers for required crudes gives the user full modeling­
flexibility. For the main crude and for a combi-crude this multiplier should nonnally 
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equall (which will be the default). This part ofthe window is refreshed when the user 
selects another row in the cargo-definition tabie. For the combi-cargo, it williook as 
follows: 

Cargo-contents 

Crude label Cargo type Cargo size UoM cargo Multiplier 

AH Main 100 WGT I 
---ÄL---- --Combi-- -------- -------- -------

80 WGT I 
---NL---- --Reqd--- -------- -------- -------

50 VOL 2 

Refineries 

The final part of the cargo-definition window, 'refineries', is required only if, for any 
of the crndes within the cargo, the number of rejineries which can purchase this crnde 
is less than the number resultingfrom the cargo crnde details. 

That is, for each crude in the cargo, possible destinations (refineries) may be specified. 
Then, other refineries entered in the cargo crude details are disregarded for the current 
cargo-evaluation. An example shows the meaning of the refineries-table. The entries 
at the cargo crude details suffice to allow the Northland cargo to be processed both by 
refineries A and D. Now, suppose we wish to evaluate this cargo if it must be 
processed by refinery D. Then, we don't wish to delete any ofthe cargo crude detail, 
because prices would be lost. Instead, we fill in the refinery-table as below: 

Pricing-information for Northland crude at refinery D is still obtained from the cargo 
crude details. In further cargo evaluations, the user could deselect several runs by 
setting the 'active' field to 'N' . The data entered at the refineries-table is saved to the 
database in tab les Constraints, ConstrainUimits and Constr _commercial. 

Cargo-specific data in the database 

The following paragraphs show how all entered data of this example is saved to the 
extended database (note that not all entries, e.g. prices, are given above). 

Italie columns cannot be changed by the user. Bold table-headers are key-fields and 
for table Comm _transactions, bold rows concern main crudes for crude evaluation. 
Below, the internal representation ofthe tables is given, which isn' t shown to the user 
in this manner. 
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table Comm_transactions (1) 

Ver Trans Per RHS Location Mater Mater MAXMINFIX Tier 
type type label 

1 CRG 1 RHSI REFA CRUDE NL MIN X 
1---- 1------- ----f-_-----f-_------- ------ ------ ----------1-----
1 CRG 1 RHSI REFD CRUDE NL MIN X 1---- 1------- 1---I-msi-1--------- ------ ------ 1-,------ ----1-----
1 CRG REFD CRUDE AH MIN X f-,--- f------- 1---f-msï- f-_------- ------ ------ f-,---------- f-_---
1 CRG REFD CRUDE AH MIN X f-.--- r------ ï---r.---- 1-.------- ------ ------ r,---------- -:---
1 CRG RHS2 REFD CRUDE NL MIN X f-_--- f------- ï---f-.---- f-.------- ------ ------ f-,----------1 CRG RHSI REFD CRUDE AL MIN X r.--- r------ 1----- - -------- ------ ------ 1-,----------1----
1 CRG 1 RHS2 REFD CRUDE AL MIN X 

table Comm transactions (2) 

Quant UoM Quant Price UoM Price Plattyp Currency FOBprice YN 
None USD N 
None USÖ-----I-N----------

None USÖ-----f-N----------
-------- -----------

None USD N ------- -------- -----------
None USD N 
None üs5-----f-N----------
None üs5-----f-N----------

table Cargo _ defmition 

Version Cargo Name Description Active YN Min Crg Max Crg 
1 CG NL Northland cargo Y 1 2 

,-,------1---=-------r-:------------ -------- ------ ------
1 CG AH Combi AH / AL Y 1 1 

table Cargo_Details 

Version Cargo_ Mater.:.. Type Mater label Cargo_ Multi· Cargo_ 
Name Size plier Type 

1 CG NL CRUDE NL 50 1 Main 
-,------ ---=---- --------- --------- 1------ -----
1 CG AH CRUDE AH 100 1 Main 

-.------ -.--=---- --------- --------- f-:----- -----
1 CG AH CRUDE AL 80 1 Combi 

-.------ -,--=---- --------- --------- f-.-----
Reqd 1 CG AH CRUDE NL 50 2 

table Constraints 

Constr Name Constype Descript 
CG NL Commer Northland cargo 
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table Constraint_limits 

Ver- Constr Period RHS MAXMINFIX VoM Limit Limitvalue -
sion Name limit type 

I CG NL 1 RHSI FIX VOL TOTP 50 

table Constr commercial 

Ver- Trans Constr Pe- RHS Loca- Mater Mater Tier Constr 
sion type Name riod tion label type Coeff 
1 CRG CG NL 1 RHSI REFA CRUDE NL X 1 ---- ----- ------ --- ---- ------ f------ f---- f------
1 CRG CG NL 1 RHSI REFD CRUDE NL X 1 

When the evaluation is run, OMNI tables are created and the models are solved, as is 
shown by example 4.2 in the following section. 

4.2.3.4 Interface modules (C++) 

The existing C++ source code must be extended to run the enumeration approach. The 
following few paragraphs will demonstrate how the enumeration approach is run, that 
is, what steps must be implemented in C++ source code. Only PlanStar's export­
modules are adapted. The import-modules remain unchanged because the enumeration 
approach won't become available for Gemms standalone (i.e. without PlanStar). 

The following description mentions storage of 'required results for cargo evaluation 
only'. This storage will have to be implemented mostly within OMNI source code, 
because there's already an OMNI procedure available which stores the whole solution. 
This can be adjusted accordingly with only little effort (keeping the possible regret 
investment low). When all evaluations have ended, we wish to have results for all 
model runs and we wish to have them available in the database such that Business 
Objects can generate the appropriate report. 

A small problem that arises is that the OMNI system doesn't know which evaluation 
is run, and after every run OMNI writes the solution to the same file, thereby always 
overriding the solution of the previous run. This is no problem if the solution is saved 
to the database after °every run. However, this action is very time-consuming. 
Therefore, C++ code will keep track of the solution for each run and will make sure 
that the total cargo evaluation run ends up with only one solution-file which can be 
imported into the database. 

The OMNI crude-availability tables A V AlL, SP A VL, TIERA V and CRDLMT, 
possibly with period and/or RHS indicators, will no longer be exported to data-files 
'commerci.mod' and 'constrai.mod'. Instead, a new file, 'avail.mod' should be created 
for these tab les in order to speed-up the cargo evaluation. The resulting 'switches' file 
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will contain an entry to make sure that OMNI reads this new data-file (decision 
parameter 'FILE8' will be avail.mod). Details follow below. 

The C++ routines which are activated when the user selects the running of Cargo 
Evaluation are as follows: 
I. First, some items are checked and the original LP model is run: 

1.1 Count the number of active rows in the cargo-definition tabIe. 
1.2 If no active cargo evaluations are found, print a message like 'no active 

cargoes found' and don 't run any oJtheJoliowing steps. 
1.3 Run the normal procedure with the adjustment that Gemms' OMNI 

availability-tables are saved to the data-file 'avail.mod' instead of to 
'commerci.mod' and 'constrai.mod', which is currently the case. 

IA If no optimal solution is found for this model, don 't run any oJ the 
Jol/owing steps. 

1.5 Copy the file 'avail.mod' to 'avaiUp.mod' (overwrite if this file already 
exists). 

1.6 Store the objective value only. 

2. Now, the actual cargo-evaluation can start. The following steps will first 
generate all required data-files containing the availabilities. That is, files 
avlXXX_Y are generated, with XXX a three-digit cargo-identification number 
and with Y a run-number for this cargo. 
Now, initialize XXX to '000'. 
2.1 For each defined and activated cargo, do the following : 

Initialize Y to o. Get the minimum and maximum number of cargo­
purchases of the main crude. Do the following steps for each number of 
cargo purchases from (minimum minus 1) to the maximum number of 
cargoes. If the minimum equals zero, then do the following steps from 
zero to the maximum number of cargoes. 
2.1.1 Generate identification numbers: XXX equals XXX +1, Y = Y + 1. 
2.1.2 The data-file 'avail.mod' will now be created. It will contain the 

following export-results: 
- all rows at table Constr _Commercial with Trans_Typ' A VL' 
- ifthe current cargo under evaluation contains a multi-crude 
commercial constraint (with type 'CRG'), then this constraint 
is exported to table (P)CRDLMT(N) (with loss of tier­
number). Attention must be paid here with combinations, not 
to lead to a constraint which reads, e.g, 'total purchase AH + 
AL at refineries A + B = cargo-size', because this could lead 
to only purchasing crude AH or AL. Multi-refinery single­
crude commercial constraints be exported to table TIERA V as 
a constraint for tier X. 

- all rows at table Comm _Transactions with Trans_Typ equal to 
'A VL', except for those which contain a crude/period/location 
combination which is part of the cargo under evaluation 
(either as main or as dependent crude) 

- all rows at table Comm _Transactions with Trans_Typ equal to 
'CRG' which contain a crude/periodllocation combination 
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which is part of the cargo under evaluation. This export will be 
somewhat different from the usual Comm Transactions 
export. That is, purchase will always be fixed, tiers will 
always equal X and quantities are obtained -from the cargo­
specific tables (cargo _ size or cargo _ size·multiplier, see section 
4.2.3.2). 

2.1.3 Copy 'avail.mod' to 'avIXXX_Y.mod' . Overwrite it if it already 
exists. 

2.2 Run all models without any report-steps. This is done by starting with file 
avlOOI_1.mod, copying it to 'avail.mod', running the model and storing 
the relevant results in a unique temporary file. 

2.3 Store all solutions in the database (thereby using the values for XXX and 
Y to find the cargo-name and the number ofpurchases). 

2.4 Generate Business Objects report with all relevant results. 

Example 4.2 cargo-evaluation data-export 

This example is an extension of example 4.1. For ease of demonstration, we'll assurne 
that the crude oils which are used in the cargo evaluation, are available without any 
restrictions in the original LP-model. Otherwise, evaluation-delirniting restrictions 
must be removed by the system. 
The following data is exported for each evaluation run: 

Northland cargo evaluation 
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Evaluation run 1: purchase 0 cargoes Northland (Although '0' wasn;( entered as 
the minimum purchase, this model must be run to be able to evaluate the 
purchase of I cargo Northland crude oil). 
Add to file 'avIOOI I.mod' : 

TABLE lCRDLMTl 
CG_NL 

AREF 1 
DREF 1 
NLOO 1 
BRFV 0 

TABLE lAVAILl 
BMIN BAREF BDREF 

NLOO 10.5 10.5 

Note that ifmultiple right-hand-sides are active in the original model, Northland 
cargo evaluation is automatically run for all right-hand-sides. There are no 
complications here, since if the user doesn't wish results for the other right­
hand-sides, he or she should simply concentrate on the results of RHS I. All 
other results could then be disregarded and taken the same as those from the 
original model. 

Evaluation run 2: purchase 1 cargo Northland 
Just create file 'avlOOI_2.mod' like 'avIOOI l.mod', with a table ICRDLMTl 
entry BRFV = 50. 
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Evaluation run 3: purchase 2 cargoes Northland 
Like before, but now for file 'avlOOI_3.mod', with BRFV = 100. 

Arab Heavy combination evaluation 

Evaluation run 4: purchase ° cargo es Arab Heavy and ° cargo es Arab Light 
First, recreate availability tables to remove data from Northland cargo 
evaluation. 
Then, generate file 'avlO02_l.mod' with 

TABLE lTIERAVl 

DAVLTMX DAVLBNX DCSTX 
AHOO 0 0 97 . 6 
ALOO 0 96.4 
NLOO 10.5 

TABLE lTIERAV2 
DCSTX 

AHOO 94.8 
ALOO 95 . 4 
NLOO 9 . 5 

Note that column headers defining maximum and minimum purchase are used, 
instead of a column header simply defining fixed purchase. This is because of 
the way Gemms implements these columns: for fixed purchases equal to 0, 
Gemms doesn't create any purchase-variables. Therefore, no marginal values for 
this purchase are obtained. 

Evaluation run 5: purchase I cargo AH, I cargo AL and a minimum of 2 
cargoes NL 
Change the availability-entries at table I TIERA V I to 100, 80 and 100 for crude 
oils AHOO, ALOO and NLOO respectively. Generate the unique filenames. 

The system will now run all models and provide the user with the results as described 
by section 4.2.2.5. 

4.2.3.5 Output (Business Objects) 

Business Objects must read the new output tables, calculate added and cargo values, 
adapt values to the reporting unit of measurement and generate a report. This report 
must be created and look like the one presented in section 4.2.2.4. 

4.2.3.6 Documentation 

New Help-screens must be created in which the enumeration approach is described. 
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4.3 Mixed Integer Programming 

In principle, modeling fixed cargo sizes is straightforward Mixed Integer 
prograrnming: integer variables are used for cargo-purchases and continuous variables 
represent numerous other model-details such as resulting quantity of blended 
products. 

4.3.1 Goal 

The goal of a Mixed Integer model is to find a crude diet which maximizes expected 
total refinery profit. Opposite to the enumeration approach, which only evaluates one 
cargo or a small combination of cargoes at a time, MIP in fact evaluates all available 
cargo es together. 

Because of the many restrictions introduced into the MIP model, it might become 
infeasible. Gemms, however, is able to show the user (some ot) the infeasible rows, 
which will help him or her to gain much insight in the model-problems. 

4.3.2 Functional specifications 

The functionality of the Mixed Integer model is straightforward: the MIP solver 
searches for a cargo package which maximizes the refinery margin, subject to the 
familiar linear constraints. 

4.3.2.1 Assumptions 

Apart from the fact that cargo-purchases are taken into account, no assumptions other 
than those for the original LP-model are made. 

4.3.2.2 Running the Mixed Integer model 

Before running the model as mixed integer, the user selects which and how many 
crude-cargoes are available and enters the cargo sizes. The solver then searches for a 
crude package which maximizes total profit. If for an available crude-type no cargo­
size is active, its availability is deduced from the original model and its purchase is 
modeled as a rational positive variabIe. 

4.3.2.3 Required running time 

The required time for solving a Mixed Integer prograrnming model is larger than for 
an LP and depends on many things: the di stance between the optimal solution of the 
LP-relaxation and the MIP, the intelligence of the solver (preprocessing, branch-and­
bound algorithm), and the number of integer variables and their bounds. 
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Even if the problem were just lP (just integer variables representing the nurnber of 
cargo es purchased, no continuous variables) then, with n the number of available 
cargoes, 2" possible solutions might have to be evaluated (that is, checked for 
feasibility and if so, then calculate the objective value). For example, if n=20, then 
more than 1,000,000 possible solutions might have to be evaluated. Even the fastest 
computers are incapable of doing this within an acceptable amount of time. In 
practice, due to smart solution algorithms, this situation will never occur, but still, no 
guarantee on the actual amount of time required can be given. 

When finishing the MIP, several other LP- or MIP-models should be run in order to 
increase planner's 'feel' for the refinery's situation. 

4.3.2.4 llesuJts 

PlanStar results from MIP will be practically the same as from the current LP-model. 
The only things which must be added to the (Business Objects) reports are the cargo­
sizes and, for each cargo under consideration, the nurnber of cargo es to be purchased. 
Because of the integral aspect of the model, marginal values cannot be calculated and 
reported. Note, however, that marginal values obtained from an LP-model also have 
little meaning if the rational variables in fact represent integer cargoes. (A marginal 
value reflects the gain or loss from a ' smalI' change in cargo purchase. This change 
cannot be 'small' if only cargo es are available.) 

4.3.3 Technical specifications 

The user can enter MIP-specific data in a new section of the current 'commercial' 
section of the PlanStar system. A subsection called 'MIP crude availabilities' will 
become available as a part of 'commercial'. This is discussed in more detail in the 
following sections. 

4.3.3.1 Database 

The database must be extended to hold all relevant cargo-information. For MIP this 
extension is much smaller than for the enurneration approach. Considering the fact 
that it is still required to be able to run the original LP model, as weIl as the 
enurneration approach at all times, MIP data mustn't override any of the existing 
tables, so the database is extended. The following sections define the new tabie, the 
new data-entry screens and a description of how the entries could be converted to a 
mixed integer OMNI model. Large changes to OMNI code would be required to be 
able to convert the model to an appropriate matrix-file. The format of this file will 
depend on the solver which is used. The required OMNI changes won 't be described 
here, since it is considered to be too much of an effort to investigate this at the 
moment because of the expected OMNI replacement. Should OMNI remain as the 
used modeling tooI, more effort can be invested in an exact representation of required 
OMNI changes. 
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table MIP Comm Transactions - -
VERS ION NUMBER(2) 
MATER TYPE CHAR(12) /* always equal to CRUDE */ 
MATER LABEL CHAR(4) 
PERIon NUMBER(2) 
TIER NUMBER(l) 
REFINERY CHAR(4) 
RHS CHAR(4) 
MIN PUR NUMBER(l) 
MAK PUR NUMBER(l) 
CARGO SIZE NUMBER(8,4) 
UOM CARGO SIZE CHAR(3) - -

4.3.3.2 Data Entry Screens (powerBuilder) 

First of all, tbe PlanStar 'Run' menu must be extended witb an option 'Run MIP'. 
When this option is selected, tbe same sub-menu as for Run LP will be shown, using a 
text reflecting tbe selection of Mixed Integer Programming. 

Second, at a specific 'MIP crude availabilities' window, the user will be able to enter 
all required data in almost the same way as is currently done for crude/feedstock 
availabilities. The window from the current crude/feedstock availabilities is copied, 
but tbe window in tbe lower-right corner will be somewhat adjusted. That is, an extra 
row-name 'cargo-size' will be present, including its data-entry field. Now, tbe entry at 
tbe 'quantity' field oftbe lower-Ieft table will define tbe minimum, maximum or fixed 
number of cargo es which can be purchased. 

Specific constraints can be entered in the same way as for the current LP 
implementation. Therefore, no adjustments are made here. 

Finally, tbe PowerBuilder parts must be extended to make sure that tbe new MIP­
tables are also removed when tbe user removes a mode1-version from tbe database. 

4.3.3.3 Interface modules (C++) 

The export-modules must be adjusted in about tbe same way as described by section 
4.2.3.4, though very much simplified. Ifmixed integer modeling is activated, tbe only 
change to current data-export is tbe exporting of table Comm _ Transactions: first, all 
commercial transactions witb Trans_Typ equal to MIP must be exported to OMNI­
tables. Then, all other commercial transactions can be exported, except for records 
with Trans_Typ equal to 'A VL' and with all other entries at the key-fields (e.g: tier­
number) tbe same as for tbe exported MIP-records. 

Note tbat a full research on tbe usage of Mixed Integer refinery-modeling is beyond 
tbe scope of this report. Here, just tbe aspects concerning cargo-modeling are 
discussed. At a later stage, one might consider how to enable tbe user to specify 'if-

72 



Chapter4 Modeling cargo purchases 

then' constraints, which are typical for MIP and may be very useful for refinery 
mode1ing. 
Mixed integer data-export isn't supported by the current OMNI source code. Probably 
the easiest way to export the MIP-tables is to add two columns to the tables A V AlL, 
TIERA V and/or SPAVL: 'MIP' and 'SIZE'. An entry at a row/column intersection at 
column 'MIP' will define the crude-availability defined by this row as mixed integer. 
The entries at the minimum, maximum and fixed availability-columns will then be 
interpreted as cargo-numbers, with the entered unit of measurement defining the 
cargo-size's unit of measurement. The entry at this row for column 'SIZE' will be 
used as cargo-size (zero ifblank). 

Example 

TABLE 1TIERAV1 
> AAVLTMX AAVLBNX ACSTX MIP SIZE 

AROO 2 0 97.6 1 100 
ALOO 
NLOO 

2 o 
100 

96.4 
10.5 

1 80 

Constraints like 'purchase of ALOO must be equal to the purchase of AHOO' can be 
entered at the commercial constraints in the same way as is currently done for the LP 
model. 

OMNI 

If MIP is implemented in the current modeling system OMNI, many changes are 
required here. First of all, the availability tables must be able to handle new column­
headers 'MIP' and 'SIZE'. Second, the OMNI source code must be extended in order 
to generate a matrix-file which deals with integer variables, ifrequired. This extension 
will be large and very time-consuming. 

4.3.3.4 Output (Business Objects) 

There's no need to adjust any ofthe existing report-possibilities. 

4.4 Enumeration vs MIP 

This section produces a list of advantages and disadvantages of both the enumeration 
approach as described by section 4.2 and the Mixed Integer model of section 4.3. 

An advantage which holds for both approaches is the fact that the setup described 
here, allows the user to change cargo data within the same case and version number as 
the original model. Therefore, cargo evaluation, linear programming and mixed 
integer programming can all be run within the same case and version without 
changing any data for each model. 
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4.4.1 Enumeration 

4.4.1.1 Advantages 

• Models remain LP and are therefore fairly easy to solve. 
• Approach exactly represents all actual planner's activities. 
• Total required time can be estimated weIl. 
• Hardly any OMNI adjustments are required, which means little regret investment. 

4.4.1.2 Disadvantages 

• Many models may have to be run, which requires much running time. 

An advantage ofthis fact, however, is the fact that many results are presented to the 
planner. Therefore, he or she has full flexibility in selecting a cargo diet which can 
actually be processed by the refinery. Furthermore, the planner can provide the 
crude-traders (who actuaIly have to buy the cargo es) with several possibilities. 

• New reports must be generated. 

The new reports won't be implemented in OMNI, but only in Business Objects, 
which will probably become the standard PlanStar output source. Therefore, still 
no regret investments are made. 

• Valuable cargoes may be missed because the planner beforehand doesn't consider 
them to be of any relevance. Therefore, they won't be taken into account during the 
cargo evaluation. 

To overcome this problem, the planner could simply run the cargo evaluation for 
all available cargoes. 

4.4.2 Mixed Integer Programming 

4.4.2.1 Advantages 

• MIP does in fact contain the complete cargo evaluation process of the enumeration 
approach: introduce integer variables only for the evaluated crude oil and its 
dependent crude oils. By binding the integer variables to different numbers of 
cargoes to be purchased, the enumeration approach is exactly represented. 

• MIP offers a whole new scope of possible constraints which can be used for 
refinery-modeling. 

• The planner may gain much insight from the MIP solution. Obviously, if the 
optimal solution is feasible for scheduling as weIl, it is indeed the package which 
the traders should purchase. 

• Only little implementation time required for extensions other than OMNI, therefore 
easy to use for any other modeling tooI. 

• The solution of the MIP supplies the planner with a combination of cargo es which 
is most attractive. This gives the planner much insight in which LP's are worth 

74 



Chapter4 Modeling cargo purchases 

running after the MIP, instead of running any LP he can think of himself. 
Therefore, valuable cargo-combinations which the planner might have overseen 
may come to light when using mixed integer programming. 

• Ifthe number of integer variables (possible cargo-purchases) is relatively smaIl, the 
calculation time should be within reasonable bounds. Because of new insights as a 
result from the MIP-solution, probably not too many LP-models have to be run 
afterwards, which should keep the total time required below the required time for 
the enumeration approach. 

• Stocks are much more actively present in MIP than in the enumeration. If stocks 
are smaIl, MIP takes into account that a purchased crude diet has to be processed 
(almost) in full. Large c10sing stocks for aspecific crude can represent the fact that 
this particular crude can be processed (partly) at after the end of the current 
planning period. 

• Very little changes in the report-section are required. Some existing PlanStar 
(Business Objects) reports may have to be extended to express the required crude­
purchase in number of cargoes. 

• After solving the first Mixed Integer model, the user can interactively find good 
diets of cargo-purchases by fixating the purchase of a number of cargo es to a 
number other than the value in the optimal solution. 

4.4.2.2 Disadvantages 

• MIP tends to come up with a cargo diet which is optimal ij it could be processed 
within the planning period. However, the solution is indeed a planning solution. 
The next step (after purchasing the crudes) would be scheduling. Here, several time 
aspects which aren't modeled for planning may prevent the given optimal solution 
from being feasible in practice. For example, the cargo diet selected by the MIP 
model may produce enough LPG for the planning period as a whoie, but the 
planner knows that in the second week, for a period of three days, an enormous 
amount of LPG is required. The crudes which should be purchased according to the 
MIP solution may not be processed in such a way that this demand is met, which is 
unacceptable. Note, however, that this situation also occurs when running the 
'normal' LP-model. 

Therefore, the MIP solution isn't the only solution the planner should look at. He 
or she should combine this solution with the solution of various LP-runs and 
possibly some other Mixed Integer models (with some other purchase restrictions 
to find another solution). 

• In practice, the planner hands over a list of most desirabie crudes to a trader, who 
then tries to buy these. If this trader is only handed the crude diet which resolved 
from the Mixed Integer model, he or she has no c1ear view in which cargo es to 
purchase in case the package as a whole cannot be purchased. Therefore, the trader 
might want something like a 'second best' package, which is rarely presented by 
MIP-solvers themselves. 

This problem can be solved in the same way as was suggested for the previous one. 
Note that currently planners also run various LP-models, so not much extra effort is 
required to gain more insight. 
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• Very large adjustments to the mode1ing system (OMNI) are required to allow for 
MIP. Different adjustments are required for all possible solvers. Since any OMNI 
change is seen as a regret investment, it may be worthwhile to implement MIP only 
in the (possible) new mode1ing system. If OMNI remains the Gemms modeling 
system, it may be considered to implement MIP for just one solver, for example 
Gsolve/OSL. 

• The required amount of time depends on too many things (such as the position of 
the optima! solution of the LP-relaxation with respect to the optimal mixed integer 
solution) to be able to give any practica!ly relevant estimate. 

Of course, since for a specif'ic refinery the models usually won't change too much 
in size, a good estimate of the amount of time required becomes evident after 
running MIP for the first time. 

4.5 Conclusions 

In order to assist the planner as much as possible in his or her functioning, the cargo 
evaluation both by enumeration and by Mixed Integer prograrnming should become 
available. Then, the user can choose to run the standard LP, the enumeration, or the 
MIP model. Ifthe MIP has a satisfactory solution time, it can be used quite effective1y 
for strategic planning and further research. Both approaches are a great extension of 
the current PlanStar functionality. 

If OMNI is really due to be replaced, then the required investment in Mixed Integer 
prograrnming might not be worthwhile yet. However, it could also be seen as an 
investment in research for future developments. Ifthe MIP appears to be effective (for 
example if only several cargoes are under consideration), it's worthwhile to 
implement it in the new system. Based on the technica! specifications as weil as on the 
implementation in OMNI (especially the most efficient way to specify the 
constraints), the implementation-time should be greatly reduced. 

The enumeration approach seems ready to be implemented. It represents current 
planners' activities in great detail, but makes them much easier to do. Therefore, it 
will make PlanStar more applicable for any crude oil planner. 

More research on Mixed Integer modeling 

Before investigating the possibility to implement all nice features of mixed integer 
modeling into PlanStar, more research is required to see in which part of the model 
users might like, for example, 'if-then' constraints and to see how much more effort 
would be required for implementation. Constraints which could easily be 
implemented once MIP is available are things like 'the number of components 
blended to this product is less than 5', and 'the number of units active for more than 
30 days is greater than 4'. 
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Cargo evaluation modeling note 

Some refinery-planners tend to use mmImum availabilities to represent opening 
stocks. This cannot be used when activating cargo evaluation. If this kind of modeling 
is, the planner should (only once) update the model by removing the minimum 
availabilities and replacing them by opening stock, and costs entered for these 
availabilities must be replaced by costs of opening stock. The model then deals with 
them in exactly the same way as when modeling them as minimum availabilities. 
Considering the required removal of (some) existing availabilities for cargo evaluation 
(see section 4.2.2.2), this change ofthe model is essential. 
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Conclusions 

This chapter gives a summary of the most important results, conc1usions and 
recommendations found during the research for this report. Details are found in 
sections 3.6.5, 3.9, 4.4 and 4.5. 

5.1 PSLP implementation 

A vital error in the implementation of current Gemms releases, is the fact that deficit­
variables for recursive FOST- and CFPP-constraints aren't generated. All other 
aspects of PSLP are implemented weIl, but several improvements are recommended 
(details in section 3.6.5). The most important improvements are: 

- increase OMNI's minimum difference between lower and upper bounds of 
recursion-variables from 2.10.6 to 2.10-3

, to avoid unnecessary infeasibility, 
- define linearized CFPP- and FOST-constraints as inactive if the respective 

switches are tumed off, 
- enable GSolve to detect an initially infeasible model, to avoid running a (time­

consuming) recursive loop which can never lead to a feasible model, 
- enable GSolve to detect local infeasibility of a recursive model, to avoid 

running useless iterations after convergence of recursive coefficients. 

All improvements can be implemented quite easily both in OMNI and in GSolve 
(FORTRAN). 

5.2 Nonlinear solvers 

For current Gemms models, there's no need to solve them with a nonlinear solver. 
Probably due to the mainly linear models and the linear objective function, such a 
solver requires about 10 times as much calculation time than sequentially solving 
linear models, without resulting in a betler solution. 

On the other hand, the benefit of using nonlinear solvers is the fact that a whole new 
scope of refinery-modeling becomes available. Models can quite easily be extended to 
hold many other aspects of the refinery which are typically nonlinear. The problem is, 
however, that it's likely that actual refinery-planning models are too large to actually 
use all available nonlinearities and to be able still to solve the model within reasonable 
time. 
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5.3 Cargo analysis 

For cargo-analysis, Mixed Integer programming doesn't seem to be the desired tooI. 
The planner will gain much more insight in the relative values of crude cargo 
purchases if a sequence model is run with fixed crude purchases. This sequence is 
represented by the enumeration approach described in chapter 4. 

The enumeration approach can be implemented in the PlanStar system, which should 
run a sequence of Gemms model. To enable the user to run this approach with 
PlanStar, the database used for Gemms models must be extended. Furthermore, some 
data-entry windows and menu-items must be added to the PlanStar system, and 
adjustments to C++ source code are required. 

5.4 Future research 

Chapters 3 and 4 lead to a recommended continuation of research. Both for Mixed 
Integer and for Nonlinear programming, benefits are yet to be discovered for refinery 
planning. If a modeling-system like AIMMS or PIMS is used for such research, both 
types can be investigated at the same time, because both can quite easily be modeled, 
based on the test-model built for this report. 

Probably the biggest advantage of Mixed Integer and/or Nonlinear modeling, and the 
best reason for future research, is the whole new area of modeling-possibilities which 
is opened, such as 'if-then' constraints with MIP and nonlinear unit-yields with NLP. 
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This example demonstrates the principle of the PSLP algorithm, as implemented both 
in Gemms/OMNI and in GSolve. The example follows the phases of this algorithm: 
initialization and finding a feasible solution, check convergence and possibly revise 
the optimization problem. 

To demonstrate the dependence on the initial solution, this example is constructed in 
such a way that the first PSLP-maximization will have a whole area of optima! 
solutions. Then, the resulting initial solution depends on the LP-solver used. 

The problem under consideration is described below. Note that the nonlinear 
constraint is aquadratic equality, leading to about the same complexity as a pooling­
constraint. 

problem: 
max f (x) = XI + X2 

4- S.t. 
(1) X I+X2 ~4 

3 (2) 0.5X I+ X2 ~3 

(3) g(x) = X IX2 - 3 =0 

2 

global optimal solution: 

1 
(3) x' =(3,1) 

(1) 
f(x} =4 ~ 

1 2 3 4 5 6 
g(x} = 0 

)(1 

Linearization of g(x) 

The recursive equation used to approximate g(x) is obtained from the first-order 
Taylor series: 

g(x(n» ) "" g(x(n-I») + L (x~n) - x~n-I » ) Og(X)1 =x~n-I )x~n) + x~n-I )x~n) - x~n-I)x~n-I) - 3 
i 8x; K( -- I ) 

In this example, we'll apply the PSLP-algorithm with convergence-parameter s=O.Ol 
and consider the solution converged and locally optimal after n (=1 ,2,3, .. . ) iterations, 
if the absolute error of the linearized constraint after n iterations is less than s. For 
ease of demonstration, we' llieave out Gemms' bound-adjustments. 
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Example A.I convergenee to the global optimum 

Phase 1: fmding an initial solution 

Phase 2: convergence checks 

ig(x(O~1 > e, so phase 3 is entered. 

Phase 3: matrix revision 

problem: 
max f(x) = X t + X2 
S.t. 
(1) x t+x2 ~ 4 
(2) 0.5xt+x2 ~ 3 

initial solution: 
x(O) =(4,0) 
[a whole range of optimal 
solutions is available] 

f(x(O~ = 4 
g(x(O~ =-3 

Now, g(x) is approximated in x(O) and feasibility-variables S and Denter both the 
equality and the objective function. A penalty coefficient equal to 1000 is assumed. 

This phase is repeated until convergence has been achieved or the maximum number 
of iterations reached. 
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iteration 1 

(1) 

1. 
(3) 

I I ~ 
1. 2 5 6 

Xl. 

Example Gemms ' PSLP algoritlun 

problem: 
max f(x) = XI + x2 - 1000(S+D) 
S.t. 
(1) X I+X2 :s; 4 
(2) 0.5x l+x2 :s; 3 
(3) 4x2 - 3 + S - D = 0 

'optimal' solution: 

x(I) 1 3 
=(34'4) 

f(X(I~ =4 

g(X(I~ 
9 

16 
S=D=O 

Again, 19(x)1 > 8, so the model is revised and solved once more. 

iteration 2 

Another iteration is required. 

problem: 
max f(x) = XI + X2 - 1000(S+D) 
S.t. 
(1) x l+x2 :s; 4 
(2) 0.5x l+x2 :s; 3 

3 13 7 
(3) -4xl+ - x -5- +S-D=0 

4 16 

'optimal' solution: 

X(2) - (3 1 39) 
- 40 ' 40 

f(X(2~ = 4 
g(X(2~ ::::: -0.051 
S=D=O 
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iteration 3 

1 

----Q-~1--T2--3T-~--T--6~-~ 

Appendix A 

problem: 
max f(x) =X1 +x2 -IOOO(S+D) 
S.t. 
(I) X 1+X2 ~ 4 
(2) 0.5x1+X2 ~ 3 

39 121 
(3) -X1+-X2 -5.9494+S - D=O 

40 40 
'optimal' solution: 

X(3) "" (3.000 , 1.000) 
f(X(3~ = 4 
g(X(3~ "" 10-5 

S=D=O 

The solution has converged and the local optimum of x = (3,1) withf(x)=4 has been 
found. Because of the simplicity of the example, we know that this is in fact agIobal 
optimum. With nonlinear problems, however, this can never be guaranteed 
beforehand. The following part shows how the algorithm could easily find another 
local optimum. 

Example A.2 Convergenee to loeal optimum 

Now, suppose that our LP-solver returned an initial solution x(O) = (2,2), with the same 
objective value as before: f(x)=4. The resulting situation differs completely from the 
one described in part I: 

iteration 1 

4 

3 (2) 

84 

problem: 
max f(x) = Xl + x2 - 1000(S+D) 
S.t. 
(I) X1+X2 ~ 4 
(2) 0.sX1+X2 ~ 3 
(3) 2x1 + 2x2 - 7 + S - D = 0 

'optimal' solution: 
X(I) = (1 , 2.5) 
f(X(I~ = 3.5 
g(X(l~ = 1 
S=D=O 
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iteration 2 

6 

-----Ç~~~Ö-~~~~5~~6~--~ 
)(1 

Example Gemms' PSLP algorithm 

problem: 
max f(x) = XI + X2 - 1000(S+D) 
s.t. 
(1) XI+X2 ::; 4 
(2) 0.5XI+X2 ::; 3 
(3) 2.5xI + X 2 - 5.5 + S - D = 0 

'optimal' solution: 
X(2) = (1.25 ,2.375) 
f(X(2~ = 3.625 
g(X(2») = -0.03125 
S=D=O 

Again, Ig(x) I > e, so we can forget about other convergence checks and continue. 

iteration 3 

problem: 
max f(x) = XI + X2 - 1000(S+D) 
s.t. 
(1) XI+X2 ::; 4 
(2) 0.5XI+X2 ::; 3 

(3) .!.2x +~x -5~+ S - D=O 
8 I 4 2 32 

'optimal' solution: 
X(3) "" (1.268 , 2.366) 
f(X(3~ "" 3.634 
g(X(3~ "" -0.0002 
S=D=O 

Now, Ig(x) I < e, so the 10caIly optimal solution X = (1.268 , 2.366) is retumed, which 
fulfills the pooling-like nonlinear equation. This point is an approximation of the 
intersection between the graphs of (3) and (2) in the first figure ofthis example: 

6 3+J3 
X = ( ~ ,--) ",,(1.268 , 2.366) 

3+,,3 2 
f(x) "" 3.634 
g(X) = O. 

The recursion is now ended and the best solution isn't found. This is, however, a 
known problem with nonlinear optimization: a global optimum can hardly ever be 
assured. In the case of FOST- and CFPP-constraints, however, a global optimum may 
very weIl be found: ifthe initial solution satisfies the nonlinear inequalities, it doesn't 
matter that the linear approximation isn't good yet, a better solution is simply not 
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available and the initial optimum is a global optimum. For example, if the nonlinear 
equation in the example would be an inequality (like a fuel oil stability constraint), so 
x1x2-3 ::; 0, and the LP-solver found an initial solution x = (4,0), then there's no need to 
approximate the nonlinear function. The initial point satisfies the original nonlinear 
condition, so x is a local optimum. In fact, in this situation, we know that there's no 
other solution which results in a higher objective value, because the initial solution is 
the optimal solution of the original, linear model. 
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Introduction: 

Fairly often components wil! be put together ('pooled') for practical or technological 
reasons before they are used in blending, as unit feed, or in transfer to other refineries. 
The limited availability oftanks is one ofthe main practical reasons. 

Data-entries for the: 

To define a pool, adjust the data-tables in the following way (table-names refer to the 
OMNI-tables, adapt for PlanStar tables ifrequired): 

- define the pool as a component (tabie COMPS) 
- define the pool as a product (tabie PRODS) 
- enter the pool-component (CRCP) name in table PRODS, at the intersection 

ofthe product row-name and column POOL, between apostrophes. 

Then, to all ow components to blend to the pool, fill table BPOT as for 'normal ' 
blending products: theproduct-name ofthe pool as column-header, the components in 
the rows, and a '1' entry at the specific intersections. To allow the pool to blend to a 
product, use its CRCP name as the component which can blend to the product. 

The following entries give an example for pools 'PLLS' and 'PLMC'. 

Table (R)COMPS 
- PL BS EK JK MH AR 

LS Crude tank LS 1 

Mogas camp tank MC 1 

Crude 00 1 1 
Platfarmate PF 1 1 1 1 1 

Table PROnS 
POOL 

LS Crude tank PooLl 'PLLS' 
Magas camp tank PooL2 'PLMC' 
Premium PREM 

Table (R)BPOT 
PREM POOLl PooL2 

Mogas camp tank. PLMC 1 
Brent BSOO 1 
Ekafisk EKOO 1 
Platfarmates **PF 1 
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Entering pooling-data in Gemms AppendixB 

Other destinations ofthe Pool: 

Tbe above example showed one destination of a pool: blending to a product (here 
premium gasoline). Note that a pool may not blend into another pool. Other possible 
destinations for a pool are: 

1. unit feedstock, 
2. transfer to another refinery, 
3. intermediate transfer (e.g. for renaming conventions ), 
4. inter-period or c10sing stock. 

1. When the Pool acts as unit-feed (one crude tank may be present in which two 
crudes are pooled), the pool's source-components must be indicated as the feeds in the 
unit (UN)-tables. In these tab les, also a row-name equal to POOL must be present, 
with the pool's CRCP-name between apostrophes in all columns with the feedstock 
one of the pool' s source components. Otherwise, the pool is unable to get rid of all its 
constituent components (or the ones not present must have zero weight in the pool). 
For example, consider the following table added to the previous ones. 

Table (R)CD 
BSOOLC EKOOLC 

Crude ** 00 -100 -100 
GaBoil **GO 20 35 
Naphta **NA 50 35 
Long Residu **LR 30 30 
pooled Feed POOL 'PLLS' 'PLLS' 

Tbe procedure will ensure that a pool's possible source components will be used in 
the various unit-modes of operation according to their proportion of the pool. For 
example, when the LP determines that the optimal composition of the previously 
defined pool equals 60% Brent and 40% Ekofisk, then the Brent intake of the CD unit 
at its low-cut mode will be 60/40 times the intake at this mode of Ekofisk. 

2. When the Pool can be transferred to another refmery, the component-name of the 
pool must be indicated in table TRANS, FERS or TRNS(TRM) 

3. Tbe pool can also be transferred/renamed into other materials via tables INTER 
and FDPOOL. 

4. Finally, the pool can also be 'transferred' to another period by defining it with the 
component-name in the IPSTK-table. 

Possible pool source-components are also allowed to go straight-run to a destination, 
as long as it's not one of the pool's possible destinations. (Because then, the whole 
nonlinear aspects (proportions in the source and proportions in the destination) of the 
pool will be lost.) 
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Appendix B Entering pooling-data in Gemms 

(De)activate recursive Pooling: 
In Table Decision, the user can select to deactivate recursive pooling by switching on 
the REPO-parameter. Ifnot activated, segregation ofthe pool-components is allowed; 
in that case the user-given properties of the separate components will be used in 
blending. 

Users can also decide only to disregard several of all defined pools. In that case, an 
entry in table PRODS must be given at the intersection of the specific pool-rows and 
the UNPOOL header. These pools are deactivated and all their source components can 
be routed to the original pool's destinations straight-run. 

Reporting: 

Suppose a pool will be used as a component in the blending of grade A. Then, in the 
reports of GEMMS the composition of grade A will be reporterl in terms of the 
constituent components of the pool, independent of the REPO-variable. The 
composition of all pools can be asked for by running report 4003. (Gemms versions 
lower than 5.2 always generate this pool-composition report.) 
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Appendix C implementation pooling in A/MMS 

The following code is the most relevant part of the code added to the Godorf-like 
model (after some further adjustments) to cope with pooling. Comments between '/*' 
and '*/' may refer to Gemms-row names as described by table 3.1. Equation-names 
and conditions for them to hold are removed. Variables starting with 'x _' are the most 
relevant decision variables (e.g. x_mblend is the total weight of a component blending 
to a product (here: via a pool). 

Index-definition: 
pool 

c 

cm 

fp 

t 

any of the three available pools 
component-type 
component-label 
final product 
time-period 

1* Gemms B (R) (P) (PL): *1 
total-pool_mass(pool,t) 

= surn [(fp), x-pool_fp(pool,fp,t)] + x-pool_stock(pool,t)], 

1* Gemms SIR) (P) (PL)V: *1 
total-pool_vol(pool,t) 

= surn [(c,cm), x_comp-pool(c,cm,pool,t) Icomp-prop(c,crn, "DENS")], 

1* Gemms V(R) (P) (PL) (01)., destinations are final product (fp) and stock *1 
x_comp-pool(c,cm,pool,t) 

= x_comp_blend-pool(c,cm,pool,t) + x_comp_stock-pool(c,cm,pool,t), 

1* Gemms V(R) (P) (PL) . (01) *1 
x-pool_fp(pool,fp,t) 

= surn[(c, cm) $ (comp_blend-pool (c,cm,pool) , x_mblend(c,cm,fp,t)], 
x-pool_stock(pool,t) 

= surn[(c , cm)$( comp_blend-pool(c,cm,pool», comp_stock(c,cm,t)], 

/* Nonlinear pooling */ 
/* Equalities are replaced by 'S' and '~' with constant 'accuracy' added or 
subtracted, to circumvent numerical problems. */ 
x_mblend(c,cm,fp,t)*total-pool_mass(pool,t) 

<= x_comp-pool(c,cm,pool,t)*x-pool_fp(pool,fp,t) + pooling_accuracy, 
x_mblend(c,cm,fp,t)*total-pool_mass(pool,t) 

>= x_comp-pool(c,cm,pool,t)'x-pool_fp(pool,fp,t)- pooling_accuracy , 
comp_stock(c,cm,t)*total-pool_mass(pool , t) 

<= x_comp-pool(c,cm,pool,t)*x-pool_stock(pool,t) + pooling_accuracy, 
comp_stock(c,cm,t)*total-pool_mass(pool,t) 

> = x_comp-pool(c,cm,pool,t)*x-pool_stock(pool,t) - pooling_accuracy, 
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AppendixD Example step-wise linearization lor additives 

Here, an example is demonstrated of modeling a nonlinear additive-response in 
Gemms. 

Suppose that at some refinery, an additive called 'VRED' can be used to reduce the 
viscosity of standard liquid refinery fuel, called LREFU. The nonlinear shape of the 
viscosity-reduction is given by figure D.I. The user can present a data-table to Gemms 
which approximates the viscosity-reduction with (here: three) separate linear parts, as 
shown by the figure. In this tabie, values for ~, the slopes al' ~, a 3 as weil as the 
starting-points ofthe linear parts (bI' b2 and b3), must be present. Possibly some costs 
and a maximum of additive-usage mayalso be presented. 

Figure D. l LREFU viscosity reducer 

ccl 

bi b2 b3 Quontity VRED 

The initial improvement in viscosity-reduction (with the first drop ofVRED) is given 
by ~ (usually zero). All alphas represent the additive's response. Suppose the table 
entered by the user looks as follows (with alphas under header LREFU and with ~ and 
b's under QUANT). 

TABLE VRED 
QUANT LREFU 

BETA 0.50 
ALPHAl 0.0 .50 
ALPHA2 0 . 2 . 42 
ALPHA3 0.5 .35 

Then, Gemms generates constraints for product PR (here LREFU) which reads ''total 
blended product viscosity - reduction ::; maximum specification}, or 

with c a component which can blend to product PR, Y c, PR the total weight of blended 
component c to PR, XPR the total blended weight of the product, viscc the viscosity 
property-value of c, maxviscPR the specified maximum viscosity-value, and with 
{reduction} the total quantity of reduced viscosity-value. The viscosity-reduction is 
approximated with the step-wise linear function, using slopes and starting-points. 
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Summary 

Many techniques developed in the field of operations research are used to solve 
logistic problems at an oil-refinery. One of the most widely used techniques is linear 
programming, which has proven to be very useful within the oil business because of 
it's easy understanding and little solving time. This report deals with the application 
of sequences of linear programming models to solve nonlinear or mixed integer 
problems. 

The Gemms refinery-planning system is based purelyon linear modeis. Therefore, if 
nonlinear relationships must be modeled and solved, there are only three ways to deal 
with them: disregard the nonlinearity and assume a linear relationship, apply the 
nonlinear relationship to calculate coefficients of a linear constraint, or approximate 
the nonlinearity by a sequence oflinear modeis. 

Of course, the first mentioned method usually doesn't give a very good representation 
of reality, but it may suffice if the actual relationships aren't too relevant for the 
decision process. For example, in Gemms, unit-yields are assumed to increase or 
decrease linearly with the unit's input. In the real worid, however, twice as much input 
doesn't necessarily double all yields, because ofreduced reaction-times per molecule. 

The second way, calculation of coefficients with a nonlinear formula, can be used by 
Gemms in blending. This is required when a property-value of a resulting product 
isn't a linear combination of the property-values of the blending components. If the 
formulae give a sufficiently close approximation of resulting product-properties, they 
should be used instead of recursive techniques, because their little calculation time. 

The third method, a (recursive) sequence of linear modeis, lies at the basis of chapter 
3. In this chapter, both the theory and the implementation within Gemms of this 
method are discussed in all detail. Furthermore, the performance of the recursion with 
respect to that of a NLP-solver is tested by creating a Gemms model in the AIMMS 
modeling language. 

Chapter 4 describes a possible method for cargo-analysis, which can be used to 
determine the relative value of aspecific crude-type for aspecific refinery. Because 
this crude is purchased in batches (e.g. a full oil-tanker), the variabie which represents 
this purchase shouldn't be continuous (which is the case in the linear model), but 
should be integer. Another possibility is to run a sequence of linear models in which 
the purchase is fixed to a cargo-size. The whole sequence of outputs will give the user 
more insight in cargo-values than the result from a mixed integer model. Therefore, 
the possibility to implement this sequence ('the enumeration approach') in PlanStar 
(used for refinery-planning in combination with Gemms) is discussed in great detail, 
including functional and technical specifications. 

The last chapter of this report gives a surnmary of the most important results, 
conclusions and recommendations. 
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Samenvatting 

Om de logistieke problemen van een olieraffinaderij op te lossen, worden vele 
technieken uit de operations research toegepast. Voornamelijk lineaire 
prograrnmerings modellen zijn zeer populair, met name vanwege het feit dat ze vrij 
makkelijk te gebruiken en over het algemeen snel oplosbaar zijn. Dit rapport 
behandelt de toepassing van reeksen van lineaire modellen om niet-lineaire of Mixed 
Integer problemen op te lossen. 

Het Gernms raffinaderij-planning systeem is puur gebaseerd op lineaire modellen. 
Indien niet-lineaire relaties toch gemodelleerd en opgelost moeten worden binnen dit 
systeem, zijn er drie mogelijke oplossingsmethoden: veronderstel simpelweg een 
lineair in plaats van een niet-lineair verband, bereken coëfficiënten in een lineaire 
nevenvoorwaarde met behulp van de niet-lineaire relatie, of benader de niet­
lineariteiten met een reeks lineaire modellen. 

De eerstgenoemde oplossing zal in het algemeen geen goede benadering van de 
realiteit zijn, maar indien de niet-lineaire relaties niet echt relevant zijn voor de 
beslissingsprocessen op de raffinaderij kan het goed genoeg zijn. In Gernms modellen, 
bijvoorbeeld, wordt aangenomen dat unit-yields (of 'opbrengsten') lineair met de 
doorzet toe- of afnemen. Echter, in werkelijkheid betekent een twee maal zo grote 
doorzet niet altijd exact twee maal zoveel van dezelfde opbrengsten, doordat de 
reactietijd per molecuul verminderd is. 

De tweede method; ·;:. berekening van coëfficiënten via de niet-lineaire formule kan in 
Gernms worden toegepast bij blending indien resulterende kwaliteiten van een product 
geen lineaire relatie tonen met de kwaliteiten van de blendende componenten. Indien 
de ontstane lineaire vergelijking een voldoende benadering geeft van de 
werkelijkheid, dan heeft deze methode de voorkeur boven de derde methode vanwege 
de grote tijdwinst. 

De laatste methode, een (recursieve) rij van lineaire modellen ligt aan de basis van 
hoofdstuk 3. Hierin worden zowel de theorie als de Gernms-implementatie 
gedetailleerd besproken. De geleverde prestaties ten opzichte van die van een speciale 
solver voor niet-lineaire modellen worden eveneens onderzocht. 

Hoofdstuk 4 beschrijft een mogelijke methode voor zogenaamde cargo-analyse, dat 
gebruikt kan worden om de relatieve waarde van een bepaald type ruwe olie voor een 
raffinaderij te bepalen. Omdat deze olie altijd in grote ladingen tegelijk wordt 
ingekocht (bv. een hele olietanker), dient een variabele die de hoeveelheid in te kopen 
ruwe olie aangeeft niet continu te zijn. Dit is wel het geval in de modellen van 
Gernms. Een betere modellering zou het gebruik van integer variabelen zijn, die 
bijvoorbeeld het aantal aangevraagde tankers met de ruwe olie aangeven. Een andere 
mogelijkheid is het oplossen van een reeks lineaire modellen waarbij in elk model de 
ingekochte olie vastgezet wordt op de inhoud van een aantal tankers. Nadat de hele 
reeks is opgelost, krijgt de gebruiker een samenvatting van alle relevante output, 
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waardoor veel meer informatie wordt verkregen dan van één Mixed Integer oplossing. 
Daarom is er in dit rapport uitgebreid onderzoek gedaan (inclusief functionele en 
technische specificaties) naar de mogelijkheid om cargo-analyse volgens deze laatste 
methode (de enumeratie-methode) te implementeren in het PlanStar software systeem. 
Met dit systeem dient dan een reeks van Gemms modellen te worden opgelost en de 
resultaten moeten kunnen worden gerapporteerd en opgeslagen in een database. 

Het laatste hoofdstuk van dit rapport vat de belangrijkste resultaten, conclusies en 
aanbevelingen uit eerdere hoofdstukken samen. 
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