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a b s t r a c t 

Identifying important nodes in networks is essential to analysing their structure and understanding their 

dynamical processes. In addition, myriad real systems are time-varying and can be represented as tem- 

poral networks. Motivated by classic gravity in physics, we propose a temporal gravity model to identify 

important nodes in temporal networks. In gravity, the attraction between two objects depends on their 

masses and distance. For the temporal network, we treat basic node properties (e.g., static and temporal 

properties) as the mass and temporal characteristics (i.e., fastest arrival distance and temporal shortest 

distance) as the distance. Experimental results on 10 real datasets show that the temporal gravity model 

outperforms baseline methods in quantifying the structural influence of nodes. When using the temporal 

shortest distance as the distance between two nodes, the proposed model is more robust and more ac- 

curately determines the node spreading influence than baseline methods. Furthermore, when using the 

temporal information to quantify the mass of each node, we found that a novel robust metric can be used 

to accurately determine the node influence regarding both network structure and information spreading. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Network science is increasingly important in numerous fields, 

ncluding physics, biology, finance, and social sciences. In fact, 

any real systems can be suitably represented as complex net- 

orks [1,2] . 

The nodes in a network may exhibit varying connectivity and 

epresent different dynamical processes, such as epidemic spread- 

ng, information diffusion, and opinion formation. If we remove a 

ode from a network such that the network collapses into discon- 

ected components, this node is important in terms of network 

onnectivity. We call this type of influence the structural influence. 

n the other hand, a node can be the seed of information (epi- 

emic) spreading and cause wide circulation through the network. 

uch a node is influential in terms of spreading, so we call this 

ype of influence the spreading influence. For any type of influ- 

nce, we call the corresponding node an important node. 
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Because important nodes influence network behaviour, they 

hould be identified [3–6] . If the connections between nodes are 

xed, they establish a static network. Various methods for im- 

ortant node identification have been developed for static net- 

orks [7] , and they can be divided into structural-based central- 

ty methods [8,9] (e.g., degree [10] , closeness [11] and betweenness 

entrality [12] ) and iterative-based centrality methods (e.g., PageR- 

nk [13] , HITS [14] , and SALSA [15] ). Inspired by the concept of

ravity, Ma et al. [16] proposed two gravity models, namely, grav- 

ty centrality and extended gravity centrality, to identify influential 

preaders on static networks by considering both neighbourhood 

nformation and path information. Likewise, Li et al. [17] proposed 

 local gravity model that relies on a truncation radius. However, 

hese methods are restricted to static networks. 

In practice, many systems are time-varying [18–21] , and the 

ime order has been shown to substantially influence the network 

tructure and information spreading [19,22] . Connections appear- 

ng in a complex system can be represented by a temporal net- 

ork [23,24] . In temporal networks, however, identifying impor- 

ant nodes is much more challenging than in static networks. In 

act, a node may play different roles over time in a temporal net- 

ork [22] , so its importance varies over time. For example, an in- 
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4  
ividual may be very active and post several messages and infor- 

ation on a social network during a given year and then become 

nactive the next year, interrupting all information spread. Thus, 

o identify important nodes in temporal networks, we should con- 

ider structural properties and time-dependent information. 

Most metrics for temporal networks extend those for static net- 

orks [25,26] . Hence, various methods either integrate a temporal 

etwork into a static one or segment a temporal network into a se- 

ies of static snapshots over time. For instance, a temporal network 

onsidering centrality metrics can be analysed as follows. First, the 

emporal network is divided into several snapshots at a given time 

esolution. Each snapshot is viewed as a static network. The cen- 

rality score per node and snapshot is then obtained. The overall 

entrality score of a node is obtained as the average of the scores 

cross snapshots [27,28] . Although such methods allow better iden- 

ification of important nodes compared to static centrality meth- 

ds, they may lose temporal information, such as the time order 

f contacts. 

We propose a temporal gravity model to identify important 

odes in temporal networks. Two main elements in universal grav- 

tation are the masses of objects and the distance between them. 

ur main assumption is that the centrality of a node depends 

n its gravitation to nearby nodes, which is determined from the 

emporal distance. Hence, nearby nodes should be close to target 

odes in both structure and time. In addition, we use node proper- 

ies, such as static centrality metrics and their extension to tempo- 

al networks, to represent mass and the temporal distance between 

odes to represent distance. The temporal distance between nodes 

aptures both the structure and time order of contacts. Specifically, 

e use two definitions for temporal distance between two nodes: 

he fastest arrival distance and the temporal shortest distance. 

e use the temporal gravity model to identify important nodes 

ith structural influence and spreading influence in 10 temporal 

etworks. We use the network efficiency to determine the refer- 

nce structural influence and the susceptible–infected–recovered 

SIR) model to describe spreading in the temporal networks. The 

ode spreading capacity, which is the range of spreading caused 

y a node, determines the reference spreading influence. Next, we 

btain the Kendall correlation between the node reference influ- 

nce and the importance score obtained from a centrality met- 

ic. A higher correlation coefficient indicates higher performance 

f the centrality method to identify important nodes. Experimen- 

al results demonstrate that the temporal gravity model consider- 

bly outperforms state-of-the-art centrality methods for important 

ode identification. 

The remainder of this paper is organised as follows. In 

ection 2 , we describe the representation of a temporal network 

nd the definition of the temporal distance between nodes. We 

riefly describe the static and temporal centrality metrics, which 

orrespond to node mass in the proposed temporal gravity model, 

long with baseline metrics. In Section 3 , we detail the proposed 

emporal gravity model based on baseline centrality metrics. In 

ection 4 , we report experimental results obtained from the tem- 

oral gravity model and baseline metrics on real temporal net- 

orks. We also introduce a novel metric, the time degree, that rep- 

esents the mass of the proposed temporal gravity model, improves 

obustness, and reduces computational complexity. In Section 5 , 

e further analyse the performance of the proposed metrics on 

ynthetic temporal networks. In Section 6 , we draw conclusions 

rom our study. 

. Preliminaries 

In this section, we present basic concepts about temporal net- 

orks, including their representation, temporal paths, and dis- 

ance. We then briefly describe benchmark centrality metrics. Cen- 
2 
rality metrics and the temporal distance are the bases of the pro- 

osed temporal gravity model for important node identification. 

.1. Basic notations and definitions 

Let G 

T = (V, E T ) represent a temporal network on time inter- 

al [1 , T ] . The network consists of a set V of N = | V | nodes and a

et of temporal events E T . Each event e ∈ E T is given by a three-

uple (v i , v j , t) , denoting that node v i and node v j make contact

t time t . At each t ∈ [1 , T ] , the adjacency matrix is A t , where

 t (i, j) = 1 represents that nodes v i and v j are connected at time

, and A t (i, j) = 0 represents no connection between the nodes. 

We can generate networks at various time scales according to 

he time resolution of network data. For example, email exchange 

atasets are usually collected in seconds. By setting the time reso- 

ution to 1 h, we can represent hourly data on the connection be- 

ween two users within that period. We denote the time resolution 

s �t . Temporal network G 

T with n = T / �t snapshots can repre- 

ent a dataset. The network snapshots are given by G 1 , G 2 , . . . G n . If

t is small, the temporal network has several snapshots. If �t = T , 

e obtain the corresponding static network of G 

T , denoted as 

 = (V, E) . A pair of nodes v i , v j is connected by a link (v i , v j ) ∈ E

f the nodes have at least one contact in G 

T . The adjacency ma- 

rix of G is denoted as A, where A (i, j) = 1 if nodes v i and v j are

onnected, and A (i, j) = 0 otherwise. Each snapshot of G 

T can be

onsidered as a static network within the period corresponding to 

t . 

Let us consider the example of a temporal network shown in 

ig. 1 . Fig. 1 (b) shows a temporal network with five nodes and

 = 4 time steps. By setting �t = 1 , the temporal network contains

our snapshots, G 1 , G 2 , G 3 , and G 4 . Fig. 1 (a) shows the correspond-

ng aggregated static network G . 

.1.1. Temporal path 

Given temporal network G 

T = (V, E T ) with n snapshots, a 

emporal path is a node sequence P = < v 1 , v 2 , . . . , v k , v k +1 >,

here event (v i , v i +1 , t i ) ∈ E T is the i th temporal event on P 

or 1 ≤ i ≤ k and t i ≤ t i +1 . Hence, t 1 is the initial time of P,

enoted as t start ( P ) , and t k is the final time of P, denoted 

s t end (P ) . We define the temporal path length of P as l(P ) =
 end (P ) − t start (P ) + 1 . Given a time interval [ t a , t b ] , v i is the initial

ode, and v j is the final node ∀ v i , v j ∈ V . Let P (v i , v j , [ t a , t b ]) =
 P | P be a temporal path from v i to v j , such that t start (P ) ≥ t a and 

 end (P ) ≤ t b } . We consider two different definitions of temporal 

aths: the fastest arrival path and the temporal shortest path [29] . 

hese paths are representative in temporal networks. 

Fastest arrival path [29] The fastest arrival path between initial 

ode v i and final node v j is the temporal path with the mini- 

um duration counted from t = 1 . Hence, the fastest arrival path 

s the path from initial node v i to final node v j with the minimum

lapsed time over a period. Therefore, P ∈ P (v i , v j , [ t a , t b ]) is the

astest arrival path if t end (P ) = min { t end (P ′ ) | P ′ ∈ P (v i , v j , [ t a , t b ]) } .
he fastest arrival distance, ϕ(v i , v j ) , between nodes v i and v j is

he path length of the corresponding fastest arrival path. 

Temporal shortest path [29] The temporal shortest path be- 

ween initial node v i and final node v j is the path for which 

he overall time needed to communicate is the shortest. In 

ther words, P ∈ P (v i , v j , [ t a , t b ]) is the temporal shortest path if

(P ) = min { l(P ′ ) | P ′ ∈ P (v i , v j , [ t a , t b ]) } . The temporal shortest dis-

ance, θ (v i , v j ) , between nodes v i and v j is the path length of the

orresponding temporal shortest path. 

Let us illustrate the calculation of the temporal paths as shown 

n Fig. 1 (c) and (d). The fastest path from node 1 to 4 is P 1 = <

 , 2 , 3 , 4 > . The fastest arrival distance, l(P 1 ) , between nodes 1 and

 is ϕ(1 , 4) = 3 . On the other hand, the temporal shortest path
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Fig. 1. Temporal network G T = (V, E T ) with five nodes and T = 4 time steps. (a) Aggregated static network G . (b) Static snapshots G 1 , G 2 , G 3 , and G 4 . (c) Fastest arrival path 

from initial node 1 to final node 4. (d) Temporal shortest path from initial node 1 to final node 4. The corresponding fastest arrival distance and temporal shortest distance 

are 3 and 2, respectively. 

Table 1 

Fastest arrival distance between nodes 

in the temporal network shown in 

Fig. 1 . Node pairs without fastest ar- 

rival paths are denoted by ∞ . 

Node 1 2 3 4 5 

1 0 1 2 3 ∞ 

2 1 0 2 3 ∞ 

3 3 2 0 3 ∞ 

4 ∞ ∞ 3 0 1 

5 ∞ ∞ 3 1 0 

Table 2 

Temporal shortest distance between 

nodes in the temporal network shown 

in Fig. 1 . Node pairs without temporal 

shortest paths are denoted by ∞ . 

Node 1 2 3 4 5 

1 0 1 1 2 ∞ 

2 1 0 1 2 ∞ 

3 1 1 0 1 ∞ 

4 ∞ ∞ 1 0 1 

5 ∞ ∞ 2 1 0 
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rom node 1 to node 4 is P 2 = < 1 , 3 , 4 >, with the temporal short-

st distance being θ (1 , 4) = 2 . The fastest arrival distance and tem-

oral shortest distance of every pair of nodes in Fig. 1 are listed in

ables 1 and 2 , respectively. 

.2. Benchmark centrality metrics 

We briefly introduce existing centrality metrics to identify im- 

ortant nodes. 

Degree centrality . The degree of a node is defined on static net- 

ork G as the number of its neighbours [10] . The degree central- 

ty (DC) of a node is the proportion of nodes it is connected to. 

 higher degree implies greater importance of a node. The DC is 

efined as 

C ( i ) = 

k i 
N − 1 

, (1) 
3 
here k i is the degree of node v i , and N is the number of nodes

n the network. 

Closeness centrality . The closeness centrality (CC) [11] measures 

he distance between nodes. In practice, the CC determines the 

peed of communication of a node with all other nodes in a net- 

ork. For a disconnected network, the CC is calculated as the sum 

f the reciprocal of the shortest distances from a given node v i to 

ll other nodes in static network G : 

 C ( i ) = 

1 

N − 1 

∑ 

i 	 = j 

1 

d i j 

, (2) 

here d i j is the shortest distance between v i and v j in G . 

Betweenness centrality . The betweenness centrality 

BC) [12] measures the number of shortest paths passing through 

ode v i in static network G : 

C ( i ) = 

∑ 

s 	 = i 	 = t 

σ i 
st 

σst 
, (3) 

here σst is the number of shortest paths between nodes v s and 

 t , and σ i 
st is the number of shortest paths between nodes v s and 

 t through node v i . 
PageRank . The PageRank (PR) [13] was introduced by Google to 

easure the importance of webpages from their hyperlink network 

tructure. The PR measures the importance of a webpage (node) 

onsidering its neighbours and the number of pages (nodes) linked 

o each neighbour defined on static network G . Explicitly, PR is de- 

ned as 

 R (i ) t = 

N ∑ 

j=1 

(a i j 

P R ( j) t−1 

k out 
j 

) , (4) 

here k out 
j 

is the out degree of node v j , and a i j represents the con- 

ection between nodes v i and v j . P R (i ) t is the PR value of node v i 
t time step t . After several iterations, the PR value gradually con- 

erges and stabilises. We use P R (i ) to represent the final PR value

f node v i . 
Gravity model . The gravity centrality [16] of a node v i is defined 

n static network G as 

(i ) = 

∑ 

v j ∈ φi 

ks i ks j 

d 2 
i j 

, (5) 
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Table 3 

Centrality scores per node obtained from temporal snapshots (row Averaged) 

and aggregated static network (row Aggregated). The temporal network and 

corresponding static network are show in Fig. 1 . 

Node Type PageRank Degree Closeness Betweenness 

1 Averaged 0.163 0.188 0.203 0.083 

Aggregated 0.192 0.500 0.571 0.000 

2 Averaged 0.178 0.188 0.219 0.000 

Aggregated 0.192 0.500 0.571 0.000 

3 Averaged 0.250 0.250 0.266 0.083 

Aggregated 0.283 0.750 0.800 0.667 

4 Averaged 0.265 0.250 0.281 0.000 

Aggregated 0.213 0.500 0.667 0.500 

5 Averaged 0.145 0.125 0.125 0.000 

Aggregated 0.120 0.500 0.444 0.000 
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1 Kendall’s tau [31] is a measure of the correlation strength between two se- 

quences. A larger tau indicates higher similarity between the sequences. Consider 

two sequences with N elements, X =(x 1 , x 2 , . . . , x N ) and Y = (y 1 , y 2 , . . . , y N ) . Any 

pair of two-tuples (x i , y i ) and (x j , y j )(i 	 = j) is concordant if both x i > x j and y i > y j 
or both x i < x j and y i < y j . The pair is discordant if x i > x j and y i < y j or x i < x j and 

y i > y j . If x i = x j or y i = y j , the pair is neither concordant nor discordant. Kendall’s 

tau of two sequences X and Y can be calculated as 

τ = 

1 

N(N − 1) 

∑ 

i 	 = j 
sgn (x i − x j ) sgn (y i − y j ) . 
here ks i is the k -shell index of node v i , φi is the neighbour set of

ode v i , and d i j is the shortest distance between nodes v i and v j . 
Local gravity centrality The local gravity centrality [17] of node 

 i in static network G is defined as 

 R (i ) = 

∑ 

d i j ≤R,i 	 = j 

k i k j 

d 2 
i j 

, (6) 

here k i is the degree of node v i , and d i j is the shortest distance

etween nodes v i and v j . We use R to truncate the contribution of

igh-order nodes on the centrality score of target node v i . Specifi- 

ally, d i j ≤ R indicates that nodes within distance R to v i contribute 

o centrality score g R (i ) . This truncation represents a trade-off in 

ode centrality between the local and global network structures. 

.3. Centrality metrics on temporal networks 

Because each snapshot of a temporal network can be viewed 

s a static network, we can compute the centrality score per node 

n each snapshot. The centrality of a node in the temporal net- 

ork can then be defined as the average centrality score across 

napshots [27,30] . Consider the DC as an example. We can com- 

ute the DC of node v i per snapshot to obtain an n -dimensional 

equence of DC scores. The DC of node v i in the temporal net- 

ork is the average of this sequence. For a temporal network with 

 snapshots G 1 , G 2 , . . . , G n , we can analogously compute the four

entrality scores, namely, PR, DC, CC, and BC, per node. For clar- 

ty, we denote the corresponding average centralities of a temporal 

etwork divided into snapshots as P R m 

, DC m 

, CC m 

, and BC m . We 

lso compute the centrality scores on the aggregated network and 

enote them as P R s , DC s , CC s , and BC s to indicate the centrality 

cores of aggregated static network G . 

The centrality scores per node of the temporal network shown 

n Fig. 1 are listed in Table 3 , where ‘Averaged’ and ‘Aggregated’ 

ndicate the corresponding centrality scores. The centrality scores 

or the metrics obtained from the temporal network by snapshot 

veraging considerably differ from those obtained from the static 

etwork. 

. Temporal gravity model for node ranking 

The classical law of gravitation establishes a relation containing 

he mass of objects in the numerator and the distance between 

wo objects in the denominator. Gravity models, such as the k - 

hell-based gravity model and local gravity model, have been used 

o identify important nodes in static networks. Inspired by the con- 

ept of gravity and existing gravity models for static networks, we 

ropose a temporal gravity model to identify important nodes in 

emporal networks. In the temporal gravity model, the importance 

f a node depends on both its temporal distance to other nodes 

nd its structural properties. 
4 
In the proposed temporal gravity model , we use the node prop- 

rties as the mass and the distance between two nodes on a tem- 

oral network as the distance. Thus, the node importance of v i is 

efined as follows: 

 G (i ) = 

∑ 

d i j ≤R,i 	 = j 

M i M j 

d 2 
i j 

, (7) 

here T G denotes the temporal gravity model, M i represents the 

ode properties of v i , d i j is the temporal distance between nodes 

 i and v j , and R is a truncation radius. 

As node properties, we use baseline centrality metrics P R s , DC s , 

C s , BC s , P R m 

, DC m 

, CC m 

, and BC m to represent mass M i of node 

 i . For the temporal distance (denominator of Eq. (7) ), we consider 

ither the fastest arrival distance ( TG-fad model) or the temporal 

hortest distance ( TG-std model). 

We denote the temporal gravity model as 

unction T G (x, y ) , where x ∈ { fad , std } and y ∈
 P R m , DC m 

, CC m 

, BC m 

, P R s , DC s , CC s , BC s } . For example, if P R m rep-

esents the mass and F AD represents the distance in Eq. (7) , the

orresponding model is denoted as T G ( fad, P R m ) . 

. Evaluation of temporal gravity model on real temporal 

etworks 

We use the centrality metrics described in 

ections 2.2 and 2.3 as baseline metrics to evaluate the tem- 

oral gravity model. We use the network efficiency and SIR 

preading model on temporal networks for performance evalua- 

ion. The network efficiency aims to determine the role of a node 

n information exchange, whereas the SIR spreading model aims 

o evaluate the spreading capacity of a node. 

The node importance score obtained from different centrality 

etrics and the performance evaluation methods—namely, net- 

ork efficiency and SIR spreading model—are compared by using 

endall correlation coefficient τ . 1 A high Kendall correlation coef- 

cient τ indicates that the centrality metric suitably identifies im- 

ortant nodes in a temporal network. 

We first define the network efficiency on temporal networks 

nd present the results of identifying structural influence nodes in 

emporal networks by using centrality metrics and the temporal 

ravity model. We then compare the temporal gravity model and 

he baseline centrality metrics on the identification of important 

odes during SIR spreading in temporal networks. 

.1. Network efficiency 

For network efficiency [32] , we assume that information in a 

etwork is transmitted only through the temporal shortest paths. 

he efficiency measures the quality of information exchange over 

 network. We define the network efficiency of temporal network 

 

T as follows: 

 

(
G 

T 
)

= 

1 

N(N − 1) 

∑ 

v i 	 = v j ∈ G T 

1 

d i j 

, (8) 
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Table 4 

Kendall correlation coefficient τ between node centrality score obtained from NE fad and centrality metrics for 10 empirical networks. The highest τ of each 

network is highlighted in bold and with an asterisk. The highest τ of each network obtained from baseline metrics is highlighted in bold. 

HS2011 HS2012 HS2013 WP HC PS HT2009 Infections SFHH DNC 

T G ( fad, PR m ) 0.73206 0.72502 0.63329 0.68323 0.88180 0.62505 ∗ 0.79741 0.83589 ∗ 0.82366 ∗ 0.70045 ∗

T G ( fad, PR s ) 0.73206 0.75233 ∗ 0.67115 ∗ 0.74104 0.87459 0.49604 0.78729 0.79583 0.77739 0.62305 

T G ( fad, DC m ) 0.71632 0.69758 0.62841 0.72193 0.78883 0.57745 0.72408 0.69442 0.75628 0.63410 

T G ( fad, DC s ) 0.71606 0.73979 0.66849 0.75108 ∗ 0.85225 0.46723 0.77655 0.71594 0.74235 0.60856 

T G ( fad, CC m ) 0.73333 0.69944 0.63108 0.73053 0.81189 0.52711 0.75411 0.73038 0.79462 0.68422 

T G ( fad, CC s ) 0.74375 ∗ 0.72539 0.64233 0.68849 0.91063 ∗ 0.59473 0.80468 ∗ 0.83317 0.80798 0.63972 

T G ( fad, BC m ) 0.69973 0.65347 0.61902 0.66444 0.59495 0.46867 0.62263 0.54512 0.62040 0.33123 

T G ( fad, BC s ) 0.63378 0.62702 0.61839 0.72241 0.75063 0.37945 0.66498 0.50254 0.62421 0.34447 

PR m 0.41029 0.38423 0.37716 0.30244 0.30523 0.33336 0.33028 0.07638 0.42005 0.37230 

DC m 0.51515 0.40689 0.41068 0.31342 0.32924 0.36287 0.35987 0.09910 0.41199 0.53762 

CC m 0.53041 0.41043 0.41014 0.32011 0.30306 0.26374 0.41056 0.16953 0.45180 0.50284 

BC m 0.51660 0.34806 0.37426 0.27800 0.27712 0.28027 0.27497 0.19491 0.33410 0.32488 

PR s 0.46210 0.34364 0.40947 0.39943 0.37946 0.22883 0.36315 0.13729 0.36444 0.17510 

DC s 0.47604 0.35421 0.41230 0.41010 0.38060 0.22845 0.36582 0.11060 0.36446 0.37313 

CC s 0.44594 0.30643 0.39309 0.40781 0.38671 0.22781 0.36740 0.17343 0.36301 0.37683 

BC s 0.43975 0.27940 0.38872 0.37458 0.37225 0.23398 0.35240 0.17433 0.35885 0.33477 

max of all metrics 0.74375 0.75233 0.67115 0.75108 0.91063 0.62505 0.80468 0.83589 0.82366 0.70045 

max of baseline metrics 0.53041 0.41043 0.41230 0.41010 0.38671 0.36287 0.41056 0.19491 0.45180 0.53762 
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here d i j is the temporal distance between nodes v i and v j . The 

emporal distance between two nodes can be defined by either the 

astest arrival distance or the temporal shortest distance. 

Removing a node from a temporal network may decrease the 

etwork efficiency if the network becomes disconnected. There- 

ore, the efficiency after node removal can reflect the importance 

f nodes in temporal networks [28] . A larger efficiency reduction 

ndicates a higher node importance in terms of structural influ- 

nce. Let G 

T \ v i denote the temporal network after removing node 

 i and all contacts associated with it. The difference between the 

etwork efficiency of G 

T and that of G 

T \ v i is defined as the im-

ortance score of node v i regarding network efficiency: 

E(v i ) = ε(G 

T ) − ε(G 

T \ v i ) . (9) 

he node efficiencies based on fastest arrival distance and temporal 

hortest distance are denoted as N E fad and N E std , respectively. 

We analyse the performance of the temporal gravity model and 

he baseline centrality metrics to identify important nodes regard- 

ng network efficiency by using the fastest arrival distance as the 

istance in the temporal gravity model. 

In the temporal gravity model, we first use the baseline central- 

ty metrics to represent mass. Taking PR centrality as an example, 

emporal gravity model T G ( fad, P R m ) integrates the PR score of 

odes within a certain temporal distance as the centrality score of 

he target node. PR centrality P R m can also be independently used 

s a centrality metric. We report the results from 10 empirical tem- 

oral networks (see Appendix Table A1 ). Fig. 2 shows that the tem- 

oral gravity model improves important node identification com- 

ared with the use of baseline centrality metrics P R m 

, DC m 

, CC m 

, 

nd BC m for the temporal network snapshots and P R s , DC s , CC s , 

nd BC s for the aggregated static networks. The temporal gravity 

odel based on different baseline centrality metrics is more effec- 

ive than the simple use of the corresponding baseline centrality 

etrics for important node identification in all evaluated networks. 

Table 4 lists the Kendall correlation coefficient τ between 

he node centrality scores derived by the corresponding cen- 

rality metrics and the node efficiency based on fastest ar- 

ival distance NE fad . In general, the temporal gravity model bet- 

er identifies important nodes than baseline centrality metrics 

 R m 

, DC m 

, CC m 

, BC m 

, P R s , DC s , CC s , and BC s . Except for temporal 

ravity models T G ( fad, BC m ) and T G ( fad, BC s ) in network DNC,

he Kendall correlation coefficients of the temporal gravity mod- 

ls are higher than those obtained from the baseline centrality 

etrics. Specifically, the highest τ of the temporal gravity model 

s 85.47 % higher on average than the highest τ obtained from 
5 
he baseline centrality metrics across the 10 empirical networks. 

emarkably, τ of network Infectious increases from 0.19491 to 

.83589 from the best baseline metric to the best of temporal grav- 

ty model, representing an improvement of 328.85 % . 

Fig. 2 and Table 4 show the results considering the fastest 

rrival distance. Using the temporal gravity model based on the 

hortest distance to estimate NE std is similar to using the model 

ased on the fastest arrival distance to estimate NE fad . Compared 

ith using only the baseline centrality metrics ( Fig. 3 ), the cor- 

esponding temporal gravity model improves the important node 

dentification, except when compared with the aggregated DC in 

etworks HT2009 and HS2011. Even under this condition, the per- 

ormance of the proposed T G (std, DC s ) is comparable with that of 

ggregated DC DC s . 

The results of important node identification based on the tem- 

oral shortest distance are listed in Table 5 , which shows that the 

roposed model can suitably identify important nodes. The high- 

st τ of the temporal gravity model is 5.79 % higher on average 

han the highest τ obtained from the baseline centrality metrics 

cross the 10 empirical networks. In network DNC, τ increases 

rom 0.65626 to 0.78852 from the best baseline metric to the best 

emporal gravity model, representing an improvement of 20.15 % . 

.2. Performance evaluation based on spreading capacity 

A node is important if it originates information that spreads to 

 large population. We call such a node a seed node given its high 

preading capacity. We evaluate the performance of the proposed 

emporal gravity model and baseline metrics for important node 

dentification in temporal networks in terms of the spreading ca- 

acity. We use the SIR model to simulate information spreading 

n temporal networks [28,33] . In the SIR spreading model, a node 

an be susceptible (S), infected (I), or recovered (R), as illustrated 

n Fig. 4 . A susceptible node can become infected after contact 

ith an infected node with probability β . An infected node can be- 

ome recovered with probability μ. The spreading process follows 

he flow of temporal networks. In the reported experiments, the 

nfection and recovery probabilities remain fixed to β = 0 . 1 and 

= 0 . 01 , respectively. 

In a temporal network with n snapshots G 1 , G 2 , . . . , G n , a node

an appear in multiple snapshots. Therefore, if we choose a seed 

ode, we should consider the time to start spreading. For node 

 i , we assume the node appears at time T v i = { t 1 v i , t 
2 
v i , . . . , t 

m 

v i } . We

ake every time step t 
j 
v ∈ T v i as the starting time of the spread-
i 
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Fig. 2. Kendall correlation coefficient τ between the node importance score obtained from NE fad and centrality metrics. The correlation histograms between NE fad and the 

temporal gravity model/baseline centrality metrics are shown in grey/blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

6 



J. Bi, J. Jin, C. Qu et al. Chaos, Solitons and Fractals 147 (2021) 110934 

Fig. 3. Kendall correlation coefficient τ between the node importance score obtained from NE std and centrality metrics. The correlation histograms between NE std and the 

temporal gravity model/baseline centrality metrics are shown in grey/blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

7 
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Table 5 

Kendall correlation coefficient τ between node centrality score obtained from NE std and centrality metrics for 10 empirical networks. The highest τ of each 

network is highlighted in bold and with an asterisk. The highest τ of each network obtained from baseline metrics is highlighted in bold. 

HS2011 HS2012 HS2013 WP HC PS HT2009 Infections SFHH DNC 

T G (std, PR m ) 0.83238 0.81142 0.80938 0.87864 ∗ 0.82270 0.86413 0.86504 0.67578 0.83927 0.73534 

T G (std, PR s ) 0.83365 0.83439 0.81674 0.86670 0.87459 0.91646 0.92225 0.67077 0.86971 ∗ 0.66210 

T G (std, DC m ) 0.77397 0.74811 0.71640 0.76684 0.84649 0.81907 0.83850 0.64911 0.85884 0.77186 

T G (std, DC s ) 0.80800 0.82297 0.79362 0.85714 0.86883 0.90954 0.91561 0.69403 0.86551 0.62968 

T G (std, CC m ) 0.73003 0.71471 0.72199 0.76684 0.83063 0.83375 0.83123 0.72909 0.81936 0.78852 ∗

T G (std, CC s ) 0.83721 ∗ 0.85102 ∗ 0.84184 ∗ 0.85714 0.90126 ∗ 0.92943 ∗ 0.93268 ∗ 0.78484 ∗ 0.86917 0.76614 

T G (std, BC m ) 0.76830 0.70524 0.76131 0.71031 0.64108 0.64137 0.79709 0.67989 0.80382 0.35997 

T G (std, BC s ) 0.80952 0.75353 0.77982 0.80889 0.82991 0.88094 0.90076 0.53887 0.83619 0.37066 

PR m 0.60000 0.64184 0.60432 0.62255 0.65766 0.66051 0.73925 0.35974 0.65145 0.25222 

DC m 0.74402 0.70797 0.65638 0.66571 0.80846 0.73185 0.79285 0.54285 0.83115 0.53272 

CC m 0.66425 0.64544 0.56811 0.66699 0.71748 0.73410 0.75190 0.66781 0.66695 0.65626 

BC m 0.69516 0.63571 0.70018 0.62986 0.57477 0.53719 0.75474 0.58768 0.75721 0.35106 

PR s 0.81689 0.78994 0.77404 0.83421 0.83423 0.90686 0.92004 0.52716 0.85573 0.14369 

DC s 0.82287 0.80619 0.77157 0.85886 0.84518 0.91203 0.92330 0.62512 0.86124 0.41227 

CC s 0.80315 0.75970 0.73217 0.76988 0.85556 0.91556 0.92542 0.62666 0.85401 0.42378 

BC s 0.75594 0.68674 0.73460 0.78261 0.77802 0.83670 0.87389 0.47615 0.80663 0.35896 

max of all metrics 0.83721 0.85102 0.84184 0.87864 0.90126 0.92943 0.93268 0.78484 0.86971 0.78852 

max of baseline metrics 0.82287 0.80619 0.77404 0.85886 0.85556 0.91556 0.92542 0.66781 0.86124 0.65626 

Fig. 4. Diagram of SIR spreading model. 
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ng. Let node v i be the seed and t 
j 
v i be the starting time. We run

IR spreading until the end of the temporal network to obtain the 

nal spreading range, R 
j 
v i , which describes the infected and re- 

overed nodes after spreading. For each t 
j 
v i as the starting time, 

preading proceeds over 100 trials to obtain the average spreading 

ange, R 
j 
v i . In addition, for each seed node v i , spreading proceeds 

tarting at time t 
j 
v i over 100 trials. Therefore, the spreading ranges 

re R (v i ) = { R 1 v i , R 
2 
v i , . . . , R 

m 

v i } . We use two definitions for the node

preading capacity. First, the average spreading capacity of node v i 
an be given by the average spreading range, R mean (v i ) , over set

 (v i ) . Second, the normalised spreading capacity can be given by 
Table 6 

Kendall correlation coefficient τ between real node spreading capacity R norm an

networks. The highest τ of each network is highlighted in bold and with an a

highlighted in bold. 

HS2011 HS2012 HS2013 WP H

T G (std, PR m ) 0.59924 0.62359 0.60481 0.38939 0

T G (std, PR s ) 0.57283 0.56760 0.58575 0.30769 0

T G (std, DC m ) 0.65714 ∗ 0.66096 ∗ 0.69359 ∗ 0.42714 ∗ 0

T G (std, DC s ) 0.58425 0.59243 0.61126 0.29861 0

T G (std, CC m ) 0.62717 0.64444 0.59149 0.41376 0

T G (std, CC s ) 0.57917 0.57480 0.57854 0.31199 0

T G (std, BC m ) 0.51381 0.58320 0.47167 0.33186 0

T G (std, BC m ) 0.46057 0.43633 0.44639 0.30148 0

PR m 0.41867 0.57666 0.47059 0.42379 0

DC m 0.63226 0.63544 0.66220 0.41901 0

CC m 0.59416 0.59814 0.49674 0.41567 0

BC m 0.43812 0.52671 0.42033 0.33058 0

PR s 0.53752 0.51173 0.53172 0.31151 0

DC s 0.56493 0.56181 0.58323 0.31907 0

CC s 0.49522 0.49158 0.45245 0.30237 0

BC s 0.41816 0.38331 0.40110 0.30387 0

max f or al l 0.65714 0.66096 0.69359 0.42714 0

max f or based methods 0.63226 0.63544 0.66220 0.42379 0

8 
 norm 

(v i ) = 

1 
m 

∑ m 

j=1 

R 
j 
v i 

n −t 
j 
v i 

+1 
. A large R mean or R norm 

implies that the 

ode has a high spreading capacity. 

We evaluate the temporal gravity model and baseline centrality 

etrics for identifying nodes with high spreading capacity in tem- 

oral networks. The temporal gravity model considers the tempo- 

al shortest distance. The real temporal capacity of a node is de- 

ned by R mean or R norm 

. Taking the temporal gravity model as an 

xample, we determine the performance using the Kendall corre- 

ation coefficient. First, we compute the importance score of every 

ode using the temporal gravity model to obtain a list of central- 

ty scores per node. Then, spreading proceeds to determine a list 

f spreading capacities per node. Kendall correlation coefficient τ
s computed between the lists of centrality scores and spreading 

apacities. A high value of τ indicates that the evaluated centrality 

etric can suitably identify important nodes. 

The important node identification results are listed in 

ables 6 and A2 for spreading capacities R norm 

and R mean , re- 

pectively. The spreading influence in the experiment is the 

ormalised (or averaged) result of the nodes at different starting 

imes. Therefore, the gravity model considering the shortest path 
d node centrality score obtained from centrality metrics for 10 empirical 

sterisk. The highest τ of each network obtained from baseline metrics is 

C PS HT2009 Infections SFHH DNC 

.54955 0.47882 0.70796 0.54029 0.61821 0.65801 ∗

.55604 0.46655 0.67636 0.53137 0.58379 0.59151 

.58486 0.51620 ∗ 0.74210 ∗ 0.57452 ∗ 0.62799 ∗ 0.62994 

.55315 0.46552 0.67573 0.54868 0.58192 0.61340 

.50559 0.46408 0.67794 0.49205 0.59157 0.61191 

.55027 0.46518 0.68173 0.48330 0.59718 0.65043 

.50775 0.40146 0.69216 0.37630 0.54656 0.40272 

.52937 0.43658 0.65518 0.29761 0.54942 0.38472 

.48108 0.43918 0.66688 0.36852 0.52167 0.24533 

.60029 ∗ 0.51156 0.73904 0.55896 0.61955 0.45733 

.42559 0.44062 0.64096 0.48547 0.51259 0.47610 

.49045 0.35181 0.68173 0.35857 0.51717 0.39356 

.55243 0.45551 0.66941 0.48628 0.56537 0.16401 

.55945 0.46196 0.67751 0.56921 0.57046 0.41924 

.55753 0.45885 0.67698 0.32204 0.56927 0.46352 

.50198 0.41868 0.63401 0.24377 0.52846 0.37387 

.60029 0.51620 0.74210 0.57452 0.62799 0.65801 

.60029 0.51156 0.73904 0.56921 0.61955 0.47610 
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Fig. 5. Kendall correlation coefficient τ between real node spreading capacity R norm and the node centrality score obtained from centrality metrics. The correlation histograms 

between R norm and the temporal gravity model/baseline centrality metrics are shown in grey/blue. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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s more suitable for this type of influence. To reduce the effect of 

oise from neighbouring nodes, we set the truncation radius of 

emporal gravity model TG-std to R = 5 (see Fig. A1 ). Fig. 5 shows

hat TG-std based on the baseline centrality metrics outperforms 

he use of baseline centrality metrics to identify important nodes. 
9 
n fact, temporal gravity model TG-std presents high-performance 

mportant node identification in most temporal networks. Even 

or some datasets for which TG-std fails to provide the highest 

erformance, its Kendall correlation coefficients remain high. 
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Fig. 6. Kendall correlation coefficient τ between the node centrality score obtained 

from NE fad and temporal gravity models for 10 temporal empirical networks. 

Fig. 7. Kendall correlation coefficient τ between the node centrality score obtained 

from NE std and temporal gravity models for 10 empirical networks. 
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Fig. 8. Kendall correlation coefficient τ between the node centrality score obtained 

from R norm and temporal gravity models for 10 empirical networks. 
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.3. Efficient node centrality metric 

By considering temporal information to quantify the mass, we 

ropose a node degree for temporal networks, called the time de- 

ree, which can be used as the mass of a node in Eq. (7) . The time

egree is defined below. 

• Time degree 

For a temporal network with n snapshots, G 1 , G 2 , . . . , and G n ,

the degree centrality values of node v i for the snapshots are 

given by DC (1) , DC (2) , . . . , and DC (n ) , respectively. We define

the time degree of node v i as 

T D (i ) = e DC(1) + e DC(2) + . . . + e DC(n ) . 

The temporal gravity model can consider both the structural 

roperties and time information to obtain an overall improvement 

n important node identification. Considering the influence of the 

egree of a node at different snapshots, we obtain the time de- 

ree. Among the temporal gravity models, the one based on time 

egree T D has relatively stable performance on the NE fad predic- 

ion, as shown in Fig. 6 . 

Among the temporal gravity models, the one based on the time 

egree, T G (std, T D ) , also has relatively stable and robust perfor-

ance, as shown in Fig. 7 . T G (std, T D ) is more effective than the

aseline centrality metrics in the 10 networks. In general, when 

easuring the structural influence of a temporal network, we can 

se the temporal gravity model based on the time degree to re- 

uce both the selection burden of indicators and computational 

omplexity. 
10 
The spreading influence has a high correlation with the node 

egree, and a higher degree implies a faster spreading. The aver- 

ge degree can better reflect the overall state over time than the 

ggregated degree. Compared with the proposed TG-std methods, 

 G (std, DC m ) more accurately predicts the node spreading influ- 

nce (see Fig. 8 ), and T G (std, T D ) also provides stable performance.

hen measuring the spreading influence of temporal networks, we 

an use T G (std, T D ) or T G (std, DC m ) to reduce the selection bur-

en of indicators. 

. Performance analysis in activity-driven network models 

Based on the analysis in Section 4 , the temporal gravity model 

chieves an overall improvement compared with the baseline cen- 

rality metrics. For structural influence, the temporal gravity model 

ased on time degree T D shows a steady improvement. For spread- 

ng influence, T G (std, DC m ) and T G (std, T D ) are better predictors.

hus, we can use the temporal gravity model with T D or DC m to

educe the selection burden of indicators. We further analyse the 

erformance of the proposed metrics on synthetic temporal net- 

orks. To analyse the type of data for which the proposed method 

s more suitable, our empirical analysis naturally leads to the use 

f the activity-driven model [34] to generate the synthetic tempo- 

al networks. 

The activity-driven network model considers N nodes (aggre- 

ated) and gives each node a fixed activity probability per unit 

ime a i = ηx i , which is defined as the probability to create edges

ith other nodes. Here, x i (bounded in the interval ε ≤ x i ≤ 1 ) is 

he activity potential of node v i , which is distributed according to 

ower law distribution F (x ) ∼ x −γ , and η is a rescaling factor that 

etermines the average number of nodes per unit time, η〈 x 〉 N. A 

etwork evolves according to the following steps: (i) Each node has 

 fixed activity potential probability x i . At the beginning of each 

ime snapshot t, the N nodes of network G t are disconnected ini- 

ially. (ii) Through random seeding, each node becomes an active 

ode with probability a i  t and connects with m other nodes ran- 

omly. (iii) At the next snapshot t +  t, all edges are removed, and

tep 2 is repeated. 

The average degree per unit time of the temporal network is 

 k 〉 t = 2 mη〈 k 〉 . The values of link number m influence the aver-

ge degree 〈 k 〉 t and the network density. By changing the value 

f m, we can obtain experimental networks with different aver- 

ge degrees. Most social networks are heterogeneous. Without loss 

f generally, we fix the parameters ε = 10 −3 ,  t = 1 , η = 10 and

= 2 . 5 . In order to better evaluate our method, we set random
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Fig. 9. Measures of correlations between NE fad (or NE std ) and temporal gravity models under different parameter link number m in the empirical networks. We fix N = 100 , 

T = 80 , η = 10 , F (x ) ∼ x −γ with γ = 2 . 5 , and ε ≤ x ≤ 1 with ε = 10 −3 . Under each m, we set random seeds to generate 20 temporal networks, and the coefficient result is 

the corresponding box. The blue line is the mean value under each m . (a) shows the different Kendall correlation coefficients τ between NE fad and our method T G ( fad, T D ) 

on the parameters m . (b) shows the different Kendall correlation coefficients τ between NE std and our method T G (std, T D ) on the parameters m . (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Measures of correlations between R norm and temporal gravity models under different parameter link number m in the empirical networks. We fix N = 100 , T = 80 , 

η = 10 , F (x ) ∼ x −γ with γ = 2 . 5 , and ε ≤ x ≤ 1 with ε = 10 −3 . Under each m, we set random seeds to generate 20 temporal networks, and the coefficient result is the 

corresponding box. The blue line is the mean value under each m . (a) and (b) show the different Kendall correlation coefficients τ between R norm and our method T G (std, T D ) 

(or T G (std, DC m ) ) on the parameters m . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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eeds to generate 20 networks with the same average degree 〈 k 〉 t 
nder each link number m . 

We examine how the parameter m influences our method iden- 

ification quality. For network efficiency, the effect of the parame- 

er m on the value of correlation τ is plotted in Fig. 9 . As shown

n Fig. 9 (a), the value of correlation τ obtained by comparing NE fad 

nd T G ( fad, T D ) is stable when m is increased. Fig. 9 (a) indicates

hat m has little effect on important node identification in terms 

f network efficiency NE fad . However, in Fig. 9 (b), we can see that

he τ obtained by comparing NE std and T G (std, T D ) increases as

 increases in general. The mean value of τ increases to 0.910 0 0. 

ig. 9 suggests that our method can also identify the structural 

nfluential nodes on synthetic networks. For NE std , our method is 

ore suitable for denser networks. 

In terms of spreading influence, the evolution of the correlation 

between R norm 

and temporal gravity models with increasing m is 
e

11 
lotted in Fig. 10 . The correlation τ increases greatly with increas- 

ng m . Therefore, the increase in the correlation when m is large 

mplies that our model is more suitable for denser networks. 

. Discussion and conclusions 

In practice, most complex systems are dynamic and time vary- 

ng. To preserve the temporal information of systems, we can rep- 

esent them as temporal networks. Although many centrality met- 

ics have been proposed for static networks, important node iden- 

ification in temporal networks remains an open question. 

The law of gravitation is a simple, elegant, and representative 

ormula to estimate the strength of interaction between objects 

y considering the inherent influence of the objects and their dis- 

ance. Inspired by the concept of gravity and existing gravity mod- 

ls for static networks, we propose a temporal gravity model to 
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Table A1 

Property description of the empirical networks. The 

number of nodes N, the number of snapshots n, 
dentify important nodes in temporal networks. The temporal grav- 

ty model leverages both neighbourhood information and temporal 

nformation. In addition, it provides a mathematical and compu- 

ational framework that can use different node properties to rep- 

esent the node masses and different temporal distances as dis- 

ance analogous in gravity. To determine the node properties, we 

se baseline centrality metrics and the proposed time degree. For 

he temporal distance, we consider either the fastest arrival dis- 

ance or the temporal shortest distance. 

The Kendall correlation measures the ranking correlation be- 

ween two variables. Hence, we use Kendall correlation coefficient 

between the real influence of a node on either the network con- 

ectivity or spreading and the importance score obtained from dif- 

erent centrality metrics to evaluate the metric performance on 

mpirical temporal networks. To enhance the demonstration re- 

ults, we also use the Spearman correlation ρ2 to quantify the 

erformance (see Appendix B ). In addition, we consider the net- 

ork efficiency based on the temporal shortest path, NE std , and 

hat based on the fastest arrival path, NE fad . Regarding NE fad , 

 G − fad outperforms the baseline centrality metrics across dif- 

erent networks. Specifically, the Kendall correlation coefficient τ
f the temporal gravity model increases by 85.51 % on average com- 

ared with the highest τ obtained from baseline centrality metrics 

cross the 10 empirical networks. Regarding NE std , the T G − std

ethods provide an overall improvement. For structural influence, 

he proposed temporal gravity model based on time degree T D 

hows a steady improvement over the baseline centrality metrics. 

hen measuring the structural influence of temporal networks, we 

an thus use the temporal gravity model with T D to reduce the se- 

ection burden of indicators. 

Regarding the spreading influence, we simulate the SIR spread- 

ng model on the empirical temporal networks. We use the nor- 

alised and average spreading ranges to represent the node 

preading capacity. The T G − std methods using the baseline cen- 

rality metrics (average scores) outperform the baseline central- 

ty metrics. T G (std, DC m ) and T G (std, T D ) are better predictors for

ode spreading influence. We also use the activity-driven model to 

enerate synthetic temporal networks for further analysis. As net- 

ork density changes, our method is stable for NE fad . For NE std and 

 norm 

, our method is more suitable for denser networks. Overall, 

he temporal gravity model provides robust performance for im- 

ortant node identification across networks. The temporal gravity 

odel using baseline centrality metrics to represent mass outper- 

orms the corresponding baseline centrality metrics, and the model 

as superior robustness for important node identification in tem- 

oral networks. Considering the suitability of the gravity model 

or important node identification in both static and temporal net- 

orks, we will extend the model to other types of networks, such 

s multi-layer networks [36,37] and bipartite networks [2] . More- 

ver, the spreading influence of a node can vary if we consider 

ifferent dynamical processes. Thus, we can further explore impor- 

ant node identification related to different spreading models, such 

s susceptible–infected–susceptible [6] and coevolution spreading 

rocesses [38] , for temporal networks. 
2 Spearman’s rank correlation [35] coefficient ρ is a nonparametric measure of 

ank correlation. The closer ρ to 1, the stronger the association between the two 

anks. Consider two sequences with N elements. Start by ranking the two se- 

uences. Data ranking can be achieved by assigning the ranks ‘1’ to the largest 

umber, ‘2’ to the second-largest number, and so forth. Calculate the difference be- 

ween ranks denoted as ‘ d’. The coefficient ρ can be depicted in the formula 

= 1 − 6 
∑ 

d 2 

N (N 2 − 1) 
. 
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ppendix A. Empirical networks 

We evaluate the performance of the temporal gravity model on 

he following empirical temporal network datasets. Some of the 

etailed properties of the networks are shown in Table A1 . 

• High school 2011 (2012,2013) dynamic contact net- 

works [39,40] (HS2011, HS2012, HS2013). These datasets 

correspond to the contacts and friendship relations between 

students in a high school in Marseilles, France. 
• Workplace (WP) [41] . This dataset contains contacts between 

employees in an office building in France from June 24 to July 

3, 2013. 
• Hospital contract (HC) [42] . This dataset contains contacts 

between patients, contacts between patients and health-care 

workers (HCWs), and contacts between HCWs in a hospital 

ward in Lyon, France, from December 6 to December 10, 2010. 
the total number of contacts | C | , and the number of 

links | E | in aggregated static network G are shown. 

Network N n | C | | E | 
HS2011 126 76 28,561 1710 

HS2012 180 203 45,047 2239 

HS2013 327 101 188,508 5818 

WP 92 275 9827 755 

HC 75 97 32,424 1139 

PS 242 65 125,773 8317 

HT2009 113 118 20,818 2196 

Infectious 410 79 17,298 2765 

SFHH 403 64 70,261 9889 

DNC 1760 71 38,484 5428 

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100002858
http://www.sociopatterns.org
http://konect.uni-koblenz.de/networks
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Table A2 

Kendall correlation coefficient τ between R mean and temporal network methods for 10 empirical networks. The highest τ of each network is highlighted in 

bold and with an asterisk. The highest τ of each network obtained from centrality metrics is highlighted in bold. The SIR model parameters are β = 0 . 1 and 

μ = 0 . 01 . For each node at one occurrence, the spreading range is the average across 100 independent trials. 

HS2011 HS2012 HS2013 WP HC PS HT2009 Infections SFHH DNC 

T G (std, T D ) 0.63911 0.51421 0.47716 0.50024 0.38667 0.26072 0.49905 0.67884 0.44923 0.57545 ∗

T G (std, PR m ) 0.58324 0.54364 0.47205 0.55996 0.38234 0.28830 0.50569 0.60043 0.46883 0.56827 

T G (std, PR s ) 0.60356 0.48939 0.46147 0.48782 0.39604 0.26710 0.48546 0.63600 0.43293 0.47618 

T G (std, DC m ) 0.65486 0.58150 ∗ 0.54140 ∗ 0.63497 0.40613 ∗ 0.28452 0.52465 0.67760 0.47096 0.54119 

T G (std, DC s ) 0.63276 0.50726 0.47881 0.48065 0.39892 0.26100 0.48609 0.66925 0.43066 0.49881 

T G (std, CC m ) 0.68737 ∗ 0.57418 0.48740 0.63306 0.37441 0.25188 0.53445 ∗ 0.68208 ∗ 0.47380 ∗ 0.52520 

T G (std, CC s ) 0.63429 0.49460 0.45772 0.47874 0.39171 0.26024 0.49210 0.67898 0.44513 0.56842 

T G (std, BC m ) 0.52118 0.52410 0.35925 0.51105 0.32036 0.20805 0.47977 0.59671 0.41199 0.35615 

T G (std, BC s ) 0.46489 0.36655 0.35056 0.41949 0.38523 0.29131 0.47440 0.39009 0.41302 0.34179 

PR m 0.37625 0.49472 0.34519 0.59245 0.34847 0.29296 ∗ 0.45828 0.29588 0.41575 0.30063 

DC m 0.57574 0.57435 0.51316 0.63260 0.40513 0.29065 0.51590 0.60771 0.46870 0.43246 

CC m 0.61879 0.55742 0.42230 0.64262 ∗ 0.33766 0.24145 0.52339 0.64752 0.44884 0.35385 

BC m 0.43279 0.48946 0.31272 0.48835 0.31027 0.18597 0.46492 0.51072 0.39357 0.34816 

PR s 0.51390 0.44022 0.41712 0.50215 0.39243 0.27348 0.47724 0.50993 0.42064 0.15792 

DC s 0.57084 0.47402 0.45397 0.50700 0.39369 0.26684 0.48043 0.62944 0.42280 0.36675 

CC s 0.54144 0.39203 0.35006 0.40685 0.38962 0.26424 0.48079 0.51059 0.42174 0.37786 

BC s 0.41994 0.30460 0.31135 0.41328 0.38955 0.28795 0.45575 0.31524 0.40204 0.33171 

max of all metrics 0.68737 0.58150 0.54140 0.64262 0.40613 0.29296 0.53445 0.68208 0.47380 0.57545 

max of baseline metrics 0.61879 0.57435 0.51316 0.64262 0.40513 0.29296 0.52339 0.64752 0.46870 0.43246 

Table A3 

Spearman correlation coefficient ρ between node centrality score obtained from NE fad and centrality metrics for 10 empirical networks. The highest ρ of each 

network is highlighted in bold and with an asterisk. The highest ρ of each network obtained from baseline metrics is highlighted in bold. 

HS2011 HS2012 HS2013 WP HC PS HT2009 Infections SFHH DNC 

T G ( fad, T D ) 0.89210 0.85391 0.78106 0.83655 0.98020 ∗ 0.74414 0.84907 0.91782 0.91859 0.76046 

T G ( fad, PR m ) 0.89477 0.86688 0.80890 0.84742 0.97425 0.80148 ∗ 0.86698 0.92729 ∗ 0.94350 ∗ 0.78780 

T G ( fad, PR s ) 0.89597 0.88765 ∗ 0.84395 ∗ 0.89430 0.97229 0.67005 0.86778 ∗ 0.91846 0.92399 0.76071 

T G ( fad, DC m ) 0.88242 0.85916 0.80747 0.88680 0.93542 0.75832 0.83399 0.85746 0.91290 0.84307 ∗

T G ( fad, DC s ) 0.88457 0.88114 0.84204 0.90155 ∗ 0.96512 0.63562 0.86418 0.87202 0.90150 0.77276 

T G ( fad, CC m ) 0.88894 0.85621 0.80523 0.88703 0.94703 0.70498 0.85199 0.87931 0.93370 0.83320 

T G ( fad, CC s ) 0.90326 ∗ 0.86671 0.81462 0.85344 0.97994 0.77464 0.86571 0.92466 0.93350 0.80276 

T G ( fad, BC m ) 0.87852 0.82275 0.80359 0.85278 0.79661 0.64223 0.76799 0.71367 0.80801 0.41180 

T G ( fad, BC s ) 0.82626 0.80814 0.80551 0.89520 0.91084 0.53600 0.80259 0.66977 0.81105 0.42559 

PR m 0.56408 0.53428 0.53317 0.43988 0.43713 0.48051 0.46716 0.10137 0.58231 0.52376 

DC m 0.70179 0.56574 0.57988 0.45075 0.46463 0.51896 0.50617 0.15626 0.56972 0.66341 

CC m 0.71955 0.56895 0.57955 0.46400 0.41775 0.37823 0.56863 0.25018 0.63461 0.66878 

BC m 0.69036 0.49843 0.52836 0.40935 0.40492 0.40192 0.39139 0.27832 0.47304 0.40347 

PR s 0.63744 0.48947 0.57461 0.55676 0.51562 0.33650 0.49800 0.20387 0.51336 0.25229 

DC s 0.65079 0.49785 0.57251 0.56031 0.51250 0.33458 0.49896 0.16761 0.51141 0.46669 

CC s 0.60741 0.43467 0.55125 0.57205 0.51925 0.33371 0.50269 0.23409 0.51175 0.51012 

BC s 0.60748 0.40673 0.54798 0.53564 0.51166 0.34457 0.49094 0.25647 0.50766 0.41213 

max of all metrics 0.90326 0.88765 0.84395 0.90155 0.98020 0.80148 0.86778 0.92729 0.94350 0.84307 

max of baseline metrics 0.71955 0.56895 0.57988 0.57205 0.51925 0.51896 0.56863 0.27832 0.63461 0.66878 
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• Primary school (PS) [43] . This dataset contains contacts be- 

tween the children and teachers used in the study published 

in BMC Infectious Diseases 2014. 
• Hypertext20 09 (HT20 09) [44] . This network contains contacts 

between the attendees of the ACM Hypertext 2009 conference. 
• Infectious [44] . This network contains contacts between people 

during the exhibition INFECTIOUS: STAY AWAY in 2009 at the 

Science Gallery in Dublin. 
• SFHH conference (SFHH) [45] . This dataset contains contacts 

between participants in the 2009 SFHH conference in Nice, 

France. 
• DNC Email (DNC) [46] . This is the network of emails in the 2016

Democratic National Committee email leak. 

We evaluate the temporal gravity model and baseline centrality 

etrics for identification of nodes with high spreading capacity in 

emporal networks. 

The effect of the truncation radius on the temporal gravity 

odel is illustrated in Fig. A1 . 
13 
The results considering average spreading range R mean are listed 

n Table A2 . 

ppendix B. Evaluation of temporal gravity model based on 

pearman correlations 

We also use the Spearman correlations to quantify the perfor- 

ance. The results based on real data are shown in Table A3, A4, 

5 and A6 , and the results of experimental data are shown in Fig.

2 and A3 . In terms of network efficiency, the effect of the param- 

ter m on the value of Spearman correlation coefficient ρ is plot- 

ed in Fig. A2 . As shown in Fig. A2 (a), the value of ρ obtained by

omparing NE fad and T G ( fad, T D ) is stable when m is increased.

he average value of coefficient ρ is 0.85980. In Fig. A2 (b), we can 

ee that the ρ obtained by comparing NE std and T G (std, T D ) in-

reases as m increases in general. The mean value of ρ increases 

o 0.98583. In terms of spreading influence, the evolution of the 

orrelation ρ between R norm 

and temporal gravity models with in- 

reasing m is plotted in Fig. A3 . The correlation ρ increases with 

ncreasing m . 
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Fig. A1. Kendall correlation coefficient τ between node centrality score obtained from R norm and temporal gravity models with truncation radius from 1 to the maximum for 

10 empirical networks. A stable value can be reached at a truncation radius of 5. 

14 
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Table A4 

Spearman correlation coefficient ρ between node centrality score obtained from NE std and centrality metrics for 10 empirical networks. The highest ρ of each 

network is highlighted in bold and with an asterisk. The highest ρ of each network obtained from baseline metrics is highlighted in bold. 

HS2011 HS2012 HS2013 WP HC PS HT2009 Infections SFHH DNC 

T G (std, T D ) 0.95891 0.95280 0.95765 0.98029 ∗ 0.98723 ∗ 0.99022 ∗ 0.99045 0.91283 0.97386 0.89259 

T G (std, PR m ) 0.95560 0.93474 0.94720 0.97656 0.95055 0.97241 0.97002 0.85468 0.96508 0.89206 

T G (std, PR s ) 0.96255 ∗ 0.95048 0.95021 0.97121 0.97323 0.98724 0.98970 0.85094 0.97602 ∗ 0.78065 

T G (std, DC m ) 0.92091 0.89756 0.88468 0.92032 0.96555 0.95175 0.96092 0.83969 0.97343 0.86079 

T G (std, DC s ) 0.94899 0.94450 0.93676 0.96746 0.97183 0.98569 0.98846 0.87344 0.97439 0.80556 

T G (std, CC m ) 0.88984 0.87643 0.88925 0.91865 0.95550 0.95961 0.95114 0.89438 0.95287 0.90310 ∗

T G (std, CC s ) 0.96097 0.95646 ∗ 0.96090 ∗ 0.96827 0.98336 0.98930 0.99178 ∗ 0.92978 ∗ 0.97526 0.89262 

T G (std, BC m ) 0.92644 0.87271 0.91996 0.88777 0.83087 0.80704 0.94358 0.86082 0.94942 0.44549 

T G (std, BC s ) 0.94708 0.91035 0.93202 0.94493 0.95220 0.98016 0.98430 0.72301 0.96267 0.45722 

PR m 0.79327 0.82617 0.78940 0.81581 0.79414 0.84995 0.90297 0.50032 0.84173 0.36366 

DC m 0.90348 0.87322 0.83897 0.84660 0.94584 0.89724 0.94041 0.73322 0.96103 0.64780 

CC m 0.84560 0.82142 0.75641 0.84279 0.88731 0.90705 0.90375 0.85255 0.85205 0.81203 

BC m 0.87242 0.81801 0.87529 0.82003 0.76267 0.70620 0.91891 0.78334 0.92240 0.43366 

PR s 0.95508 0.93315 0.92780 0.96113 0.95565 0.98538 0.98895 0.70667 0.97116 0.21815 

DC s 0.95521 0.93510 0.92112 0.96444 0.95968 0.98517 0.98874 0.80480 0.97137 0.50834 

CC s 0.94639 0.90941 0.90031 0.92037 0.96465 0.98642 0.98930 0.81744 0.97019 0.56723 

BC s 0.91523 0.86490 0.90212 0.92562 0.90993 0.96304 0.97665 0.64494 0.94899 0.44082 

max of all metrics 0.96255 0.95646 0.96090 0.98029 0.98723 0.99022 0.99178 0.92978 0.97602 0.90310 

max of baseline metrics 0.95521 0.93510 0.92780 0.96444 0.96465 0.98642 0.98930 0.85255 0.97137 0.81203 

Table A5 

Spearman correlation coefficient ρ between R norm and temporal network methods for 10 empirical networks. The highest ρ of each network is highlighted in 

bold and with an asterisk. The highest ρ of each network obtained from centrality metrics is highlighted in bold. The SIR model parameters are β = 0 . 1 and 

μ = 0 . 01 . For each node at one occurrence, the spreading range is the average across 100 independent trials. 

HS2011 HS2012 HS2013 WP HC PS HT2009 Infections SFHH DNC 

T G (std, T D ) 0.75275 0.75858 0.79315 0.44725 0.72498 0.64320 0.86375 0.67608 0.78621 0.83366 

T G (std, PR m ) 0.74707 0.79454 0.79046 0.52347 0.71260 0.65411 0.87700 0.71876 0.79572 0.84327 ∗

T G (std, PR s ) 0.73838 0.75659 0.78075 0.42976 0.72407 0.64529 0.85842 0.71158 0.76795 0.77537 

T G (std, DC m ) 0.79282 ∗ 0.82724 ∗ 0.86617 ∗ 0.56889 0.76048 0.69212 ∗ 0.89937 ∗ 0.74084 0.80681 ∗ 0.80949 

T G (std, DC s ) 0.74815 0.77998 0.80557 0.41720 0.71929 0.64523 0.85699 0.71787 0.76690 0.79411 

T G (std, CC m ) 0.76427 0.80596 0.76868 0.55278 0.68267 0.63552 0.84393 0.64515 0.76611 0.79887 

T G (std, CC s ) 0.73952 0.75948 0.77210 0.43355 0.71750 0.64246 0.86184 0.63591 0.78224 0.83871 

T G (std, BC m ) 0.68202 0.77290 0.65366 0.47191 0.70014 0.56248 0.87399 0.53029 0.73246 0.50906 

T G (std, BC s ) 0.62748 0.61338 0.62312 0.42853 0.70993 0.61418 0.84415 0.42789 0.73161 0.49103 

PR m 0.56806 0.74539 0.64129 0.58669 ∗ 0.65693 0.60246 0.84664 0.53855 0.69838 0.36150 

BC m 0.77887 0.79989 0.84029 0.56789 0.77582 ∗ 0.68489 0.89842 0.73886 0.79624 0.58578 

CC m 0.73435 0.76380 0.67038 0.55404 0.59844 0.60333 0.81214 0.64917 0.68593 0.64193 

BC m 0.59851 0.71063 0.58999 0.47349 0.68262 0.49983 0.86296 0.51256 0.70359 0.49835 

PR s 0.71220 0.69939 0.72485 0.43321 0.72760 0.63505 0.85355 0.67410 0.75029 0.24999 

DC s 0.73525 0.74757 0.77203 0.43680 0.72770 0.63897 0.85576 0.74373 ∗ 0.75312 0.52820 

CC s 0.66744 0.67295 0.62946 0.42352 0.72806 0.63704 0.85622 0.45170 0.75280 0.62938 

BC s 0.58110 0.54489 0.56924 0.43432 0.68558 0.59233 0.82926 0.35562 0.70912 0.47612 

max of all metrics 0.79282 0.82724 0.86617 0.58669 0.77582 0.69212 0.89937 0.74373 0.80681 0.84327 

max of baseline metrics 0.77887 0.79989 0.84029 0.58669 0.77582 0.68489 0.89842 0.74373 0.79624 0.64193 

Table A6 

Spearman correlation coefficient ρ between R mean and temporal network methods for 10 empirical networks. The highest ρ of each network is highlighted in 

bold and with an asterisk. The highest ρ of each network obtained from centrality metrics is highlighted in bold. The SIR model parameters are β = 0 . 1 and 

μ = 0 . 01 . For each node at one occurrence, the spreading range is the average across 100 independent trials. 

HS2011 HS2012 HS2013 WP HC PS HT2009 Infections SFHH DNC 

T G (std, T D ) 0.82404 0.68747 0.65958 0.68694 0.52976 0.33982 0.64676 0.86972 0.62829 0.72014 

T G (std, PR m ) 0.76787 0.71877 0.64925 0.74912 0.53388 0.36463 0.65013 0.78898 0.64654 0.72328 ∗

T G (std, PR s ) 0.79257 0.66851 0.64172 0.66682 0.55021 0.35113 0.63442 0.83029 0.60733 0.64354 

T G (std, DC m ) 0.83403 0.75789 ∗ 0.72489 ∗ 0.82035 0.55269 ∗ 0.35061 0.67426 ∗ 0.86847 0.65143 ∗ 0.70729 

T G (std, DC s ) 0.82069 0.68680 0.66187 0.65839 0.54982 0.34261 0.63291 0.86582 0.60501 0.66159 

T G (std, CC m ) 0.86166 ∗ 0.75060 0.65361 0.81479 0.50805 0.31376 0.67354 0.87366 ∗ 0.64324 0.66670 

T G (std, CC s ) 0.81677 0.67151 0.63561 0.65720 0.53733 0.33909 0.64192 0.86884 0.62264 0.71785 

T G (std, BC m ) 0.69650 0.72059 0.51645 0.70939 0.47616 0.28217 0.63920 0.79522 0.58143 0.45087 

T G (std, BC s ) 0.63711 0.52322 0.50173 0.60205 0.54259 0.39004 0.61885 0.55170 0.58107 0.43712 

PR m 0.52689 0.66865 0.49622 0.77615 0.49770 0.37503 0.60425 0.43545 0.58047 0.44111 

DC m 0.76074 0.74803 0.69619 0.81048 0.54875 0.35594 0.66522 0.80598 0.64637 0.55556 

CC m 0.79954 0.73225 0.57539 0.82162 ∗ 0.45841 0.29600 0.65850 0.84363 0.60858 0.47836 

BC m 0.59769 0.67991 0.45558 0.68365 0.46629 0.25988 0.61969 0.70299 0.55927 0.44210 

PR s 0.70364 0.61446 0.58890 0.67110 0.55004 0.36500 0.62125 0.69861 0.59293 0.23725 

DC s 0.75635 0.64735 0.62842 0.66989 0.54520 0.35275 0.62295 0.81857 0.59333 0.46380 

CC s 0.72393 0.55265 0.49989 0.57252 0.54024 0.34696 0.62510 0.70874 0.59235 0.51640 

BC s 0.57444 0.43997 0.45161 0.59287 0.55115 0.39155 ∗ 0.60043 0.45254 0.56507 0.42429 

max of all metrics 0.86166 0.75789 0.72489 0.82162 0.55269 0.39155 0.67426 0.87366 0.65143 0.72328 

max of baseline metrics 0.79954 0.74803 0.69619 0.82162 0.55115 0.39155 0.66522 0.84363 0.64637 0.55556 
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Fig. A2. Measures of correlations between NE fad (or NE std ) and temporal gravity models under different parameter link number m in the empirical networks. We fix N = 100 , 

T = 80 , η = 10 , F (x ) ∼ x −γ with γ = 2 . 5 , and ε ≤ x ≤ 1 with ε = 10 −3 . Under each m, we set random seeds to generate 20 temporal networks, and the coefficient result is the 

corresponding box. The blue line is the mean value under each m . (a) shows the different Spearman correlation coefficients ρ between NE fad and our method T G ( fad, T D ) 

on the parameters m . (b) shows the different Spearman correlation coefficients ρ between NE std and our method T G (std, T D ) on the parameters m . (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. A3. Measures of correlations between R norm and temporal gravity models under different parameter link number m in the empirical networks. We fix N = 100 , T = 80 , 

η = 10 , F (x ) ∼ x −γ with γ = 2 . 5 , and ε ≤ x ≤ 1 with ε = 10 −3 . Under each m, we set random seeds to generate 20 temporal networks, and the coefficient result is the 

corresponding box. The blue line is the mean value under each m . (a) and (b) show the different Spearman correlation coefficients ρ between R norm and our method 

T G (std, T D ) (or T G (std, DC m ) ) on the parameters m . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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