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A B S T R A C T

We study a class of assortment optimization problems where customers choose products according to the cross-
nested logit (CNL) model and the number of products offered in the assortment cannot exceed a fixed number.
Currently, no exact method exists for this NP-hard problem that can efficiently solve even small instances (e.g.,
50 products with a cardinality limit of 10). In this paper, we propose an exact solution method that addresses
this problem by finding the fixed point of a function through binary search. The parameterized problem at
each iteration corresponds to a nonlinear binary integer programming problem, which we solve using a tailored
Branch-and-Bound algorithm incorporating a novel variable-fixing mechanism, branching rule and upper bound
generation strategy. Given that the computation time of the exact method can grow exponentially, we also
introduce two polynomial-time heuristic algorithms with different solution strategies to handle larger instances.
Numerical results demonstrate that our exact algorithm can optimally solve all test instances with up to 150
products and more than 90% of instances with up to 300 products within a one-hour time limit. Using the
exact method as a benchmark, we find that the best-performing heuristic achieves optimal solutions for the
majority of test instances, with an average optimality gap of 0.2%.
1. Introduction

Assortment optimization is a significant operational problem faced
by numerous retailers and has been extensively studied in the field
of revenue management (Feldman & Topaloglu, 2015; Gallego &
Topaloglu, 2014; Zhang, Rusmevichientong, & Topaloglu, 2020).
Under this problem, the retailers need to determine an optimal subset of
potential products for sale subject to various business constraints, such
as budget limitations for product procurement and restricted shelf space
for product display, with the objective of maximizing expected revenue
from customers (Kok, Fisher, & Vaidyanathan, 2008). A pivotal aspect
of this problem lies in accurately predicting customers’ product choices
among the available assortment. Since the work of Van Ryzin and
Mahajan (1999), discrete choice models have been widely employed
to characterize customer purchasing behavior in assortment optimiza-
tion, for their capability to accommodate flexible substitution patterns
among products. Early researchers focused on the assortment optimiza-
tion problems under the multinomial logit (MNL) model (McFadden,

∗ Corresponding author.
E-mail address: haijiang@tsinghua.edu.cn (H. Jiang).

1 Consider a scenario in which products A and B exhibit high substitutability, with product A priced lower than product B. When both products are available
from the retailer, customers tend to predominantly choose product A due to its lower price. However, if product A becomes unavailable, a significant portion of
the initial demand for product A is likely to shift to product B, rather than to other products, due to their substitutable nature.

2 The value of a nest’s dissimilarity parameter reflects the extent of substitutability among the products within the nest. From 1 to 0, a value closer to 0 means
higher substitution effects, and vice versa.

1974) and developed efficient algorithms to obtain optimal or high-
quality solutions under various side constraints (Rusmevichientong,
Shen, & Shmoys, 2010; Talluri & Van Ryzin, 2004). However, the MNL
model assumes that the random utility terms of all alternatives are
independent, leading to the well-known Independence of Irrelevant
Alternatives (IIA) property (Ben-Akiva, Lerman, Lerman, et al., 1985;
McFadden, 1974). This implies that including or excluding a product
will lead to a proportional shift in the choice probabilities of all other
products. Such a property may not hold in many practical scenarios,
especially when certain pairs of products exhibit a significant level of
substitutability.1

To address the unrealistic IIA property, numerous studies opt to
employ the nested logit (NL) model (Williams, 1977) in assortment op-
timization as a viable alternative (Feldman & Topaloglu, 2015; Gallego
& Topaloglu, 2014). In the NL model, products are partitioned into
disjoint groups, commonly referred to as nests, where items within the
same nest are generally close substitutes in a specific aspect. When a
https://doi.org/10.1016/j.ejor.2024.12.037
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product becomes unavailable under the NL model, its demand tends to
shift more towards other products within the same nest than those in
different nests if the dissimilarity parameter of the unavailable prod-
uct’s nest is less than 1,2 thereby alleviating the IIA property observed
n the MNL model. Nevertheless, the NL model has limitations in

capturing substitution patterns among products. Consider the example
of traffic mode choice in Train (2009), where commuters can select
from three modes: car alone (i.e., a car owned and used by an individual
commuter), carpooling (i.e., a car shared with several commuters) or
public bus. When specifying the nesting structure, we can group the
modes ‘‘car alone’’ and ‘‘carpooling’’ together because both involve the
use of a private car. It is also reasonable to group ‘‘carpooling’’ and
‘public bus’’ together since both allow several commuters to share the
ride. However, these two groupings cannot simultaneously exist in the
NL model because each product can only be assigned to exactly one
nest. In other words, the non-overlapping nesting structure in the NL

odel limits its ability to capture the correlation between products
long multiple dimensions.

A natural extension of the NL model to overcome the limitations
bove is to incorporate nest overlapping, leading to the cross-nested
ogit (CNL) model (Vovsha, 1997; Wen & Koppelman, 2001). The CNL
odel also involves a nesting structure akin to the NL model but

llows products to belong to multiple nests with varying degrees of
embership. Such flexibility enables the CNL model to capture correla-

ions among products across multiple dimensions simultaneously, thus
acilitating a wider range of substitution relationships between products
han the NL model. The challenge encountered in the aforementioned
raffic mode choice example can be readily addressed by assigning
‘carpooling’’ to two nests, each associated with a specific allocation
arameter. According to Fosgerau, McFadden, and Bierlaire (2013), the

choice probabilities of any random utility model may be approximated
by a CNL model.

The flexibility of the CNL model has encouraged scholars to explore
ssortment optimization problems under more realistic scenarios. For
nstance, Bernstein and Guo (2023) studied an assortment planning

problem within a subscription box service. In this emerging business
scenario, customers interested in purchasing a product face a choice
between engaging in active search (i.e., visiting physical stores) or
ubscribing to a box delivery service. Since a product may be available
oth in stores and in the subscription box, the assortment included in
he box influences customers’ valuation of their active search choices

and, consequently, their subscription decisions. The CNL model can
easily capture such interactions by assigning overlapping products to
oth the ‘‘active search’’ and ‘‘subscription box’’ nests. The degree
f membership of product 𝑖 to nest 𝑚, represented by the allocation

parameter 𝛼𝑖𝑚, reflects the extent to which the utility of product 𝑖
contributes to the attractiveness of channel 𝑚. For a given assortment,
different allocation parameter values yield varying access probabilities
for channels and distinct purchase probabilities for products within
ach channel. This complexity, however, is challenging to address using
he standard MNL or NL models. By implementing the CNL model,
he authors theoretically analyzed how the subscription box company
anages customer search behavior by adjusting the box contents,
ltimately determining the optimal product assortment structure within
he box.

Apart from Bernstein and Guo (2023), which is closely tied to
specific scenarios and derives managerial insights by analyzing the
mathematical properties of the stylized model, to the best of our
knowledge, only Le and Mai (2024) have investigated algorithm de-
sign for the assortment optimization problem under the CNL model.
They proposed non-polynomial time approximation algorithms for the
constrained assortment optimization problem under the CNL model.
However, the development of non-trivial exact algorithms or efficient
heuristics for this problem remains an open question. Our study aims
to fill this gap.
184 
1.1. Main contribution

In this study, we develop a non-trivial exact algorithm and efficient
euristics for solving the cardinality-constrained assortment optimiza-
ion problem when customers choose according to the CNL model
we abbreviate this problem as CAOP-CNL). In the exact solution
pproach, we initially transform the CAOP-CNL into a fixed point
inding problem that is solvable using a binary search framework. In
ach iteration of the binary search, we need to address an NP-hard

parameterized problem which can be formulated as a nonlinear binary
integer programming problem. A tailored Branch-and-Bound (B&B)
algorithm is developed to obtain the optimal solution for this param-
terized problem. The B&B algorithm incorporates a novel variable-
ixing mechanism, branching rule and upper bound generation strategy,
ll capitalizing on the unique structure of the parameterized problem’s
bjective function. Since the computation time of exact algorithm
ay increase exponentially, we also introduce two polynomial-time
euristic algorithms employing different solution strategies. Numerical
esults indicate that our exact method can efficiently handle moderately
arge instances within a reasonable time limit. Specifically, the exact

algorithm can optimally solve all test instances with up to 150 products
and more than 90% of instances with up to 300 products within a one-
hour time limit. Using the exact method as a benchmark, we observe
that the top-performing heuristic can attain optimal solutions for the
majority of test instances, with a average optimality gap below 0.2%.

We summarize the main contributions of our study as follows:

• To the best of our knowledge, we propose the first non-trivial
exact method for solving the cardinality-constraint assortment op-
timization problem under the CNL model, capable of addressing
moderately large instances within a reasonable time limit;

• In designing the exact algorithm, we introduce a novel variable-
fixing mechanism, branching rule and upper bound generation
strategy to expedite the solving process. Numerical experiments
demonstrate the effectiveness of these components across various
scenarios;

• We develop efficient heuristic algorithms that can rapidly solve
the CAOP-CNL with near-optimal performance. The best-
performing heuristic attains optimal solutions for the majority
of test instances, with an average optimality gap no larger than
0.2%.

1.2. Literature review

In this subsection, we primarily review the literature on assortment
optimization using discrete choice models to characterize consumer
choice behavior, with a particular emphasis on those employing models
from the generalized extreme value (GEV) family (McFadden, 1978).

hen discussing the CNL model, we include a concise review of the
literature that focuses on its empirical applications. Additionally, we
discuss several studies that also develop exact solution approaches for
addressing complex assortment optimization problems.

Given the simplicity and practicality of the MNL model, assortment
ptimization problems associated with it are among the first to be
tudied by scholars (Van Ryzin & Mahajan, 1999). The unconstrained

and cardinality-constrained versions of these problems are shown to be
polynomially solvable by Rusmevichientong et al. (2010) and Talluri
and Van Ryzin (2004), respectively. Addressing uncertainty in the
parameters of the logit model, Rusmevichientong and Topaloglu (2012)
explore robust assortment optimization under the MNL model. To
account for the heterogeneity in consumer choice behavior, several
tudies have also investigated assortment optimization under the latent

class logit model and the mixed logit model (Bront, Méndez-Díaz, &
Vulcano, 2009; Méndez-Díaz, Miranda-Bront, Vulcano, & Zabala, 2014;
Rusmevichientong, Shmoys, Tong, & Topaloglu, 2014).
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To address the limitations of the IIA property inherent in the MNL
model, numerous studies have explored assortment optimization prob-
lems under the NL model. Within the existing literature, two prevalent
specifications of the NL model are observed: the ‘‘standard form’’ and
he ‘‘general form’’. In the standard form, the dissimilarity parameters
ssociated with each nest must fall within the range of (0, 1], and there

is a single no-purchase option that forms its own nest. In the general
form, the dissimilarity parameters are permitted to exceed 1, and each
est may include a no-purchase option.

The standard form of the NL model has been widely adopted in pre-
vious studies. Li and Rusmevichientong (2014) propose a greedy algo-
rithm capable of solving the unconstrained problem in polynomial time.
For the cardinality-constrained version, Feldman and Topaloglu (2015)
nd Gallego and Topaloglu (2014) demonstrate that the problem can

be optimally solved in polynomial time when cardinality constraints
are applied either to each nest or to the overall assortment. However,
when the problem involves space constraints – where each product
ccupies a certain amount of space, and the total or nest-specific
pace is limited – it becomes NP-hard. Several studies have proposed

polynomial-time approximation algorithms for this problem (Chen &
Jiang, 2020; Feldman & Topaloglu, 2015; Gallego & Topaloglu, 2014;
Rusmevichientong, Shen, & Shmoys, 2009).

Davis, Gallego, and Topaloglu (2014) is the first to investigate
ssortment optimization problems under the general form of the NL
odel. They demonstrate that even the unconstrained assortment op-

imization problem under a non-standard NL model is NP-hard. In
ecent years, there has been an increasing focus on assortment opti-
ization under general NL models. For instance, Alfandari, Hassan-

adeh, and Ljubić (2021), a study closely related to ours, develop a
ailored Branch-and-Bound algorithm to optimally solve the uncon-
trained assortment optimization problem under general NL models.
dditionally, Kunnumkal (2023) and Segev (2022) design approxima-

tion algorithms for the cardinality-constrained and space-constrained
versions, respectively.

By reviewing studies on the assortment optimization problem under
he NL model (AOP-NL), we note a significant advantage in solving the
OP-NL: the problem can be decomposed by nest after a specific trans-

ormation or approximation. This property renders the sub-problem
ore manageable and allows for an approximate solution using clas-

sical approaches like dynamic programming (Chen & Jiang, 2020) or
others.

As previously discussed, the NL model falls short in simultaneously
capturing correlations among products across multiple dimensions.
To address these limitations in the context of assortment optimiza-
tion, Ghuge, Kwon, Nagarajan, and Sharma (2022) and Zhang et al.
(2020) employ the paired combinatorial logit (PCL) model to charac-
terize customer choice behavior. The authors establish the NP-hardness
of the assortment optimization problem under the PCL model (AOP-
PCL), even in the absence of constraints. They propose polynomial-
time approximation algorithms for the AOP-PCL under various side
constraints.

In the PCL model, each pair of products forms a nest with its own
dissimilarity parameter, allowing pairs of products to exhibit varying
degrees of substitutability. However, as noted by Le and Mai (2024),
in a PCL model with 𝑛 products, allocating a product uniformly to
− 1 nests restricts its correlation with others to 1∕(𝑛 − 1), thereby

constraining the magnitude of cross-elasticities among product pairs. In
contrast, the CNL model permits assigning varying proportions of each
product to multiple nests, offering greater flexibility in modeling cross-
elasticities and the covariance structure (Marzano, Papola, Simonelli,
& Vitillo, 2013). Nevertheless, the fixed nesting structure of the PCL
model has its advantages. It enables the linearization of the AOP-
PCL formulation by introducing a set of new variables related to each
product pair, thereby facilitating the development of approximation
algorithms.
185 
The CNL model is among the most recently introduced choice
odels within the GEV family (Small, 1987; Vovsha, 1997), and it en-

ompasses various formulations, including the generalized nested logit
GNL) model as discussed in Train (2009) and Wen and Koppelman

(2001). The specification of the CNL model used in this paper follows
the GNL model outlined in Train (2009). Ever since Vovsha (1997), the

NL model has been extensively applied in the field of transportation
emand modeling, including travel mode choice (Ermagun & Levinson,

2017; Fan, Ding, Long, & Wu, 2024; Huan, Hess, Yamamoto, & Yao,
2024), route choice (Lai & Bierlaire, 2015; Yang & Wang, 2017),
eparture time choice (Lemp, Kockelman, & Damien, 2010), and airline

product choice (Drabas & Wu, 2013; Zhang, Duan, & Jiang, 2024).
iven its capability to deal with multi-dimensional choice, the CNL
odel is also widely employed to analyze joint travel mode and depar-

ure time choice (Ding, Mishra, Lin, & Xie, 2015), joint mode and transit
oute choice (Mepparambath, Soh, Jayaraman, Tan, & Ramli, 2023;

Zhang, Yao, & Pan, 2019), joint location and travel mode choice (Vega
& Reynolds-Feighan, 2009), as well as joint choice of residential lo-
cation, travel mode, and departure time (Yang, Zheng, & Zhu, 2013).

oreover, the CNL model is also adopted in topics gaining emerging
ttention, like alternative fuel vehicles demand analysis (Domarchi &

Cherchi, 2024; Hess, Fowler, Adler, & Bahreinian, 2012), residence
lanning under climate change (Lu, Zhang, Wu, & Rahman, 2016), and

location choice in international migration (Beine, Bierlaire, & Docquier,
2021).

As mentioned in the previous section, only Le and Mai (2024) have
investigated algorithm design for the assortment optimization problem
under the CNL model (AOP-CNL). They propose non-polynomial time
approximation algorithms that can derive solutions to the AOP-CNL
with a performance guarantee of 1−𝜀

1+𝜀 for any accuracy level 𝜀 > 0.
However, a smaller value of 𝜀 would lead to a longer computation
time. Currently, there is a lack of non-trivial exact solution methods and
efficient heuristic algorithms for solving the AOP-CNL, and our study
aims to address this gap.

In addition to Alfandari et al. (2021) mentioned above, several
studies have focused on developing exact methods to solve challeng-
ng assortment optimization problems. For instance, Chung, Ahn, and

Jasin (2019) investigate the assortment optimization problem under
a re-scaled multi-attempt model. They formulate this problem as a
mixed-integer linear fractional program (MILFP) and apply the Dinkel-
bach algorithm (Dinkelbach, 1967) to solve it exactly. Although their
olution framework is similar to that of Alfandari et al. (2021) and

our own, the inner problem in our study is more complex due to
the non-linearity and nest overlapping effects in the objective func-
tion. Bertsimas and Mišić (2019) address the assortment optimization
problem under a ranking-based choice model. They propose a novel
MILP formulation whose inherent structure allows the authors to ef-
fectively apply Benders decomposition to achieve optimal solutions
at a large scale. Akchen and Mišić (2023) adopt a similar approach
to Bertsimas and Mišić (2019) by replacing the ranking-based choice

odel with a more generalized decision forest model, which is claimed
o be capable of representing any discrete choice model (Chen & Mišić,

2022). Furthermore, Chen, He, Rong, and Wang (2024) introduce a
quick-commerce assortment optimization problem (QAP), where retail-
ers must determine assortments for both offline and online consumer
segments. Each consumer segment follows a distinct MNL model, and
the personalized online assortment is constrained by the offline as-
sortment due to the need for prompt delivery. The authors identify
favorable properties of the convex hull of the online choice probability
sets and develop a cutting-plane approach for solving their formulation
to provable optimality.

1.3. Organization

The remainder of this paper is structured as follows: Section 2
formally defines the assortment optimization problem addressed in this
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study. We then describe the design of our exact method in Section 3 and
euristic algorithms in Section 4. The numerical results of both exact

and heuristic algorithms, applied to synthetic datasets, are presented in
Section 5. Finally, Section 6 concludes the study and outlines potential
uture directions.

2. Problem definition

2.1. Formulation

In this section, we formulate the assortment optimization problem
when customers’ choice is modeled by the CNL model and a total
cardinality constraint is imposed on the assortment. There is a set of
potential products 𝑁 = {1, 2,… , 𝑛} that we can offer to the customers.
For each product 𝑗, let 𝑟𝑗 and 𝑣𝑗 denote its revenue and preference
weight, where 𝑟𝑗 , 𝑣𝑗 > 0,∀𝑗 ∈ 𝑁 . Without loss of generality, we assume
that 𝑟1 ≥ 𝑟2 ≥ ⋯ ≥ 𝑟𝑛 > 0. The preference weight of no-purchase option
is 𝑣0 > 0. We also define a collection of nests 𝑀 = {1, 2,… , 𝑚}, where
each nest represents a grouping of alternatives that share similarity
along a certain dimension. Under the CNL model, each product can be
assigned to multiple nests in order to capture the products’ similarities
across various dimensions. Hence, for every pair of a product 𝑗 ∈
𝑁 and a nest 𝑖 ∈ 𝑀 , an allocation parameter 𝛼𝑖𝑗 is introduced to
quantify the extent of product 𝑗 belonging to nest 𝑖, and a value of
zero indicates that the product has no membership in that particular
nest. For normalization, there are two additional conditions for the
allocation parameters, namely 0 ≤ 𝛼𝑖𝑗 ≤ 1,∀𝑖, 𝑗, and ∑𝑚

𝑖=1 𝛼𝑖𝑗 = 1,∀𝑗.
Moreover, each nest 𝑖 is associated with a dissimilarity parameter 𝛾𝑖,
representing the degree of dissimilarity among products within that
nest. A lower value of 𝛾𝑖 reflects a higher level of similarity. We assume
that the value of each 𝛾𝑖 lies in (0, 1] to ensure the CNL model always
consistent with the random utility maximization framework (Bierlaire,
2006), regardless of the preference weights’ values.

Under the CNL model, the choice process of an arriving customer
can be conceptualized as occurring in two stages. At the first stage, the
customer decides whether to make a purchase within one of the nests
or to leave without purchasing anything. If the decision is to purchase
in a specific nest, the process advances to the second stage. At this
stage, the customer must select one of the products available within
the chosen nest and is not permitted to exit the nest without making a
selection. This process is similar to that under the NL model (Feldman &
Topaloglu, 2015; Gallego & Topaloglu, 2014), with a crucial distinction
eing that a product can belong to multiple nests in the CNL model.
ore specifically, under the NL model, a product can be purchased

t the second stage only if its corresponding nest is selected at the
first stage. However, under the CNL model, even if a customer selects
different nests during the first stage, she may still end up purchasing the
same product at the second stage, provided that this product belongs to
ach selected nest to a certain extent larger than 0. This characteristic
lso renders the assortment optimization problem under the CNL model
ore complex to solve compared to the NL model, as will be explicitly

discussed in the subsequent sections.
Let 𝒙 = (𝑥1, 𝑥2,… , 𝑥𝑛) ∈ {0, 1}𝑛 be a vector of 𝑛 binary variables rep-

resenting an assortment decision where 𝑥𝑗 = 1 if and only if product 𝑗 is
provided. As discussed in the literature review, this paper specifies the
CNL model according to the formulation of the GNL model as outlined
in Train (2009). Therefore, the probability of a customer selecting nest
at the first stage can be expressed as 𝑃𝑖(𝒙) = 𝑉𝑖(𝒙)𝛾𝑖∕(𝑣0+

∑

𝑙∈𝑀 𝑉𝑙(𝒙)𝛾𝑙 ),
here 𝑉𝑖(𝒙) =

∑

𝑗∈𝑁 (𝛼𝑖𝑗𝑣𝑗 )1∕𝛾𝑖𝑥𝑗 denotes the total preference weight of
nest 𝑖 under assortment 𝒙. If the customer decides to choose nest 𝑖,
the conditional probability of choosing product 𝑗 at the second stage
is given by 𝑃𝑗|𝑖(𝒙) = (𝛼𝑖𝑗𝑣𝑗 )1∕𝛾𝑖𝑥𝑗∕𝑉𝑖(𝒙). For ease of presentation, we
introduce an auxiliary term ‘‘nest-specific preference weight’’ 𝑣𝑖𝑗 to
measure the contribution of product 𝑗 to the total preference weight
of nest 𝑖. Formally, this weight is defined as 𝑣𝑖𝑗 = (𝛼𝑖𝑗𝑣𝑗 )1∕𝛾𝑖 ≥ 0.
A similar notation can also be seen in Bernstein and Guo (2023).
186 
Utilizing this term, we can simplify several formulae mentioned above.
For instance, 𝑉𝑖(𝒙) and 𝑃𝑗|𝑖(𝒙) can be rewritten as ∑

𝑗∈𝑁 𝑣𝑖𝑗𝑥𝑗 and
𝑖𝑗𝑥𝑗∕𝑉𝑖(𝒙), respectively. Recall that under the specific variation of the
NL model studied in the manuscript, customers are not allowed to

eave the nest without a purchase, thus we have 𝑣𝑖0 = 0,∀𝑖 ∈ 𝑀 . The
robability function of a customer choosing product 𝑗 under the CNL
odel can then be derived as

𝑃𝑗 (𝒙) =
∑

𝑖∈𝑀
𝑃𝑖(𝒙)𝑃𝑗|𝑖(𝒙) =

∑

𝑖∈𝑀

(

𝑉𝑖(𝒙)𝛾𝑖
𝑣0 +

∑

𝑙∈𝑀 𝑉𝑙(𝒙)𝛾𝑙
⋅
𝑣𝑖𝑗𝑥𝑗
𝑉𝑖(𝒙)

)

. (1)

Denote 𝑅𝑖(𝒙) = (∑𝑗∈𝑁 𝑟𝑗𝑣𝑖𝑗𝑥𝑗 )∕𝑉𝑖(𝒙) as the expected revenue if the
customer has decided to choose nest 𝑖 at the first stage. The expected
revenue per customer can be expressed as

𝑅(𝒙) =
∑

𝑗∈𝑁
𝑟𝑗𝑃𝑗 (𝒙) =

∑

𝑖∈𝑀 𝑉𝑖(𝒙)𝛾𝑖𝑅𝑖(𝒙)
𝑣0 +

∑

𝑙∈𝑀 𝑉𝑙(𝒙)𝛾𝑙
. (2)

We observe that if 𝑉𝑖(𝒙) = 0, the expressions for 𝑃𝑗|𝑖(𝒙) and 𝑅𝑖(𝒙)
ay result in an indeterminate form of 0∕0. However, this does not
resent a challenge. If an assortment yields a total preference weight
f zero for nest 𝑖, then customers would never choose nest 𝑖 during the
irst stage, rendering the values of 𝑃𝑗|𝑖(𝒙) and 𝑅𝑖(𝒙) inconsequential.
oreover, it is worth mentioning that our treatment of the no-purchase

ption in the CNL model diverges from that in Le and Mai (2024). In our
model, there exists only one no-purchase option, which forms a nest on
its own. In contrast, Le and Mai (2024) postulate that each nest contains
a respective no-purchase option, with no standalone no-purchase option
forming its own nest. Such differences may influence the feasibility of
directly implementing their approach under the problem in our spec-
ification, and vice versa. Our treatment aligns with many of previous
works on assortment optimization based on the NL model (Feldman &
Topaloglu, 2015; Gallego & Topaloglu, 2014; Rusmevichientong et al.,
2009), as well as the PCL model (Ghuge et al., 2022; Zhang et al.,
2020).

The objective is to identify an assortment of products that maxi-
izes the expected revenue per customer, subject to a total cardinality

constraint that limits the number of products offered in the assortment.
This constraint is prevalent in retailing context. For instance, when
ustomers browse an e-commerce website, they typically focus only
n the products displayed at the top of the page. Thus, only a limited
umber of products can be effectively showcased to customers. Suppose

that the maximum cardinality is set as 𝑐, then we can formally model
the cardinality-constrained assortment optimization problem under the
Cross-Nested Logit model (CAOP-CNL) as

𝑧∗ = max
𝒙∈{0,1}𝑛∶‖𝒙‖1≤𝑐

𝑅(𝒙) = max
𝒙∈{0,1}𝑛∶‖𝒙‖1≤𝑐

∑

𝑖∈𝑀 𝑉𝑖(𝒙)𝛾𝑖𝑅𝑖(𝒙)
𝑣0 +

∑

𝑙∈𝑀 𝑉𝑙(𝒙)𝛾𝑙
, (3)

where ‖𝒙‖1 denotes the L1-norm of vector 𝒙. Given that all elements of
𝒙 are binary variables, ‖𝒙‖1 also represents the number of elements
equal to 1 in vector 𝒙. This notation is useful for expressing the
cardinality constraints. The optimal solution 𝒙∗ corresponds to the
assortment that yields the maximum expected revenue, denoted by 𝑧∗.

2.2. Complexity analysis

The assortment optimization problem under the Paired Combina-
torial Logit (PCL) model has been proved to be strongly NP-hard
in Zhang et al. (2020), even in its uncapacitated version. Therefore, it is
straightforward to infer that the uncapacitated assortment optimization
problem under the CNL model is also NP-hard, since any PCL model can
lso be regarded as a CNL model. In short, the formulation of PCL model
n Zhang et al. (2020) is equivalent with ours of CNL model if we regard

the preference weight 𝑣𝑗 in Zhang et al. (2020) as a multiplication of
𝛼 and the preference weight 𝑣𝑗 in our CNL model, where 𝛼 = 1

2(𝑛−1) is
he value of all non-zero allocation parameters associated with each
roduct. Specifically, for each pair of a product 𝑗 ∈ 𝑁 and a nest
𝑖, 𝑗) where 𝑖 ∈ 𝑁 , 𝑖 ≠ 𝑗, the corresponding allocation parameter
𝑗 ,(𝑖,𝑗) = 1

2(𝑛−1) . Moreover, we have 𝛼𝑗 ,(𝑗 ,𝑖) = 1
2(𝑛−1) ,∀𝑖 ∈ 𝑁 , 𝑖 ≠ 𝑗. Since

the uncapacitated assortment optimization problem is a special case of
cardinality-constrained version when 𝑐 ≥ 𝑛, the CAOP-CNL is NP-hard.
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3. Exact solution algorithm

To the best of our knowledge, other than fully enumerating all
possible assortments, there is currently no exact method for solving
he CAOP-CNL optimally. Therefore, we first aim to develop a non-
rivial exact solution algorithm for this problem. This exact method can
lso serve as a benchmark to evaluate the performance of heuristics
ntroduced in the subsequent section.

3.1. Solution framework

In accordance with several prior studies (Alfandari et al., 2021;
Feldman & Topaloglu, 2015; Gallego & Topaloglu, 2014), we convert
the CAOP-CNL into a problem of finding the fixed point of a function.
Define 𝐹 (𝑧) = max𝒙∈{0,1}𝑛∶‖𝒙‖1≤𝑐{

∑

𝑖∈𝑀 𝑉𝑖(𝒙)𝛾𝑖 [𝑅𝑖(𝒙) − 𝑧]} as a function
of 𝑧 ∈ 𝑅+, we establish the following lemma.

Lemma 1. If we let 𝑧∗ be the value of 𝑧 that satisfies the following fixed
oint problem:

𝑣0𝑧 = 𝐹 (𝑧) = max
𝒙∈{0,1}𝑛∶‖𝒙‖1≤𝑐

{

∑

𝑖∈𝑀
𝑉𝑖(𝒙)𝛾𝑖 [𝑅𝑖(𝒙) − 𝑧]

}

, (4)

then 𝑧∗ corresponds to the optimal expected revenue in problem (3). And the
optimal assortment 𝒙∗ of problem (3) can be found by solving the following
maximization problem:

𝐹 (𝑧∗) = max
𝒙∈{0,1}𝑛∶‖𝒙‖1≤𝑐

{

∑

𝑖∈𝑀
𝑉𝑖(𝒙)𝛾𝑖 [𝑅𝑖(𝒙) − 𝑧∗]

}

. (5)

To save space, we omit the proof of this lemma, which can be found
n Lemma 1 of Gallego and Topaloglu (2014). Since 𝑣0𝑧 is a strictly

increasing function in 𝑧, and 𝐹 (𝑧) is a continuous decreasing function
of 𝑧,3 as long as we can determine the value and corresponding solution
of 𝐹 (𝑧) for any 𝑧 ∈ 𝑅+, it becomes feasible to solve problem (4) utilizing
a binary search framework proposed by Alfandari et al. (2021), as
delineated in Algorithm 2.

Within the binary search framework, we have to first compute the
nitial upper and lower bounds of the optimal expected revenue through
wo algorithms Z_UPPER and Z_LOWER, respectively. An intuitive ver-
ion of Z_UPPER is shown in Algorithm 1. It is a two-step relaxation:

initially setting the price of all products to 𝑟1, then establishing an
pper bound of purchasing probability. That is, 𝑧∗ =

∑

𝑖∈𝑀 𝑉𝑖(𝒙∗)𝛾𝑖𝑅𝑖(𝒙∗)
𝑣0+

∑

𝑙∈𝑀 𝑉𝑙 (𝒙∗)𝛾𝑙
≤

𝑟1 ⋅
∑

𝑖∈𝑀 𝑉𝑖(𝒙∗)𝛾𝑖
𝑣0+

∑

𝑙∈𝑀 𝑉𝑙 (𝒙∗)𝛾𝑙
≤ 𝑟1 ⋅

∑

𝑖∈𝑀 𝑉 𝑖(𝒙∗)𝛾𝑖

𝑣0+
∑

𝑙∈𝑀 𝑉 𝑙 (𝒙∗)𝛾𝑙
, where 𝑉 𝑖(𝒙∗) is an upper bound

f 𝑉𝑖(𝒙∗).

Algorithm 1 Heuristic for finding the upper bound of 𝑧∗

Require: Instance of the UAOP-CNL 𝑢.
1: for 𝑖 = 1 to 𝑚 do
2: Set 𝑉𝑖 ← the sum of the top 𝑐 largest elements of {𝑣𝑖1, 𝑣𝑖2,… , 𝑣𝑖𝑛}.
3: end for
4: return 𝑟1 ⋅

∑

𝑖∈𝑀 𝑉 𝛾𝑖
𝑖

𝑣0+
∑

𝑙∈𝑀 𝑉 𝛾𝑙
𝑙

.

Z_LOWER corresponds to a heuristic algorithm that generates a
ufficiently good feasible solution for the CAOP-CNL. Since developing
ffective heuristic algorithm is an important contribution of this study,
e will explicitly introduce two candidate heuristic algorithms with
ifferent solution strategies in Section 4. After generating the lower

bound 𝑧 and the upper bound 𝑧̄, we successively solve the parameter-
zed problems 𝐹 (𝑧) and 𝐹 (𝑧̄), updating the best-found assortment 𝒙𝑏𝑒𝑠𝑡
ccording to its expected revenue. We then proceed to the while loop

3 Because 𝐹 (𝑧) is a point-wise maximum of finite linear decreasing functions
f 𝑧 (Zhang et al., 2020).
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of the binary search process. In line with Alfandari et al. (2021), aside
from the convergence of 𝑧 and the reach of a time limit, we present
an additional stopping criterion for the while loop that expedites the
binary search process, as demonstrated in the following proposition.

Proposition 1 (Alfandari et al., 2021). At any iteration of the binary
search process, let 𝒙𝑙 and 𝒙𝑢 be the optimal solutions to 𝐹 (𝑧) and 𝐹 (𝑧̄),
respectively. If 𝒙𝑙 = 𝒙𝑢, then 𝒙∗ = 𝒙𝑙 = 𝒙𝑢 is the optimal assortment for the
riginal problem.

Proof. First, observe that 𝐹 (𝑧) is a piecewise linear function of 𝑧, where
ach linear segment corresponds to a specific feasible assortment 𝒙. If
𝑙 = 𝒙𝑢, then 𝑧 and 𝑧̄ must lie on the same linear segment. Since 𝑧∗

ust reside within the interval [𝑧, ̄𝑧], the optimal assortment 𝒙∗ must
oincide with 𝒙𝑙 and 𝒙𝑢. □

In our pretests, this additional stopping criterion was demonstrated
o be an effective measure for reducing the computation time of the
xact method.

Algorithm 2 (Alfandari et al., 2021) Binary search algorithm for
solving the CAOP-CNL
Require: Instance of the CAOP-CNL 𝑢, tolerance 𝜀, time limit 𝑇 𝐿.
1: 𝑧 ← Z_LOWER(𝑢).
2: 𝑧̄ ← Z_UPPER(𝑢).
3: Obtain 𝒙𝑙 by solving 𝐹 (𝑧).
4: Set 𝒙𝑏𝑒𝑠𝑡 ← 𝒙𝑙.
5: Obtain 𝒙𝑢 by solving 𝐹 (𝑧̄).
6: if 𝑅(𝒙𝑢) > 𝑅(𝒙𝑏𝑒𝑠𝑡) then
7: 𝒙𝑏𝑒𝑠𝑡 ← 𝒙𝑢.
8: end if
9: while 𝑣0𝑧̄ > 𝑣0𝑧 + 𝜀 and 𝒙𝑙 ≠ 𝒙𝑢 and 𝑇 𝐿 is not exceeded do

10: Set 𝑧 ← (𝑧̄ + 𝑧)∕2.
11: Obtain 𝒙∗ by solving 𝐹 (𝑧).
12: if 𝑅(𝒙∗) > 𝑅(𝒙𝑏𝑒𝑠𝑡) then
13: 𝒙𝑏𝑒𝑠𝑡 ← 𝒙∗.
14: end if
15: if 𝑣0𝑧 < 𝐹 (𝑧) then
16: 𝑧 ← 𝑧.
7: else
8: 𝑧̄ ← 𝑧.
9: end if
0: end while
1: return (𝑅(𝒙𝑏𝑒𝑠𝑡),𝒙𝑏𝑒𝑠𝑡).

3.2. Solution approach to the parameterized problem (CNLAPP)

In this subsection, we provide a detailed discussion on how to solve
𝐹 (𝑧) for ∀𝑧 ∈ 𝑅+. Following the approach of Alfandari et al. (2021),

e refer to the maximization problem 𝐹 (𝑧) as the Cross-Nested Logit
Assortment Parameterized Problem (CNLAPP), which is dependent on the
parameter 𝑧:

(CNLAPP) max
𝒙∈{0,1}𝑛∶‖𝒙‖1≤𝑐

{

∑

𝑖∈𝑀
𝑉𝑖(𝒙)𝛾𝑖 [𝑅𝑖(𝒙) − 𝑧]

}

= max
𝒙∈{0,1}𝑛∶‖𝒙‖1≤𝑐

{

∑

𝑖∈𝑀

∑

𝑗∈𝑁 (𝑟𝑗 − 𝑧)𝑣𝑖𝑗𝑥𝑗
(
∑

𝑗∈𝑁 𝑣𝑖𝑗𝑥𝑗 )1−𝛾𝑖

}

. (6)

It is important to note that the fractional form
∑

𝑗∈𝑁 (𝑟𝑗−𝑧)𝑣𝑖𝑗𝑥𝑗
(
∑

𝑗∈𝑁 𝑣𝑖𝑗𝑥𝑗 )1−𝛾𝑖
for

𝑉𝑖(𝒙)𝛾𝑖 [𝑅𝑖(𝒙) − 𝑧] is valid only if 𝑉𝑖(𝒙) > 0. Otherwise, this term equals
 and should be excluded from the summation.

Given the NP-hardness of the CAOP-CNL, developing a polynomial-
time algorithm capable of optimally solving the CNLAPP remains chal-
lenging, unless the CAOP-CNL itself is proven to be polynomially solv-
able. Furthermore, the decision variables within the CNLAPP are inher-
ently binary. Therefore, we develop a customized Branch-and-Bound
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algorithm to obtain the optimal solution for the CNLAPP.
For each node 𝑡 in the B&B search tree, let 𝑆𝑡

0 and 𝑆𝑡
1 represent the

sets of products whose binary variables have already been fixed to 0
and 1, respectively. The values of these variables cannot be altered
in the successors of node 𝑡. We denote 𝑆̄𝑡 as the set of products for
which inclusion in the assortment has not yet been determined. The
remaining cardinality at node 𝑡 is given by 𝑐𝑡 = 𝑐 − |𝑆𝑡

1|. It should be
noted that 𝑆𝑡

0, 𝑆
𝑡
1, 𝑆̄

𝑡 and 𝑐𝑡 are initially inherited from the predecessor
node of 𝑡 and subsequently updated based on the preprocessing and
branching operations. Let 𝑎𝑖𝑡 =

∑

𝑗∈𝑆𝑡
1
𝑣𝑖𝑗 and 𝑏𝑖𝑡 =

∑

𝑗∈𝑆𝑡
1
(𝑟𝑗 − 𝑧)𝑣𝑖𝑗 . The

parameterized problem (CNLAPP) at node 𝑡 can then be reformulated
as follows:

(CNLAPP − 𝑡) max
𝒙∈{0,1}|𝑆̄𝑡 |∶‖𝒙‖1≤𝑐𝑡

{

∑

𝑖∈𝑀

𝑏𝑖𝑡 +
∑

𝑗∈𝑆̄𝑡 (𝑟𝑗 − 𝑧)𝑣𝑖𝑗𝑥𝑗
(𝑎𝑖𝑡 +

∑

𝑗∈𝑆̄𝑡 𝑣𝑖𝑗𝑥𝑗 )1−𝛾𝑖

}

. (7)

According to the proposition below, we can include all products
ith revenue no larger than 𝑧 into the set 𝑆0

0 at root node (node 0).
his inclusion ensures that 𝑏𝑖𝑡 remains non-negative in the CNLAPP-𝑡
roblem at any node 𝑡.

Proposition 2 (Alfandari et al., 2021). Given 𝑧 ∈ 𝑅+, the optimal solution
∗ to the parameterized problem (CNLAPP) must satisfy 𝑥∗𝑗 = 0,∀𝑗 ∈ {𝑘 ∈
|𝑟𝑘 ≤ 𝑧}.
This proposition represents a specific case of Proposition 4 (Alfandari

et al., 2021) with 𝛾𝑖 ≤ 1, and its rationale is straightforward: adding a
roduct 𝑘 with 𝑟𝑘 ≤ 𝑧 only decreases the numerator in (7). Simultane-
usly, since 𝛾𝑖 ∈ (0, 1], it increases the denominator, thereby reducing

the value of the objective function under consideration.
Before computing the upper bound at node 𝑡 and performing prun-

ng or branching operations, it is worthwhile to leverage the unique
tructure of the objective function in CNLAPP-𝑡 to accelerate the search

process. Specifically, we attempt to fix certain variables in 𝑆̄𝑡 to 1
without compromising the optimality of the solution. Effective variable-
fixing can significantly reduce the search space complexity in sub-
sequent nodes, thereby improving computational efficiency. We now
present a series of lemmas that facilitate the variable-fixing operations.
The proofs of these lemmas are provided in Appendices A.1, A.2 and
A.3.

Lemma 2. Given 𝑧 = 𝑏
𝑎1−𝛾

> 0, where 𝛾 ∈ (0, 1], 𝑎, 𝑏 > 0. Then for ∀𝑟, 𝑣
satisfying 𝑟 ≥ 𝑏

𝑎 and 𝑣 > 0, we have 𝑧′ = 𝑏+𝑟𝑣
(𝑎+𝑣)1−𝛾 > 𝑧.

Lemma 3. Given 𝑏+𝑟1𝑣1
(𝑎+𝑣1)1−𝛾

≥ 𝑏
𝑎1−𝛾

> 0, where 𝛾 ∈ (0, 1], 𝑎, 𝑏, 𝑟1, 𝑣1 > 0.
Then for ∀𝑟2, 𝑣2 satisfying 𝑟2 ≥ 𝑟1 and 𝑣2 > 0, we have 𝑧′ = 𝑏+𝑟1𝑣1+𝑟2𝑣2

(𝑎+𝑣1+𝑣2)1−𝛾
≥

= 𝑏+𝑟1𝑣1
(𝑎+𝑣1)1−𝛾

.

Lemma 4. Given 𝑏+𝑟1𝑣1
(𝑎+𝑣1)1−𝛾

≥ 𝑏
𝑎1−𝛾

> 0, where 𝛾 ∈ (0, 1], 𝑎, 𝑏, 𝑟1, 𝑣1 > 0.
hen for ∀𝑟2, 𝑣2 satisfying 0 < 𝑟2 ≤ 𝑟1 and 𝑣2 > 0, we have 𝑧′ =
𝑏+𝑟1𝑣1+𝑟2𝑣2
(𝑎+𝑣1+𝑣2)1−𝛾

≥ 𝑧 = 𝑏+𝑟2𝑣2
(𝑎+𝑣2)1−𝛾

.

Based on the lemmas provided above, when the number of unde-
termined products does not exceed the remaining cardinality, we can
attempt to iteratively fix the remaining undetermined binary variables
to 1, as outlined in the following proposition:

Proposition 3. If node 𝑡 satisfies |𝑆̄𝑡
| ≤ 𝑐𝑡. Denote 𝑠 as the product with

he largest revenue in 𝑆̄𝑡, if 𝑏𝑖𝑡+(𝑟𝑠−𝑧)𝑣𝑖𝑠
(𝑎𝑖𝑡+𝑣𝑖𝑠)1−𝛾𝑖

≥ 𝑏𝑖𝑡
𝑎1−𝛾𝑖𝑖𝑡

, for ∀𝑖 ∈ {𝑘 ∈ 𝑀|𝑣𝑘𝑠 >

, 𝑎𝑘𝑡 > 0}. Then there exits an optimal solution 𝒙∗ to CNLAPP-t satisfying
∗
𝑠 = 1.

The proof of this proposition is provided in Appendix A.4. Here we
refer to the first inequality |𝑆̄𝑡

| ≤ 𝑐𝑡 as the ‘‘precondition’’, and the
econd inequality 𝑏𝑖𝑡+(𝑟𝑠−𝑧)𝑣𝑖𝑠

1−𝛾 ≥ 𝑏𝑖𝑡
1−𝛾 as the ‘‘variable-fixing condition’’.
(𝑎𝑖𝑡+𝑣𝑖𝑠) 𝑖 𝑎 𝑖
𝑖𝑡
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By examining the structure of the inequality in the variable-fixing
condition, we can analytically identify several scenarios under which
product 𝑠 is more likely to be included in the optimal assortment for
CNLAPP-𝑡, provided the precondition is met.

First, since an increase in 𝑟𝑠 only raises the value of the numerator,
 product 𝑠 with higher revenue is more likely to be included in

the optimal assortment. Particularly, if product 𝑠 has a revenue 𝑟𝑠 >
𝑏𝑖𝑡∕𝑎𝑖𝑡 + 𝑧, it must be included in the optimal assortment, as indicated
by Lemma 2. Second, even if product 𝑠 has a revenue lower than
𝑏𝑖𝑡∕𝑎𝑖𝑡+𝑧, it is more likely that the variable-fixing condition will hold if
𝑠 has a relatively high nest-specific preference weight for each nest to
which it is positively allocated. This is because the denominator term
is a concave function with respect to 𝑣𝑖𝑠, given that 𝛾𝑖 ∈ (0, 1]. If 𝑣𝑖𝑠
is sufficiently large, the increase in the numerator will significantly
exceed that in the denominator, thereby making the left-hand side of
the inequality larger than the right-hand side. Moreover, if product 𝑠
belongs to nests with relatively higher dissimilarity parameters, the
variable-fixing condition is also more likely to be satisfied. This is
because the denominator term increases more slowly when 1 −𝛾𝑖 is close
to 0 compared to when 1 − 𝛾𝑖 is close to 1. Consequently, the inclusion
of product 𝑠 would raise the left-hand side of the inequality without
requiring a large value of 𝑣𝑖𝑠.

It is important to note that when 𝑧 = 𝑧∗, the optimal solution at
ode 𝑡 may correspond to the optimal solution of the original problem.
herefore, the properties discussed above also shed light on the optimal
ssortment for the CAOP-CNL. In summary, the final optimal assort-
ent typically includes products with relatively higher revenue and
igher nest-specific preference weights, A product with higher revenue
an enhance the expected revenue generated by the nest, while a higher
est-specific preference weight can increase the nest’s attractiveness,
hereby boosting the purchase probability. When the cardinality ca-
acity is limited, a trade-off may arise between high revenue and
arge preference weights. A product with relatively lower revenue may
e included in the optimal assortment if it significantly enhances the
ttractiveness of one or more nests, while a higher-revenue product
ith low preference weight may be excluded. Additionally, the optimal
ssortment is more likely to include products associated with nests that
ave relatively higher dissimilarity parameters. This is because, with a
arge dissimilarity parameter, the substitution effects between product
ithin the same nest are weak, necessitating the inclusion of more
roducts to satisfy the diverse preferences of customers.

Regarding the implementation of Proposition 3, we first verify
whether node 𝑡 satisfies the precondition. If the precondition is met
and product 𝑠 satisfies the variable-fixing condition, we fix the value
of 𝑥𝑠 to 1 in all successor nodes of node 𝑡 and update several terms as
follows: 𝑎𝑖𝑡 = 𝑎𝑖𝑡 + 𝑣𝑖𝑠, 𝑏𝑖𝑡 = 𝑏𝑖𝑡 + (𝑟𝑠 − 𝑧)𝑣𝑖𝑠,∀𝑖 ∈ 𝑀 , 𝑐𝑡 = 𝑐𝑡 − 1, 𝑆𝑡

1 = 𝑆𝑡
1 ∪

𝑠}, 𝑆̄𝑡 = 𝑆̄𝑡∖{𝑠}. The variable-fixing operation is performed iteratively
ntil either the precondition or the variable-fixing condition no longer
olds. Due to the existence of the precondition, the variable-fixing
peration is particularly effective when the total cardinality capacity
s large.

Now we proceed to develop an efficient upper bound of CNLAPP-𝑡
hen no variables can be fixed to 1. Note that the main difficulty of

solving CNLAPP-𝑡 arises from the nest overlapping. More specifically,
for a given 𝑗 ∈ 𝑁 , 𝑣𝑖𝑗 may take values greater than 0 for multiple 𝑖 ∈ 𝑀 .

his implies that the decision to include product 𝑗 (i.e. the value of 𝑥𝑗)
affects the objective function values across multiple nests, instead of
only one nest under the NL model. However, if we could eliminate such
overlapping, then the problem becomes decomposable by nests, and
the sub-problem can be readily solved based on the extensive results
of assortment optimization problems under the NL models. Therefore,
our central idea is to reformulate CNLAPP-𝑡 so that the overlapping
between nests is represented by newly introduced constraints rather
than decision variables in the objective function. We then solve the
Lagrangian dual of the reformulated problem to obtain an upper bound

7) is reformulated as follows:
for CNLAPP-𝑡. Specifically, problem (
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max
∑

𝑖∈𝑀

𝑏𝑖𝑡 +
∑

𝑗∈𝑆̄𝑡 (𝑟𝑗 − 𝑧)𝑣𝑖𝑗𝑥𝑖𝑗
(𝑎𝑖𝑡 +

∑

𝑗∈𝑆̄𝑡 𝑣𝑖𝑗𝑥𝑖𝑗 )1−𝛾𝑖
(8a)

s.t.
∑

𝑗∈𝑆̄𝑡

𝑥𝑖𝑗 ≤ 𝑐𝑡, 𝑖 ∈ 𝑀 (8b)

∑

𝑖∈𝑀
𝑥𝑖𝑗 = 𝑚𝑦𝑗 , 𝑗 ∈ 𝑆̄𝑡 (8c)

𝑥𝑖𝑗 ∈ {0, 1}, 𝑖 ∈ 𝑀 , 𝑗 ∈ 𝑆̄𝑡 (8d)

𝑦𝑗 ∈ {0, 1}, 𝑗 ∈ 𝑆̄𝑡. (8e)

In the reformulation, we expand each nest-independent decision vari-
able 𝑥𝑗 ∈ 𝑆̄𝑡 in problem (7) into 𝑚 nest-specific binary decision
variables {𝑥1𝑗 , 𝑥2𝑗 ,… , 𝑥𝑚𝑗}. This approach allows us to eliminate the
effect of nest overlapping on the objective function by replacing each 𝑥𝑗

ith 𝑥𝑖𝑗 in the fractional function specific to nest 𝑖. Instead, we capture
the nest overlapping effect within the constraint space. Specifically, we
add |𝑆̄𝑡

| auxiliary binary variables 𝑦𝑗 , 𝑗 ∈ 𝑆̄𝑡 and impose constraints
(8c) to restrict that 𝑥𝑖𝑗 ,∀𝑖 ∈ 𝑀 should take the same value for each
∈ 𝑆̄𝑡. The cardinality constraint is also replicated for each nest as

hown in (8b). It is evident that problems (7) and (8) are equivalent.
Therefore, we omit the proof of equivalency here.

For problem (8), we introduce a vector of Lagrangian multipli-
ers 𝝁 ∈ 𝑅|𝑆̄𝑡

| for constraints (8c) and formulate the corresponding
agrangian dual problem as follows:

min
𝝁

𝑔(𝝁), (9a)

where 𝑔(𝝁) = max
𝒙1 ,…,𝒙𝑚 ,𝒚

∑

𝑖∈𝑀

𝑏𝑖𝑡 +
∑

𝑗∈𝑆̄𝑡 (𝑟𝑗 − 𝑧)𝑣𝑖𝑗𝑥𝑖𝑗
(𝑎𝑖𝑡 +

∑

𝑗∈𝑆̄𝑡 𝑣𝑖𝑗𝑥𝑖𝑗 )1−𝛾𝑖

+
∑

𝑗∈𝑆̄𝑡

𝜇𝑗 (
∑

𝑖∈𝑀
𝑥𝑖𝑗 − 𝑚𝑦𝑗 ) (9b)

s.t.
∑

𝑗∈𝑆̄𝑡

𝑥𝑖𝑗 ≤ 𝑐𝑡, 𝑖 ∈ 𝑀 (9c)

𝒙𝑖 = (𝑥𝑖𝑗 )𝑗∈𝑆̄𝑡 ∈ {0, 1}|𝑆̄𝑡
|, 𝑖 ∈ 𝑀 (9d)

𝒚 = (𝑦𝑗 )𝑗∈𝑆̄𝑡 ∈ {0, 1}|𝑆̄𝑡
|. (9e)

Here, we encapsulate all decision variables 𝑥𝑖𝑗 , 𝑗 ∈ 𝑆̄𝑡 related to nest
into the vector 𝒙𝑖, which captures all decisions associated with the

objective function of nest 𝑖 in the reformulated problem. The optimal
value of dual problem (9) serves as an upper bound for CNLAPP-𝑡. For-
tunately, the optimal Lagrangian multipliers for this dual problem can
be readily determined, as demonstrated in the following proposition.

he proof of this proposition is provided in Appendix A.5.

Proposition 4. There are a set of optimal Lagrangian multipliers 𝝁∗ for
roblem (9) satisfying that 𝝁∗ = 𝟎 = (0, 0,… , 0).

Therefore, 𝑔(𝟎) provides an efficient upper bound to CNLAPP-𝑡. We
an define 𝑔(𝟎) as a decoupling problem of CNLAPP-𝑡 as follows:

(𝑑 − CNLAPP − 𝑡) max
𝑿∈{0,1}𝑚×|𝑆̄𝑡 |∶
‖𝒙𝑖‖1≤𝑐𝑡 ,∀𝑖∈𝑀

{

∑

𝑖∈𝑀

𝑏𝑖𝑡 +
∑

𝑗∈𝑆̄𝑡 (𝑟𝑗 − 𝑧)𝑣𝑖𝑗𝑥𝑖𝑗
(𝑎𝑖𝑡 +

∑

𝑗∈𝑆̄𝑡 𝑣𝑖𝑗𝑥𝑖𝑗 )1−𝛾𝑖

}

, (10)

where 𝑿 is an 𝑚×|𝑆̄𝑡
| matrix with each element being a binary variable.

Obviously, the decoupling problem (10) is separable by nest and can be
rewritten as:

(𝑑 − CNLAPP − 𝑡)
∑

𝑖∈𝑀
max

𝒙𝑖∈{0,1}|𝑆̄
𝑡
|∶

‖𝒙𝑖‖1≤𝑐𝑡

{

𝑏𝑖𝑡 +
∑

𝑗∈𝑆̄𝑡 (𝑟𝑗 − 𝑧)𝑣𝑖𝑗𝑥𝑖𝑗
(𝑎𝑖𝑡 +

∑

𝑗∈𝑆̄𝑡 𝑣𝑖𝑗𝑥𝑖𝑗 )1−𝛾𝑖

}

(11)

Finally, we observe that the decoupling problem can be optimally
solved in polynomial time.

Lemma 5. The decoupling problem 𝑑-CNLAPP-𝑡 can be solved optimally
in a polynomial time complexity of 𝑂(𝑚|𝑆̄𝑡

|

3).
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To save space, we provide the proof of this lemma in Appendix A.6.
It is worth noting that the initial upper bound computed by Algorithm 1
can be further refined by decoupling the original problem into a CAOP
under the NL model, as discussed explicitly in Appendix B.3.

Once the upper bound for node 𝑡 is obtained, it is essential to
compare it with the current best-known objective value among all
traversed nodes. If the upper bound is not greater than the best-known
objective value, further branching on this node is unnecessary.

Regarding the branching rule at node 𝑡, in addition to the rule pro-
osed by Alfandari et al. (2021), which branches on the variable with

the highest revenue, we introduce an alternative rule that branches on
he variable contributing the most to the current objective function at

node 𝑡. Specifically, we iteratively set each variable in 𝑆̄𝑡 to 1 and
compute the resulting increment in the objective function value of
problem (7) at node 𝑡. After evaluating all undetermined variables, we
select the one that yields the largest increase in the objective value for
branching at this node. The effects of these two branching rules are
compared in our numerical experiments.

For the traversal strategy in the Branch-and-Bound tree, based on
ur preliminary tests, we determine to traverse the branching tree using
 best-first search approach, prioritizing the node with the current
argest objective value.4

The main operations at node 𝑡 can be summarized as follows:

• Inherit 𝑐𝑡, 𝑆𝑡
0, 𝑆

𝑡
1 and 𝑆̄𝑡 from the predecessor node;

• variable-fixing: Attempt to iteratively fix variables in 𝑆̄𝑡 to 1 using
Proposition 3, and update 𝑐𝑡, 𝑆𝑡

1 and 𝑆̄𝑡 after each variable-fixing
operation;

• Deriving upper bound: Calculate the upper bound of node 𝑡 by
solving the decoupling problem 𝑑-CNLAPP-𝑡. Compare this upper
bound with the best-known objective value to determine whether
further branching at node 𝑡;

• Branching: Applying one of the branching rule mentioned above
to select a binary variable in 𝑆̄𝑡 for branching, thereby generating
successor nodes with updated 𝑐𝑡, 𝑆𝑡

0, 𝑆
𝑡
1 and 𝑆̄𝑡.

The pseudo-codes for all procedures performed at the root node and all
ther nodes are provided in Appendix B.1 and Appendix B.2, respec-

tively.

4. Heuristic algorithms

Since the exact method embeds a Branch-and-Bound algorithm,
its computation time may increase dramatically with the growth of
instance size. Therefore, developing a heuristic algorithm that can
fficiently solve large instances while delivering high-quality solutions

is of considerable value. In this section, we introduce two heuristic
algorithms designed to address the CAOP-CNL, and their performance
will be compared in subsequent numerical experiments.

The primary concept of the first heuristic algorithm is to identify
a sorted-by-revenue assortment that generates the highest expected
revenue. Drawing on the definitions presented in Alfandari et al. (2021)
and Davis et al. (2014), we represent each sorted-by-revenue assort-

ent in the form 𝑆𝑙 𝑘 = {𝑙 , 𝑙 + 1,… , 𝑘}, where 1 ≤ 𝑙 ≤ 𝑘 ≤ 𝑛 and
− 𝑙 + 1 ≤ 𝑐. This approach can be viewed as an enumeration-based
ethod, and Algorithm 3 provides a detailed description.

The second heuristic integrates concepts from both our exact
method and the greedy algorithm. Specifically, the exact algorithm

4 In our preliminary experiments, we assessed the computational efficiency
of three prevalent tree traversal algorithms: depth-first search, best-first search,
and breadth-first search. Our findings indicate that the best-first search algo-
rithm exhibits superior computational speed relative to the other two methods.
Consequently, we have decided to employ best-first search for tree traversal

in our subsequent analyses.
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Algorithm 3 Heuristic algorithm 1 for solving the CAOP-CNL
Require: Instance of the CAOP-CNL 𝑢.
1: 𝑅𝑚𝑎𝑥 ← 0.
2: for 𝑘 = 1 to 𝑐 do
3: for 𝑖 = 1 to 𝑛 − 𝑘 + 1 do
4: Set 𝒙𝑖𝑘 such that 𝑥𝑖𝑘𝑗 = 1,∀𝑗 ∈ 𝑆𝑖(𝑖+𝑘−1) and 𝑥𝑖𝑘𝑗 = 0,∀𝑗 ∉

𝑆𝑖(𝑖+𝑘−1).
5: 𝑅𝑖𝑘 ← 𝑅(𝒙𝑖𝑘).
6: if 𝑅𝑖𝑘 > 𝑅𝑚𝑎𝑥 then
7: 𝑅𝑚𝑎𝑥 ← 𝑅𝑖𝑘.
8: end if
9: end for

10: end for
11: return 𝑅𝑚𝑎𝑥 and its corresponding solution 𝒙𝑖𝑘.

derives the optimal solution by solving the fixed-point problem 𝑣0𝑧 =
𝐹 (𝑧). Given the monotonically decreasing nature of 𝐹 (𝑧), identifying
a lower bound function 𝐺(𝑧) that closely approximates 𝐹 (𝑧), and
determining the intersection point between 𝑣0𝑧 and 𝐺(𝑧), enable us to
establish a lower bound for the original problem. To derive this lower
bound, a straightforward greedy algorithm can be employed. The al-
gorithm starts with an empty assortment and iteratively adds products
that maximize the increment in the metric 𝑄(𝑆 , 𝑧) = ∑

𝑖∈𝑀

∑

𝑗∈𝑆 (𝑟𝑗−𝑧)𝑣𝑖𝑗
(
∑

𝑗∈𝑆 𝑣𝑖𝑗 )1−𝛾𝑖
.

he inclusion process is halted either upon reaching the cardinality
imit or when no further increment in this metric can be observed. The
utput from this greedy algorithm, denoted by 𝐺(𝑧), serves as a lower

bound of 𝐹 (𝑧) because 𝐹 (𝑧) represents the maximum of 𝑄(𝑆 , 𝑧) among
all feasible assortments. A detailed description of the second heuristic
is provided in Algorithm 4.

Algorithm 4 Heuristic algorithm 2 for solving the CAOP-CNL
Require: Instance of the CAOP-CNL 𝑢, tolerance 𝜀, time limit 𝑇 𝐿.
1: 𝑧 ← 0.
2: 𝑧̄ ← Z_UPPER(𝑢) using Algorithm 1.
3: while 𝑣0𝑧̄ > 𝑣0𝑧 + 𝜀 and 𝑇 𝐿 is not exceeded do
4: Set 𝑧 ← (𝑧̄ + 𝑧)∕2.
5: 𝑆 ← ∅, 𝑘 ← 0.
6: while 𝑘 < 𝑐 do
7: Find 𝑗 ∈ 𝑁 ⧵ 𝑆 that maximizes 𝑄(𝑆 ∪ {𝑗}, 𝑧) −𝑄(𝑆 , 𝑧).
8: if 𝑄(𝑆 ∪ {𝑗}, 𝑧) > 𝑄(𝑆 , 𝑧) then
9: 𝑆 ← 𝑆 ∪ {𝑗}.

10: 𝑘 ← 𝑘 + 1.
11: else
12: Stop the while loop.
13: end if
14: end while
15: 𝐺(𝑧) ← 𝑄(𝑆 , 𝑧).
16: if 𝑣0𝑧 < 𝐺(𝑧) then
17: 𝑧 ← 𝑧.
18: else
9: 𝑧̄ ← 𝑧.

20: end if
21: end while
2: return 𝐺(𝑧) and its corresponding greedy solution 𝒙𝑔 .

Note that 𝐺(𝑧) may not be continuous with respect to 𝑧, but it
s upper-bounded by the continuous decreasing function 𝐹 (𝑧). This
uarantees that 𝑣0𝑧 ≥ 𝐺(𝑧) when 𝑧 is equal to the initial upper bound.
dditionally, since each product has positive revenue and preference
eight, 𝐺(0) must be greater than 0, indicating that 𝑣0𝑧 < 𝐺(𝑧) when
= 0. As a result, the binary search process will consistently converge,
nsuring the second heuristic always feasible.
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5. Numerical experiments

5.1. Experimental settings

In this section, we evaluate the performance of our exact solution
algorithm and two heuristic approaches for solving the CAOP-CNL
through extensive numerical experiments. Specifically, we test these al-
gorithms on manually generated instances with the number of nests 𝑚 ∈
{5, 10} and the number of products 𝑛 ∈ {25, 50, 100, 150, 200, 300, 500}.
Following the manner of Alfandari et al. (2021), we generate 20
instances for each combination of (𝑚, 𝑛), resulting in a total of 280 in-
stances to be solved. As for the generation of revenue 𝑟𝑗 and preference
weight 𝑣𝑗 for product 𝑗 in each instance, we adopt the approach out-
lined in Gallego and Topaloglu (2014). Specifically, 𝑢𝑗 is first generated
from a uniform distribution over [0, 1], while 𝑥𝑗 and 𝑦𝑗 are drawn from
a uniform distribution over [0.75, 1.25]. The revenue is then calculated
as 𝑟𝑗 = 10 × 𝑢2𝑗 × 𝑥𝑗 and the preference weight is computed as 𝑣𝑗 =
10 × (1 −𝑢𝑗 ) ×𝑦𝑗 . Due to the inclusion of 𝑢𝑗 , products with higher revenues
are more likely to have lower preference weights. However, since 𝑥𝑗
and 𝑦𝑗 are generated independently, it is not always the case that a
more expensive product has a lower preference weight. Additionally,
the quadratic term 𝑢2𝑗 skews the revenue distribution, resulting in a
large number of products with low revenues and a small number of
products with high revenues. In line with Le and Mai (2024), we set
the preference weight of the no-purchase option as a baseline in the
unction computing the preference weight of each product. This ensures
hat the preference weight of the no-purchase option is of the same
agnitude as that of any other product. Specifically, we set 𝑣0 = 10.

Regarding the nesting specification, we first sample the dissimi-
arity parameter 𝛾𝑖 for each nest 𝑖 from a uniform distribution over
[0.25, 0.75] (Gallego & Topaloglu, 2014; Le & Mai, 2024). Since a
product may be assigned to multiple nests under the CNL model, we
introduce a parameter 𝛿 > 1 to represent the average number of nests
to which a product belongs, thereby controlling the nest overlapping
rate. Following the approach of Le and Mai (2024), the value of 𝛿 is set
o 1.2. We also conduct a sensitivity analysis to examine the impact of
he overlapping rate on the performance of our algorithms, as detailed
n Appendix C. Once the overlapping rate 𝛿 is determined, the nesting

structure under the CNL model, specifically the values of 𝛼𝑖𝑗 for all
𝑖 ∈ 𝑀 and 𝑗 ∈ 𝑁 , is randomly constructed as described in Algorithm 5.

Algorithm 5 Procedures of generating 𝛼𝑖𝑗 ,∀𝑖 ∈ 𝑀 , 𝑗 ∈ 𝑁

Require: 𝛿, 𝑛, 𝑚.
1: Set 𝛼𝑖𝑗 ← 0,∀𝑖 ∈ 𝑀 , 𝑗 ∈ 𝑁 .
2: Set 𝑘 ← 1.
3: while 𝑘 ≤ ⌈𝛿 × 𝑛⌉ do
4: if 𝑘 ≤ 𝑛 then
5: Randomly and uniformly generate 𝑖 from 𝑀 .
6: Generate 𝛼 from the uniform distribution [1, 10].
7: Set 𝛼𝑖𝑘 ← 𝛼.
8: 𝑘 ← 𝑘 + 1.
9: else

10: Randomly and uniformly generate 𝑖 from 𝑀 and 𝑗 from 𝑁 .
11: if 𝛼𝑖𝑗 = 0 then
12: Generate 𝛼 from the uniform distribution [1, 10].
13: Set 𝛼𝑖𝑗 ← 𝛼.
14: 𝑘 ← 𝑘 + 1.
15: end if
16: end if
17: end while
18: for 𝑗 = 1 to 𝑛 do
19: 𝛼𝑗 ←

∑

𝑖∈𝑀 𝛼𝑖𝑗 .
20: Set 𝛼𝑖𝑗 ←

𝛼𝑖𝑗
𝛼𝑗
,∀𝑖 ∈ 𝑀 .

1: end for



L. Zhang et al.

i
e
t
𝑐
c
t
l
o
(

a
e
i
(
s
o
t
H

a

e
t
w
a
e
a

r
e
v
e
t
b

I

s

f

f

l
m

t
v

i
a
r
o

p

t

s

o
C
t
a
c
B
H
e
c
𝑐

i
t
j

European Journal of Operational Research 324 (2025) 183–199 
When addressing each instance, we impose a total cardinality con-
straint, i.e. ‖𝒙‖1 ≤ 𝑐, to limit the total number of products included
n the assortment. To assess the impact of this cardinality constraint,
ach instance is solved thrice with 𝑐 successively set to values from
he set {⌈0.1𝑛⌉, ⌈0.2𝑛⌉, ⌈0.3𝑛⌉}. For clarity in interpretation, we define
= ⌈0.1𝑛⌉ as a relatively strict cardinality constraint, while 𝑐 = ⌈0.3𝑛⌉ is
onsidered a relatively relaxed constraint. Regarding the parameters of
he binary search algorithm, we set the tolerance 𝜖 = 10−5 and the time
imit 𝑇 𝐿 to 3600 s. If the binary search algorithm does not converge to
ptimality within the time limit, we report the best-found assortment
𝒙𝑏𝑒𝑠𝑡 in Algorithm 2) and its corresponding objective value. The initial

upper bound is computed using the modified method described in
Appendix B.3, while the initial lower bound is obtained via the second
heuristic (Algorithm 4).

We also attempted to solve CAOP-CNL instances optimally using
lternative exact solution methods for benchmarking purposes. How-
ver, in our preliminary tests, we encountered significant challenges
n optimally solving the non-linear integer parameterized problem
CNLAPP) using either open-source tools (e.g. Couenne) or commercial
oftware (e.g. Cplex, Gurobi, GAMS) due to the complexity of the
bjective function.5 As a result, we employ a full enumeration approach
o calculate the optimal solution for comparison of computation times.
owever, this method is only feasible for relatively small problem sizes.

All the experiments are implemented using C++ and conducted on
 desktop computer equipped with an Intel(R) Core(TM) i5-7300U CPU

@ 2.60 GHz.6

5.2. Numerical results

The primary numerical results are reported in Tables 1 to 7, with
ach table corresponding to a specific value of 𝑛. All tables display
he values of parameters 𝑛, 𝑚 and 𝑐 in the first two rows. For brevity,
e denote the first heuristic algorithm as ‘‘SBR’’ (sorted-by-revenue)
nd the second as ‘‘BS+GA’’ (binary search + greedy algorithm). The
xact algorithm is abbreviated as ‘‘BS+BB’’ (binary search + Branch-
nd-Bound).

Columns three through eight, each referred to as a ‘‘scenario’’,
epresent distinct combinations of the parameters 𝑛, 𝑚, and 𝑐. Under
ach scenario, we solve 20 instances and report the mean objective
alue (Obj.) achieved and the CPU time in seconds (Time) consumed by
ach algorithm. For the exact algorithm, we solve the 20 instances in
wo rounds, each round implementing a different branching rule. The
ranching rule used in Alfandari et al. (2021) is denoted as Branching

Rule 1 (BR1), while the newly introduced rule at the end of Section 3
is referred to as Branching Rule 2 (BR2). For the round with the lower
computation time, we also record the average number of iterations (#
ter.)7 and the count of instances that achieve convergence (# Conv.)

within the time limit. To compare the performance of the exact method
with the heuristics, we record the number of instances where the
exact algorithm outperforms each heuristic (# Imp.) and its average
percentage improvement in expected revenue over each heuristic. The
percentage improvement is calculated as follows:

Impr.(%) = 1
20

20
∑

𝑘=1
100 ×

(

BEST𝑘 − HEUR𝑘

HEUR𝑘

)

, (12)

5 Couenne requires the objective function to be factorable, a condition not
atisfied by our formulation. Cplex and Gurobi are limited to solving quadratic

integer programming problems. While GAMS packages can generate a solution
or our problem, the solution is not optimal in most cases.

6 The source code and test instances used in this study are available at the
ollowing GitHub repository: https://github.com/zlnewplayer/CAOP-CNL.

7 This value equals 1 if the exact algorithm only solves 𝐹 (𝑧) within the time
imit. Otherwise, it is calculated as 2 plus the number of iterations the exact
ethod goes through the while loop.
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where 𝑘 indexes the instances, HEUR𝑘 represents the heuristic’s objec-
ive value for instance 𝑘, and BEST𝑘 corresponds to the best objective
alue 𝑅(𝒙𝑏𝑒𝑠𝑡) found by the exact method.

It can be observed that the enumeration method is feasible only
n limited scenarios (i.e., 𝑛 ≤ 50 and 𝑐 ≤ 8). In contrast, the exact
lgorithm (BS+BB) can handle instances with larger 𝑛 and 𝑐 within a
easonable time limit. Specifically, our exact algorithm converges to
ptimality in all test instances with 𝑛 ≤ 150 and in the majority of

instances (≥90%) with 𝑛 ≤ 300 within a one-hour time limit. These
results highlight the significantly greater capability of our exact method
in solving the CAOP-CNL compared to the full enumeration method.

Regarding the performance of the two heuristics, we observe that
the second heuristic algorithm (BS+GA) consistently outperforms the
first heuristic (SBR) across all scenarios. The values of #Imp. and
Impr.(%) further demonstrate that BS+GA achieves optimal solutions
for a large proportion of the test instances, with an average optimal-
ity gap within 0.2%.8 These findings suggest that for time-sensitive
assortment optimization needs (e.g., immediate product recommenda-
tion requirements on e-commerce platforms), the second heuristic can
rovide prompt solutions while maintaining high solution quality.

The first heuristic exhibits the shortest computation time among all
he algorithms. However, its objective value is considerably inferior to

that of the exact algorithm under the relatively strict cardinality con-
straint, indicating significant differences between the optimal assort-
ment structure and the sorted-by-revenue assortment when the number
of available products is limited. Nevertheless, as the cardinality con-
traint is relaxed, the optimality gap of SBR narrows substantially. This

suggests that the optimal assortment structure increasingly aligns with
the sorted-by-revenue assortment as the carnality limit 𝑐 approaches
the total number of products 𝑛.

We now examine the impact of branching rules on the performance
f the exact algorithm. For each scenario, we highlight in bold the
PU time of the exact method with the lower value (if the two CPU
imes are identical, both are bolded). The results indicate that the exact
lgorithm implementing our newly introduced branching rule (BR2)
onsumes significantly shorter computation time than the one using
R1 in the majority of scenarios (specifically, 32 out of 42 scenarios).
owever, when the number of products reaches a certain level, the
xact method using BR1 can outperform BR2 under relatively relaxed
ardinality constraints (in 5 cases when 𝑐 = ⌈0.3𝑛⌉ and in 2 cases when
= ⌈0.2𝑛⌉).

This phenomenon underscores the significance of selecting appro-
priate branching rules in the Branch-and-Bound algorithm under differ-
ent scenarios. In our problem, prioritizing branching on the variables
that are likely to contribute more significantly to the objective value
proves beneficial when the cardinality constraint is relatively strict.
We attribute this to the fact that, under a relatively strict cardinality
constraint, the structure of the optimal assortment deviates consider-
ably from the sorted-by-revenue assortment, as previously discussed.
When using BR1, which branches on variables in a revenue-decreasing
order, the algorithm may initially branch on many variables that are
ultimately set to 0 in the optimal solution. This can lead to the genera-
tion of redundant nodes in the Branch-and-Bound tree. In contrast, by
mplementing BR2, which follows a greedy mechanism for branching,
he search process can quickly approach nodes with relatively high ob-
ective values early on, facilitating more effective pruning and reducing
the search space in subsequent iterations. Additionally, it is noteworthy
that the greedy mechanism employed in BR2 is identical to that used in
the second heuristic (BS+GA). As a result, even in instances where the
exact algorithm does not fully converge, it can still generate a best-
found solution with an objective value no less than those produced
by the heuristics. This is because BR2 can guide the search process to

8 When the exact algorithm converges to optimality, the optimality gap can
be calculated using the Impr.(%) value: Optimality gap = 1 − 1 .
1+Impr.(%)

https://github.com/zlnewplayer/CAOP-CNL
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Table 1
Results on instances with 𝑛 = 25.
𝑛 = 25 𝑚 = 5 𝑚 = 10

𝑐 = ⌈0.1𝑛⌉ 𝑐 = ⌈0.2𝑛⌉ 𝑐 = ⌈0.3𝑛⌉ 𝑐 = ⌈0.1𝑛⌉ 𝑐 = ⌈0.2𝑛⌉ 𝑐 = ⌈0.3𝑛⌉

H1: SBR Obj. 2.358 2.775 3.010 2.374 2.955 3.298
Time 0.00 0.00 0.00 0.00 0.00 0.00

H2: BS+GA Obj. 2.499 2.916 3.040 2.591 3.126 3.356
Time 0.00 0.00 0.00 0.00 0.00 0.00

BS+BB

Obj. 2.499 2.916 3.040 2.591 3.128 3.356
Time (BR1) 0.02 0.02 0.02 0.02 0.02 0.02
Time (BR2) 0.01 0.01 0.01 0.01 0.01 0.02
#Conv. 20 20 20 20 20 20
#Imp. vs. H1 17 17 11 18 18 12
#Imp. vs. H2 0 0 0 0 1 0
Impr. (%) vs. H1 6.34 5.31 1.01 9.31 6.04 1.78
Impr. (%) vs. H2 0.00 0.00 0.00 0.00 0.07 0.00
#Iter. 2.7 2.1 2.0 2.8 2.5 2.1

Enum. Time 0.01 0.08 2.19 0.01 0.14 4.13
Table 2
Results on instances with 𝑛 = 50.
𝑛 = 50 𝑚 = 5 𝑚 = 10

𝑐 = ⌈0.1𝑛⌉ 𝑐 = ⌈0.2𝑛⌉ 𝑐 = ⌈0.3𝑛⌉ 𝑐 = ⌈0.1𝑛⌉ 𝑐 = ⌈0.2𝑛⌉ 𝑐 = ⌈0.3𝑛⌉

H1: SBR Obj. 3.035 3.476 3.608 3.082 3.741 3.899
Time 0.00 0.00 0.00 0.00 0.00 0.00

H2: BS+GA Obj. 3.275 3.581 3.638 3.318 3.852 3.919
Time 0.00 0.00 0.01 0.00 0.01 0.01

BS+BB

Obj. 3.282 3.582 3.639 3.318 3.852 3.919
Time (BR1) 0.17 0.47 0.05 0.15 0.06 0.03
Time (BR2) 0.03 0.05 0.03 0.06 0.02 0.03
#Conv. 20 20 20 20 20 20
#Imp. vs. H1 20 20 13 19 18 13
#Imp. vs. H2 4 2 2 1 1 1
Impr. (%) vs. H1 8.34 3.09 0.89 7.83 3.01 0.54
Impr. (%) vs. H2 0.20 0.04 0.01 0.00 0.00 0.00
#Iter. 2.9 2.5 2.0 3.6 2.0 2.1

Enum. Time 3.99 – – 7.81 – –
Table 3
Results on instances with 𝑛 = 100.
𝑛 = 100 𝑚 = 5 𝑚 = 10

𝑐 = ⌈0.1𝑛⌉ 𝑐 = ⌈0.2𝑛⌉ 𝑐 = ⌈0.3𝑛⌉ 𝑐 = ⌈0.1𝑛⌉ 𝑐 = ⌈0.2𝑛⌉ 𝑐 = ⌈0.3𝑛⌉

H1: SBR Obj. 3.694 4.140 4.229 4.023 4.542 4.608
Time 0.00 0.00 0.00 0.00 0.00 0.00

H2: BS+GA Obj. 3.996 4.223 4.246 4.368 4.617 4.632
Time 0.01 0.02 0.02 0.01 0.03 0.04

BS+BB

Obj. 3.999 4.223 4.246 4.368 4.618 4.633
Time (BR1) 40.49 3.37 0.13 31.86 2.21 0.04
Time (BR2) 0.94 0.12 0.07 0.95 0.07 0.03
#Conv. 20 20 20 20 20 20
#Imp. vs. H1 20 20 16 20 18 16
#Imp. vs. H2 5 1 4 1 4 4
Impr. (%) vs. H1 8.34 2.02 0.41 8.62 1.66 0.54
Impr. (%) vs. H2 0.09 0.01 0.01 0.00 0.01 0.02
#Iter. 2.9 2.2 2.0 2.8 2.2 2.0
t
r
o
c

quickly reach nodes that are close to the BS+GA solution.
Before discussing why BR1 outperforms BR2 in certain scenarios,

e first examine the impact of variable-fixing operations on the perfor-
ance of the exact algorithm. Specifically, we run the exact algorithm

n all test instances without applying any variable-fixing operation. To
nhance conciseness in presenting the results, for each scenario, we
erun the exact method using only the branching rule that achieved
ower computation time in the original numerical experiments. The
erm ‘‘variable-fixing Operation’’ is abbreviated as ‘‘VFO’’. Additionally,
esults for 𝑛 = 25 and 50 are omitted, as the computation times are
egligible. The detailed results are provided in Table 8.

We highlight in bold the CPU times without VFO that show a sig-
nificant increase compared to those with VFO (specifically, an increase
 a
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exceeding 30%). It can be observed that under the relatively strict
cardinality constraint, the computation times with and without VFO are
nearly identical, suggesting that variable-fixing operations are rarely
applied in such scenarios. We attribute this to the difficulty of satisfying
the precondition in Proposition 3 under strict cardinality constraints.
In contrast, when the cardinality constraint is relatively relaxed, ne-
glecting VFO can result in a substantial increase in computation time,
especially as the total number of products 𝑛 grows. This is because
he precondition in Proposition 3 is more likely to be satisfied under
elaxed cardinality constraints, leading to more frequent application
f variable-fixing. The increased number of variable-fixing operations
an significantly reduce the search space in the Branch-and-Bound
lgorithm, thereby considerably decreasing the computation time. With
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Table 4
Results on instances with 𝑛 = 150.
𝑛 = 150 𝑚 = 5 𝑚 = 10

𝑐 = ⌈0.1𝑛⌉ 𝑐 = ⌈0.2𝑛⌉ 𝑐 = ⌈0.3𝑛⌉ 𝑐 = ⌈0.1𝑛⌉ 𝑐 = ⌈0.2𝑛⌉ 𝑐 = ⌈0.3𝑛⌉

H1: SBR Obj. 4.093 4.524 4.558 4.475 4.983 5.017
Time 0.00 0.00 0.01 0.00 0.01 0.01

H2: BS+GA Obj. 4.403 4.567 4.573 4.870 5.033 5.035
Time 0.02 0.04 0.05 0.04 0.08 0.09

BS+BB

Obj. 4.404 4.567 4.573 4.872 5.033 5.035
Time (BR1) 461.56 1.41 0.07 296.40 0.29 0.03
Time (BR2) 5.64 0.09 0.06 5.13 0.08 0.03
#Conv. 20 20 20 20 20 20
#Imp. vs. H1 20 20 16 20 20 19
#Imp. vs. H2 1 1 1 4 0 2
Impr. (%) vs. H1 7.65 0.95 0.33 8.89 0.99 0.38
Impr. (%) vs. H2 0.01 0.00 0.00 0.04 0.00 0.00
#Iter. 2.5 2.2 2.0 3.0 2.1 2.1
Table 5
Results on instances with 𝑛 = 200.
𝑛 = 200 𝑚 = 5 𝑚 = 10

𝑐 = ⌈0.1𝑛⌉ 𝑐 = ⌈0.2𝑛⌉ 𝑐 = ⌈0.3𝑛⌉ 𝑐 = ⌈0.1𝑛⌉ 𝑐 = ⌈0.2𝑛⌉ 𝑐 = ⌈0.3𝑛⌉

H1: SBR Obj. 4.359 4.752 4.773 4.857 5.286 5.308
Time 0.00 0.01 0.01 0.01 0.01 0.02

H2: BS+GA Obj. 4.636 4.781 4.784 5.207 5.326 5.327
Time 0.04 0.08 0.08 0.07 0.14 0.15

BS+BB

Obj. 4.636 4.782 4.785 5.207 5.326 5.327
Time (BR1) 2439.13 4.32 0.40 1719.63 1.21 0.05
Time (BR2) 289.25 0.24 0.16 155.20 0.42 0.07
#Conv. 19 20 20 20 20 20
#Imp. vs. H1 20 19 16 20 20 18
#Imp. vs. H2 1 1 2 2 4 4
Impr. (%) vs. H1 6.42 0.63 0.27 7.21 0.77 0.37
Impr. (%) vs. H2 0.00 0.01 0.02 0.01 0.01 0.01
#Iter. 2.8 2.3 2.0 2.9 2.0 2.0
Table 6
Results on instances with 𝑛 = 300.
𝑛 = 300 𝑚 = 5 𝑚 = 10

𝑐 = ⌈0.1𝑛⌉ 𝑐 = ⌈0.2𝑛⌉ 𝑐 = ⌈0.3𝑛⌉ 𝑐 = ⌈0.1𝑛⌉ 𝑐 = ⌈0.2𝑛⌉ 𝑐 = ⌈0.3𝑛⌉

H1: SBR Obj. 4.799 5.095 5.100 5.377 5.648 5.649
Time 0.01 0.02 0.03 0.02 0.04 0.07

H2: BS+GA Obj. 5.019 5.111 5.111 5.604 5.670 5.670
Time 0.10 0.17 0.18 0.18 0.31 0.32

BS+BB

Obj. 5.019 5.113 5.113 5.605 5.672 5.672
Time (BR1) 3526.36 229.23 1.36 2802.56 13.65 0.08
Time (BR2) 864.56 185.25 4.48 422.98 42.24 0.92
#Conv. 18 19 20 18 20 20
#Imp. vs. H1 20 20 20 20 20 20
#Imp. vs. H2 2 4 4 3 3 3
Impr. (%) vs. H1 4.58 0.36 0.26 4.26 0.44 0.41
Impr. (%) vs. H2 0.01 0.05 0.05 0.01 0.03 0.03
#Iter. 2.5 2.0 2.0 2.5 2.0 2.1
f
c
p
d
f

the benefit of VFO, we are able to optimally solve instances with 𝑛 ≤
500 within 10 s under the relatively relaxed cardinality constraint.

We now turn to discussing why BR1 outperforms BR2 in certain
cenarios. To facilitate this explanation, we first present Table 9, which

displays the CPU times of the exact method using both branching rules
with and without VFO for scenarios where BR1 outperforms BR2. It
can be observed that, in some scenarios, BR2 may still achieve lower
CPU times than BR1 when VFO is not implemented. However, this
advantage is less pronounced compared to the cases where the cardi-
nality constraint is relatively strict and the total number of products
is relatively large. We hypothesize that the effectiveness of the greedy
mechanism employed in BR2 diminishes as the size of the optimal
assortment increases. Furthermore, with the introduction of VFO, the
 i
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reduction in CPU time is more substantial for BR1 than for BR2 across
all listed scenarios. This suggests that BR1 may be more compatible
with VFO, particularly in cases involving a large product set and
relaxed cardinality constraints. These factors collectively contribute to
the superior performance of BR1 in these scenarios.

Moreover, an analysis of the average optimal objective values across
scenarios reveals that the expected revenue gains from increasing 𝑐
rom ⌈0.1𝑛⌉ to ⌈0.2𝑛⌉ generally surpass those achieved by further in-
reasing 𝑐 from ⌈0.2𝑛⌉ to ⌈0.3𝑛⌉. This indicates that the revenue im-
rovement resulting from an equivalent increase in capacity may vary
epending on the initial cardinality constraint. Retailers should care-
ully weigh the costs and benefits of expanding their assortment capac-
ty based on their specific circumstances before making such decisions.
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Table 7
Results on instances with 𝑛 = 500.
𝑛 = 500 𝑚 = 5 𝑚 = 10

𝑐 = ⌈0.1𝑛⌉ 𝑐 = ⌈0.2𝑛⌉ 𝑐 = ⌈0.3𝑛⌉ 𝑐 = ⌈0.1𝑛⌉ 𝑐 = ⌈0.2𝑛⌉ 𝑐 = ⌈0.3𝑛⌉

H1: SBR Obj. 5.267 5.527 5.528 5.868 6.041 6.041
Time 0.03 0.07 0.12 0.05 0.15 0.26

H2: BS+GA Obj. 5.490 5.544 5.544 6.028 6.062 6.062
Time 0.29 0.47 0.48 0.51 0.78 0.76

BS+BB

Obj. 5.490 5.545 5.545 6.030 6.064 6.064
Time (BR1) 3600.00 1035.81 10.28 3545.03 225.08 0.34
Time (BR2) 2485.52 740.66 200.17 1942.94 317.70 181.70
#Conv. 8 16 20 11 19 20
#Imp. vs. H1 20 20 20 20 20 20
#Imp. vs. H2 3 5 5 6 10 10
Impr. (%) vs. H1 4.25 0.33 0.32 2.77 0.37 0.37
Impr. (%) vs. H2 0.00 0.01 0.01 0.03 0.03 0.03
#Iter. 1.4 1.9 2.0 1.8 2.1 2.4
Table 8
Comparison of computation times for the exact method with and without variable-fixing operations.

𝑚 = 5 𝑚 = 10
𝑐 = ⌈0.1𝑛⌉ 𝑐 = ⌈0.2𝑛⌉ 𝑐 = ⌈0.3𝑛⌉ 𝑐 = ⌈0.1𝑛⌉ 𝑐 = ⌈0.2𝑛⌉ 𝑐 = ⌈0.3𝑛⌉

𝑛 = 100 Time (with VFO) 0.94 0.12 0.07 0.95 0.07 0.03
Time (without VFO) 0.93 0.12 0.08 0.95 0.07 0.05

𝑛 = 150 Time (with VFO) 5.64 0.09 0.06 5.13 0.08 0.03
Time (without VFO) 5.65 0.09 0.08 5.08 0.08 0.08

𝑛 = 200 Time (with VFO) 289.25 0.24 0.16 155.20 0.42 0.05
Time (without VFO) 287.52 0.24 0.23 153.08 0.42 0.79

𝑛 = 300 Time (with VFO) 864.56 185.25 1.36 422.98 13.65 0.08
Time (without VFO) 872.71 185.12 187.02 422.44 42.52 43.26

𝑛 = 500 Time (with VFO) 2485.52 740.66 10.28 1942.94 225.08 0.34
Time (without VFO) 2487.89 741.24 1043.03 1947.18 301.54 304.56
Table 9
Computation times of the exact method under different settings of VFO and branching rules.

Without VFO With VFO Decreasing ratio

𝑛 = 200, 𝑚 = 10, 𝑐 = ⌈0.3𝑛⌉
Time (BR1) 0.79 0.05 93.7%
Time (BR2) 0.40 0.07 82.5%

𝑛 = 300, 𝑚 = 5, 𝑐 = ⌈0.3𝑛⌉
Time (BR1) 187.02 1.36 99.3%
Time (BR2) 186.70 4.48 97.6%

𝑛 = 300, 𝑚 = 10, 𝑐 = ⌈0.2𝑛⌉
Time (BR1) 42.52 13.65 67.9%
Time (BR2) 42.01 42.24 −0.5%

𝑛 = 300, 𝑚 = 10, 𝑐 = ⌈0.3𝑛⌉
Time (BR1) 43.26 0.08 99.8%
Time (BR2) 41.28 0.92 97.8%

𝑛 = 500, 𝑚 = 5, 𝑐 = ⌈0.3𝑛⌉
Time (BR1) 1043.03 10.28 99.0%
Time (BR2) 740.93 200.17 73.0%

𝑛 = 500, 𝑚 = 10, 𝑐 = ⌈0.2𝑛⌉
Time (BR1) 301.54 225.08 25.4%
Time (BR2) 344.47 317.70 7.8%

𝑛 = 500, 𝑚 = 10, 𝑐 = ⌈0.3𝑛⌉
Time (BR1) 304.56 0.34 99.9%
Time (BR2) 346.96 181.70 47.6%
The algorithms proposed in this study can assist retailers in making
ore informed decisions by providing optimal or near-optimal ex-
ected revenue estimates under various possible cardinality constraints.

Finally, we summarize the key findings from the numerical experi-
ments as follows:

• The exact algorithm, BS+BB, is capable of optimally solving all
test instances with 𝑛 ≤ 150 and the majority of instances (≥90%)
with 𝑛 ≤ 300 within a one-hour time limit. This demonstrates
the exact method’s significantly greater efficiency in solving the
CAOP-CNL compared to the full enumeration method.

• The choice of branching rules and the application of variable-
fixing operations can have a considerable impact on the computa-
tion time of the exact algorithm. When the cardinality constraint
194 
is relatively strict or when the number of products is moderate,
employing BR2 results in significantly lower CPU time compared
to BR1. However, in cases where the product set is large and the
cardinality constraint is relatively relaxed, the combined use of
BR1 and VFO can markedly reduce computation time compared
to using BR2.

• The second heuristic algorithm, BS+GA, which integrates the bi-
nary search framework with a greedy algorithm, consistently out-
performs the other heuristic across all scenarios. It achieves opti-
mal solutions in most instances, with an average optimality gap
no larger than 0.2%. This suggest that for time-sensitive assort-
ment optimization needs, BS+GA can provide prompt solutions

while maintaining high solution quality.
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• As the cardinality constraint becomes more relaxed, the perfor-
mance difference between the exact method and the first heuristic
diminishes, indicating that the structure of the optimal assortment
increasingly aligns with the sorted-by-revenue assortment.

6. Conclusions and future directions

In this study, we developed a non-trivial exact algorithm and effi-
ient heuristics for solving the CAOP-CNL. The exact solution method
ntegrates a binary search framework with a customized B&B algorithm
ailored for the NP-hard parameterized problem. The B&B algorithm
ncorporates a novel variable-fixing mechanism, branching rule and
pper bound generation strategy, all leveraging the unique structure of
he parameterized problem’s objective function. To address extremely
arge instances beyond the capacity of the exact method, we intro-

duced two polynomial-time heuristic algorithms employing different
solution strategies. Numerical results indicate that our exact method
an efficiently handle moderately large instances within a reasonable
ime limit. Specifically, the exact algorithm optimally solved all test
nstances with up to 150 products and more than 90% of instances
ith up to 300 products within a one-hour time limit. Under relatively

relaxed cardinality constraints, the variable-fixing mechanism enabled
the exact method to manage larger instances within approximately
10 s. Using the exact method as a benchmark, we observed that
the most effective heuristic achieved optimal solutions for the major-
ty of test instances, with an average optimality gap not exceeding

0.2%.
This study provides retailers with an effective tool for determining

he optimal assortment when the number of offered products is con-
trained. For scenarios with a small dataset or lenient time constraints,
etailers can use the exact method to obtain the optimal solution. Alter-
atively, for larger datasets or more time-sensitive situations, heuristics
an be employed to derive a nearly optimal assortment decision in
olynomial time. The algorithms presented in this study also aid retail-
rs in making decisions about expanding or reducing current display
pace by evaluating the costs and benefits under various cardinality
onstraints.

There are several future directions worth further investigation based
on this study. First, this study may be modified to solve the joint
rice and assortment optimization under the CNL model following

the manner in Gallego and Topaloglu (2014). Second, it is worth
onsidering to develop exact or approximation solution methods for
ssortment optimization problem under the CNL model with more gen-
ral constraints (e.g. capacity, partition constraints). Third, when the
roducts’ preference weights are not known in advance, the dynamic
ssortment optimization problem under the CNL model worth further
xploration.
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Appendix A. Proof of Lemmas and Propositions

A.1. Proof of Lemma 2

Since 𝑏
𝑎1−𝛾

∕ 𝑏+𝑟𝑣
(𝑎+𝑣)1−𝛾 = 𝑏

𝑏+𝑟𝑣 ⋅ ( 𝑎+𝑣𝑎 )1−𝛾 = ( 𝑏
𝑏+𝑟𝑣 )

𝛾 ⋅ ( 𝑎𝑏+𝑏𝑣
𝑎𝑏+𝑎𝑟𝑣 )

1−𝛾 < 1 as
𝑎𝑟 ≥ 𝑏, we have 𝑧′ = 𝑏+𝑟𝑣

(𝑎+𝑣)1−𝛾 > 𝑧 = 𝑏
𝑎1−𝛾

. □

A.2. Proof of Lemma 3

We show Lemma 3 under two possible scenarios based on the value
of 𝑟1:

(𝑖) 𝑟1 > 𝑏
𝑎 (Scenario 1). Since 𝑟2 ≥ 𝑟1 > 𝑏+𝑟1𝑣1

𝑎+𝑣1
, 𝑧′ = 𝑏+𝑟1𝑣1+𝑟2𝑣2

(𝑎+𝑣1+𝑣2)1−𝛾
>

𝑏+𝑟1𝑣1
𝑎+𝑣1

= 𝑧 can be easily derived through Lemma 2.
(𝑖𝑖) 𝑟1 ≤ 𝑏

𝑎 (Scenario 2). Define 𝑓 (𝑥) = 𝑏+𝑟1𝑥
(𝑎+𝑥)1−𝛾 , then 𝑓 ′(𝑥) = (𝑎 +

)𝛾−1
[

𝑟1 − (1 − 𝛾) 𝑏+𝑟1𝑥𝑎+𝑥

]

. As 𝑟1 ≤
𝑏
𝑎 , if we define ℎ(𝑥) = 𝑟1 − (1 − 𝛾) 𝑏+𝑟1𝑥𝑎+𝑥 ,

then ℎ(𝑥) is a non-decreasing function with respect to 𝑥. Since 𝑓 (𝑣1) ≥
𝑓 (0), we must have 𝑓 ′(𝑣1) ≥ 0, which is equivalent to ℎ(𝑣1) ≥ 0.
If ℎ(𝑣1) < 0, given its non-decreasing property, we have ℎ(𝑥) < 0
or 𝑥 ∈ [0, 𝑣1], thereby 𝑓 ′(𝑥) < 0 for 𝑥 ∈ [0, 𝑣1], which leads to a
ontradiction. This implies that 𝑟1 ≥ (1 − 𝛾) 𝑏+𝑟1𝑣1𝑎+𝑣1

.

Now define 𝑔(𝑥) = 𝑏+𝑟1𝑣1+𝑟2𝑥
(𝑎+𝑣1+𝑥)1−𝛾

, 𝑔′(𝑥) = (𝑎 + 𝑣1 + 𝑥)𝛾−1
[

𝑟2 − (1 − 𝛾)
𝑏+𝑟1𝑣1+𝑟2𝑥
𝑎+𝑣1+𝑥

]

.

If 𝑟2 ≤
𝑏+𝑟1𝑣1
𝑎+𝑣1

, as 𝑟2 ≥ 𝑟1, when 𝑥 ≥ 0, we have 𝑟2− (1 −𝛾) 𝑏+𝑟1𝑣1+𝑟2𝑥𝑎+𝑣1+𝑥
≥

1 − (1 − 𝛾) 𝑏+𝑟1𝑣1+𝑟2𝑥𝑎+𝑣1+𝑥
≥ 𝑟1 − (1 − 𝛾) 𝑏+𝑟1𝑣1𝑎+𝑣1

≥ 0. This implies that 𝑔′(𝑥) ≥ 0
or ∀𝑥 ≥ 0, thus 𝑧′ = 𝑔(𝑣2) ≥ 𝑔(0) = 𝑧.

If 𝑟2 > 𝑏+𝑟1𝑣1
𝑎+𝑣1

, then according to Lemma 2, we can directly obtain
𝑧′ = 𝑏+𝑟1𝑣1+𝑟2𝑣2

(𝑎+𝑣1+𝑣2)1−𝛾
> 𝑧. □

A.3. Proof of Lemma 4

First we have 𝑏+𝑟1𝑣1
(𝑎+𝑣1)1−𝛾

− 𝑏
𝑎1−𝛾

= 𝑎1−𝛾 (𝑏+𝑟1𝑣1)−𝑏(𝑎+𝑣1)1−𝛾

(𝑎+𝑣1)1−𝛾𝑎1−𝛾
≥ 0. As the

denominator is always positive, after rearranging terms in the numer-
ator, we can obtain 𝑟1𝑣1 ≥ 𝑏

𝑎1−𝛾
[

(𝑎 + 𝑣1)1−𝛾 − 𝑎1−𝛾
]

. As 𝛾 ∈ (0, 1], we
ave (𝑎 + 𝑣1)1−𝛾 − 𝑎1−𝛾 ≥ (𝑎 + 𝑣1 + 𝑣2)1−𝛾 − (𝑎 + 𝑣2)1−𝛾 , which leads to
1𝑣1 ≥

𝑏
𝑎1−𝛾

[

(𝑎 + 𝑣1 + 𝑣2)1−𝛾 − (𝑎 + 𝑣2)1−𝛾
]

.
If 𝑏+𝑟2𝑣2

(𝑎+𝑣2)1−𝛾
≤ 𝑏

𝑎1−𝛾
, then 𝑟1𝑣1 ≥ 𝑏+𝑟2𝑣2

(𝑎+𝑣2)1−𝛾
[

(𝑎 + 𝑣1 + 𝑣2)1−𝛾

−(𝑎 + 𝑣2)1−𝛾
]

. After rearranging terms, we can obtain that 𝑧′ =
𝑏+𝑟1𝑣1+𝑟2𝑣2
(𝑎+𝑣1+𝑣2)1−𝛾

≥ 𝑏+𝑟2𝑣2
(𝑎+𝑣2)1−𝛾

= 𝑧.
If 𝑏+𝑟2𝑣2

(𝑎+𝑣2)1−𝛾
> 𝑏

𝑎1−𝛾
, as 𝑟2 ≤ 𝑟1, we can directly obtain 𝑧′ =

𝑏+𝑟1𝑣1+𝑟2𝑣2
(𝑎+𝑣1+𝑣2)1−𝛾

≥ 𝑏+𝑟2𝑣2
(𝑎+𝑣2)1−𝛾

= 𝑧 by Lemma 3. □

A.4. Proof of Proposition 3

Suppose 𝑏𝑖𝑡+(𝑟𝑠−𝑧)𝑣𝑖𝑠
(𝑎𝑖𝑡+𝑣𝑖𝑠)1−𝛾𝑖

≥ 𝑏𝑖𝑡
𝑎1−𝛾𝑖𝑖𝑡

, for ∀𝑖 ∈ {𝑘 ∈ 𝑀|𝑣𝑘𝑠 > 0, 𝑎𝑘𝑡 > 0} and
here is an optimal solution 𝒙∗ to CNLAPP-𝑡 where 𝑥∗𝑠 = 0. We use 𝐿 =
𝑙 ∈ 𝑆̄𝑡

|𝑥∗𝑙 = 1} to denote the set of products provided in the optimal
ssortment 𝒙∗. Since |𝑆̄𝑡

| ≤ 𝑐𝑡, we must have ‖𝒙∗‖1 = |𝐿| ≤ 𝑐𝑡 − 1. And
he optimal objective value can be written as ∑

𝑖∈𝑀
𝑏𝑖𝑡+

∑

𝑗∈𝐿(𝑟𝑗−𝑧)𝑣𝑖𝑗
(𝑎𝑖𝑡+

∑

𝑗∈𝐿 𝑣𝑖𝑗 )1−𝛾𝑖
. If

we set another solution 𝒙′ such that 𝑥′𝑠 = 1 whereas the values of other
elements are the same as 𝒙∗. Then its corresponding objective value is
∑

𝑖∈𝑀
𝑏𝑖𝑡+

∑

𝑗∈𝐿(𝑟𝑗−𝑧)𝑣𝑖𝑗+(𝑟𝑠−𝑧)𝑣𝑖𝑠
(𝑎𝑖𝑡+

∑

𝑗∈𝐿 𝑣𝑖𝑗+𝑣𝑖𝑠)1−𝛾𝑖
. We can also guarantee the feasibility of

𝒙′ as ‖𝒙′‖1 = ‖𝒙∗‖1 + 1 ≤ 𝑐𝑡.
For ∀𝑖 ∈ {𝑘 ∈ 𝑀|𝑣𝑘𝑠 = 0}, 𝑏𝑖𝑡+

∑

𝑗∈𝐿(𝑟𝑗−𝑧)𝑣𝑖𝑗+(𝑟𝑠−𝑧)𝑣𝑖𝑠
(𝑎𝑖𝑡+

∑

𝑗∈𝐿 𝑣𝑖𝑗+𝑣𝑖𝑠)1−𝛾𝑖
=

𝑏𝑖𝑡+
∑

𝑗∈𝐿(𝑟𝑗−𝑧)𝑣𝑖𝑗
(𝑎𝑖𝑡+

∑

𝑗∈𝐿 𝑣𝑖𝑗 )1−𝛾𝑖
.

For ∀𝑖 ∈ {𝑘 ∈ 𝑀|𝑣𝑘𝑠 > 0, 𝑎𝑘𝑡 = 0}, denote 𝑣 =
∑

𝑗∈𝐿 𝑣𝑖𝑗 ≥ 0,
if 𝑣 = 0, we have (𝑟𝑠−𝑧)𝑣𝑖𝑠

𝑣1−𝛾𝑖𝑖𝑠

≥ 0. If 𝑣 > 0, set 𝑟 =
∑

𝑗∈𝐿(𝑟𝑗−𝑧)𝑣𝑖𝑗
𝑣 + 𝑧.

Since 𝑠 is the product with the largest revenue in 𝑆̄𝑡, we have 𝑟𝑠 − 𝑧 ≥
𝑟 − 𝑧 > 0. According to Lemma 2, we can obtain

∑

𝑗∈𝐿(𝑟𝑗−𝑧)𝑣𝑖𝑗+(𝑟𝑠−𝑧)𝑣𝑖𝑠
∑ ≥

( 𝑗∈𝐿 𝑣𝑖𝑗+𝑣𝑖𝑠)1−𝛾𝑖
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∑

𝑗∈𝐿(𝑟𝑗−𝑧)𝑣𝑖𝑗
(
∑

𝑗∈𝐿 𝑣𝑖𝑗 )1−𝛾𝑖
.

For ∀𝑖 ∈ {𝑘 ∈ 𝑀|𝑣𝑘𝑠 > 0, 𝑎𝑘𝑡 > 0}, denote 𝑣 =
∑

𝑗∈𝐿 𝑣𝑖𝑗 ≥ 0, if 𝑣 = 0,
e can directly obtain 𝑏𝑖𝑡+(𝑟𝑠−𝑧)𝑣𝑖𝑠

(𝑎𝑖𝑡+𝑣𝑖𝑠)1−𝛾𝑖
≥ 𝑏𝑖𝑡

𝑎1−𝛾𝑖𝑖𝑡

from the supposition. If 𝑣 > 0,

set 𝑟 =
∑

𝑗∈𝐿(𝑟𝑗−𝑧)𝑣𝑖𝑗
𝑣 + 𝑧. Since 𝑠 is the product with the largest revenue

n 𝑆̄𝑡, we have 𝑟𝑠 − 𝑧 ≥ 𝑟− 𝑧 > 0. According to Lemma 4, we can obtain
𝑏𝑖𝑡+

∑

𝑗∈𝐿(𝑟𝑗−𝑧)𝑣𝑖𝑗+(𝑟𝑠−𝑧)𝑣𝑖𝑠
(𝑎𝑖𝑡+

∑

𝑗∈𝐿 𝑣𝑖𝑗+𝑣𝑖𝑠)1−𝛾𝑖
≥

𝑏𝑖𝑡+
∑

𝑗∈𝐿(𝑟𝑗−𝑧)𝑣𝑖𝑗
(𝑎𝑖𝑡+

∑

𝑗∈𝐿 𝑣𝑖𝑗 )1−𝛾𝑖
.

To summarize, the objective value of 𝒙′ is no less than that of 𝒙∗,
o 𝒙′ must also be an optimal solution to CNLAPP-𝑡. □

A.5. Proof of Proposition 4

If the dual optimal 𝝁∗ ≠ 𝟎, denote a subset 𝑆 = {𝑗 ∈ 𝑆̄𝑡
|𝜇∗

𝑗 ≠
0} ⊆ 𝑁 . Let {𝒙∗1 ,𝒙

∗
2 ,… ,𝒙∗𝑚, 𝒚

∗} be the optimal solution to 𝑔(𝝁∗), we
ave 𝑔(𝝁∗) =

∑

𝑖∈𝑀 𝑉𝑖(𝒙∗𝑖 )
𝛾𝑖 [𝑅𝑖(𝒙∗𝑖 ) − 𝑧] + ∑

𝑗∈𝑆 𝜇∗
𝑗 (
∑

𝑖∈𝑀 𝑥∗𝑖𝑗 − 𝑚𝑦∗𝑗 ).
It can be readily observed that the second part of 𝑔(𝝁∗), written as
∑

𝑗∈𝑆 𝜇∗
𝑗 (
∑

𝑖∈𝑀 𝑥∗𝑖𝑗 −𝑚𝑦∗𝑗 ), is always non-negative. This follows from the
fact that 𝑦∗𝑗 is certainly set to 1 when 𝜇∗

𝑗 < 0 and must be assigned to
0 when 𝜇∗

𝑗 > 0.
Let (𝒙′1,𝒙

′
2,… ,𝒙′𝑛) be an optimal solution to 𝑔(𝟎) (the value of 𝒚′

eed not to be determined). Since (𝒙′1,𝒙
′
2,… ,𝒙′𝑚, 𝒚

∗) is also feasible to
(𝝁∗), we have 𝑔(𝝁∗) ≥

∑

𝑖∈𝑀 𝑉𝑖(𝒙′𝑖)
𝛾𝑖 [𝑅𝑖(𝒙′𝑖) − 𝑧] + ∑

𝑗∈𝑆 𝜇∗
𝑗 (
∑

𝑖∈𝑀 𝑥′𝑖𝑗 −
𝑚𝑦∗𝑗 ) ≥ 𝑔(𝟎) = ∑

𝑖∈𝑀 𝑉𝑖(𝒙′𝑖)
𝛾𝑖 [𝑅𝑖(𝒙′𝑖) − 𝑧] ≥ 𝑔(𝝁∗). There must be 𝑔(𝟎) =

𝑔(𝝁∗), or else there is a contradiction. In either case, the proposition
holds. □

A.6. Proof of Lemma 5

We can solve 𝑑-CNLAPP-𝑡 by tackling 𝑚 nest-specific maximization
problem. For each nest 𝑖, the corresponding sub-problem is

max
𝒙𝑖∈{0,1}|𝑆̄

𝑡
|∶‖𝒙𝑖‖1≤𝑐𝑡

{

𝑏𝑖𝑡 +
∑

𝑗∈𝑆̄𝑡 (𝑟𝑗 − 𝑧)𝑣𝑖𝑗𝑥𝑖𝑗
(𝑎𝑖𝑡 +

∑

𝑗∈𝑆̄𝑡 𝑣𝑖𝑗𝑥𝑖𝑗 )1−𝛾𝑖

}

. (A.1)

We prove that problem (A.1) can be solve optimally in polyno-
mial time. Now we first rewrite problem (A.1) into its compact form.
That is max𝒙𝑖∈{0,1}|𝑆̄𝑡 |∶‖𝒙𝑖‖1≤𝑐𝑡

{

𝑉𝑖(𝒙𝑖)𝛾𝑖
[

𝑅𝑖(𝒙𝑖) − 𝑧
]}

, where 𝑉𝑖(𝒙𝑖) = 𝑎𝑖𝑡 +
∑

𝑗∈𝑆̄𝑡 𝑣𝑖𝑗𝑥𝑖𝑗 and 𝑅𝑖(𝒙𝑖) =
𝑏𝑖𝑡+𝑧𝑎𝑖𝑡+

∑

𝑗∈𝑆̄𝑡 𝑟𝑗𝑣𝑖𝑗𝑥𝑖𝑗
𝑎𝑖𝑡+

∑

𝑗∈𝑆̄𝑡 𝑣𝑖𝑗𝑥𝑖𝑗
. Refer to Gallego and

opaloglu (2014), we can obtain the following lemma:

Lemma 6. let 𝒙∗𝑖 be an optimal solution to problem (A.1) and set
𝑖 = max{𝑧, 𝛾𝑖𝑧 + (1 − 𝛾𝑖)𝑅𝑖(𝒙∗𝑖 )}, if there is an optimal solution 𝒙̂𝑖 to the
aximization problem
max

𝒙𝑖∈{0,1}|𝑆̄
𝑡
|∶

‖𝒙𝑖‖1≤𝑐𝑡

{

𝑉𝑖(𝒙𝑖)
[

𝑅𝑖(𝒙𝑖) − 𝑢𝑖
]}

= max
𝒙𝑖∈{0,1}|𝑆̄

𝑡
|∶

‖𝒙𝑖‖1≤𝑐𝑡

⎧

⎪

⎨

⎪

⎩

𝑏𝑖𝑡 + (𝑧 − 𝑢𝑖)𝑎𝑖𝑡 +
∑

𝑗∈𝑆̄𝑡

(𝑟𝑗 − 𝑢𝑖)𝑣𝑖𝑗𝑥𝑖𝑗

⎫

⎪

⎬

⎪

⎭

, (A.2)

then 𝒙̂𝑖 is also an optimal solution to problem (A.1).

Proof. For notational brevity, we denote 𝑉𝑖 = 𝑉𝑖(𝒙̂𝑖), 𝑉 ∗
𝑖 = 𝑉𝑖(𝒙∗𝑖 ),

𝑅̂𝑖 = 𝑅𝑖(𝒙𝑖) and 𝑅∗
𝑖 = 𝑅𝑖(𝒙∗𝑖 ). If 𝑅∗

𝑖 > 𝑧, then 𝑢𝑖 = 𝛾𝑖𝑧 + (1 − 𝛾𝑖)𝑅∗
𝑖 . Since

∗
𝑖 is a feasible but not necessarily optimal solution to problem (A.2),

we have 𝑉𝑖(𝑅̂𝑖−𝛾𝑖𝑧− (1 −𝛾𝑖)𝑅∗
𝑖 ) ≥ 𝑉 ∗

𝑖 (𝑅
∗
𝑖 −𝛾𝑖𝑧− (1 −𝛾𝑖)𝑅∗

𝑖 ) = 𝛾𝑖𝑉 ∗
𝑖 (𝑅

∗
𝑖 −𝑧).

fter rearranging terms, we can obtain

𝑉𝑖(𝑅̂𝑖 − 𝑧) ≥ (𝛾𝑖𝑉 ∗
𝑖 + (1 − 𝛾𝑖)𝑉𝑖)(𝑅∗

𝑖 − 𝑧). (A.3)

Since 𝛾𝑖 ∈ (0, 1], 𝑢𝛾𝑖 is a concave function of 𝑢 ∈ 𝑅+ and satisfies the
subgradient inequality 𝑢𝛾𝑖 ≤ 𝑢̂𝛾𝑖+𝛾𝑖𝑢̂𝛾𝑖−1(𝑢−𝑢̂) = 𝑢̂𝛾𝑖−1(𝛾𝑖𝑢+ (1 −𝛾𝑖)𝑢̂),∀𝑢, ̂𝑢 ∈
+. Set 𝑢 = 𝑉 ∗

𝑖 , 𝑢̂ = 𝑉𝑖, we have (𝑉 ∗
𝑖 )

𝛾𝑖 ≤ 𝑉 𝛾𝑖−1
𝑖 (𝛾𝑖𝑉 ∗

𝑖 + (1 − 𝛾𝑖)𝑉𝑖). As
∗
𝑖 > 𝑧 ≥ 0, it follows that 𝑉 ∗

𝑖 > 0, and thus 𝑉𝑖 > 0 according to the
A.3) by 𝑉 𝛾𝑖−1, then we
nequality above. If we multiply both sides of ( 𝑖
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obtain
̂ 𝛾𝑖
𝑖 (𝑅̂𝑖 − 𝑧) ≥ 𝑉 𝛾𝑖−1

𝑖 (𝛾𝑖𝑉 ∗
𝑖 + (1 − 𝛾𝑖)𝑉𝑖)(𝑅∗

𝑖 − 𝑧) ≥ (𝑉 ∗
𝑖 )

𝛾𝑖 (𝑅∗
𝑖 − 𝑧). (A.4)

Then 𝒙𝑖 must also be an optimal solution to problem (A.1).
If 𝑅∗

𝑖 ≤ 𝑧, then 𝑢𝑖 = 𝑧. It is easy to verify that 𝑉𝑖(𝑅̂𝑖 − 𝑧) ≥
𝑉𝑖(𝟎)(𝑅𝑖(𝟎) − 𝑧) = 0. This inequality implies that either 𝑉𝑖 = 0 or 𝑉𝑖 > 0
nd 𝑅̂𝑖 − 𝑧 ≥ 0. In either case, since 𝑅∗

𝑖 ≤ 𝑧, we can obtain that
̂ 𝛾𝑖
𝑖 (𝑅̂𝑖 − 𝑧) ≥ 0 ≥ (𝑉 ∗

𝑖 )
𝛾𝑖 (𝑅∗

𝑖 − 𝑧). This also indicates that 𝒙𝑖 must also be
n optimal solution to problem (A.1). □

According to Lemma 6, as long as we know the value of 𝑢𝑖, we can
etermine the optimal solution to problem (A.1) by solving problem

(A.2) easily through a greedy algorithm. However, directly computing
𝑢𝑖 requires knowing 𝒙∗𝑖 in advance, which is impracticable since our
objective is to find 𝒙∗𝑖 . To circumvent this challenge, we can first
derive the range of all possible values of 𝑢𝑖, that is [𝑧,max{𝑏𝑖𝑡∕𝑎𝑖𝑡 +
𝑧,max𝑗∈𝑆̄𝑡 𝑟𝑗}] when 𝑎𝑖𝑡 > 0 or [𝑧,max𝑗∈𝑆̄𝑡 𝑟𝑗 ] when 𝑎𝑖𝑡 = 0. Then
we can come up with a collection of assortments 𝑆𝑖 that obtains
optimal solutions to each of the possible 𝑢𝑖. It can be shown that 𝑆𝑖
includes 𝑂(|𝑆̄𝑡

|

2) solutions and must contain an optimal solution to
problem (A.1). Since deriving a candidate assortment and evaluate its
performance in problem (A.1) consumes a time complexity of 𝑂(|𝑆̄𝑡

|).
Then the total time complexity analysis of solving 𝑚 problem (A.1) is
𝑂(𝑚|𝑆̄𝑡

|

3). □

Appendix B. Pseudo-codes of procedures at B&B tree nodes

B.1. Procedures at root node 0

Algorithm 6 Procedures at node 0

Require: 𝑧, instance of the CAOP-CNL 𝑢.
1: 𝑜𝑏𝑗𝑚𝑎𝑥 ← 0.
2: 𝑆0

0 ← {𝑗 ∈ 𝑁|𝑟𝑗 ≤ 𝑧}.
3: 𝑐0 ← 𝑐.
4: 𝑥∗𝑗 ← 0 for ∀𝑗 ∈ 𝑆0

0 .
5: if 𝑆0

0 = 𝑁 then
6: 𝑆0

1 ← ∅, 𝑆̄0 ← ∅.
7: 𝒙∗ ← 𝟎.
8: Exit (the parameterized problem is solved).
9: else
0: 𝑆0

1 ← ∅, 𝑆̄0 ← 𝑁 ⧵ 𝑆0
0 .

1: 𝑎𝑖0 ← 0, 𝑏𝑖0 ← 0,∀𝑖 ∈ 𝑀 .
2: 𝑠 ← ar g max𝑗∈𝑆̄0 𝑟𝑗 .
3: while 0 < |𝑆̄0

| ≤ 𝑐0 and 𝑏𝑖0+(𝑟𝑠−𝑧)
(𝑎𝑖0+𝑣𝑖𝑠)1−𝛾𝑖

≥ 𝑏𝑖0
𝑎1−𝛾𝑖𝑖0

for ∀𝑖 ∈ {𝑘 ∈ 𝑀|𝑣𝑘𝑠 >

0, 𝑎𝑘0 > 0} do
4: 𝑆0

1 ← 𝑆0
1 ∪ {𝑠}, 𝑆̄0 ← 𝑆̄0 ⧵ {𝑠}.

15: 𝑎𝑖0 ← 𝑎𝑖0 + 𝑣𝑖𝑠, 𝑏𝑖0 ← 𝑏𝑖0 + (𝑟𝑠 − 𝑧)𝑣𝑖𝑠,∀𝑖 ∈ {𝑘 ∈ 𝑀|𝑣𝑘𝑠 > 0, 𝑎𝑘0 >
0}.

6: 𝑥∗𝑠 ← 1, 𝑐0 ← 𝑐0 − 1, 𝑠 ← ar g max𝑗∈𝑆̄0 𝑟𝑗 .
7: end while
8: 𝑜𝑏𝑗𝑚𝑎𝑥 ←

∑

𝑖∈𝑀
𝑏𝑖0

𝑎1−𝛾𝑖𝑖0

, record current node.

9: if |𝑆̄0
| > 0 and 𝑐0 > 0 then

20: Continue with branching following the selected branching rule.
21: else
22: Stop without branching.
23: end if
24: end if
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Table C.10
Results on instances with 𝑛 = 50 under varying overlapping rates.
𝑚 = 5, 𝑛 = 50, 𝑐 = ⌈0.1𝑛⌉ 𝛿 = 1.0 𝛿 = 1.2 𝛿 = 1.5 𝛿 = 2.0 𝛿 = 2.5 𝛿 = 3.0

H1: SBR Obj. 3.028 3.035 2.918 2.745 2.698 2.671
Time 0.00 0.00 0.00 0.00 0.00 0.00

H2: BS+GA Obj. 3.302 3.275 3.238 2.978 2.946 2.843
Time 0.00 0.00 0.00 0.00 0.00 0.00

BS+BB

Obj. 3.302 3.282 3.245 2.984 2.951 2.847
Time 0.03 0.03 0.03 0.06 0.03 0.04
#Opt. 20 20 20 20 20 20
#Imp. vs. H1 19 20 20 19 20 20
#Imp. vs. H2 0 4 3 5 5 5
Impr. (%) vs. H1 9.20 8.34 11.43 8.78 9.53 6.72
Impr. (%) vs. H2 0.00 0.20 0.21 0.20 0.14 0.14
#Iter. 3.1 2.9 3.1 3.4 2.7 2.9
Table C.11
Results on instances with 𝑛 = 100 under varying overlapping rates.
𝑚 = 5, 𝑛 = 100, 𝑐 = ⌈0.1𝑛⌉ 𝛿 = 1.0 𝛿 = 1.2 𝛿 = 1.5 𝛿 = 2.0 𝛿 = 2.5 𝛿 = 3.0

H1: SBR Obj. 3.832 3.694 3.572 3.484 3.306 3.092
Time 0.00 0.00 0.00 0.00 0.00 0.00

H2: BS+GA Obj. 4.107 3.996 3.880 3.738 3.570 3.313
Time 0.01 0.01 0.01 0.01 0.01 0.01

BS+BB

Obj. 4.107 3.999 3.882 3.739 3.574 3.313
Time 0.47 0.94 1.28 2.35 1.34 4.12
#Opt. 20 20 20 20 20 20
#Imp. vs. H1 20 20 20 20 20 20
#Imp. vs. H2 0 5 3 4 5 1
Impr. (%) vs. H1 7.31 8.34 8.72 7.33 8.16 7.22
Impr. (%) vs. H2 0.00 0.09 0.05 0.02 0.14 0.00
#Iter. 3.2 2.9 3.4 3.1 2.7 2.6
Table C.12
Results on instances with 𝑛 = 150 under varying overlapping rates.
𝑚 = 5, 𝑛 = 150, 𝑐 = ⌈0.1𝑛⌉ 𝛿 = 1.0 𝛿 = 1.2 𝛿 = 1.5 𝛿 = 2.0 𝛿 = 2.5 𝛿 = 3.0

H1: SBR Obj. 4.168 4.093 3.996 3.874 3.617 3.513
Time 0.00 0.00 0.00 0.00 0.00 0.00

H2: BS+GA Obj. 4.463 4.403 4.317 4.149 3.915 3.747
Time 0.02 0.02 0.02 0.02 0.03 0.03

BS+BB

Obj. 4.463 4.404 4.318 4.152 3.916 3.747
Time 8.82 5.64 14.56 26.12 43.28 32.17
#Opt. 20 20 20 20 20 20
#Imp. vs. H1 20 20 20 20 20 20
#Imp. vs. H2 0 1 4 3 3 0
Impr. (%) vs. H1 7.17 7.65 8.12 7.25 8.26 6.67
Impr. (%) vs. H2 0.00 0.01 0.04 0.08 0.02 0.00
#Iter. 2.8 2.5 3.6 3.0 2.9 3.1
Table C.13
Results on instances with 𝑛 = 200 under varying overlapping rates.
𝑚 = 5, 𝑛 = 200, 𝑐 = ⌈0.1𝑛⌉ 𝛿 = 1.0 𝛿 = 1.2 𝛿 = 1.5 𝛿 = 2.0 𝛿 = 2.5 𝛿 = 3.0

H1: SBR Obj. 4.432 4.359 4.204 4.123 3.969 3.807
Time 0.00 0.00 0.00 0.00 0.00 0.00

H2: BS+GA Obj. 4.720 4.636 4.522 4.380 4.266 4.094
Time 0.04 0.04 0.04 0.04 0.04 0.04

BS+BB

Obj. 4.722 4.636 4.523 4.381 4.266 4.095
Time 275.13 289.25 306.30 491.13 1103.94 996.89
#Opt. 19 19 19 18 17 18
#Imp. vs. H1 20 20 20 20 20 20
#Imp. vs. H2 5 1 4 4 3 2
Impr. (%) vs. H1 6.56 6.42 7.64 6.30 7.53 7.52
Impr. (%) vs. H2 0.04 0.00 0.01 0.03 0.02 0.03
#Iter. 3.1 2.8 3.0 3.1 3.2 2.9
197 



L. Zhang et al.

1
1
1
1

𝑡

s
o
t
i
b

i

r

European Journal of Operational Research 324 (2025) 183–199 
Algorithm 7 Procedures at node 𝑡 ≠ 0

Require: 𝑧, 𝑜𝑏𝑗𝑚𝑎𝑥, instance of the CAOP-CNL 𝑢.
1: Inherit 𝑎𝑖𝑡, 𝑏𝑖𝑡, 𝑐𝑡, 𝑆𝑡

0, 𝑆𝑡
1 and 𝑆̄𝑡 from the predecessor node.

2: 𝑠 ← ar g max𝑗∈𝑆̄𝑡 𝑟𝑗 .
3: while 0 < |𝑆̄𝑡

| ≤ 𝑐𝑡 and 𝑏𝑖𝑡+(𝑟𝑠−𝑧)
(𝑎𝑖𝑡+𝑣𝑖𝑠)1−𝛾𝑖

≥ 𝑏𝑖𝑡
𝑎1−𝛾𝑖𝑖𝑡

for ∀𝑖 ∈ {𝑘 ∈ 𝑀|𝑣𝑘𝑠 >

0, 𝑎𝑘𝑡 > 0} do
4: 𝑆𝑡

1 ← 𝑆𝑡
1 ∪ {𝑠}, 𝑆̄𝑡 ← 𝑆̄𝑡 ⧵ {𝑠}.

5: 𝑎𝑖𝑡 ← 𝑎𝑖𝑡 + 𝑣𝑖𝑠, 𝑏𝑖𝑡 ← 𝑏𝑖𝑡 + (𝑟𝑠 − 𝑧)𝑣𝑖𝑠,∀𝑖 ∈ {𝑘 ∈ 𝑀|𝑣𝑘𝑠 > 0, 𝑎𝑘𝑡 > 0}.
6: 𝑥∗𝑠 ← 1, 𝑐𝑡 ← 𝑐𝑡 − 1, 𝑠 ← ar g max𝑗∈𝑆̄𝑡 𝑟𝑗 .
7: end while
8: 𝑜𝑏𝑗𝑐 𝑢𝑟 ←

∑

𝑖∈𝑀
𝑏𝑖𝑡

𝑎1−𝛾𝑖𝑖𝑡

.

9: if 𝑜𝑏𝑗𝑐 𝑢𝑟 > 𝑜𝑏𝑗𝑚𝑎𝑥 then
0: 𝑜𝑏𝑗𝑚𝑎𝑥 ← 𝑜𝑏𝑗𝑐 𝑢𝑟, record current node.
1: end if
2: 𝑏𝑜𝑢𝑛𝑑 ← solve 𝑑-CNLAPP-𝑡.
3: if 𝑏𝑜𝑢𝑛𝑑 > 𝑜𝑏𝑗𝑚𝑎𝑥 and |𝑆̄𝑡

| > 0 and 𝑐𝑡 > 0 then
14: Continue with branching following the selected branching rule.
15: else
16: Stop without branching.
17: end if

B.2. Procedures at non-root node t

B.3. Improve the initial upper bound of expected revenue

Following the same idea of generating the upper bound of CNLAPP-
, we can relaxed the original problem (3) into the following problem

max
∑

𝑖∈𝑀 𝑉𝑖(𝒙𝑖)𝛾𝑖𝑅𝑖(𝒙𝑖)
𝑣0 +

∑

𝑙∈𝑀 𝑉𝑙(𝒙𝑙)𝛾𝑙
(B.1a)

s.t.
∑

𝑗∈𝑁
𝑥𝑖𝑗 ≤ 𝑐 , 𝑖 ∈ 𝑀 (B.1b)

𝒙𝑖 = (𝑥𝑖1, 𝑥𝑖2,… , 𝑥𝑖𝑛) ∈ {0, 1}𝑛, 𝑖 ∈ 𝑀 . (B.1c)

Here the original decision variable vector 𝒙 is expanded into a
eries of nest-specific variable vectors 𝒙𝑖, which eliminate the nest-
verlapping effect. This problem is known to be the assortment op-
imization problem under the NL model with cardinality constraint
mposed on each nest, which is shown to be polynomial-time solvable
y Gallego and Topaloglu (2014). In this paper, we solve it in a slightly

different manner from the literature. Specifically, we employ a similar
binary search framework as shown in Section 3.1 to find the fixed point
of a function 𝐷(𝑧) = ∑

𝑖∈𝑀 max𝒙𝑖∈{0,1}𝑛∶|𝒙𝑖|≤𝑐
{

𝑉𝑖(𝒙𝑖)𝛾𝑖
[

𝑅𝑖(𝒙𝑖) − 𝑧
]}

. The
nitial upper bound is computed by Algorithm 1 and the lower bound

is obtained from the heuristic shown in Section 4. Since 𝐷(𝑧) can be
optimally solved in polynomial times as shown in Appendix A.6, we can
easily obtain the optimal solution of problem (B.1) to derive a tighter
upper bound of the original problem.

Appendix C. Impact of nest overlapping rate

A significant feature that enhances the flexibility of the CNL model,
despite increasing estimation complexity compared to the MNL and
NL models, is its ability to assign each product to multiple nests.
In our numerical experiments, we control this feature using the nest
overlapping rate 𝛿, which dictates the average number of nests to which
a product belongs. This section aims to assess the impact of this rate on
the performance of our algorithms. To achieve this, we generate test
instances with 𝛿 varying in {1.0, 1.5, 2.0, 2.5, 3.0}. The numerical results
of our algorithms on instances with 𝑚 = 5 and 𝑛 ∈ {50, 100, 150, 200}
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under a cardinality constraint 𝑐 = ⌈0.1𝑛⌉, a cardinality level where
the exact algorithm exhibits the highest computation time in our main
numerical experiments, are reported in Tables C.10 to C.13.

The results indicate that the computation time of heuristic algo-
ithms is stable across varying values of overlapping rate. The objective

value improvement of the exact method over each heuristic also re-
mains consistent within a specific range. Conversely, the computation
time of the exact algorithm increases significantly with the growth of
the overlapping rate 𝛿, yet it remains within a manageable magnitude.
For instance, when the overlapping rate increases from 1.2 to 3.0, the
optimal solution for all instances with 𝑛 ≤ 150 can still be obtained
within a one-hour time limit.
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