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Abstract
Capacity plays a crucial role in a port’s competitive position and the growth of 
its market share. An investment decision to provide new port capacity should be 
supported by a growing demand for port services. However, port demand is vola-
tile and uncertain in an increasingly competitive market environment. Also, fore-
casting models themselves are associated with epistemic uncertainty due to model 
and parameter uncertainties. This paper applies a Bayesian statistical method to 
forecast the annual throughput of the multipurpose Port of Isafjordur in Iceland. 
Model uncertainties are thus taken into account, while parameter uncertainties are 
handled by selecting influencing macroeconomic variables based on mutual infor-
mation analysis. The presented model has an adaptive capability as new informa-
tion becomes available. Our method results in a range of port throughput forecasts, 
in addition to a point estimate, and it also accounts for epistemic uncertainty, thus 
increasing the reliability of forecasts. Our results provide support for informed deci-
sion-making in capacity planning and management. Our forecasts show a constant 
linear growth of containerized throughput the period 2020–2025. Noncontainerized 
throughput declines rapidly over the same period.
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1  Introduction

Port throughput forecasting plays an important role in port capacity planning and 
management. This is due to the long technical life of indivisibles and the irre-
versible nature of port infrastructure investments (Taneja et al. 2010). Once the 
infrastructure is in place, the characteristics of the port are determined for a long 
period (Van Dorsser et al. 2012). Furthermore, port planning processes may take 
5–15 years, from the initiation of the masterplan to its final approval (Notteboom 
2006). Moreover, port projects require capital and fixed investments having long 
payback periods. This necessitates the financial viability of investments based on 
projections of port throughput and commodity flows (De Langen et al. 2012).

A capacity shortage affects port performance and consequently the competitive 
position of the port due to congestion and increases in waiting time (Jarrett 2015). 
On the other hand, structural overcapacity signifies a failure in port planning, but 
excess port capacity is often created and offered to port users to satisfy their potential 
growth (Haralambides 2017). Eskafi et al. (2019) pointed out that demand is tempo-
rally and spatially affected by salient stakeholders during the projected lifetime of 
a port. Furthermore, demand levels are volatile over time (Novaes et al. 2012), and 
the assumption of system stability leads to uncertain and inaccurate forecasts (Fly-
vbjerg et al. 2003). In testimony of volatile circumstances, the current outbreak of 
COVID-19 has created uncertainty in cargo flows, signaling increasing challenges in 
decision-making in port development projects (Notteboom and Haralambides 2020).

Forecasting models provide insights to the development of port demand. Soft 
computing models have received increasing attention as they capture linear and 
nonlinear causal relations between input data and port throughput (Munim and 
Schramm 2020). For instance, port throughput forecasting models based on back-
propagation (BP) neural network algorithms (Ping and Fei 2013) have been pre-
sented in literature. However, a lack of input data restricts the performance of 
these models, increases uncertainty, and reduces the reliability of the forecasts 
result (Parola et al. 2020).

The multiplicity of disciplines with uncertain or missing information (quantita-
tive and qualitative) and data in engineering and management systems entail vari-
ous uncertainties associated with model outputs (Yang and Xu 2002). Rasouli and 
Timmermans (2014) stressed the existence of uncertainty associated with input 
data and forecast models. Liu and Duru (2020) emphasized that to increase the 
reliability of forecasts, the epistemic uncertainty of the forecast should be taken 
into account. Epistemic uncertainties are divided into model uncertainties (due to 
the choice of variables, assumptions, and processes) and parameter uncertainties 
(related to the quantity and quality of the data used) (Kowsari et al. 2019).

However, as far as epistemic uncertainty in port throughput forecasts is con-
cerned, and as overviewed in Sect.  2, forecasting models generally suffer from 
the following: (1) limited handling of uncertainties in the models, (2) subjectively 
selecting explanatory variables, and (3) insufficient/sparse input data to properly 
build a forecasting model. These limitations hamper the reliability and perfor-
mance of a port throughput forecasting model.
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Therefore, this paper presents a rigorous Bayesian model that accounts for epis-
temic uncertainties in a port throughput forecast. The model meaningfully increases 
the reliability of forecast results and facilitates informed decision-making in port 
capacity planning and management.

To select our influencing macroeconomic variables, a variable selection method 
based on mutual information is applied. The method estimates the level of linear and 
nonlinear correlations between variables. It also determines the statistical depend-
ency of the variables by quantifying the amount of information held in a variable 
through another variable (Soofi et al. 2010).

The uncertainty of parameters is accounted for in the Bayesian method by treat-
ing the regression coefficients as random variables and considering their distribu-
tions conditional on the data (Kowsari et  al. 2020). One of the advantages of the 
Bayesian method in port throughput forecasting, moreover, is that it can be used 
with sparse or relatively small number of input observations, providing acceptable 
results.1 Taneja (2013, p. 199) states that demand forecasts in port planning should 
take into account a certain degree of uncertainty, providing interval forecasts rather 
than point estimates. The model presented in this paper not only gives a point fore-
cast which has the highest probability, but also offers a range of port throughput 
forecasts with confidence intervals. Consequently, the outcome of the model pro-
vides useful information to decision-makers and port planners, enabling them to bet-
ter meet changing and uncertain future demand. Another strength of our model lies 
in the fact that it has an adaptive learning capability to be updated over time based 
on new information. Hence, it can provide a continuously or regularly updated port 
throughput forecast.

Our methodology is applied to forecast the annual throughput of the multipur-
pose Port of Isafjordur in Iceland. The approach presented here can be tailored to 
other ports to forecast their throughput.

The remainder of the paper is structured as follows: Sect. 2 outlines the litera-
ture review by discussing different port throughput forecasting methods, Sect.  3 
addresses the mutual information and Bayesian method, Sect. 4 describes the study 
area and the data used, Sect. 5 presents and discusses the results, and Sect. 6 con-
cludes with further remarks.

2 � Different port throughput forecasting methods

Given the importance of port throughput forecasting, this section provides a litera-
ture overview of the state-of-the-art port throughput forecasting research, while also 
pointing out the present knowledge gap.

Different time series models have been used earlier to forecast port throughput. 
The moving average is a simple time series model that uses past internal patterns 
of data to forecast future values (Rojas et  al. 2015). However, Van Dorsser et  al. 
(2012) criticized the model as it assumes a static environment without insights from 

1  This said, however, an increase in the number of input data would improve the accuracy of the results.



351A model for port throughput forecasting using Bayesian…

external influencing factors, which is an inappropriate simplification for (long-term) 
port throughput forecasts.

Hui et  al. (2004) used regression models to forecast container throughput. The 
authors seized the opportunity to reiterate the obvious need for stationarity in 
regressor variables. In a port throughput forecasting context, they also point out that, 
if a nonstationary time series follows a random walk, the capability of the model 
to include the effects of a temporary macroeconomic shock is limited (Gosasang 
et al. 2011) and/or the shock is not dissipated with the time series (Van Dorsser et al. 
2012).

A vector error correction model without a theoretical basis has been criticized as 
a purely mathematical model (Bonham et al. 2009). The vector error correction and 
its alternative error correction (Hui et  al. 2004) are suitable for multivariate fore-
casting models where macroeconomic variables are characterized by stationary time 
series (Munim and Schramm 2020) and have a true relation in the long-term with 
port throughput (Van Dorsser et al. 2012). Jarrett (2015) pointed out that, to fore-
cast port throughput, time series decomposition model can be used if observed data 
show a seasonal pattern, and the seasonal component has a multiplicative or additive 
trend. This model is mainly suitable for intermediate or long-range port throughput 
forecasts.

Due to the limitations of time series models, recent studies have used soft com-
puting models including artificial neural networks (Gosasang et al. 2011), transfer 
forecasting models (Xiao et  al. 2014), fuzzy logic, genetic algorithms (Chen and 
Chen 2010), artificial bee colony (Gökkuş et al. 2017), and ant colony algorithms 
(Nie and Zhao 2019). These models are used to simulate complex processes where a 
mathematical description is not performable due to random behavior and nonlinear 
characteristics of the process (Peng and Chu 2009). These models postulate the rela-
tion between port throughput and one or more independent variables.

Gosasang et al. (2018) pointed out that an artificial neural network is suitable for 
nonstationary data. This method provides better forecasting results than traditional 
methods (Gosasang et al. 2011) as the artificial neural network effectively captures 
complex (linear and nonlinear) relations between macroeconomic variables and port 
throughput (Ping and Fei 2013). However, artificial neural network models require a 
substantial amount of input data during the training and learning process, otherwise 
they are not able to generate accurate and reliable results (Ping and Fei 2013). The 
models are prone to be over fitted by a wide variety of variables due to their black-
box nature and complexity (Gosasang et al. 2018).

Qualitative methods mainly rely on expert judgment (De Langen et  al. 2012). 
These methods apply different techniques including rating scale, analog, Delphi, 
leading indicator, diffusion, performance evaluation review technique, survey, inter-
views, direct observation, and written documents (Jain 2005; Kesh and Raja 2005; 
Patton 2001). Qualitative models are used when data are unavailable, scarce, and 
ambiguous. However, the results of these models are based on the opinion, knowl-
edge, and experience of experts, and thus are subjective and prone to (cognitive) 
biases (Patton 2001).

Chen et al. (2016) pointed out that, due to the diversity of many influencing factors, 
a single model is often insufficient and may result in inaccurate forecasts. Hybrid (or 
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joint) models, made up of two or more models to synthesize their information (Chen 
et al. 2016), take advantage of each model for more stable results (Van Dorsser et al. 
2012; Tian et al. 2010) and improved forecast precision (Huang et al. 2015; Li et al. 
2008). Hybrid models are useful when it is uncertain which single model provides the 
most accurate forecast (Armstrong 2001). However, Chen et  al. (2016) warned that, 
in hybrid models, individual models should be carefully selected as each model has 
its own influence and thus increases the uncertainty of the result. On the other hand, 
using several models may increase the redundancy, complexity, and computation load 
of hybrid models.

Moreover, despite the advances made in forecasting methods, the correct interpreta-
tion of results and their effective communication to stakeholders present challenges to 
port authorities, with regard to choosing and applying the right forecasting methods 
(Parola et al. 2020). Parola et al. (2020) stressed that the time horizon can further influ-
ence the selection of forecasting method and that, in strategic planning, port authorities 
should deal with uncertainties including opportunities and vulnerabilities. In this vein, 
Eskafi et al. (2021) presented a framework to deal with uncertainties in port planning 
process aimed at seizing opportunities and managing vulnerabilities in different time 
horizons of a port plan. They point out that the time horizon can affect the level of 
uncertainty and, consequently, the forecasting methodology.

Port throughput forecasting models have always contained epistemic uncer-
tainty due to incomplete knowledge of model components, and complex and causal 
(with partly known) relations, with a large number of macroeconomic variables 
that often include limited data in them, the chosen modeling technique, the applied 
modeling assumptions, and the necessary simplifications. To increase the reliabil-
ity of the forecast results, the inevitable epistemic uncertainty should be taken into 
consideration.

Eskafi et al. (2020b) presented the advantages of mutual information in the selec-
tion of influencing macroeconomic variables as input for port throughput forecasting 
models. They stated that the application of mutual information increases the reli-
ability of the models. The mutual information method identifies the important vari-
ables that should be used in Bayesian models, and thus it improves the accuracy of 
model results (Yang et al. 2018) as it accounts for model uncertainties. The Bayes-
ian method has been used in the literature in different fields including ship emis-
sions (Liu and Duru 2020), shipping accidents (Zhang and Thai 2016), resilience of 
inland waterways ports (Hosseini and Barker 2016), deep-water port infrastructure 
resilience (Hossain et al. 2019), and classification of port variables (Serrano et al. 
2018). However, the application of a Bayesian method to forecast port throughput is 
scant in the scientific literature.

3 � Methods

3.1 � Mutual information

Economic development is an important driver of maritime trade, and there is an 
interrelation between port throughput and macroeconomic variables (e.g., Parola 



353A model for port throughput forecasting using Bayesian…

et  al. 2020). We use mutual information to identify key macroeconomic variables 
that influence port throughput, and thus reduce the need to subjectively select mac-
roeconomic input variables. Application of mutual information reduces uncertainty 
in port throughput forecasts, as it effectively identifies the influencing macroeco-
nomic variables on port throughput (Eskafi et  al. 2020b). In other words, mutual 
information can be used as an approach to recognize insignificant variables that 
should be excluded from a model (Yang et al. 2018).

Mutual information is an important concept in information theory and a widely 
used measure to define the dependency of variables, especially in nonlinear systems. 
It is rooted in the concept of entropy (Shannon 1948) and Kullback–Leibler diver-
gence (Kullback and Leibler 1951) and is suitable for assessing uncertainties and 
the information content between variables. The mutual information method meas-
ures the linear and nonlinear correlation between random variables and illustrates 
the distributions of the information measures in terms of interdependency between 
variables. It takes a zero value iff the two random variables (e.g., macroeconomic 
variables and port throughput in this study) are statistically independent. However, 
when the two variables are similar their mutual information is maximized.

For a pair of random variables ( X, Y  ) with marginal probability distributions of 
�x(x) and �y(y) , mutual information uses the Kullback–Leibler measure to determine 
the distance between the joint probability distribution, �(x, y) , and the distribution 
associated with the case of complete independence [i.e., �x(x)�y(y) ] and according 
to Kraskov et al. (2004) is expressed as

Mutual information quantifies how informative a random variable (X ) with pos-
sible outcomes (xi ), each with probability p(x), could be

where the base-2 logarithm2 corresponds to the unit of information measured in 
“bits” (Shannon 1948). Thus, mutual information can be obtained as

(1)I(X, Y) = ∬ �(x, y)log
�(x, y)

�x(x)�y(y)
dxdy.

(2)H(X) = −∫
x∈X

p(x)log2p(x)dx,

I(X, Y) = H(X) + H(Y) − H(X, Y)

= H(X) − H(X|Y)

(3)= H(Y) − H(Y|X)

2  The base of the logarithm determines the units in which information is measured. For example, the 
base 2 logarithm is corresponding to information measured in “bits”. If the natural logarithm (ln) is used, 
it produces a measurement of entropy in “nats” and if 10-based logarithm (log) is used it gives “dits”.
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where H(X) and H(Y) are the entropy of random variables X and Y  , respectively; 
H(X, Y) is their joint entropy; and H(X|Y) and H(Y|X) are their conditional entropy 
and can be calculated as

where �(x, y) is the joint probability distribution. The conditional entropy H(X|Y) 
is the amount of uncertainty left in X when knowing Y  . Thus, from these equations, 
the I(X, Y) can be interpreted as the reduction in the uncertainty of the random vari-
able X by the knowledge of another random Y  (Maes et al. 1997).

3.2 � Bayesian method

The Bayesian statistical method is an effective approach that allows the combination 
of knowledge about parameters in a synthesis of prior knowledge with the available 
data. In the Bayesian method, a posterior probability density is proportional to the 
likelihood function on the data, multiplied by the prior probability density. In clas-
sical approaches, instead, such as maximum likelihood, the inference is based on 
the likelihood of the coefficients, conditional on the data alone (Congdon 2014). To 
utilize the Bayesian method, the prediction models can be linearized by a simple 
expression of the form

where the dependent variable ( yi ) is the annual port throughput; the independ-
ent variables ( xi ) are the macroeconomic variables; and the coefficients C0–C6 can 
be estimated by Bayesian regression. In other words, the relationship between a 
dependent variable ( yi ) and the explanatory variables ( xi) can be obtained by a linear 
regression model. Let yi = (yi,… , yn) be a vector of historical data, with n number 
of available observations. The matrix of explanatory variables ( X ) can be expressed 
as

Assuming a conditional normal distribution of the dependent variable ( yi ), given 
the explanatory variables ( X ), the mean of the normal distribution has a linear func-
tion as:

where � = (�i,… , �k) is a vector of unknown parameters. In other words, the 
dependent variable follows a normal distribution, yi ∼ N

(
X�, �2I

)
, with a mean of 

X� and variance of �2I , where I is the n × n identity matrix.

(4)H(X|Y) = −∬ �(x, y)log�(x|y)dxdy,

(5)logyi = C0 + C1x1 + C2x2 + C3x3 + C4x4 + C5x5 + C6x6,

(6)X =

⎡⎢⎢⎣

x11 x12 … x1k
⋮ ⋮ ⋮ ⋮

xn1 xn2 … xnk

⎤⎥⎥⎦
.

(7)E
(
yi|�,X

)
= �1xi1 +⋯ + �kxik,
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In Bayesian statistics, the posterior distribution describes updated information 
about the unknown parameter ( � ) and can be obtained by multiplying a prior distri-
bution by a likelihood function as follows:

where p(�) is the prior distribution and p(y|�) is the likelihood function; i.e., a prob-
ability distribution that expresses the information contained in the historical data.

In this paper, the logarithm of the port throughput is assumed to follow a normal 
distribution, so that (Ding and Teo 2010):

where N is the number of available historical observations, y is the vector of the 
logarithm of the port throughput data, (X�)i is the i-th element of the vector X� rep-
resenting the mean value of the prediction model, and � is the standard deviation. 
On the other hand, we assume a noninformative prior for the unknown parameters, 
i.e., p

(
�, �2|X) ∝ �2 . Thus, the joint posterior distribution of � and �2 is given by

The posterior distribution of the unknown parameters θ is obtained by using 
Eq. 10. Therefore, the Bayesian posterior inference is used to simulate port through-
put from the posterior macroeconomic variables.

The Bayesian model can take into account the statistical uncertainty associated 
with the limited number of input observations. The macroeconomic variables are 
considered as random variables and their associated uncertainties are quantified by 
the posterior distribution. This makes the Bayesian method preferable over classical 
regression because more information can be extracted from the probability distribu-
tion of each parameter. The capability of accounting for causal and uncertain rela-
tions of macroeconomic variables with port throughput makes the Bayesian model a 
useful tool for port throughput forecast.

In this paper, the MATLAB programming language is used to code the equations: 
(1) to calculate the mutual information between macroeconomic variables and port 
throughput, to identify the macroeconomic variables that influence port through-
put, and (2) to develop a Bayesian model to forecast port throughput based on the 
selected macroeconomic variables.

4 � Study area and data used

The multipurpose Port of Isafjordur is a hub port in northwest Iceland, in the so-
called Westfjords (Fig. 1). The port has a competitive advantage, due to its infra-
structure and services, among the other ports in the region. Coastal shipping and 

(8)p(�|y) ∝ p(�)p(y|�),

(9)p
�
y��2, �,X

�
=

N�
i=1

1

�
√
2�

exp

�
−
(yi − (X�)i)

2

2�2

�
,

(10)p
(
�, �2|y,X) ∝ p

(
�, �2|X)p(y|�2, y,X

)
∝ �2

n∏
i=1

N
(
yi|(X�)i, �2

)
.
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road transportation are the only two transport modes that connect the port to its 
hinterland, which is the whole country. Industrial fisheries, aquaculture, and further 
fish processing (i.e., packing, freezing, and storage) are the main businesses of the 
region. These activities are increasing in the region, which increases the volume of 
cargo and container handling in the port. A reliable port throughput forecast sup-
ports the port authority in decision-making for capacity planning and management 
to position the port for sustained growth. The multipurpose Port of Isafjordur is the 
third busiest port of call for cruise ships in Iceland (Isafjordur Port Authority 2019).

The main functions of the Port of Isafjordur include:

•	 Transfer and storage of containerized and noncontainerized cargo.
•	 Industrial value-added activities related to fisheries and aquaculture.
•	 Recreational activities, such as rendering services to expedition vessels, cruise 

ships, and small private and sailing boats.

In this study, two types of port throughput data are collected: containerized 
throughput in twenty-foot equivalent unit (TEU) and noncontainerized throughput 
in tonnes. The latter includes fuel oil, marine products, and industrial materials. 
Table 1 presents all cargoes that are handled in the port in question. Small cargoes 
(in terms of quantity) are considered as other general cargo. There is no information 
about the nature of the cargo inside containers. Port throughput related to recrea-
tional activities has not been considered in our study.

Fig. 1   The multipurpose Port of Isafjordur. The location of the study area is shown on the map of Iceland 
at the top left
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The annual containerized throughput data of the port are collected for the years 
1990–2019. The available data for noncontainerized throughput are garnered 
between 1990 and 2016. Noncontainerized data for 2017–2019 were limited and 
unusable for building the model. Thus, the noncontainerized throughput is forecast 
for 2017–2025.

To build our model, six macroeconomic variables, available at Statistics Iceland 
(2019), have been used. They include national gross domestic product (GDP), aver-
age yearly consumer price index (CPI), world GDP, the volume of national export 
trade, the volume of national import trade, and the national population. These vari-
ables were also used in previous studies (Gökkuş et al. 2017; Gosasang et al. 2018). 
Of course, if more macroeconomic variables are available, they could naturally be 
used in mutual information analysis to discover those that influence port throughput 
the most. In other words, the application of mutual information discovers variables 
that should be used and/or excluded as inputs in building a forecasting model. His-
torical and forecast values of these variables refer to 1990–2019 and 2020–2025, 
respectively (Statistics Iceland 2019).

The influence of factors that cannot be quantified from observation of the past 
(e.g., growth in the port’s captive market) or cannot be accurately predicted (e.g., 
innovation or breakthrough technology in cargo handling) are excluded in this study. 
Transshipment flows are not covered in this study either. However, the presented 
methodology can also be applied to forecast (non)containerized port throughput 
with (high) share of transshipment flow. This is because the changes in transship-
ment flow are also influenced by the development of macroeconomic variables (e.g., 
Parola et al. 2020).

5 � Results and discussion

To increase the reliability of our model, the associated epistemic uncertainties are 
taken into consideration. To account for parameter uncertainty, mutual information 
is used to objectively select the input variables for of model. Figure  2 shows the 
results of the mutual information values between port throughput and macroeco-
nomic variables.

Table 1   List of cargoes handled at the Port of Isafjordur

Noncontainerized cargo (T) Containerized cargo (TEU)

Fuel oil [gasoline, (marine) diesel oil] Container and reefer containers
Road construction and maintenance materials (asphalt, salt, cement, 

etc.)
Fertilizer and fish feed
Marine product (fish, shrimp, etc.)
Industrial materials (fishing and maritime equipment, scrap, etc.)
Small general cargo (construction material, etc.)
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The results indicate that port throughput is correlated with the six macroeco-
nomic variables of this study. In comparison with noncontainerized throughput, con-
tainerized throughput has a relatively higher correlation with macroeconomic vari-
ables. This is because the majority of cargo flows in the port is containerized, and 
containerized cargo is the main form of transportation from/to the Port of Isafjordur.

Since the port throughput is influenced by the six macroeconomic variables, these 
variables are used as independent variables (input) in the port throughput forecast-
ing model. The mean and standard deviation of the model parameters, along with 
the total standard deviation of the model with respect to the port throughput are 
shown in Table 2. The values are derived from the corresponding variable’s poste-
rior distribution that results from the model.

Figure 3 shows the posterior distributions of the model parameters. For the sake 
of space, only containerized throughput is depicted. However, almost the same 
behavior can be seen for noncontainerized throughput. The well-defined normal-
shaped posterior distribution of the regression coefficients indicates an appropriate 
assumption of the prior distribution.

Figure 3 showcases one of the advantages of the Bayesian statistical method, as it 
determines the posterior distribution of macroeconomic variables, vis-à-vis classical 
approaches which only return point estimates.

Figure 4 shows the residuals as a function of data that represent the model good-
ness of fit. Another qualitative assessment of normality is demonstrated by the histo-
grams of the residuals. The residuals of the model follow the Gaussian distribution 
and are generally assumed from the outset to be normally distributed with zero mean 
and a standard deviation of σ. This assumption is depicted by a normal probability 
plot in Fig. 4.

As can be seen in Fig.  4, both in containerized and noncontainerized through-
put, the residuals are distributed around zero. Also, the residuals of the model are 

Fig. 2   Mutual information values between port throughput (right: containerized, left: noncontainerized) 
and macroeconomic variables. The acronyms are the national GDP (NGDP), the average yearly CPI 
(ACPI), the world GDP (WGDP), the volume of national export trade (VNET), the volume of national 
import trade (VNIT), and the national population (NPOP)
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normally distributed with zero mean and small standard deviation (i.e., 0.049 σ for 
containerized and 0.098 σ for noncontainerized throughput), indicating that there 
are neither significant residual outliers nor systematic trends in the overall distribu-
tion of residuals. As demonstrated, the results show the model’s goodness of fit with 
(limited3) input data. Table 3 gives the result of the port throughput forecasts, based 
on the available forecast macroeconomic variables (i.e., X1 to X6) and their distribu-
tion over the years.

Figure 5 shows the development of the historical and the forecast port throughput 
expressed by the gray shaded area for different confidence intervals of the forecast.

The confidence limits indicate the future port throughput forecasts while associat-
ing the epistemic uncertainties, including model uncertainties and parameter uncer-
tainties. Thus, the uncertainty bounds can be further used for decision-making in 
port planning and management. For instance, the national GDP and the world GDP 

Fig. 3   The posterior histograms of the regression coefficients. The solid lines indicate the normal distri-
bution fitted on the posterior values for containerized throughput

3  For instance, relatively short data series of 27 observations (1990–2017) of annual noncontainerized, 
and 29 observations (1990–2019) of annual containerized port throughput are used. The small number of 
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have been affected by the COVID-19 pandemic. In this context, although updated 
macroeconomic variables including the national and world GDPs forecasts were not 
used in this study, port throughput can be expected to be within the lower uncer-
tainty bounds.

As shown in Fig. 5, containerized throughput shows a growing trend since 1990. 
However, during the world economic downturn of 2008–2009, a reduced pace of 
growth is observed until 2012. Noncontainerized throughput generally shows a 
decreasing trend from 1990 to 2012. In 2013, noncontainerized throughput recov-
ered, and containerized throughput significantly increased. One of the reasons for 

Fig. 4   Right: the histogram of residuals along with a fitted normal distribution. The mean and standard 
deviation of the residuals are also shown. Left: residuals (circles) of the prediction model using the mean 
model parameter estimates for containerized throughput (top row) and noncontainerized throughput (bot-
tom row)

Footnote 3 (continued)
observations is insufficient in soft computing models (e.g., artificial neural networks) but it is workable 
here.
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this substantial increase is the rapid growth in aquaculture, especially the salmon 
industry in the region. The fast-growing aquaculture stimulates the business envi-
ronment and drives the growth of relevant activities including marine production, 
processing, and packing, as well as industrial equipment manufacturing. In this 
respect, an additional shipping company started calling the port from 2013 to satisfy 
the increasing demand.

As depicted in Fig. 5, the forecast containerized throughput follows an increasing 
trend. The growth rate is somewhat lower between 2022 and 2025. Containerized 

Table 3   The prediction of the port throughput (logarithms base 10) is based on the explanatory variables 
for throughput

The acronyms stand for port throughput (PT), the national GDP (NGDP), the average yearly CPI (ACPI), 
the world GDP (WGDP), the volume of national export trade (VNET), the volume of national import 
trade (VNIT), and the national population (NPOP). Numbers are indexed to the year 2005

Year PT (log Y) NGDP 
( X

1
)

ACPI ( X
2
) WGDP 

( X
3
)

VNET 
( X

4
)

VNIT 
( X

5
)

NPOP ( X
6
)

Noncon-
tainer-
ized

Container-
ized

2017 2.03 – 135.20 181.48 170.44 199.89 124.70 115.25
2018 1.86 – 141.72 186.35 180.79 203.10 124.88 118.69
2019 1.60 – 141.43 191.94 186.22 191.93 116.51 121.60
2020 1.54 2.41 143.84 196.93 192.55 195.19 120.82 123.05
2021 1.46 2.44 147.72 201.85 199.48 200.26 124.32 125.56
2022 1.39 2.47 151.56 206.90 206.66 205.87 127.43 127.60
2023 1.35 2.48 155.50 212.07 214.10 211.43 130.87 128.78
2024 1.30 2.49 159.39 217.37 221.81 216.93 134.54 129.94
2025 1.27 2.51 163.37 222.80 228.00 222.35 138.71 131.08

Fig. 5   Historical and forecast containerized (left) and noncontainerized (right) port throughput (PT) 
developments, and confidence interval (CI). The forecast port throughput is surrounded with the red box 
in the inserted graph including the historical data
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throughput in the period from 2020 to 2025 resumes a total increase of about 26% in 
TEU. This is an increase of 324 TEU (324/100 = 3.24 times the TEU containerized 
throughput of the indexed year 2005). The outer bound (shaded area indicating the 
99% confidence interval) surpasses the maximum values of 480 and the minimum 
value accounts for almost 215 TEU. Higher market uncertainty requires higher flex-
ibility in port infrastructure, operation, and services (Taneja et al. 2010; Wang et al. 
2019). Thus, this range of port throughput forecasts with confidence intervals pro-
vides useful information to decision-makers and port planners to develop flexibility 
and create a buffer in port capacity planning to satisfy changing and uncertain future 
demand (Notteboom and Haralambides 2020).

The continuous need for export of marine and aquaculture products (i.e., farmed 
and wild, frozen and fresh, processed and unprocessed), as well as imports of indus-
trial and consumer goods are increasingly handled in containers in the multipurpose 
Port of Isafjordur. Also, there is an increasing need for a reliable and quick exporting 
of marine catch and products which are considered as time-sensitive cargo in reefer 
containers (Eskafi et  al. 2020a). Imports of fish feed in containers has increased. 
The increase in containerized throughput is supported by the causal relation with 
the increasing macroeconomics of Iceland. In response to this increase, larger ves-
sels are being utilized, enjoying economies of scale, which have impacted the con-
tainerized throughput of the port. This growth in containerized throughput is also 
aligned with the increase in scale and concentration in the world container markets 
(Haralambides 2019). Containerization is an important transportation system in the 
rapid growth of international trade. As a preferred form of transport of both exports 
and imports, containerization is one of the reasons for the container growth in the 
present study (Gharehgozli et al. 2019).

As depicted in Fig.  5, noncontainerized throughput follows the historical data 
trend and continuously decreases until 2025. The decline in noncontainerized 
throughput reached 40 tonnes in 2019 (40/100 = 0.4 times tonnes of the noncon-
tainerized throughput of the indexed year 2005). Afterwards, a gradual decline in 
noncontainerized throughput, of a lower rate, is observed until 2025. Noncontain-
erized throughput is forecast to decrease by 82% from 2017 through 2025. This is 
a decrease to 19 tonnes of noncontainerized throughput. The outer bound (shaded 
area indicating the 99% confidence interval) reaches a maximum value of about 45 
tonnes and the minimum value is about 8 tonnes. The decline in noncontainerized 
throughput may gradually stabilize in the long run. The slowdown of the decline 
from 2019 to 2025 can be due to an increase in Iceland’s macroeconomics until 
2025, thus resulting in economic growth and consequently in an increase of mari-
time trade (De Langen et al. 2012). The ongoing containerization is driving noncon-
tainerized throughput down, with noncontainerized cargoes increasingly transported 
by containers (Haralambides 2019).

This decreasing and stabilizing range of noncontainerized throughput helps the 
port authority to determine the ultimate required capacities and facilities that can 
satisfy future demand. Furthermore, the port authority can consider phasing of new 
development based on the changing demand in the volatile market environment. 
The results of this short-term forecast facilitate the port’s operational decisions (i.e., 
port capacity utilization, cargo handling, and facilities development plan), resources 
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allocation (Gökkuş et al. 2017; Rashed et al. 2017), port logistics, and terminal and 
hinterland connections capacity (Brooks et al. 2014).

In comparison with existing forecasting methods, the presented method has sev-
eral advantages including the following: (1) it quantifies the relationship of macro-
economic variables with port throughput and then identifies the influencing macro-
economic variables as input to the model. This meaningfully increases the accuracy 
of the model (Yang et al. 2018) and the reliability of the forecast results (Eskafi et al. 
2020b). Thus, it considers model uncertainties, (2) it uses a probabilistic approach 
to quantify the associated parameter uncertainty of the influencing macroeconomic 
variables by providing their posterior distributions, (3) the Bayesian model can 
be updated when more data are available (Zhang et al. 2013), (4) it can deal with 
uncertain information characterized by scarcity and limitation of data (Kowsari et al. 
2019). The method was applied to the Port of Isafjordur in Iceland just as one of the 
many ports that could have been used as a case.

6 � Conclusions

Port throughput forecasts provide valuable and fundamental input to capacity plan-
ning and management, adjusting this way the direction of port development. Addi-
tionally, to uncertain demand and a volatile market environment, epistemic uncer-
tainty associated with parameter uncertainties and model uncertainties impose 
challenges in decision-making. In the context of uncertainty, decision-makers 
should not rely on a single-point forecast but should assess a range of port through-
put forecasts.

This paper presented a port throughput forecasting model using the Bayesian sta-
tistical method. Our model was developed to forecast the annual containerized and 
noncontainerized throughputs of the multipurpose Port of Isafjordur from 2020 to 
2025. The mutual information approach was used to determine the influence of mac-
roeconomic variables on port throughput and thus objectively use input variables 
in the forecasting model, resulting in reduced model uncertainties. The Bayesian 
method accounted for the uncertainty associated with the macroeconomic variables, 
considered to be random variables following a given probability distribution. The 
model also accounted for parameter uncertainties and delivered reliable results with 
relatively sparse input data. Furthermore, the model offered a range of port through-
put forecasts that allows decision-makers and port planners to develop flexibility in 
capacity planning to satisfy the changing and uncertain needs of port users.

Our results show a growth of containerized throughput up to 2025. That through-
put increases by 26% during the period 2020–2025 and, in 2025, it reaches 324 
TEU (324/100 = 3.24 times the TEU containerized throughput of the indexed year 
2005). However, in that year, noncontainerized throughput slumped to about 19 
tonnes. This is about an 82% decrease over the period 2017–2025. The decline in 
noncontainerized throughput slowed down after 2019. An increase in containerized 
throughput and a decline and stabilization in noncontainerized throughput helps the 
port authority to consider the required port capacities and facilities and be proactive 
in planning to satisfy the future demands of stakeholders.
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The theoretical contribution of this paper lies in the presentation of a robust port 
throughput forecasting model, based on the influencing macroeconomic variables 
that accounts for epistemic uncertainties including model uncertainties (choice of 
variables, assumptions, and processes) and parameter uncertainties (quantity and 
quality of data used). Furthermore, the managerial contribution of the paper is by 
drawing up a reliable port throughput forecasting framework that can support port 
authorities to rationalize their investment decisions based on future demand and thus 
maintain the competitive edge of their ports and growth in their market share. Vari-
ous data sources, and inconsistencies in terms of data collection may have affected 
the results of this case study. Although the paper has developed a short-term forecast 
due to a lack of forecasts of independent variables, the model can be applied for 
long-term forecasts too, which are useful to assess future infrastructure investment 
decisions. The application of the Bayesian statistical method in long-term forecast-
ing is recommended in future research.
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