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PREFACE

This research is conducted as partial fulfillment of the requirements for the degree of
Master of Science for Applied Physics (AP) and Applied Mathematics (AM). When I started
orientating for a Master project, I tried to find a direction in which physics could be com-
bined with an interesting mathematical foundation. Most of the courses I followed for
the physics program were in quantum mechanics. Although this direction keeps on fas-
cinating me, final projects in quantum mechanics are usually too experimental for my
taste, or not very applicable as the focus is on a small theoretical phenomenon. For this
reason I started to look in the direction of medical imaging. The course Medical Imag-
ing Systems and Signals from Dr. Frans Vos, which I followed during my physics Master,
sparked my interest in MRI research because it combined an interesting theoretical basis
with directly applicable results. This direction however, did not seem to be easily com-
bined with mathematics and for a while I was willing to drop the idea of a combined
Master project such that I could pursue my final project for AP in the MRI direction for
which I had become passionate.

Luckily after a course in Mathematical Data Science, I met Prof. Martin van Gijzen.
His research also focuses on MRI but from a mathematical perspective and suddenly
a combined final project was within reach again. To my surprise both professors had not
worked together on previous occasions and a nice multi-disciplinary team together with
Ir. Martijn Nagtegaal was formed.

Even though Physics and Mathematics are inseparable, I will try to point out which
part of the thesis focuses more on the physical side of the problem and which part fo-
cuses more on the mathematical aspects. The model developed to suppress the stochas-
tic noise is based on the Cramér-Rao bound which has a deep mathematical meaning.
The undersampling error is more directly related to imaging physics, although for the
development of the models to predict this error a significant amount of mathematical
tools is required such as perturbation theory. A hybrid model which combines a multi-
component signal model with undersampling has been developed by this author and is
presented in Appendix A. An interesting finding from this research project about noise
correlation has been presented in Appendix D. I encourage the reader to take a look at
these results. As the requirements for the report for AP and AM were quite different com-
promises have been made. A voluminous appendix has been added to keep the report
more concise.

The results related to the Cramér-Rao bound optimisation have been accepted for the
ISMRM conference and were presented on 17 May 2021. A paper based on the opti-
misations for the undersampling error is under construction. The development of this
research project took a considerable amount of energy, but returned more in happiness.

vi



ABSTRACT

Magnetic Resonance Fingerprinting (MRF) is a relatively new approach for simultane-
ously estimating multiple quantitative maps in one acquisition. Sequence optimisation
for MRF can be a powerful tool in increasing the accuracy an precision of the quantita-
tive results. Multi-component analysis in the MRF framework can distinguish multiple
different tissues in one voxel such as myelin water and white matter which play an im-
portant role in monitoring progressive diseases such as multiple sclerosis. Using the es-
timation theoretic Cramér-Rao bound, optimisations of the acquisition sequences can
be performed, that increase the precision of the resulting tissue maps. The effect of this
optimisation has been confirmed using numerical simulations. Speed-ups in MRF are
generated using significant undersampling of the k-space information. This results in
spatially coherent undersampling artefacts, that generally is the dominating error source
for regular T1 and T2 mapping. The undersampling artefacts can be predicted using
a mathematical model leveraging on techniques from perturbation theory. Numerical
simulations suggested that optimisations of the acquisition parameters are effective in
effectively reducing the undersampling error. This was confirmed using in vivo scans.
The optimisations resulting from these two different models are easily implemented in
future clinical practice.
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1
INTRODUCTION

Magnetic Resonance Imaging (MRI) is one of the leading medical imaging modalities
for soft tissues. It offers high quality images in a non-invasive manner without the use
of ionising radiation. Additionally, the clinical success of MRI derives from its ability to
generate multiple different contrasts between tissues, relying on the physical phenom-
ena called Nuclear Magnetic Resonance (NMR). Over the years many Nobel prizes have
been awarded for contributions to this field. Some examples of Nobel laureates in this
area are Otto Stern (1943), Isidor Rabi (1944), Felix Bloch (1952) and Peter Mansfield
(2003).

Currently most clinical scans are qualitative in nature, presenting relative image intensi-
ties instead of meaningful quantitative values. Different acquisition sequences empha-
sise different contrast mechanisms such as the density of water protons or relaxation
parameters T1 or T2 which will be explained in Chapter 2.1. The measured signal de-
pends on the imaging settings, but also on the characteristics of the MR scanner which
are not constant through time and differ between scanners of different vendors. Further-
more, interpreting images requires understanding of the interplay between the contrast
mechanisms and the underlying pathology. For these reasons qualitative scans fail to
generate quantitatively reproducible and easily interpretable results.

Quantitative MRI (qMRI) aims to measure the parameters that underlie the physical pro-
cesses that determine the MR signal instead of merely depending on these parameters
as is the case for qualitative scans. These quantitative scans offer improved longitudinal
and inter-scanner reproducibility from which patient care could benefit as this may al-
low for comparison between maps acquired at different times or using different scanner
hardware. Quantitative information about temporal changes in MR tissue parameters
can function as biomarker for various diseases such as multiple sclerosis, osteoarthritis,
iron overload and myocardial infarction [1].

Despite the advantages of quantitative qMRI, it suffers from long acquisition times. Con-
ventional qMRI sequences such as inversion recovery to create a T1 map or the Carr-
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Purcell-Meiboom-Gill (CPMG) acquisition to create a T2 map, obtain results over a clini-
cally impractical time [2]. Multiple quantitative images reflecting different contrast mech-
anisms can often help for diagnostics, but acquiring more than one quantitative map
requires a new scan which further extends the acquisition time. Magnetic Resonance
Fingerprinting (MRF) has been proposed to overcome these boundaries [3]. MRF offers
a flexible framework in which freely chosen acquisition parameters are used to probe the
transient-state signal evolution. Probing the transient-state signal evolution is generally
done by acquiring multiple low-quality images at different time points. The low-quality
images are obtained by undersampling the k-space read-out which results in a speed-up
of the acquisition time. The result is a unique signal measurement or fingerprint for ev-
ery pixel, from which the desired quantitative tissue properties can be derived [2, 4, 5].
Using MRF it is possible to acquire multiple spatially-registered quantitative maps in the
time it would take conventional methods to obtain just one map [6]. The technique is
not yet widely adopted in clinical practice, but rapid improvements in the field make this
goal realistic in the near future.

Usually in MRF, single component matching is performed where one assumes that there
is only one tissue present in each voxel. However, this assumption breaks down when a
voxel is on the border of two neighbouring tissues or when multiple tissues are diffusely
merged. An example of the latter situation is the case of myelin and white matter. These
partial volume effects can cause blurring artefacts when single component matching is
performed. Multi-component (MC) analysis takes into account that one voxel can con-
tain multiple tissues and assumes that the measured signal is composed of a weighted
sum of the signals from the separate tissues in a voxel. Using advanced algorithms such
as SPIJN [7], these different tissues can be identified and component maps can be con-
structed. The MC analysis reduces blurring due to partial volume effects and the re-
sulting component maps are valuable in clinical diagnostics for tracing diseases such as
multiple scleroses.

When an MRF reconstruction of quantitative maps is performed with low-quality un-
dersampled images, this results in so called undersampling artefacts. These artefacts
are correlated with the true tissue parameter maps and cannot be modelled as spatio-
temporal incoherent stochastic noise. A comprehensive model for the undersampling
error was introduced in [8].

By using different acquisition parameters the artefacts in MRF maps due to multi-component
and undersampling effects can be suppressed. Using numerical tools the acquisition
parameters that can be freely chosen in MRF, might be optimised such that the result-
ing maps become more accurate or precise. As no closed-form solution is required to
make quantitative information about the spin relaxation or experimental imperfections
traceable when using MRF, there are many degrees of freedom for the optimisation.

Multiple studies on optimisation of acquisition parameters have been conducted in which
different error models and optimisation metrics have been applied. B. Zhao et al. fo-
cused on optimisations using a single component model to reduce stochastic noise-like
artefacts by optimising the Cramér-Rao lower bound (CRLB) [9]. J. Assländer et al. also
applies the CRLB metric to reduce stochastic noise, but performed the optimisations in
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the context of the hybrid state [10]. A very different approach was adopted by O. Cohen
and R.S. Rosen, who focused on orthogonalising of the dictionary atoms to increase the
differentiating ability of different fingerprints [11].

For this research project the overarching aim is to enhance the MRF image quality and/or
reduce the scan time by using numerical methods to optimise the acquisition parame-
ters. The resulting optimisations can be easily implemented in clinical practice as the
potential improvements in image quality are achieved by merely changing the acquisi-
tion parameters, without the need for additional scan or processing steps.

This work can be separated into two main veins of research. The first part of the research
aimed to enhance the MRF image quality by performing an optimisation of the acqui-
sition parameters using an MC model. Here the goal was to reduce the errors resulting
from stochastic white noise which is a common first order approximation of the errors
involved. This part is referred to as Optimisation Framework I and the results were veri-
fied using numerical simulations.
The second part of the research aimed to enhance the MRF image quality by performing
an optimisation of the acquisition parameters using a model which captures the un-
dersampling error. Here the goal was to reduce the undersampling artefacts which are
inherent to the conventional MRF technique. This part is referred to as Optimisation
Framework II and the results were verified using numerical simulations, scans of a phan-
tom and an in vivo study.
To the best of this author’s knowledge, both these models have not been used before in
this context.

In Chapter 2 the required theory will be presented starting with basic MR principles and
a more theoretical introduction into MRF. Here the basis of both optimisation frame-
works is presented. Chapter 3 is concerned with the full derivation of the frameworks.
Chapter 4 contains the results and a thorough analysis of the results. The discussion in
Chapter 5 presents the observations from this analysis and Chapter 6 will be concerned
with the conclusion and the resulting recommendations. The Appendix contains an ex-
tension of the theory and the results and the work presented on the International Society
for Magnetic Resonance in Medicine (ISMRM) 2021 conference by this author.



2
THEORY

This chapter is concerned with the theory required for the rest of the research project.
Section 2.1 presents the basic concepts underlying magnetic resonance as well as a care-
ful derivation of the signal model from first principles. Readers with a background in
MRI can skip this section without loss of continuity. In section 2.3 Magnetic Resonance
Fingerprinting is introduced. After this, multi-component problems are introduced in
section 2.4 followed by a discussion of the Cramér-Rao bound which will appear to play
an important role in Optimisation Framework I. Section 2.6 focuses on the undersam-
pling error which is used as the basis for Optimisation Framework II. To conclude this
chapter a short introduction to the optimisation method is presented in section 2.7. The
reader is encouraged to take a look at Appendix A where an undersampling model is
developed from a multi-component perspective by this author.

2.1. MR PRINCIPLES
Magnetic Resonance Imaging relies on a quantum mechanical property of atomic nu-
clei called spin. Nuclei with an odd number of neutrons or an odd number of protons
possess a non-zero spin angular momentum, ~Φs , which in turn generates a magnetic
moment,~µ. The relation between these quantities is given by:

~µ= γ~Φs , (2.1)

where γ denotes the gyromagnetic ratio which depends on the type of particle under
consideration. For whole-body MR imaging the received signal generally comes from 1H
nuclei for which γ

2π = 42.8 MHz/T. The 1H protons are in high concentrations present in
the body and can give a strong NMR signal. In general, there is no preferred orientation
for the nuclei in a sample and as a result no macroscopic magnetic field is present. In the
presence of a strong magnetic field the microscopic spin systems will tend to align their
magnetic moment with the field due to the quantum mechanical Zeeman effect [12],
which predicts an energy splitting for the different spin orientations. For a sample with
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volume V in a homogeneous magnetic field, this results in a macroscopic magnetisation.
As the 1H protons are generally used for MR imaging we will define our macroscopic
magnetisation vector ~M as:

~M = 1

V

∑
1H protons
in volume V

~µi . (2.2)

In imaging this V generally refers to the volume of the voxels in which the sample is
divided and ~M becomes spatially dependent. If the sample is in thermodynamic equi-
librium in a homogeneous magnetic field ~B0 = B0 ẑ, the macroscopic magnetisation can
be derived using Boltzmann statistics [13]:

~M0 = B0γ
2ħ2ρ0

4kbT
ẑ, (2.3)

where ħ is Planck’s constant over 2π, kb is Boltzmann’s constant, T is the temperature of
the sample (in Kelvin) and ρ0 is the 1H proton density.

In the MR scanner there is a large homogeneous magnetic field that will be referred to
as the B0 field. This field creates the net macroscopic magnetisation under equilibrium
conditions as discussed above. The strength of the resulting net magnetisation is spa-
tially varying and depends on the type of tissue. This quantity is responsible for the im-
age contrast in MRI scans. The net magnetisation in equilibrium is not detectable using
stationary coils. To get a detectable signal the magnetisation must have a component in
the transverse plane as will be discussed in section 2.1.2.

2.1.1. EVOLUTION OF MAGNETISATION
The Bloch equations describe the motion of the macroscopic magnetisation in the pres-
ence of a magnetic field. To understand how the macroscopic magnetisation behaves in
time, an individual spin object is considered first. Approaching this spin as a small cur-
rent loop generating a magnetic moment, the quantum mechanic nature of the system is
neglected but the resulting equations are identical to the ones derived using a quantum
mechanical approach (for an interesting quantum mechanical approach to derive the
Bloch equations using density-matrices see [14]). A spin system in an external magnetic
field will experience a torque when the magnetic moment of the system has a compo-
nent perpendicular to the external magnetic field. Using the definitions from classical
mechanics it is easily derived that the time derivative of the total angular momentum
equals the torque:

d~Js

d t
= ~N , (2.4)

where ~Js is the total angular momentum vector and ~N the torque. The torque on any
current distribution in a constant external magnetic field is given by:

~N =~µ×~Bext, (2.5)
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where ~Bext is the external magnetic field vector. From experiments the relation between
the total angular momentum of a spin system and the magnetic moment is found to be:

~µ= γ~Js . (2.6)

Combining equation (2.4), (2.5) and (2.6), it can be concluded that:

d~µ

d t
= γ~µ×~Bext. (2.7)

Combining this expression with equation (2.2) to find the expression for a macroscopic
sample in an uniform external magnetic field gives the Bloch equation for non-interacting
spin systems:

d ~M

d t
= γ~M ×~Bext. (2.8)

This equation of motion with only a forcing term, does not describe the situation com-
pletely as the 1H protons in a macroscopic sample do experience interactions which
causes damping. These damping mechanisms will be discussed in the next section. A
separation of the transverse and longitudinal parts of the magnetisation is used for con-
venience. The transverse component is denoted by: ~M⊥ = Mx x̂ +My ŷ +0ẑ and the lon-

gitudinal part by: Mz ẑ. In MR scanners the field ~Bext = B0 ẑ as discussed before, resulting
in:

d ~M⊥
d t

= γB0 ~M × ẑ

d Mz

d t
= 0,

(2.9)

for the non-interacting spin system. Solving this system of equations reveals that the lon-
gitudinal component Mz remains constant while the transverse component precesses
around the z−axis with the Larmor frequency: ω0 = γB0. The Larmor frequency de-
pends on the type of spin system at hand via γ. A microscopic group of spins with the
same Larmor frequency is called an isochromat. Flipping the system from equilibrium
into the transverse plane over a non-zero time, results in a motion depicted in Figure 2.1.
Notice that because of the rotation, it is more convenient to describe the situation from
a rotating frame of reference. This frame is generally denoted as an x ′, y ′, z ′ coordinate
system.
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Figure 2.1: A π
2 flip as seen from the laboratory frame of reference (a) and the rotating frame of reference (b)

denoted as an x′, y ′, z′ coordinate system. The magnetic field term ~B1 which forces the flip of the macroscopic
magnetisation is only depicted in figure (b) for aesthetic reasons. (Modified from: Brown et al. 2014 [13]).

To flip the macroscopic magnetisation, an auxiliary magnetic field ~B1 is required. This
auxiliary field should rotate with the Larmor frequency of the spin system under con-
sideration and is produced using quadrature RF coils in the MR scanner that are able
to generate circularly polarised RF excitations. If the auxiliary field rotates with a fre-
quency which differs from the Larmor frequency no flip of the macroscopic magnetisa-
tion is achieved. To understand this, one should look at the situation from the rotating
frame of reference as is depicted in figure 2.1 (b). If the auxiliary field rotates with the
Larmor frequency of the spin system under research, it is stationary in its rotating frame
such that the torque on the macroscopic magnetisation remains perpendicular to the
magnetisation which allows the flip to happen. The duration of the circularly polarised
RF-pulse determines to what extend the macroscopic magnetisation is flipped into the
transverse plane. The angle the macroscopic magnetisation moves in the rotating frame
with respect to the z ′-axis due to the RF-pulse is called the Flip Angle (FA) and will be an
important parameter for optimisations performed in this project.
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2.1.1.1. T1 RELAXATION

The longitudinal relaxation or ‘spin-lattice’ relaxation is captured using an empirically
determined proportionality constant T1. This relaxation of the longitudinal component
can be understood as the natural tendency of the system to move back to the equilibrium
position which is the lowest energy state. Figure 2.2 depicts this process. The relaxation
of the system is caused by the interaction of the spin system with the surrounding lattice.
This local interaction can be modelled as a perturbation to the quantum states that ex-
ists due to the external magnetic field. Using time-dependent perturbation theory it can
be derived that the longitudinal relaxation rate is proportional to the difference M0 − Mz

[13]. Introducing this damping of the longitudinal component in the equations of mo-
tion (2.9) the following expression is found:

d Mz

d t
= 1

T1
(M0 −Mz ). (2.10)

Figure 2.2: Impression of the longitudinal relaxation after a π
2 flip as seen from the rotating frame. The propor-

tionality factor T1 determines the rate of this process. (Modified from: Prince et al. 2015 [15])

2.1.1.2. T2 RELAXATION

The transverse relaxation or ‘spin-spin’ relaxation is captured using an empirically de-
termined proportionality constant T2. This relaxation of the transverse component is
due to the fact that individual spins all experience a different local magnetic field due to
other spins in its neighbourhood. As the Larmor frequency is dependent on the strength
of the external field, this will cause a variation in precession frequency. The resulting
dephasing causes the signal from the macroscopic magnetisation to decrease due to the
loss of coherence. This situation is depicted in Figure 2.3. Introducing this damping of
the transverse component in the equations of motion (2.9) the following expression is
found:

d ~M⊥
d t

= γB0 ~M⊥× ẑ − 1

T2

~M⊥. (2.11)

Figure 2.3: Impression of the transverse relaxation after a π
2 flip as seen from the rotating frame. The propor-

tionality factor T2 determines the rate of this process. (From: Prince et al. 2015 [15])
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In practice the dephasing of the transverse component is stronger than suggested by the
T2 proportionality factor due to inhomogeneities in the B0 field. The proportionality
factor which also takes the dephasing due to inhomogeneities into account is referred to
as T ∗

2 . This factor is not relevant for this research project as the used sequences are not
sensitive to this parameter as discussed in [15].

2.1.1.3. FULL BLOCH EQUATIONS

If the Bloch equations for non-interacting spin systems from equation (2.9) is rewritten
using the relaxation terms, the following result is found:

d ~M

d t
= γB0 ~M × ẑ − 1

T2

~M⊥+ 1

T1
(M0 −Mz )ẑ. (2.12)

This coupled differential equation can be solved by using a change of variables Mx =
mx e

−t
T2 , My = my e

−t
T2 and Mz = mz e

−t
T1 :

dmx

d t
= γB0my

dmy

d t
=−γB0mx

dmz

d t
= M0

T1
e

t
T1 .

(2.13)

Solving the coupled equation for mx is done by means of a substitution: d 2mx
d t 2 = γB0

dmy

d t .
Using an equivalent substitution to solve for my and remembering the definition of the
Larmor frequency ω0 = γB0, the following decoupled equations are found:

d 2mx

d t 2 =−ω2
0mx

d 2my

d t 2 =−ω2
0my .

(2.14)

This decoupled system of differential equations is easily solved using the time at t = 0 as
the initial condition resulting in:

Mx (t ) = e
−t
T2

(
Mx (0)cos(ω0t )+My (0)sin(ω0t )

)
My (t ) = e

−t
T2

(
My (0)cos(ω0t )−Mx (0)sin(ω0t )

)
Mz (t ) = M0 +e

−t
T1 (Mz (0)−M0).

(2.15)

Arbitrary phase shifts are omitted in this derivation, but will be introduced in chapter
3 in the context of undersampling errors. From the result in equation (2.15) it can be
concluded that the longitudinal motion relaxes back to the equilibrium position with a
rate determined by the proportionality constant T1 and the transverse components ro-
tate around the z-axis and relax with a rate determined by the proportionality constant
T2.
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2.1.2. SIGNAL MODEL
To understand how an MR scanner acquires information about the sample, the signal
model is derived from first principles. It can be observed that the magnetisation vector
introduced in last section is spatially dependent as it depends on tissue properties. The
transverse part of the magnetisation is the quantity which is measured in an MRI scan.
In this section the evolution of the magnetisation under imaging circumstances is sub-
stituted in the general signal model derived in Appendix C and the resulting MRI signal
equation is presented. What ‘imaging circumstances’ are exactly will become clear in
this section.

The transverse component of the magnetisation can be measured using the receive coils
of the MR scanner. A schematic representation of the orientation of these coils is de-
picted in figure 2.4. Using Faraday’s law of induction the general signal model can be
derived:

s(t ) ∝ em f =− d

d t

Ñ
sample

~B pr od (~r ) · ~M(~r , t )d 3r, (2.16)

where s(t ) is the signal from the detection coil induced by the magnetisation of the sam-
ple, ~B pr od (~r , t ) is the field produced by one unit of current through this detection coil
and ~M(~r , t ) is the magnetisation in the sample that is spatially and temporally depen-
dent. The proportionality factor depends on multiple factors e.g. the amplifier gain. The
derivation of equation (2.16) from first principles can be found in Appendix C.

Figure 2.4: Type of Radio Frequency coil called bird cage coil. This transceiver coil is mainly used for brain
imaging.

To model the signal from an MR scanner, a sample in a static, uniform ~B0 field is assumed
which has been excited by some RF-pulse such that there is a transverse component to
the macroscopic magnetisation. Slice selection as explained in Appendix B, is used to
select a desired 2-dimensional plane by applying a magnetic field gradient. To obtain
spatial information from the slice, additional gradients are required called readout gra-
dients. They will cause the Larmor frequency to become spatially dependent within the
slice, which is used to extract spatial information. When we note that the gradients can
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be time dependent, we findω(~r , t ) =ω0+∆ω(~r , t ). Note thatω0 À∆ω(~r , t ) as the magni-
tude of the gradient is small compared to the static B0 field. To understand how the spa-
tial information within a slice is extracted, the MR signal is derived using the equations
of motion from equation (2.15) which are substituted in the signal model from equation
(2.16). It is convenient to introduce M+(~r , t ) = Mx (~r , t )+My (~r , t ) · i as this will simplify
keeping track of the rotation. As additional gradients in the x and y direction are taken
into account, the Larmor frequency becomes dependent on space and time causingω0t
in equation (2.15) to be changed to

∫ t
0 ω(~r , t ′)d t . This results in:

s(t ) ∝− d

d t

Ñ
sample

[
B pr od

x (~r )Re(M+(~r ,0)e
−i

∫ t
0 ω(~r ,t ′)d t ′+ −t

T2 )

+B pr od
y (~r )Im(M+(~r ,0)e

−i
∫ t

0 ω(~r ,t ′)d t ′+ −t
T2 )+B pr od

z (~r )Mz (t )
]
d 3r.

(2.17)

As the appropriate smoothness conditions are satisfied, the derivative can be taken in-
side the integrand and the Re and Im operators. Noting that 1

T1
and 1

T2
are at least four

orders-of-magnitude smaller than ω(~r ), the derivatives of the factors e
−t
T1 and e

−t
T2 can

be neglected [13] as well as the derivative of the slowly changing Mz (t ). If B pr od− =
B pr od

x −B pr od
y i and the definition of ω(~r , t ) is taken into account, equation (2.17) can

be rewritten into:

s(t ) ∝
Ñ

sample

ω(~r , t )Re
(
i e−iω0t B pr od

− (~r )M+(~r ,0)e
−i

∫ t
0 ∆ω(~r ,t ′)d t ′+ −t

T2
)
d 3r. (2.18)

A demodulation step of the signal is applied to filter the high frequency component
introduced by e−iω0t . The demodulation is performed by multiplication with a time
dependent function with frequency ω0 and a low-pass filtering step. By considering a
multiplication with sin(ω0t ) as well as −cos(ω0t ), two different demodulated signals are
found which are referred to as the signals from the ‘real’ and ‘imaginary’ channels re-
spectively. The signal from both these channels gives information about the original
signal. A detailed description of the demodulation process can be found in [13]. The
resulting complex signal after demodulation is:

s(t ) ∝
Ñ

sample

ω(~r , t )B pr od
− (~r )M+(~r ,0)e

−i
∫ t

0 ∆ω(~r ,t ′)d t ′+ −t
T2 d 3r. (2.19)

Note that for spatially constant gradients
∫ t

0 ∆ω(~r , t ′)d t ′ = γ(
∫ t

0 Gx (t ′)d t ′·x+∫ t
0 Gy (t ′)d t ′·

y). A few approximations to the equation above results in an expression which clarifies
how spatial information is extracted using the signal from the encoded sample. Note
that ∆ω(~r , t ) ¿ ω0 such that ω(~r , t ) ≈ ω0 for the first term in equation (2.19). The re-
ceiving coils can be approximated as sufficiently uniform such that B pr od− (~r ) = B pr od− .
Finally, the signal is acquired directly after the excitation such that the damping factor:

e
−t
T2 can be neglected. Taking all these approximations into account the following result

obtained:

s(t ) ∝∆zω0B pr od
−

Ï
slice

M+(~r ,0)e−iγ(
∫ t

0 Gx (t ′)d t ′·x+∫ t
0 Gy (t ′)d t ′·y)d xd y, (2.20)
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where ∆z is the width of the slice in the z direction. Defining the Fourier transform of a
function f(x,y) as:

F(u, v) =
Ï

f (x, y)e−i (ux+v y)d xd y, (2.21)

it can be observed that equation (2.20) relates to the 2D-Fourier transform of the trans-
verse magnetisation M+(~r ,0):

F
(
γ

∫ t

0
Gx (t ′)d t ′,γ

∫ t

0
Gy (t ′)d t ′

)
=

Ï
M+(~r ,0)e−iγ(

∫ t
0 Gx (t ′)d t ′·x+∫ t

0 Gy (t ′)d t ′·y)d xd y ∝ s(t ).

(2.22)
By measuring the signal from the MR scanner, k-space information of the function M+(~r ,0)
along the line set out by the readout gradient is obtained. The k-space sampling can be
performed in a radial manner as depicted in figure 2.5a, but generally in MR fingerprint-
ing the sampling is performed using a spiral trajectory (figure 2.5b). To find the origi-
nal image with the information about the transverse magnetisation, an inverse Fourier
transform is performed.

The sequence of acquisition parameters such as flip angles resulting from the RF-pulses,
the time in between these pulses (Repetition time; TR) and the time from the RF-pulse
to the k-space readout (Echo time; TE) are part of the so called pulse sequence which
determines the evolution of the signal. In the next section the pulse sequence used in
this research project is discussed.

Figure 2.5: Different k-space sampling trajectories. a) Radial sampling, b) Spiral sampling. The blue dots
represent the points in k-space where a readout is performed (the MR signal is measured) and the arrows show
in which direction the information is gathered. (Modified from: Loecher et al. 2015 [16])
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2.2. GRADIENT-SPOILED SSFP SEQUENCES
The pulse sequence used in this research project is called gradient-spoiled Steady-State
Free Precession (SSFP) or non-balanced SSFP and makes use of gradient and spin-echos.
To understand what a gradient echo is, a string of isochromats in one voxel is consid-
ered, in presence of a (slice selection) gradient. As the Larmor frequency is varying in
the z-direction, the isochromats start to dephase as is depicted in figure 2.6a. This de-
phasing obliterates the coherence of the spin ensembles, resulting in the loss of signal
from this voxel. To revive the signal, a refocusing gradient with the opposite polarity can
be applied, which restores the coherence as the isochromats with the highest Larmor
frequency during the dephasing, will now have the lowest frequency which rephases the
spin ensembles in the voxel as is depicted in figure 2.6b.

Figure 2.6: Gradient echo. a) Dephasing of spin ensembles in one voxel due to a slice selection gradient. b)
Rephasing of spin ensembles in one voxel due to a refocusing gradient. (Modified from: Weigel. 2015 [17])

Just as the gradient-echo, the spin-echo triggers rephasing after signal loss due to de-
phasing of the spin ensembles. A spin-echo is caused by playing a flip angle pulse after
dephasing of the spin ensembles, which allows the system to rephase back after the flip.
To explain this, a simple example situation where the spins are in equilibrium is consid-
ered and sketched in Figure 2.7. By rotating the spins with an angle α = π

2 the macro-
scopic magnetisation enters the transverse plane. Here dephasing takes place due to
applied gradients or inhomogeneities in the magnetic B0 field. By applying a flip angle
around the x’-axis with α= π as depicted in the figure, the magnetisation from the spin
ensembles get mirrored. Spin ensembles which were lagging behind as they move with a
Larmor frequency lower than the frequency of the rotating frame are now leading as can
be seen in figure 2.7d. As the position of the spins did not alter, their Larmor frequency
is still lower than the frequency of the rotating frame resulting in the spins moving to the
negative y ′ axis. The result is the formation of a coherent echo at the negative y ′ axis.
When the flip angle is not α= π but an arbitrary angle, the situation becomes less intu-
itive as a part of the dephased signal ends up in the longitudinal direction. Although the
principles remain the same, one should carefully keep track of the different dephasing
modes, in order not to miss any echos. Section 2.2.2.4 will sketch how the administration
of the dephasing modes is performed.
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Figure 2.7: Formation of a spin-echo. The RF pulse which causes the π flip, causes the spins to rephase again.
(From: Prince et al. 2015 [15])

For MR Fingerprinting, a sequence of system readouts is required, which is obtained
using the gradient-spoiled SSFP pulse sequence. This sequence starts with an adiabatic
inversion pulse, which causes an inversion of the spin states for the entire sample. After
this inversion, single RF-pulses are used to manipulate the macroscopic magnetisation
by causing a flip with a certain angle α. An example of a flip angle pattern used in this
research project is shown in figure 2.8b. The RF-pulses are modelled as instantaneous
rotations (hard pulse approximation). Right before the single RF-pulses are send the
slice selection gradient is turned on, causing dephasing in the z direction. The slice
selection gradient after the pulse is balanced to maintain coherence. After the excitation
pulse has been applied, the readout takes place using a spiral sampling pattern as in
figure 2.8c. The spiral is rotated every repetition to assure that the k-space is efficiently
sampled. The spiral is zero moment compensated to prevent dephasing in the x and y
direction.
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Figure 2.8: SSFP pulse sequence with a conventional FA sequence. a) A pulse sequence diagram of a gradient-
spoiled SSFP sequence in the MRF framework. The sequence starts with an adiabatic inversion pulse and is
followed by a series of RF pulses introducing certain flip angles as depicted in part b of this image. The slice-
selection gradients are unbalanced in this acquisition. b) A sinusoidal flip angle pattern that is generally used.
c) One interleaf of a spiral is used for each readout. The spiral is zero moment compensated. To fully sample
k-space, the spiral rotates every every step with 11.25 degrees resulting in 32 different spiral trajectories for a
225×225 image. (Modified from: Jiang et al. 2015 [18])

Since the early 2000s it is possible to balance the slice selection gradient to achieve bal-
anced SSFP [19]. This acquisition method generally has a higher signal to noise ration
than gradient-spoiled SSFP as there are no dephasing modes. However, this also makes
the sequence prone to errors due to field inhomogeneities causing so called banding
artefacts. This is why we, like most studies, opted to use gradient-spoiled SSFP sequence.
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2.2.1. EXTENDED PHASE GRAPHS
There are two widely used methods to simulate the behaviour of spins during an MRI
sequence. The first is called the ‘isochromat summation’ approach, which is a brute
force method where the evolution of multiple spin ensembles with different Larmor fre-
quencies are followed through time. The vector sum of all the simulated isochromats
determines the resulting signal. To obtain an accurate result, thousands of isochromats
are typically required, making the method computationally very demanding. The sec-
ond method is called the ‘extended phase graph’ approach (EPG) which is more elegant
[17].

Individual isochromats are described using a Cartesian basis:

~M(~r ) =
Mx (~r )

My (~r )
Mz (~r )

 . (2.23)

Instead of focusing on the evolution of individual isochromats, it is more efficient to keep
track of the configuration states of an ensemble of isochromats [17]. Configuration states
are directly linked to the Fourier transform of the magnetisation and describe different
levels of dephasing. For this approach, a change from the Cartesian basis to a complex
basis is introduced:

~̄M(~r ) ≡
M+(~r )

M−(~r )
Mz (~r )

=
1 i 0

1 −i 0
0 0 1

 ~M(~r ), (2.24)

where the matrix left of the Cartesian representation is referred to as the S-matrix. In the

configuration state space ~̃F , the dephasing is quantified by taking the Fourier transform
of the spatially dependent complex magnetisation vector from equation (2.24) in a voxel
with volume V :

~̃F (~k) ≡

F̃+(~k)
F̃−(~k)
Z̃ (~k)

=


Ð

V M+(~r )e−i~k·~r dr 3Ð
V M−(~r )e−i~k·~r dr 3Ð
V Mz (~r )e−i~k·~r dr 3

 . (2.25)

A 3-dimensional approach would be necessary to model an experiment with multiple
dephasing directions or with anisotropic diffusion effects [20]. In this study however, it
is assumed that effective dephasing only occurs in one direction such that, instead of
the vectors~r and~k, the scalars r and k suffice. We assume without loss of generality that
the amount of dephasing introduced during one repetition time is the same for all time
indices. The dephasing states are the discrete configuration states F̃+(k), with integer k >
0. Without loss of generality we assume that the dephasing introduced during one time
index, corresponds to a unit step in the discrete configuration states. Note that M+ = M∗−
such that F̃+(−k) = F∗−(k). If the M+ representation of the magnetisation rotates in the
clockwise direction, the M− representation rotates counter clockwise. For this reason,
integer values k > 0 of the Fourier transform of M−(~r ) are referred to as the rephasing
states. The dephasing and rephasing states are shown in the top and middle row of figure
2.9 respectively, where the dephasing level k is presented as subscript and the ‘+’ and ‘-’
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are denoted as a superscript for readability purposes. This notation will be used from
now on. When the axis with respect to which the flip angle is performed is constant,
and the initial magnetisation is in the equilibrium position, all echos are generated on
the same axis in the x ′, y ′-plane. This situation is referred to as in-phase refocusing.
Because the longitudinal magnetisation is real, it can be constructed using discrete real
harmonics build from complex harmonic functions with opposite rotation as shown in
the last row of figure 2.9.

Figure 2.9: Graphical representation of discrete configuration states used in the EPG framework. The F̃+
0 state

represents the coherent part of the magnetisation, yielding a measurable signal. F̃+ and F̃−-states with a non-
zero index cannot be measured as their configuration is such that the net magnetisation is destroyed. The
top row with k > 0 shows the dephasing configurations, while the middle row with k < 0 represents the corre-
sponding rephasing configurations which are rotated in the other direction. The longitudinal components are
made up of identical complex configuration rotating in opposite directions. (Modified from: Weigel. 2015 [17])

The weighting of the configuration states is stored in a state matrix. This matrix contains
all the information to describe the complete ensemble magnetisation and is denoted as:

Ω=
F̃+

0 F̃+
1 F̃+

2 F̃+
3 · · ·

F̃−
0 F̃−

1 F̃−
2 F̃−

3 · · ·
Z̃0 Z̃1 Z̃2 Z̃3 · · ·

 . (2.26)

Column k in this matrix contains the information to fully describe the kth dephasing
order of the total magnetisation. How the gradient-spoiled SSFP sequence is modelled,
is discussed in section 2.2.2.4. Note that only F̃+

0 and F−
0 represent a detectable coherent

state while all other F̃+
k and F̃−

k states with k 6= 0 are fully dephased i.e. do not yield a
measurable signal.
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2.2.2. MODELLING THE GRADIENT-SPOILED SSFP SEQUENCE
The modelling of the gradient-spoiled SSFP sequence is performed using the EPG frame-
work introduced in section 2.2.1. How basic operations on the macroscopic magnetisa-
tion are modelled in the EPG framework can be derived by looking at these operations
on a single isochromat using a Cartesian basis. The operations of interest to model a
gradient-spoiled SSFP sequence are RF pulse induced rotations, relaxation and dephas-
ing.

2.2.2.1. RF PULSE

An RF-pulse induced rotation of the magnetisation with a flip angleα can be modelled in
the EPG framework by looking at this operation on a single isochromat using a Cartesian
basis. The effect of an RF-pulse on a single isochromat at position ~r in a voxel can be
modelled using the elemental rotation matrix around the x ′-axis:

Rx (α) =
1 0 0

0 cos(α) −sin(α)
0 sin(α) cos(α)

 . (2.27)

The result is: ~M(~r )↑ = Rx (α)~M(~r )↓ where the superscript ↓ and ↑ mark the magneti-
sation of the isochromat before and after the manipulation respectively. Notice that
the RF-pulse induced rotation is assumed to be instantaneous (hard pulse approxima-
tion). To understand how this rotation is applied in configuration state space, it is noted

that: ~̃F = F( ~̄M). As the Fourier transform is a linear operator, a rotation in configura-

tion state space is the same as rotating the complex vector ~̄M . This can be denoted as:

R̃x (α)F( ~̄M) = F(R̃x (α) ~̄M) where R̃x is the rotation in the complex basis. Using the defi-

nition ~̄M = S ~M , it can be derived that the rotation matrix for the complex basis and thus
for configuration state space is R̃x (α) = SRx (α)S−1:

R̃x (α) =
 cos2(α2 ) sin2(α2 ) −i sin(α)

sin2(α2 ) cos2(α2 ) i sin(α)
− i

2 sin(α) i
2 sin(α) cos(α)

 . (2.28)

As the off-diagonal elements are generally non-zero, the application of an RF-pulse in-
troduces mixing between different configuration states. Using the state matrix, the ap-
plication of an RF-pulse induced rotation is modelled as follows:

Ω↑ = R̃x (α)Ω↓. (2.29)

2.2.2.2. RELAXATION EFFECTS

Using a similar approach, relaxation effects can be modelled in the EPG framework by
looking at this operation on single isochromats in the Cartesian basis. The relaxation
matrix for a single isochromat using the Cartesian basis at position~r is:

E(t ,T1,T2) =

e
−t
T2 0 0

0 e
−t
T2 0

0 0 e
−t
T1

 (2.30)
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where the recovery toward the equilibrium is not yet incorporated. For the same reasons
as in section 2.2.2.1, the relaxation matrix for the configuration state space is: Ē(t ,T1,T2) =
SE(t ,T1,T2)S−1 = E(t ,T1,T2) as E is a diagonal matrix.
Using the state matrix, the relaxation effects are modelled as follows:

Ω↑ = E(t ,T1,T2)Ω↓+

 0 0 · · ·
0 0 · · ·

M0(1−e
−t
T1 ) 0 · · ·

 . (2.31)

where the recovery toward the thermal equilibrium is modelled using the last term on

the right hand side, also denoted as M0(1− e
−t
T1 )e2,1. Here e3,1 is a matrix with the same

dimensions as the state matrix, and all entries 0 except for the entry (2,1) which is 1. The
longitudinal recovery increases the coherent magnetisation in the z-direction, thus Z̃0 is
the only state matrix entry which is influenced by this process.

2.2.2.3. DEPHASING EFFECTS

Dephasing of the magnetisation can be modelled in the EPG framework using the shift
operator D . As the EPG concept is build using dephasing states, the dephasing effects
caused by gradients or time-independent inhomogeneities in the magnetic field can be
described in a simple way [17]:

D(Ω) :


F̃+

k → F̃+
k+1

F̃−
k → F̃−

k−1
Z̃k → Z̃k

k > 0 and D(Ω) :


F̃+

0 → F̃+
1

(F̃−
1 )∗ → F̃+

0
Z̃0 → Z̃0

(2.32)

where k are integers. Notice that only the transverse F+ and F− states are influenced by
dephasing, whereas the longitudinal states are not. The k < 0 states are of no interest
because of the redundancy pointed out in section 2.2.1: F̃+

−k = (F−
k )∗ and the fact that

the longitudinal component Mz is real resulting in: Z̃−k = (Z̃k )∗.

2.2.2.4. GRADIENT-SPOILED SSFP MODEL

Manipulation of the transverse magnetisation in a voxel while applying a gradient-spoiled
SSFP sequence is modelled by calculating the time evolution of the state matrix Ωn us-
ing the manipulations discussed above. The subscript n denotes the time index. The flip
angle patterns used in this research project, all start with an inversion pulse. The angles
are defined as rotations around the x-axis. For the experiments in this research project
the repetition time is fixed at 15 ms and the echo time at 4 ms. To simplify the model, the
echo time is approximated as 0 ms, meaning that the transverse magnetisation readout
is performed directly after application of the excitation pulse. Using Ω−1 to denote the
system in thermal equilibrium, the first readout after the inversion pulse is modelled as:

Ω0 = R̃x (π)Ω−1. (2.33)

Assuming the state matrix at time index n is known, the magnetisation should be manip-
ulated to achieve the state matrix at time index n +1. The physical processes relaxation,
dephasing and the application of RF-pulses between the magnetisation states at time
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index n and n +1 are discussed. After the readout at time index n, the system starts to
relax. Before the next flip angle is played the slice selection gradient causes dephasing.
Noting that the relaxation operator and the dephasing operator commute the following
result is found:

Ωn+1 = R̄x (α)
(
E(T R,T1,T2)D(Ωn)+M0(1−e

−t
T1 )e2,1

)
(2.34)

As F+
0 is the only coherent dephasing configuration, this state represents the measurable

transverse magnetisation and is used as the MRF signal in image space:

M+ = F+
0 . (2.35)

2.3. MAGNETIC RESONANCE FINGERPRINTING
Magnetic Resonance Fingerprinting (MRF) [3] is a relatively new approach to quantita-
tive MRI that allows simultaneous measurement of multiple different tissue maps in a
single acquisition. It offers a flexible framework in which freely chosen acquisition pa-
rameters are used to probe the transient-state signal evolution. The set of acquisition
parameters chosen for the MRF scan, result in a unique signal evolution or ‘fingerprint’,
of a certain tissue. This unique signal encodes for a certain set of tissue parameters of
interest. The measured signals are matched to a pre-computed dictionary that contains
generated fingerprints for a range of different tissue properties. These fingerprints are
simulated (using EPG in this project) for the acquisition parameters used in the scan. A
pattern matching algorithm subsequently finds the quantitative tissue parameters cor-
responding to the measured signal, by comparing it with the dictionary signals. Figure
2.10 shows a schematic overview of the MRF framework. Usually in MRF, inner product
matching is applied using a normalised dictionary. The dictionary atom which has the
highest inner product with the measured signal is selected for the resulting parameter
maps. Using this approach, multiple inherently registered quantitative tissue maps are
generated using one acquisition.

Using multiple k-space readouts performed at different times during the transient-state
signal evolution, the fingerprint from a single voxel can be acquired. These k-space ac-
quisitions are significantly undersampled (only 1/48 of the full k-space was acquired for
each time point in the original work [3]) to achieve speed-ups in scan duration, resulting
in quantitative maps in a clinically feasible time. In this project spiral sampling patterns
are used for the acquisition. The undersampling causes severe artefacts in the images for
each individual time point. Despite the undersampling, the signals from a single voxel
can still be matched to the corresponding dictionary entry. This results in accurate quan-
titative maps, although these reconstructions can still contain undersampling errors as
discussed in section 2.6.
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Figure 2.10: Schematic overview of the MRF framework. A) Example of the acquisition parameters for the
flip angles and repetition times. B) Sequence diagram showing the excitation pulses, slice selection gradients,
read-out and k-space trajectories for 3 different time indices. C) Example of three undersampled images at
three different time points. D) Example of 4 dictionary atoms. E) Pattern matching of the measured voxel
fingerprint with the closest element in the dictionary. F) Measured signal from a voxel across the undersampled
images. G) Parameter maps obtained from repeating the dictionary matching process for each voxel. (from:
Panda et al. 2017 [5]).
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2.4. THE MULTI-COMPONENT SETTING
Straight-forward dictionary matching based on minimisation of the inner product as-
sumes that every voxel contains merely one type of tissue. This assumption breaks down
if a voxel is on the border of two neighbouring tissues or when multiple tissues are dif-
fusely merged. An example of the latter situation is the case of myelin and white matter.
The myelin fraction is an interesting parameter in progressive diseases such as multi-
ple sclerosis. As it is hard to image myelin directly, myelin water serves as a bio marker
for myelin alterations and its tissue properties will be used in this research project [21].
If single-component matching is performed when the measured signal actually comes
from multiple tissues, this results in so called partial volume effects that degrade the im-
age quality. Multi-component (MC) analysis takes into account that one voxel can con-
tain multiple tissues and assumes that the measured signal is composed of a weighted
sum of the signals from the separate tissues in a voxel. One of the most basic approaches
to separate the multi-component signal is using the Non-Negative Least Squares (NNLS)
algorithm [22]. This algorithm matches the measured signal to a weighted sum of dic-
tionary signals using a least-squares approximation, where the constraint is added that
the weights cannot have a non-physical negative value. There exist more advanced al-
gorithms that also promote sparsity in the set of dictionary atoms that are selected to
match the measured signals. One example of such algorithm is SPIJN [7] that introduces
a joint sparsity constraint to minimise the total amount of different dictionary atoms for
all image voxels.

The simplest signal model in a multi-component setting is an addition of the individual
signals:

Mmulti(θ) =
NT∑

n=1
M(θn), (2.36)

where Mmulti is the measured transverse magnetisation from the voxel, θ is a vector with
the tissue parameters for all the tissues, θx is a vector with the tissue parameters for
tissue type x and NT is the total amount of different tissues in the voxel. Note that the
volume fractions follow from the proton densities ρx ∈ θx of the different tissue types. In
a multi-component voxel magnetisation exchange might influence the measured signal.
This influence can be such that the approximation in equation (2.36) might break down.
The EPG framework can be extended to model magnetisation exchange as well [23]. For
this research project we opted to model the MC voxel as a nonexchanging system under
the assumption that the exchange effects for brain tissues are too small to significantly
influence the results.
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2.5. CRAMÉR-RAO LOWER BOUND
MR signals suffer from stochastic noise from various sources e.g. thermal noise from the
subject itself and electronic noise from stochastic motion of free electrons in the coils.
When dealing with in-phase refocusing, where all echos are generated on the same axis
in the x ′,y ′-plane, the general signal model can be approximated as:

s j (θ) = M j (θ)+ε j e iφ j = 1,2, ..., NJ (2.37)

where s j is the measured signal, M j is the transverse magnetisation without noise, ε j is
independent identically distributed Gaussian noise with mean 0 and varianceσ2, j is the
time index and φ is the phase of the in-phase refocusing axis. Note that noise perpen-
dicular to the in-phase axis could be added, but if the dictionary signals have the same
phase as the measured signal, adding this extra noise term would make later evaluations
computationally more expensive whilst not altering the results. This was confirmed by a
short numerical study. The Cramér-Rao Lower Bound (CRLB) is an estimation theoretic
inequality which provides a lower bound on the covariance of any unbiased estimator
under mild regularity conditions. It is derived using the Cauchy-Schwarz inequality [24].
Mathematically the CRLB inequality is expressed as:

E
[
(θ̂−θ)(θ̂−θ)T ]≥ N−1(θ), (2.38)

where θ are the unknown tissue specific parameters in an MRF experiment (e.g. T1, T2

and proton density) and θ̂ are the unbiased estimators for these parameters. Note that
the left hand side of this equation is the covariance matrix of the estimators θ̂. The matrix
N denotes the Fisher Information Matrix (FIM) defined as:

Np,q (θ) = E
[(∂ ln(p(s;θ))

∂θp

)(∂ ln(p(s;θ))

∂θq

)]
(2.39)

where p is the probability density function of the stochastic signal s. This stochas-
tic signal is an NJ × 1 vector. The matrix inequality from equation (2.38) is defined as
E
[
(θ̂ − θ)(θ̂ − θ)T

]− N−1 being positive semidefinite. Using the definition of positive
semidefinite, it is trivial to extract the lower bound on the variance of unbiased individ-
ual tissue parameter estimates by matching it to the corresponding diagonal dictionary
entry:

Var[θ̂i ] ≥ N−1
i ,i . (2.40)

These diagonal entries of the inverse FIM will be used for the numerical optimisations
in section 3.3.
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2.6. UNDERSAMPLING ERROR
MR Fingerprinting allows for the use of highly undersampled images for the construction
of a quantitative maps. The use of undersampled images results in significant speed-ups
in acquisition time as only a small portion of k-space has to be sampled. A direct result
of using undersampled images is the presence of significant undersampling artefacts.
A comprehensive model of the undersampling error is presented by C.C. Stolk and A.
Sbrizzi [8]. I will use their ideas as the basis for a model which is applied to simulate
the undersampling artefacts in the quantitative maps resulting from an MRF scan. As
explored in the next sections, these key ideas are: (1) rewriting the mathematical expres-
sion for the undersampled signal using convolution; (2) modelling dictionary matching
using the expression for a stationary point; (3) applying perturbation theory. Extensions
to this model made by this author concerning thermal noise and the transmit phase are
discussed in chapter 3.

2.6.1. SIGNAL MODEL FOR UNDERSAMPLED K-SPACE ACQUISITION USING

CONVOLUTION
To model the undersampled images used in MRF, the expression for the undersampled
images is rewritten using convolution. The spatial image domain is discretised using a
rectangular mesh Gp of size m1×m2 with grid spacing 1 (it is assumed that both m1 and
m2 are uneven) which is defined as:

Gp =
{
−

⌊m1

2

⌋
,−

⌊m1

2

⌋
+1, ...,0, ...,

⌊m1

2

⌋}
×

{
−

⌊m2

2

⌋
,−

⌊m2

2

⌋
+1, ...,0, ...,

⌊m2

2

⌋}
. (2.41)

A position in this grid is denoted by~x = (x1, x2). The acquisition parameters such as flip
angle, transmit phase and the repetition times (respectively: α, φ and TR ) are denoted
with the vector ξ. The tissue parameters are denoted with the vectorθ(~x) with dimension
NΘ. The undersampled images from which the quantitative maps are constructed are
indexed with j ∈ {1,2, ..., NJ }. The full k-space data can be calculated by using the discrete
Fourier transform of the transverse magnetisation M j :

s j (~k) = ∑
~x∈Gp

M j (θ(~x);ξ)e−i~k·~x . (2.42)

Notice that the complex notation of the transverse magnetisation was denoted as M+
in section 2.1, but the subscript ‘+’ will be dropped for readability. The vector M(θ(~x)) =(
M1(θ(~x)), M2(θ(~x)), ..., MNJ (θ(~x))

)
is defined which contains information about the evo-

lution of the transverse magnetisation of one pixel in the absence of errors. In this re-
search project a spiral sampling pattern is used to generate the undersampled images.
The l-th location in k-space which is sampled for the j -th undersampled image is de-
noted as ~k j ,l and l ∈ {1,2, ..., NL}. As the images in MRF are highly undersampled the
following inequality holds: Nl ¿ m1 ·m2.

Using the k-space data s j (~k j ,l ), undersampled images I j (~x) can be constructed by ap-
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plying the discrete inverse Fourier transform:

I j (~x) = 1

m1m2

NL∑
l=1

w j ,l s j (~k j ,l )e i~k j ,l ·~x , (2.43)

where k j ,l ∈ [−π,π]2 due to the unit spacing of the grid Gp and w j ,l are density compen-
sation weights. The undersampled images I j (~x) are used for the dictionary matching as
explained in section 2.3.

The density compensation weights compensate for the fact that the sampling is per-
formed on a non-Cartesian grid. For spiral sampling they are defined as follows [25]:

w j ,l =
{

0 if l = 1

|~k j ,l | · ||~k j ,l |− |~k j ,l−1|| if l > 1
(2.44)

These weights are intuitive for spiral sampling as w j ,l is an estimation for the Jacobian
when sampling space is divided into rings.

Substituting equation (2.42) into equation (2.43) yields the following expression:

I j (~x) = 1

m1m2

NL∑
l=1

∑
~y∈Gp

w j ,l M j (θ(~y);ξ)e i~k j ,l ·(~x−~y). (2.45)

This equations presents the undersampled image I j (~x) as a function of the transverse
magnetisation. From this equation a Point Spread Function (PSF) is extracted:

P j (~x) = 1

m1m2

NL∑
l=1

w j ,l e i~k j ,l ·~x , (2.46)

such that equation (2.45) can be rewritten as a convolution sum:

I j (~x) = ∑
~y∈Gp

P j (~x −~y)M j (θ(~y);ξ). (2.47)

Note that the PSF is time dependent trough the index j . We define I (~x) = (
I1(~x), I2(~x), ..., INJ (~x)

)
,

which contains information about the evolution of the undersampled transverse mag-
netisation. This vector I can be conceived as the signal detected by the scanner if all
other error sources were ignored. Notice that the PSF should be defined on an extended
grid for equation (2.45) and (2.47) to be mathematically equivalent. The dimensions of
the extended grid are (2m1 −1)× (2m2 −1). Equation (2.46) can be evaluated explicitly
for problems with few samples in k-space. For problems with a a realistic amount of k-
space samples an efficient implementation using the Non-Uniform Fast Fourier Trans-
form (NUFFT) is used, which improves the calculation time with several orders of mag-
nitude.

For k-space read-outs conforming to the Nyquist sampling ratio, the PSF function P j

becomes a Kronecker delta-peak. For undersampled MRF read-outs P j causes strong
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undersampling artefacts in image I j . In a typical MRF sequence, the number of images
N j is much larger than the undersampling factor in k-space. The sampling spiral is ro-
tated in order to achieve full k-space coverage over the whole set of acquisitions. For this
reason the sum of all PSF functions for an MRF experiment, which will be denoted as P ,
approaches the Kronecker delta δ(~x):

P ≡ 1

NJ

NJ∑
j=1

P j (~x) ≈ δ(~x). (2.48)

An advantage of using equation (2.47) over equation (2.45) is that the former contains an
inherent separation of the spatial and temporal functions. The spatial response function
(the PSF) depends on the k-space sampling and the temporal function (the transverse
magnetisation) depends on the acquisition parameters such as the sequence of flip an-
gles and repetition times. Therefore, when using this model for an optimisation of the
temporal acquisition parameters, the spatial response function does not need to be re-
calculated every iteration as it is independent of the acquisition parameters. Only the
transverse magnetisation has to be updated for the optimisation resulting in a speed-up
of at least one order of magnitude.

2.6.2. MODELLING PARAMETER ESTIMATION IN MRF
For a certain signal I (~x), the MRF reconstruction of the tissue parameters can be de-
scribed as:

θ∗(~x) = argmin
θ

||I (~x)−M(θ(~x)||2, (2.49)

in this model. The dependence on acquisition parameters ξ will be left out for readabil-
ity from now on. In MR Fingerprinting experiments, the tissue parameters are recon-
structed by applying a pattern matching algorithm to match the signal to an atom in a
pre-computed dictionary. For realistic MRF experiments, the dictionary is such that the
least-squares estimator in equation (2.49) and the resulting tissue parameters from pat-
tern matching are in good agreement. We assume for now that the tissue parameters are
θ = (T1,T2,ρ)T with ρ being the real valued proton density.

The MRF estimate for the tissue parameters θ∗ is the stationary point of the objective
function in equation (2.49) for a certain signal I (~x):

∂

∂θp
||I (~x)−M(θ(~x)||2

∣∣∣∣
θp=θ∗p

= 0, ∀x ∈Gp ,∀p = 1,2, ..., NΘ. (2.50)

Writing out this equation using the definition of the l2-norm and the product rule, the
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following expression to model the dictionary matching is obtained:

∂

∂θp

〈
I (~x)−M(θ(~x), I (~x)−M(θ(~x)

〉∣∣∣∣
θp=θ∗p

= 0

[〈
− ∂

∂θp
M(θ(~x), I (~x)−M(θ(~x)

〉
+

〈
I (~x)−M(θ(~x),− ∂

∂θp
M(θ(~x)

〉]∣∣∣∣
θp=θ∗p

= 0

[〈
M(θ(~x)− I (~x),

∂

∂θp
M(θ(~x)

〉
+

〈
M(θ(~x)− I (~x),

∂

∂θp
M(θ(~x)

〉]∣∣∣∣∣
θp=θ∗p

= 0

Re

〈
M(θ(~x)− I (~x),

∂

∂θp
M(θ(~x)

〉∣∣∣∣
θp=θ∗p

= 0,

(2.51)

for all x ∈Gp and for all p ∈ 1, ..., NΘ.

2.6.3. PERTURBATION THEORY
To obtain a model for the undersampling error, the signal model for the undersampled
images I (~x) from equation (2.47) is substituted in the expression for dictionary matching
from equation (2.51):

Re
NJ∑
j=1

((
M j (θ∗(~x))− ∑

~y∈Gp

P j (~x −~y)M j (θ(~y))
)
DM j ;p (θ∗(~x))

)
= 0. (2.52)

In this equation θ are the true tissue parameters for which θ∗ is the estimator and DM j

is the Jacobian matrix of M j . The subscript p denote the components of the Jacobian
matrix: p = 1: derivative to T1, p = 2: derivative to T2, p = 3: derivative to ρ. To obtain
the reconstructed parameters θ∗ analytically from this non-linear equation is difficult, if
not impossible. To solve this we assume that the tissue parameters are relatively constant
such that a perturbation theoretic expansion can be applied on θ and θ∗:

θ(~x) = θ0 +θ1(~x)

θ∗(~x) = θ0 +θ∗
1 (~x),

(2.53)

where θ and θ∗ denote the perturbation around the spatially constant θ0. Using these
expansions and a linearization in the magnetisation M j (θ) and its derivative M j (θ) an
expression for θ∗ can be obtained. This expression is the model prediction of the recon-
structed tissue parameters and should give information about the undersampling errors.
The final result has the form:

θ∗
1 (~x) = P ∗θ1(~x)+E1(~x;ξ)+E2(~x;θ1,ξ), (2.54)

where E1 and E2 are error terms. This form will be derived in the next section.



2.6. UNDERSAMPLING ERROR

2

28

2.6.4. LINEARIZATION AND ISOLATION OF THE TISSUE PARAMETERS
When working out equation (2.52) the following expression is obtained:

Re
NJ∑
j=1

M j (θ∗(~x))DM j ;p (θ∗(~x))−

Re
NJ∑
j=1

∑
~y∈Gp

P j (~x −~y)M j (θ(~y))DM j ;p (θ∗(~x)) = 0 ∀x ∈Gp ,∀p = 1,2, ..., NΘ.

(2.55)

2.6.4.1. EXPANSION OF THE SECOND TERM OF EQUATION (2.55)
To obtain an expression from the second term of equation (2.55) in which the recon-
structed tissue parameters θ∗ are explicit, the perturbation theoretic expansion from
equation (2.53) is substituted into M j (θ(~y)DM(θ∗(~x) and subsequently a linearization
is performed:

M j (θ(~y))DM j ;p (θ∗(~x)) =M j (θ0)DM j ;p (θ0)+
NΘ∑
q=1

DM j ;q (θ0)DM j ;p (θ0)θ1,q (~y)

+
NΘ∑
q=1

M j (θ0)D2M j ;p,q (θ0)θ∗1,q (~x)+h.o.t.,

(2.56)

where h.o.t. is the abbreviation for higher order terms. Some ad hoc definitions will now
be presented, in order to make the derivation easier to follow:

S(1,0)
p (~x) =

NJ∑
j=1

P j (~x)DM j ;p (θ0)M j (θ0)

S(1,1)
p,q (~x) =

NJ∑
j=1

P j (~x)DM j ;p (θ0)DM j ;q (θ0)

S(2,0)
p,q (~x) =

NJ∑
j=1

P j (~x)D2M j ;p,q (θ0)M j (θ0).

(2.57)

Substituting the expansion in equation (2.56) in the second term of equation (2.55), the
following expression is obtained:

Re
NJ∑
j=1

∑
~y∈Gp

P j (~x −~y)M j (θ(~y))DM j ;p (θ∗(~x)) =Re
(
S(1,0)

p (~x)∗ 1(~x)

+
NΘ∑
q=1

S(1,1)
p,q (~x)∗θ1,q (~x)

+
NΘ∑
q=1

(
S(2,0)

p,q (~x)∗ 1(~x)
)
θ∗1,q (~x)

)
,

(2.58)

where ‘∗’ is the convolution operator and 1(~x) is a constant function which is 1 for all
locations~x.
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2.6.4.2. EXPANSION OF THE FIRST TERM OF EQUATION (2.55)
To make the reconstructed tissue parameters θ∗ in the first term of equation (2.55) ex-
plicit, the perturbation theoretic expansion from equation (2.53) is substituted into
M j (θ∗(~x))DM(θ∗(~x)) and subsequently a linearization is performed. The results are
equivalent to equation (2.56) upon replacement of θ1,q (~y) with θ∗1,q (~x). Some ad hoc
separation will be presented, which proved to make the derivation easier to follow:

S(1,1)
mean;p,q (~x) = P (~x)

NJ∑
j=1

DM j ;p (θ0)DM j ;q (θ0)

S(1,1)
resid;p,q (~x) =

NJ∑
j=1

(P j (~x)−P (~x))DM j ;p (θ0)DM j ;q (θ0).

(2.59)

such that:
S(1,1)

p,q (~x) = S(1,1)
mean;p,q (~x)+S(1,1)

resid;p,q (~x).A (2.60)

The separation for S(1,0)
p (~x) and S(2,0)

p,q (~x) are achieved in a similar way. The final errors
ε1(~x) and ε2(~x) will be depend on the residual parts. As already noted in [8], the residual
parts vanish when there is no undersampling as P j (~x) = P (~x) = δ(~x) or when the mag-

netisation is in steady state such that the weighting terms DM j ;p (θ0)DM j ;q (θ0) become
time-independent. The latter situation applies to (most) conventional MRI acquisitions.

Using this separation and noting that P ∗1≈ 1, the linearization of the first term of equa-
tion (2.55) can be written as:

Re
NJ∑
j=1

M j (θ∗(~x))DM j ;p (θ∗(~x)) =Re
(
S(1,0)

mean;p (~x)∗ 1(~x)

+
NΘ∑
q=1

(
S(1,1)

mean;p,q (~x)∗ 1(~x)
)
θ∗1,q (~x)

+
NΘ∑
q=1

(
S(2,0)

mean;p,q (~x)∗ 1(~x)
)
θ∗1,q (~x)

)
.

(2.61)

2.6.4.3. ISOLATION OF THE TISSUE PARAMETERS

Combining the expansions from equations (2.59) and (2.61) in equation (2.55) results in
the following equation:

Re
( NΘ∑

q=1
S(1,1)

mean;p,q ∗θ1,q −
NΘ∑
q=1

(
S(1,1)

mean;p,q ∗ 1)θ∗1,q

S(1,0)
resid;p ∗ 1+

NΘ∑
q=1

S(1,1)
resid;p,q ∗θ1,q

NΘ∑
q=1

(
S(2,0)

resid;p,q ∗ 1)θ∗1,q

)
= 0 ∀x ∈Gp ,∀p = 1,2, ..., NΘ,

(2.62)
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where the dependence on~x is left out for readability. Note that this equation is obtained
by cancellation of ±S(1,0)

mean;p ∗1 and ±(
S(2,0)

mean;p,q ∗1
)
θ∗1,q . The next step is to use the Fisher

Information Matrix:

Np,q =
NJ∑
j=1

DM j ;p (θ0)DM j ;q (θ0), (2.63)

and rewrite the first two terms of equation (2.62) into matrix form:

NΘ∑
q=1

S(1,1)
mean;p,q ∗θ1,q = N (P ∗θ1)

NΘ∑
q=1

(
S(1,1)

mean;p,q ∗ 1)θ∗1,q = (Nθ∗
1 )(P ∗ 1) = Nθ∗

1 ,

(2.64)

where for the second equation P ∗ 1 ≈ 1 was used. The last term in equation (2.62) will
be neglected as it consists of two terms which are believed to be small: S(2,0)

resid and θ∗
1 .

Note that θ∗
1 and θ1 should be real as they contain tissue parameters, and that P is ap-

proximately real as it approaches the Kronecker delta. Rewriting equation (2.62) with
the matrix forms from (2.64) and using the observations mentioned above, the following
result is obtained:

θ∗
1 = P ∗θ1 +Re(N )−1E1(ξ)+Re(N )−1E2(θ;ξ), (2.65)

with the error vectors:

E1,p (~x) = Re
(
S(1,0)

resid; p(~x)∗ 1(~x)
)

E2,p (~x) = Re
( NΘ∑

q=1
S(1,1)

resid;p,q (~x)∗θ1,q (~x)
)
.

(2.66)

Note that the first term in equation (2.65) is an approximation of the true tissue parame-
ters θ1. This part can only be improved by using a better k-space sampling scheme. The
error terms E1 and E2 depend on the acquisition parameters and might be improved by
an optimisation of these variables.
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2.7. OPTIMISATION METHOD
The optimisation problems in this project are non-linear and non-convex. For a non-
convex problem the global convergence is not guaranteed. In this research project Se-
quential Least-Square Quadratic Programming (SLSQP) is used for the optimisations.
This Sequential Quadratic Programming (SQP) algorithm is an iterative optimisation
method suited for non-linearly constrained gradient-based optimisation. The idea be-
hind the method is to reformulate the problem by applying a quadratic approximation of
the cost function function at the current solution. Then it solves a constrained quadratic
optimisation problem using linearisation of the constraints.

To speed-up the algorithm, the gradients in the multi-dimensional optimisation space
are calculated explicitly using a forward-difference method and fed back to the optimisa-
tion algorithm. This approach is faster then letting the algorithm calculate the gradients
itself as it was parallelised using a multi-processor tool. The step size for the forward-
difference method is h =p

εm max(x,1), with εm the machine precision and x the opti-
misation parameters. This step size is an approximation to the optimal step size taking
into account the roundoff and truncation error [26].



3
METHODS

This chapter is concerned with presenting the frameworks used for numerical optimi-
sations. Section 3.1 presents Optimisation Framework I, which is an MRF-based model
that relates the lower bound of the variance in the reconstructed tissue parameters to
the sequence choice. This framework assumes stochastic noise in the measurements,
implemented in a multi-component setting. After this, section 3.2 presents Optimisa-
tion Framework II that is an MRF-based model that relates the undersampling error in
the reconstructed tissue parameters to the sequence choice for a certain k-space sam-
pling scheme. In section 3.3 the optimisation problems based on both frameworks are
made explicit and finally section 3.4 discusses the settings used for the numerical and in
vivo experiments.
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3.1. OPTIMISATION Framework I : MULTI-COMPONENT MODEL

AND STOCHASTIC ERRORS
The multi-component signal model with stochastic noise is created by combining the
signal models introduced in section 2.4 and 2.5:

s j =
NT∑

n=1
M j (θn)+ε j j = 1,2, ..., NJ (3.1)

with NT the amount of different tissue types in a voxel, θn the tissue parameters for
tissue n and j is the time index. Remember the notation M j ;multi(θ) ≡ ∑NT

n=1 M j (θn)
from section 2.4. Note that the in-phase refocusing axis is chosen to be real, without
loss of generality. For this research project two different tissue types (NT = 2) are used:
tissue a and tissue b. The unknown tissue parameters for the MRF experiment are:
θ = (T a

1 ,T a
2 ,ρa ,T b

1 ,T b
2 ,ρb)T in this multi-component case. The optimisation of the ac-

quisition parameters, which will be introduced in section 3.3, will decrease the lower
bound on the variance for any unbiased estimator of the tissue parameters θ̂ using the
CRLB. We hope that using optimised acquisition parameters with a decreased lower
bound on the variance of the unbiased estimators in the vector θ̂, will result in MRF
tissue maps that are more robust for stochastic noise. It was assumed that the noise can
be modelled as an independent identically distributed Gaussian process with mean 0
and variance σ2. To find the CRLB the FIM has to be constructed using the Gaussian
noise distribution. The probability density distribution of the signal is:

p(s;θ) =
NJ∏
j=1

1p
2πσ2

e

(
s j −M j ;multi(θ)

)2

2σ2 . (3.2)

Taking the natural logarithm of this probability density function and partially differenti-
ating to tissue parameter θp the following expression is obtained:

∂ ln p(s;θ)

∂θp
= 1

σ2

NJ∑
j=1

(s j −M j ;multi(θ))
∂M j ;multi

∂θp
. (3.3)

Using this, the resulting components of the FIM are:

Np,q = E
[(∂ ln(p(s;θ))

∂θp

)(∂ ln(p(s;θ))

∂θq

)]
= 1

σ4 E

[ NJ∑
j1=1

NJ∑
j2=1

(s j1 −M j1;multi)(s j2 −M j2;multi)
∂M j1;multi

∂θp

∂M j2;multi

∂θq

]

= 1

σ4

NJ∑
j=1

∂M j ;multi

∂θp

∂M j ;multi

∂θq
E
[
(s j −M j ;multi)

2]
= 1

σ2

NJ∑
j=1

∂M j ;multi

∂θp

∂M j ;multi

∂θq
.

(3.4)

where the third line in the derivation is due to the fact that the noise from measurements
at different time indices is uncorrelated. The analytic expression for the derivatives in
equation (3.4) can be calculated by using the EPG model from section 2.2.2.4.
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3.2. OPTIMISATION Framework II : UNDERSAMPLING ERRORS
The undersampling model used in this research project is an extension of the model
introduced in section 2.6. The extensions will be discussed in this section and are crucial
to make the model predict the undersampling error in real scan data. The 3 extensions
are: (1) adding noise to the model; (2) introducing the transmit phase in the model;
(3) introducing a variable reference proton density [8]. Addition (2) will appear to be
especially important to obtain a model with reasonable predictive power.

3.2.1. SIGNAL MODEL EXTENDED WITH STOCHASTIC TERM
The k-space noise free signal can be calculated using the discrete Fourier transform of
the magnetisation M j :

s j (~k j ,l ) = ∑
~x∈Gp

M j (θ(~x);ξ)e−i~k j ,l ·~x . (3.5)

Again, j denotes the time index and l denotes the index of the k-space read-out. Note
that the acquisition parameters (ξ) can also be spatially dependent, but for this research
project they are assumed to be constant for the x, y-plane under consideration. When
performing MR measurements, multiple noise sources such as the stochastic motion of
free electrons in the receiver coil and eddy current losses will deteriorate the quality of
the image. These noise sources can be modelled by adding a stochastic term to the k-
space signal s j (~k j ,l ).

However, adding uncorrelated complex Additive White Gaussian Noise (AWGN) in k-
space causes the noise in image space to become correlated because of the undersam-
pling. A derivation of this fact can be found in Appendix D. To avoid having to use corre-
lated noise terms in image space, complex AWGN noise is added directly to image space.
Therefore, the expression for the undersampled image changes to:

I j (~x) = P j ∗M j +ε j (~x), (3.6)

where ε j (~x) = nr (0,σ2)+ni (0,σ2) · i . In this equation n(0,σ2) is a Gaussian white noise
term with 0 mean and varianceσ2. Adding noise directly to image space has been proven
to be a valid approach in the context of MR Fingerprinting [9]. The choice to add the
noise to image space also facilitates the estimation of the noise variance, as this process
is easier in image space than it is in k-space.

3.2.2. ADDING TRANSMIT PHASE
Thus far we have assumed that the axis with respect to which the flip angle is applied, is
spatially constant such that the refocusing takes place in the same direction for all voxels
in an image. In practice, this is not the case due to e.g. spatial variations in the electrical
conductivity and permittivity of the sample [27] and timing issues within the system.
The angle that the rotation axis makes with the x ′-axis will be referred to as the transmit
phase, denoted byω(~x) (do not confuse thisωwith the Larmor frequency used in section
2.1). To include the spatially dependent transmit phase in the undersampling model, a
multiplicative term is added:

s j (~k j ,l ) = ∑
~x∈Gp

ω(~x)M j (θ(~x);ξ)e−i~k j ,l ·~x . (3.7)
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To include the transmit phase in the undersampling model, it is absorbed in the proton
density ρ∗, as will become apparent from the derivation. This results in an extension of

the tissue parameter vector θ∗ = (
T ∗

1 ,T ∗
2 ,Re(ρ∗), Im(ρ∗)

)T .

3.2.3. VARIABLE REFERENCE PROTON DENSITY
To obtain the undersampling model, a linearization is performed around θ0. This is only
valid when all tissue parameters are close to some constant reference value throughout
the entire image. For the proton density, this assumption is conflicting with reality as
it is zero outside the sample where there is air. By exploiting the linearity of the proton
density in the transverse magnetisation a variable reference proton density can be in-
troduced: ρ0(~x). This function is constant inside the sample and zero outside. Defining
the vector η = (T1,T2)T for convenience, the perturbation theoretic expansion can be
rewritten as:

η(~x) =η0 +η1(~x) η∗(~x) =η0 +η∗
1 (~x)

ρ(~x) = ρ0(~x)
(
1+ρ1(~x)

)
ρ∗(~x) = ρ∗

0 (~x)
(
1+ρ∗

1 (~x)
)
,

(3.8)

Notice that the function ρ∗
0 (~x) can be freely chosen. This freedom will be exploited later

in the derivation of the extended undersampling model. Using the linearity of the proton
density in the transverse magnetisation, ρ(∗)

0 (~x) can be introduced in the signal model as
an explicit term:

M j
(
θ(~x)

)= ρ0(~x)M j
(
θ0 +θ1(~x)

)
M j

(
θ∗(~x)

)= ρ∗
0 (~x)M j

(
θ0 +θ∗

1 (~x)
)
,

(3.9)

such that the remaining tissue parameters can be expanded as:

θ0 +θ1(~x) =
(
η0,1,0

)T +
(
η1(~x),Re(ρ1(~x)), Im(ρ1(~x))

)T

θ0 +θ∗
1 (~x) =

(
η0,1,0

)T +
(
η∗

1 (~x),Re
(
ρ∗

1 (~x)
)
, Im

(
ρ∗

1 (~x)
))T

.
(3.10)

For this perturbation theoretic expansion, the same definitions for S(1,1)
p,q , etc. as in equa-

tion (2.57) can be used for the derivation of the extended undersampling model.

3.2.4. EXTENDED UNDERSAMPLING MODEL
Using complex AWGN in image space, the spatially dependent transmit phase and the
variable reference proton density, an extended undersampling model can be obtained.
The final result has the form:

θ∗
1 (~x) = Re

(
f (P )∗ (ρ0θ1)

)
(~x)+E1(~x;ξ)+E2(~x;θ1,ξ)+E3(~x;ξ), (3.11)

where f is a linear operator on the PSF. In this equation E1, E2 and E3 are error terms,
with the latter being of stochastic nature. This form will be derived in the next paragraph.

Starting with the extended version of equation (2.52) for dictionary matching:

Re
NJ∑
j=1

[(
ρ∗

0 (~x)M j
(
θ0+θ∗

1 (~x)
)−(

P j∗
(
ρ0ωM j (θ0+θ1)

))
(~x)−ε j (~x)

)
·ρ∗

0 (~x)DM j ;p
(
θ0 +θ∗

1 (~x)
)]= 0,

(3.12)
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for all~x ∈Gp and for all p ∈ 1, ..., NΘ. Working out the brackets, this results in three terms:

Re

(
ρ∗

0 (~x)

[ NJ∑
j=1

ρ∗
0 (~x)M j

(
θ0 +θ∗

1 (~x)
)
DM j ;p

(
θ0 +θ∗

1 (~x)
)+

−
NJ∑
j=1

∑
~y∈Gp

P j (~x −~y)ρ0(~y)ω(~y)M j (θ0 +θ1(~y))DM j ;p
(
θ0 +θ∗

1 (~x)
)+

−
NJ∑
j=1

ε j (~x)DM j ;p
(
θ0 +θ∗

1 (~x)
)])

= 0

(3.13)

Linearizing these three terms like in section 2.6.4, the following result is obtained:

Re

(
ρ∗

0

[
ρ∗

0 S(1,0)
mean;p ∗ 1+

NΘ∑
q=1

ρ∗
0

(
S(1,1)

mean;p,q ∗ 1)θ∗1,q +
NΘ∑
q=1

ρ∗
0

(
S(2,0)

mean;p,q ∗ 1)θ∗1,q

−S(1,0)
mean;p ∗ (ρ0ω)−

NΘ∑
q=1

S(1,1)
mean;p,q ∗ (ρ0ωθ1,q )−

NΘ∑
q=1

(
S(2,0)

mean;p,q ∗ (ρ0ω)
)
θ∗1,q

−S(1,0)
resid;p ∗ (ρ0ω)−

NΘ∑
q=1

S(1,1)
resid;p,q ∗ (ρ0ωθ1,q )−

NΘ∑
q=1

(
S(2,0)

resid;p,q ∗ (ρ0ω)
)
θ∗1,q

−
NJ∑
j=1

ε jDM j ;p (θ0)−
NΘ∑
q=1

NJ∑
j=1

ε jD2M j ;p,q (θ0)θ∗1,q

])
= 0

(3.14)

where the dependencies are left out for readability. Note that the definition of ρ∗
0 can

still be chosen. In order to obtain some cancellations, it is set to:

ρ∗
0 (~x) ≡ P ∗ (

ρ0(·)ω(·)). (3.15)

As pointed out in section 2.6.4: P ∗ 1 ≈ 1, such that ρ∗
0 S(1,0)

mean;p ∗ 1 ≈ S(1,0)
mean;p ∗ (ρ0ω) and∑NΘ

q=1ρ
∗
0

(
S(2,0)

mean;p,q ∗ 1)θ∗1,q ≈ ∑NΘ
q=1

(
S(2,0)

mean;p,q ∗ (ρ0ω)
)
θ∗1,q , resulting in the cancellation

of these terms in equation (3.14). Just as in section 2.6.4,
∑NΘ

q=1

(
S(2,0)

resid;p,q ∗ (ρ0ω)
)
θ∗1,q is

neglected in the spirit of keeping only the first order terms.

The term
∑NΘ

q=1

∑NJ
j=1 ε jD2M j ;p,q (θ0)θ∗1,q in equation 3.14 is removed as well, as it ap-

peared to be negligible compared to the other stochastic term. This can be made plausi-
ble by noting that:

M j ∝ e
−1

η{1,2}

M j ∝ ρ
(3.16)

Using these proportionalities the following asymptotic behaviour is found:

DM j ;{1,2} =O(η−2) D2M j ;{(1,1),(2,2)} =O(η−3)

DM j ;3 =O(1) D2M j ;(3,3) = 0
(3.17)
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where O is the Bachmann-Landau symbol. It has been checked by this author that the
mixed second derivatives multiplied by their respective factors θ∗1,q are also small com-
pared to the first order derivative. Finally a small numerical study on a toy example con-
firmed that the stochastic term based on the first order derivative dominated the one
based on the second order derivative (data not shown). This motivates neglecting the

term
∑NΘ

q=1

∑NJ
j=1 ε jD2M j ;p,q (θ0)θ∗1,q .

The resulting equation after the 6 cancellations described above is:

Re

(
ρ∗

0

[ NΘ∑
q=1

ρ∗
0

(
S(1,1)

mean;p,q ∗ 1)θ∗1,q −
NΘ∑
q=1

S(1,1)
mean;p,q ∗ (ρ0ωθ1,q )−S(1,0)

resid;p ∗ (ρ0ω)

−
NΘ∑
q=1

S(1,1)
resid;p,q ∗ (ρ0ωθ1,q )−

NJ∑
j=1

ε jDM j ;p (θ0)

])
= 0 ∀~x ∈Gp ,∀p = 1,2, ..., NΘ.

(3.18)
Applying the same steps as in section 2.6.4.3, the extended undersampling model is
found:

θ∗
1 = 1

|ρ∗
0 |2

Re(N )−1
(
Re

(
ρ∗

0 N
(
P ∗ (

ρ0ωθ1
)))+E1(ξ)+E2(θ;ξ)+E3(ξ)

)
(3.19)

with the error vectors:

E1,p (~x) = Re
(
ρ∗

0 S(1,0)
resid; p ∗

(
ρ0ω

))
E2,p (~x) = Re

(
ρ∗

0

NΘ∑
q=1

S(1,1)
resid;p,q ∗ (

ρ0ωθ1,q
))

E3,p (~x) = Re
(
ρ∗

0

NJ∑
j=1

ε jDM j ;p (θ0)
)
.

(3.20)

Note that the first term in equation (3.19) is an approximation of the true tissue parame-
ters θ1. This part can only be improved by using a better k-space sampling scheme. The
error terms E1, E2 and E3 depend on the acquisition parameters and might be improved
by an optimisation of these variables.

3.2.5. REDEFINING THE LINEARIZATION VARIABLES
As the extended undersampling model is based on a first order Taylor expansion in the
tissue parameters, it is interesting to investigate the accuracy of this approximation us-
ing the Taylor remainder term. In this context a brief numerical investigation suggested a
change of variables to the tissue parameters: θ̂ = (ln(T1), ln(T2),Re(ρ), Im(ρ)). A short nu-
merical evaluation using a simplified system showed that the remainder term is lower on
a domain of realistic relaxation times when the suggested change of variables is applied.
This result does not hold true for any domain, but it does for the domains interesting for
this research project.
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3.3. OPTIMISATION PROBLEMS
This section presents the minimisation problems for which the optimisations are per-
formed for both frameworks. The optimisations are performed using a nonlinear opti-
misation method called SLSQP. This iterative algorithm was introduced in section 2.7. A
multi-processor implementation was developed which reduced the computation time
by an order of magnitude.

3.3.1. OPTIMISATION PROBLEMS Framework I
The first MC optimisation is performed using a voxel with two different tissues (NT = 2).
The estimators for the tissue parameters are: θ̂ = (T̂ a

1 , T̂ a
2 , ρ̂a , T̂ b

1 , T̂ b
2 , ρ̂b). This results in

a FIM with dimensions 6×6. This optimisation is called Opt α and is defined as follows:

Optα

min
{αn }

NJ
n=1,{T Rn }

NJ −1
n=1

6∑
i=1

wi ·N−1(T a
1 ,T a

2 , M a
0 ,T b

1 ,T b
2 , M b

0 )i ,i

s.t. 10◦ ≤αn ≤ 60◦ ∀ n ∈ {2,3, .., NJ }

11 ms ≤ T Rn ≤ 15 ms ∀ n ∈ {1,2, .., NJ −1}

|αn+1 −αn | ≤ 1◦ ∀ n ∈ {1,2, ..., NJ −1}

where wi is a manually chosen weighting term such that the variances are normalised
and weighted according to our believes of which tissue parameters are more important.
The bounds on the first flip angle are 10◦ ≤ α1 ≤ 180◦. For this optimisation: w{1,4} =
2 ·10−5; w{2,5} = 5 ·10−4; w{3,6} = 30. The acquisition parameters αn and T Rn denote the
flip angle and repetition time for time index n respectively. The first constraint is added
to reduce the optimisation space and keep the result unique. The second constraint
is added to keep the scan time of the resulting sequence clinically feasible. The third
constraint causes the resulting magnetisation evolution to be more smooth, which is
beneficial in most reconstruction algorithms [9].

The second MC optimisation is again performed using a voxel with two different tissues
(NT = 2). The relaxation parameters are assumed to be known such that the estimators
for the tissue parameters are: θ̂ = (ρ̂a , ρ̂b). This results in a FIM with dimensions 2×2.
This optimisation is called Opt β and is defined as follows:

Optβ

min
{αn }

NJ
n=1,{T Rn }

NJ −1
n=1

2∑
i=1

N−1(M a
0 , M b

0 )i ,i

s.t. 10◦ ≤αn ≤ 60◦ ∀ n ∈ {2,3, .., NJ }

11 ms ≤ T Rn ≤ 15ms ∀ n ∈ {1,2, .., NJ −1}

|αn+1 −αn | ≤ 1◦ ∀ n ∈ {1,2, ..., NJ −1}

where the bounds on the first flip angle are 10◦ ≤α1 ≤ 180◦.

The optimisations are performed with two different initialisations to estimate if the re-
sult is close to the global minimum. Two different FA sequences and one TR sequence
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are used and they are shown in Figure 3.1. Init 1 will also be taken as the conventional
sequence.
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Figure 3.1: Two different initialisations of the SLSQP optimisation algorithm. The FA sequences start with a
180◦ inversion pulse.

3.3.2. OPTIMISATION PROBLEMS Framework II
The cost function for Framework II is based on the root mean square (RMS) of the relative
error in the tissue maps of the relaxation parameters. These relative errors are predicted
with the extended undersampling model presented in section 3.2. The error in the first
term of the extended undersampling model from equation (3.19) is set to 0 as the error
in this term cannot be suppressed by optimisation of the acquisition parameters. The
ground truth for this model is a brain scan of a healthy volunteer (Nr. I).

The RMS of the tissue maps are defined as:

RMST1 =
√

1

Nvox

(
T1 −T model

1

T1

)2

RMST2 =
√

1

Nvox

(
T2 −T model

2

T2

)2

, (3.21)

where T1 and T2 are the true tissue parameters and T model
1 and T model

2 the model predic-
tions. The amount of unmasked voxels is denoted with Nvox. For the same reasons as for
Framework I, the following constraints are introduced for the optimisation:

constr. 1 : L.b. ≤αn ≤ 60◦ ∀ n ∈ {2,3, .., NJ }

constr. 2 : |αn+1 −αn | ≤ 1◦ ∀ n ∈ {1,2, ..., NJ −1}.
(3.22)

There were 6 different optimisations performed with Framework II, which are stated in
table 3.1.
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Table 3.1: Settings for the optimisation schemes.

Cost function NJ Undersampling factor L.b. constr. 1 Constr. 2
Opt A RMST1 +RMST2 400 1/32 10◦ X
Opt B RMST1 +RMST2 400 3/32 10◦ X
Opt C RMST1 +RMST2 200 2/32 10◦ X
Opt D RMST1 +RMST2 400 1/32 0◦ X
Opt E RMST1 +RMST2 400 1/32 10◦ ×
Opt F RMST2 400 1/32 10◦ X

For the optimisation the cost function is minimised as a function of the NJ × 1 vector
with flip angles ~α.

The optimisations are performed with two different initialisations to estimate if the re-
sult is close to the global minimum. Two different FA sequences are used and they are
shown in Figure 3.2. Init 1 will also be taken as the conventional FA sequence. All se-
quences for Framework II use a constant TR of 15ms.
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Figure 3.2: Two different initialisations of the SLSQP optimisation algorithm. Both sequences start with a 180◦
inversion pulse.

3.4. EXPERIMENTS
To demonstrate the benefit of using optimised sequences in vivo, multiple scans were
acquired for a healthy volunteer (Nr. II) using a 3.0 T Philips Ingenia scanner (Best, The
Netherlands). Two slices were acquired with a FOV of 224mm×224mm, 1mm×1mm in
plane resolution and 5mm slice thickness. The fully sampled acquisitions took around 8
minutes to acquire, while the undersampled acquisition took no longer than 30 seconds.
The even amount of voxels in each dimension was made odd (225×225) by adding a row
of zeros in each direction to have a natural centre of the image. This benefits the model
as well as the analysis because the PSF can better approach a Kronecker delta function
with odd dimensions. The dictionaries used for the reconstruction consisted of atoms
with T1 ranging from 150ms to 5000ms and T2 ranging from 30ms to 1000ms both with
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120 logarithmically spaced steps. When the restriction T2 ≤ T1 is taken into account this
results in a dictionary of 12.255 atoms. The k-space sampling is performed using spiral
patterns shown in Figure 3.3.

kx

k y
UF 1/32

kx

UF 3/32

Figure 3.3: Spiral sampling patterns for an undersampling Factor (UF) of 1/32 and 3/32. Both patterns are
rotated with 2π

32 for every time index.

To assess the reconstructions using the undersampled images, they are compared to the
fully sampled results. However, because of time constraints, the fully sampled scans are
only acquired for two flip angle sequences: the conventional sequence and the sequence
resulting from Opt A. The difference between these fully sampled scans is not significant
as expected. The undersampled reconstructions using the flip angle sequence resulting
from Opt B, C, D, E, and F are compared with the fully sampled results from Opt A. The
reason we chose this fully sampled result as reference for Opt B to F is that it resulted in
the lowest RMS of the relative error.

The numerical experiments in this research project are carried out using the same sam-
pling patterns as for the in vivo results. Two different ground truths are used for the
numerical analysis: the regular chequerboard ground truth is presented in Figure 3.4
and the more realistic brain phantom ground truth is shown in Figure 3.5.
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Figure 3.4: Chequerboard phantom for numerical simulations. The dimensions of this phantom are 121×121.
The parameter values are (T1, T2) = (750, 70) ms and (T1, T2) = (1250, 90) ms. Relaxation times are given in ms.
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Figure 3.5: Brain phantom for numerical simulations based on component maps from [28]. The dimensions
of this phantom are 121× 121. The (T1, T2) parameter values are chosen as white matter=(700,60) ms; grey
matter=(1100, 102) ms; CSF=(4500, 330) ms. Relaxation times are given in ms.

The performance evaluation of the optimised sequences from Opt β is achieved using a
Monte-Carlo simulation. A set of 20,000 different stochastic noise initialisations is added
to the multi-component signal for which the M a

0 and M b
0 are determined using an NNLS

algorithm. The reconstruction of the M0 parameter is performed using a small dictio-
nary with only two atoms to avoid sparsity problems. These atoms are the magnetisa-
tion evolutions belong to the tissues in the multi-component voxel under research. The
NNLS algorithm only has to determine the M0 weighting for both dictionary atoms from
the multi-component signal. As the optimisations focus on reducing the Standard De-
viation (SD) of the M0 reconstruction for both tissues in a multi-component voxel, this
property is studied in the results.



4
RESULTS

This chapter is structured as follows: first the numerical results from optimisation Frame-
work I will be discussed in section 4.1. After this, the results for Framework II will be in-
troduced in section 4.2. Here we will look at in vivo results and perform numerical anal-
yses based on the optimisations with this framework. The chapter is concluded with a
Fourier analysis that will shed light on the question of why the optimised sequence out-
performs the conventional one.

4.1. OPTIMISATION Framework I
Optimisation Framework I focuses on reducing the stochastic errors in the reconstructed
tissue maps. This is achieved by decreasing the Cramér-Rao bound using optimised ac-
quisition parameters. B. Zhao et al. already performed this optimisation in a single-
component context with tissue parameters θ = (T1,T2,ρ) using the isochromat summa-
tion approach [9]. The algorithm we developed using the EPG approach found the same
optimisation result for the single-component case as shown in [29]. This ISMRM 2021
abstract by this author is presented in Appendix G.
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4.1.1. MULTI-COMPONENT OPTIMISATION; OPT α
Besides the single-component optimisation, Framework I was also used for a multi-
component optimisation. Figure 4.1 shows the Flip Angle (FA) and TR sequences re-
sulting from Opt α in section 3.3. In this minimisation scheme the estimators on which
the optimisation focuses are: θ̂ = (T̂ a

1 , T̂ a
2 , ρ̂a , T̂ b

1 , T̂ b
2 , ρ̂b), i.e. a mixture of two tissues.

The optimisation was performed in a multi-component setting with White Matter (WM)
and Grey Matter (GM) in one voxel (WM/GM optimisation).

Figure 4.1: a) FA and b) TR sequences after WM/GM optimisation for multi-component MRF using Framework
I ; Opt α. Different initialisation of the optimisation problem returned the same result. The tissue parameters
in the multi-component voxel are θW M = (700ms,60ms,0.3) and θGM = (1100ms,102ms,0.3).

Notice how the optimised sequence is very structured and often at a boundary of the
optimisation space or moving towards a bound. The result is not evaluated for reasons
discussed in chapter 5.
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4.1.2. MULTI-COMPONENT OPTIMISATION; OPT β
Figure 4.1 shows the FA and TR sequences resulting from Opt β in section 3.1. Here the
estimators on which the optimisation focuses are: θ̂ = (ρ̂a , ρ̂b). The optimisation was
performed in two multi-component settings: one with white matter and grey matter in
one voxel (WM/GM optimisation) and one with white matter and Myelin Water (MW) in
one voxel (WM/MW optimisation).
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Figure 4.2: FA and TR sequences after WM/GM and WM/MW optimisation for multi-component MRF us-
ing Framework I ; Opt β. The result for two different initialisations (see section 3.3) of the optimisation al-
gorithm are shown. The tissue parameters for myelin water in the multi-component voxel are: θMW =
(200ms,20ms,0.3). The cost-function value for the WM/GM optimisation is 6.08 and 6.38 for Init 1 and Init
2 respectively. The cost-function value for the WM/MW optimisation is 1.54 and 1.56 for Init 1 and Init 2 re-
spectively.

The optimisations starting from Init 1 result in sequences which have the lowest value
for the cost function compared to the results using Init 2. However, the results are very
close together. The WM/MW optimisation shows practically the same outcome for both
initialisations suggesting that this sequence is at a global minimum for the minimisation
problem. Studying the optimisation process, we found that the FA sequence plays a sig-
nificantly more important role in the optimisation than the TR sequence. This result was
expected as the former acquisition parameter has a larger influence on the spin dynam-
ics than the latter. The highly varying parts of the result appear not to be a numerical
artefact. The cost function obtains a lower value with these highly varying parts than in
a situation where they are smoothed (data not shown). This suggests that the encoding
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capability of the sequence in a multi-component setting benefits from these parts.

The optimisations for Framework I took about 105 minutes to converge with the multi-
processor implementation using 8 CPUs. The algorithm terminated when the change in
the cost function was less than the pre-specified tolerance ε= 10−4.

In Figure 4.3, the magnetisation evolution for M0 = 0.3 is presented for the conventional
and the optimised sequences shown in Figure 4.2.
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Figure 4.3: Absolute value of the signal from different tissues for M0 = 0.3. The spin dynamics for the conven-
tional sequence, the WM/GM optimisation and the WM/MW optimisation are presented.

From this figure we can observe that the signal from myelin water is distinctly larger than
the signal for white matter resulting from the difference in T1 relaxation times. A small
numerical study revealed that the GM/WM optimised sequence decreased the inner-
product between the WM and GM signals compared to this inner-product using the con-
ventional sequence (using normalised signals: 0.96; 0.99, respectively). The same holds
true for the WM and MW signals from the WM/MW optimisation and the conventional
sequence (using normalised signals: 0.89; 0.97, respectively). This means that the sig-
nals from the optimised sequences are easier to differentiate from one another than the
signals from the conventional sequences when using standard inner-product matching.
Note from the inner-product values that WM and MW are easier to differentiate from
one another than WM and GM using their respective optimisations.

The results of the MC evaluation are shown in Figure 4.4.
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(a) SD in the M0 reconstruction of white matter for the
WM/GM optimisation.

(b) SD in the M0 reconstruction of grey matter for the
WM/GM optimisation.

(c) SD in the M0 reconstruction of white matter for the
WM/MW optimisation.

(d) SD in the M0 reconstruction of myelin water for the
WM/MW optimisation.

Figure 4.4: Standard deviation (SD) in the reconstruction of M a
0 and Mb

0 from a Monte-Carlo simulation with
20,000 noise initialisations. The results from the WM/GM and WM/MW optimisations are evaluated together
with the results from the conventional sequence for comparison. The theoretical lower bound on the vari-
ance (CRLB) which the optimisations try to minimise are shown with dashed lines. Notice that the standard
deviation of the added noise is plotted for two different domains.

From this evaluation we can observe that even though the optimisations outperform the
conventional sequence, the difference is not very large. Notice that for large standard
deviations of the added noise, the evaluated SD for the M0 parameters gets under the
Cramér-Rao Lower Bound.

In the next paragraph some observations with respect to these results are presented to-
gether with the intuition behind them. As the CRLB in this setting depends on the deriva-
tive of the magnetisation to M0 which is a linear parameter in the magnetisation, the in-
tuition can be easily backed-up with the underlying mathematics.

Notice that the standard deviation for white matter is lower in a multi-component voxel
with myelin water than it is with grey matter. This implies that it is easier to estimate
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the parameter MW M
0 when white matter is in a voxel with myelin water, than when it

is in a voxel with grey matter. This can be explained by noting that WM and MW are
easier to differentiate from one another than WM and GM as the tissue parameters are
further apart and the inner product of their signal is lower (see discussion under Figure
4.3). Furthermore, notice that in the WM/MW optimisation, the CRLB for myelin water
barely changes. This is because myelin water has a larger signal than white matter. This
implies that the added noise will have relatively less impact on the signal-to-noise ratio
for myelin water which results in a lower standard deviation for the reconstruction of
M MW

0 . For this reason the WM/MW optimisation focuses on reducing the variance in
the MW M

0 reconstruction as it can gain more here. This fact can be backed-up easily
using the underlying mathematics.
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4.2. OPTIMISATION Framework II
Optimisation Framework II focuses on reducing the undersampling error in the recon-
structed tissue maps. This is achieved using the extended undersampling model from
section 3.2.4 to predict the undersampling error for a certain set of acquisition parame-
ters. The RMS of this undersampling error prediction for a tissue map will serve as the
cost function for which the optimisation is performed (see section 3.3). The stochastic
term E3 in equation (3.11) is left out of the optimisations and analyses as its effect were
considered marginal.

4.2.1. EFFECT OF THE TRANSMIT PHASE
The transmit phase introduced in the extended undersampling model from section 3.2.4,
is of major importance for the resulting undersampling error. To demonstrate its influ-
ence and to show that the extended undersampling model predictions are accurate, a
short numerical study using three different transmit phase maps is performed. The true
MRF error with which the model predictions are compared, is obtained by undersam-
pling the noise-free signals and matching them to a pre-computed dictionary. This true
error is referred to as the ‘simulation’.
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Figure 4.5: Effect of the transmit phase on the relative errors in T2 reconstruction. The chequerboard phantom
from Figure 3.4 is used as ground truth. The columns in this figure show the transmit phase and the resulting
model prediction and simulation of the relative errors.

From this figure we can conclude that the transmit phase is a very important system pa-
rameter in the reconstruction, leading to an almost four-fold increase in T2-RMS com-
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pared to a constant phase. The structure of the relative error as well as its magnitude
highly depend on the spatial configuration of the transmit phase. It can be seen that the
predictions from the extended undersampling model are in very good agreement with
the undersampling errors from the simulation.

4.2.2. OPTIMISED SEQUENCES
The optimisations are performed using the settings from section 3.3. The results for the
two different initialisations of the optimisation algorithm are shown in Figure 4.6.
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Figure 4.6: Optimised FA sequence using different optimisation schemes described in section 3.3 for Frame-
work II. The result for two different initialisations (see section 3.1) of the optimisation algorithm are shown. All
optimised acquisition schemes start with a 180◦ inversion pulse.

The optimisations starting from Init 1 result in the lowest cost function value, although
the results are very close together as shown in Figure 4.14 in the next section. These se-
quences are used for the scans in the next section. For all optimisation schemes except
for Opt E, the results from both initialisations show structural similarity. Note that the
result from Opt E is highly varying as the smoothing constraint is missing here. The only
major difference in the results from Opt A and Opt F is the peak in the first 100 time in-
dices. This confirms that the manipulation of the spin dynamics directly after the 180◦
inversion pulse determines the T1 encoding.

The optimisations for Framework II took about 1.5 days to converge with the multi-
processor implementation using 8 CPUs for a single run. The algorithm terminated
when the change in the cost function was less than the pre-specified tolerance ε= 10−4.
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4.2.3. IN VIVO VALIDATION
To test the extended undersampling model developed in section 3.2, the predictions and
the in vivo results from a healthy volunteer (Nr. II) are compared for a selection of se-
quences from Figure 4.7. For the model predictions the same sampling scheme is used
as for the scans and fully sampled MRF maps of this volunteer are used as ground truth.
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(a) Relative errors in the T2 map.
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(b) Relative errors in the T1 map.

Figure 4.7: Relative errors in the tissue parameter maps for slice 1 of volunteer Nr. II. The predictions are
made with the extended undersampling model from section 3.2. The RMS of the relative error is calculated by
limiting all errors to ±40% to reduce the impact of outliers. For the acquisition, a spiral sampling pattern as
discussed in section 3.4 is applied with an undersampling factor of 1/32.
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From these results we can conclude that the model performs very well in situations
where the undersampling artefacts are the dominating source of error. This is the case
for the T2 map obtained with the conventional flip angle sequence and the T1 map ob-
tained with Opt F (the optimisation which did not consider the undersampling error
in T1). When the undersampling error is successfully suppressed by the optimisations,
other sources of error that are not taken into account in the model become dominant
such that the predictions are not accurate anymore.

The transmit phase for the fully sampled scan using the conventional flip angle sequence
is shown in Figure 4.8. The transmit phase does not (or not noticeably) change for the
other scans. In Figure 4.9 and 4.10 a region of interest (ROI) in the reconstructed param-
eter maps was selected to enable a more detail oriented comparison between the results
from the conventional sequence and the sequence resulting from Opt A.
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Figure 4.8: Transmit phase for the fully sampled scan using the conventional flip angle sequence.
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Figure 4.9: Tissue parameter maps with inset figures for slice 1 of volunteer Nr. II. The conventional flip angle
sequence and the sequence resulting from Opt A are used. For the acquisition, a spiral sampling pattern as
discussed in section 3.4 is applied with an undersampling factor of 1/32.
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(a) T2 maps; slice 2.
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(b) T1 maps; slice 2.

Figure 4.10: Tissue parameter maps with inset figures for slice 2 of volunteer Nr. II. The conventional flip angle
sequence and the sequence resulting from Opt A are used. For the acquisition, a spiral sampling pattern as
discussed in section 3.4 is applied with an undersampling factor of 1/32.



4.2. OPTIMISATION Framework II

4

55

The T2 maps in Figure 4.9a clearly show less blurring of the CSF filled crevices with flip
angle pattern from Opt A. For the T1 maps in Figure 4.9b, there is no direct difference in
blurring of the CSF filled crevices. However, grey matter T1 is underestimated when us-
ing the conventional sequence while the optimised result shows a much more accurate
reconstruction with respect to the fully sampled data. From these observations we con-
clude that the flip angle sequence from Opt A outperforms the conventional sequence.
Note that the result from the two fully sampled sequences is in good agreement as ex-
pected. In Figure 4.10 similar effects can be observed despite the structural differences
between the slices.

The relative error maps using the optimised sequences are presented in Figures 4.11 to
4.13 for two different brain slices.
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(a) Relative errors in the T2 map.
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(b) Relative errors in the T1 map.

Figure 4.11: Relative errors in the tissue parameter maps for slice 1 of volunteer Nr. II. The conventional flip an-
gle sequence and the optimised sequences are used. For the acquisition, a spiral sampling pattern as discussed
in section 3.4 is applied with an undersampling factor of 1/32. The RMS of the relative error is calculated by
limiting all errors to ±40% to reduce the impact of outliers.
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The relative errors from slice 1 in Figure 4.11a show that applying the flip angle sequence
from Opt A results in a distinct improvement in image quality compared to the conven-
tional flip angle sequence. The magnitude of the error decreases and its distribution be-
comes more homogeneous. Note that the resulting relative errors from Opt A are more
stochastic in nature than the relative errors from the conventional flip angle sequence.
This suggests that the undersampling error is reduced to such a level that other, more
stochastic, error sources become dominating.

Opt C, clearly performs worse than Optimisation A, although it requires the same scan
time. It still outperforms the conventional scan in terms of RMS of the relative errors,
although the difference for the T2 map is small.

Applying the flip angle pattern from Opt D again results in an improvement over the
conventional flip angle sequence, but performs worse than optimisation A. A short study
on the conventional flip angle sequence and Opt A (the only sequences for which fully
sampled data is available) showed that comparing the undersampled scan results with
the fully sampled maps from the same sequence resulted in a lower RMS of the relative
error than when the undersampled maps were compared to fully sampled maps from the
other sequence. This observation suggests that the relatively small difference between
the RMS of Opt A and Opt D might be due to the fact that the ground truth is a fully
sampled scan using the flip angle sequence from Opt A.

The flip angle pattern from Opt E shows worse image quality than the conventional pat-
tern. This suggests that smoothness of the magnetisation plays an important role in the
performance of a flip angle sequence.

Opt F performs better than the conventional scan for T2 in terms of RMS, but is outper-
formed by Opt A. Here the same footnote as with Opt D has to be placed: the ground
truth is the fully sampled scan using the flip angle sequence from Opt A.

Figure 4.11b shows that the RMS of the relative errors in T1 are lower than the RMS of
the relative errors in T2. Approximately the same conclusions as for figure 4.11a can be
drawn except for the results from Optimisation F. As this Optimisation did not take into
account the undersampling error in T1 in its cost function (see section 3.3) this error has
increased.
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(a) Relative errors in the T2 map.
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(b) Relative errors in the T1 map.

Figure 4.12: Relative errors in the tissue parameter maps for slice 2 of volunteer Nr. II. The conventional flip an-
gle sequence and the optimised sequences are used. For the acquisition, a spiral sampling pattern as discussed
in section 3.4 is applied with an undersampling factor of 1/32. The RMS of the relative error is calculated by
limiting all errors to ±40% to reduce the impact of outliers.



4.2. OPTIMISATION Framework II

4

59

The results from slice 2 in Figure 4.12 suggest the same qualitative conclusions as the
results from slice 1. The relative improvement in the T2 maps has decreased a little when
comparing the conventional sequence and the sequence from Opt A. However, doing the
same comparison for the T1 maps, we noted that the relative improvement in T1 maps
has increased.



4.2. OPTIMISATION Framework II

4

60

Conv 
 RMS = 14.5%

Opt A 
 RMS = 9.6%

Opt B 
 RMS = 11.5%

RMS = 15.1% RMS = 10.3% RMS = 11.7%

40%

30%

20%

10%

0%

10%

20%

30%

40%

T 2
 re

la
tiv

e 
er

ro
r

(a) Relative errors in the T2 map.
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(b) Relative errors in the T1 map.

Figure 4.13: Relative errors in the tissue parameter maps of volunteer Nr. II. The first row are the relative errors
for slice 1 and the second row are the relative errors for slice 2. The conventional flip angle sequence and the
optimised sequences are applied on both slices. For the acquisition, a spiral sampling pattern as discussed
in section 3.4 is applied with an undersampling factor of 3/32. The RMS of the relative error is calculated by
limiting all errors to ±40% to reduce the impact of outliers.
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The results in Figure 4.13 show that the RMS of the undersampling error for 3/32 under-
sampled scans is lower than the undersampling error for 1/32 undersampled scans as
expected. Opt A outperforms the conventional sequence when comparing the RMS of
the relative error, but the improvement compared to the 1/32 undersampled case is de-
creased. This is natural as the undersampling error is lower when an undersampling fac-
tor of 3/32 is applied. This means that less improvement can be obtained by suppressing
the remaining undersampling error as the magnitude of the other errors is expected not
to improve as the optimisation does not take those into account. The flip angle sequence
from Opt B outperforms the conventional sequence as well, but performs slightly worse
than Opt A. Here the same footnote as with Opt D has to be placed: the ground truth is
the fully sampled scan using the flip angle sequence from Opt A. Both slices show ap-
proximately the same behaviour.
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4.2.3.1. QUANTITATIVE ANALYSIS OF THE SCAN RESULTS

In Figure 4.14 the RMS of the relative errors in T1 and T2 are given for the predictions
made with the extended undersampling model.
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Figure 4.14: RMS of the relative errors in T1 and T2 for the predictions made with the extended undersampling
model for slice 1 on a loglog scale. The bright dots are the results from Init 1 and the transparent dots the
results for Init 2. Note that the results from Init 1 and 2 are on top of each other for Opt B, Opt C and Opt D.

Note that the results for both initialisations of the same optimisation are close together
for all optimisations except for Opt E. This fact, together with the structural similarity
in the sequences resulting from both initialisations (see Figure 4.6), suggests that the
optimisations are (close to) a global minimum. The sequences from Opt E show less
structural similarity and their RMS values are relatively far apart. This suggests that the
optimisation space for this scheme is such that the algorithm easily gets stuck in local
minima before reaching the global minimum.
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In Figure 4.15 the RMS of the relative errors in T1 and T2 are given for the scans made
from slice 1.
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Figure 4.15: RMS of the relative errors in T1 and T2 for the scans made from slice 1.

Note that the RMS in the relative error is clearly higher for T2 than for T1 suggesting that
this tissue parameter is harder to estimate. The sequence resulting from Opt F, which
only focused on minimising the undersampling error in T2, clearly performs poorly for
T1. This suggests that focusing on the error for one tissue parameter is not a sensible
approach, as the error which is not taken into account can seriously increase.
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4.2.4. MODEL BASED INSIGHTS INTO THE EFFECTS OF OPTIMISATION
To understand why the optimised sequences outperforms the conventional sequence a
model-based qualitative analysis is performed. For this part the chequerboard and brain
phantom, presented in Figures 3.4 and 3.5, are used.

A numerical optimisation is performed using the extended undersampling model from
section 3.2.4 with the chequerboard phantom as ground truth. This optimisation fo-
cused only on reducing the undersampling error in T2 using the RMS of the relative er-
ror as cost function. A constant density spiral with an undersampling factor of 1/32 was
applied with a rotation scheme as described in section 3.4. No phase was added to the
chequerboard phantom and the stochastic term was neglected. The resulting optimised
sequence is shown in Figure 4.16. The analyses performed in this section use this opti-
mised sequence and described model parameters.
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Figure 4.16: Optimised sequence using a chequerboard as ground truth. The optimisation algorithm was ini-
tialised with Init 1 from section 3.3.

The evolution of the magnetisation resulting from this optimised flip angle scheme is
shown in Figure 4.17 together with the evolution for the conventional sequence for com-
parison. The tissue parameters are chosen as (T1,T2,ρ) = (1000 ms,80 ms,1) as this is the
θ0 for the chequerboard phantom. The derivatives to the parameters are also presented
in this figure. As the natural logarithm of the relaxation parameters is used in the model,
the derivatives to T ′

1 = ln(T1) and T ′
2 = ln(T2) are used. Notice that the evolution of the

magnetisation and the derivatives to the respective tissue parameters are much more
constant for the optimised sequence compared to the conventional one.
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Figure 4.17: Evolution of the magnetisation with the derivatives to the parameters T ′
1, T ′

2 and M0 for the opti-
mised and the conventional sequence using (T1,T2,ρ) = (1000ms,80ms,1). The relaxation related derivatives
are to T ′

1 = ln(T1) and T ′
2 = ln(T2) as these parameters are used in the model.
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4.2.4.1. DESTRUCTIVE INTERFERENCE FOR ERROR REDUCTION

To study the behaviour of the different error terms, the extended undersampling model
from section 3.2.4 is used with the model settings described above. Remember that the
resulting undersampling error terms are separated as:

θ∗
1 (~x) = Re

(
f (P )∗ (ρ0θ1)

)
(~x)+E1(~x;ξ)+E2(~x;θ1,ξ), (4.1)

where f is a linear operator on the PSF. The first term on the right hand side is an esti-
mation for the true θ1 and does not depend on the acquisition sequence. It can only be
improved by using a better sampling scheme. The second and third term on the right
hand side are the error terms. These terms do depend on the acquisition parameters
ξ and can be optimised. The E1-error term is closely related to the sampling density
around the centre of k-space [8]. The E2-error term also depends on the true tissue pa-
rameters. The sum over the index q (see equation (3.20)) in the definition of E2, causes
cross-talk effects between the different tissue maps. This means that the true value of T1

can influence the reconstruction of T2 and vice versa. Writing out the error terms from
equation (4.1), the following expression was obtained in section 3.2.4:

θ∗1,r (~x) =
[

Re(N )−1 1

|ρ∗
0 |2

Re
(
ρ∗

0 N
(
P ∗ (

ρ0ωθ1
)))

(~x)

]
r

+
3∑

p=1
Re(N )−1

r,p

E1,p (~x;ξ)

|ρ∗
0 |2

+
3∑

p=1
Re(N )−1

r,p

E2,p (~x;θ,ξ)

|ρ∗
0 |2

,

(4.2)

where the meaning of E1 and E2 is presented in equation (3.20) and the index r de-
fines the tissue parameter. In this section we are going to study E1 and E2 as a weighed

sum of the matrices
E1,{0,1,2}

|ρ∗0 |2
and

E1,{0,1,2}

|ρ∗0 |2
respectively. From this analysis we will see what

the effect of the optimisation is. Notice that the weights of the aforementioned sets of
three matrices come from the inverse Fisher information matrix that is also dependent
on the acquisition parameters. As the cost function of the optimisation in this section
only depends on the undersampling error in T2, the presented results focus on this tis-
sue parameter (r = 1). The inverse Fisher information matrices are presented for the
conventional and optimised acquisition parameters:

Re(Nconv)−1 =
1.05 0.40 0.45

0.40 4.30 −1.55
0.45 −1.55 1.25

 Re(Nopt)
−1 =

1.76 0.51 0.84
0.51 3.40 −0.86
0.84 −0.86 1.10

 . (4.3)

Focusing on the T2 tissue parameters implies that the weights for the matrices
E1,{0,1,2}

|ρ∗0 |2
are

Re(N )−1
1,{0,1,2} respectively. The same holds for E2.

In Figure 4.18, E1 and the
E1,{0,1,2}

|ρ∗0 |2
are presented for tissue parameter T2. In Figure 4.19,

E2 and the
E2,{0,1,2}

|ρ∗0 |2
are presented for tissue parameter T2.
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Conventional
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Figure 4.18: The E1 error for T2 using the conventional and optimised flip angle sequence. The E1 error is a

weighted sum of the matrices
E1,{0,1,2}
|ρ∗0 |2

where the weights are determined by the inverse Fisher information

matrix: Re(N )−1
1,{0,1,2}.

Conventional
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Figure 4.19: The E2 error for T2 using the conventional and optimised flip angle sequence. The E2 error is a

weighted sum of the matrices
E2,{0,1,2}
|ρ∗0 |2

where the weights are determined by the inverse Fisher information

matrix: Re(N )−1
1,{0,1,2}.

Note that the optimisation does not significantly reduce the magnitude of the matri-

ces
E1,{0,1,2}

|ρ∗0 |2
and

E2,{0,1,2}

|ρ∗0 |2
, but rather modifies their shape such that they interfere destruc-

tively in the weighted sum. The optimisation tweaks the convolution kernels S(1,0)
resid;p and
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S(1,1)
resid;p,q and the inverse FIM to obtain the reduction in E1 and E2 errors. Although the

physical significance of these observations is marginal, they are interesting from a mod-
elling perspective.

Figure 4.20 shows the total relative error divided into relative errors from the first term of
equation (4.1) (the PSF error) and the relative errors from the second and third term (E1

and E2) for the chequerboard phantom.

Conventional

Total relative error 
 RMS = 4.78%

Optimised

RMS = 1.52%

PSF error 
 RMS = 1.52%

RMS = 1.52%

1 error
 RMS = 3.32%

RMS = 0.03%

2 error
 RMS = 2.87%

RMS = 0.02%

5.0%
0.0% 5.0% 5.0%

0.0% 5.0% 5.0%
0.0% 5.0% 5.0%

0.0% 5.0%

Figure 4.20: Total undersampling error for the T2 reconstruction, divided into its individual components for
the chequerboard phantom (see Figure 3.4).

Notice that the total relative error for the optimised sequence merely consists of PSF er-
ror which cannot be optimised using the acquisition parameters ξ. The optimisation
succeeds in eliminating the acquisition dependent error terms E1 and E2.

Figure 4.21 shows the total relative error divided into relative errors from the first term of
equation (4.1) (the PSF error) and the relative errors from the second and third term (E1

and E2) for the brain phantom.
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Conventional

Total relative error 
 RMS = 11.71%

Optimised

RMS = 9.55%

PSF error 
 RMS = 9.34%

RMS = 9.34%

1 error
 RMS = 3.97%

RMS = 0.64%

2 error
 RMS = 5.18%

RMS = 1.77%

10.0%
0.0% 10.0% 10.0%
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Figure 4.21: Total undersampling error for the T2 reconstruction, divided into its individual components for a
brain phantom (see Figure 3.5).

Despite the fact that the optimised sequence is obtained using a chequerboard as ground
truth, it is still able to effectively reduce the E1 and E2 errors for the brain phantom. No-
tice that the structure of the brain phantom as well as the tissues present in it, fairly differ
from the chequerboard. For E1 the reduction was expected as the only dependence on
the ground truth for this error term is via ρ0 which is merely a mask for the air around
the object. The difference in ρ0 for the chequerboard and the brain phantom is small
suggesting that the optimisation should also perform well on the brain phantom, which
it does. The fact that the E2 error reduces is more surprising as this term strongly de-
pends on the true tissue parameters θ1. However, do note that the error reduction for
this term is less than the reduction for E1 as expected. The reason why the optimised
sequence also reduces the E2 term when using a ground truth that strongly differs from
the ground truth on which the optimisation is based, is given using Fourier analysis in
Appendix F. The next section focuses on a Fourier analysis for the E1 error, but shows
overlap with the E2 analysis.
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4.2.4.2. FOURIER ANALYSIS

To analyse why the optimisation in Figure 4.16 performs better than the conventional
sequence, a Fourier analysis of the different error terms E1 and E2 is performed. Again
using the extended undersampling model from section 3.2.4 ignoring a potential trans-
mit phase and stochastic term, the error terms can be rewritten into:

E1;r (~x) = Re
(
Re(N )−1

r,p S(1,0)
resid;p (~x)∗ρ0(~x)

)
,

E2;r (~x) = Re
( NΘ∑

q=1
Re(N )−1

r,p S(1,1)
resid;p,q (~x)∗ (ρ0θ1,q )(~x)

)
.

(4.4)

The index r denotes the different tissue parameter values. Note that multiplicative ρ∗
0

terms are neglected as their influence is marginal. The Einstein notation (repeated in-
dices imply summation) is used for index p from now on, to increase the readability.

The Fourier transform of the term inside the real operator of E1;r (~x) will be written into a
form that helps inference [8]. Generally the lower the values of this term in Fourier space,
the lower the resulting E1,r error. Using this analysis suggested by [8], we will try to create
an understanding of why the optimised sequence performs better than the conventional
one. The Fourier transforms are:

F
(
Re(N )−1

r,p S(1,0)
resid;p (~x)∗ρ0(~x)

)
= Re(N )−1

r,p Ŝ(1,0)
resid;p (~k) · ρ̂0(~k),

F
( NΘ∑

q=1
Re(N )−1

r,p S(1,1)
resid;p,q (~x)∗ (ρ0θ1,q )(~x)

)
=

NΘ∑
q=1

Re(N )−1
r,p Ŝ(1,1)

resid;p,q (~k) ·F(ρ0θ1,q )(~k).
(4.5)

Here ·̂ is used to represent that the variable is in Fourier space. The analysis below is for
E1;r only, but an equivalent approach can be used for E2;r . Note that Re(N )−1

r,p Ŝ(1,0)
resid;p (~k)

is the relevant term for this analysis as it is the only one depending on the acquisition

parameters. Using the definition S(1,0)
resid;p = ∑NJ

j=1(P j (~x) − P (~x))DM j ;p (θ0)M j (θ0), the

expression below is obtained for a certain~k. As only one k-space vector can be chosen
to perform the analysis on we will call our vector choice~k∗:

Re(N )−1
r,p Ŝ(1,0)

resid;p (~k∗) =Re(N )−1
r ;p

NJ∑
j=1

P̂ j (~k∗)DM j ;p (θ0)M j (θ0)

−Re(N )−1
r,p P̂ (~k∗)

NJ∑
j=1

DM j ;p (θ0)M j (θ0)

=
〈

f , gr

〉
−

〈
h, gr

〉
,

(4.6)

where f , gr and h are temporal NJ ×1 vectors given by:

f ( j ) = P̂ j (~k∗)

h( j ) = P̂ (~k∗) = 1

NJ

NJ∑
j=1

P̂ j (~k∗)

gr ( j ) = Re(N )−1
r ;pDM j ;p (θ0)M j (θ0).

(4.7)
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From equation (2.45) we know that f ( j ) (the spatial Fourier transform of P j (~x) at~k∗) is
actually the spiral sampling pattern belonging to the read-out at time index j weighted
with the density compensation function at~k∗. The temporal vector f is called the sam-
pling vector as it depends on the k-space sampling scheme. Furthermore, notice that
the temporal vector h is constant for all j . Let f̃ (ν) denote the Fourier transform of the

temporal vector f : f̃ (ν) = ∑NJ
j=1 f ( j )e

−i 2π
NJ
ν( j−1)

, ν = 0 , 1 , ..., NJ − 1. Using Parseval’s

theorem on the expression in equation (4.6) the following result is obtained for~k∗:

Re(N )−1
r,p Ŝ(1,0)

resid;p (~k∗) = 1

NJ

〈
f̃ , g̃r

〉
− 1

NJ

〈
h̃, g̃r

〉
. (4.8)

Here ·̃ is used to represent that the temporal vector is transformed to Fourier space. Us-
ing the property that the Fourier transform of the constant vector h is a delta peak in

k-space: h̃(ν) = δ(ν)
∑NJ

j=1 P̂ j (~k∗), where δ(ν) is the Kronecker-delta. Noting that for~k∗:

f̃ (0) =∑NJ
j=1 P̂ j (~k∗), equation (4.8) can be rewritten into:

Re(N )−1
r,p Ŝ(1,0)

resid;p (~k∗) = 1

NJ

〈
f̃ , g̃r

〉
− f̃ (0)g̃r (0)

= 1

NJ

NJ−1∑
ν=1

f̃ (ν)g̃r (ν).

(4.9)

Using an equivalent approach for E2;r , we find for the acquisition dependent term:

NΘ∑
q=1

Re(N )−1
r,p Ŝ(1,1)

resid;p,q (~k∗) = 1

NJ

NΘ∑
q=1

NJ−1∑
ν=1

f̃ (ν)g̃r,q (ν), (4.10)

with:
f ( j ) = P̂ j (~k∗)

gr,q ( j ) = Re(N )−1
r ;pDM j ;p (θ0)DM j ;q (θ0).

(4.11)

4.2.4.3. E1 ERROR

For the analysis of the acquisition dependent term from equation (4.5), the vectors f̃
and g̃r are explored in further detail. The temporal vector g is called the response vector
as it depends on the acquisition parameters. As the optimisation in Figure 4.16 is only
performed for the undersampling error in T2, this analysis will focus on E1;1 only, thus
r = 1. Using the new form from equation (4.9), we know that the inner product of
the vectors f̃ and g̃ (where g̃1(0) and f̃ (0) have been set to 0) determines the value of
the Fourier transform of the acquisition dependent term Re(N )−1

r,p S(1,0)
resid;p for~k∗. As the

different k-space locations of the acquisition dependent term can be studied only one at
the time, the vector~k∗ is chosen close to the centre. The reason to chose this location is
because the distribution of ρ̂0 is concentrated at the centre as it is the Fourier transform
of a constant mask function. This implies that a k-space location close to the centre will
probably be the most significant in the Fourier transform presented in equation (4.5), as
the weighting from ρ̂0(~k) is high here. We purposely did not chose the centre of k-space,
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but a point close to it, as the the Fourier transform of the acquisition dependent term is
0 in the centre as f̃ (ν) = 0 due to the density compensation weighting of the sampling
spirals.

A small numerical study of the Fourier transform of the acquisition dependent term for
the k-space location~k∗ revealed that the inner product in equation (4.9) is mainly real.
To visualise the inner product in this equation, the real and imaginary parts of the vectors
f̃ and g̃1 are shown (where g̃1(0) and f̃ (0) have been set to 0). Note that the real part of
the sum in equation (4.9) is the sum of inner products:

Re
(
Re(N )−1

1,p Ŝ(1,0)
resid;p (~k∗)

)
=

〈
Re( f̃ 0),Re(g̃ 0

1 )
〉
+

〈
Im( f̃ 0), Im(g̃ 0

1 )
〉

, (4.12)

where g̃ 0
1 and f̃ 0 denote the vectors g̃1 and f̃ , where the ν = 0 term has been set to 0.

Figure 4.22 gives the vectors from both these inner products for the conventional and
optimised case.
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Figure 4.22: Fourier analysis of the sampling and response vectors. The left axis belongs to the red curve and
the right axis to the blue curve.

Note that the non-zero Fourier indices from g 0
1 (ν) are higher for the conventional case

compared to the optimised case for the real part of the spectrum. For the imaginary
part, the vector g 0

1 (ν) for the conventional case is broader than the optimised one. Note
that the imaginary part of the vector f 0(ν) is very small close to ν = 0, but grows big-
ger very fast. As the vector g 0

1 (ν) is more narrow in the optimised case, it decreases
the inner product between the vectors g 0

1 (ν) and f 0(ν) compared to the conventional

case. Both these effects cause the sum of the inner products of
〈

Re( f̃ 0),Re(g̃ 0
1 )

〉
and〈

Im( f̃ 0), Im(g̃ 0
1 )

〉
to be strongly decreased in the optimised case. This results in a lower

Fourier term for Re(N )−1
r,p Ŝ(1,0)

resid;p (~k∗) where~k∗ is a vector close to the centre of k-space:
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• Conventional case: Re(N )−1
1,p Ŝ(1,0)

resid;p (~k∗) = 0.167

• Optimised case: Re(N )−1
1,p Ŝ(1,0)

resid;p (~k∗) = 0.002.

This difference in magnitude indicates why the optimised sequence outperforms the
conventional one. A small empirical study of other vectors ~k∗ close to the centre, re-
vealed that the optimised sequence performed better for the majority of points. The
same analysis for the error term E2;1 has been performed in Appendix F using more
graphical guidance.



5
DISCUSSION

We have provided two models, which both focus on a different type of MRF error. The
first model gives a prediction for the lower bound on the variance of the estimated tis-
sue parameters, using a multi-component signal model. This lower bound is predicted,
using the estimation theoretic Cramér-Rao lower bound which assumes unbiased es-
timators. The second model predicts the undersampling error in the context of MRF
reconstruction, leveraging on techniques from perturbation theory. The perturbations
can be decomposed into two main error terms (E1 and E2) that depend on the acquisi-
tion sequences for a first order approximation. Both these models were used to perform
optimisations of the acquisition parameters to increase the accuracy or precision of the
reconstructed parameter maps.

Based on Framework I ; using the estimators for T1, T2 and ρ for both tissues in the MC
voxel (Opt α), we found that two different initialisations of the optimisation algorithm
converge to the same sequence shown in Figure 4.1. This suggests that the presented re-
sult is a global minimum for the MC optimisation problem at hand. It was not possible to
numerically evaluate the performance of the MC optimisation using the Non-Negative
Least Squares algorithm. A multi-component analysis using this algorithm failed to sep-
arate the multi-component signal with added noise for a reasonably sized dictionary.
This malfunctioning could be due to the ill-posedness of the problem at hand. Addi-
tional sparsity regularisation on the NNLS algorithm might improve this evaluation, al-
though the simultaneous estimation of these 6 parameters for one voxel is rarely rele-
vant.
Based on Framework I ; using only the estimators for the proton density for both tis-
sues in the MC voxel (Opt β), we found that the evaluation of the different optimisations
could be performed in this setting as the relaxation times were assumed to be known.
The variance reduction in the reconstructed parameters shown in Figure 4.4 was rel-
atively small. The MC optimisation using the tissue parameters for white matter and
myelin water is clinically the most interesting as myelin water serves as a bio marker
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for myelin alterations, which is relevant for progressive diseases such as multiple sclero-
sis. The MC optimisation using the tissue parameters for white matter and myelin water
did not (or barely) improve the variance in the reconstruction of the proton density for
myelin water as shown in Figure 4.4d. This is because the signal from myelin water is
larger than the signal from white matter which results in the optimisation focusing on
the signal for white matter as it can gain a higher variance reduction here. For clinically
relevant applications, one would like to reduce the variance in the myelin water recon-
struction rather than the variance in the white matter reconstruction. Additional weights
in the cost function should improve the variance optimisation for the myelin water re-
construction and could be used in follow up research.

A numerical analysis using Framework II showed that sequence optimisation makes that
the undersampling error terms E1 and E2 get effectively suppressed in simulations. The
transmit phase appeared to be an important parameter when modelling the undersam-
pling errors as shown in Figure 4.5. Highly varying phase patterns cause the undersam-
pling error to increase. Fortunately, the transmit phase for in vivo scans is relatively con-
stant in the ROI as shown in Figure 4.8. Adding the transmit phase to the model improves
its predictive power which was confirmed using in vivo scans. The in vivo scans depicted
in Figure 4.11 show that the scans performed using the sequence from Opt A results in
a distinct increase of the image quality compared to the results from the conventional
sequence. The magnitude of the error decreased and simultaneously its distribution be-
came much more homogeneous for two different brain slices. The undersampling error
appears to be the dominating source of error in the in vivo scans when using the con-
ventional sequence. This conclusion was drawn as the predicted errors from the under-
sampling model agree very well with the errors from the in vivo scan results in Figure
4.7. When using the sequence resulting from Opt A, the undersampling model cannot
predict the errors in the in vivo scan anymore. This suggests that another source of error
becomes dominating from which we conclude that the suppression of the undersam-
pling error is successful. The optimisations resulting from optimisation problems with
different settings and constraints, generally performed better than the conventional se-
quence, but not than the sequence form Opt A. Part of this effect can be explained by
noticing that fully sampled reference data was only available for the conventional se-
quence and the sequence from Opt A. The optimisation for which the smoothness con-
straint on the flip angles was lifted (Opt E), performs worse than the conventional se-
quence. This suggests that smoothness of the flip angle sequence (and thus the resulting
transverse magnetisation) is crucial for the reconstruction when using undersampled
images. This observation was confirmed by other research projects [9, 30].
Further numerical analysis showed that an optimisation performed using a chequer-
board phantom as ground truth also performs well on a brain phantom in terms of sup-
pression of the acquisition dependent error terms (see Figure 4.21). The brain phantom
contained different tissue parameters than the chequerboard phantom. This suggests
that the optimisation is not highly dependent on the ground truth used in the model. It
was confirmed by in vivo scans, for which the optimisations based the brain of volunteer
Nr. I achieved serious suppression of the undersampling error in scans of volunteer Nr.
II for two structurally different slices. This is a valuable property for the optimisations to
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be clinically relevant.

Follow up research could be conducted to study whether the value of the tissue param-
eters or the structure of the ground truth has most influence on the optimisation result.
It would be interesting to study whether the undersampling errors can be further min-
imised if the optimisation is tailored to the scanned region of interest based on previ-
ously acquired information from a short survey scan or scans part of a standard scan
protocol. If the in vivo results benefit from an optimisation tailored to the specific ROI, a
protocol where the short survey scan or standard scan is used for sequence optimisation
followed by an optimised scan can be developed. As the optimisation time is currently
on the order of days, this should be decreased by applying a dimension reduction of the
optimisation space (e.g. using B-splines as discussed in the next paragraph) and rewrit-
ing the algorithm such that it is suitable for GPU computations. The k-space sampling
plays an important role in the distribution of the undersampling error as shown in Ap-
pendix E. Follow up research should be conducted to find out if sequences optimised for
a certain k-space acquisition also perform well for different sampling schemes.

One fundamental advantage of using the extended undersampling model for the op-
timisations, is that it contains an inherent separation of the spatial response function
(the PSF) depending on the k-space sampling and the temporal function depending on
the acquisition parameters. As the spatial response function does not need to be recal-
culated during the optimisation, the separation causes a speed-up of the optimisation
algorithm with approximately a factor 20, depending on the sampling scheme. Although
based on a fastly different model based on volume fractions, a similar separation of the
spatial and temporal function already proved to be invaluable in sequence design as de-
scribed in the work by S. Hu et al [31]. Furthermore, no dictionary matching is required
as the error model is based on a least-square estimation of the tissue parameters. For
iterative optimisation where the dictionary is required, it has to be updated for every it-
eration of the algorithm resulting in significantly longer computation times.

To further improve the optimisations, the following model improvements are suggested
for follow up research. The multi-component Framework I might be extended with mag-
netisation transfer to make the MC signal model more realistic.
More complex reconstruction schemes might be incorporated in the undersampling model
from Framework II. This extension would be interesting as advanced reconstruction al-
gorithms might have a significant effect on the resulting errors. Due to the linearity of
the SVD compression this reconstruction scheme might be implemented in the model
with relative ease. A disadvantage of this approach is that the reconstruction using the
SVD is based on a compression of the dictionary, which has to be calculated in each it-
eration [32].
A hybrid optimisation that suppresses the undersampling error and improves the vari-
ance in the estimators can be easily created by adding an extra term to the cost function
based on the inverse Fisher information matrix calculated for Framework II.
The undersampling model might be used to optimise other acquisition parameters as
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well. The number of time steps, the k-space sampling pattern and the TR times might
be added to the model and could all be effectively optimised at once. A disadvantage
of such approach is that the dimensions of the optimisation space will increase. This
will drive up the computation time and as the optimisation problems are non-linear and
non-convex, the algorithm can get stuck in a local minimum, instead of converging to
the global minimum. To avoid this from happening, B-spline function might be intro-
duced [33]. The B-spline functions are used such that the optimisation problem reduces
to a minimisation of the amplitude of these functions. This results in a dimension reduc-
tion of the optimisation space. When choosing a limited number of B-spline functions,
no additional constraints are required to guarantee the smoothness of the flip angle se-
quence.

An inherent problem of sequence optimisation in the context of MRF is that possible
Bloch-model errors might harm the optimisations. The over-simplified nature of the
Bloch equations creates a risk of introducing biases in the reconstruction of the param-
eter maps. An analysis of these effects is outside the scope of this work.

Although the clinical relevance of qualitative scans is subject for debate, MRF is gain-
ing terrain as accepted quantitative MR imaging technique. The undersampling model
could be used as a quick assessment tool for flip angles sequences applied in clinical
research, to estimate the impact of the undersampling error. For spatially coherent un-
dersampling errors such as the one from the conventional sequence in Figure 4.7, the
model estimation of the error might even be used to increase image quality for recon-
structions performed in the past, using a correction based on the predicted error.



6
CONCLUSION

Sequence optimisation for Magnetic Resonance Fingerprinting can be a valuable tool in
increasing the accuracy and precision of the quantitative results. In this research project
two different frameworks have been developed for sequence optimisation.
Framework I used the estimation theoretic Cramér-Rao lower bound to quantify the
lower bound on the variance in the reconstruction of the tissue maps for a certain set of
acquisition parameters. This lower bound was used for sequence optimisation, resulting
in an increased precision in numerical simulations. The effects of this optimisation were
relatively small.
Framework II estimated the undersampling error using a model that takes into account
the interplay between the k-space sampling pattern and the the acquisition parameters
such as the flip angle sequence. Optimisations using the model predictions are a new
approach for suppressing the undersampling error which is usually (over) simplified as
being spatially and temporal incoherent. Numerical simulations suggested that the un-
dersampling error can be suppressed successfully using optimised flip angle sequences.
In vivo scan results confirmed the validity of the undersampling model as well as the sig-
nificant improvement in image quality using the optimised sequences.

For multi-component analysis, the optimisations using Framework I might be of inter-
est. By merely changing the acquisition parameters more precise results can be obtained
for e.g. the estimation of component maps for myelin water. These component maps are
interesting as they act as a bio marker for myelin alterations that are relevant for moni-
toring progressive diseases such as multiple scleroses.
For regular MRF T1 and T2 mapping, the optimisations using Framework II might im-
prove the chances of MRF bringing quantitative imaging into clinical routine on short
term. The undersampling error, which is the dominating source of error using the con-
ventional sequence, can be significantly reduced using the optimised sequences or shorter
scan times can be achieved.

79



ACKNOWLEDGEMENTS

I want to express my sincere gratitude to some people who have been invaluable in the
making of this work.

First of all Dr. Frans Vos, whose directions and advice have been of great help to me.
Frans always made it easy for me to ask questions and discuss results or new ideas. His
experience in the medical imaging field, helped me get a good insight in this part of the
scientific world.

Prof. Dr. Ir. Martin van Gijzen has provided me with advice and practical suggestions.
His great theoretical knowledge in mathematics helped me understand the optimisation
algorithms better. Furthermore, as a double degree student a lot of bureaucratic actions
have to be undertaken and Martin helped me navigate in this maze.

A special word of thanks to Ir. Martijn Nagtegaal for his contribution. Martijn has exten-
sive knowledge of MRI and always surprised me with how broad his comprehension of
the field is. Besides a great mentor, he has helped to keep me on the right track when
I lost myself into details and provided me with mental support. I will never forget the
Zoom call till 4:00 a.m. to finish the ISMRM abstract I wanted to submit so bad. Without
him the research would not have been what it is right now.

I would also like to thank Dr. Sebastian Weingärtner for the fruitful discussions we had.
As an MRI physicist with an impressive grasp of the material, he had a sensible answer to
virtually all my questions. Dr. Ir. Kirsten Koolstra also deserves a word here, as she was
very helpful during the many evenings we scanned at the LUMC. I also want to thank
my fellow students in the group: Emiel Hartsema and Maaike Smit. We had nice discus-
sions as well as a lot of laughs. Also Telly Ploem, Bram Simons and the rest of the Medical
Imaging group have made my time in the student office a pleasant one.

Last but not least, I want to thank my family. My brother Moos for enduring my occa-
sional moodiness. My parents for the stable family they have provided me with. I want
to thank them for the love and support I have received over the years and for providing
me with some perspective when I was stressed out. Without them, I would have lost my
sanity a long time ago. I will be forever in their debt.

Delft, University of Technology D.G.J. Heesterbeek
September 23, 2021

80



REFERENCES 81

REFERENCES
[1] Hai-Ling Margaret Cheng, Nikola Stikov, Nilesh R. Ghugre, and Graham A. Wright.

Practical medical applications of quantitative MR relaxometry. Journal of Magnetic
Resonance Imaging, 36(4):805–824, 2012.
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A
UNDERSAMPLING MODEL IN A

MULTI-COMPONENT SETTING

The model presented in this section is not used for optimisations, nor was it used to
generate simulation results. It is merely included in an effort to create an intuitive un-
dersampling model in a multi-component setting.

For the model derived in section 2.6, single-component matching is assumed. This
model is easily extended to a multi-component setting by adopting the additive signal
model presented in section 2.4. If we assume there are two tissues in a voxel, call them
a and b, θ would change to θ = (T a

1 ,T a
2 ,ρa ,T b

1 ,T b
2 ,ρb)T for the MC situation. In the

multi-component case the equation for the parameter estimation would grow to 8 terms
which have to be linearized instead of 2 terms for the single-component case. The final
estimation for the tissue parameters in the multi-component setting would not be intu-
itive anymore.

For this reason, we adopt a volume fraction based approach where we again assume that
a voxel consists of a finite number of tissues of interest with known tissue parameters.
This signal model was also adopted by Hu et al. [31]. The only unknown is the volume
fraction (p):

M(p(~x)) =
NT∑

n=1
pn(~x)M(θn), (A.1)

where NT is the total number of tissue types in a voxel, pn the volume fraction of tissue
type n and θn the tissue parameters of tissue type n without the proton density (as this
information is already present in the volume fractions). Non-negative least-square algo-
rithms are able to recover the component maps from the mixed signals [3]. For a certain
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signal I (~x) the reconstructed component maps can be described as:

p∗(~x) = argmin
p

||I (~x)−M(p)||2 (A.2)

where p is an NT dimensional vector. We assume that for realistic MR Fingerprinting ex-
periments, the MC-algorithm performs such that the least-square estimator in equation
(A.2) and the resulting component maps from the algorithm are in good agreement. The
signal model for the undersampled images is the same as in section 2.6: I j = P j ∗ M j .
Following the same approach as in equation (2.51) to find the stationary point of the
objective function in equation (A.2), results in:

Re
NJ∑
j=1

(( NT∑
n=1

p∗
n(~x)M j (θn)−P j ∗

NT∑
n=1

pn(~x)M j (θn)
)
M j (θk )

)
= 0, ∀x ∈Gp ,∀k = 1,2, ..., NT ,

(A.3)
as DM j ,k = M j (θk ). Working out this equation the following expression is obtained:

Re
( NJ∑

j=1

NT∑
n=1

p∗
n M j (θn)M j (θk )

)−
Re

( NJ∑
j=1

NT∑
n=1

(
P j ∗pn

)
M j (θn)M j (θk )

)= 0, ∀x ∈Gp ,∀k = 1,2, ..., NT .

(A.4)

Note that the first term of this equation is simply given by N p∗ with N defined as:

Nk,n =
NJ∑
j=1

M j (θk )M j (θn). (A.5)

Introducing S(0,0)
resid;k,n =∑NJ

j=1

(
P j −P

)
M j (θk )M j (θn), the following result is found:

Re
(
[N p∗]k − [N (P ∗p)]k −

NT∑
n=1

S(0,0)
resid;k,n ∗pn

)
= 0 (A.6)

Note again that p is real as it contains the volume fractions, and that P is approximately
real as it approaches the Kronecker delta for realistic MRF experiments. The resulting
MC undersampling model is:

p∗ = P ∗p +Re(N )−1E (p ,ξ) (A.7)

with the error vector:

Ek (~x) = Re
( NT∑

n=1
S(0,0)

resid;k,n(~x)∗pn(~x)
)
. (A.8)

Note that the first term in equation (A.7) is an approximation of the true tissue param-
eters p . This part can only be improved by using a better k-space sampling scheme.
The error term E depend on the acquisition parameters and might be improved by an
optimisation of these variables.



B
SLICE SELECTION

The necessity for the ~B1 field to be rotating with the Larmor frequency in order to enable
the flip from the equilibrium state to the transverse plane as explained in section 2.1.1, is
exploited for slice selection. Slice selection is the process in which a 2-dimensional plane
in the x, y-direction of the sample is selected for imaging. Although direct 3-dimensional
MR imaging is possible, 2-dimensional MR imaging is generally used for clinical applica-
tions. By applying a gradient field, spatial encoding is achieved as the Larmor frequency
becomes spatially dependent:

ω(~r ) = γ(
B0 +

Ñ
~G ·d~r

)
, (B.1)

whereω(~r ) is the spatially dependent Larmor frequency and ~G the applied gradient. No-
tice that the gradient is the spatial derivative of the magnetic field strength in the z-
direction which is a scalar. For slice selection, a gradient ~G = (0,0,Gz ) is applied such
that the Larmor frequency can be written as:

ω(z) = γ(
B0 +Gz z

)
. (B.2)

This gradient is referred to as the slice selection gradient. In order to receive a measur-
able signal, a 2-dimensional slice of finite thickness is selected by sending an RF-pulse
consisting of a range of frequencies as sketched in figure B.1. In this case the frequency
range would be: rect( ω−ω̄

ω2−ω1
), where ω̄ = ω2−ω1

2 and the resulting RF-pulse, known as an
excitation or slice selection pulse, is a sinc function in time as is known from elementary
Fourier theory. The vertical grey block in figure B.1 is the only part of the sample which
is flipped from the equilibrium position into the transverse plane, so the detected signal
only gives information about this slice. The thickness of the slice equals the dimension
of the voxels in the z-direction and is determined by the range of frequencies in the slice
selection pulse and the steepness of the gradient. Microscopic clusters of spins with the
same resonance frequency within one voxel are called isochromats.
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Figure B.1: Sketch of slice selection by application of a slice selection gradient in the z-direction. On the ver-
tical axis the frequency of the slice selection pulse is depicted, which via the gradient can be translated into a
location on the z-axis. The horizontal shaded area shows the range of frequencies in a slice selection pulse and
the vertical shaded area the resulting slice with thickness ∆z which is flipped to generate a signal. (Modified
from: Prince et al. 2015 [15])



C
PRINCIPLE OF RECIPROCITY

The transverse component of the magnetisation can be measured using the receive coils
of the MR scanner. A schematic representation of the orientation of these coils is de-
picted in figure 2.4. Because of the orientation of the detection coils an electromotive
force (em f ) is induced by the transverse component of the magnetisation dictated by
Faraday’s law of induction:

em f =−dΦ

d t
, (C.1)

where Φ is the flux through the detection coil (not to be confused with the spin angular
momentumΦs ):

Φ=
Ï

coil area

~B ·d~S. (C.2)

To derive how the transverse component of the magnetisation of the sample changes the
flux in the detection coils, it is convenient to work with the the vector potential which
stems from the magnetisation as proposed in [13]. The resulting equation is an applica-
tion of the principle of reciprocity in the context of electrodynamics. The magnetic field
associated with the magnetisation of a sample can be modeled as originating from the
effective current density:

~J (~r , t ) =~∇× ~M(~r , t ), (C.3)

where~J is the current density (not to be confused with the total angular momentum~Js ),
~M the magnetisation of the sample, ~r the position in space and t the time. The vector
potential at a position~r originating from a current source is:

~A(~r , t ) = µ0

4π

Ñ
all space

~J (~r ′, t )

|~r −~r ′|d 3r ′ (C.4)
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where ~A is the vector potential and µ0 the permeability of free space and the effects of
retardation are ignored. The magnetic field is calculated as:

~B =~∇×~A, (C.5)

and using this definition, the flux equation (C.2) can be rewritten using Stokes’ theorem:

Φ=
Ï

coil area

~B ·d~S =
Ï

coil area

(~∇×~A) ·d~S =
∮

coil circumference

~A ·d~l . (C.6)

By substituting equation (C.3) and (C.4) in equation (C.6) the following result is obtained:

Φ(t ) =
∮ [µ0

4π

Ñ ~∇′× ~M(~r ′, t )

|~r −~r ′| d 3r ′
]
·d~l , (C.7)

where the integration boundaries are omitted for readability. The next step is to apply
integration by parts where R(~r ,~r ′) ≡ 1

|~r−~r ′| :Ñ ~∇′× ~M(~r ′, t )

|~r −~r ′| d 3r ′ =
Ñ

R(~r ,~r ′)
(
~∇′× ~M(~r ′, t )

)
d 3r ′

=


Ð

R ∂Mz
∂y ′ d 3r ′−Ð

R
∂My

∂z ′ d 3r ′Ð
R ∂Mx

∂z ′ d 3r ′−Ð
R ∂Mz

∂x′ d 3r ′Ð
R
∂My

∂x′ d 3r ′−Ð
R ∂Mx

∂y ′ d 3r ′



=


Î [

RMz
]y ′=∞

y ′=−∞d 2r ′−Î [
RMy

]z ′=∞
z ′=−∞d 2r ′Î [

RMx
]z ′=∞

z ′=−∞d 2r ′−Î [
RMz

]x′=∞
x′=−∞d 2r ′Î [

RMy
]x′=∞

x′=−∞d 2r ′−Î [
RMx

]y ′=∞
y ′=−∞d 2r ′



−


Ð

Mz
∂R
∂y ′ d 3r ′−Ð

My
∂R
∂z ′ d 3r ′Ð

Mx
∂R
∂z ′ d 3r ′−Ð

Mz
∂R
∂x′ d 3r ′Ð

My
∂R
∂x′ d 3r ′−Ð

Mx
∂R
∂y ′ d 3r ′


=−

Ñ (
~∇′R × ~M(~r ′, t )

)
d 3r ′.

(C.8)

The surface term in this equation is ignored as there is no magnetisation at infinity for
finite sources. If equation (C.8) is substituted into equation (C.7) and the closed integral
and the integral over space are interchanged the following equation is obtained:

Φ(t ) =−
Ñ [µ0

4π

∮ (
~∇′R × ~M(~r ′, t )

)
·d~l

]
d 3r ′. (C.9)

Using the vector identity (~A×~B) · ~C =−(~A×~C ) ·~B the following equation is found:

Φ(t ) =
Ñ [(

~∇′× µ0

4π

∮
d~l

|~r −~r ′|
)
· ~M(~r ′, t )

]
d 3r ′, (C.10)

where the interchange between the derivative and the integral can be made because it is
assumed that the appropriate smoothness conditions are satisfied. Now the reciprocity
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is introduced in the equation. If a current would be send through the detection coil, the
following vector potential would occur:

~A(~r ′) = µ0I

4π

∮
d~l

|~r −~r ′| , (C.11)

where I is the magnitude of the steady current through the coil [34]. If the field produced
by one unit of current through the coil is denoted as ~B pr od (~r , t ) the following expression
is found:

~B pr od (~r ′) =
~B(~r ′)

I
=
~∇′×~A(~r ′)

I
=~∇′× µ0

4π

∮
d~l

|~r −~r ′| . (C.12)

The final expression for the flux through the coil in terms of the magnetisation of the
sample is obtained by noting that the term in brackets in equation (C.10) is ~B pr od (~r ′):

Φ(t ) =
Ñ

all space

~B pr od (~r ) · ~M(~r , t )d 3r. (C.13)

Finally, using equation (C.1) and noting that outside the sample the magnetisation is
zero, the measured signal is as follows:

s(t ) ∝ em f =− d

d t

Ñ
sample

~B pr od (~r ) · ~M(~r , t )d 3r, (C.14)

where s(t ) is the signal induced by the magnetisation of the sample which is measured
with the detection coil. The proportionality factor depends on multiple factors e.g. the
amplifier gain.



D
NOISE IN K-SPACE

Instead of adding the complex AWGN to k-space, we added the noise directly to image
space. The reason we made this decision is that noise in k-space becomes correlated
in image space because of the undersampling. Details of how uncorrelated noise in k-
space becomes correlated in image space are presented here.

Under the reasonable assumption that the noise affects all the frequencies equally and
is signal independent, the noise in k-space can be modelled as a complex Additive White
Gaussian Noise (AWGN) process with 0 mean and variance σ2 [35]. The resulting signal
is:

d j (~k j ,l ) = s j (~k j ,l )+ε j ,l , (D.1)

where ε j ,l = nr (0,σ2)+ni (0,σ2) · i . In this equation n(0,σ2) is a Gaussian white noise
term with 0 mean and variance σ2.

Using the k-space signal d j (~k j ,l ), undersampled images I j (~x) can be constructed by ap-
plying the discretised inverse Fourier transform:

I j (~x) = 1

m1m2

NL∑
l=1

w j ,l d j (~k j ,l )e i~k j ,l ·~x (D.2)

where w j ,l are again the density compensation weights.

Using equation (3.5) and (D.1) and substituting them into equation (D.2) the following
expression is found:

I j (~x) = 1

m1m2

( NL∑
l=1

∑
~y∈Gp

w j ,l M j (θ(~y);ξ)e i~k j ,l ·(~x−~y) +
NL∑
l=1

w j ,l ε j ,l e i~k j ,l ·~x
)
. (D.3)
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The noise in image space is called E j (~x) ≡ 1
m1m2

∑NL
l=1 w j ,l ε j ,l e i~k j ,l ·~x .

To derive some properties of this complex noise term, the following definitions for com-
plex random variable z and w are introduced:

E[z] = E[Re(z)]+E[Im(z)] · i

Cov[z, w] = E[(z −E[z])(w −E[w])
]
.

(D.4)

Using these definitions and the fact that the added noise ε j ,l is uncorrelated in k-space,
the derivation of the following properties of E j are performed by this author and consid-
ered trivial:

• E
[
E j (~x)

]= 0

• Var
[
E j (~x)

]= 2
(m1m2)2

∑NL
l=1 w2

j ,lσ
2

• Cov
[
E j (~x),E j (~y)

]= 2
(m1m2)2

∑NL
l=1 w2

j ,l e i~k j ,l ·(~x−~y)σ2,

where the factor 2, comes from the fact that the noise has a real and a complex compo-
nent. This result implies that even though the noise ε j ,l in k-space is uncorrelated, there
is a noise correlation in image space as Cov

[
E j (~x),E j (~y)

]
is generally not zero for under-

sampled images. Notice that undersampling the k-space is the reason why the noise in
image space becomes correlated: when the k-space is fully sampled Cov

[
E j (~x),E j (~y)

]=
0.



E
VARIABLE DENSITY SAMPLING

Instead of using a constant density spiral like in Figure 4.20, a variable density spiral
might be applied. A variable density spiral has a relatively large amount of measurement
points close to k = 0, compared to a constant density spiral. This results in a significant
reduction of the undersampling error for the conventional sequence as shown in Fig-
ure E.1. Notice that the k-space sampling pattern directly influences the pattern of the
relative undersampling error.

Conventional

Total relative error 
 RMS = 2.54%

Optimised

RMS = 1.63%

PSF error 
 RMS = 1.64%

RMS = 1.64%

1 error
 RMS = 1.77%

RMS = 0.13%

2 error
 RMS = 0.84%

RMS = 0.12%

4.0% 2.0%
0.0% 2.0% 4.0% 4.0% 2.0%

0.0% 2.0% 4.0% 4.0% 2.0%
0.0% 2.0% 4.0% 4.0% 2.0%

0.0% 2.0% 4.0%

Figure E.1: Relative error in the T2 map separated into PSF error, E1 error and E2 error. The sequence (not
shown) is optimised for k-space sampling with a variable density spiral and a ground truth as in Figure 3.4.
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FOURIER ANALYSIS OF THE E2

ERROR

For the analysis of the acquisition dependent term in E2, the vector f̃ and g̃r,q are ex-
plored in further detail. As the optimisation in Figure 4.16 is only performed for the T2

undersampling error, this analysis will focus on E2,1 only thus r = 1. A small numeri-
cal study pointed out that q = 0 is the dominating term for r = 1, meaning that there is
significant cross-talk from T1 in the reconstruction for T2. The same observation was
made in [8]. As q = 0 is the dominating term, all results presented here are for the q = 0
case. Using the new form from equation (4.10), we know that the inner product of these
vectors (where g̃1,0(0) and f̃ (0) have been set to 0) determines the value of the Fourier
transform of the acquisition dependent term for a certain~k. As the different k-space lo-
cations of the acquisition dependent term can be studied only one at the time, a~k-vector
shown in Figure F.1 is chosen as F(ρ0θ1,0) has the highest value here. This implies that
this k-space location will probably be the most significant in the Fourier transform of
E2;1 as the weighting from F(ρ0θ1,0)(~k) is high here (see equation (4.5)).
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kx
k y

Absolute value of ( 0 1, 0)
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Figure F.1: Absolute value of F(ρ0θ1,0). The k-space location for which the corresponding f ( j ) is studied, is
marked with a red dot.

For the k-space location marked above the temporal sampling vector f is shown in Fig-
ure F.2a. Notice the periodicity with the undersampling factor of 32 as the spirals are
rotated with 2π

32 . Also notice that the temporal response vector for the optimised g1,0 is
more constant while the response vector for the conventional sequence is more varying.

0 50 100 150 200 250 300 350 400
Time index j
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35

P j
(k

)

Sampling vector f(j)

(a) The temporal sampling vector ~f . Notice that this is
the spiral sampling weighed with the density compensa-
tion function at different read-outs for the k-space location
shown in Figure F.1

0 50 100 150 200 250 300 350 400
Time index j

0.02

0.01

0.00

0.01

0.02

Response vector g1, 0(j)
conv
opt

(b) The temporal response vector g1,0. Notice that this vec-
tor is dependent on the acquisition parameters.

Figure F.2: The sampling and response vectors.

A small numerical study of the Fourier transform of the acquisition dependent term for
the k-space location marked in Figure F.1 revealed that the sum in equation (4.10) is
mainly real. To visualise the product from this equation the real and imaginary parts of
the vectors in Fourier space f̃ and g̃1,0 are shown. Note that the real part of the sum in
equation (4.10) is the sum of inner products:

Re
(
Re(N )−1

1,p Ŝ(1,1)
resid;p,0(~k)

)
=

〈
Re( f̃ ),Re(g̃1,0)

〉
+

〈
Im( f̃ , Im(g̃1,0)

〉
, (F.1)
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where g̃ 0
1,0 and f̃ 0 denote the vectors g̃1,0 and f̃ , where the ν= 0 term has been set to 0.

Figure F.3 gives the vectors from both inner products for the conventional and optimised
Fourier transform of the response function.
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Figure F.3: Fourier analysis of the sampling and response vectors. The left axis belongs to the red curve and the
right axis to the blue curve.

Note that because response function for the conventional situation is more varying, the
non-zero Fourier indices are higher compared to the optimised case for the real part of
the spectrum. In the imaginary part, the Fourier spectrum of the conventional response
function is broader than the optimised one. Both these effects cause the sum of the inner

product of
〈

Re( f̃ 0),Re(g̃ 0
1,0)

〉
and

〈
Im( f̃ 0), Im(g̃ 0

1,0)
〉

to be significantly decreased in the

optimised case. This results in a lower Fourier term of the error for~kmarked where~kmarked

is shown in Figure F.1:

• Conventional case: Re(N )−1
1,p Ŝ(1,1)

resid;p,0(~kmarked) =−0.674

• Optimised case: Re(N )−1
1,p Ŝ(1,1)

resid;p,0(~kmarked) =−0.155.

This difference in magnitude indicates why the optimised sequence outperforms the
conventional one.
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ISMRM 2021 ANNUAL MEETING

The abstract below had been accepted for the International Society for Magnetic Reso-
nance in Medicine (ISMRM) 2021 annual meeting and was presented to the community
on 17 May 2021 by this author. The program number for this abstract was 1561.

Errata:

• The label on the y-axis for Figure 1 and 3 should be ‘TR[ms]’ instead of ‘TR[sec]’.

• Figure 4 is not a proper evaluation of the multi-component optimisation as the ap-
plied NNLS algorithm does not perform well in situations with noise. The resulting
variance is (way) too large to let the NNLS pass as a reasonable multi-component
algorithm. Sparsity regularisation might improve the evaluation, but has not been
performed.
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Figure 1: a) FA and b) TR sequences at initiation and af-
ter optimisation for single-component MRF. Optimisation
was performed for tissue parameters T1, T2, M0 = 700ms,
60ms, 0.6, 850ms, 50ms, 0.6, 1100ms, 102ms, 0.6 with the
constraints mentioned in the Methods section. These opti-
mised patterns are highly similar to the optimised pattern
in [3] which was based on an isochromat summation (140
minutes) approach instead of the EPG simulations (40 min-
utes) as used here.

Figure 2: a) Variance in T1 estimation. b) Variance in T2 es-
timation. SNR is defined as SNR = 20log10(M0/σ). The vari-
ance is estimated using a Monte-Carlo approach with 1000
noisy signal realisations per tissue. Grey and white matter
are modelled separately using a single-component model.

Figure 3: a) FA and b) TR sequences at initiation and af-
ter optimisation for multi-component MRF. Optimisation
was performed for tissue parameters T a

1 , T a
2 , M a

0 = 700ms,

60ms, 0.3 and T b
1 , T b

2 , Mb
0 = 1100ms, 102ms, 0.3 with

the constraints mentioned in the Methods section. Differ-
ent initialisation of the optimisation problem returned the
same result.

Figure 4: a) Variance in T1 estimation. b) Variance in T2 es-
timation. The variance is estimated using a Monte-Carlo
approach with 1000 realisations. Multi-component esti-
mations were performed using the NNLS algorithm. Grey
and white matter are modelled together using a multi-
component model.

Figure 5: Relative CRB values were calculated using the multi-component Fisher matrix for a conventional
MRF sequence (row 1) and an optimised sequence (row 2). The difference is shown in row 3 by subtracting
the second row from the first. The rCRB is defined as rCRB=CRB/(σ2θ2) where θ represents T a

1 , T a
2 or M a

0 .

Tissue parameters for one tissue (superscript a) were fixed at T a
1 = 800 ms, T a

2 = 80 ms, while T b
1 and T b

2 for
the second tissue (superscript b) vary. In the centre red dot the 2 tissues are exactly the same, resulting in a
singularity.
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