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Abstract—Parallel coordinate plots (PCPs) are commonly used in information visualization to provide insight into multi-variate data.
These plots help to spot correlations between variables. PCPs have been successfully applied to unstructured datasets up to a few
millions of points. In this paper, we present techniques to enhance the usability of PCPs for the exploration of large, multi-timepoint
volumetric data sets, containing tens of millions of points per timestep.
The main difficulties that arise when applying PCPs to large numbers of data points are visual clutter and slow performance, making
interactive exploration infeasible. Moreover, the spatial context of the volumetric data is usually lost.
We describe techniques for preprocessing using data quantization and compression, and for fast GPU-based rendering of PCPs using
joint density distributions for each pair of consecutive variables, resulting in a smooth, continuous visualization. Also, fast brushing
techniques are proposed for interactive data selection in multiple linked views, including a 3D spatial volume view.
These techniques have been successfully applied to three large data sets: Hurricane Isabel (Vis’04 contest), the ionization front
instability data set (Vis’08 design contest), and data from a large-eddy simulation of cumulus clouds. With these data, we show
how PCPs can be extended to successfully visualize and interactively explore multi-timepoint volumetric datasets with an order of
magnitude more data points.

Index Terms—Parallel coordinate plots, time-varying, multi-field, linked related views.

1 INTRODUCTION

Parallel coordinate plots (PCPs) [7] were developed as a method to cre-
ate planar graphs of multi-variate data. In parallel coordinates, each N-
dimensional data point is transformed into a polyline that intersects N
parallel vertical or horizontal axes. Each axis represents a dimension,
and the point at which the polyline intersects represents the value of the
point on that dimension. Parallel coordinates have received acceptance
in statistical data analysis and information visualization as a general
method for visualizing arbitrary high-dimensional datasets [17]. As
each high dimensional data point is represented uniquely by a polyline
there is no loss of data due to projections, as is often the case with
other methods such as scatter-plots. Another important advantage lies
in the ability to visualize the geometry of high-dimensional objects,
and not just the data.

To apply PCPs to large data sets, the limitation does not lie in the
number of dimensions per data point, but in the number of points
and associated polylines. Scalability of PCPs is limited by two ma-
jor problems: visual clutter and reduced performance, hampering the
use of PCPs for interactive exploration. A number of extensions have
addressed these problems, such as the use of hierarchical and multi-
resolution methods, smooth parallel coordinates, 3D PCPs, and tech-
niques to reduce visual clutter (see section 2). However, PCPs have
been mainly applied to scattered data of up to a few millions of points.
One million points is just the lower boundary for volumetric data sets
(1003 voxels). To be usable for multifield volume data, extension of
PCPs to the range of tens of millions of points would be necessary.

In this paper, we present techniques to allow the interactive ex-
ploration of multi-timepoint volumetric data in this range. This is
achieved by using a combination of data quantization and compres-
sion, and the use of data structures to allow very fast computation
and GPU-based rendering of joint density distributions, resulting in
a quasi-continuous view of the line densities between each consecu-
tive pair of parallel axes. Several facilities for interaction are avail-
able, including brushing data selection and data normalization using
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histogram equalization. Finally, a two-way linking is provided with
spatial views of the data. This would make integration possible of
PCPs in a full-blown interactive data analysis system with linked re-
lated views at the current data set sizes.

The contributions of this paper can be summarized as:

• Scalability of PCPs to the range of tens of millions of points for
use with realistic multifield volumetric data sets.

• Maintaining high interactivity at this scale.

• Dynamic brushing for data selections.

• Dynamic two-way links between spatial views and PCPs.

• Support for multi-timepoint volumetric data sets.

To demonstrate the feasibility of these techniques, they have been
applied to three large time-varying data sets: the contest data sets of
Visualization 2004 (Hurricane Isabel) and 2008 (the ionization front
instability), and an atmospheric large-eddy simulation of cumulus
clouds.

The paper is structured as follows: related prior work is discussed
in section 2. The processing pipeline will be described in section 3,
and section 4 presents rendering and interaction methods. Section 5
gives performance data, and presents the three applications. Finally,
section 6 draws conclusions and indicates future developments.

2 RELATED WORK

In this section, we focus primarily on previous work on parallel co-
ordinates for large, sometimes time-varying, datasets, as this is an
important characteristic of our contribution. We conclude by briefly
discussing recent work using linked and coordinated views for the vi-
sual analysis of large datasets, as we also demonstrate how to combine
parallel coordinates on large data with other linked views.

Fua et al. defined large datasets as containing 106 to 109 data ele-
ments or more [5]. They extended XmdvTool [15] with a special form
of parallel coordinates that employed hierarchical clustering. The user
could interactively vary the level of detail, making possible a multi-
resolutional visualization with smooth transitions to any level of the
clustering or the raw data samples themselves.

In the same vein, Johansson et al. introduced the use of self-
organizing maps (SOM) in order to cluster data samples and thus re-
duce large datasets [10]. The clusters were visualized as variable width
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bands in parallel coordinates, with the width encoding information
about the clusters that they represent. In this case, one could drill-
down by expanding a cluster into its constituent samples in a linked
view. Specifically, a large dataset is defined as one containing at least
10000 data elements with 16 dimensions.

To increase scalability without increasing visual clutter, line densi-
ties were introduced by Miller at al. [11]. Artero et al. proposed the
use of Interactive Parallel Coordinate Density and Frequency Plots [2].
Bi-dimensional frequency histograms were calculated for every pair of
consecutive parallel axes. For each position in a frequency histogram,
a line was drawn between the relevant two axes, with its brightness
proportional to the frequency. Maximum intensity compositing was
used so that higher frequency samples always had precedence. In this
way, large data could be aggregated for a more effective visualization.
The method was tested on datasets with up to a million data elements
with 50 dimensions.

By transforming each K-means-derived cluster into three high res-
olution textures, namely an animation, outlier and structure texture,
and then compositing all cluster textures onto a polygon, Johansson
et al. managed to create cluster visualizations that included informa-
tion about the internal structure of clusters [9] . Cluster colors were
pre-determined, but opacity was configurable by specifying a trans-
fer function, also non-linearly, mapping from local intensity to opac-
ity. Outliers were determined by inspecting the inter-quartile range on
each dimension and visualized by making use of the outlier textures.
These techniques were tested on datasets with up to a hundred thou-
sand data elements.

Johansson et al. also investigated temporal parallel coordinates, fo-
cussing on visualizing changes over time by adding depth cues and
temporal density[8].

Novotny et al. use a method similar to the approach of Artero [2],
where bi-dimensional histograms, or bin maps are computed [13].
Outliers were detected directly in the bin maps and removed for sep-
arate rendering. Inspired by image processing techniques, clustering
also took place directly on the bin maps. Clusters and outliers were
separately rendered to retain visibility of the outliers in the final visu-
alization. The largest dataset tested on consisted of three million data
elements over sixteen dimensions.

WEAVE [6] and SimVis [4] are examples of systems that make use
of linked scientific and information visualization views, including par-
allel coordinates, in order to explore complex datasets. More recently,
SimVis was applied to large dynamic datasets [12], but without signif-
icant involvement of traditional parallel coordinates.

Ten Caat et al focus on a clinical application scenario in which tem-
poral EEG data is explored by students, researchers and experts to
assess latencies, amplitudes and symmetries [3]. Their work is a good
example of how PCPs can be successfully adapted to improve the as-
sessment of complex medical data.

The framework by Akiba et al. explores the concept of data ex-
ploration through linked views in the temporal, spatial and variable
domain[1].

Existing work on parallel coordinates for large data employs a com-
bination of clustering, binning and other feature extraction, such as
outlier detection, in order to cope with large datasets. These tech-
niques reduce both scalability and visual clutter problems.

Our work builds on the bin map idea, but adds a number of re-
finements in order to show how parallel coordinates can be effectively
used for the interactive visualization of even larger multi-timepoint
datasets with 25 million data elements per timestep over 10 dimen-
sions. We have developed these extensions also with the idea of inte-
grating our large data parallel coordinate pipeline with current multiple
linked view systems.

3 PROCESSING METHODS

To make PCP rendering and processing fast enough for interactive ex-
ploration, an optimized data processing pipeline was adopted. Our
on-disk data structure was designed to provide fast access to the data
needed during interaction, and it can cope with the data access patterns
that arise in multi-timepoint data.

Fig. 1: The processing pipeline. The methods to the left of the dotted
line are performed during preprocessing, while the other methods are
continuously performed during user interaction.

We identified a number of common tasks that are necessary to fully
exploit the PCP-based exploration.

• Rendering the parallel coordinate plot

• Selection of a range of points in the plot by defining an attribute
range on one of the axes

• Data probing operation at a spatial location

• Spatial display of a selection

• Re-ordering the axes

• Moving between time points

Our processing pipeline, further explained in the following sections,
is designed to provide a fast structure to perform the above-mentioned
operations.

3.1 Processing Pipeline
The processing steps (see Figure 1) are separated into two cate-
gories: preprocessing and interaction. The preprocessing steps are
only needed to be ran once, to convert the source dataset into a com-
pact and easily-accessible storage format. Once preprocessing has
been performed, the stored data is loaded on-the-fly during the ex-
ploration process.

The following sections further explain the details of the methods
shown in the pipeline diagram.

3.2 Histogram Equalization
One of the problems with the large datasets is that the distributions of
the attribute values are often not very smooth. When such a distribu-
tion is highly skewed, a large fraction of the values will be in a small
range of numbers. When such a dataset is linearly rescaled to a range
[min,max], only a small part of the vertical axis is used in the resulting
plot. This leads to a high level of clutter, and makes it difficult to spot
the internal correlations that occur inside the dense area.

This is why we optionally perform a non-linear univariate normal-
ization. For each attribute, a histogram is created of the data-values for
a single attribute over all voxels and over all timesteps. Once the his-
togram of each attribute is known, its values can be mapped through
histogram equalization to values in the range [0,1] in such a way that
the values will have a continuous density in the target domain.

The effect of normalization of both the pressure and the temperature
in a single slice of the hurricane Isabel dataset is shown in Figure 2.
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Note that the intricate internal patterns that occur in the high density
area of the unnormalized data are well visible after normalization.

It is crucial that the histogram equalization is not performed on each
timestep individually. If each timestep was normalized individually,
then each timestep would have a different normalization mapping, and
the correspondence between attributes over time would be lost, making
it impossible to compare values between timesteps or to spot changes
that occur over time.

(a) not normalized (b) normalized

(c) not normalized (d) normalized

Fig. 2: The effects of normalizing the data by histogram equalization.
A two-dimensional dataset consisting of pressure and temperature data
is shown before and after normalization. (a) shows a scatterplot of the
data without normalization, (b) shows the scatterplot after the joint his-
togram has been normalized. (c) and (d) show the parallel coordinate
plot corresponding to the data in figure (a) and (b), respectively.

3.3 Quantization

Parallel coordinate plots have little to gain from a high precision float-
ing point representation of the data. When data values are rounded
to a lower precision representation, the maximum erroneous displace-
ment that a line in the plot will have is directly related to the rounding
error. Since the axes of a parallel axis plot are generally not higher
than 512 pixels, a quantization to 8-bit values will yield a maximum
displacement of a single pixel, which is adequate for our purpose.

This quantization step reduces the data from 4 bytes to a single byte
per point per attribute, greatly reducing the necessary storage. As we
will see later, storing the data in a fixed-point format also improves the
compressibility.

3.4 Joint-histogram Generation

A parallel coordinate plot without any selections can be quickly gen-
erated solely from the joint-histograms of the data. We make use of
the binning approach proposed by Artero et al. [2]. Using this tech-
nique, only the joint histogram between each pair of neighboring axes
is needed to build the parallel coordinate plot.

Fast exploration of the data over time is made possible by pre-
computing joint-histograms of all pairs of axes. For N axes, this
costs N ∗ (N−1)/2 ∗ bins2 ∗ sizeof(uint32) space. Whenever a new
timestep is selected, N−1 reads suffice to quickly produce a new par-
allel coordinate plot based on the joint histograms between each pair
of axes.

3.5 Storage and Compression

As seen in Figure 1, two types of stored data are used during inter-
action: pre-computed joint-histograms and raw compressed data vol-
umes.

For each timestep, the joint-histograms are stored as raw blocks
of bins2 unsigned integers. Since the axis order determines which of
the joint histograms are needed, we store all N ∗ (N−1)/2 joint his-
tograms in separate files. This makes it easy to load the N−1 needed
files for any axis order at runtime.

The raw data volumes each represents a single scalar defined over
the full volume. Since the data values have been quantized, only one
byte per voxel is needed. Since these datasets are fairly large, the
disk access still forms a major bottleneck when changing to another
timestep. To partly alleviate this bottleneck, a compression step is
performed.

We have selected to use the LZO (Lempel-Ziv-Oberhumer) com-
pression, of which a public implementation is available [14]. LZO
compression is well suited for realtime decompression, since it has a
very high decompression speed while still maintaining a good com-
pression ratio. Depending on the compressed size, the rate at which
decompressed data was produced ranged from 110 to 250 MB/sec,
measured using a single core of a 2.0 GHz AMD Athlon64 X2 3800+
processor.

To store the compressed data on disk, one file per variable/timestep
combination is used. This makes it easy to load the complete volume
for a specific timestep, while still keeping the possibility of using a
reduced set of variables to speed up processing when necessary.

The volume of the currently loaded timestep is loaded fully in mem-
ory. The in-memory structure of the volume is such that the fastest
changing axis corresponds to the attribute number, followed by the
three spatial axes. This ordering enhances the spatial locality during
the histogram creation phase, resulting in faster selection processing.

The following table shows the order in which the variables are
stored in memory:

T0 P0 LW0 T1 P1 LW1 . . .

Tx, Px and LWx represent the temperature, pressure and wind-speed at
location x. Each cell represents a single memory location, ordered in
a left to right fashion.

4 INTERACTION METHODS

We implemented a demonstrator to show which type of interaction is
possible with the data sets of the intended size.

4.1 Rendering

We adopt the rendering approach of Muigg et al. [12], where the his-
togram bins form a direct basis for drawing the primitives. Instead of
having to draw a line for each data point, only a single primitive is
drawn for each histogram bin.

To combine all drawn primitives together, additive blending is used.
Since the intensity over the plot varies widely, a high precision floating
point framebuffer is used as a render target, so that no clipping of
color values is necessary. The added advantage of this technique is
that intensities can be converted to color values in a post processing
step.

We use a logarithmic intensity scale (see Figure 3), as to prevent
over-saturation of high-density areas in the plot, while keeping a good
visual contrast in low intensity areas. The contrast can be modified
interactively by the user to emphasize the high or low intensity areas
of interest.

4.2 Selections

Two commonly used types of selections are implemented in our
demonstrator application. Basic selections are made by dragging the
mouse over a range of values at any given axis. In addition, compound
selections can be made by combining basic selections in an AND or
OR-like fashion, so that more complex phenomena can be easily stud-
ied.
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(a) Linear (b) Logarithmic

Fig. 3: The effect of using a logarithmic intensity scale. Where the
high density center area on the left is completely saturated, the loga-
rithmic intensity map on the right shows no signs of clipping and still
has a high contrast in all areas.

Changes in selection criteria are processed by performing a linear
scan over the data, splitting it in two sets of points: selected points and
unselected points. The two sets of points are treated independently.
Each of them is rendered as a parallel coordinate plot, which, after
coloring, can be blended to form a clear visual representation of the
selected points.

4.3 Spatial Exploration through Linked Views

Multiple linked views present a good way of linking the different rep-
resentations of data. In this case we have chosen for a two-way linkage
between the top and the bottom half of the screen (see Figure 4).

Whenever a point is selected with the mouse in the slice viewer, a
probe determines the data values for the selected voxel and overlays
these on the parallel axis plot.

Selections made in the lower part of the screen are similarly linked
to the slice viewers. The slice viewers continuously display which
pixels are included in the selection. The orange and blue color scheme
corresponds to the parallel coordinate plot such that selected pixels are
orange and unselected pixels are blue (see Figure 5).

To provide further insight on the selected values, the current selec-
tion can also double as a colormap definition. Each selection that the
user makes will use the data values of that selected variable to produce
colors. The colors are determined based on the relative position of the
sample inside the selected range of values, so that low values corre-
spond to dark colors and high values to bright colors. In this way, each
range selection made in the parallel coordinate plot defines a single-
color mapping (see Figure 6).

Fig. 6: Defining a colormap using two selections. Two ranges are
selected in the PCP on the left, which correspond to two separate color
maps in the slice view on the right. Bright blue pixels correspond to
a high gas temperature, and bright green pixels to a high H+

2 mass
abundance.

4.4 Temporal Exploration

The PCP at a specific timestep visualizes the distribution of the dat-
apoints, but in multi-timepoint data the changes in the distribution
over time also posses key information. The demonstrator application
provides a time slider through which the user can navigate through
all available timesteps. During the movement of the slider, the PCP
is rapidly updated using the joint histograms (Section 3.4). When a

Fig. 7: Comparison against baseline. The top figure shows the PCP for
timepoint 126. The bottom figure focuses on the changes over time by
showing the difference between timepoint 126 and a stored baseline at
timepoint 125.

Fig. 8: Visualization of the change in distribution of the gas temper-
ature over time. The horizontal axis corresponds to time, the vertical
axis to gas temperature, while the intensity values in each pixel repre-
sent the number of data points within the corresponding temperature
range. This makes each column of the plot a histogram of the temper-
ature values for that timestep.

timestep is selected, the full dataset for that timestep is loaded and de-
compressed into memory. The typical loading time is 0.5 to 2 seconds,
which is acceptable for this style of interaction.

4.4.1 Comparison against Baseline

Since changes in volumetric simulation data between adjacent
timesteps are often limited to a small number of points, the changes
in the total distribution of the values over all points are quite small. To
be able to focus on these smaller changes, a baseline distribution on
one timepoint can be stored. The PCP can then be used to visualize the
difference between the distribution at another selected timepoint and
the stored distribution (see Figure 7).

4.4.2 Histograms over Time

In the PCP, at each labeled axis, the intensity of the pixels of that col-
umn corresponds to the histogram of a distribution of the correspond-
ing variable. The changes in these distributions over time are often
indicative for the specific chemical reactions or other events. Inspect-
ing these changes often provides key insights into what is happening
in the studied phenomena.

To monitor the changes in the distribution of the values, the PCP can
be inspected while moving the timestep slider. In some cases however,
this method can be tedious and it can be difficult to pin-point a specific
point in time at which the distribution starts changing.

Therefore we propose a second method to inspect these changes.
For a single selected axis in the PCP, a temporal view can be opened
that displays a plot of the distribution on that specific axis over all
timesteps. For each timestep, the intensity profile along the column
of the selected axis in the plot is extracted. The extracted profiles are
joined together in a single plot (see Figure 8).

4.5 Axis Order

The ordering of the axes is a vital part of any good PCP. The demon-
strator application starts with a pre-computed axis ordering, but the
user can interactively drag and drop the axes to reorder them if neces-
sary.

An axis can be swapped with another axis, or it can be moved to a
position between a pair of adjacent axes. As only the joint-histograms
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Fig. 4: The main user interface of the demonstrator application. The top part of the screen contains spatial viewing components (two slice
viewers and a 3D isosurface view). The parallel coordinate plot is positioned in the middle, and the control interface is positioned at the bottom.

Fig. 5: A slice viewer in which a point is selected (left) linked to a parallel coordinate plot (right) which displays the selected value as a bright
yellow line.

related to the current axis order are contained in memory, new joint-
histograms have to be loaded from disk after such a manipulation. In
the worst case, four new joint-histograms have to be loaded.

5 RESULTS / APPLICATIONS

To study how well the proposed techniques work on a real-life dataset,
we have selected three large volumetric datasets to perform visual ex-
ploration on. We have selected the visualization contest datasets of
2004 and 2008, since they are publicly available and both good exam-
ples of multi-scalar temporal datasets. The third dataset we selected is
an atmospheric simulation with the goal of studying cumulus clouds.
Table 1 shows the characteristics of the explored datasets. The follow-
ing sections describe the data and accompanying exploration.

All performance measurements were made on a desktop PC con-
sisting of a 2GHz AMD Athlon64 X2 CPU, 2 gigabytes of RAM and
an Nvidia GeForce 7950GT graphics card. Since no multiprocessing
was implemented in the demonstrator application, only a single CPU
core was used during the benchmarks.

5.1 Hurricane Isabel Dataset

The hurricane Isabel dataset is part of the visualization contest of 2004.
It contains a detailed simulation of a hurricane moving over the west
Atlantic region.

The hurricane Isabel dataset has the highest spatial resolution of
all three datasets we explored. Each timepoint consists of 25 million
points with 10 attributes each, resulting in 250 million data values.

5.1.1 Performance

During navigation with the time slider, the loading time for the pre-
computed joint-histograms is consistently around 0.02 seconds per
timestep. Combined with the 0.1 seconds it takes to draw the com-
plete parallel coordinate plot, this results in 8-9 frames per second
when moving the time slider. Once a new timestep has been selected,
it takes 2.5 seconds to load and decompress the full data volume from
disk. The recalculation of the histograms takes another 2.4 seconds.
While this recomputation takes a considerable amount of time, it is
important to note that this step is only necessary when the selection
changes. Once the histograms have been recomputed, the slice view,
probe and 3d-rendering run at over 30 frames per second.
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Dataset Spatial Resolution Points Timesteps Attributes Original size Quantized size Compressed size
Hurricane Isabel 500×500×100 25.000.000 48 10 44.70 GB 11.18 GB 2.41 GB
Vis 2008 contest (halved) 300×124×124 4.612.800 200 10 34.37 GB 8.59 GB 0.78 GB
Cumulus cloud dataset 128×128×80 1.310.720 600 6 17.58 GB 4.39 GB 3.00 GB

Table 1: Overview of the used datasets and their size.

5.1.2 Eye of the Hurricane

To get a good overview of the dataset, we select the low pressure area
near the eye of the hurricane by applying a range selection on the tem-
perature axis. The 3D view shows the spatial shape of selected area,
while the PCP provides us with the information that low pressure areas
are in this case highly correlated with low temperature areas (see Fig-
ure 9). The hurricane’s movement over time is directly visible when
moving the time slider to a different timepoint.

(a) PCP selection (b) 3D view

Fig. 9: Selection of low pressure areas (shown in orange) reveals
the area of low-temperature near the eye of the hurricane. The com-
pact horizontal shape of the orange band in the PCP reveals that low-
pressure areas mostly have a low-temperature as well.

5.1.3 Snow and Precipitation

In normal conditions, precipitation leads to low humidity. We explored
how the amount of snow is related to the precipitation (see Figure 10).

(a) PCP selection

(b) 3D view (c) Color-mapped slice view

Fig. 10: Exploration of the hurricane Isabel dataset. The combination
of high precipitation and snow has been selected so that the blue colors
in the slice view correspond with snow while green corresponds to
areas with high precipitation.

We found no real changes in the distribution over time. While the
eye of the hurricane does move spatially, the overall composition does
not change significantly, as the distribution of the values within the
hurricane is rather constant.

5.2 Vis2008 Contest Dataset
The 2008 visualization contest dataset is a simulation of an ionization
front instability [16]. There are ten attributes that describe the total

(a) t = 22 (b) t = 61

(c) t = 91 (d) t = 118

Fig. 11: Isosurface view of the movement of a high temperature front
in the 2008 contest dataset.

particle density, the gas temperature, and the abundance of H, H+,
He, He+, He++, H−, H2 and H2

2 .
We have down-sampled the data spatially to half the resolution, re-

sulting in a volume size of 4.6 million points. The loading and decom-
pression time of a single timestep was 0.6 seconds, while histogram
updates took 0.4 seconds.

One of the most interesting features of this dataset is the fact that
the distributions of the attributes change considerably over time. The
simulation starts out as an ionization front hits a small spherical bump,
causing the front to break in a turbulent matter. This fact can be seen
in the PCP, as in the early moments of the simulation it shows only a
single line, which quickly spreads out into a wide set of bands.

We were able to track the ionization front by selecting all high tem-
perature points, and monitoring their three dimensional spatial struc-
ture over time (Figure 11). This clearly shows how the initially stable
front breaks up in a highly turbulent structure.

We noticed that the presence of H and H+ shows an interesting
correlation (Figure 12), which we can pinpoint spatially through the
use of color mapping on a slice view. After the selection of the at-
tribute ranges, the color map feature was enabled so that high H mass
abundance andH+ mass abundance are represented by bright blue and
bright green colors respectively.

The distribution changes can be partly explained by the fact that the
area of effect moves outside the bounds of the simulation.

5.3 Cumulus clouds

The cumulus clouds dataset is the result of a Large-Eddy simulation
with the aim of studying cloud life-cycle patterns. The dataset contains
4 attributes, representing the amount of liquid water, the potential tem-
perature, a wind vector and the amount of total water. We have added
derived features in a preprocessing step, resulting in two additional
features; the wind speed and the vorticity.

Since the spatial resolution of the dataset is quite low, the data does
not compress as well as the other datasets. However, as the volume
size is relatively small, the load times are still under 0.1 seconds per
timestep. A full histogram update takes 0.07 seconds.

Firstly, we verified that the simulation is in a steady state, by ex-
amining the histogram over time of the main attributes. The results
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(a) PCP selection of clouds

(b) All clouds (c) High-windspeed clouds

Fig. 13: All clouds can be selected based on the liquid water attribute (a,b). The orange lines show the distribution of the other attributes within
the clouds. When the high wind-speed outlier is selected, only a select subset of the clouds is visible (c).

(a) PCP

(b) Slice

Fig. 12: A PCP showing the correlation between H and H+ mass
abundance. The PCP uses two color-mapped selection ranges so that
the colors in the slice viewer represent the H mass abundance (blue)
and the H+ mass abundance (green).

indicate that the distribution is almost uniform, and no major changes
over time are visible. This corresponds to the expected distribution of
a steady state.

A large part of the volume does not contain visible clouds. To vi-
sualize the clouds, we performed a selection based on the amount of
liquid water present in a voxel (see Figure 13). When moving the time-
slider, the three dimensional isosurface representation of the clouds
corresponded to our expectations. The formation of new clouds is
clearly visible.

The PCP shows that our selection produces one interesting outlier
when looking at the wind speed. A secondary selection can be used to
find where these outliers are located spatially. These high wind-speed
parts are characteristic to a specific phase of the cloud life-cycle, and
their formation is subject of current research.

5.4 Insights gained

Our main goal with these three examples was to show that the tech-
niques presented in this paper enable the interactive exploration of
large time-varying datasets with parallel coordinate plots. With dataset
sizes ranging from 1.3 million points with 6 attributes over 600
timesteps to 25 million points with 10 attributes over 48 timesteps, and
our system enabling navigation through timesteps at 8 to 9 frames per
second, loading of a full timestep to updated linked views and selec-
tions at between 0.1 and 5 seconds and finally interaction with linked
volume and slice views at 30 frames per second, we think that we have
successfully reached our main goal.

With regard to PCP as a suitable visualization method, the fact
that all points are explicitly linked over all dimensions is a clear ad-
vantage over many other multi-dimensional visualization techniques.
For example, clusters over a subset of the dimensions are explicitly
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linked and visible in all other dimensions, so that one can study diver-
gence over the non-clustered dimensions. With scatter plots, one has
to make use of multiple views with linked brushing to accomplish this,
in which case one can only study selected versus non-selected points,
as there is no other easy way to link points in different linked views. In
parallel coordinates, the explicit linking is independent of the selection
and valid for all points.

In all three examples, selection was used to investigate the data.
However, due to the explicit linking explained above, relations over
all dimensions are visible even before selections are made. For ex-
ample, in the case of Hurricane Isabel’s eye, the correlation between
low pressure and low temperature was already visible. Based on this,
the selection could be made to further study the relation and to show
the eye in the linked views. Generally speaking, the point to polyline
mapping characteristic of PCPs facilitates the selection of interesting
patterns over all dimensions.

6 CONCLUSIONS AND FUTURE WORK

We have demonstrated the use of our interactive tool for exploring
large volumetric data sets using PCPs, linked views, and interactive
brushing selection with three large time-varying data sets. The results
in terms of clarity of visualization and interactive response times were
quite encouraging.

We do not want to suggest that PCPs are the only or even the best
way to analyze large high-dimensional data sets. Our aim is to show
that PCPs can be fruitfully used with full-sized time varying volumet-
ric data sets, and to make it possible to integrate PCPs in an interactive
multiple-linked-views type of environment.

As noted in section 3.4, the number of joint-histograms that has to
be pre-computed scales quadratically with the number of dimension
of the dataset. This makes application of the proposed technique dif-
ficult when the number of dimensions exceeds about 20, as both pre-
processing time and used disk-space grow quadratically. However,
even without the pre-computed histograms the data can be explored,
as interactive brushing does not depend on the joint-histogram data.
The temporal navigation though, will be slowed down considerably,
as each timestep has to be loaded from disk. We intend to partly alle-
viate this problem by calculating the joint-histograms in an on-demand
fashion, so that only the histograms related to the current axis ordering
are computed. Also, we intend to investigate the usage of automatic
axis-ordering algorithms to further aid the user in exploring higher di-
mensional data.

The proposed normalization method worked well in our cases, but it
focuses mostly on displaying the relative distributions, and does not al-
low for quantitative display of data values. To alleviate this, we intend
to provide each visible parallel axis with a set of tickmarks that are
equally spaced in the original data domain, so that an intuitive map-
ping can be made between the normalized and the original data values.
Non-linear tickmark placement however is not a trivial task, and the
ability to mentally transform them to data ranges will probably vary
between viewers.

Although the techniques used were designed for efficiency, the cur-
rent implementation can definitely be further optimized for speed. We
intend to do this by avoiding operations on the full data as much as
possible, and by applying a streaming data-on-demand strategy. This
will allow us to use only a subset of data for previewing, and load the
full data in the background. We also want to explore clustering tech-
niques for reducing visual clutter. An interesting addition is to enable
partial histogram equalization, so that the user can smoothly change
from the original to the normalized data. Finally, we intend to make
the PCP tool freely available to the research community.
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