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We study phase transitions in a two dimensional weakly interacting Bose gas in a random potential at
finite temperatures. We identify superfluid, normal fluid, and insulator phases and construct the phase
diagram. At T ¼ 0 one has a tricritical point where the three phases coexist. The truncation of the energy
distribution at the trap barrier, which is a generic phenomenon in cold atom systems, limits the growth of
the localization length and in contrast to the thermodynamic limit the insulator phase is present at any
temperature.
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Almost 60 years since its discovery [1], the concept
of Anderson localization (AL) of a quantum particle by a
quenched disorder remains an extremely active direction
of research [2]. To a large extent, this is due to a subtle
problem of the effect of interaction between particles on
the localization [3–6]. It has been demonstrated that
interacting particles can undergo many-body localization-
delocalization transition (MBLDT), that is the transition
from insulator to the fluid state [6]. A new wave of interest
in this problem was inspired by the observation of AL in
dilute quasi-one-dimensional clouds of cold bosonic atoms
with a negligible interaction [7,8]. Presently, the studies of
ultracold interacting atoms form a rapidly growing domain
in the physics of disordered quantum systems [9]. Although
the first observations of MBLDT in these systems have
been reported [10–12], many features of MBLDT remain
unexplored, especially in higher than one dimension. In
contrast to the one-dimensional (1D) case where at any
nonzero temperature T > 0 only normal fluid and insulator
(glass) phases are possible, in two dimensions (2D) the
phase diagram contains one more phase. Two-dimensional
bosons undergo the Berezinskii-Kosterlitz-Thouless (BKT)
transition [13,14] and form an algebraic superfluid below
a critical temperature TBKT. While a number of studies
[15–17] were devoted to evaluating the critical disorder
strength either for the MBLDT at zero temperature or for
the BKT transition, the full finite-temperature phase dia-
gram of such a system to the best of our knowledge has
never been published [18].
In this Letter we construct the phase diagram of 2D

weakly interacting bosons subject to a static random

potential. The diagram is displayed in Fig. 1 in terms
of T and ϵ�, where the energy scale ϵ� characterizes the
disorder strength. It turns out that there are two temperature
dependent critical values of disorder: ϵBKT� ðTÞ and
ϵMBL� ðTÞ, i.e., two separatrices in Fig. 1 [18]. The first

FIG. 1. Phase diagram for 2D weakly interacting disordered
bosons in terms of the dimensionless disorder strength ϵ�=ng
and temperature T=ng for Td=ng ¼ 11, with C ¼ 1 and
fð0.54Þ ¼ 0.27. The MBLDT border between the insulator
and normal fluid follows almost a horizontal line ϵ�=ng ≃ 0.54
until the disorder approaches ϵ�=ng ¼ 2T=ng. The line of the
MBLDT is obtained with the distribution function truncated at
ϵb ¼ 1.21ngþ 5T. The solid part of the normal fluid-superfluid
line is the result of Eq. (23), and the dashed part is our expectation
of how it continues at T ≲ ng until it reaches the tricritical point
at T ¼ 0 (red point).
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one separates the normal fluid from the superfluid phase and
it shows the suppression of superfluidity by the disorder.
Since superfluidity disappears at T > TBKT even without
disorder, we have ϵBKT� ðT ≥ TBKTÞ ¼ 0. For sufficiently
strong disorder, ϵ� > ϵBKT� ð0Þ, the superfluid regime is
absent even at T ¼ 0. The second separatrix is the
MBLDT curve. The region ϵ� > ϵMBL� ðTÞ corresponds to
the insulator (glass) phase, which undergoes a transition to
the normal fluid as the disorder is reduced to below ϵMBL� ðTÞ.
The important property of 2D weakly interacting dis-

ordered bosons is the instability of the normal fluid at
T ¼ 0 with respect to a transition either to the superfluid
or to the insulator regime. Accordingly, one has

ϵMBL� ð0Þ ¼ ϵBKT� ð0Þ: ð1Þ

This means that the point T ¼ 0, ϵ� ¼ ϵMBL� ð0Þ is a
tricritical point, where the three phases coexist [18].
In terms of field operators Ψ̂ðrÞ, the Hamiltonian of 2D

interacting disordered bosons reads:

Ĥ ¼
Z

d2r

�
−Ψ̂†ðrÞ ℏ

2

2m
∇2Ψ̂ðrÞ þ gΨ̂†ðrÞΨ̂†ðrÞΨ̂ðrÞΨ̂ðrÞ

þ Ψ̂†ðrÞUðrÞΨ̂ðrÞ
�
: ð2Þ

The first term is the kinetic energy of particles (m is the
particle mass), and the second term (denoted below as
Hint) describes a contact interaction between them, char-
acterized by the coupling constant g > 0. The third term
represents the effect of the random potential UðrÞ. We
assume that UðrÞ is a Gaussian short-range potential with
zero mean, correlation length σ, and amplitude U0 such
that U0 ≪ ℏ2=mσ2. The only disorder-related length and
energy scales are known to be [19,20]

ζ� ¼
ffiffiffiffiffiffiffi
2e2

π

r
ℏ2

mU0σ
; ϵ� ¼

mU2
0σ

2

πℏ2
: ð3Þ

In the absence of disorder the density of states (DOS)
for 2D bosons in the continuum is energy independent,
ρ0 ¼ m=2πℏ2. The random potential creates negative
energy states, which form the so-called Lifshitz tails: the
DOS decays exponentially as the absolute value of the
energy increases [19,20]. Below we omit these states. For
positive energies ϵ ≫ ϵ� and even for jϵj≲ ϵ� the effect
of the disorder is limited and ρðϵÞ ≃ ρ0 is a good
approximation.
In two dimensions all single particle states are localized.

The localization length ζ increases exponentially with the
particle energy for ϵ > ϵ� [21]:

ζðϵÞ ¼ ζ�
e

ffiffiffiffiffi
ϵ

ϵ�

r
eϵ=ϵ� ; ϵ ≫ ϵ�; ð4Þ

which was, in particular, observed in atomic kicked rotor
experiments [22]. At energies jϵj ≲ ϵ� one can neglect the
energy dependence of ζ and approximate the localization
length as ζðϵÞ ≈ ζ�.
We consider the weakly interacting regime, where the

degeneracy temperature Td ¼ 2πℏ2n=m greatly exceeds
the mean interaction energy per particle ng, with n being
the mean density. Thus, there is a small parameter

ng
Td

¼ mg
2πℏ2

≪ 1: ð5Þ

We also assume that the disorder is weak, so that

ϵ� ≪ Td: ð6Þ

In order to estimate the critical disorder ϵMBL� at a given g,
we employ the method developed in Refs. [6,23]. Namely,
we consider a particular one-particle localized state jαi and
evaluate the probability Pα that there exist three other states
jβi, jα0i, jβ0i such that the two-particle states jα; βi and
jα0; β0i are at resonance. This means that the matrix element
of the interaction hα0; β0jHintjα; βi exceeds the energy

mismatch Δα0β0
αβ ¼ jϵα þ ϵβ − ϵα0 − ϵβ0 j, where ϵα, ϵβ, ϵα0 ,

ϵβ0 are one-particle energies. The MBLDT occurs when Pα

becomes close to unity.
The matrix elements of the interaction are small unless

the energies ϵα, ϵβ, ϵα0 , ϵβ0 are almost equal pairwise, e.g.,
ϵα ≈ ϵα0 and ϵβ ≈ ϵβ0 . Then we have (see Refs. [6,23]):

hα0; β0jHintjα; βi ≃
gNβ

maxðζ2α; ζ2βÞ
; ð7Þ

where ζα;β ≡ ζðϵα;βÞ, and Nβ is the occupation number for
the state jβi.
For jαi and α0i being nearest neighbors in energy the

energy mismatch is Δα0β0
αβ ¼ jδα þ δβj, where δα is the level

spacing between the states on the length scale close to ζα.
The mismatch can thus be estimated as

Δα0β0
αβ ≃maxðδα; δβÞ ¼

1

minðραζ2α; ρβζ2βÞ
; ð8Þ

and hα0; β0jHintjα; βi exceeds Δα0β0
αβ for given jαi, jβi, jα0i,

jβ0i with the probability

Pα0β0
αβ ¼ hα0; β0jHintjα; βi

Δα0β0
αβ

: ð9Þ

The quantity Pα is the sum of Pα0β0
αβ over β, α0, β0, and the

MBLDT criterion takes the form (see Refs. [6,23]):

PHYSICAL REVIEW LETTERS 121, 030403 (2018)

030403-2



gc
X
β

Nβ

minðραζ2α; ρβζ2βÞ
maxðζ2α; ζ2βÞ

¼ C; ð10Þ

where C is a model-dependent coefficient of order unity.
However, varying C does not affect the main conclusions
of this Letter and below we use C ¼ 1 (see Supplemental
Material [24]).
Omitting Lifshitz tails we replace the summation over β

in Eq. (10) by the integration over ϵβ with the lower limit
−ϵ�. Taking into account that the DOS is energy indepen-
dent and equal to ρ0 we transform Eq. (10) to

gðϵαÞρ20
�

1

ζ2ðϵαÞ
Z

ϵα

−jϵ�j
dϵNϵζ

4ðϵÞ þ ζ2ðϵαÞ
Z

∞

ϵα

dϵNϵ

�
¼ 1:

ð11Þ

The coupling strength g as determined by Eq. (11)
depends on ϵα. The latter should be chosen such that it
minimizes gðϵαÞ, and the critical coupling is gc ¼
minfgðϵαÞg. The occupation numbers Nϵ depend on the
chemical potential μ. Hence, Eq. (11) should be comple-
mented with the number equation, which relates μ and
the density n:

Z
∞

−jϵ�j
ρ0Nϵdϵ ¼ n: ð12Þ

On the insulator side we have

Nϵ ¼
�
exp

�
ϵ − μþ Nϵg=ζ2ðϵÞ

T

�
− 1

�−1
: ð13Þ

For Nϵ ≫ 1, i.e., for T ≫ ðϵ − μÞ at ϵ > μ, we expand the
exponent in Eq. (13) and obtain (see Ref. [25]):

Nϵ ¼
ζ2ðϵÞ
2g

 
μ − ϵþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ − ϵÞ2 þ 4Tg

ζ2ðϵÞ

s !
: ð14Þ

In what follows, we refer the reader to the Supplemental
Material [24] for the calculation details, and show only the
main results.
At zero temperature Eq. (14) gives

Nϵ ¼
ζ2ðϵÞðμ − ϵÞ

g
θðμ − ϵÞ; ð15Þ

where θðμ − ϵÞ is the theta function. Combining Eqs. (15),
(12), and (11) we find that gc is minimized at ϵα ¼ 1.93ϵ�.
The resulting critical disorder as a function of g is

ϵMBL� ð0Þ ¼ 0.54ng; ð16Þ

with the corresponding chemical potential μ ¼ 1.21ng. The
result of Eq. (16) is consistent with those obtained from
the analysis of tunneling between bosonic lakes [15].
Corrections to the zero temperature result (16) are small

as long as T ≪ ϵ�. For calculating these corrections one
integrates over ϵ in Eqs. (11) and (12). This gives the
following critical disorder:

ϵMBL� ðTÞ ¼ ϵMBL� ð0Þ
�
1þ 0.66

T
Td

ln

�
0.09

Td

ϵMBL� ð0Þ
��

:

ð17Þ

Exponential increase of the localization length with the
particle energy supports delocalization. In the thermody-
namic limit, as discussed in Ref. [17], this leads to the
disappearance of the insulating phase at temperatures
T > ϵ�=2. However, for realistic systems of cold bosonic
atoms the energy distribution is truncated at sufficiently
large energy. Indeed, in the process of evaporative cooling,
atoms with energies above the trap barrier immediately
leave the trap, and the distribution functionNϵ is effectively
truncated at a finite energy barrier ϵb. Typical values of this
energy for evaporative cooling to temperatures T ≳ ng
are equal to ηT, where η ranges from 5 to 8 (see, e.g.,
Refs. [26,27]). For cooling to temperatures T ≲ ng the
value of the energy barrier can be written as ϵb ¼ ngþ ηT
[28]. Below we use η ¼ 5 and, in order to match the zero
temperature result, we truncate Nϵ at ϵb ¼ 1.21ngþ ηT.
Increasing η up to 8 has little effect on the MBLDT
transition line ϵMBL� ðTÞ.
The truncation of the energy distribution practically

does not influence the results at T ≪ ϵ� and thus
Eq. (17) remains valid. However, at higher temperatures
the truncation strongly limits the growth of the localization
length, and the critical coupling gc remains finite even for
T > ϵ�=2; i.e., the insulator phase survives. In this case the
expression for the critical disorder, valid for T ≪ ϵb, is

ϵMBL� ðTÞ ¼ 2ϵb
ln ð4π3Tdeϵb=T=ngÞ − ln ln ð4π3Tdeϵb=T=ngÞ

:

ð18Þ

Equations (17)–(18) are in good agreement with the
numerical solution of Eqs. (11)–(13).
Actually, the distribution function Nϵ does not abruptly

go to zero at ϵ ¼ ϵb. It undergoes a smooth, although
quite sharp, decrease to zero near ϵb [26,27]. The disorder
potential introduces an additional smoothness of Nϵ.
However, for a weak disorder, the disorder-induced
increase of the energy interval near ϵb, in which the
distribution function goes to zero, is significantly smaller
than U2

0=ϵb, and is only a fraction of ϵ� for realistic
parameters of the system. Our calculations show that this
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does not change the result of Eqs. (17)–(18) by more than a
few percent.
In the recent paper [29] it was claimed that many-body

localization is prevented in continuum systems. The con-
clusion was based on the exchange of energy between
highly energetic particles and states with typical energies.
Without entering the discussion of collisional integrals, we
simply note that the truncation of the distribution function
(which should clearly emerge after several collision times
[26]) means that such high-energy particles are not there
to induce delocalization.
It is worth noting that MBLDT can be measured for

typical values of disorder, temperature, and density of 2D
trapped bosonic atoms. The most promising is the situation
where all single-particle states are localized. For example,
at densities n ≃ 107 cm−2 of 7Li atoms the degeneracy
temperature is Td ≃ 50 nK. For the amplitude of the
disorder potential, U0 ¼ 35 nK, and correlation length
σ ≃ 1.4 μm, we have ζ� ≈ 3 μm and ϵ� ≈ 11.5 nK.
Considering temperatures T ∼ 10 nK, for barrier energies
ϵb ≈ 44 nK, the localization length at maximum particle
energies can be estimated as ∼100 μm. The size of the
system can be significantly larger, so that all single-particle
states are really localized. The MBLDT can be identified by
opening the trap. If most of the sample is in the insulator
phase, then only a small fraction of particles will escape
and the size of the remaining cloud will increase by an
amount of the order of the localization length. On the
contrary, if most of the sample is in the fluid phase,
switching off the trap will lead to the expansion of the
major part of the cloud. The MBLDT can be also identified
in situ by measuring the dynamical structure factor with the
use of the Bragg spectroscopy, the method employed to
distinguish between the superfluid and Mott insulator
phases of lattice atomic systems (see, e.g., Refs. [30,31]).
We now start our discussion of the BKT transition

between the normal fluid and superfluid phases with the
high temperature regime, T ≫ ng. In the superfluid phase
we assume that density fluctuations are small and the
Bogoliubov approach remains valid in the presence of
disorder. Following Refs. [32,33] we consider a weak
disorder, ϵ� ≪ ng, and rely on the Hamiltonian H ¼
H0 þ

R
UðrÞδnðrÞd2r, where H0 is the standard

Bogoliubov Hamiltonian in the density-phase representa-
tion, while the second term describes the interaction of
the density fluctuations δnðrÞ with disorder. Diagonalizing
H0 and using the known relation for the density fluctua-
tions we have,

H ¼
X
k

ℏωkb
†
kbk þ

X
k

nUkðbk þ b†−kÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ek=ℏωk

p
: ð19Þ

Here n is the mean density, bk and ℏωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
k þ 2ngEk

q
are the operators and energies of Bogoliubov excitations

with momentum k, Ek ¼ ℏ2k2=2m is the free particle
kinetic energy, and Uk is the Fourier transform of the
disorder potential UðrÞ. For the normal density we then
have [33]

nf¼
1

2
n
Z hU�

kUki
ðngþEk=2Þ2

d2k
ð2πÞ2−

Z
Ek

∂Nk

∂ℏωk

d2k
ð2πÞ2 ; ð20Þ

where we put the normalization volume equal to unity.
The result of the integration in the first term of Eq. (20)
depends on the correlation function of the disorder. For
hUðrÞUðr0Þi ¼ U0δ½ðr − r0Þ=σ�, we have hU�

kUki ¼ U2
0σ

2

and at temperatures T ≫ ng Eq. (20) yields

nf ¼ ϵ�
2g

þ mT
2πℏ2

ln
T
ng

; T ≫ ng: ð21Þ

The Bogoliubov approach works well in the superfluid
phase, but it does not allow one to determine the exact value
of the BKT transition temperature TBKT. At this temper-
ature the superfluid density ns undergoes a jump, and just
below TBKT the superfluid density satisfies the Nelson-
Kosterlitz relation [34]:

nsðTBKTÞ ¼
2m
πℏ2

TBKT: ð22Þ

For ϵ� ≪ ng, the superfluid density ns next to the BKT
transition point is sufficiently large. Hence, it is possible to
complement the Nelson-Kosterlitz relation with the expres-
sion for ns from Bogoliubov theory. From Eqs. (21) and
(22) we obtain a relation for the critical disorder of the
BKT transition:

ϵBKT� ðTÞ ¼ 2ng

�
1 −

T
Td

ln

�
e4

T
ng

��
: ð23Þ

In the absence of disorder, the most precise value of
TBKT was obtained in Ref. [35] by Monte Carlo simu-
lations: TBKT ¼ Td= lnðξTd=ngÞ with ξ ≃ 380=2π ≃ 60. In
the limit ϵ� → 0, Eq. (23) gives TBKT≃Td=( lnðe4Td=ngÞþ
OðlnlnTd=ngÞ). Therefore, TBKT with ns following from
the Bogoliubov approach is close to the exact value of
Ref. [35]. This justifies the validity of our method. For the
Gaussian disorder correlation function, Eqs. (20) and (22)
lead to critical values of the disorder versus ðTBKT − TÞ,
which for low disorder agree within 20% with Monte Carlo
calculations [16].
The employed Bogoliubov approach has to be corrected

when ng is approaching ϵ�. In this case the first term
of Eqs. (20) and (21) should be complemented by the
contribution of higher order diagrams. This can be done by
keeping nonlinear (in bk) interactions between atoms and
random fields in the Hamiltonian (19), as it was done in the
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three-dimensional case in Ref. [36]. Instead of Eq. (23) we
then have

ϵBKT�
2ng

¼
�
1 −

T
Td

ln

�
e4

T
ng

��
f

�
ϵBKT�
2ng

�
; ð24Þ

where the function fðxÞ is of order unity.
The BKT transition has been measured in ultracold

atomic gases for clean harmonically trapped systems [37].
In the presence of disorder, coherence properties near the
BKT superfluid transition [38] and the resistance for a
strongly interacting gas [39] have been studied experimen-
tally. We thus believe that an experimental validation of our
results is possible in both harmonically trapped and uni-
form (box) confining potentials. The 2D Bose gas in a box
potential has been created in a number of experiments [40],
in particular with a tunable interaction strength [41], and
realistic proposals of how to identify the BKT transition in
this system have been made [42].
Returning to the phase diagram we should admit that

close to the tricritical point Eqs. (16) and (24) can give only
estimates rather than exact values of the critical disorder
strengths ϵMBL� and ϵBKT� (because of not exactly known
values of the constant C and function f). In particular, in
Fig. 1 we took C ¼ 1 and put f ¼ 0.27 for ϵ� ¼ 0.54ng.
However, we argue that the identity (1) holds irrespective of
the precision of our approximations and now we present the
proof of this identity [18].
First of all, ϵBKT� ð0Þ cannot exceed ϵMBL� ð0Þ. As it is

explained in detail in the Supplemental Material, such a
situation is not possible because the critical line for
MBLDT is monotonically increasing, whereas the critical
line for the BKT transition is monotonically decreasing.
Whereas elementary excitations are extended in the
superfluid, in the insulator they are localized by definition.
Thus the localization length diverges when ϵ� approaches
ϵMBL� ð0Þ þ 0. However, at any fixed disorder ϵ� > ϵMBL� ð0Þ,
the elementary excitations undergo many-body delocaliza-
tion with increasing temperature. The critical temperature
tends to zero as the localization length diverges; i.e., at
arbitrary low finite temperatures there will be a range of
disorder strengths corresponding to a normal fluid.
On the other hand, ϵMBL� ð0Þ cannot exceed ϵBKT� ð0Þ

either. Indeed, this would mean that the normal fluid is
realized at T ¼ 0 in a certain range of ϵ�; i.e., elementary
excitations are extended. However, as follows from the
theory of weak localization (see, e.g., Ref. [21]) in two
dimensions this is impossible for a nonsuperfluid state.
At T ¼ 0 the normal fluid is unstable with respect to the
transition either to an insulator or to a superfluid, depending
on the disorder.
We thus arrive at the phase diagram of Fig. 1 with

ϵMBL� ð0Þ ¼ ϵBKT� ð0Þ, which should be valid as long as there
exist only three phases: insulator, normal fluid, and super-
fluid. At low temperatures all phase transitions occur at the

coupling strength ng ∼ ϵ�. In this respect it is worth noting
that in the recent experiment on disordered 2D lattice
bosons [12] it was observed that MBLDT happens when
the interaction energy and the characteristic disorder are of
the same order of magnitude.
One may think of a possible alternative to the phase

diagram of Fig. 1. A phase with nonergodic but extended
eigenstates (nonergodic phase; see Ref. [43] for a discus-
sion of such states) can take place in the vicinity of the
tricritical point. Detailed discussion of such a possibility
goes beyond the scope of the present Letter.
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