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Abstract

Nitrate leaching from agricultural soils is increasingly found in groundwater, a primary source of drinking water worldwide. This
nitrate influx can potentially stimulate the biological oxidation of iron in anoxic groundwater reservoirs. Nitrate-dependent iron-
oxidizing (NDFO) bacteria have been extensively studied in laboratory settings, yet their ecophysiology in natural environments
remains largely unknown. To this end, we established a pilot-scale filter on nitrate-rich groundwater to elucidate the structure
and metabolism of nitrate-reducing iron-oxidizing microbiomes under oligotrophic conditions mimicking natural groundwaters.
The enriched community stoichiometrically removed iron and nitrate consistently with the NDFO metabolism. Genome-resolved
metagenomics revealed the underlying metabolic network between the dominant iron-dependent denitrifying autotrophs and the
less abundant organoheterotrophs. The most abundant genome belonged to a new Candidate order, named Siderophiliales. This new
species, “Candidatus Siderophilus nitratireducens,” carries genes central genes to iron oxidation (cytochrome c cyc2), carbon fixation
(rbc), and for the sole periplasmic nitrate reductase (nap). Using thermodynamics, we demonstrate that iron oxidation coupled to nap
based dissimilatory reduction of nitrate to nitrite is energetically favorable under realistic Fe3+/Fe2+ and NO3

−/NO2
− concentration

ratios. Ultimately, by bridging the gap between laboratory investigations and nitrate real-world conditions, this study provides insights
into the intricate interplay between nitrate and iron in groundwater ecosystems, and expands our understanding of NDFOs taxonomic
diversity and ecological role.

Keywords: NDFO, iron, nitrate, groundwater

Introduction
Globally, approximately one-third of the nitrogen applied to agri-
cultural soils is lost via leaching to the surrounding waterbodies
[1]. This has led to elevated nitrate (NO3

−) levels in anoxic ground-
waters, a primary source of drinking water worldwide [2]. Owing to
population growth and agriculture intensification, nitrate concen-
trations in subsurface waters are expected to continue increasing
[3]. Besides its direct impact on human health [4], nitrate can
significantly alter the biogeochemistry of groundwater reservoirs
[5]. Nitrate promotes the oxidation of sulfide and in particular of
iron (Fe) – the most prevalent groundwater contaminant – leading
to the formation of oxides with high adsorption capacity and
the emission of greenhouse gases [6]. Despite these implications,
the consequences of nitrate–iron interactions on ecosystems and
drinking water production systems remain largely unexplored. A
detailed understanding of the underlying principles is paramount
for anticipating and mitigating current and future challenges,

as well as for exploring potential synergies and biotechnological
opportunities.

Nitrate-dependent iron-oxidizing (NDFO) bacteria, also referred
to as nitrate-reducing iron-oxidizers (NRFO) [7, 8], couple the
anoxic reduction of nitrate to the oxidation of Fe2+ (eq. 1). Since
their discovery in 1996 by Straub et al. [9], NDFO microorganisms
have been the focus of extensive research both in pure and
mixed cultures (reviewed in [10]), and several complete genomes
are already publicly available [11, 12]. The metabolic versatility
of NDFO bacteria spans from lithoautotrophic to mixotrophic
growth [10], to partial denitrification using nitric oxide (NO) [13]
and nitrous oxide (N2O) [11] as terminal electron acceptors. At
the same time, due to the inherently low energetic yield of iron
oxidation, NDFO bacteria live close to the thermodynamic edge
[14]. Their fitness is highly dependent on environmental factors
such as substrate and product availability, pH and temperature
[15]. Chemical reactions – such as the quasi-instantaneous
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precipitation of the biologically formed Fe3+ − can play a pivotal
role by modulating iron and nitrogen concentrations [16].
However, our current understanding is largely based on laboratory
settings, and does not necessarily reflect the complexity of
natural and engineered ecosystems where several (a)biotic
reactions occur simultaneously at temperatures significantly
lower than tested to date [17].

10Fe2+ + 2NO−
3 + 24 H2O → 10Fe(OH)3 + N2 + 18H+ (1)

To address these knowledge gaps, we established a pilot-scale
filter on anoxic groundwater containing both Fe2+ and NO3

−. The
emulated groundwater conditions allowed for the establishment
of a microbial enrichment that simultaneously removed Fe2+ and
NO3

−. In depth metagenomic analysis of the steady-state com-
munity revealed a new order-level NDFO lineage, deepening our
understanding of their taxonomic diversity and ecological roles.
Overall, our study bridges the gap between laboratory studies and
real-world conditions, and offers a nuanced view on the intricate
interplay between nitrate and iron in groundwater ecosystems.

Results
Nitrate-dependent iron removal irrespective of
the limiting nutrient
A pilot-scale, granular activated-carbon filter was fed with
nitrate-rich anoxic groundwater for 120 days. Stable anoxic
nitrate and iron removals were achieved after less than 3 weeks of
operation and maintained for over 100 days (Fig. 1). With nitrate
as the limiting nutrient at both groundwater (8.9 ± 2.8 μM) and
nitrate-amended concentrations (13.5 ± 1.5 and 20.2 ± 2.4 μM),
effluent nitrate concentrations were consistently below detection
limit (1 μM). Throughout the nitrate-limiting period, NO3

− and
Fe2+ were consumed at a 7.1 ± 1.4 Fe2+:NO3

− molar ratio (Fig.
S3). Oxygen was always below the quantification limit of 3 μM.
Roughly 80 μC-mol dissolved organic carbon (DOC·l−1) was
consistently removed from the influent, likely due to Fe2+–
DOC complexes formation owing to the non-biodegradable
nature of organic matter in the groundwater matrix (<1.2 μC-
mol·l−1 assimilable organic matter). Ammonia consumption was
negligible (<0.1 μM). Effluent nitrite concentrations stayed below
the detection limit (<0.2 μM), while other denitrification interme-
diates – nitric oxide and nitrous oxide – were not measured. The
observed consistent stoichiometric coupling between nitrate and
iron removals strongly suggests Fe2+ oxidation to be primarily
driven by microbial nitrate-reducing iron oxidation.

Microbial community dominated by iron
oxidizers and denitrifiers
Metagenomic DNA sequencing yielded a total of 107 512 and
8 754 261 quality filtered short and long reads, respectively. After
assembly and polishing, this resulted in 19 127 contigs with an
N50 value of 15 927. Contigs binning resulted in 13 high (>90%
completeness and <5% contamination; containing full-length
23S, 16S, and 5S ribosomal RNA genes and ≥18 transfer RNA genes)
and medium (completeness >50% and contamination <10%)
quality metagenome assembled genomes (MAGs) as defined by
[18] with a relative abundance exceeding 0.5% of the quality
filtered long reads. Collectively, these 13 most abundant genomes
accounted for 66.9% of the total quality filtered reads, and
belonged to four phyla: Proteobacteria (51.6%), Actinobacteria (8.3%),
Bacteroidetes (5.6%), and Chlorof lexi (1.4%) (Table 1). All genomes

Figure 1. Simultaneous NO3
− (A) and Fe2+(B) removals in the

groundwater-fed pilot-scale filter during the 120 days of continuous
operation. The groundwater Fe2+ concentration was constant
throughout the experiment (236 ± 4 μM). NO3

− was dosed in the influent
to increase the natural groundwater concentration in steps from
8.1 ± 2.1 to 20.2 ± 2.4 μM (NO3

− limitation), and up to 83.8 ± 0.6 μM (Fe2+
limitation). Fe2+ and NO3

− were proportionally removed throughout the
whole experiment, regardless of the limiting nutrient (see Fig. SI 3).

in the community contained at least one gene encoding for a
denitrifying enzyme, and five featured the genetic potential for
iron oxidation. Notably, all putative iron oxidizers also possessed
the genetic repertoire for carbon fixation. The most abundant
MAG (MAG.13), accounting for 19.3% of the community, could only
be taxonomically classified at class level (Gammaproteobacteria).
Given its high abundance and potential metabolic relevance,
the taxonomy and metabolic potential of MAG.13 was further
investigated (Table S1).

“Candidatus Siderophilus nitratireducens”
represents a new order within
Gammaproteobacteria
Our phylogenomic analysis based on the concatenated amino
acid sequences of 120 bacterial single copy conservative marker
genes revealed that MAG.13 (98.6% completeness, 1.7% contami-
nation) belongs to a bacterium forming a new order-level lineage
Ga0077554 (GTDB release 08-RS214), within the class Gammapro-
teobacteria, with no known closely related pure-culture represen-
tatives (Fig. 2). We propose to name the new species “Candidatus
Siderophilus nitratireducens” gen.nov., sp.nov., a member of the
Candidate order and family Siderophiliales and Siderophiliaceae,
respectively. This lineage, along with several other MAGs from
similar groundwater habitats [21], is mostly related to lineages
including lithoautotrophic sulfur-oxidizing bacteria from the gen-
era Sulfurif lexus, Thioalbus, and the members of the order Thio-
halomonadales, including Thiohalomonas, Sulfurivermis, and Thio-
halophilus. Average nucleotide identity and in-silico calculated
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DNA–DNA hybridization comparison between “Ca. Siderophilus
nitratireducens” and its closest relative, a MAG from a drink-
ing water treatment plant (GCA_001464965.1), indicated that the
two organisms belong to the same genus but different species
(ANI = 89%, DDH = 36.6%).

Autotrophy in “Ca. Siderophilus nitratireducens”
To resolve the main anabolic and catabolic pathways of “Ca.
Siderophilus nitratireducens,” open reading frames (ORFs) were
predicted and annotated (Table 2, detailed version in Table S1).
The genome contains marker genes coding for two key pro-
teins of autotrophic CO2 fixation via the reductive pentose phos-
phate (Calvin–Benson–Bassham; CBB) cycle, including the large
and small subunits of the ribulose-1,5-bisphosphate carboxylase-
oxygenase (rbcLS form I) and the phosphoribulokinase (prk). Genes
encoding for carboxysomal shell proteins and carbonic anhy-
drase were also present, further supporting the inorganic carbon
uptake ability of “Ca. Siderophilus nitratireducens”. The absence
of phosphofructokinase (pfk) indicates a modified glycolytic path-
way initiating at the glyceraldehyde 3-phosphate level. All tricar-
boxylic acid (TCA) cycle genes were identified except for fumarate
hydratase (fh). However, the glyoxylate shunt enzymes malate
synthase (glcB) and isocitrate lyase (aceA) were present. Taken
together, these findings suggest the capability for full autotrophic
growth of “Ca. Siderophilus nitratireducens.”

Iron oxidation in “Ca. Siderophilus
nitratireducens”
The presence of a monoheme c cytochrome cyc2 cluster 3, a
primary iron oxidation gene, suggests that “Ca. Siderophilus
nitratireducens” can use Fe2+ as an electron donor. Other common
Fe2+ oxidases, namely the diheme c cytochrome cyc1 and the
multiheme c cytochromes MtoA and MtoB, were not annotated.
Despite the close phylogenetic proximity to lithoautotrophic
sulfur-oxidizing bacteria, the genes of sulfide dehydrogenases
Sqr and FccAB and sulfite dehydrogenases SorAB and SoeABC
were not identified.

In terms of potential catabolic electron acceptors, the genes
for a periplasmic nitrate reductase (napABCD and its membrane
ferrodoxins napGH) and a cbb3-type cytochrome c oxidase (ccoNOP)
were annotated. However, genes encoding for other known
denitrification reductases, namely membrane-bound nitrate
reductase (narGHI) and nitrite, nitric oxide and nitrous oxide
reductases, nirK/nirS, norBC, and nosZ respectively, were not found
(Table 2, detailed version in Table S1). Additionally, alternative
oxidases, such as the cytochrome bd ubiquinol oxidase (cydAB) or
the aa3-type cytochrome c oxidase (coxABCD) were not identified.
Also, genes of dissimilatory sulfate reduction (aprAB and dsrABC)
and the sox complex, responsible for sulfate reduction could
not be identified. These findings suggest that “Ca. Siderophilus
nitratireducens” relies exclusively on nitrate and oxygen as
electron acceptors.

On the thermodynamic feasibility of
nap-dependent nitrate-reducing iron-oxidation
Based on its genome, “Ca. Siderophilus nitratireducens” is poten-
tially an autotrophic organism that obtains energy by oxidizing
Fe2+ to Fe3+ while reducing NO3

− to NO2
−. Yet, as iron is a weak

electron donor, the standard Gibbs free energy of the reaction is
positive under standard biological conditions (pH 7). The process
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Figure 2. Phylogenetic position of the “Ca. Siderophilus nitratireducens” based on sequence analyses of concatenated alignment of 120 single-copy
conserved bacterial protein markers [22] – taxonomic designations correspond to the Genome Taxonomy DataBase 207). The trees were built using
IQ-TREE2 [23] with approximate likelihood-ratio test for branches [24]. Bootstrap consensus tree is shown with values above 90% placed at the nodes.
Bar, 0.10 changes per position.

Table 2. Key enzyme of the main catabolic and anabolic pathways of “Ca. Siderophilus nitratireducens.” “+” and “–“indicate presence
or absence in the genome. CBB, Calvin–Benson–Bassham cycle; TCA, Tricarboxylic acid cycle/Krebs cycle.

Electron acceptor Electron donor Carbon fixation Carbon metabolism

Element Key genes Presence Element Key genes Presence Pathway Key genes Presence Pathway Key genes Presence

Nitrogen napABCD + Iron cyc2 + CBB rbcLS form I + Gycolysis pfk −
narGHI − cyc1 − prk + gpml +
nirKS/norBC/nosZ− mtoAB − Carboxysome + TCA cycle cs / gltA +

Sulfur aprAB − Sulfur sqr (+) sucAB +
soxXABYZ(CD) − fccAB − fh −

Oxygen ccoNOP + mdh +
qoxABCD − Glyxoylate

shunt
glcB +

cydABX − aceA +

is therefore thermodynamically unfavorable:

Fe2+ +0.5NO−
3 +H+ → Fe3+ +0.5NO−

2 +0.5H2O ΔG01 = 35.2
kJ

e–mol

However, the exceptionally low solubility constants of iron
oxides, ranging from 10−34 to 10−42 [25] result in very low Fe3+

concentrations. Thereby, precipitation creates the conditions for
a favorable thermodynamic driving force for the oxidation of
Fe2+ to Fe3+ [26]. Under the operational conditions of this study
(283 K, <1 μmolNO3

−·l−1, <0.2 μmolNO2
−·l−1 in the effluent),

the reaction becomes thermodynamically favorable owing to the
calculated Fe3+/Fe2+ ratio in the order of 10−16 (conservative value,
see Section 4.2):

ΔG1 = ΔG01
r + RTln

⎡
⎣

[
Fe3+] [

NO−
2

] 1
2

[Fe2+]
[
NO−

3

] 1
2

⎤
⎦ = −66.2

kJ
e–mol

A Gibbs free energy of −66 kJ/e-mol is in principle enough to
transport three to four protons over the cytoplasmic membrane,
considering a value of 15 kJ·molH+−1 [27], and would yield at
least one ATP. If other iron precipitation products are formed,
the redox potential of Fe2+/Fe3+ increases further. Even at more
conservative Fe3+/Fe2+ ratios and pH, due to non-equilibrium
conditions and product gradients, the biological process remains
favorable (Fig. 3).

Complete denitrification: a collaborative
effort of iron-oxidizing autotrophs and
organoheterotrophs
Iron oxidation genes were identified in five MAGs, namely MAG.13
(“Ca. Siderophilus nitratireducens”), MAG.29 (g_Rhizobacter)
and MAG.26, MAG.34 and MAG.16 (f_Gallionellaceae, commonly
associated with autotrophic iron oxidation). These MAGs also
encoded for the central enzymes of the carbon dioxide fixation

D
ow

nloaded from
 https://academ

ic.oup.com
/ism

ecom
m

un/article/4/1/ycae008/7584589 by TU
 D

elft user on 02 M
ay 2024



Candidatus Siderophilus nitratireducens | 5

Figure 3. Gibbs energy dissipated during nitrate-reducing iron oxidation
as function of the ratio of substrates and products. As reference, lines
represent the ratios at which the minimum energy required to generate
pmf (−15 kJ·Mol−1, full lines) and ATP (−45 kJ·Mol−1, dashed lines) is
generated at intracellular pH of 6 (green) or 7 (blue) ([27]). Star dots
represent the actual ratios based on measured (NO2

−/NO3
−/Fe2+) and

calculated (Fe3+) influent reactor concentrations. Note that NO2
− was

below detection limit (< 0.2 μmol·l−1), so that the actual reactor
conditions were likely even more favorable, i.e. more on the left .

via the CBB cycle. While all 13 MAGs contained genes encoding
for at least one denitrification enzyme (Table 2), none of them
possessed a comprehensive gene set to fully reduce nitrate to
dinitrogen gas. Dissimilatory nitrate reduction to nitrite, the
first denitrification step, was present in nine MAGs, while the
final step, nitrous oxide reduction to nitrogen gas, was only
found in MAG.26 (g_Rhizobacter), MAG.18 (f_Anaeromyxobacteraceae)
and MAG.10 (f_Chitinophagaceae). The five most abundant MAGs
(>5%) alone accounted for up to 50% of the community and
covered the full denitrification (Fig. 4). All putative iron oxidizers
also possessed the genetic potential for aerobic respiration
(i.e. they contained cbb3-type terminal oxidases). Interestingly,
two distinct potential niches were identified. The autotrophic
iron oxidizers, “Ca. Siderophilus nitratireducens” and MAG.26
(f_Gallionelleceae), performed the initial denitrification reductions,
while the lower-abundant organoheterotrophs complemented
the reduction of (at least) NO to nitrous oxide possibly taking
advantage of the autotrophically fixed carbon excreted by the
iron oxidizers. Due to the absence of sufficient biodegradable
organic matter in the influent, a portion of the biologically
generated NO was likely reduced to N2O chemically with
Fe2+ [28].

Discussion
We established a pilot-scale filter on nitrate-rich anoxic ground-
water to elucidate the structure and metabolism of nitrate-
reducing iron-oxidizing microbial communities under olig-
otrophic conditions mimicking natural groundwater. The enriched
microbial community stoichiometrically removed iron and nitrate
during more than 4 months, and was dominated by a genome
belonging to a new Candidate order, named Siderophiliales. The
genome of this new species, “Ca. Siderophilus nitratireducens,”
encoded the genes for iron oxidation (cytochrome c cyc2) and,
within the denitrification pathway, the periplasmic nitrate reduc-
tase (nap). The absence of other denitrification genes suggests
a short catabolic path, which may offer a kinetic advantage in

terms of higher iron oxidation rates [29] especially under nitrogen
limiting conditions [30]. In contrast, the majority of NDFO
genomes reported so far encode the membrane-bound nitrate
reductase (nar) along with other downstream denitrification
genes [11, 31-34]. Nar actively translocates protons, whereas
nap conserves energy only indirectly by accepting electrons
from the quinol pool on the periplasmic side of the membrane,
effectively consuming cytoplasmic protons [35]. Recently, novel
Zetaproteobacteria genomes possessing nap have been recovered
from a complex community, yet they also possessed at least
another energy conserving nitrogen oxide [5, 36]. The presence of
a cbb3-type cytochrome c oxidase suggests that “Ca. Siderophilus
nitratireducens” may also be capable of oxygen respiration.
This is consistent with the fact that all reported genomes of
anaerobic iron-oxidizing bacteria contain oxygen reductases [31,
34, 37], including the well-studied KS [13] and AG [38] cultures.
However, to the best of our knowledge, NDFO growth under
(micro)aerophilic conditions has not been reported to date [11].
Although the sporadic detection of traces of oxygen (<3 μM) in our
filter does not allow to fully exclude aerobic activity, and in the
absence of cultured representatives to confirm it, we posit that
nap-driven iron oxidation was the primary catabolic route of “Ca.
Siderophilus nitratireducens” under the in-situ restricted avail-
ability of alternative substrates. Furthermore, “Ca. Siderophilus
nitratireducens” was also identified as a putative autotroph,
adding the additional challenge of energy and electrons needs for
anabolic CO2 fixation to the growth on iron, a weak electron-donor
at standard conditions [15]. Thermodynamic evaluations indicate
that nap-dependent iron oxidation can sustain growth at realistic
Fe3+/Fe2+ and NO3

−/NO2
− concentrations ratios. To this end, the

quasi-instantaneous precipitation of the biologically formed Fe3+

as iron oxides under circum-neutral pH plays a central role as
thermodynamic driving force [39]. The specific mechanisms by
which this thermodynamic potential is harnessed for carbon
fixation remain to be fully elucidated.

The subsequent reduction of the produced nitrite resulted from
the concerted activity of putative autotrophic iron-oxidizers and
organoheterotrophs. Within the microbial community, the second
most abundant genome, MAG.26 (f_Gallionellaceaea), featured the
genetic potential for iron oxidation and most denitrification
steps, with the exception of nitrous oxide reductase (nor). MAG.26
also possessed the cytochrome c oxidase cbb3-type ccoNOP for
aerobic respiration. Interestingly, this genome contained genes
for CO2 fixation, a trait mirrored in all other less abundant
genomes with the ability to oxidize iron. This suggests that
autotrophy may represent an essential trait for NDFOs in anoxic
groundwaters where the dissolved organic carbon is largely non-
biodegradable [40]. The three second most abundant genomes,
MAG.18 (f_Anaeromyxobacteraceae), MAG.19 (g_Devosia) and MAG.10
(f_Chitinophagaceae) were found to lack the genes for iron oxidation
and CO2 assimilation. Yet, these genomes encompassed the
full denitrification pathway starting from nitrite. Besides the
likely occurrence of chemical reduction of NO to N2O [41], we
speculate that these heterotrophs complemented the NDFOs
for at least the reduction of NO using autotrophically fixed
organic carbon as substrate. A similar metabolic network was
also recently observed in mesophilic NDFO communities [13].
Overall, the measured iron and nitrate consumption yield of
7.1 mol Fe2+: mol NO3

− is consistent with the expected 5.6, i.e.
considering the theoretical catabolism (eq. 1) and the recently
estimated 12% of electrons used for growth [7], but higher than
the experimentally observed range of 3.8–4.7 [9, 31, 42]. At first,
we hypothesized nitrate ammonification to be the reason for
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Figure 4. Genome-based conceptual model of substrates fluxes within the microbial community represented by the five most abundant MAGs.
Putative autotrophic iron oxidizers perform the upstream part of denitrification, while flanking communities reduce the toxic intermediates to
innocuous dinitrogen gas. The putative autotrophic metabolism was inferred based on the presence of ribulose-1,5-biphosphate
carboxylase/oxygenase (RuBisCO) and phosphofructokinase (pfk).

the slight excess in iron oxidation, yet none of the putative iron-
oxidizing genomes encoded for the common nrf nor for the newly
reported octaheme complex [43]. Also, the oxygen sporadically
detected in the influent was always below the quantification
limit of 3 μM, a conservative concentration that alone would
explain less than 15% of the total iron consumption via chemical
oxidation. As no Fe3+ was detected in the reactor effluent, all
iron necessarily accumulated inside the reactor either as Fe2+ or
Fe3+ precipitates. X-ray diffraction and Mössbauer spectroscopy
identified over 94% of the Fe in solids as amorphous ferrihydrite,
an Fe3+ oxide, with <6% of the solids attributed to magnetite,
an Fe2+–Fe3+ oxide typically formed under anaerobic conditions
(Figure S4, Table S2 and SI 5). Consequently, the Fe2+ unaccounted
for was likely continuously adsorbed onto the newly-formed
Fe3+ oxides, a well-studied phenomenon [44], yet the extent to
which this occurred was not investigated. In conclusion, pending
experimental validation, we surmise that NDFO microorganisms
may not only contribute to iron removal by direct oxidation but
also by continuously providing newly-formed iron oxides for its
adsorption.

Description of “Ca. Siderophilus nitratireducens”
gen. nov., sp. nov.
Siderophilus (Si.de.ro’phi.lus Gr. masc.n. sidêros iron; Gr. masc. adj.
philos loving; N.L. masc. n. Siderophilus, loving iron).

ni.tra.ti.re.du’.cens (N.L. masc. n. nitras (gen. nitratis), nitrate; L.
pres. part. reducens, converting to a different state; N.L. part. adj.
nitratireducens, reducing nitrate).

Autotrophic nitrate-reducing iron-oxidizing bacterium isolated
from a filtration unit fed with anaerobic groundwater with iron(II)
and nitrate. Harbors also have the genetic potential to aerobically
oxidize iron.

Materials and methods
Groundwater and pilot-scale filter characteristics
An iron reducing microbial community was enriched anoxically
on the granular activated carbon of a 10-L pilot-scale filter in
Emmen (the Netherlands) (Figs S1 and S2 and Table S1). The media
was devoid of any previously formed biofilm. The anoxic, nitrate-
rich groundwater (−75.2 ± 28.4 mV) featured constant Fe2+ and
NO3

− concentrations, 236 ± 4 μM and 8.1 ± 2.1 μM, respectively
(Table 3). Oxygen was consistently below quantification limit
(3 μM). The groundwater pH and temperature were 6.7 ± 0.2 and
10.5 ± 0.1◦C, respectively. The filter was operated at a filtration
flowrate of 3.8 m·h−1 (29.6 L·h−1) during 120 days. After 75 days of
steady-state operation, the influent nitrate concentration was
manually increased in four steps up to 83.8 ± 0.6 μM, when
the system changed from nitrate (NO3

− < 1 μM) to iron limiting
conditions (Fe2+ < 4 μM).

Dissolved Fe3+ estimation
At pH 7, Fe3+ has a markedly low solubility and precipitates as iron
oxyhydroxide (Fe(OH)3). Thermodynamically, this phase transi-
tion favors the oxidation of Fe2+ to Fe3+, and the resulting low Fe3+

concentration is the primary driving force of equation 1 [45]. In
our filter, the dissolved concentration of the Fe3+, resulting from
Fe2+ oxidation, was always below detection limit (0.01 mg·l−1).
To discuss the thermodynamic feasibility of the NDFO process,
we estimated the steady-state [Fe3+]/[Fe2+] ratio following the
method proposed by Gorski et al. [39], which assumes thermody-
namic equilibrium between [Fe2+] – [Fe3+] – [FeOx] phases based
on the fact that the hydroxylation of dissolved Fe3+ is quasi-
instantaneous at pH > 3 [46]. Consequently, the following equa-
tion can be used to determine the Fe3+ concentration as function
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Table 3. Influent and effluent water characteristics
corresponding to average and standard deviation of daily
measurements of Days 21–77, during the nitrate-limited
steady-state. Fe3+ was calculated as described in the following
section.

Parameter Units Value Value

Influent Effluent
pH 6.9 ± 0.4 6.7 ± 0.1
T ◦C 10.5 ± 0.1 10.9 ± 0.6
ORP mV −64 ± 17 −58 ± 18
O2 μmol·L−1 <3a <3a

NH4
+ μmol·L−1 11 ± 1.0 11 ± 8.1

NO2
− μmol·L−1 <0.2a <0.2a

NO3
− μmol·L−1 8.1 ± 2.1 <1

Fe2+ μmol·L−1 236 ± 4 178 ± 5
Fe3+ μmol·L−1 2·10−12

DOC mg·L−1 3.1 ± 0.1 2.0 ± 0.2

aBelow detection limit

of pH and the solid solubility constant.

{
Fe3+

(aq)

} {
OH−}3 = Ksp

The most abundant iron oxide in the sand filter was amor-
phous ferrihydrite (SI 4 and 5), with a Ksp of 10−39 [46]. Therefore:

{
Fe3+

aq

}
= 10−39

(
10−7.1)3 = 2· 10−18 M

Analytic procedures
Samples for ammonium, nitrite, and nitrate quantification were
immediately filtered through a 0.2 μm nanopore filter and mea-
sured within 12 h using photometric analysis (Gallery Discrete
Analyzer, Thermo Fischer Scientific, Waltham,MA, USA). Samples
for dissolved iron were filtered through a 0.2 μm nanopore filter,
acidified to pH < 2 with H2SO4, and quantified by ICP-MS (Ana-
lytik Jena, Jena, Germany). Temperature, pH, oxidation–reduction
potential (ORP), and dissolved oxygen concentration (DO) were
monitored daily using a HI9829-01042 multiparameter analyzer
(Hanna Instruments, Smithfield, RI, USA) in the raw water, after
nitrate dosage and in the effluent.

Biomass sampling, DNA extraction and quality
control
Immediately after the end of the experiment, the filter was emp-
tied and the medium grains were completely mixed. A small
volume of grains was used for DNA extraction. Nucleic acid
extraction was carried out using DNeasy PowerSoil Pro Kit (QIA-
GEN, Hilden, Germany) following manufacturer instructions. To
improve DNA recovery and avoid the interference of carbon with
the extraction, 25 μL of 20 g·l−1 autoclaved (20 min, 121◦C, 2 bar)
skimmed milk solution (Sigma Aldrich, Saint Louis, MO, USA)
were added to the extraction tube. After extraction, DNA was
concentrated to 7.68 ng DNA·μl−1 using Microcon centrifugal filter
units YM-100 (MilliporeSigma, Burlington, MA, USA) following
the manufacturer’s instructions. DNA was quantified with the
Qubit 4 Fluorometer and Qubit dsDNA HS assay kit (Invitrogen,
Waltham, MA, USA) following the manufacturer’s instructions.
DNA purity was determined using a NanoDrop One Spectropho-
tometer (Thermo Fisher Scientific, Waltham, MA, USA).

Library preparation, sequencing, and reads
processing
Long-read and short-read DNA sequencing were carried out inde-
pendently. Long-read library preparation was carried out using
the ligation sequencing kit SQK-LSK 109 (Oxford Nanopore Tech-
nologies, Oxford, UK). R.9.4.1 flowcells on a GridION were used
for sequencing. Raw data were basecalled in super-accurate mode
using Guppy v.5.0.16 (https://nanoporetech.com). Raw reads were
quality-filtered and trimmed using Filtlong (https://github.com/
rrwick/Filtlong) to remove reads below 4000 kb and mean quality
score below 80. Adapters were removed using Porechop v.0.2.3
(https://github.com/rrwick/Porechop).

Short-read library preparation was performed using the
Nextera XT kit (Illumina, San Diego, CA, USA) according to
the manufacturer’s instructions. The libraries were pooled,
denatured, and sequenced with Illumina MiSeq (San Diego,
CA, USA). Paired end sequencing of 2 x 300 base pairs was
performed using the MiSeq Reagent Kit v3 (San Diego, CA, USA)
according to the manufacturer’s instructions. Raw sequencing
data were quality-filtered and trimmed using Trimmomatic v0.39
(HEADCROP:16 LEADING:3 TRAILING:5 SLIDINGWINDOW:4:10
CROP:240 MINLEN:35) [47]. Sequencing data quality was analyzed
using FastQC v0.11.7 before and after trimming [48].

Reads assembly and binning
Reads assembly and binning were done as in [49] with minor
modifications. Long-reads were assembled using Flye v. 2.9-
b1768 [50] with the “–meta” setting enabled and the “–nano-
hq” option. Polishing was carried out with Minimap2 v.2.17
[51], Racon v. 1.3.3 [52], Medaka v.1.4.4 (two rounds) (https://
github.com/nanoporetech/medaka). At the end, short-reads were
incorporated in a final round of polishing with Racon. Both long-
and short-raw reads were independently mapped back to the
assembled contigs using BWA-MEM2 [53]. SAMtools v1.14 was
used to determine contig coverage and for indexing with default
settings [54] .

Automated binning was carried out with the long-reads
assembly (polished with short-reads) using MetaBAT2 v. 2.12.1
[55] with “-s 500000,” MaxBin2 v. 2.2.7 [56], and Vamb v. 3.0.2
[57] with “-o C–minfasta 500000.” Additionally, contig coverage
from the short-reads assembly was provided as input to the three
binners to improve binning. Output integration and refinement
was done in DAS Tool v. 1.1.2 [58] . CoverM v. 0.6.1 (https://
github.com/wwood/CoverM) was applied to calculate the bin
coverage (using the “-m mean” setting) and the relative abundance
(“-m relative_abundance”). Additional manual bin polishing was
done in R using mmgenome (https://github.com/MadsAlbertsen/
mmgenome).

Assembly processing and gene annotation
The completeness and contamination of the genome bins were
estimated using CheckM v. 1.1.2 [59]. The bins were classified
using GDTB-Tk v. 1.5.0 [60] 202 database. Barrnap v 0.9 (https://
github.com/tseemann/barrnap) and structRNAfinder [61] were
used to predict 23S, 16S, and 5S ribosomal RNA sequences, and
transfer RNA sequences were determined using tRNAscan-SE
v.20 [62] with default search mode. Bins were classified using the
Minimum Information about a Metagenome-Assembled Genome
(MIMAG) standards [18]: high-quality bins were >90% complete
and <5% contaminated, and contained full-length 23S, 16S, and
5S ribosomal RNA genes and ≥18 transfer RNA genes. Bins with
completeness >50% and contamination <10% were classified as

D
ow

nloaded from
 https://academ

ic.oup.com
/ism

ecom
m

un/article/4/1/ycae008/7584589 by TU
 D

elft user on 02 M
ay 2024

Waltham, MA
Waltham, MA
https://nanoporetech.com
https://nanoporetech.com
https://nanoporetech.com
https://github.com/rrwick/Filtlong
https://github.com/rrwick/Filtlong
https://github.com/rrwick/Filtlong
https://github.com/rrwick/Filtlong
https://github.com/rrwick/Filtlong
https://github.com/rrwick/Porechop
https://github.com/rrwick/Porechop
https://github.com/rrwick/Porechop
https://github.com/rrwick/Porechop
https://github.com/rrwick/Porechop
https://github.com/nanoporetech/medaka
https://github.com/nanoporetech/medaka
https://github.com/nanoporetech/medaka
https://github.com/nanoporetech/medaka
https://github.com/nanoporetech/medaka
https://github.com/wwood/CoverM
https://github.com/wwood/CoverM
https://github.com/wwood/CoverM
https://github.com/wwood/CoverM
https://github.com/wwood/CoverM
https://github.com/MadsAlbertsen/mmgenome
https://github.com/MadsAlbertsen/mmgenome
https://github.com/MadsAlbertsen/mmgenome
https://github.com/MadsAlbertsen/mmgenome
https://github.com/MadsAlbertsen/mmgenome
https://github.com/tseemann/barrnap
https://github.com/tseemann/barrnap
https://github.com/tseemann/barrnap
https://github.com/tseemann/barrnap
https://github.com/tseemann/barrnap


8 | Corbera-Rubio et al.

medium-quality, and bins with completeness <50% and <10%
contamination as low-quality bins. The remaining ones were con-
sidered contamination. 68% of the filtered reads rendered high-
and medium-quality bins, 11% low-quality bins and 21.1% were
unbinned.

The ORFs of the 10 resulting high-quality and 3 medium-
quality bins with relative abundance >0.5% were predicted using
Prodigal v2.6.3 [63] and functionally annotated with GhostKoala
v2.2 [20] (Kyota Encyclopedia of Genes and Genomes; accessed
March 2022). FeGenie [19] was used to improve the annotation of
the iron metabolism using the metagenomics (“-meta”) settings.
To refine the annotation for MAG.13 (Candidatus Siderophilus
nitratireducens), the genome was uploaded to the National Cen-
ter for Biotechnology Information (NCBI) database Prokaryotic
Genome Annotation Pipeline v6.1 [64]. Additionally, manual anno-
tation of genes potentially relevant but not automatically anno-
tated was done by aligning a set of manually selected sequences
from UniProtKB against the translated ORFs from MAG.13 with
local blastp v2.13 [65]. After annotation, all the predicted genes
of interest (manually and automatically annotated) were trans-
lated and aligned against the Non-redundant protein sequences
(nr) database from NCBI using blastp (accessed June 2022) and
accepted only if the coverage was >70% [19] and the identity >35%
[66].

RStudio v1.4.1106 was used for data analysis and visualization.

Phylogenetic tree construction
Genome-based phylogenetic reconstruction was done by using
120 bacterial single copy conservative marker genes, as described
previously [60]. The trees were built using the IQ-TREE 2 [23] with
fast model selection via ModelFinder [67] and ultrafast approx-
imation for phylogenetic bootstrap [68], as well as approximate
likelihood-ratio test for branches [24]. Whole genome compar-
ison was conducted by using two different methods: Average
Nucleotide Identity (ANI), using JSpeciesWS web server and DNA–
DNA Hybridization (DDH) by the Genome-to-Genome Distance
Calculator 2.1 online tool (https://ggdc.dsmz.de/ggdc.php) [69].
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SAMN36381891 (f_Anaeromyxobacteraceae), SAMN36382736(
g_Devosia), SAMN36401011 (f_Chitinophagaceae).
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