
Does LRU always
outperform FIFO?

A mathematical and simulation-based approach to
identify better performing caching algorithms

by

V.N.W. Terlouw
to obtain the degree of Bachelor of Science

to be defended publicly on Tuesday November 25, 2025 at 16:00.

Student number: 5615097
Project duration: September, 2025 – November, 2025
Thesis committee: Dr. C. E. Groenland, TU Delft, supervisor

Dr. T. W. C. Vroegrijk, TU Delft, assessment committee member

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract
Caching plays a crucial role in keeping the internet accessible. Many algorithms exist to determine
which page should be evicted from the cache, but most analyses of these algorithms only focus on
the competitive ratio. The competitive ratio, however, cannot identify which algorithm performs well in
practice and which only performs well on paper.

The goal of this research is to study how the performance of deterministic and randomized caching algo-
rithms can be compared, and how the algorithms behave on differently structured request sequences.
A purely mathematical analysis is combined with simulations of uniformly random, recency-based, and
favorite element request sequences.

Sleator and Tarjan [6] claim that the FIFO and LRU algorithms are competitive and provide a proof for
the LRU algorithm. This research provides a proof for the competitiveness of the FIFO algorithm.

In addition, Panagiotou and Souza [4] use the characteristic vector to determine the number of cache
misses for LRU. This research shows that for the FIFO algorithm, both an upper and lower bound can
be obtained by using the characteristic vector, with 𝑝 the number of distinct pages and 𝓁 the number of
distinct pages between two requests 𝜎𝑖 and 𝜎𝑗:

𝑝 + ∑
𝓁≥2𝑘−1

𝐶𝓁(𝜎) ≤ 𝐹𝐼𝐹𝑂(𝜎) ≤ 𝑝 +∑
𝓁>0

𝐶𝓁(𝜎).

Finally, simulations show that different request structures lead to different well-performing algorithms.
The LFU algorithm, although not competitive, performs best on the favorite element request sequences,
while LRU performs best on random and recency-based request sequences.

More broadly, the results show that a higher cache size yields a higher ratio of the number of cache
misses for the algorithms and optimal solution, while a larger universe leads to a lower ratio.

iii

Lay summary
Caching keeps the internet and all of its content accessible within seconds. Instead of loading every
page when it is requested, some pages are kept in a small, fast memory, the cache. However, whenever
the cache is full, a page should be removed from the cache to make space for a new page. This raises
an important question: which page should be removed first?

There are many algorithms that answer this question, such as the First In, First Out (FIFO) algorithm,
Least Recently Used (LRU) algorithm, or simply removing a random page (UNI). With so many options,
it is natural to ask which algorithm performs best. Mathematicians and theoretical computer scientists
try to answer this question by analyzing request sequences and the number of cache misses, the
number of times a page was requested but was not already in the cache.

In this research, the competitive ratio, a worst-case analysis of algorithms, is used to classify and
compare caching algorithms. In addition, the characteristic vector, which represents the structure of a
request sequence, is used to compute upper and lower bounds for the number of cache misses for the
FIFO and LRU algorithms.

Besides a mathematical analysis, this research also uses a simulation-based approach. All sequences
with 5 distinct elements of length 10 are generated, and the performance of each algorithm is evaluated
on this complete set of sequences. These results show that the LRU algorithm performs very well.

However, real request patterns are not completely random, so this research introduces two types of
structured request patterns: a recency-based request pattern and a favorite element request pattern.
The performance of the algorithms is compared for these request patterns with different numbers of
distinct pages and cache sizes. As expected, different algorithms perform better for different request
patterns. The Least Frequently Used (LFU) algorithm performs well for the favorite element request
pattern, while the LRU algorithm performs well for the recency-based request pattern.

v

Contents

1 Introduction 1

2 Theoretical framework 3
2.1 Formalization of the caching problem . 3
2.2 Classification of eviction strategies . 4
2.3 Minimal competitive ratio of deterministic algorithms . 4
2.4 Introduction of algorithms . 4

2.4.1 FIFO - First In First Out . 4
2.4.2 LRU - Least Recently Used . 4
2.4.3 LFU - Least Frequently Used . 4
2.4.4 SLRU - Segmented Least Recently Used . 5
2.4.5 UNI - Uniform randomized . 5
2.4.6 RRE - Randomized recency based . 5

3 Further mathematical analysis of the FIFO and LRU algorithm 7
3.1 The competitive ratio upperbound for LRU . 7
3.2 The competitive ratio upper bound for FIFO . 8
3.3 Comparing LRU and FIFO . 9

4 Comparing algorithms on a complete set of sequences 13
4.1 Selection of design parameters . 13
4.2 Implementation . 13
4.3 Results . 14

5 Comparing algorithms for various sequences 15
5.1 Design of parameters and sequences. 15
5.2 Implementation . 16
5.3 Results randomized sequences . 16
5.4 Results recency-based sequences . 18
5.5 Results favorite element sequences. 20

6 Conclusion and limitations 23

Bibliography 27

A Python code complete set of sequences 29

B Python code randomized sequences 35

C Python code recency-based sequences 37

D Python code favorite element sequences 41

E All results various sequences 43
E.1 Results randomized sequences . 43
E.2 Results recency-based sequences . 44
E.3 Results favorite element sequences. 44

vii

1
Introduction

The rapid and endless growth of the content that can be found on the internet highlights the importance
of caching. Caching keeps the internet and all of its content accessible within seconds. Instead of
retrieving every single requested page directly from the internet, a storage system with a limited space
of 𝑘 pages is introduced, known as a cache. Whenever a user requests a page, it is checked if the
page is already in the cache. If the page is in the cache, the page can be accessed immediately without
any delays, as shown in Figure 1.1a. If the page is not in the cache, known as a cache miss, the page
must be loaded into the cache, which takes additional time. Due to the limited capacity of the cache,
whenever a new page is loaded into the cache, another page must be removed from the cache, as
shown in Figure 1.1b.

(a) Behavior of the cache when the requested page is in the cache (b) Behavior of the cache when the requested page is not in the cache

Figure 1.1: Behavior of the cache with requested pages

To decide which page should be removed from the cache whenever a cache miss occurs, an eviction
strategy or algorithm is used. An eviction strategy consists of a set of rules or instructions that deter-
mine which page should be removed from the cache. There are several types of eviction strategies;
it is possible to select the page completely at random or use a deterministic algorithm. Deterministic
algorithms are characterized by the fact that they produce the same output for the same input every
time. Finally, there exist algorithms that use predictors to determine which page is the least likely to be
requested again and evict that page.

Whenever a cache miss occurs, extra time is required to load the new request into the cache, and
thus, the goal is to minimize the number of cache misses. If the entire sequence of requests is known
in advance, an optimal solution that minimizes the number of cache misses exists. However, when
surfing the internet, it is not possible to know future requests, which makes it impossible to determine
the optimal solution while requests are coming in. The goal, therefore, is to find an eviction strategy that
performs well, despite this uncertainty. In order to determine how well algorithms perform, the compet-
itive ratio was introduced. The competitive ratio is the maximum, for all possible input sequences, of
the number of cache misses of the eviction strategy, divided by the minimum number of cache misses
as determined by the optimal algorithm. For randomized algorithms, the number of cache misses of
the eviction strategy equals the expectation of the cost. While it is nice to have something to compare
the algorithm with, all deterministic algorithms have a competitive ratio of at least 𝑘, the size of the

1

2 1. Introduction

cache, under the assumption that the requested pages are completely random. Thus, the competitive
ratio cannot really be used to compare deterministic algorithms. Furthermore, the fact that an eviction
strategy has a low competitive ratio is no guarantee for how well an eviction strategy performs in prac-
tice. Finally, in reality, surfing behavior is not completely random. Users may have preferred pages
that they will visit more frequently than others.

As a result, the objective of this research is (1) to compare deterministic and randomized algorithms
using a different measure than the competitive ratio and (2) to investigate the impact of differently
structured request sequences. These objectives lead to the following research question:

“How do deterministic and randomized algorithms perform with differently structured request
sequences in the caching problem, and how can these algorithms be compared to one another?”

In order to answer the research question, four sub-questions are needed. These sub-questions are:

1. Which metric can be used to compare different algorithms?

2. Which characteristics does this metric have for various algorithms?

3. How do algorithms compare on a complete set of sequences?

4. How do algorithms compare for various types of sequences?

The remainder of this research is organized in the following manner; Chapter 2 lays the theoretical
foundation to answer all of these questions. The caching problem is formalized, and the concept of the
competitive ratio is further explored. Additionally, different types of eviction strategies are introduced.

Chapter 3 builds on the theoretical foundation of Chapter 2 and shows that the upper bound of the
competitive ratio for the LRU and FIFO algorithms is equal to the cache size, 𝑘. This chapter also
explores the number of cache misses for both the FIFO and LRU algorithms using the characteristic
vector, introduced by Panagiotou and Souza [4].

In Chapter 4, all algorithms are compared for a complete set of sequences. Specifically, the ratio
between the algorithm and optimal solution is computed for all possible sequences with length 10 with
5 distinct pages.

Chapter 5 elaborates on this analysis. The ratio between the algorithms and the optimal solution is
analyzed for longer sequences with more distinct pages. Furthermore, in this chapter, not only are
randomized sequences analyzed, but also sequences that include preferred elements and sequences
based on the recency of elements.

Finally, Chapter 6 combines all results and discusses both the implications and limitations of this re-
search.

2
Theoretical framework

In this chapter, a theoretical framework is established to be able to compare the different eviction strate-
gies. First, the caching problem is formalized. The competitive ratio and optimal eviction strategy will
also be introduced. Secondly, a classification for eviction strategies is introduced. Furthermore, for the
deterministic eviction strategies, it is shown that the competitive ratio is at least equal to 𝑘. Finally, a
few different eviction strategies, based on the previous classification, are introduced for further analysis
within this research.

2.1. Formalization of the caching problem
The caching problem arises within memory systems whenever a user requests a page 𝜎𝑖. When the
request 𝜎𝑖 has been satisfied, the user can request a new page, 𝜎𝑖+1. All pages that the user requests
form a sequence, 𝜎 = (𝜎1, 𝜎2, … , 𝜎𝑡). All possible pages that the user can request are stored in a large
but slow storage 𝑈, containing 𝑛 pages. It is also possible for pages to be stored in a smaller but
faster storage, also known as the cache, 𝐶, with size 𝑘. The elements within the cache can be denoted
as 𝑐1, 𝑐2, … , 𝑐𝑘. Whenever a user requests a page, it must be retrieved from the cache. If the page
is already in the cache 𝐶, there is no cost. When a requested page is not in the cache, it must be
loaded into the cache from the slower storage, known as the universe, 𝑈, this is also known as a cache
miss. In most cases, the cache already contains 𝑘 pages and thus in order to load a new element into
the cache, another element needs to be removed from the cache. An eviction strategy decides which
element should be removed from the cache in this case.

When browsing the internet, a request 𝜎𝑖 must be satisfied before another request 𝜎𝑖+1 can be satisfied.
In a special case, known as the offline situation, the requests are known beforehand. It is then possible
to determine a perfect eviction strategy in which the number of cache misses is minimized, also known
as the optimal eviction strategy. This optimal eviction strategy can be used to compare algorithms. The
competitive ratio is defined differently for deterministic and random algorithms.

Definition 1 (Optimal offline algorithm). The optimal algorithm minimizes the number of cache misses
for any request sequence 𝜎. The optimal offline algorithm evicts the element for which the next request
is the furthest in the future.

Definition 2 (Competitive ratio deterministic algorithms). The competitive ratio of a deterministic evic-
tion strategy equals

max
𝜎

𝐴𝐿𝐺(𝜎)
𝑂𝑃𝑇(𝜎) (2.1)

where 𝐴𝐿𝐺(𝜎) is the number of cache misses caused by the imposed eviction strategy, and 𝑂𝑃𝑇(𝜎) is
the number of cache misses with the optimal eviction strategy.

Definition 3 (Competitive ratio randomized algorithms). The competitive ratio of a randomized eviction
strategy equals

max
𝜎

𝔼[𝐴𝐿𝐺(𝜎)]
𝑂𝑃𝑇(𝜎) (2.2)

3

4 2. Theoretical framework

Where 𝔼[𝐴𝐿𝐺(𝜎)] is the expected cost of the algorithm for a sequence 𝜎 and 𝑂𝑃𝑇(𝜎) the cost of the
optimal eviction strategy.

2.2. Classification of eviction strategies
Eviction strategies can mainly be categorized as deterministic and randomized strategies. A deter-
ministic strategy will always produce the same output for a certain input. Randomized strategies can
produce varying outputs for the same input. Most strategies are key-based, meaning that items are
compared using a key, and the item that scores the worst on this key is evicted from the cache. Strate-
gies can also be categorized based on their key, or combined keys.

2.3. Minimal competitive ratio of deterministic algorithms
The following theorem and proof are based on lecture notes from Gupta [3].

Theorem 4. The competitive ratio of any deterministic algorithm for the caching problem is at least 𝑘.
Proof. Consider a large storage 𝑈 containing 𝑘+1 elements and a cache 𝐶 with size 𝑘. It is possible to
create a sequence, 𝜎 = (𝜎1, 𝜎2, … , 𝜎𝑡), with 𝑡 requests, using the chosen eviction strategy, for which the
next requested page will not be in the cache. Hence, for this specific 𝜎, the number of cache misses,
𝐴𝐿𝐺(𝜎), equals the number of requests 𝑡. If the sequence 𝜎 is known beforehand, the optimal eviction
strategy can be applied, always evicting the item the furthest in the future. Because the large storage
𝑈 only consists of 𝑘+1 pages, removing the request furthest in the future ensures that at least the next
𝑘 − 1 requests can be satisfied by the pages already in the cache. Thus, a cache miss occurs at most
every 1/𝑘 requests. So 𝑂𝑃𝑇(𝜎) ≤ 𝑡/𝑘. This yields the competitive ratio of at least 𝑘.

2.4. Introduction of algorithms
Using the classification introduced by Podlipnig and Böszörmenyi [5] and the algorithms that Belady [2]
and Gupta [3] talk about, several algorithms have been chosen for further analysis. These algorithms
are (1) First In First Out, (2) Least Recently Used, (3) Least Frequently Used, (4) Segmented Least
Recently Used, and (5) Uniform Randomized. The final algorithm, (6) Recency-Based Randomized,
was designed specifically for this research.

2.4.1. FIFO - First In First Out
The First In First Out eviction strategy (FIFO) is the most basic algorithm that can be applied to the
caching problem. It does not consider any information about the previous requests, except for the
order in which they entered the cache. Whenever a request is already in the cache, nothing happens.
If a request is not in the cache, the element that entered the cache first will be removed.
The FIFO algorithm is deterministic, but it is also a competitive algorithm, for which a proof is provided
in Chapter 3. For a competitive algorithm, the lower bound of the competitive ratio equals the upper
bound. So the competitive ratio for FIFO equals 𝑘.

2.4.2. LRU - Least Recently Used
The Least Recently Used strategy (LRU) is based on the idea that pages recently requested are more
likely to be requested. It is a competitive, which will be proven in Chapter 3, and deterministic algorithm.
The LRU eviction strategy works with a sorted list, also known as a queue. Whenever a page is
requested, it is put at the end of the queue, even if the page was already in the cache. If the cache is
full, the page at the front of the queue is removed.

2.4.3. LFU - Least Frequently Used
The Least Frequently Used algorithm (LFU) is based on popularity. The assumption is that pages
that are requested more frequently are more likely to be requested again. It is possible to distinguish
between Perfect LFU and In-Cache LFU. Perfect LFU keeps track of the frequency of all items the entire
time, while In-Cache LFU resets an item’s frequency counter whenever it is evicted from the cache. In
this research, In-Cache LFU is used because it requires a lot less memory usage. If a page needs to be
evicted from the cache, the page with the lowest frequency counter is chosen. The element that enters
the cache gets a frequency of one. The frequency counter of an evicted element is reset to zero. Figure

2.4. Introduction of algorithms 5

2.1 illustrates behavior the LFU algorithm for the request sequence 1−1−2−3−2−3−2−3. It can be
seen that the LFU algorithm does not evict element 1, because the element 1 has the highest in-cache
popularity. For this specific request sequence, the LFU algorithm causes seven cache misses while
the optimal algorithm only causes three cache misses. This shows that there is a request sequence
such that 𝐿𝐹𝑈(𝜎)𝑂𝑃𝑇(𝜎) ≥ 2.

Figure 2.1: Behavior of the LFU and optimal algorithm for the request sequence 1 − 1 − 2 − 3 − 2 − 3 − 2 − 3

2.4.4. SLRU - Segmented Least Recently Used

Figure 2.2: Flowchart for the SLRU algorithm

The Segmented Least Recently Used (SLRU)
eviction strategy combines the assumption that
both recency and frequency are indicators of
which elements are requested again. The SLRU
algorithm divides the cache into two segment,
the protected and unprotected cache.
This protected and unprotected cache divide all
elements in the cache into two groups: a group
of pages that can be evicted and those that
cannot. Whenever an element first enters the
cache, it is placed in the unprotected cache. If
an element is requested again and is still in the
unprotected cache, it is moved to the protected
cache. If the protected cache is full, the LRU
algorithm is used to move an element to the un-
protected cache. If the unprotected cache is full,
the LRU algorithm is used to determine which el-
ement is removed. The flowchart for the behav-
ior of the SLRU algorithm is provided in Figure
2.2. The SLRU algorithm has two parameters,
the cache size and protected cache size.

2.4.5. UNI - Uniform randomized
All previous eviction strategies were determinis-
tic. It is also possible to use randomized eviction
strategies. Their competitive ratio is typically
better because it is based on the expected num-
ber of cache misses. The uniform randomized
eviction strategy chooses a random element to
evict whenever the cache is full. All pages have an equal opportunity to be evicted.

2.4.6. RRE - Randomized recency based
The recency-based randomized eviction strategy also evicts random items, but the probability of evic-
tion depends on the recency of the item. Pages that have been requested more recently have a smaller
probability of being evicted than pages that have not been requested for a while. In this case, the prob-
ability that the 𝑖th page is evicted in a cache with 𝑘 pages, when the cache is sorted on recency, is
equal to 𝑖

𝑘(𝑘+1)/2 .

3
Further mathematical analysis of the

FIFO and LRU algorithm
The competitive ratio and the minimal competitive ratio for deterministic algorithms have been intro-
duced in Chapter 2. For both the FIFO and LRU algorithms, the claim was that these algorithms are
competitive. The first section of this chapter shows that the LRU algorithm is indeed competitive, using
a proof based on the research of Sleator and Tarjan [6]. The second section contains a proof showing
that the FIFO algorithm is competitive. Finally, the characteristic vector, as defined by Panagiotou and
Souza [4], is used to prove some (in)equalities about the number of cache misses for the FIFO and
LRU algorithms.

3.1. The competitive ratio upperbound for LRU
Sleator and Tarjan [6] provided a proof for the upper bound of the competitive ratio of the LRU algorithm.
This section contains an extended version of their proof.

Theorem 5. The competitive ratio of the LRU algorithm is at most 𝑘.

Proof. Let 𝜎 be a request sequence. Then it is possible to partition 𝜎 into 𝑛 subsequences 𝜎0, 𝜎1, … , 𝜎𝑛
such that 𝜎0 contains the first accessed element and at most 𝑘 cache misses, while 𝜎1, … , 𝜎𝑛 have
exactly 𝑘 cache misses with the LRU algorithm.

Let 𝑝 be the element accessed before 𝜎𝑖. Then it is possible to conclude three things about the cache
and the cache misses caused by the LRU algorithm:

1. At the start of the subsequence 𝜎𝑖, the LRU cache and OPT cache share at least one element,
namely 𝑝.

2. For a subsequence 𝜎𝑖, the LRU algorithm will never fault twice on the same page 𝑎. To fault twice
on the same page, all elements in the cache must have been removed. This causes 𝑘 cache
faults, and requesting 𝑎 again would cause an additional cache miss, resulting in 𝑘 + 1 cache
misses, which is not possible by design of the subsequences.

3. For a subsequence 𝜎𝑖 it is not possible to fault on 𝑝 during 𝜎𝑖. At the beginning of 𝜎𝑖, 𝑝 must be
in the cache. To fault on 𝑝 again, the entire cache must be cleared, causing 𝑘 cache misses,
and requesting 𝑝 again, which is needed to fault on 𝑝, causes another cache miss. This is not
possible because 𝜎𝑖 has at most 𝑘 cache misses.

The assumption is that the cache is empty at the beginning of the sequence. Then, for the first subse-
quence, 𝜎0, the number of cache misses for the LRU algorithm equals the number of cache misses for
the optimal algorithm.

7

8 3. Further mathematical analysis of the FIFO and LRU algorithm

Now assume that the number of cache misses during 𝜎𝑖 using the LRU algorithm equals 𝑓𝑖. The optimal
algorithm can only prevent cache misses by using elements already in the cache at the start of a new
request sequence. The number of elements in the cache equals 𝑘, but during 𝜎𝑖, LRU will never fault
on 𝑝, so there are at most 𝑘 − 1 elements for which OPT can prevent a cache miss. Thus 𝑂𝑃𝑇(𝜎𝑖) is
at least 𝑓𝑖 − (𝑘 − 1) = 𝑓𝑖 − 𝑘 + 1.

Then, for any 𝑖
𝐿𝑅𝑈(𝜎𝑖)
𝑂𝑃𝑇(𝜎𝑖)

≤ 𝑓𝑖
𝑓𝑖 − 𝑘 + 1

≤ 𝑘
𝑘 − 𝑘 + 1 = 𝑘.

And thus the conclusion is that
𝐿𝑅𝑈(𝜎)
𝑂𝑃𝑇(𝜎) ≤ 𝑘.

Because both the lower and upper bounds of the competitive ratio for the LRU algorithm equal 𝑘, the
competitive ratio for the LRU algorithm equals 𝑘.

3.2. The competitive ratio upper bound for FIFO
As shown in the previous section, Sleator and Tarjan [6] provided a proof for the competitive ratio of
the upper bound for the LRU algorithm. Furthermore, they claim that the proof for the FIFO algorithm
is similar, but did not provide it. In this section, a proof for the upper bound of the FIFO algorithm is
presented.

The main difference between the proof of the FIFO and LRU algorithms is the way in which the partition
of the request sequence 𝜎 is defined. A redefinition of the partition of the request sequence is needed
because the FIFO algorithm evicts elements based on when they entered the queue. The definition
of the subsequences, as in Theorem 5, makes it possible for an algorithm to cause no faults on a
subsequence on which the FIFO algorithm does cause 𝑘 faults. An example of this is given in Figure
3.1. It is also possible that the optimal offline algorithm does not fault on a subsequence for which the
FIFO algorithm has 𝑘 cache misses.

Figure 3.1: Behavior of an algorithm and the FIFO algorithm for the request sequence 1 − 2 − 3 − 2 − 1 − 2 with subsequences

Theorem 6. The competitive ratio of the FIFO algorithm is at most 𝑘.
Proof. Let 𝜎 be a request sequence. Then it is possible to partition 𝜎 into 𝑛 subsequences 𝜎0, 𝜎1, … , 𝜎𝑛
such that 𝜎0 contains the first accessed element and at most 𝑘 cache misses, while 𝜎1, … , 𝜎𝑛 have
exactly 𝑘 cache misses. Furthermore, the last element of 𝜎𝑖 must be a cache miss.

Let 𝑝 be the element accessed before 𝜎𝑖. Then it must be a cache miss. It is possible to conclude four
things about the cache and the cache misses caused by the FIFO algorithm:

1. At the start of the subsequence 𝜎𝑖, the FIFO and OPT caches share at least one element, namely
𝑝.

2. The element 𝑝 caused a cache miss, which implies that 𝑝 entered the cache the latest. Because
the FIFO algorithm evicts the element that entered the cache first, 𝑝 has the lowest eviction
priority.

3.3. Comparing LRU and FIFO 9

3. For a subsequence 𝜎𝑖, the FIFO algorithm will never fault twice on the same page 𝑎. Because, to
fault twice on the same page, all elements in the cache should have been removed. This causes
𝑘 cache faults, and requesting 𝑎 again would cause another cache miss such that the number of
cache misses during 𝜎𝑖 equals 𝑘 + 1, which is not possible by design of the subsequences.

4. For a subsequence 𝜎𝑖 it is not possible to fault on 𝑝 during 𝜎𝑖. At the beginning of 𝜎𝑖, 𝑝 must be in
the cache. To fault on 𝑝 during 𝜎𝑖, 𝑝 should first be removed from the cache. Due to the fact that
𝑝 has the lowest eviction priority, 𝑘 page faults need to occur before 𝑝 is evicted. Then, faulting
on 𝑝 causes another cache miss, which is not possible by definition of the subsequences.

The assumption is that the cache is empty at the beginning of the sequence. Then, for the first subse-
quence, 𝜎0, the number of cache misses for the LRU algorithm equals the number of cache misses for
the optimal algorithm.

Assume that the number of cache misses during 𝜎𝑖 using the FIFO algorithm equals 𝑓𝑖. The optimal
algorithm can only prevent cache misses by using elements already in the cache at the start of a new
request sequence. The number of elements in the cache equals 𝑘, but during 𝜎𝑖 FIFO will never fault
on 𝑝, so there are only 𝑘−1 elements for which the optimal algorithm can prevent cache misses. Thus
𝑂𝑃𝑇(𝜎𝑖) equals at least 𝑓𝑖 − (𝑘 − 1) = 𝑓𝑖 − 𝑘 + 1.

Then, for any 𝑖
𝐹𝐼𝐹𝑂(𝜎𝑖)
𝑂𝑃𝑇(𝜎𝑖)

≤ 𝑓𝑖
𝑓𝑖 − 𝑘 + 1

≤ 𝑘
𝑘 − 𝑘 + 1 = 𝑘.

And to conclude,
𝐹𝐼𝐹𝑂(𝜎)
𝑂𝑃𝑇(𝜎) ≤ 𝑘.

Because both the lower and upper bounds of the competitive ratio for the FIFO algorithm equal 𝑘, the
competitive ratio for the FIFO algorithm equals 𝑘.

3.3. Comparing LRU and FIFO
Panagiotou and Souza [4] introduced the characteristic vector for a request sequence. Different re-
quest sequences can have the same characteristic vector. Albers and Frascaria [1] show that for any
characteristic vector, the competitive ratio of LRU is better than the competitive ratio of FIFO. While
LRU performs better than FIFO for most sequences, there are a few exceptions. This section explores
why LRU is not always better than FIFO and how the characteristic vector defines the number of cache
misses.

Definition 7 (Characteristic vector). Let 𝜎 = (𝜎1, 𝜎2, … , 𝜎𝑡) a request sequence with 𝑡 requests and 𝑝
distinct pages. A set of two requests 𝜎𝑖 , 𝜎𝑗 is called a pair whenever both 𝜎𝑖 and 𝜎𝑗 request the same
page and are consecutive, so all pages requested between 𝜎𝑖 and 𝜎𝑗 are distinct from 𝜎𝑖 and 𝜎𝑗. The
number of distinct pages between a pair 𝜎𝑖 , 𝜎𝑗 is denoted by 𝓁. For any sequence 𝜎, given any 𝓁, let
𝐶𝓁 denote the number of pairs 𝜎𝑖 , 𝜎𝑗 with exactly 𝓁 distinct pages in between them. The characteristic
vector of a sequence 𝜎 is then defined as 𝑐(𝜎) = (𝐶0(𝜎), 𝐶1(𝜎), … , 𝐶𝑝−1(𝜎)).

Panagiotou and Souza [4] claim that the characteristic vector defines the number of cache faults for the
LRU algorithm. The following theorem establishes a relationship between the number of LRU cache
misses and the characteristic vector.

Theorem 8. For any request sequence 𝜎, the number of cache misses caused by the LRU algorithm,
𝐿𝑅𝑈(𝜎), equals 𝑝 + ∑𝓁≥𝑘 𝐶𝓁(𝜎), where 𝑝 is the number of distinct pages, 𝐶𝓁 is the number of pairs with
𝓁 distinct elements in between, and 𝑘 is the cache size.

Proof. Let 𝜎 be any request sequence with a corresponding characteristic vector, denoted as 𝑐(𝜎) =
(𝐶0(𝜎), 𝐶1(𝜎), … , 𝐶𝑡−1(𝜎)). The LRU algorithm evicts the pages whose request was least recently used.
Thus, if between two requests of the same page 𝑎 there are fewer than 𝑘 distinct pages, 𝑎 must still

10 3. Further mathematical analysis of the FIFO and LRU algorithm

be in the cache and will result in no fault. To conclude, the LRU algorithm does not fault on request
pairs for which 𝓁 < 𝑘. Furthermore, the LRU algorithm always faults on request pages for which 𝓁 ≥ 𝑘.
Whenever there are at least 𝑘 distinct pages between two requests to the same page 𝑎, the entire
cache has been replaced, causing a fault on 𝑎. The LRU algorithm also faults on pages when they are
first requested. Because the sequence contains 𝑝 distinct pages, the LRU algorithm will fault on all of
these 𝑝 pages. So, to conclude, 𝐿𝑅𝑈(𝜎) = 𝑝 + ∑𝑙≥𝑘 𝐶𝑙(𝜎).

The number of cache misses of the LRU algorithm can be defined by the characteristic vector due
to two assumptions: (1) The LRU algorithm does not fault on request pairs for which 𝓁 < 𝑘, and (2)
LRU always faults on request pairs for which 𝓁 ≥ 𝑘. Neither of these assumptions hold for the FIFO
algorithm, as shown in the following two lemmas.

Lemma 9. The FIFO algorithm can fault on request pairs for which 𝓁 < 𝑘, where 𝓁 is the number of
distinct elements between the request pair and 𝑘 the cache size.

Proof. Consider the request sequence 1 − 2 − 1 − 3 − 1 and the corresponding cache and eviction
strategy for FIFO, as shown in Figure 3.2. The most interesting part of the cache is the last three items.
This illustrates that FIFO faults on the final page, while there is only one distinct page, 3, between this
request and the previous one. This shows that while 𝓁 < 𝑘, the FIFO algorithm still causes a fault on
this request pair.

Figure 3.2: Behavior of the FIFO algorithm for the request sequence 1 − 2 − 1 − 3 − 1

Lemma 10. The FIFO algorithm does not have to fault on request pairs for which 𝓁 ≥ 𝑘, where 𝓁 is the
number of distinct elements between the pair and 𝑘 is the cache size.

Proof. Consider the request sequence 1 − 5− 2− 1− 5− 3− 4− 2 and the corresponding cache and
eviction strategy for the FIFO algorithm, as shown in Figure 3.3. The request pair that is of interest is
the request pair of 2. The cache size is 𝑘 = 3 and the number of distinct pages between these requests
is 𝓁 = 4. However, there is no cache miss for the final 2. Thus, it is possible to conclude that 𝓁 ≥ 𝑘 is
not a sufficient condition for a cache miss with the FIFO algorithm.

Figure 3.3: Behavior of the FIFO algorithm for the request sequence 1 − 5 − 2 − 1 − 5 − 3 − 4 − 2

While the assumptions that hold for the LRU algorithm do not hold for the FIFO algorithm, it is interesting
to think about which assumptions do hold for FIFO. The first assumption that is true for FIFO is that
for a request pair with 𝓁 distinct elements in between, no cache faults are only guaranteed whenever
𝓁 = 0. Furthermore, FIFO must fault on a request pair whenever 𝓁 ≥ 2𝑘 − 1.
Theorem 11. The largest number of distinct pages in between a request pair, 𝓁, for which the FIFO
algorithm never faults on a request pair, equals 0.

3.3. Comparing LRU and FIFO 11

Proof. For the FIFO algorithm, which page is evicted depends on which page was put first in the cache.
If the page of the request pair was put in the cache first, even 1 distinct page request in between the
request pair can cause a cache miss. However, if 𝓁 = 0, there are no pages in between, so the request
pair must be in the cache, which causes no cache miss.

Theorem 12. The FIFO algorithm always faults on a request pair with distance 𝓁 ≥ 2𝑘 − 1 and may
not fault on a request pair with distance 𝓁 ≤ 2𝑘 − 2, where 𝓁 is the number of distinct pages between
the request pair, and 𝑘 is the cache size.

Proof. To show that the FIFO algorithm always faults on a request pair with distance 𝓁 ≥ 2𝑘 − 1, it is
needed to understand why the FIFO algorithm does not always fault on a request pair with distance
𝓁 ≥ 𝑘. This is due to the eviction order and the elements already in the cache. Assume the request
pair consists of the element 𝑎. The cache consists of 𝑘 − 1 distinct elements without 𝑎. It is possible
to request all of these 𝑘 − 1 pages without causing a cache miss. Furthermore, when the requested
page 𝑎 is last in eviction order, and thus entered the cache the latest, 𝑘−1 pages will be evicted before
𝑎 is evicted. This means that it is possible to request another 𝑘 − 1 distinct pages that have not been
requested before, without evicting 𝑎. However, requesting another unique element will evict 𝑎. So, it is
possible to request 2𝑘−2 distinct pages without a cache miss for 𝑎. However, adding another element
must evict 𝑎. This shows that the FIFO algorithm must always fault on a request pair with distance
𝓁 ≥ 2𝑘 − 1.

Corollary 13. For any request sequence 𝜎, the number of cache misses caused by the FIFO algorithm,
𝐹𝐼𝐹𝑂(𝜎), equals at least 𝑝 + ∑𝓁≥2𝑘−1 𝐶𝓁(𝜎) and at most 𝑝 + ∑𝓁>0 𝐶𝓁(𝜎), with 𝑝 the number of distinct
pages, 𝐶𝓁 the number of request pairs with distance 𝓁, and 𝑘 the cache size.

Proof. This follows directly from the fact that the FIFO algorithm always faults on a request pair with
distance 𝓁 ≥ 2𝑘 − 1, but that is also possible for FIFO to fault on request pairs with distance 1 ≤
𝓁 < 2𝑘 − 1. Furthermore, the FIFO algorithm must fault on the 𝑝 distinct pages when they are first
requested. So, the FIFO algorithm can fault on all pages with distance 1 ≤ 𝓁 < 2𝑘 − 1, besides the
guaranteed page faults for 𝓁 ≥ 2𝑘 − 1, so 𝐹𝐼𝐹𝑂(𝜎) ≤ 𝑝 + ∑𝓁>0 𝐶𝓁(𝜎).

4
Comparing algorithms on a complete set

of sequences
The competitive ratio, as defined in Chapter 2, is the worst-case analysis of the ratio between the num-
ber of cache misses of an algorithm and the number of cache misses of the optimal offline algorithm.
When both the number of possible requested pages (the universe size) and the sequence length are
limited, it is possible to compute the ratio for each possible sequence. The distribution of these ra-
tios can be compared for various algorithms. This chapter elaborates on the method and results of
comparing these ratio distributions. The first section will go into more detail about the various design
parameters, such as universe size, sequence length, cache size, and the chosen algorithms. The sec-
ond section describes the implementation of these algorithms in Python. The final section will share
the results of the various distributions of the ratio.

4.1. Selection of design parameters
The universe size, sequence length, and cache size are critical for analyzing the ratio between the
number of cache misses of the algorithm and the optimal solution. The number of sequences grows
exponentially with increases in universe size or sequence length. This exponential growth also expo-
nentially increases the runtime and the memory usage. For this reason, the universe size equals 5, the
sequence length equals 10 and the cache size 𝑘 equals 3.

Furthermore, a selection of eviction strategies is required. The classification and algorithms from Chap-
ter 2 were used for this purpose. The chosen eviction strategies are: (1) First In First Out, (2) Least
Recently Used, (3) Least Frequently Used, (4) Segmented Least Recently Used, (5) Uniform Random-
ized, and (6) Recency Based Randomized.
All algorithms, except for Segmented Least Recently Used (SLRU), have the cache size as a parameter.
The SLRU algorithm also needs a parameter describing which part of the cache is protected and which
part is unprotected. In this case, due to the small cache size, the size of the protected cache equals 1.

4.2. Implementation
To compare all eviction strategies and the distribution of ratios, all sequences and the behavior of the
eviction strategies needed to be simulated. All simulations were implemented in Python, specifically
using Jupyter Notebook. First, a Queue class was created to simplify the implementation of other
algorithms, such as FIFO and LRU. After that, each algorithm was implemented as functions with
“cache size” and “sequence” as arguments. The SLRU algorithm also had an additional “cache size
protected” argument. All possible sequences were generated using the itertools library in Python.
Finally, all of components were combined to generate the cumulative distributions for the ratio between
the number of cache misses generated by the eviction strategy and the optimal offline solution. The
complete Python code for this can be found in Appendix A.

13

14 4. Comparing algorithms on a complete set of sequences

4.3. Results
Figure 4.1 shows the cumulative distribution of the ratio of the number of cache misses between the
algorithms and the optimal solution. This is given for the complete set of sequences. All sequences
have length 10 and are made with 5 distinct elements. Furthermore, the cache size is 3. Figure 4.1
shows that all algorithms perform as well as the optimal algorithm for at least 40% of the sequences.
However, both random algorithms have significantly more sequences for which they perform as well
as the optimal solution in comparison to the other algorithms. It is also interesting to note that the
LRU algorithm has the least number of sequences for which it performs as well as the optimal offline
algorithm. However, the LRU algorithm does have the lowest maximum ratio for this set of sequences,
together with the FIFO algorithm. Furthermore, for this set of sequences, no algorithm has a maximum
ratio higher than 2.5. This shows that, while Theorem 4 gives a lower bound for the competitive ratio,
this competitive ratio is not achieved for most sequences, and for none of the sequences of length 10
with 5 distinct elements and a cache size of 3. It can be noted that in Figure 4.1 none of the algorithms

Figure 4.1: Cumulative distribution for the ratio between the cost of the algorithm and the cost of the optimal algorithm, with
cache size 3, for the complete set of sequences with length 10 and 5 distinct pages.

obtain a ratio higher than 2.5. The cache size 𝑘 equals 3. The algorithm has more than 3 cache misses
whenever at least 4 distinct pages are requested. Each distinct requested page causes a cache miss
for the optimal algorithm. The algorithm can have 10 cache misses at most, while the optimal algorithm
has at least 4 cache misses in this case. Thus, the ratio between the cost of the algorithm and the
optimal algorithm is lower than the competitive ratio.

5
Comparing algorithms for various

sequences
In Chapter 4, the ratios between the algorithms and the optimal solution were analyzed for the complete
set of sequences. This was only feasible for sequences with a limited length and a small number of
distinct elements due to constraints on runtime and memory usage. In this chapter, the goal is to
analyze longer sequences with more possible page requests by generating them randomly, instead of
computing all possible sequences. Additionally, several types of sequences are generated based on
different assumptions about request behavior. The first section introduces the design parameters, the
second section discusses implementation, and the third section presents the results.

5.1. Design of parameters and sequences
In Chapter 2, several types of algorithms were introduced, along with their underlying assumptions.
All of these algorithms are included in this analysis. The algorithms are: (1) First In First Out, (2)
Least Recently Used, (3) Least Frequently Used, (4) Segmented Least Recently Used, (5) Uniform
Randomized, and (6) Recency-Based Randomized.

These algorithms rely on three main assumptions: (1) requests are completely random, (2) more re-
cently requested pages are more likely to be requested again, and (3) frequently requested pages are
more likely to be requested again. Corresponding to these assumptions, three types of request se-
quences are considered: (1) randomized sequences, (2) recency-based sequences, and (3) favorite
element sequences.

For the randomized sequences, all pages have an equal probability of being the next requested page.
The recency-based sequences work with a look-back of 5, 10, or 20. The next requested element has
an arbitrary probability of 0.2 to be chosen from the last 𝑥 elements, with 𝑥 equaling the look-back.
Otherwise, a uniformly random element from the universe is selected. Favorite element sequences
are generated similarly, but in this case, there is an arbitrary probability of 0.2 that a “favorite element”
is the next requested element. The first 5, 10, or 20 elements in the universe are marked as favorite
elements. Otherwise, a random element from the entire universe is chosen.

The main design parameters are universe size, sequence length, and cache size. For SLRU, the
protected cache size parameter was also introduced. In this Chapter, the sequence length will be
set to 1000. The other design parameters will be varied, so the cache sizes are 5, 10, and 20. The
universe size equals 50, 100, or 150. The protected cache size is a percentage of the cache size,
in this case 20%. The plausibility of the results depends on the sample size of sequences; larger
sample sizes yield more robust results but also require significantly more memory and computation
time. Considering these trade-offs, the sample size is set to 10.000 sequences per experiment. For
recency-based sequences and favorite element sequences, the sequence-specific parameters, look-
back and percentage of favorite elements, were also varied.

15

16 5. Comparing algorithms for various sequences

5.2. Implementation
To compare all eviction strategies for various types of sequences, their behavior was simulated using
Python, specifically Jupyter Notebook. A separate file was created for each sequence type, while
sharing a general structure: implementing the Queue class and algorithms, generating the sequences,
computing the ratio between the solution of the algorithm and the optimal algorithm, and producing
cumulative distribution plots.

The results for varying input parameters such as look-back, cache size, and universe size were gener-
ated by looping over the code multiple times. All generated data were stored in a pandas DataFrame.
The complete code is provided in Appendices B, C, and D.

5.3. Results randomized sequences
Figure 5.1 shows the cumulative distribution of the ratio between the number of cache misses of each
algorithm and the optimal solution for varying universe sizes, 50, 100 and 150. However, the cache
size 𝑘 is fixed to 5. In Figure 5.2, the cache size equals 10, and in Figure 5.3 the cache size equals 20.

Figure 5.1 shows that a larger universe size results in a smaller ratio between the algorithm’s number
of cache faults and the optimal number of cache faults. The expectation is that more distinct pages will
lead to more cache misses. However, more distinct pages not only lead to more cache misses for the
various algorithms, but also for the optimal solution. This could explain why the ratio of cache misses
between the algorithms and the optimal solution is lower. Furthermore, it is interesting to note that all
cumulative distributions have an “S” shape, but the LFU curve is significantly wider. This indicates that
LFU has a higher proportion of low ratios but also the highest maximum ratio. For the FIFO and LRU
algorithms, this is opposite; they have a low proportion of sequences with a low ratio but also have a
low maximum ratio. For a larger universe size, the “S” shape compresses, reducing the difference in
proportions.

Figure 5.1: Cumulative distribution for the ratio between the cost of the algorithm and the optimal algorithm, with cache size 5,
for randomized sequences with various universe sizes.

The same observations hold for Figure 5.2 and 5.3. However, the scale of the axis on which the ratio
is represented differs. The ratios change for different cache sizes. When comparing these ratios in
Figure 5.1, 5.2, and 5.3 for the same universe sizes, it can be seen that a larger cache size leads to a
higher ratio between the algorithms and the optimal algorithm. The expectation is that a larger cache
size leads to fewer cache misses and thus better performance. However, the ratio of the cost between
the algorithm and the optimal solution is higher. This once again shows why the (competitive) ratio is
not the best measure to determine how well algorithms perform in practice. Appendix E contains a plot
for which the axes all have the same scaling, for better comparison.

5.3. Results randomized sequences 17

Figure 5.2: Cumulative distribution for the ratio between the cost of the algorithm and the optimal algorithm, with cache size 10,
for randomized sequences with various universe sizes.

Figure 5.3: Cumulative distribution for the ratio between the cost of the algorithm and the optimal algorithm, with cache size 20,
for randomized sequences with various universe sizes.

18 5. Comparing algorithms for various sequences

5.4. Results recency-based sequences
For recency-based sequences, three parameters were varied: cache size, universe size, and look-
back, yielding 27 different combinations. Seventeen of these combinations are discussed in this sec-
tion. All combinations can be found in Appendix E.

Figure 5.4 shows the cumulative distribution for sequences with fixed cache size 𝑘 = 10 and varying
universe sizes and look-back. Figure 5.5 instead fixed the universe size at 100. The middle panel of
both figures corresponds to the same parameter values.

Figure 5.4 shows that the LFU performs worse than the other algorithms. This aligns with the expecta-
tions. These sequences were based on the assumption that recent elements have a higher probability
of being requested again while LFU is based on the assumption that frequently requested elements
are more likely to be requested again. The LRU algorithm performs the best and the Segmented LRU
algorithm also performs pretty well. The randomized recency-based algorithm (RRE), which also as-
sumes that more recently requested elements will be requested again, does not perform as well as
some other algorithms that are not based on this assumption, such as FIFO and the uniformly random
eviction strategy. Finally, it can once again be seen that a larger universe size leads to a smaller ratio.
Furthermore, it seems that a larger look-back yields a slightly higher ratio.

Figure 5.4: Cumulative distribution for the ratio between the cost of the algorithm and the optimal algorithm, with cache size 10,
for recency-based sequences and various universe sizes and look-backs.

5.4. Results recency-based sequences 19

Figure 5.5 once again shows that a larger cache size yields a higher ratio and that a larger look-back
also yields a higher ratio. Furthermore, it also shows, just like Figure 5.4, that the LFU algorithm
performs the worst and that the LRU, SLRU, and FIFO algorithms perform quite well.

An explanation for the fact that a larger look-back leads to a higher ratio might be the fact that with
a smaller look-back, the possibility that an item is still in the cache is greater. For example, take the
LRU algorithm, which contains the last 𝑘 requests. If the look-back is smaller than 𝑘, every time that a
previous look-back element is requested, it is guaranteed that it must be in the cache.

Figure 5.5: Cumulative distribution for the ratio between the cost of the algorithm and the optimal algorithm, with universe size
100, for recency-based sequences and various cache sizes and look-backs.

20 5. Comparing algorithms for various sequences

5.5. Results favorite element sequences
The favorite element sequences vary three parameters: the cache size, universe size, and favorite
percentage. A selection of results is analyzed. The full set of results can be found in Appendix E.

Figure 5.6 shows the ratios with a fixed cache size of 10 with varying universe sizes and favorite
element percentages. Unlike the recency-based sequences, the LFU algorithm performs significantly
better than the other algorithms. However, the SLRU has a smaller proportion of sequences with a high
competitive ratio. Furthermore, the LRU algorithm also performs relatively well for the favorite element
sequences. This could be explained by the fact the LRU algorithm is based on the assumption that
recently requested elements will be requested again. While not all elements recently requested will
be requested again, some of the recently requested elements are favorite elements and have a higher
probability of being requested again.

Figure 5.6 also shows the earlier observed trend of a lower ratio for a higher universe size. Finally,
the relation between the percentage of favorite elements and the competitive ratio is more difficult to
determine. The LFU curve moves closer to the other curves, but it is not clear if the competitive ratio
really shifts.

Figure 5.6: Cumulative distribution for the ratio between the cost of the algorithm and the optimal algorithm, with cache size 10,
for favorite element sequences and various universe sizes and favorite percentages.

Figure 5.7 also shows a trend that has been observed earlier. This is the trend that a higher cache size
yields a higher competitive ratio. Furthermore, it can be seen that the LFU, SLRU, and LRU algorithms

5.5. Results favorite element sequences 21

still perform very well, while the recency-based random algorithm (RRE) performs worse. Finally, it is
not easy in this case to determine if a smaller percentage of favorite elements yields a higher or lower
competitive ratio. This is examined in more detail in Figure 5.8.

Figure 5.8 once again shows that the LFU curve moves closer to the other curves and thus moves to
the right. The other curves move slightly to the left. This would suggest that the LFU algorithm performs
worse for a higher percentage of favorite elements, while the other algorithms perform slightly better
with a higher percentage of favorite elements in this specific case.

Figure 5.7: Cumulative distribution for the ratio between the cost of the algorithm and the optimal algorithm, with universe size
100, for favorite element sequences and various favorite percentages.

22 5. Comparing algorithms for various sequences

Figure 5.8: Cumulative distribution for the ratio between the cost of the algorithm and the optimal algorithm, with cache size 10,
universe size 100, for favorite element sequences and favorite percentages.

6
Conclusion and limitations

In this chapter, the results from the previous chapters are combined to answer the research question:
“How do deterministic and randomized algorithms performwith differently structured request sequences
in the caching problem, and how can these algorithms be compared to one another?”. The research
question will be answered using the four subquestions: (1) Which metric can be used to compare
different algorithms? (2) Which characteristics does this metric have for various algorithms? (3) How
do algorithms compare on a complete set of sequences? (4) How do algorithms compare for various
types of sequences? Furthermore, the limitations of this research will be examined, along with possible
options for future research.

The most commonly used metric to compare algorithms for the caching problem is the competitive
ratio. While the competitive ratio can easily be computed and does distinguish between algorithms,
the LRU and FIFO algorithms are 𝑘-competitive, while most deterministic algorithms have a lower
bound on the competitive ratio of 𝑘. The competitive ratio is merely a worst-case analysis. In practice,
algorithms may perform significantly better than their competitive ratio suggests. Moreover, because
the competitive ratio is defined over all possible sequences, it does not capture performance differences
between algorithms for specific types of request patterns, such as recency-based sequences or favorite
element sequences.

The competitive ratio cannot differentiate performances for various request patterns. An alternative
metric, based on the characteristic vector, can solve this problem partially. The number of cache faults
for LRU is defined by the characteristic vector; 𝐿𝑅𝑈(𝜎) = 𝑝 + ∑𝓁≥𝑘 𝐶𝓁(𝜎). For the FIFO algorithm,
the characteristic vector only provides a lower and upper bound for the number of cache faults; 𝑝 +
∑𝓁≥2𝑘−1 𝐶𝓁(𝜎) ≤ 𝐹𝐼𝐹𝑂(𝜎) ≤ 𝑝 + ∑𝓁>0 𝐶𝓁(𝜎). This research does not examine how the characteristic
vector defines the number of cache misses for other algorithms, but this would be interesting to explore
further.

An additional advantage of the characteristic vector is that the structure of the sequence is captured
within the characteristic vector. This raises the question: ”Do specific request patterns yield differently
structured characteristic vectors?”. If so, and if more lower and upper bounds for the number of cache
misses for algorithms are known, it might be possible to identify which algorithm causes the least cache
misses for a given request pattern, using the characteristic vector. Panagiotou and Souza [4] explored
this partially; instead of determining the characteristic vector for a request pattern, they designed a
specific characteristic vector and computed a new and improved competitive ratio for the LRU algorithm
with this specific characteristic vector.

After identifying the different metrics and their characteristics, it is insightful to see how the algorithms
perform in practice. For this, six different algorithms were evaluated: (1) First In First Out, (2) Least Re-
cently Used, (3) Least Frequently Used, (4) Segmented Least Recently Used, (5) Uniform Randomized,
and (6) Recency-Based Randomized.

23

24 6. Conclusion and limitations

The algorithms were first compared on all possible sequences with 5 distinct pages and length 10,
using a cache size of 3. It was interesting to note that while many research claims that the LRU
algorithm performs better than the FIFO algorithm, such as Albers and Frascaria [1], the claim is that
the competitive ratio for LRU for a specific characteristic vector is always better, the results show that
there is a small number of sequences for which the FIFO algorithm performs better than the LRU
algorithm. Furthermore, the randomized algorithms had the highest proportion of sequences for which
the ratio equaled one. Due to memory and computational time limitations, the sequence length and
universe size were quite small. With better computers, it would be possible to analyze the complete
set of sequences for longer sequences with more distinct pages.

When comparing algorithms for these various sequence types, a noteworthy observation is that the
LRU algorithm is not always the best-performing algorithm. For uniformly random and recency-based
sequences, it performs best, while LFU performs worst. For favorite element sequences, however, the
LFU algorithm performs best. The SLRU algorithm performs consistently well across the sequence
types; this makes it an interesting algorithm for further analysis.

Because different algorithms perform better for different types of sequences, it would be useful to study
user behavior before deciding which algorithm is the best fit for a specific application. For different ap-
plications users would probably show different behavior. Further research could identify user behavior
patterns and recommend which type of algorithm suits this request pattern.

Finally, several general patterns emerged when varying the parameters. A larger cache size leads to
a higher ratio for the number of cache misses between the algorithm and the optimal solution, while
the assumption is that a higher cache size leads to fewer cache misses. The (competitive) ratio tells
nothing about the absolute number of cache faults, only about the proportion to the optimal algorithm.
This could also explain why a larger universe size and thus more distinct elements, leads to a lower
ratio of the number of cache faults, even though it would probably lead to more cache faults. Further
research could further explain these trends by comparing the number of cache faults for the algorithms
and the optimal algorithm instead of the ratio between these.

Generative AI statement
For this thesis project, GenAI was used to assist with reviewing the final version of the work. All text and
content have been produced by the author, but GenAI provided some feedback on spelling, grammar,
and readability of the thesis. All feedback was considered carefully before changing anything. For this,
Grammarly was used along with ChatGPT version 5.1. The prompt to ask feedback from ChatGPT
was ”Could you please provide feedback on the following text. I specifically want feedback on spelling,
grammar, and readability”.

25

Bibliography
[1] S. Albers and D. Frascaria. “Quantifying competitiveness in paging with locality of reference”. In:

Algorithmica 80.12 (2018), pp. 3563–3596. DOI: 10.1007/s00453-018-0406-9.
[2] L. A. Belady. “A study of replacement algorithms for a virtual-storage computer”. In: IBM Systems

Journal 5.2 (1966), pp. 78–101. DOI: 10.1147/sj.52.0078.
[3] A. Gupta. Advanced Algorithms: notes for CMU 15-850 (fall 2020). 2020, pp. 273–285.
[4] K. Panagiotou and A Souza. “On adequate performance measures for paging”. In: Proceedings

of the thirty-eighth Annual ACM Symposium on Theory of computing. 2006, pp. 487–496. DOI:
10.1145/1132516.1132587.

[5] S. Podlipnig and L. Böszörmenyi. “A survey of Web cache replacement strategies”. In: ACM Com-
puting Surveys 35 (Dec. 2003), pp. 374–398. DOI: 10.1145/954339.954341.

[6] D. Sleator and R. Tarjan. “Amortized efficiency of list update paging rules”. In: Communications of
the ACM 28 (Feb. 1985), pp. 202–208. DOI: 10.1145/2786.2793.

27

https://doi.org/10.1007/s00453-018-0406-9
https://doi.org/10.1147/sj.52.0078
https://doi.org/10.1145/1132516.1132587
https://doi.org/10.1145/954339.954341
https://doi.org/10.1145/2786.2793

A
Python code complete set of sequences

1 #imports
2 import matplotlib.pyplot as plt
3 import numpy as np
4 import math
5 import random
6

7 from itertools import product
8

9 #QUEUES
10 class MQueue:
11 def __init__(self):
12 self.queue = []
13

14 def enqueue(self, element):
15 self.queue.append(element)
16

17 def dequeue(self):
18 if self.isEmpty():
19 return ”Queue is empty”
20 return self.queue.pop(0)
21

22 def remove(self, i):
23 self.queue.remove(i)
24

25 def isEmpty(self):
26 return len(self.queue) == 0
27

28 def size(self):
29 return len(self.queue)
30

31 def contains(self, i):
32 for j in self.queue:
33 if j == i:
34 return True
35 return False
36

37 def __str__(self):
38 return str(self.queue)
39

40 #FIFO algorithm
41 def FIFO(sequence, cachesize):
42 cache = MQueue()
43 cache_misses = 0
44

45 for i in sequence:
46 if cache.contains(i):
47 continue
48 elif cache.size() < cachesize:
49 cache_misses += 1
50 cache.enqueue(i)

29

30 A. Python code complete set of sequences

51 else:
52 evict = cache.dequeue()
53 cache_misses += 1
54 cache.enqueue(i)
55

56 return cache_misses
57

58 #LRU algorithm
59 def LRU(sequence, cachesize):
60 cache = MQueue()
61 cache_misses = 0
62

63 for i in sequence:
64 if cache.contains(i):
65 cache.remove(i)
66 cache.enqueue(i)
67 elif cache.size() < cachesize:
68 cache_misses += 1
69 cache.enqueue(i)
70 else:
71 evict = cache.dequeue()
72 cache_misses += 1
73 cache.enqueue(i)
74

75 return cache_misses
76

77 #LFU algorithm
78 def LFU(sequence, cachesize):
79 cache = []
80 frequency = dict()
81 cache_misses = 0
82

83 for i in sequence:
84 if i in cache:
85 frequency[i] += 1
86 elif len(cache) < cachesize:
87 cache.append(i)
88 frequency[i] = 1
89 cache_misses += 1
90 else:
91 lowest = math.inf
92 evict = None
93 for j in cache:
94 if frequency[j] < lowest:
95 lowest = frequency[j]
96 evict = j
97 frequency.pop(evict)
98 cache.remove(evict)
99 cache.append(i)

100 frequency[i] = 1
101 cache_misses += 1
102

103 return cache_misses
104

105 #Segmented LRU
106 def SLRU(sequence, cachesize_protected, cachesize_total):
107 unprotected_cache = MQueue()
108 protected_cache = MQueue()
109 cache_misses = 0
110

111 for i in sequence:
112 if protected_cache.contains(i):
113 protected_cache.remove(i)
114 protected_cache.enqueue(i)
115 elif unprotected_cache.contains(i):
116 if protected_cache.size() < cachesize_protected:
117 protected_cache.enqueue(i)
118 unprotected_cache.remove(i)
119 else:
120 evict = protected_cache.dequeue()
121 unprotected_cache.enqueue(evict)

31

122 protected_cache.enqueue(i)
123 unprotected_cache.remove(i)
124 elif unprotected_cache.size() + protected_cache.size() < cachesize_total:
125 unprotected_cache.enqueue(i)
126 cache_misses += 1
127 else:
128 evict = unprotected_cache.dequeue()
129 unprotected_cache.enqueue(i)
130 cache_misses += 1
131

132 return cache_misses
133

134 #Uniform algorithm
135 def UNIFORM(sequence, cachesize):
136 cache = []
137 cache_misses = 0
138

139 for i in sequence:
140 if i in cache:
141 continue
142 elif len(cache) < cachesize:
143 cache_misses += 1
144 cache.append(i)
145 else:
146 position = round(random.uniform(-0.5, cachesize - 0.5))
147 cache_misses += 1
148 cache[position] = i
149

150 return cache_misses
151

152 #Recency based random algorithm
153 def RANDOM_RECENCY(sequence, cachesize):
154 cache = MQueue()
155 cache_misses = 0
156 total_prob = cachesize*(cachesize+1)/2
157 for i in sequence:
158 if cache.contains(i):
159 cache.remove(i)
160 cache.enqueue(i)
161 elif cache.size() < cachesize:
162 cache_misses += 1
163 cache.enqueue(i)
164 else:
165 n = 1
166 position = random.uniform(0, total_prob)
167 cache_misses += 1
168 for j in cache.queue:
169 if position < n*(n+1)/2:
170 cache.remove(j)
171 cache.enqueue(i)
172 break
173 n += 1
174

175 return cache_misses
176

177 #Optimal algorithm
178 def OPT(sequence, cachesize):
179 cache = []
180 cache_misses = 0
181 for i in range(len(sequence)):
182 element = sequence[i]
183 if element in cache:
184 continue
185 elif len(cache) < cachesize:
186 cache_misses += 1
187 cache.append(element)
188 else:
189 future_requests_positions = dict()
190 cache_misses += 1
191 remaining_sequence = sequence[i::]
192 for x in cache:

32 A. Python code complete set of sequences

193 future_requests_positions[x] = 0
194 position = 1
195 for y in remaining_sequence:
196 if x == y:
197 future_requests_positions[x] = position
198 break
199 position += 1
200

201 evict = None
202

203 if 0 in future_requests_positions.values():
204 for x in future_requests_positions.keys():
205 if future_requests_positions[x] == 0:
206 evict = x
207 break
208 else:
209 sort = sorted(future_requests_positions.values())
210 farthest = sort[-1]
211 for x in future_requests_positions.keys():
212 if future_requests_positions[x] == farthest:
213 evict = x
214 break
215 cache.remove(evict)
216 cache.append(element)
217 return cache_misses
218

219 #set parameters
220 possible_elements = [1,2,3,4,5]
221 length = 10
222 cache_size = 3
223

224 #generate data
225 counter = 0
226 data_FIFO = []
227 data_LRU = []
228 data_LFU = []
229 data_SLRU = []
230 data_UNI = []
231 data_RRE = []
232

233 for i in product(possible_elements, repeat = length):
234 seq = i
235

236 cache_misses_FIFO = FIFO(seq, cache_size)
237 cache_misses_LRU = LRU(seq, cache_size)
238 cache_misses_LFU = LFU(seq, cache_size)
239 cache_misses_SLRU = SLRU(seq, 1, cache_size)
240 cache_misses_UNI = UNIFORM(seq, cache_size)
241 cache_misses_RRE = RANDOM_RECENCY(seq, cache_size)
242 OPT_misses= OPT(seq, cache_size)
243

244 rat_FIFO = cache_misses_FIFO/OPT_misses
245 rat_LRU = cache_misses_LRU/OPT_misses
246 rat_LFU = cache_misses_LFU/OPT_misses
247 rat_SLRU = cache_misses_SLRU/OPT_misses
248 rat_UNI = cache_misses_UNI/OPT_misses
249 rat_RRE = cache_misses_RRE/OPT_misses
250

251 data_FIFO.append(rat_FIFO)
252 data_LRU.append(rat_LRU)
253 data_LFU.append(rat_LFU)
254 data_SLRU.append(rat_SLRU)
255 data_UNI.append(rat_UNI)
256 data_RRE.append(rat_RRE)
257

258 counter += 1
259 if counter % 1000000 == 0:
260 print(i)
261

262 #computing cumulative
263 values_FIFO, base_FIFO = np.histogram(data_FIFO, bins=300)

33

264 cumulative_FIFO = np.cumsum(values_FIFO)
265

266 values_LRU, base_LRU = np.histogram(data_LRU, bins=300)
267 cumulative_LRU = np.cumsum(values_LRU)
268

269 values_LFU, base_LFU = np.histogram(data_LFU, bins=300)
270 cumulative_LFU = np.cumsum(values_LFU)
271

272 values_SLRU, base_SLRU = np.histogram(data_SLRU, bins=300)
273 cumulative_SLRU = np.cumsum(values_SLRU)
274

275 values_UNI, base_UNI = np.histogram(data_UNI, bins=300)
276 cumulative_UNI = np.cumsum(values_UNI)
277

278 values_RRE, base_RRE = np.histogram(data_RRE, bins=300)
279 cumulative_RRE = np.cumsum(values_RRE)
280

281 #plotting FIFO
282 plt.title(”Cumulative ratio FIFO and optimal algorithm”)
283 plt.xlabel(”Ratio FIFO and optimal algorithm”)
284 plt.ylabel(”Number of sequences”)
285 plt.plot(base_FIFO[:-1], cumulative_FIFO, c=’#00B8C8’)
286 plt.show()
287

288 #plotting LRU
289 plt.title(”Cumulative ratio LRU and optimal algorithm”)
290 plt.xlabel(”Ratio LRU and optimal algorithm”)
291 plt.ylabel(”Number of sequences”)
292 plt.plot(base_LRU[:-1], cumulative_LRU, c=’#EF60A3’)
293 plt.show()
294

295 #plotting LFU
296 plt.title(”Cumulative ratio LFU and optimal algorithm”)
297 plt.xlabel(”Ratio LFU and optimal algorithm”)
298 plt.ylabel(”Number of sequences”)
299 plt.plot(base_LFU[:-1], cumulative_LFU, c=’#EC6842’)
300 plt.show()
301

302 #plotting SLRU
303 plt.title(”Cumulative ratio SLRU and optimal algorithm”)
304 plt.xlabel(”Ratio SLRU and optimal algorithm”)
305 plt.ylabel(”Number of sequences”)
306 plt.plot(base_SLRU[:-1], cumulative_SLRU, c=’#FFB81C’)
307 plt.show()
308

309 #plotting UNI
310 plt.title(”Cumulative ratio uniform and optimal algorithm”)
311 plt.xlabel(”Ratio uniform and optimal algorithm”)
312 plt.ylabel(”Number of sequences”)
313 plt.plot(base_UNI[:-1], cumulative_UNI, c=’#6CC24A’)
314 plt.show()
315

316 #plotting RRE
317 plt.title(”Cumulative ratio recency randomized and optimal algorithm”)
318 plt.xlabel(”Ratio recency randomized and optimal algorithm”)
319 plt.ylabel(”Number of sequences”)
320 plt.plot(base_RRE[:-1], cumulative_RRE, c=’#0076C2’)
321 plt.show()
322

323 #combined plot
324 plt.title(”Cumulative ratio algorithms and optimal algorithm”)
325 plt.xlabel(”Ratio between algorithm and optimal algorithm”)
326 plt.ylabel(”Number of sequences”)
327 plt.plot(base_FIFO[:-1], cumulative_FIFO, c=’#00B8C8’, label = ”FIFO”)
328 plt.plot(base_LRU[:-1], cumulative_LRU, c=’#EF60A3’, label = ”LRU”, linestyle = ”--”)
329 plt.plot(base_LFU[:-1], cumulative_LFU, c=’#EC6842’, label = ”LFU”)
330 plt.plot(base_SLRU[:-1], cumulative_SLRU, c=’#FFB81C’, label = ”SLRU”, linestyle = ”--”)
331 plt.plot(base_UNI[:-1], cumulative_UNI, c=’#6CC24A’, label = ”uniform”)
332 plt.plot(base_RRE[:-1], cumulative_RRE, c=’#0076C2’, label = ”RRE”, linestyle = ”--”)
333 plt.legend(loc=”lower right”)
334 plt.show()

B
Python code randomized sequences

The implementation of the Queue and algorithms is the same as in Appendix A and will not be included
in this appendix.

1 #imports
2 import matplotlib.pyplot as plt
3 import numpy as np
4 import math
5 import random
6 import pandas as pd
7 import seaborn as sns
8

9 #implementation of MQueue and algorithms
10

11 #set parameters
12 universe_size = [50,100,150]
13 sequence_length = [1000]
14 cache_size = [5,10,20]
15 cache_size_protected_percent = 0.2
16 iters = 10000
17

18 data2 = pd.DataFrame(columns = [”universe size”, ”sequence_length”, ”cache_size”, ”proteced %
”, ”FIFO”, ”LRU”, ”LFU”, ”SLRU”, ”UNI”, ”RRE”])

19

20 count = 0
21 for unsize in universe_size:
22 for seqlength in sequence_length:
23 for i in range(iters):
24 seq = []
25 for j in range(seqlength):
26 seq.append(random.randint(0, unsize - 1))
27

28 for k in cache_size:
29 cache_misses_FIFO = FIFO(seq, k)
30 cache_misses_LRU = LRU(seq, k)
31 cache_misses_LFU = LFU(seq, k)
32 cache_misses_SLRU = SLRU(seq, k*cache_size_protected_percent, k)
33 cache_misses_UNI = UNIFORM(seq, k)
34 cache_misses_RRE = RANDOM_RECENCY(seq, k)
35 OPT_misses= OPT(seq, k)
36

37 rat_FIFO = cache_misses_FIFO/OPT_misses
38 rat_LRU = cache_misses_LRU/OPT_misses
39 rat_LFU = cache_misses_LFU/OPT_misses
40 rat_SLRU = cache_misses_SLRU/OPT_misses
41 rat_UNI = cache_misses_UNI/OPT_misses
42 rat_RRE = cache_misses_RRE/OPT_misses
43

44 data2.loc[count] = unsize, seqlength, k, cache_size_protected_percent,
rat_FIFO, rat_LRU, rat_LFU, rat_SLRU, rat_UNI, rat_RRE

45 count += 1

35

36 B. Python code randomized sequences

46 if count % 1000 == 0:
47 print(count)
48

49 #plot for various k and universe sizes
50 g = sns.FacetGrid(data2, col=”cache_size”, row = ”universe size”, height = 4)
51 g.fig.suptitle(”Ratio between number of cache misses for algorithms and optimal solution for

randomized sequences and various universe sizes and cache sizes”)
52 g.map_dataframe(sns.ecdfplot, x = ”FIFO”, color=’#00B8C8’, label=”FIFO”)
53 g.map_dataframe(sns.ecdfplot, x = ”LRU”, color=’#EF60A3’, label=”LRU”, linestyle = ”--”)
54 g.map_dataframe(sns.ecdfplot, x = ”LFU”, color=’#EC6842’, label=”LFU”)
55 g.map_dataframe(sns.ecdfplot, x = ”SLRU”, color=’#FFB81C’, label=”SLRU”, linestyle = ”--”)
56 g.map_dataframe(sns.ecdfplot, x = ”UNI”, color=’#6CC24A’, label=”UNI”)
57 g.map_dataframe(sns.ecdfplot, x = ”RRE”, color=’#0076C2’, label=”RRE”, linestyle = ”--”)
58 g.set_xlabels(”Ratio between algorithm and optimal solution”)
59 g.set_ylabels(”Proportion of sequences”)
60 g.add_legend()
61 plt.show()
62

63 #create dataframes for each cache size
64 k5 = data2.loc[data2[’cache_size’] == 5]
65 k10 = data2.loc[data2[’cache_size’] == 10]
66 k20 = data2.loc[data2[’cache_size’] == 20]
67

68 #plot for k = 5
69 g = sns.FacetGrid(k5, col=”universe size”, height = 4)
70 g.fig.suptitle(”Ratio between number of cache misses for algorithms and optimal solution for

randomized sequences and various universe sizes and cache sizes”)
71 g.map_dataframe(sns.ecdfplot, x = ”FIFO”, color=’#00B8C8’, label=”FIFO”)
72 g.map_dataframe(sns.ecdfplot, x = ”LRU”, color=’#EF60A3’, label=”LRU”, linestyle = ”--”)
73 g.map_dataframe(sns.ecdfplot, x = ”LFU”, color=’#EC6842’, label=”LFU”)
74 g.map_dataframe(sns.ecdfplot, x = ”SLRU”, color=’#FFB81C’, label=”SLRU”, linestyle = ”--”)
75 g.map_dataframe(sns.ecdfplot, x = ”UNI”, color=’#6CC24A’, label=”UNI”)
76 g.map_dataframe(sns.ecdfplot, x = ”RRE”, color=’#0076C2’, label=”RRE”, linestyle = ”--”)
77 g.set_xlabels(”Ratio between algorithm and optimal solution”)
78 g.set_ylabels(”Proportion of sequences”)
79 g.add_legend()
80 plt.show()
81

82 #plot for k = 10
83 g = sns.FacetGrid(k10, col=”universe size”, height = 4)
84 g.fig.suptitle(”Ratio between number of cache misses for algorithms and optimal solution for

randomized sequences and various universe sizes and cache sizes”)
85 g.map_dataframe(sns.ecdfplot, x = ”FIFO”, color=’#00B8C8’, label=”FIFO”)
86 g.map_dataframe(sns.ecdfplot, x = ”LRU”, color=’#EF60A3’, label=”LRU”, linestyle = ”--”)
87 g.map_dataframe(sns.ecdfplot, x = ”LFU”, color=’#EC6842’, label=”LFU”)
88 g.map_dataframe(sns.ecdfplot, x = ”SLRU”, color=’#FFB81C’, label=”SLRU”, linestyle = ”--”)
89 g.map_dataframe(sns.ecdfplot, x = ”UNI”, color=’#6CC24A’, label=”UNI”)
90 g.map_dataframe(sns.ecdfplot, x = ”RRE”, color=’#0076C2’, label=”RRE”, linestyle = ”--”)
91 g.set_xlabels(”Ratio between algorithm and optimal solution”)
92 g.set_ylabels(”Proportion of sequences”)
93 g.add_legend()
94 plt.show()
95

96 #plot for k = 20
97 g = sns.FacetGrid(k20, col=”universe size”, height = 4)
98 g.fig.suptitle(”Ratio between number of cache misses for algorithms and optimal solution for

randomized sequences and various universe sizes and cache sizes”)
99 g.map_dataframe(sns.ecdfplot, x = ”FIFO”, color=’#00B8C8’, label=”FIFO”)

100 g.map_dataframe(sns.ecdfplot, x = ”LRU”, color=’#EF60A3’, label=”LRU”, linestyle = ”--”)
101 g.map_dataframe(sns.ecdfplot, x = ”LFU”, color=’#EC6842’, label=”LFU”)
102 g.map_dataframe(sns.ecdfplot, x = ”SLRU”, color=’#FFB81C’, label=”SLRU”, linestyle = ”--”)
103 g.map_dataframe(sns.ecdfplot, x = ”UNI”, color=’#6CC24A’, label=”UNI”)
104 g.map_dataframe(sns.ecdfplot, x = ”RRE”, color=’#0076C2’, label=”RRE”, linestyle = ”--”)
105 g.set_xlabels(”Ratio between algorithm and optimal solution”)
106 g.set_ylabels(”Proportion of sequences”)
107 g.add_legend()
108 plt.show()

C
Python code recency-based sequences

The implementation of the Queue and algorithms is the same as in Appendix A and will not be included
in this appendix.

1 #imports
2 import matplotlib.pyplot as plt
3 import numpy as np
4 import math
5 import pandas as pd
6 import seaborn as sns
7

8 from numpy import random
9

10 #implementation of MQueue and algorithms
11

12 #set parameters
13 universe_size = [50, 100, 150]
14 sequence_length = [1000]
15 cache_size = [5,10,20]
16 cache_size_protected_percent = 0.2
17 lookback = [5,10,20]
18 iters = 10000
19

20 data2 = pd.DataFrame(columns = [”universe size”, ”sequence_length”, ”cache_size”, ”proteced %
”, ”lookback”, ”FIFO”, ”LRU”, ”LFU”, ”SLRU”, ”UNI”, ”RRE”])

21

22 count = 0
23 for unsize in universe_size:
24 for seqlength in sequence_length:
25 for look in lookback:
26 for i in range(iters):
27 seq = []
28 seq.append(random.randint(0, unsize))
29 for j in range(seqlength-1):
30 if random.binomial(n = 1, p = 0.2) == 1:
31 lookback_seq = seq[-look::]
32 choice = random.choice(lookback_seq)
33 seq.append(choice)
34 else:
35 seq.append(random.randint(0, unsize))
36

37 for k in cache_size:
38 cache_misses_FIFO = FIFO(seq, k)
39 cache_misses_LRU = LRU(seq, k)
40 cache_misses_LFU = LFU(seq, k)
41 cache_misses_SLRU = SLRU(seq, k*cache_size_protected_percent, k)
42 cache_misses_UNI = UNIFORM(seq, k)
43 cache_misses_RRE = RANDOM_RECENCY(seq, k)
44 OPT_misses= OPT(seq, k)
45

46 rat_FIFO = cache_misses_FIFO/OPT_misses

37

38 C. Python code recency-based sequences

47 rat_LRU = cache_misses_LRU/OPT_misses
48 rat_LFU = cache_misses_LFU/OPT_misses
49 rat_SLRU = cache_misses_SLRU/OPT_misses
50 rat_UNI = cache_misses_UNI/OPT_misses
51 rat_RRE = cache_misses_RRE/OPT_misses
52

53 data2.loc[count] = unsize, seqlength, k, cache_size_protected_percent,
look, rat_FIFO, rat_LRU, rat_LFU, rat_SLRU, rat_UNI, rat_RRE

54 count += 1
55 if count % 1000 == 0:
56

57 print(count)
58 #create dataframes for each universe size
59 u50 = data2.loc[data2[’universe size’] == 50]
60 u100 = data2.loc[data2[’universe size’] == 100]
61 u150 = data2.loc[data2[’universe size’] == 150]
62

63 #plot for u = 50
64 g = sns.FacetGrid(u50, col=”cache_size”, row = ”lookback”, height = 4)
65 g.fig.suptitle(”Ratio between number of cache misses for algorithms and optimal solution for

recency based sequences, n = 50, and various cache sizes and look-backs”)
66 g.map_dataframe(sns.ecdfplot, x = ”FIFO”, color=’#00B8C8’, label=”FIFO”)
67 g.map_dataframe(sns.ecdfplot, x = ”LRU”, color=’#EF60A3’, label=”LRU”)
68 g.map_dataframe(sns.ecdfplot, x = ”LFU”, color=’#EC6842’, label=”LFU”)
69 g.map_dataframe(sns.ecdfplot, x = ”SLRU”, color=’#FFB81C’, label=”SLRU”, linestyle = ”--”)
70 g.map_dataframe(sns.ecdfplot, x = ”UNI”, color=’#6CC24A’, label=”UNI”)
71 g.map_dataframe(sns.ecdfplot, x = ”RRE”, color=’#0076C2’, label=”RRE”)
72 g.set_xlabels(”Ratio between algorithm and optimal solution”)
73 g.set_ylabels(”Proportion of sequences”)
74 g.add_legend()
75 plt.show()
76

77 #plot for u = 100
78 g = sns.FacetGrid(u100, col=”cache_size”, row = ”lookback”, height = 4)
79 g.fig.suptitle(”Ratio between number of cache misses for algorithms and optimal solution for

recency based sequences, n = 100, and various cache sizes and look-backs”)
80 g.map_dataframe(sns.ecdfplot, x = ”FIFO”, color=’#00B8C8’, label=”FIFO”)
81 g.map_dataframe(sns.ecdfplot, x = ”LRU”, color=’#EF60A3’, label=”LRU”)
82 g.map_dataframe(sns.ecdfplot, x = ”LFU”, color=’#EC6842’, label=”LFU”)
83 g.map_dataframe(sns.ecdfplot, x = ”SLRU”, color=’#FFB81C’, label=”SLRU”, linestyle = ”--”)
84 g.map_dataframe(sns.ecdfplot, x = ”UNI”, color=’#6CC24A’, label=”UNI”)
85 g.map_dataframe(sns.ecdfplot, x = ”RRE”, color=’#0076C2’, label=”RRE”)
86 g.set_xlabels(”Ratio between algorithm and optimal solution”)
87 g.set_ylabels(”Proportion of sequences”)
88 g.add_legend()
89 plt.show()
90

91 #plot for u = 150
92 g = sns.FacetGrid(u150, col=”cache_size”, row = ”lookback”, height = 4)
93 g.fig.suptitle(”Ratio between number of cache misses for algorithms and optimal solution for

recency based sequences, n = 150, and various cache sizes and look-backs”)
94 g.map_dataframe(sns.ecdfplot, x = ”FIFO”, color=’#00B8C8’, label=”FIFO”)
95 g.map_dataframe(sns.ecdfplot, x = ”LRU”, color=’#EF60A3’, label=”LRU”)
96 g.map_dataframe(sns.ecdfplot, x = ”LFU”, color=’#EC6842’, label=”LFU”)
97 g.map_dataframe(sns.ecdfplot, x = ”SLRU”, color=’#FFB81C’, label=”SLRU”, linestyle = ”--”)
98 g.map_dataframe(sns.ecdfplot, x = ”UNI”, color=’#6CC24A’, label=”UNI”)
99 g.map_dataframe(sns.ecdfplot, x = ”RRE”, color=’#0076C2’, label=”RRE”)

100 g.set_xlabels(”Ratio between algorithm and optimal solution”)
101 g.set_ylabels(”Proportion of sequences”)
102 g.add_legend()
103 plt.show()
104

105 #create dataframes for each cache size
106 k5 = data2.loc[data2[’cache_size’] == 5]
107 k10 = data2.loc[data2[’cache_size’] == 10]
108 k20 = data2.loc[data2[’cache_size’] == 20]
109

110 #plot for k = 5
111 g = sns.FacetGrid(k5, col=”universe size”, row = ”lookback”, height = 4)
112 g.fig.suptitle(”Ratio between number of cache misses for algorithms and optimal solution for

recency based sequences, k = 5, and various universe sizes and look-backs”)

39

113 g.map_dataframe(sns.ecdfplot, x = ”FIFO”, color=’#00B8C8’, label=”FIFO”)
114 g.map_dataframe(sns.ecdfplot, x = ”LRU”, color=’#EF60A3’, label=”LRU”)
115 g.map_dataframe(sns.ecdfplot, x = ”LFU”, color=’#EC6842’, label=”LFU”)
116 g.map_dataframe(sns.ecdfplot, x = ”SLRU”, color=’#FFB81C’, label=”SLRU”, linestyle = ”--”)
117 g.map_dataframe(sns.ecdfplot, x = ”UNI”, color=’#6CC24A’, label=”UNI”)
118 g.map_dataframe(sns.ecdfplot, x = ”RRE”, color=’#0076C2’, label=”RRE”)
119 g.set_xlabels(”Ratio between algorithm and optimal solution”)
120 g.set_ylabels(”Proportion of sequences”)
121 g.add_legend()
122 plt.show()
123

124 #plot for k = 10
125 g = sns.FacetGrid(k10, col=”universe size”, row = ”lookback”, height = 4)
126 g.fig.suptitle(”Ratio between number of cache misses for algorithms and optimal solution for

recency based sequences, k = 10, and various universe sizes and look-backs”)
127 g.map_dataframe(sns.ecdfplot, x = ”FIFO”, color=’#00B8C8’, label=”FIFO”)
128 g.map_dataframe(sns.ecdfplot, x = ”LRU”, color=’#EF60A3’, label=”LRU”)
129 g.map_dataframe(sns.ecdfplot, x = ”LFU”, color=’#EC6842’, label=”LFU”)
130 g.map_dataframe(sns.ecdfplot, x = ”SLRU”, color=’#FFB81C’, label=”SLRU”, linestyle = ”--”)
131 g.map_dataframe(sns.ecdfplot, x = ”UNI”, color=’#6CC24A’, label=”UNI”)
132 g.map_dataframe(sns.ecdfplot, x = ”RRE”, color=’#0076C2’, label=”RRE”)
133 g.set_xlabels(”Ratio between algorithm and optimal solution”)
134 g.set_ylabels(”Proportion of sequences”)
135 g.add_legend()
136 plt.show()
137

138 #plot for k = 20
139 g = sns.FacetGrid(k10, col=”universe size”, row = ”lookback”, height = 4)
140 g.fig.suptitle(”Ratio between number of cache misses for algorithms and optimal solution for

recency based sequences, k = 10, and various universe sizes and look-backs”)
141 g.map_dataframe(sns.ecdfplot, x = ”FIFO”, color=’#00B8C8’, label=”FIFO”)
142 g.map_dataframe(sns.ecdfplot, x = ”LRU”, color=’#EF60A3’, label=”LRU”)
143 g.map_dataframe(sns.ecdfplot, x = ”LFU”, color=’#EC6842’, label=”LFU”)
144 g.map_dataframe(sns.ecdfplot, x = ”SLRU”, color=’#FFB81C’, label=”SLRU”, linestyle = ”--”)
145 g.map_dataframe(sns.ecdfplot, x = ”UNI”, color=’#6CC24A’, label=”UNI”)
146 g.map_dataframe(sns.ecdfplot, x = ”RRE”, color=’#0076C2’, label=”RRE”)
147 g.set_xlabels(”Ratio between algorithm and optimal solution”)
148 g.set_ylabels(”Proportion of sequences”)
149 g.add_legend()
150 plt.show()

D
Python code favorite element sequences
The implementation of the Queue and algorithms is the same as in Appendix A and will not be included
in this appendix. Furthermore, the creation of smaller data frames and subplots is the same as in
Appendix C, so in this appendix, only the imports and generation of sequences are included.

1 #imports
2 import matplotlib.pyplot as plt
3 import numpy as np
4 import math
5 import pandas as pd
6 import seaborn as sns
7

8 from numpy import random
9

10 #implementation of MQueue and algorithms
11

12 #set parameters
13 universe_size = [50, 100, 150]
14 sequence_length = [1000]
15 cache_size = [5,10,20]
16 cache_size_protected_percent = 0.2
17 fav_percent = [0.1, 0.2, 0.3]
18 iters = 10000
19

20 data2 = pd.DataFrame(columns = [”universe size”, ”sequence_length”, ”cache_size”, ”proteced %
”, ”favorite %”, ”FIFO”, ”LRU”, ”LFU”, ”SLRU”, ”UNI”, ”RRE”])

21

22 count = 0
23 for unsize in universe_size:
24 for seqlength in sequence_length:
25 for fav in fav_percent:
26 for i in range(iters):
27 seq = []
28 for j in range(seqlength):
29 if random.binomial(n = 1, p = 0.2) == 1:
30 seq.append(random.randint(0, unsize*fav))
31 else:
32 seq.append(random.randint(0, unsize))
33

34 for k in cache_size:
35 cache_misses_FIFO = FIFO(seq, k)
36 cache_misses_LRU = LRU(seq, k)
37 cache_misses_LFU = LFU(seq, k)
38 cache_misses_SLRU = SLRU(seq, k*cache_size_protected_percent, k)
39 cache_misses_UNI = UNIFORM(seq, k)
40 cache_misses_RRE = RANDOM_RECENCY(seq, k)
41 OPT_misses= OPT(seq, k)
42

43 rat_FIFO = cache_misses_FIFO/OPT_misses
44 rat_LRU = cache_misses_LRU/OPT_misses
45 rat_LFU = cache_misses_LFU/OPT_misses

41

42 D. Python code favorite element sequences

46 rat_SLRU = cache_misses_SLRU/OPT_misses
47 rat_UNI = cache_misses_UNI/OPT_misses
48 rat_RRE = cache_misses_RRE/OPT_misses
49

50 data2.loc[count] = unsize, seqlength, k, cache_size_protected_percent,
fav, rat_FIFO, rat_LRU, rat_LFU, rat_SLRU, rat_UNI, rat_RRE

51 count += 1
52 if count % 1000 == 0:
53 print(count)
54

55 #Creating smaller data frames and corresponding plots

E
All results various sequences

E.1. Results randomized sequences

Figure E.1: Cumulative distribution for the ratio between the cost of the algorithm and the optimal algorithm, for varying cache
sizes and universe sizes.

43

44 E. All results various sequences

Figure E.2: Cumulative distribution for the ratio between the cost of the algorithm and the optimal algorithm, for a fixed cache
size of 5 and varying universe size and look-back.

E.2. Results recency-based sequences
E.3. Results favorite element sequences

E.3. Results favorite element sequences 45

Figure E.3: Cumulative distribution for the ratio between the cost of the algorithm and the optimal algorithm, for a fixed cache
size of 10 and varying universe size and look-back.

46 E. All results various sequences

Figure E.4: Cumulative distribution for the ratio between the cost of the algorithm and the optimal algorithm, for a fixed cache
size of 20 and varying universe size and look-back.

E.3. Results favorite element sequences 47

Figure E.5: Cumulative distribution for the ratio between cost of the algorithm and optimal algorithm, with cache size 5, for
favorite element sequences and various universe sizes and favorite percentages.

48 E. All results various sequences

Figure E.6: Cumulative distribution for the ratio between cost of the algorithm and optimal algorithm, with cache size 10, for
favorite element sequences and various universe sizes and favorite percentages.

E.3. Results favorite element sequences 49

Figure E.7: Cumulative distribution for the ratio between cost of the algorithm and optimal algorithm, with cache size 20, for
favorite element sequences and various universe sizes and favorite percentages.

	Introduction
	Theoretical framework
	Formalization of the caching problem
	Classification of eviction strategies
	Minimal competitive ratio of deterministic algorithms
	Introduction of algorithms
	FIFO - First In First Out
	LRU - Least Recently Used
	LFU - Least Frequently Used
	SLRU - Segmented Least Recently Used
	UNI - Uniform randomized
	RRE - Randomized recency based

	Further mathematical analysis of the FIFO and LRU algorithm
	The competitive ratio upperbound for LRU
	The competitive ratio upper bound for FIFO
	Comparing LRU and FIFO

	Comparing algorithms on a complete set of sequences
	Selection of design parameters
	Implementation
	Results

	Comparing algorithms for various sequences
	Design of parameters and sequences
	Implementation
	Results randomized sequences
	Results recency-based sequences
	Results favorite element sequences

	Conclusion and limitations
	Bibliography
	Python code complete set of sequences
	Python code randomized sequences
	Python code recency-based sequences
	Python code favorite element sequences
	All results various sequences
	Results randomized sequences
	Results recency-based sequences
	Results favorite element sequences

