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Metamodel-based metaheuristics in optimal responsive adaptation and recovery 
of traffic networks
Rui Teixeira a, Beatriz Martinez-Pastora, Maria Nogalb and Alan O’Connorc

aSchool of Civil Engineering, University College Dublin, Ireland; bDepartments of Materials, Mechanics, Management & Design, Technical 
University, Delft, The Netherlands; cSchool of Civil Engineering, Trinity College, Dublin, Ireland

ABSTRACT
Different emerging threats highlighted the relevance of recovery and adaptation modelling in the 
functioning of societal systems. However, as modelling of systems becomes more complex, its 
effort increases challenging the practicality of the engineering analyses required for efficient 
recovery and adaptation. In the present work, metamodels are researched as a tool to enable 
these analyses in traffic networks. One of the main advantages of metamodeling is their synergy 
with the short decision times required in recovery and adaptation. A sequential global metamo-
deling technique is proposed and applied to three macroscopic day-to-day user-equilibrium 
models. Two reference contexts of application are researched: optimal recovery to a perturbation 
(with response times reduced by 98% with loss of accuracy lower than 1%) and adaptation under 
uncertainty with perturbation-dependent optimality. Results show that metamodeling-based 
metaheuristics enable fast resource-intensive engineering analyses of traffic recovery and adapta-
tion, which may change the paradigm of decision-making in this field
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1. Introduction

Traffic networks are complex systems composed of 
multiple elements that are expected to perform in 
different operational conditions. A traffic network can 
be composed of multiple links, which connect origin- 
destination (OD) pairs that respond to a demand 
imposed by the network users. One of the common 
forms to study the operation of traffic is to use travel 
time or cost, which characterizes the distribution of 
users through the network and its efficiency. This mea-
sure can be obtained by an optimization procedure 
that, under ideal conditions, will distribute the users 
of the network through the (real or perceived) shortest 
or least expensive paths to travel their intended OD 
pair, attending to the capacities allowed in the network.

Travel time or cost is a measure of high relevance 
in the analysis of traffic networks. In conditions of 
adaptation and recovery, it has been an important 
indicator to measure the performance of a network 
and has been recurrently applied to measure its resi-
lience (Bocchini & Frangopol, 2012; Nogal et al., 
2016; Sun et al., 2020; Twumasi-Boakye & Sobanjo, 
2021; Vugrin et al., 2014; Wang et al., 2016). It is 
therefore intrinsically related to the network perfor-
mance and plays a major role in decision-making 
and operation of traffic networks.

As calculating the cost of traveling in a network 
involves optimization procedures, it can demand multi-
ple onerous calculations; and these only increase in com-
plexity as the analyses become more detailed (e.g., more 
routes are included). As a result, analyses that demand 
a large number of evaluations are hindered by the amount 
of effort that is required to complete a full evaluation of all 
the scenarios of network operation. Network manage-
ment optimization schemes are examples of these.

One of the most effective techniques to solve limita-
tions coming from the evaluation of expensive perfor-
mance functions in traffic network is to apply 
metamodels to replace the traffic network analysis 
function. Pisano (2010); Osorio and Chong (2015) 
have formulated a metamodel-based approach to sur-
rogate the simulation-based optimization of micro-
scopic traffic networks. Ciuffo et al. (2013) applied 
a Kriging model in the sensitivity analysis of 
a mesoscopic model. Chen et al. (2014) studied the 
application of different metamodels, and with sequen-
tial learning, in order to surrogate the traffic cost in 
a mesoscopic traffic modelling problem, and prove that 
these can perform as accurate predictors (in the case to 
study road-pricing). Pereira et al. (2014) used meta-
models to set bounds of error for traffic predictions, 
with definition on observed data. Gu et al. (2019) 
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further elaborate on a tolling problem using also 
a Kriging model in an optimization scheme with the 
Efficient Global Optimization (EGO) of Jones et al. 
(1998). Teixeira et al., (2021a) applied metamodeling 
in reliability analysis of a user-equilibrium model with 
dependence on input random variables, showing that, 
despite the relatively low time for a single evaluation of 
a network in operation (in the order of seconds), 
a reliability analysis could extend to hours when thou-
sands of network operational points are required to set 
a probabilistic understanding of its performance. 
Despite this spectrum of works and considering their 
large potential to surrogate complex problems (Zhao & 
Dong, 2021), application of metamodels in traffic net-
work analysis has been limited.

In the particular case of recovery or adaptation, 
response times for decision-making play an important 
role. Metamodels have shown before synergy with the 
need to reduce response times in engineering analyses 
that depend on it (Kamiński, 2015). If the decision- 
making depends on effort-consuming modelling tech-
niques, metamodeling becomes even more relevant. 
There is, therefore, an important role to be filled by 
metamodels in the response and adaptation of engineer-
ing systems, including traffic networks. Significant 
research is being performed to increase the fidelity of 
engineering models in order to enable progressively 
more accurate predictions of operation (e.g., enabling 
digital twinning). Higher fidelity models recurrently 
mean more modelling efforts and analysis time. If 
a change in steady conditions occurs in an engineering 
system, running recovery or adaptation decision- 
making schemes supported by such models will have 
slow response times (for optimal decisions, an optimi-
zation is needed which demands several evaluations of 
the model). However, having a metamodel paired to 
such model allows virtually zero-response times. In the 
case of traffic networks and the need for effective 
response times in adaptation or recovery, this feature 
is of interest. Additionally, metamodels allow the crea-
tion of digital twins for the network a priori to any event 
to improve decision-making responsiveness. The possi-
bility of evaluating scenarios a priori in the network has 
been identified of relevance to inform post-disaster sce-
narios Liu et al. (2020).

In the present work, metamodeling is studied in 
a context of enabling recovery and adaptation analyses 
that become resource-consuming or even unfeasible in 
a context that limits efficient and responsive optimal 
decision-making processes. A sequential algorithm 
focused on practice and applicability is proposed to 
create accurate surrogates of the traffic network perfor-
mance. Metamodeling is then applied to reduce the cost 

of optimal resource allocation in recovery, and an inno-
vative adaptation decision-making approach is intro-
duced in order to set optimal decisions in uncertain 
scenarios with roots in the metamodeling capability to 
perform virtually cost-free traffic performance evalua-
tions. A Kriging model is applied in the present imple-
mentation. It is noted that the framework presented can 
be implemented to any type of metamodel (e.g., Neural 
Networks, Polynomial Chaos Expansions, or Support 
Vector Machines). The assumptions behind the choice 
of Kriging are discussed; however, it should be high-
lighted that depending on the shape of the function to 
be approximated, other models are also feasible and are 
of interest.

To achieve the proposed goal of discussing the appli-
cation of metamodeling in adaptation and recovery, 
Section 2 introduces the rationale of traffic assignment, 
which is then applied in the reference study, Section 3 
introduces the topic of metamodeling and discusses the 
sequential technique applied in the present work, 
Section 4 presents and discusses results of applications 
of metamodeling for adaptation and recovery of traffic 
networks, and in Section 5, the main conclusions of the 
developed work are presented.

2. Traffic assignment models

Traffic assignment models are used to estimate the traf-
fic flows in a network. These models estimate how users 
select their routes depending on the traffic network 
conditions. Inputs of the model are usually the network 
topology, the link performance functions, which relates 
the travel time and the traffic volume on each link of the 
network, and the OD matrix. Based on these, the traffic 
model will calculate traffic volumes and the travel times 
for the network. There are different types of traffic 
assignment models. Models can be classified as static 
or dynamic traffic assignment models, STA and DTA, 
respectively, and also as deterministic or stochastic traf-
fic assignment models. Nogal et al. (2019), for reference, 
compare these four models when evaluating traffic resi-
lience. For a more detail explanation of these models, 
the interested reader is directed to (Sheffi, 1985) for 
static models and (Martinez-Pastor, 2018) for static 
and dynamic models.

When using traffic assignment models, a classification 
depending on the behavioral assumption governing 
route choice can be done, and two main groups can be 
identified (a) when users as individual elements try to 
minimize their own travel times and (b) when the objec-
tive is to minimize the total travel time of the network as 
a whole. These two approaches are usually known as (a) 
user equilibrium (UE) and (b) system optimum (SO).
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The first approach, UE, is based on the Wardrop’s 
first principle (Wardrop, 1952) and can be defined as 
‘for each OD pair, at a user equilibrium, the travel time 
on all used paths is equal and (also) less than the travel 
time that would be experienced by a single vehicle on 
any unused path’ (Sheffi, 1985). The second approach, 
SO, is based on the Wardrop’s second principle, which 
states that the average (or total) travel times should be 
minimized. In the context of adaptation and recovery, 
dynamic approaches are of relevance (Nogal et al., 
2016). Dynamic equilibrium models introduce the 
time dimension and are based on the generalisation of 
the notion of Wardropian equilibrium in time: the net-
work must be ‘in equilibrium’ at all moments during the 
design period (Dehoux & Toint, 1991). Day-to-Day 
(D2D) models are highlighted in the present implemen-
tation. These types of dynamic models are of interest in 
the context studied because they can deal with disequi-
librium states that have an evolution over the time.

3. Metamodeling

Metamodels are black-box functions that allow relating 
a set of input variables to one or more output values 
using a closed form mathematical function. They appear 
in different forms, and their balanced accuracy- 
efficiency has captivated significant research interest 
during the last decade. Their main application resides 
in metamodeling of expensive-to-evaluate functions, 
enabling practical analyses that would be unfeasible 
through explicitly running simulations (e.g., optimiza-
tion for problems that depend on high-fidelity, such as 
finite element models).

Different types of metamodels can be identified, 
each with its own assumptions. These assumptions 
define their metamodeling capability and their main 
limitations in performing as surrogates (Teixeira et al., 
2021b). Among the different alternatives for metamo-
deling, Kriging models have gained particular rele-
vance due to their capability to perform as 
interpolation models for highly complex performance 
functions. Kriging models are also relevant due to their 
capability to enclose uncertainty in the surrogate 
approximation. A surrogate of gðxÞ built with 
a Kriging model, using its most fundamental form, is 
characterized by 

GðxÞ ¼ f ða; xÞ

þ ZðxÞwith
f ða; xÞ ¼ a1f1ðxÞ þ . . .þ apfpðxÞ

ZðxÞ ¼ Nð0;CðxÞÞ

0

@

(1) 

where f ða; xÞ is a polynomial regression in its standard 
form with p (p 2 INþ) basis trend functions fpðxÞ and p 
regression coefficients a to be defined. It is noted that other 
trend functions can be implemented. ZðxÞ is a Gaussian 
stochastic process with zero mean, defined with basis on 
a covariance matrix (C) that relates generic x points by 
using a constant process variance (σ2) and a correlation 
function Rðx; θÞ. A Matérn correlation is applied in the 
present work. Any prediction for gðuÞ in a random point u 
has expected value GμðuÞ and a standard deviation GσðuÞ. 
Like other metamodels, to define GðxÞ, a set of support 
points is necessary, the so-called experimental design (ED). 
Kriging models are also called kernel-based metamodels, 
where the correlation function characterizes how predic-
tions relate to the points in the ED and that depends on 
a set of hyperparemeters θ to be trained. One of the 
particularities of being a kernel-based metamodel that 
uses hyperparamters (one for each dimension in the 
most common form) is that it allows the metamodel to 
perform as an approximation of both locally and globally 
complex functions. It is noted that this capability comes at 
the additional cost of tuning multiple parameters. 
Nevertheless, when compared with complex performance 
functions, after the definition of the surrogate, new predic-
tions of the performance function are virtually effortless.

In the present implementation Kriging models are 
applied due to their capability to act as a robust surro-
gate without any prior assumption on the function to 
surrogate (e.g., performing even in highly non-linear 
functions (Teixeira et al., 2020)). Moreover, their intrin-
sic uncertainty characteristics are used to sequentially 
filter new points to enrich the ED.

It is noted that if the goal is to build a metamodel 
using a traffic network performance measure, it is pos-
sible to use a spectra of models. In some applications, 
a simpler model may suffice the analysis, and applying 
a kernel-based method will not add any benefit, instead 
it will increase the effort and time required to perform 
the analysis. When addressing metamodeling for traffic 
networks, there is a need to understand the form of the 
network’s performance response. It, alongside the range 
of operability, will define the best metamodeling 
approach. With regard to the travel cost (and setting 
a surrogate of it), networks are commonly described by 
a highly non-linear behaviour where capacity reduction 
leads to progressively larger increases in travel cost. This 
indicates that kernel-based methods, which are charac-
terized by their capability to approximate highly non- 
linear functions, are of interest. In the definition of any 
metamodel, the ED will have the most influence, and an 
effective ED approach will result in an accurate predic-
tion of the traffic network performance.
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3.1. Metamodeling and sequential experimental 
design

One of the techniques that has proven to be more effec-
tive for the development of accurate metamodels is that of 
introducing sequential ED. Different methods have been 
developed recently with great efficiency to set sequential 
ED for metamodeling problems (Kleijnen, 2017; Teixeira 
et al., 2021b). The idea of sequential ED is that of an 
iterative enrichment of a pre-established ED in accor-
dance with a measure of accuracy or improvement, 
which frequently evaluates the metamodel capability to 
surrogate the problem in-hand. Sequential enrichment is 
efficient because it allows the set up of an ED sample of 
a size strictly necessary according to a notion of improve-
ment to have an accurate model.

If the goal is to set accurate mappers of the network 
performance (f ðxÞ) based on criteria of adaptation and 
recovery, a global description of the network performance 
(for the measures studied) is required, and the ED needs to 
be selected in order to enable this global description.

In the context of generating ED, different sampling 
techniques can be applied, with the most fundamental 
example being the application of Monte Carlo sampling 
(MCS). Despite being global and of simple implementa-
tion, MCS has limitations in the creation of efficient ED 
samples. As a result, several techniques have emerged as 
an alternative to MCS in the creation of efficient global 
representative samples for ED, such as latin hypercube 
sampling (LHS) or low-discrepancy samples. Low- 
discrepancy samples are sequences that have global prop-
erties in accordance with the joint density of the ED. As 
a result, these have synergy and are well-suited for the 
idea of creating a sequential ED. Low-discrepancy sam-
ples not only are exploratory in the ED space but also 
capture the performance function locally. They have been 
shown before to perform as global experimental designs 
in different contexts of application (Tsvetkova & Ouarda, 
2019). LHS can also be also implemented as a sequence 
with refinement of the variable density partitions at addi-
tional complexity in their implementation (Blatman & 
Sudret, 2010). It is noted that other sampling techniques 
have been created in the context of efficiently using ED 
points, and optimal ED have been investigated before in 
the context of sensitivity (Fajraoui et al., 2017). 
Nonetheless, low-discrepancy samples are expected to 
offer a balance between efficiency and complexity in 
achieving a sequential ED. These appear in different 
forms, such as Dalton or Sobol sequences. The latter is 
applied in the present research due to its robust capability 
to produce global balanced samples for the ED. Further 
discussion of these is presented in Burhenne et al., (2011); 
Sobol (1998); and Sobol et al. (2011).

The sequential implementation proposed uses a low- 
discrepancy sequence to define the ED for a Kriging surro-
gate of the performance function for the traffic network, 
f ðxÞ. S ¼ ½s1; s2; ; sN � 2 R d being a low-discrepancy 
sequence of size N in a d-dimensional space (representing 
the number of support variables), with N being the ED 
budget and with Sh � S being also a low-discrepancy 
sequence Sh ¼ ½s1; s2; ; sh� of size h � N. Then, an ED 
sequence based on Xh = ½Xm; ;XN � 2 R d can be defined 
where each sample Xhi indexedtoaniterationi ¼ ½1; ; nðhÞ�
and h ¼ ½m; ;N� is a low-discrepancy sequence Shi � S. 
With M iðxÞ being the metamodel built on the ED sample 
X̂hi � Xhi , then any sequence h ¼ ½m; ;N� can be used to 
search for the minimum ED in S that holds an accurate 
M ðxÞ, accordingly to a defined criterion. Approximation 
accuracy is evaluated on the capacity of M ðxÞ to approx-
imate f ðxÞ.

If a L loss function is defined in a complementary 
point xk‚Xhi "i given by 

Lk ¼ M ðxkÞ � f ðxkÞ (2) 

then an estimation of accuracy can be built with depen-
dence on this loss function. If a large enough K number 
of xk points is applied, and "xk this loss has relatively 
small values or does not exceed a defined accuracy limit, 
then M ðxÞ can be assumed to approximate well f ðxÞ. 
This is the principle of cross-validation.

Therefore, any ED X̂hi � Xhi in the sequence 
h ¼ ½m; ;N�, with respective M i can be evaluated such 
that, 

cvai ¼ max
jLkj

f ðxkÞ

� �

k ¼ 1; ;K [ cvsi ¼
1
K

XK

k¼1
L2

k (3) 

where both the cross-validation errors (½cvai ; cvsi � 2 cvi) 
measure the accuracy of the M i surrogate.

If cv1;;j ¼ ½cvi� jþ1; ; cvi� are j cross-validation errors 
in successive i iterations (in the form of cva or cvs) built 
on the ED subset sequences supported by the samples 
Xhi� jþ1;;i , then if 

cv1;;j � ε"½cvi� jþ1; ; cvi� (4) 

is true, where ε is an evaluator of accuracy, then M i is 
assumed to be an accurate metamodel of f ðxÞ. The 
sequence h sets the support sample increment to define 
the ED which occurs in units, or larger increments of 
support points, and ½i � jþ 1; ; i� evaluates the stability 
of cvi in the last j iterations. ε is a measure of error. cva 
evaluates maximum relative error. cvs relates to the 
squared error. It is noted that other measures of accu-
racy can be defined using this same principle, e.g., 
corresponding to a mean value of its response in f ðxÞ
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and/or squared errors. The synergy of this approach 
with Kriging, using a quantifier of relative error, is that 
it allows a filtered selection X̂hi � Xhi of the points used 
to enrich the metamodel based on the intrinsic mea-
sures of uncertainty provided by the metamodel. Hence, 
only the points in Xhi which prediction in M i� 1 fulfills 

ZM σ
i� 1

M
μ
i� 1
� ε (5) 

are included in X̂hi � Xhi . Z relates to the confidence 
and uncertainty in the present prediction as defined by 
the standard normal distribution, taken as 3.291 for 
a 99.9% confidence, and that tunes the sensitivity to 
enclose new points in the X̂h.

If cva is applied with ε ¼ 0:05;Z ¼ 3:291, and j ¼ 2, 
then convergence is achieved when the maximum loss in 
cross-validation is below 5% in relative error, where 
enriching X̂hi only considers points in Xhi that have less 
than 99.9% confidence in fulfilling this condition, and 
considering the stability of the prediction by using the 
last two successive values of h with reference to i. As the 
intent is to use large samples to create the ED, then a large 
confidence level should be used in order to ensure that all 
necessary points are added to the ED, such as 99.9%. 
Pursuing very large accuracy, in particular, in high- 
dimensional spaces, should consider the fact that each 
new dimension adds complexity of space exploration. In 
most circumstances and considering computational effi-
ciency, j ¼ 1 is of interest. Larger values of j can be used 
in order to ensure that robustness in the cv error, hence, 
in the ED size, has been achieved.

It is noted that cva is a constrained measure; and such 
characteristic should be accounted for in the implementa-
tion, in particular, when addressing high dimensional 
problems and when the performance function of the net-
work becomes complex. The cv is expected to converge to 
a threshold in respect to a pair metamodel-function, 
which is useful to select the convergence parameters and 
select the most appropriate metamodels (Teixeira et al., 
2021a; Viana et al., 2009). Furthermore, as Kriging is 
a kernel based interpolation metamodel, it is well suited 
to approximate complex functions, and it is expected to 
be functional with the constrained measure cva. For costly 
traffic models, the leave-one-out error (Teixeira et al., 
2021a) or k-fold cross-validation (Xiao et al., 2018) can 
be applied instead of using an additional sample xk.

The following sequence describes the procedure to cre-
ate the metamodel used to map the traffic network:

(1) Use a low-discrepancy sequence of size N to set 
the support sample to create the ED Xhi , with 
h ¼ ½m; ;N�, which define the ED size in each 

iteration. The computational budget, N, should 
be set to a large number. Additionally, set 
a sample xk‚XN (a minimum size of LHS sample 
of 3nðxÞ is applied and assumed to provide 
a balanced space-filling coverage of the output 
space (Iman & Helton, 1988; Manache & 
Melching, 2008; Teixeira et al., 2019).

(2) If i ¼ 1 the algorithm is started with hi ¼ m and 
f ðxÞ is evaluated on the Xm sequence of points, at 
i ¼ 1 the ED is [X̂h1 ¼ Xm; f ðXmÞ]. If iji> 1 itera-
tion, predict Xhi with M i� 1 and only perform true 
function evaluations f ðXhiÞ for the Xhi points that 
fulfill Equation (5). Enrich the ED X̂hi� 1 with these 
to obtain X̂hi .

(3) Fit the metamodel (Couckuyt et al., 2014) to the ED 
defined X̂hi and respective true function evaluations 
and predict the cross-validation sample. Estimate 
the maximum L accordingly to cva, or cvs in case it 
is alternatively applied. All the variables should be 
transformed into the standard normal space for the 
metamodel to be fit, which was identified to allow 
accurate modeling results. Lower and upper limits 
for the standard normal space should be defined for 
any finite variance variables.

(4) While there is computational budget available, eval-
uate the accuracy criterion using ε. While i< nðhÞ; 
if in j values of i, the convergence criterion is 
fulfilled then the surrogate is assumed to be accu-
rate and the sequential enrichment is completed; 
otherwise, return to Step 2 and proceed with 
i ¼ iþ 1.

The relevance of using a metamodel in the present 
implementation is highlighted in the following section 
in four representative examples.

4. Application in adaptation and recovery of 
traffic networks

The previous section discussed the relevance of metamo-
dels in order to enable the analysis of resource demanding 
problems, and in particular traffic networks, using rela-
tively simple iterative schemes. In the present section, it is 
discussed how these can be implemented to facilitate 
time-consuming analyses. In the case of adaptation and 
recovery, response-times play a significant role in efficient 
decision-making. The present implementation is inspired 
by works that enable the decision-making schemes 
through the usage of optimization schemes, such as 
(Bocchini & Frangopol, 2012; Liu et al., 2020; Vugrin 
et al., 2014); however with particular focus on how meta-
models facilitate the application of these methodologies.
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In order to solve the traffic assignment problem in 
the reference examples, an equilibrium model is applied. 
For the mathematical description of the equilibrium 
model, let us consider a connected traffic network with 
set of nodes N and set of links A. For certain OD pairs of 
nodes, pq 2 D, where D is a subset of N x N, connected 
by a set of routes Rpq, there are positive demands dpq 

which give rise to a link flow pattern ν ¼ ðvaÞa 2 A, and 
a route flow pattern h ¼ ðhpqrÞr2Rpq;pq2D, when distrib-
uted through the network. Furthermore, for each link a, 
there is a positive and strictly increasing travel cost 
function ca.

Mathematically, this equilibrium state can be 
expressed as an optimization problem for each time 
interval t, that is 

Minimize
h;ν;ρr

X

a2A
CaðνaðtÞÞ (6) 

subject to 
X

r2Rpq

hpqrðtÞ ¼ dpqðtÞ "pq 2 D (7) 

X

pq2D

X

r2Rpq

δapqrhpqrðtÞ ¼ vaðtÞ "a 2 A (8) 

hpqrðtÞ ¼ ρrðtÞhpqrðt � ΔtÞ"r 2 Rpq;"pq 2 D (9) 

jρrðtÞ � 1j � α "r 2 Rpq (10) 

hpqrðtÞ � 0 "r 2 Rpq;"pq 2 D (11) 

with 

δapqr ¼
1; if route r from node p to node q contains arc a;
0;otherwise;

�

and 

t ¼ 0; ; 1;T 

where Cað�Þ is the integral of the travel cost function. α 
limits the user daily adaptation capability. Further 
details on this model are discussed in Nogal et al. (2016).

In the present work, three reference networks are 
applied to validate the results of the proposed metho-
dology. The Nguyen-Dupuis traffic network is applied 
to discuss implementations on a simple state-of-art net-
work that has been widely used in research; then the 
analysis is extended to the Sioux-Falls and Cuenca net-
works in order to validate the usage of metamodels in 
the analysis of more complex traffic models. The Bureau 
of Public Roads (BPR) cost function is applied to model 
the relationship between link service capacity, the 
demand and travel time in each link, with BPR 

parameters α ¼ 0:263 and β ¼ 6:869 (Mtoi & Moses, 
2014) in The Nguyen and Sioux-Falls networks, and α ¼
1 and β ¼ 3 Martinez-Pastor (2018) in the Cuenca net-
work, determining the shape of this function in the 
examples studied in the present work. Constant values 
of free-flow velocity are considered in all networks 
(80 km/h in the Nguyen-Dupuis, 120 km/h in the Sioux- 
Falls and 40 km/h in the Cuenca network).

4.1. Nguyen-Dupuis and Sioux-Falls networks 
recovery with temporal perturbation scenarios

For the present representative example, it is assumed 
that an external perturbation damages the set of links 
Ad � A in the traffic network in a percentage da of their 
capacity Ca, during T consecutive days. Then, a number 
ntm of teams with an individual capability to restore 
a percentage ra of Ca per day are deployed in order to 
restore the affected links’ capacity and mitigate the 
effects of the perturbation. This problem setting can be 
solved using a bi-level optimization (Sinha et al., 2017) 
where the minimum daily traffic disruption is aimed, at 
using as decision variables δa 2 Nþ0 that sets the number 
of teams allocated at each link a in time t. The optimiza-
tion problem is formalised as a bi-level optimization in t 
that uses as lower-level the optimization previously 
described and is denoted as follows 

Minimize
δa;ρr ;h;ν

X

a2A
CaðδaðtÞ; ρr; h; vÞ (12) 

s.t.: 

C�aðtÞ þ CaraδaðtÞ � Ca "a 2 Ad (13) 

X

a2Ad

δaðtÞ ¼ ntm; "t 2 ½1; ;T� (14) 

ρr; h; ν 2 ΨðδaÞ (15) 

and 

δaðtÞ 2 ½0; . . . ; ntm� (16) 

C�aðtÞ ¼ ð1 � daÞCa; ift ¼ 1; otherwise;C�aðtÞ

¼ ð1 � daÞCa þ
Xt� 1

t�¼1
Caraδaðt�Þ (17) 

with ΨðδaÞ being a set-valued mapping in t 

ΨðδaÞ 2 argmin
h;ν;ρr

X

a2A
CaðνaðtÞ; δaÞ (18) 

subject to the constraints (7)–(11).
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In order to solve this problem, an optimization 
scheme is applied enclosing an integer Genetic 
Algorithm (GA) that searches for the solution DR that 
jointly with the lower-level optimization problem of 
Equation (18) (solved using a continuous non-linear 
optimization) minimizes the travel time. It is noted 
that operation management has been one of the main 
areas of application of GA (Katoch et al., 2020). GA is 
a meta-heuristic optimization method that is known to 
provide near-optimum solution to highly complex opti-
mization problems within reasonable computational 
time. In this case, the choice of this selection of meta- 
heuristics is mainly justified because of the discrete 
nature of the decision variable and the computational 
complexity that the nested optimization problem 
involves. Hence, this procedure is costly to run and as 
a recovery or adaptation decision-making scheme is well 
suited for a near-optimal heuristic solution (practicality 
of the results is relevant). It is noted that the nature of 
metamodeling also facilitates a parametric evaluation of 
the optimization. Examples of such synergy in GA with 
a similar application problems are discussed in 
(Bocchini & Frangopol, 2012; Kammouh et al., 2021).

It is noted that other optimization techniques can be 
applied to solve this problem, and a comparison of these 
is not the aim of the present work. Similarly, the opti-
mization proposed can be easily transformed in a single 
step allocation of δaðtÞ"t, however, in the present 
implementation, it was identified that partitioning it in 
smaller optimization problems that merge the upper 
and lower level optimization in t resulted in a more 
efficient implementation. In the implementation, 
Matlab®’s ga function is applied, when not stated other-
wise, using default parameters.

4.1.1. Example I: Nguyen-Dupuis recovery 
decision-making in perturbation scenario
In the first reference example, applied to the Nguyen- 
Dupuis network, it is assumed that seven links are 
damaged in da ¼ 50% of their capacity, during 4 days, 
T ¼ 4. Then, ntm = 4 teams with a recovery capacity per 
team ra ¼ 12:5% of link capacity per day are deployed 
during T in order to restore and mitigate the effects of this 
perturbation in the traffic network. It is noted that this 
might not guarantee the total recovery; nevertheless, it 
implicitly considers a typical budget restriction.

The Nguyen-Dupuis traffic network used in the pre-
sent example consists of 13 nodes, 38 links, 66 routes, 
and 34 OD pairs, see Figure 1(a) for a graphical descrip-
tion with the link numbers included adjacent to each 
link. Ca is assumed to be the same for all links and has 
the value of 80 users/hour. In the present example, users 
are assumed to have ideal adaptive capability (no 

bounds in ρr). Table 1 presents the OD pairs considered 
in the present example, with respect to routes and their 
demands.

The location of the damaged links is presented in 
Figure 1(a) – red arrow links with link number high-
lighted in red. Figure 1(b) presents the results for defini-
tion of a surrogate of the total travel time (C) in the 
Nguyen-Dupuis with dependence on the damaged links.

The convergence of the sequential metamodel is pre-
sented for a value of j ¼ 10. A LHS sample of 50 points is 
applied to evaluate cva, which uses a value of ε ¼ 0:05. It 
is possible to infer that cva is stable below the value of ε, 
even when relatively low computational time is used, i.e., 
313 s (and where most of the time is spent evaluating the 
network function). The built metamodel has a maximum 
absolute error in a cross-validation of the LHS sample of 
approximately 4.3%, and only demands 35 f ðxÞ evalua-
tions to be built. After it is defined, the metamodel is 
expected to predict accurately any scenario of damage in 
these seven links, individually and combined, of up to 
50% in their initial capacity. It is noted that the metamo-
del is defined in a region of interest for prediction, 

Figure 1. Results of convergence (b) for the creation of a Kriging 
surrogate of the travel cost with an ED that uses seven links 
accordingly to the case specified in (a). A LHS sample of 50 
points is applied. Note: The size of the ED should be read on the 
right y axis and cva on the left y axis.
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nonetheless, in practice, it can be defined to predict even 
larger ranges of operation while maintaining the ε thresh-
old of accuracy in the fitting.

In order to compare the efficiency of proposed 
approach, average results for the optimization using 
a GA to set the recovery strategy for ten different seeds 
are presented in Figure 2. The perturbation introduced in 
the links previously referenced (Figure 1(a)) increases the 
total travel time in the network by approximately 35% for 
4 days. Using an efficient allocation of the recovery teams, 
it is possible to reduce the average increase in travel time 
for these 4 days to approximately 10% (with a loss of 0.5% 
in the average metamodel GA prediction, and 1.04% in 
maximum loss of daily prediction, in day 4, for the best 
known solution). In a practical context, there are signifi-
cant benefits in reducing by 25% its increment due to the 
perturbation event. In the present case, the GA was able 
to converge to a consistent solution within a small num-
ber of random seeds. The results for the meta-heuristic 
solution are similar for the optimization that uses the 
metamodel and network evaluations, however, using the 

Kriging model the GA is solved in 0.02% of the time. 
With the 313 s used to establish an accurate metamodel 
this value increases to approximately 1.8% in total time. It 
is possible to infer that the true prediction from the 
metamodel solution (see the last bar of Figure 2(a)), 
evaluated in the model and obtained using GA and the 
metamodel, is very approximate to the full GA optimiza-
tion solution. The Kriging capability to accurately map 
the performance function is key to the obtained results.

Figure 3 presents the results for best known team 
distribution for both the meta-GA and GA. It is possible 
to infer that in Day 1 and Day 2, the meta-GA provides 
the same solution as the full GA assessment that uses the 
equilibrium model. In the last two days, the allocation of 
teams diverges. Analysis of the daily evolution shows 
that most of the loss in travel time is recovered in the 
first 2 days, whereas in the last 2 days, interventions are 
mainly concerned with recovering less than 5% in travel 
time, a region where the metamodel as defined is more 

Table 1. OD pairs and routes used in the reference example of 
the Nguyen-Dupuis network. Demand in the OD pair is mea-
sured in average users per hour during daily hours, denoted here 
in daily average hourly traffic (DAHT).

OD 
(nodes) Route links

Demand 
(DAHT)

1! 2 1–11-14-18-20; 2–35-14-18-20; 2–36-20 75
1! 3 1–11-14-19-31; 1–11-15-29-31; 1–12-25-29-31; 1– 

12-26-37; 2–35-14-19-31; 2–35-15-29-31
150

1! 8 1–11-14-18; 2–35-14-18; 2–36 75
1! 5 1 25
1! 12 2 25
2! 1 3–21-17-13-9; 3–21-17-16-34; 3–22-34 75
2! 4 3–21-17-13-10; 3–21-19-33-28-23; 4–33-28-23 75
2! 8 3 25
2! 12 3–21-17-16; 3–22 50
3! 1 5–32-17-13-9; 5–32-17-16-34; 5–33-17-16-34; 5– 

33-27-13-9; 5–33-28-24-9; 6–38-24-9
150

3! 4 5–33-28-23; 6–38-23 50
3! 11 5 25
3! 12 5–32-17-16; 5–33-27-16 50
4! 2 7–11-14-18-20; 8–25-29-30; 8–25-29-32-18-20 75
4! 3 8–25-29-31; 8–26-37 50
4! 8 7–11-14-18; 8–25-29-32-18 50
8! 1 21–17-13-9; 21–17-16-34; 22–34 75
8! 4 21–17-13-10; 21–19-33-28-23 50
8! 12 21–17-16; 22 50
9! 1 24–9 25
9! 13 26 25
10! 5 28–24 25
10! 11 29 25
11! 3 31 25
11! 6 33–27 25
11! 7 32 25
11! 10 33 25
12! 1 34 25
12! 2 35–14-18-20; 36–20 50
12! 3 35–14-19-31; 35–15-29-31 50
12! 6 35 25
12! 8 35–14-18; 36 50
13! 3 37 25
13! 9 38 25

Figure 2. Average implementation results for recovery using 10 
random seeds (with the same seed being used to solve the GA) 
and the proposed approach. (a) Average value of loss in travel 
time during the perturbation. (b) Comparison of computational 
time for the GA implementation. CoV – Coefficient of variation. 
Performance of the network is evaluated as the increase in 
percentage in relation to the non-perturbed travel time C. The 
GA is halted when 20 generations show no improvement in the 
penalty function, using a population size of 100.
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likely to provide different results. Nonetheless, in this 
region, losses of travel time are relatively negligible 
when compared with the impact of recovery decisions 
in the days 2 and 3, with a maximum of 1.04% in day 4.

Links 3 and 20 are highly important for the network 
as defined. While 3 initiates all routes from node 2. Link 
20 is part of multiple routes that have limited redun-
dancy in two OD pairs. It is noted that in the surrogate 
definition a more or less conservative criterion can be 
used depending on the accuracy pursued and complex-
ity of the problem in-hand by adjusting the accuracy 
evaluation parameters.

It was highlighted that the interest of metamodeling is 
particularly relevant in applications where user response 
has significant importance (Kamiński, 2015), which is the 
case of decision-making for recovery. Metamodeling also 
allows the mitigation of the influence of inherent 

limitations imposed by some stochastic optimization 
algorithms, such as GA. It allows a fast analysis of the 
results at limited cost, being capable of defaulting its 
stochastic characteristics. This aspect of the implementa-
tion is particularly relevant since the performance of 
optimization algorithms is parametric, see with reference 
to GA, the discussion of Beasley et al. (1993).

4.1.2. Example II: Sioux-Falls recovery 
decision-making with restricted user adaptation
A similar approach is implemented in the Sioux-Falls 
network, graphically represented in Figure 4.

The Sioux-Falls is representative of an implementa-
tion in a network with larger complexity. It includes 76 
links and 24 nodes. In the present example, 14 OD pairs 
are considered in the modeling, each comprising 4 
routes, see Table 2. The capacity of each link is set 

Figure 3. Daily changes in travel time for best known prediction and the results for the number (No.) of teams allocated to each 
damaged link in order to set the repair strategy.
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initially to be 50% larger than the OD pair demand, with 
a value of 300 users/hour. User capability to adapt their 
travel choices in day t is accounted using an α ¼ 0:8, 
and compared with the case of no restrictions in adapt-
ing capability. The implementation using this network is 
a reference of the methodological application to a more 
involved example.

In order to study recovery, eight teams have been 
considered, ntm ¼ 8, with a recovery capacity per team 
of ra ¼ 12:5%. The damage level is da ¼ 50% of the 
link capacity starting at day 2 and lasting 7 days with 16 
damaged links. The links damaged in the present example 
are 1 to 12, 14, 15, 31 and 35; see Figure 4. This simulates 
a loss of capacity in the upper region of the network.

Cross-validation of a random LHS sample of 100 
points simulating scenarios of damage is presented in 
Figure 5. The final metamodel is fitted using the travel 
time of the perturbed network with consideration of user 
adaptation restriction from steady conditions. It fulfills 
the halting criterion with ε ¼ 0:05 at an ED of 790 points 
and with an average absolute relative error of approxi-
mately 1.21% and a maximum of 4.96% in approximating 
this LHS sample. Results for the decision-making scheme 
of team allocation for recovery are presented in Figure 6. 
It is assumed that in day 2 (t ¼ 2) the perturbation is 
introduced. Due to users’ limited adaptivity a significant 
increase in the total traveling time in the network is 
experienced. If no action is taken this value will progres-
sively decrease considering the user’s capability to adapt 

until a steady state is reached. Alternatively, if a recovery 
strategy is set, it is possible to infer that in 4 days the travel 
time is recovered to less than an 1% increase from the 
reference travel time.

The metamodel fitted is able to predict accurately 
a recovery strategy for the problem in-hand that has 
a performance similar to the application of GA com-
bined with evaluation of the network performance func-
tion. Losses in all predictions in t are relatively small 
when compared with the GA that uses the true function. 
Moreover, this example shows that adequate recovery 
decision-making is highly dependent on the users cap-
ability to adapt. This capacity is restricted by users’ lack 
of knowledge about the traffic conditions and other user 
behavior. In the present example, if decisions are based 
on steady conditions – i.e. all users are able to fully 
adapt, the recovery is less efficient (curve of GA- 
steady). This lower efficiency is more evident in the 
first days of recovery from when the perturbation 
impacts the network, where only a limited cumulative 
number of users will be able to set new route choices.

Figure 7 presents team allocation results for the most 
efficient recovery strategies found with both restricted 
user adaptation and assuming that users have full adap-
tive capabilities (i.e. if a decision-making procedure 
would use the meta-GA results). A major difference 
that was identified in the recovery solutions is the Figure 4. Sioux-Falls network, represented by nodes and links.

Table 2. OD pairs and demands used in the reference example of 
the Sioux-Falls network. Demand in the OD pair is measured in 
average users per hour during daily hours denoted here in daily 
average hourly traffic (DAHT).

OD pairs 
(nodes) OD routes links

Demand 
(DAHT)

OD 1–18 2-6-10-32-29-50; 1-4-16-20-18; 2-6-9-13-24-22- 
50; 2-7-36-34-42-72-68-60

200

OD 1–18 2-6-10-34-42-72-68; 1-4-16-22-49-53-59; 2-7-37- 
39-75-64; 2-6-9-13-25-29-50-56

200

OD 2–13 4–15-11-8-7-37; 4–16-22-49-53-59-62-66-74; 
3-2-6-10-34-42-73-74; 4–16-21-25-27-33-37

200

OD 3–21 7–37-39-75; 6–10-34-42-72-69; 6-9-13-25-28-46- 
68-62; 5-1-4-16-22-49-53-59-62

200

OD 6–12 15–11-8-7; 16–22-48-27-33; 14-3-2-7; 16–22-48- 
27-33

200

OD 6–24 16–22-49-53-59-62-66; 15–13-25-28-46-70-73; 
14-3-2-7-37-39; 15–11-10-34-42-73

200

OD 10–19 30–53; 28–45; 29–49-53; 27–34-41-45 200
OD 13–4 39–76-71-40-31; 38–35-6; 39–75-65-67-43-26- 

23-11; 38–36-31
200

OD 13–8 39–76-71-41-43-26-24; 38–36-32-29-47; 39–75- 
64-60-54-17; 38–35-6-9-12-16

200

OD 13–18 39–75-64-60; 38–36-32-29-50; 39–76-71-41-43- 
26-24-20-18; 38–35-6-9-12-16-22-50

200

OD 18–3 55–48-27-33-35; 54–17-19-15-11-8; 55–47-19- 
14-3-2; 56–63-67-44-40-31-8

200

OD 18–23 55–48-28-46-70; 56–62-66-70; 54–17-21-25-27- 
34-42; 55–49-53-57-44-42

200

OD 18–23 65–67-44-40-31; 64–61-58-51-26-23-11; 66–74- 
38-35-6; 65–67-43-27-31

200

OD 21–5 63–67-43-26-23; 61–58-52-47-19-15; 62–65-70- 
71-40-31-9; 60–54-17-21-23

200
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change in allocation from link number 2 to 31. Link 31 
has, in steady conditions, more users than link 2 
(approximately 35% more). However, when full adapta-
tion is possible, most of these users are able to select 
alternative routes that are not damaged and are still 
competitive. Whereas, link 2 is located in an area of 
high damage (i.e. adjacent links are also damaged) and 
due to this, when a perturbation is in place, users remain 
in link 2, as there are no competitive alternatives. When 
adaptation is restricted, the steady behaviour of link 31 
cannot be replicated, and only few users leave it. This 
exacerbates its importance in recovery, and as a result 
there is interest in allocating teams to recover this link 
in day 1. This change of allocation in day 1 results in 
a reduction of 37 hours in total travel cost for this day. 
The fact that users have limited capability to adapt 
changes the dynamics of the recovery procedure, and 
the metamodel can be trained to capture this aspect of 
the performance.

One of the possibilities that such mapping strategy 
opens in the selection of a recovery strategy is that of 
including uncertainty in the approximation, which facil-
itates the analysis of ad-hoc decision-making to 
a particular perturbation. This is one of the main moti-
vations of metamodeling. Furthermore, Liu et al. (2020) 
showed before that the possibility of working with sce-
narios of disruption a priori can provide relevant infor-
mation on the functioning of a network and this can be 
easily explored at virtually no cost with the an accurate 
metamodel. Moreover, it is also possible, due to the 
metamodel characteristics, to further increase the map-
ping with relevant stochastic variables of interest for an 
accurate uncertainty analysis.

In the present work it was also assumed that links are 
always accessible due to the number of teams and partial 
damages, however this may not be always the case. 
Accessibility has large relevance in the context of recov-
ery Zhao and Zhang (2020). While, using a metamodel 
allows to perform decision-making on a subset of 
damaged links that can be considered accessible or 
not, it would be of interest to further investigate on 
alternatives to combine accessibility and metamodeling 
within the context of optimal recovery.

4.2. Nguyen-Dupuis and Cuenca with double-loop 
GA adaptation, limited budget and uncertain 
scenarios of perturbation

The second representative example of application uses 
both the Nguyen-Dupuis and Cuenca network. It con-
sists in implementing adaptation measures in order to 
improve the network performance in future uncertain 
perturbation scenarios. An adaptation budget B is set to 
enhance the traffic network performance during pertur-
bation events; in the form of additional unitary capacity 
increments ΔCa. A decision vector DA ¼ ½δa� sets the 
decision-making scheme for budget distribution in the 
Ad � A links. In order to introduce and discuss the 
innovative character of the present implementation, in 
the first example researched steady conditions are 
assumed, and in the second α ¼ 0:8. In this case, the 
optimization of adaptation can be also set as a bi-level 
optimization problem (Sinha et al., 2017) that follows: 

Minimize
DA;ρr ;h;ν

X

a2A
CaðDA; h; v; ρrÞ (19) 

s.t.: 
X

"a2Ad

δaΔCa ¼ B (20) 

ρr; h; ν 2 ΨðDAÞ (21) 

Figure 5. Cross-validation sample prediction provided by the 
fitted metamodel.

Figure 6. Recovery results from decision-making in the Sioux- 
Falls network with 16 damaged links at da = 50%, considering 
the damage scenario described. The GA is halted when 50 
generations show no improvement in best penalty function 
value. Twenty random population sizes between 30 and 120 
individuals are applied.
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and ΨðDAÞ represents the lower level optimization set- 
valued mapping, 

ΨðDAÞ 2 argmin
ρr ;h;ν

X

a2A
CaðνaðtÞ;DAÞ

subject to the constraints of Equations (7)–(11). This 
procedure can then be applied in undamaged and 
damaged scenarios, where different levels of da are 
considered for a random subset âd � Ad of links with 
nðâdÞ being the number of links, or cardinality of, âd. 
Similarly to the previous example a GA is applied in 
order to distribute the budget in a black-box optimi-
zation of the simulation model.

4.2.1. Example I: Nguyen-Dupuis adaptation with 
uncertain scenarios of damage
An hazardous event is simulated affecting Ad links 
given in Table 3. This perturbation is expected to 
vary in a probabilistic range; where there is a 5% 
probability of nðâdÞ ¼ 1, a 7.5% probability of 
nðâdÞ ¼ 2, 12.5% probability of nðâdÞ ¼ 1, a 25% 
probability of nðâdÞ ¼ 4, a 20% probability of 
nðâdÞ ¼ 5, a 20% probability of nðâdÞ ¼ 6, and 
a 10% probability of nðâdÞ � 7. In all the cases da 
follows a random uniform distribution with bounds 
[40%,60%].

Figure 8(a) presents the representative histogram 
for nðâdÞ. In this context, any combination âd � Ad 
may be damaged at a time. Figure 8(b) presents the 
type of damage that a link experiences when 
damaged.

Therefore, if nðâdÞ links are damaged, the damage of 
each link will follow a uniform distribution within the 
bounds [40%,60%], resulting in a large combination of 
damage scenarios for the subset of links considered in 
the present analysis.

A metamodel is fitted in order to accurately predict 
the network operation in a range of damage up to 60% 
of capacity, and an increase of 50% in Ca. The final 
model is fitted with a 0.99% average absolute relative 
error in prediction of a LHS sample of 100 points; and 
with cva of 4.67%. The sequential implementation is 
halted after 590 network function evaluations. The 
Nguyen-Dupuis is applied as defined in Example 1 
(demands, OD pairs and capacities). Table 3 presents 
the subset of potentially damaged links considered in 
the present example to define Ad.

A B ¼ 50% of link capacity is considered, that can 
be divided in 50 independent increases of ΔCa ¼ 1% (it 
is noted that Ca is equal for all links).

The idea of this implementation is that of discussing 
how the proposed application can be used to extend the 
present state-of-art in adaptation of civil engineering 

Figure 7. Team allocation per link affected in the first 3 days of recovery after the network is impacted by the perturbation, considering 
restricted and unrestricted user adaptation.
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systems. Because of the possibility of optimizing the 
adaptation decision in regard to the existing B at vir-
tually no cost, it is possible to define the meta-heuristic 
best adaptation measure for each scenario of perturba-
tion, which then defines a meta-heuristic optimal dis-
tribution of adaptation. This curve characterizes the 
response of the adapted system if the damage scenario 
could be exactly predicted before its occurrence and 
a scenario-specific (ad-hoc) adaptation can be applied. 
In practice, however, having ad-hoc adaptation to multi-
ple scenarios may not be possible in most circum-
stances; and the most common alternative is to have 
a single adaptation decision that is expected to maintain 
the highest network performance in most cases. It is 
noted that if scenario-dependent adaptation can imple-
mented, such as highlighted in Gilrein et al. (2021), this 
curve has significant relevance and would not be 
obtained on a feasible basis without the support of 
a metamodel (2500 GA evaluations of the optimization 
described are used to define it).

Since in most cases ad-hoc adaption is not possible, 
any decision-maker is faced with the challenging deci-
sion of setting the most suitable distribution of the 
budget that allows a robust performance to different 
scenarios. A straightforward decision of adaptation for 
this effect is to optimize the resources available in the 
network in order to increase its efficiency in recurrent 
operational scenarios. This would involve the applica-
tion of meta-heuristic optimal DA for the undamaged 
network (DA if "a 2 Ad; da ¼ 0). Alternatively, it would 
be intuitive to pursue a damage-based approach to opti-
mize the network adaptation for an expected value of 
damage in the links, i.e. all the links equally at da ¼

50% (DA if "a 2 Ad; da ¼ μda
); or to adapt the network 

to so-called worst case scenario, i.e., where all the links 
are exposed to da ¼ 60% of initial capacity (DA if 
"a 2 Ad; da ¼ dlb). It is understandable that defining 
a scenario to optimize the adaptation of resources that 
will hold the best results in the overall response of the 
system to a perturbation is not simple; and comparison 
of different scenarios is time-consuming. Moreover, 
with uncertain scenarios of damage, it is difficult to 
know and find a priori what adaptation strategy and 

scenarios should be used to compute an overall efficient 
strategy. Even if critical links are identified, quantifying 
the optimum distribution of budget is not a simple task 
as will be shown in the following example.

In this particular context, the possibility of defining 
a meta-heuristic optimal distribution and having 
a virtually free emulator of the network adaptation enables 
the possibility of searching for the measure that will better 
approximate it. This is possible using a double-loop opti-
mization that can be set with an additional optimization 
step, where the distribution for meta-heuristic adaptation 
to random scenarios is defined and then a second optimi-
zation is performed in order to define the adaptation 
decision for division of capacity that produces 
a distribution that is closer to this curve. In the present 
example this is achieved by minimizing the squared dif-
ference between the optimal and adapted scenarios at xâd , 

Δopt ¼ Minimize
DA

X

xâd

ðCAopm
ðxâdÞ � CDAðxâdÞÞ

2 (22) 

where each ðxâdÞ is a scenario of damage, and Δopt is the 
difference between the total travel cost of adaptation DA, 
CDA , to the meta-heuristic optimal adaptation cost 
obtained for ad-hoc response, CAopm

. This analysis 
encloses all the nðxâdÞ random scenarios of damage con-
sidered. Constraints related to B are maintained accord-
ingly to the formulation introduced previously. In the 
present example, the second optimization is also per-
formed using a GA; i.e. one to find the heuristic optimal 
curve and the other to search for the DA that minimizes 
the squared difference to this curve.

Results from the implementation of different adapta-
tion decisions under a limited budget of capacity, in the 
context defined, are presented in Figure 9, where the 
response probability density functions for different adap-
tion decisions are compared.

As expected, the meta-heuristic optimal distribution 
(black continuous curve) is on the left of the remaining 
curves. The distribution that represents the mean 
damage scenario in the considered links provides the 
most fitted solution to the problem in-hand that uses no 
selection measures other than a ‘rule of thumb’ (red 
curve). DA for the network normal operation (using an 
undamaged network) provides a reasonable response to 
the damage scenarios simulated (yellow curve). It is 
noted that this solution has a larger variability, which 
indicates that it performs well in conditions that are 
approximate to the state of "a 2 Ad; da ¼ 0, but less 
so in other scenarios. The worst case scenario curve 
provides the adaptation solution that has worse perfor-
mance. It represents an unlikely reference scenario for 
adaptation. The results show that the solution obtained 

Table 3. Reference links used to generate âd , totaling an ED of 
12 variables. The description of nodes follows Figure 1(a).

Potentially damaged links Nodes connecting

1; 9 1–5; 5–1
3; 20 2–8; 8–2
4; 30 2–11; 11–2
5; 31 3–11; 11–3
6; 37 3–13; 13–3
18; 21 7–8; 8–7
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with a double-loop optimization (green curve), which 
searches for the single adaptation decision that mini-
mizes the difference between optimum distribution and 
the adapted response, surpasses the remaining alterna-
tives and results in the performance probability density 
function that is closer to the meta-heuristic optimum 
curve. While the metamodel simplifies performing 
a parametric search for the best adaptation, in the face 
of uncertainty and limited a priori information on the 
scenarios of damage, it is expected to provide 
a systematic efficient solution with no prior assumptions 
on the network.

4.2.2. Example II: Cuenca network adaptation with 
uncertain scenarios of damage, dimensional 
reduction, and user restricted movement
In the present case, it is assumed that uncertainty in rela-
tion to the perturbation is even larger; with two potential 
global scenarios of perturbation. There is a 60% probability 
of scenario I, which consists in a 25% probability of 
nðâdÞ � 4, a 35% probability of nðâdÞ ¼ 5, a 20% prob-
ability of nðâdÞ ¼ 6, a 15% probability of nðâdÞ ¼ 7, and 

5% probability of nðâdÞ � 8. In all the cases, da is consid-
ered to be d1 ¼ 50% of Ca. Then, scenario II has a 40% 
probability of occurring and in it there is a 30% probability 
of ðnâdÞ � 6, a 20% probability of nðâdÞ ¼ 7, a 20% prob-
ability of nðâdÞ ¼ 8, a 15% probability of nðâdÞ ¼ 9, and 
15% probability of nðâdÞ � 10. In all the cases of scenario 
II, da is considered to be d2 ¼ 60% of Ca. Summarizing, 
two scenarios with different intensities are considered, 
resulting in more or less damaging links, and that may 
generate losses of d1 ¼ 50% or d2 ¼ 60% in Ca. 
Adaptation in this context is studied such as in the pre-
vious example; where scenarios of, no damage, damage to 
all links at 50% and 60% of Ca, no adaptation, and double 
GA adaptation are considered. A ΔCa ¼ 1% with B ¼
100% of Ca is applied in order to study adaptation. 

Increments of capacity in Ca are limited to a maximum 
increment of 50% Ca, or 1

2 B. The Cuenca network is 
applied as a reference of a more complex example. This 
network is composed of 232 nodes and 209 routes that pass 
through 368 links. Damages are simulated in the fifteen 
most critical links as defined by a centrality metric Sun 
et al. (2020), the weighted betweeness.1 This metric is 
particularly interesting in this context as it is based on 
the network topology as defined by its routes, and is 
a simulation-free technique to reduce the ED size. It allows 
effortless reduction of the dimensional complexity of meta-
modeling, which is of interest to research metamodeling in 
complex networks. Figure 10 highlights the most critical 
links used to build the ED.

The final metamodel is fitted with a sample size of 
2291 points and maximum cva of 4.96%. The final 
average absolute error in cross-validation of a LHS sam-
ple of 100 points was 1.47%. Box-plots for the best- 
known response of adaptation to a 2500 random sce-
nario of damage are presented in Figure 11.

When compared with the cases of "a 2 Ad; da ¼ d1 
and "a 2 Ad; da ¼ d2, the benefit of double GA adapta-
tion is at maximum marginal in median and extreme 
values. Nonetheless, an interesting outcome of the dou-
ble GA adaptation in the present application is the 
reduction of the response variance. It is possible to 
infer that in the 75% quantile there is a reduction of 
101, 82, and 145 hours in the travel time when com-
pared with the other alternatives for adaptation. 
Moreover, the tail of the Double GA response increases 
slower, which can be identified in the (blue) dots above 
the 75% quantile. These are plotted at increments of 5% 
in quantile. Adaptation at da ¼ d2 and da ¼ 0 provide 
the most efficient results for extreme occurrences (at the 
higher and lower order statistics, respectively). da ¼ 0 
provides a competitive alternative for adaptation. This is 
related to the consideration of a subset of important 

Figure 8. (a) Histogram of the number of damaged links in 5000 
hazard occurrences. Combinations of damaged links from the 
subset considered are randomly generated. (b) Damage uncer-
tainty interval in an affected link, representative of independent 
link damage.
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links. As expected, the event-dependent response out-
performs all the alternatives, and in the worst case 
scenario guarantees a performance equal to da ¼ d2. 
As previously mentioned, this response can be of rele-
vance if means of event-dependent adaptation are avail-
able (e.g., adapting capacity in link by managing lanes). 
When looking at the best-known solution results for 
each case, Figure 12, it is possible to infer that the double 
GA combines information from the perturbation-based 
scenarios, while providing a more balanced distribution 
of the adaptation budget in the links considered. This 
balance benefits the performance in responses at higher 
order statistics of travel time, hence, damage, such as 
identified. It is interesting to infer that even in a subset 
of most relevant links, there is an even smaller subset of 
links that enclose most of the influence in the perturba-
tion-based travel time.

To conclude, it is noted that creating a sequential 
metamodel was identified to be effective in moderate 
losses of capacity, or large losses when the capacities 
in the network are large. As the loss of capacity in 
the network increases, an exponential growth of the 
travel cost occurs, and despite the metamodel cap-
ability to surrogate this trend, in scenarios of large 
damage it may fail to capture the exact exponential 
shape in the function if the density of points in the 
exponential region is not adequate. Nonetheless, this 
can be tackled by a division of the space of metamo-
deling as discussed in Teixeira et al., 2021b) or 

applied in the piecewise implementation of Marelli 
et al. (2021). Future considerations about the model-
ing space are expected to accelerate convergence 
(also considering a discussion on the travel function 
and modeling limits of applicability, Mtoi and Moses 
(2014)). In the present case, it was seen that for most 
of the dimensional space convergence in respect to ε 
was fast and used few points. Mainly highly non- 
linear regions were identified to delay convergence 
and increase uncertainty, resulting in more points 
being added to the ED. In practice, the Kriging has 
the capability to approximate highly complex func-
tions, which is a point of interest to study adaptation 
and recovery decision-making, in systems, which has 
zero-response times. In such case, the ED approach 
to the Kriging will have an important role. It is a key 
feature in improving the efficiency of implementing 
surrogates and decision processes in the analysis of 
recovery and adaptation of complex systems, includ-
ing traffic networks. In practice, a metamodel can be 
built such that it replicates the full operational con-
ditions of the traffic network, including disruptions, 
which can be prepared a priori to any event.

5. Conclusions

Applications of metamodeling in adaptation and 
recovery of traffic networks were studied in the pre-
sent work. Metamodels were applied to surrogate the 

Figure 9. Probability density function for the travel time in the network, considering implementation of different adaptation decisions 
and 2500 random scenarios of perturbation. Results presented use an average of random seeds ½1; ; 10�, and a GA population of 100 
individuals, with the GA being halted at 50 consecutive generations with no improvement in best penalty function value.
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performance function that defines traffic networks 
characterized by a day-to-day equilibrium. An itera-
tive metamodel with sequential experimental design 
was proposed and implemented, efficiently creating 
accurate global surrogates of the network perfor-
mance. The global surrogates were then applied in 
adaptation and recovery of traffic networks. Three 
networks with distinct levels of complexity were 
used, the Nguyen-Dupuis, the Sioux-Falls and the 
Cuenca traffic networks. First, metamodeling was 
implemented to accelerate an optimization of deci-
sion-making for recovery, producing accurate results 
(relative error of less than 1%) and using only a tiny 
fraction of the effort required to perform a full ana-
lysis that uses the network performance function. 
The influence of restricted user adaptation was also 
successfully investigated. Then, allocation of an 
adaptation budget for a network under random sce-
narios of perturbation was researched. By using 
metamodeling, it was possible to optimize the best 
adaptation decision for every uncertain perturbation, 
and define perturbation-dependent optimal adaption. 
This is of interest to find the adaptation decision that 
minimizes the difference between optimal and actual 
responses. This decision was identified to outperform 
other probable optimal decisions based on determi-
nistic scenarios of perturbation or rules of thumb.

One of the most interesting features of metamodeling 
in the context researched is related to the possibility of 
being implemented a priori as digital twins for decision- 
making processes that depends on time-consuming sup-
port tools. This enables zero-response times for relevant 
problems, such as adaptation and recovery.

A significant remark is related to the need for parti-
cular considerations regarding the dimensional space. 
In the case of traffic networks, due to their complexity, 
the experimental design may become large. In such 
circumstances, the cost of metamodeling increases and 
becomes significant with no relevant analysis gains. In 
respect to this aspect of implementation, it is noted that 
traffic networks have synergy with the idea of dimen-
sional reduction (usually a subset of links encloses most 
of the influence on travel time), being well-suited to 
combine it with metamodeling. This was successfully 
tested in the Cuenca network adaptation example, 
where in a subset of the most important links, 
a smaller subset enclosed most of the influence.

In terms of future works, the role of metamodeling 
was also highlighted in the context of its potential to 
enable fully adaptive systems, which are concurrent with 
the idea of complex adaptive systems, and can be 
exploited to enable zero-response times in problems of 
transport. These have the flexibility to be combined with 
other approaches that enhance the effectiveness of 

Figure 10. Cuenca newtork links used to generate the metamodel ED as ranked by link-betweeness.
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optimal recovery and adaptation decision-making, such 
as updates to traffic models using a Bayesian approaches 
Castillo et al. (2008), or agent-based analyses, such as 
LS/ATN Dorer and Calisti (2005); Neagu et al. (2006). 
The present implementation is representative of the 
enabling potential of metamodeling in one of the most 
relevant topics of the present, recovery, and adaptation 
in the context of engineering systems.

Note

1. It quantifies the number of times a link is used along the 
shortest path between two ODs.
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