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1
Introduction

In functional analysis the study of spectral theory is an extension of the study of eigenvectors and
eigenvalues of matrices in an infinite dimensional space. It also gives measures to describe operators
and therefore we obtain a way to describe orthogonality. In this thesis the goal is to find orthogonality
relations of special functions with the application of spectral theory.

Chapter 2 contains the basics of spectral theory that is needed in the remaining chapters. Allthough
we are not going into quantum mechanics, spectral theory is used widely in this field. Therefore we
restrict our attention to Hilbert spaces, because they posses inner products which allows us to talk
about length and angle. The spectral measure of a bounded symmetric operator can be expressed
in terms of the resolvent operator and this is a powerful tool in finding orthogonality relations. We
also want to know whether a symmetric operator is (essentially) self-adjoint or not, by the use of de-
ficiency indices. The final theorem in chapter two is the spectral theorem for unbounded operators,
which ensures a unique measure such that the operator can expressed in terms of that measure.

The fundament of chapter 3 is the three-term recurrence relation of orthonormal polynomials such
that we can introduce tridiagonal Jacobi operators and its eigenvalue problem. The main theorem
in this chapter is Favard’s theorem, which states that a set of polynomials that satisfy a three-term
recurrence relation is a set of orthonormal polynomials. The spectral theorem now returns to a Jacobi
operator a unique spectral measure. To obtain the spectral measure we define the Green kernel,
which is the resolvent operator of the Jacobi operator. Finally we notice the importance of self-adjoint
Jacobi operators by connecting it to the moment problem.

In the 4th and final chapter we study an explicit operator that generalizes a Jacobi operator, we intro-
duce the q-Meixner polynomials, which are polynomials defined in terms of basic hypergeometric
series. The method of finding asymptoticaly free solutions and using the Green kernel to obtain the
spectral measure of the q-Meixner polynomials will be discribed. For this we need a suitable domain
where the corresponding Jacobi operator is self-adjoint. To do the analysis we use a difference op-
erator L instead. The chapter ends with some orthogonality relations of q-Meixner polynomials, the
dual polynomials and the big q-Laguerre polynomials.
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2
Basics of spectral theory

In this chapter we mention some definitions and properties about linear operators and we give the
basics of spectral theory needed for the next chapters. Readers who are familiar in the area of spectral
theory may rather continue to chapter 3. During this paper we use the conventionN := {0,1,2, . . .}.

2.1. Hilbert spaces and bounded operators
To be able to talk about orthogonality we need a space with an inner product.

Definition 2.1. Let X be a complex vector space. A mapping X ×X →C is called an inner product if
for all u, v, w ∈ X and a,b ∈Cwe have

1. 〈av +bw,u〉 = a〈v,u〉+b〈w,u〉
2. 〈u, v〉 = 〈v,u〉
3. 〈u,u〉 ≥ 0 and 〈v, v〉 = 0 ⇔ v = 0.

If such a mapping exists, then X is called an inner product space, or Pre-Hilbert space. As a conse-
quence of properties 1. and 2., the inner product is sesquilinear, i.e 〈u,αv〉 =α〈u, v〉 for all u, v ∈ X
and α ∈C.

We define ‖v‖ :=p〈v, v〉 as the associated norm. The Cauchy-Schwarz inequality now states that

|〈u, v〉| ≤ ‖u‖‖v‖, (2.1)

with equality if and only if u and v are linearly dependent.

Definition 2.2. Let X be a normed vector space. If every Cauchy sequence converges in X , then X is
called complete. A complete inner product space is called a Hilbert space.

Example 2.3. Consider v, w ∈Cn with standard inner product 〈v, w〉 =∑∞
i=1 vi wi and v = (v1, . . . , vn),

w = (w1, . . . , wn). The inner product together with completeness yields Cn as a Hilbert space.

We will assume that all Hilbert spaces in this thesis are separable, i.e. that every Hilbert space con-
tains a countable dense subset. An example of a separable space is the real line R. A countable dense
subset is Q⊂R, the set of rationals. In general, all finite-dimensional spaces are seperable. A Hilbert
space is separable if and only if there exists a countable set of orthonormal basis vectors. So we may
always assume for any Hilbert space that there exists a basis.
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Example 2.4. Let `2(N) denote the space of square summable sequences {ak }k∈N ⊂C, i.e.∑
k∈N

|ak |2 <∞.

This is a separable Hilbert space with orthonormal basis the standard vectors ek , so (ek )l = δkl . In-
deed for xi ∈C, 0 ≤ i ≤ n, the sequence {x0, x1, . . . , xn ,0,0, . . .} ∈ `2(N).

Theorem 2.5 (Bessels inequality). Let H be a Hilbert space and f1, f2, . . . an orthonormal sequence in
H . Then for every f ∈H one has

∞∑
k=1

|〈 f , fk〉|2 ≤ ‖ f ‖2.

The next theorem describes in which case the inequality of Theorem 2.5 is actually an equality. A
proof can be found in [6].

Theorem 2.6. Let H be an Hilbert space and f1, f2, . . . an orthonormal sequence in H . Then the
following are equivalent:

1. The sequence f1, f2, . . . is an orthonormal basis of H .

2. If f ∈H and f ⊥ fk for k = 1,2, . . ., then f = 0.

3. H = span{ fk | k = 1,2, . . .}

4. f =∑
k
〈

f , fk
〉

fk ∀ f ∈H

5.
〈

f , g
〉=∑

k
〈

f , fk
〉〈

g , fk
〉 ∀ f , g ∈H

6. ‖ f ‖2 =∑
k |

〈
f , fk

〉 |2 ∀ f ∈H

The last assertion is called Parseval’s identity.

To explain the concept of moments in the next example we need some knowledge about measures.

Definition 2.7. A σ-algebra is a set B of subsets ofΩ such that

1. Ω ∈B;

2. If A ∈B, then AC ∈B;

3. If A1, A2, . . . ∈B, then ∪i∈NAi ∈B.

Let (Ω,d) be a metric space. B is called the Borel σ-algebra if it is the smallest σ-algebra that con-
tains all open subsets ofΩ.

Definition 2.8. Let (Ω,d) be a metric space. A complex Borel measure onΩ is a map

µ : B(Ω) →C such that

1. µ(;) = 0

2. If A1, A2, . . . ∈B are mutually disjoint, then µ(∪∞
i=1 Ai ) =∑∞

i=1µ(Ai ).

In particular, if µ maps to R≥0, then µ is called a positive (Borel) measure.
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Example 2.9. Let µ be a positive Borel measure on the real line R, such that all moments exist, i.e.∫
R |x|m dµ(x) < ∞ for all m ∈ N. Without loss of generality we assume that µ is a probability mea-

sure, i.e.
∫
R dµ(x) = 1. By L2(µ) we denote the space of square integrable functions on R, i.e.∫

R | f (x)|2 dµ(x) < ∞. More formally, L2(µ) consists of all equivalent classes such that f and g with∫
R | f (x)− g (x)|2 dµ(x) = 0 belong to the same class. Then the space L2(µ) is a Hilbert space with

respect to the inner product 〈 f , g 〉 = ∫
R f (x)g (x)dµ(x).

Consider the operator T from a normed vector space X to a normed vector space Y . Then T is
bounded if there exists an M > 0 such that for every u ∈ X it holds that ‖Tu‖ ≤ M‖u‖. The smallest
M such that this inequality holds is called the norm of T , denoted by ‖T ‖. It can be shown that
‖T ‖ = sup‖u‖=1 ‖Tu‖.

Proposition 2.10. Let X and Y be two normed vector spaces. Then T : X → Y is a bounded linear
operator if and only if T is continuous.

Proof. Because T is bounded, we know that ‖T ‖ <∞. Furthermore we note that for x, y ∈ X ,

‖T x −T y‖ = ‖T (x − y)‖ ≤ ‖T ‖‖x − y‖.

As an immediate consequence, T is continuous.
Now assume that T is not bounded. This means that ‖T ‖ = sup‖u‖=1 ‖Tu‖ is not finite. Therefore we
can find a sequence xn ∈ X with ‖xn‖ = 1 such that ‖T xn‖ ≥ n. But that implies that

∥∥ 1
n xn

∥∥ = 1
n 7→ 0

as n →∞, while
∥∥T ( 1

n xn)
∥∥≥ 1 67→ 0. It follows that T is not continuous.

Definition 2.11. Let H and K be Hilbert spaces and consider T : H → K to be a bounded linear
mapping. Then the mapping T ∗ : K →H , defined by

〈T x, y〉 = 〈x,T ∗y〉,

for all x ∈ H , y ∈ K , is called the adjoint of T . If T T ∗ = 1K and T ∗T = 1H , we call T unitary.
Moreover, if H =K then T is called

1. symmetric if T = T ∗;

2. a projection if T 2 = T .

In this thesis, the definition of symmetric is just reserved for bounded operators T . For unbounded
operators we will develop an extended definition in section 2.4.

2.2. Spectral decomposition
The set of eigenvalues of a bounded linear operator T : X → X with X a complex Banach space, is
part of the spectrum σ(T ). The spectrum is defined as σ(T ) = C\ρ(T ) with ρ(T ) the resolvent set,
the set of λ ∈ C such that the λI −T has a bounded inverse which is densely defined. Therefore the
resolvent operator, or just the resolvent, R(λ) = (λI −T )−1 is bounded on ρ(T ).

The spectrum can be decomposed into mutually disjoint sets σp (T ),σc (T ),σr (T ) ⊆C, with

1. λ ∈σp (T ) iff λI −T is not one-to-one, i.e. λ is an eigenvalue of T ;

2. λ ∈σc (T ) iff λI −T is one-to-one, rge(λI −T ) is dense in X , but the inverse is unbounded;

3. λ ∈σr (T ) iff λI −T is one-to-one, but rge(λI −T ) is not dense in X .

The sets are called point spectrum, continuous spectrum and residual spectrum respectively.
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Proposition 2.12. Let T be a bounded operator. Then σ(T ) is a compact subset of C contained in the
closed disk of radius ‖T ‖.

Proof. Let T be a bounded operator. Using Neumanns expansion, (I −S)−1 = ∑∞
k=0 Sk with ‖S‖ < 1,

we can see that

(λI −T )−1 =λ−1(I −λ−1T )−1 =λ−1
∞∑

k=0

(
T

λ

)k

,

only if ‖T ‖ < |λ|, and consequently λ ∈ ρ(T ). So if λ ∈σ(T ), then |λ| ≤ ‖T ‖ and so σ(T ) is bounded by
‖T ‖.

Next, we claim that ρ(T ) is open. Let λ ∈ ρ(T ). Then (λI −T )−1 is nonzero and bounded, so 0 <
‖(λI −T )−1‖ < ∞. Define δ = ‖(λI −T )−1‖−1 as the radius of the open ball Bδ(0) with the origin as
centre. The claim has been proven if we can show that the open ball with radius δ and centre λ,
Bδ(λ) ⊆ ρ(T ). Take γ ∈ Bδ(0), then |γ| < δ. This implies ‖γ(λI −T )−1‖ < 1. By Neumanns expansion
we see that (I −γ(λI −T )−1) has a bounded inverse and therefore

(λ−γ)I −T = (λI −T )(I −γ(λI −T )−1)

also has a bounded inverse. And so λ−γ ∈ ρ(T ). Now

Bδ(λ) = {µ ∈C : |λ−µ| < δ} = {λ−γ ∈C : |γ| < δ} ⊆ ρ(T )

which proves that ρ(T ) is open.

A consequence of the previous proof is that ρ(T ) is non-empty. Without proof we mention that σ(T )
is non-empty.

Theorem 2.13. The spectrum σ(T ) of a bounded operator T is non-empty.

Proposition 2.14. The residual spectrum σr (T ) of a symmetric operator T is empty.

Proof. Let T : X →X be symmetric and assume λ ∈σr (T ). Then rge(λI −T ) is not dense in X and
we can decompose the space X into

X = ker(λI −T )∗⊕ rge(λI −T ), (2.2)

with ker(λI −T )∗ = ker
(
λI −T ∗

)
6= {0}. Therefore, there exists a non-trivial x ∈X such that T ∗x =λx

and so
〈T x, x〉 = 〈

x,T ∗x
〉=λ〈x, x〉 .

It follows that 〈T x −λx, x〉 = 0. But for a fixed x ∈ X this means that T x −λx = 0 and so λ ∈ σp (T ).
This is a contradiction with the fact that σr (T ) and σp (T ) are mutually disjoint.

Proposition 2.15. Let T on X be symmetric. Then the spectrum is real. Furthermore,

σ(T ) ⊂ [−‖T ‖,‖T ‖].

Proof. Consider the numerical range W (T ) = {〈T x, x〉 | ‖x‖ = 1}. Then for ‖x‖ ≤ 1,

| 〈T x, x〉 | ≤ ‖T x‖‖x‖ ≤ ‖T x‖ ≤ ‖T ‖,
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so 〈T x, x〉 is bounded by boundedness of T . It follows that W (T ) is bounded. Notice that W (T ) ⊆ R,
because 〈T x, x〉 = 〈x,T x〉 = 〈T x, x〉 and therefore 〈T x, x〉 ∈R.

Next, we want to show that σ(T ) ⊂ W (T ). Assume that λ ∉ W (T ) and let d := inf
{|λ−µ| :µ ∈W (T )

}
.

Then d > 0 by clossedness. It follows, for ‖x‖ = 1, that

0 < d ≤ |λ−〈T x, x〉 | = |〈λx −T x, x〉 | ≤ ‖(λI −T )x‖ ·‖x‖ = ‖(λI −T )x‖.

This shows that there does not exist an x 6= 0 such that (λI −T )x = 0. Therefore ker(λI −T ) =∅ and
thus the map λI −T is injective. The mapping λ−T : X → rge(λI −T ) is an isomorfism.
The range is dense in X . Indeed, if not, then there exists an x0 ∈ rge(λI −T )⊥ with ‖x0‖ = 1, such that

0 = 〈(T −λI )x0, x0〉 = 〈T x0, x0〉−〈λx0, x0〉 = 〈T x0, x0〉−λ.

It follows that λ = 〈T x0, x0〉 ∈ W (T ), which is a contradiction to λ ∉ W (T ). Therefore is the range
dense in H . This shows that λ ∈ ρ(T ) and thus λ ∉σ(T ). So σ(T ) ⊆W (T ) ⊆R.

The inclusion is a corollary of Proposition 2.12.

2.3. The spectral theorem for bounded symmetric operators
Let V be a subspace of the Hilbert space H . Then H can be decomposed into H =V ⊕V ⊥. Assume
that h ∈ H can be decomposed into h = f + g with f ∈ V and g ∈ V ⊥, then pV : H → H ,h 7→ f is
called an orthogonal projection.

Definition 2.16. Let P (H ) be the set of orthogonal projections on a Hilbert space H and let B the
Borel σ-algebra of a set S. We say that the mapping p : B → P (H ) is a projection valued measure
on the Borel space (S,B) if

1. p(S) = I and p(;) = 0;

2. If {Ai } is a countable collection of pairwise disjoint elements of B, then p(Ai ) is a pairwise
orthogonal collection of projections, and p(∪Ai ) =∑

i p(Ai ).

The definition of a projection valued measure is similar to the definition of a measure. The only
difference is that projection valued measures uses self-adjoint projections rather than real numbers.

Now we are able to introduce the concept of the resolution of the identity.

Definition 2.17. A resolution of the identity, say E , of a Hilbert space H is a projection valued Borel
measure on R such that for all Borel sets A,B ⊆Rwe have

1. E(A) is a symmetric projection;

2. E(A∩B) = E(A)E(B);

3. E(∅) = 0,E(R) = I;

4. A∩B =∅ implies E(A∪B) = E(A)+E(B);

In some literature will be spoken of a spectral family instead, see for example [3].

Proposition 2.18. Let E be a resolution of the identity of a Hilbert space H . For all u, v ∈H the map
A 7→ Eu,v (A) = 〈E(A)u, v〉 is a complex Borel measure.

Now we are able to formulate the most important theorem in spectral theory, restricted to symmetric
operators. Later, in Theorem 2.31, we will formulate the spectral theorem in more general setting.
This is in line with [3], where a proof can be found.
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Theorem 2.19 (Spectral theorem for symmetric operators). Let T be a bounded symmetric linear
operator on H , then there exists a unique resolution of the identity E such that T = ∫

R t dE(t ), i.e.
〈Tu, v〉 = ∫

R t dEu,v (t ). Moreover, E is supported on the spectrum σ(T ) ⊂ R, which is contained in the
interval [−‖T ‖,‖T ‖]. Moreover, any of the spectral projections E(A), A ⊆ R a Borel set, commutes with
operator T .

With the spectral theorem in mind we define for any continuous function f its functional calculus
for symmetric operator T as

f (T ) :=
∫
R

f (t )dE(t ),

i.e. 〈 f (T )u, v〉 = ∫
R f (t )dEu,v (t ). The resolution of the identity in the theorem obtained from T is

called the spectral measure. Notice that the spectral measure is indeed a (projection valued) mea-
sure.

If we look at the spectral theorem, Theorem 2.19, it may be clear that it now becomes the issue to find
the spectral measure associated with the given bounded symmetric operator T . It turns out that the
spectral measure can be expressed in terms of the resolvent operator R(z) = (zI −T )−1 with z ∈C.

Theorem 2.20. Let u, v ∈H be fixed. The spectral measure of the open interval (a,b) ⊂R is given by

Eu,v ((a,b)) = lim
δ↓0

lim
ε↓0

1

2πi

∫ b−δ

a+δ
〈R(x + iε)u, v〉−〈R(x − iε)u, v〉dx. (2.3)

Theorem 2.20 gives a powerful tool to explicitly obtain the spectral measure of the operator T if we
have its resolvent operator. In the next section we will explain this in more details.

Proof. See [2].
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2.4. Unbounded self-adjoint operators
In the case of unbounded linear operators, things get tricky at some point. An important difference
with bounded operators is that unbounded operators are not defined on the whole Hilbert space H .
Therefore we need a slightly different definition, see [1].

Definition 2.21. An unbounded linear operator T from H to H is a pair (D(T ),T ) consisting of a
subspace D(T ) ⊂H , the domain of T , and a linear transformation T : D(T ) ⊂H →H .

The notions of kernel and range are identical to bounded operators. If the operator is bounded on
the domain, then it can be extended to a bounded operator on the whole space H . Therefore we
use Definition 2.21 only for operators that are unbounded on their domain. As completeness of this
paragraph, we define the spectrum for unbounded operators.

Definition 2.22. Let T : D(T ) ⊂ H → H be densely defined. Then the resolvent set of T is defined
as

ρ(T ) := {
λ ∈C |λI −T : D(T ) ⊂H →H has a densely defined bounded inverse (λI −T )−1} .

As in the bounded case, σ(T ) :=C \ ρ(T ) defines the spectrum of T .

The notion of a graph of the operator T is similar to the bounded case as well. We define the graph
as

G (T ) = {(x,T x)|x ∈DT }.

A natural inner product on this space is defined by

〈(u, v), (u′v ′)〉 := 〈u,u′〉+〈v, v ′〉.

Definition 2.23. The operator T is called closed if its graph is closed. If the closure of G (T ) is the
graph of an operator, then T is called closable.

A helpful theorem is the closed graph theorem. It tells us that if T is linear, then T is continuous if
and only if T is closed. If both T and S are unbounded operators on H , D(S) ⊂D(T ) and Su = Tu for
all u ∈D(S), notation S ⊂ T , then T is called an extension of S and so

G (S) ⊂G (T ).

If, furthermore, G (T ) is closed and for all extensions Ŝ of S it holds that

G (T ) ⊆G (Ŝ),

then T is called the minimal closed extension of S. We now assume that D(T ) is dense in H . Then
we can define the adjoint operator as follows.

Definition 2.24. Let T : D(T ) ⊂ H → H be a densely defined linear operator on a Hilbert space H

and consider the map φv : u 7→ 〈Tu, v〉. We define its adjoint T ∗ by

D(T ∗) := {
v ∈H |φv is continuous on D(T )

}
and

〈Tu, v〉 = 〈u,T ∗v〉, ∀ u ∈D(T ), v ∈D(T ∗).

The requirement of a densely defined operator in the definition of the adjoint is essential. In fact, if
the operator is not densely defined, then the adjoint can not uniquely be extended.
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Proposition 2.25. If T : D(T ) ⊂H →H is a densely defined unbounded linear operator, then

1. T ∗ is closed;

2. T is closable if and only if T ∗ is densely defined; in this case T = (T ∗)∗;

3. if T is closable, then (T )∗ = T ∗.

Proof. see for details [1].

Lemma 2.26. The graph of the adjoint of a densely defined operator T can be written as

G (T ∗) = {(Tu,−u)|u ∈D(T )}⊥. (2.4)

Proof. Let A = {(Tu,−u)|u ∈D(T )} and consider v ∈D(T ∗). Then

〈Tu, v〉 = 〈
u,T ∗v

〉 ⇔ 〈
(Tu,−u), (v,T ∗v)

〉= 0,

which shows that all the elements of the graph of T ∗ are orthogonal to the elements of A.

"⊆". Take (w,T ∗w) ∈G (T ∗) and let the sequence (un , vn)∞n=0 ⊆ A converge to a point (u, v) ∈ A. Then〈
(u, v), (w,T ∗w)

〉= lim
n→∞

〈
(un , vn), (w,T ∗w)

〉= 0

and therefore (w,T ∗w) ∈ A⊥.

"⊇". Let (u, v) ∈ A⊥. Then for all w ∈D(T ) we see that

0 = 〈(T w,−w), (u, v)〉 = 〈T w,u〉−〈w, v〉 .

So 〈T w,u〉 = 〈w, v〉 for all w ∈ D(T ) and thus | 〈T w,u〉 | = |〈w, v〉 | ≤ ‖w‖‖v‖. This shows that the
mapping w 7→ 〈T w,u〉 is bounded and continuous on D(T ). Consequently u ∈ D(T ∗) and T ∗u = v ,
thus (u, v) ∈G (T ∗). Now the identity (2.4) has been proved.

By (2.4) we see that the graph of the adjoint T ∗ is an orthogonal complement and is therefore closed.
Consequently, T ∗ is closed.

Now we can define symmetric and self-adjoint unbounded operators.

Definition 2.27. We call a densely defined operator T : D(T ) ⊆H →H symmetric if

T ⊂ T ∗.

This is equivalent to 〈Tu, v〉 = 〈u,T v〉 for all u, v ∈D(T ).

Remark. If T is symmetric, then D(T ) ⊂ D(T ∗) and so the domain of T ∗ is dense in H as well. It
follows that T ∗ has also an adjoint, T ∗∗. The operator T ∗∗ is the minimal closed extension of T .
Indeed,

G (T ∗∗) = {
(u,T ∗∗u)|u ∈D(T ∗∗)

}= {
(T ∗u,−u)|u ∈D(T ∗)

}⊥ (2.5)

= {(u,Tu)|u ∈D(T )}⊥⊥ = {(u,Tu)|u ∈D(T )} =G (T ), (2.6)

whereby we used the identity of (2.4). We see that the graph of T ∗∗ is the closure of the graph of T
and thus T ∗∗ is the minimal closed extension of T . This proves the second statement of Proposition
2.25.
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To show that T ∗∗ is symmetric we first notice that D(T ) ⊂ D(T ∗∗) and so T ∗∗ is densely defined.
Secondly

T ∗∗ ⊆ T ∗,

because for φv : u 7→ 〈Tu, v〉,
D(T ∗∗) = {

v ∈H |φv is continuous on D(T ∗)
}⊆ {

v ∈H |φv is continuous on D(T )
}=D(T ∗).

So we can conclude that every symmetric operator has a closed symmetric extension. If there does
not exists a proper symmetric extension of T , then T is called maximal symmetric.

Definition 2.28. A densely defined operator T : D(T ) →H is called self-adjoint if T = T ∗. That is, if
D(T ) ⊂D(T ∗) and D(T ∗) ⊂D(T ).

We have already seen that the adjoint operator is closed, so every self-adjoint operator is closed as
well. Every self-adjoint operator is maximal symmetric. A symmetric operator T is called essentially
self-adjoint if T is self-adjoint. So T ⊂ T ∗∗ = T ∗. In general, a densely defined symmetric operator
does not have self-adjoint extensions. Next we will discuss deficiency indices, which will be used to
denote the difference between operators being maximal symmetric and being self-adjoint.

Definition 2.29. Define for z ∈C\R the eigenspace

Nz := {
v ∈D(T ∗) | T ∗v = zv

}
.

Put n+ = dim Ni and n− = dim N−i . The pair (n+,n−) are the deficiency indices for a densely defined
symmetric operator T .

Remark. Because dim Nz is constant for ℑ(z) > 0 and ℑ(z) < 0, we are sure that dim Nz = dim Ni and
so n+ and n− are constants too.

Note that
T ∗v = i v ⇔ T ∗v = i v ⇔ T ∗v =−i v ,

and therefore v ∈ Ni iff v ∈ N−i . So if T commutes with the complex conjugation, this implies that
n+ = n−. Furthermore, if T is self-adjoint, the eigenvalues are real by Proposition 2.15 and it follows
that Ni = N−i =;, implying that n+ = n− = 0.

Proposition 2.30. Let (D(T ),T ) be a densely defined symmetric operator.

1. D(T ∗) = D(T ∗∗)⊕Ni ⊕N−i , as an orthogonal direct sum with respect to the graph norm of T ∗

from 〈u, v〉T ∗ = 〈u, v〉 + 〈T ∗u,T ∗v〉. As a direct sum, D(T ∗) = D(T ∗∗) + Nz + Nz̄ for general
z ∈C\R.

2. Let U be an isometric bijection U : Ni → N−i and define (D(S),S) by

D(S) = {
u + v +U v | u ∈D(T ∗∗), v ∈ Ni

}
, Sw = T ∗w,

then (D(S),S) is a self-adjoint extension of (D(T ),T ) and every self-adjoint extension of T arises
in this way.

Proof. See for [2].

A way to characterize the domain of S is making use of the sesquilinear form

B(u, v) = 〈T ∗u, v〉−〈u,T ∗v〉, u, v ∈D(T ∗). (2.7)

Then D(S) = {
u ∈D(T ∗) | B(u, v) = 0,∀v ∈D(S)

}
.
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2.5. The spectral theorem for unbounded self-adjoint operators
In Theorem 2.19 the spectral theorem for bounded symmetric operators was given. Now we can
formulate the spectral theorem in the general case.

Theorem 2.31 (Spectral theorem). Let T be an unbounded self-adjoint operator. There exists a unique
resolution of the identity E such that T = ∫

R t dE(t ), i.e. 〈Tu, v〉 = ∫
R t dEu,v (t ) for u ∈ D(T ), v ∈ H .

Furthermore, for any bounded operator S that satisfies ST ⊂ T S we have E(A)S = SE(A), wit A ⊂ R a
Borel set. Moreover, inversion formula (2.3) remains valid.

Proof. See for [2].

We can now define f (T ) for any measurable function f by

〈 f (T )u, v〉 :=
∫
R

f (t )dEu,v (t ), u ∈D( f (T )), v ∈H ,

where D( f (T )) = {
u ∈H | ∫

R | f (t )|2 dEu,v (t ) <∞}
is the domain of f (T ). So f (T ) is a densely defined

closed operator. If f ∈ L∞, then f (T ) is a continuous operator, by the closed graph theorem. This in
particular can be applied to f (x) = (x − z)−1, z ∈ ρ(T ), which gives the resolvent operator. So

〈R(z)u, v〉 =
∫
R

(x − z)−1 dEu,v (t ). (2.8)

We are going to use this way of writing the resolvent operator in section 3.2.

12



3
Jacobi operators

3.1. Orthogonal polynomials
Consider again the Hilbert space L2(µ) of square µ-integral functions as in example 2.9. Assume that
all moments exists, which means that

∫
R |x|n dµ(x) <∞ for all n. Then all polynomials are integrable.

By using the Gram Smith orthogonalisation process to the sequence
{
1, x, x2, x3, . . .

}
we obtain pair-

wise orthogonal polynomials
{

p0, p1, . . .
}
. Two situations may occur: the polynomials are linearly

dependent or the polynomials are linearly independent in L2(µ).

Assume the polynomials are linearly dependent, which means that there are finitely many nonzero
ai such that

a0p0 +a1p1 +a2p2 + . . . an pn = 0,

with n the greatest integer such that an 6= 0. By

0 = 〈pn ,0〉 = 〈pn , a1p1 +a2p2 +a3p3 + . . . an pn〉
= an〈pn , pn〉

it follows that 〈pn , pn〉 = 0, i.e. ∫
R
|pn(x)|2 dµ(x) = 0,

while pn 6= 0. This can only be true when µ is a finite sum of Dirac measures at the zeros of pn .

Remark. As a reminder, a Dirac measure is a measure δx on a set X defined as

δx (A) :=
{

0, x 6∈ A.
1, x ∈ A,

for a measurable subset A ⊆ X .

In the dependent situation we only have finitely many orthogonal polynomials and so we can proof
the results with linear algebra. From now on we exclude the case that the polynomials are linearly
dependent.

Definition 3.1. A sequence of polynomials
{

pn
}∞

n=0 with deg(pn) = n is a set of orthonormal polyno-
mials with respect to µ if

∫
R pn(x)pm(x)dµ(x) = δn,m .
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Remark. The polynomials pn on R are real-valued, because the set
{
1, x, x2, . . .

}
is real-valued. There-

fore the coefficients of pn are real. As a consequence of the Gram-Schmidt procedure, p0(x) = 1 and
the leading coefficient is positive. It follows that µ is a probability measure.

The product pn(x)pm(x) is a polynomial of degree n +m, say
∑n+m

k=0 dk xk with coefficients dk ∈ R,
yielding ∫

R
pn(x)pm(x)dµ(x) =

n+m∑
k=0

dk

∫
R

xk dµ(x) =
n+m∑
k=0

dk mk ,

with moments mk . This results in the identity
∑n+m

k=0 dk mk = δn,m . Apparently, the orthogonality re-
lation is totally determined by the moments mk .

As a very useful tool later in this section, we define the Stieltjes transform of the measure µ by

w(z) :=
∫
R

(x − z)−1 dµ(x) z ∈C\R.

By rewriting the Stieltjes transform we see that, formally,

w(z) = −1

z

∫
R

1

1−x/z
dµ(x) = −1

z

∞∑
k=0

∫
R

( x

z

)k
dµ(x) =−

∞∑
k=0

mk

zk+1
. (3.1)

If supp(µ) ⊆ [−A, A], then

|mk | =
∣∣∣∣∫
R

xk dµ(x)

∣∣∣∣≤ ∫ A

−A
|x|k dµ(x) = 2

∫ A

0
xk dµ(x) ≤ 2Ak . (3.2)

We can use this to imply that

∞∑
k=0

∣∣∣∣ mk

zk+1

∣∣∣∣≤ ∞∑
k=0

2Ak

|zk+1
= 2

|z|
∞∑

k=0

(
A

|z|
)k

= 2

|z|− A
,

which proves that the series in (3.1) is absolutely convergent and thus convergent. Therefore the
Stieltjes transform is totally determined by the moments of µ.

Proposition 3.2. Let µ be a probability measure with finite moments, and let

w(z) =
∫
R

(x − z)−1 dµ(x) z ∈C\R

be its Stieltjes transform, then

lim
ε→0

1

π

∫ b

a
ℑ(w(x + iε))dx =µ((a,b))+ 1

2
µ({a})+ 1

2
µ({b}).

Let p be a polynomial with real coefficients. Then

lim
ε→0

1

π

∫ b

a
ℑ(p(x + iε)w(x + iε))dx =

∫
(a,b)

p(x)dµ(x)+ 1

2
p(a)µ({a})+ 1

2
p(b)µ({b}). (3.3)

Proof. See Koelink, [8].
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The proposition gives rise to the identity

µ((a,b)) = lim
ε↓0

lim
δ↓0

1

π

∫ b−δ

a+δ
ℑ (w(x + iε)) dx, (3.4)

which is similar to the Stieltjes Perron formula (2.3). We need the extension of the inversion formula
(3.3) to find a spectral measure later in (3.21).

Considering the Hilbert space L2(µ), it turns out that a set of orthonormal polynomials posseses a
very important property, which will lead to the definition of Jacobi operators in the next section.

Theorem 3.3 (Three-term recurrence relation). Let
{

pk
}∞

k=0 be a set of orthonormal polynomials in
L2(µ), then there exist sequences {ak }∞k=0, {bk }∞k=0 with ak ,bk ∈R and ak > 0, such that

xpk (x) = ak pk+1(x)+bk pk (x)+ak−1pk−1(x), k ≥ 1 (3.5)

xp0(x) = a0p1(x)+b0p0(x) (3.6)

Moreover, if µ is compactly supported, then the coefficients ak and bk are bounded.

Proof. First we notice that deg(xpk (x)) = k +1, so there exist constants ck
i ∈R such that

xpk (x) =
k+1∑
i=0

ck
i pi (x). (3.7)

Multiplying both sides by p j and integrating over Rwe obtain∫
R

p j (x)xpk (x)dµ(x) =
∫
R

k+1∑
i=0

ck
i pi (x)p j (x)dµ(x)

=
∫
R

ck
j dµ(x) = ck

j ,

using the orthogonality property of pi and the fact that µ is a probability measure.
In a similar way we can look at the same expression ck

j = ∫
R xp j (x)pk (x)dµ(x) and observe that the

polynomial xp j (x) has degree j + 1 so we see that ck
j = 0 whenever j + 1 < k, by the orthogonality

property again. Therefore (3.7) can be written as

xpk (x) = ck
k−1pk−1(x)+ ck

k pk (x)+ ck
k+1pk+1(x).

So we can easily see that

bk := ck
k =

∫
R

x(pk (x))2 dµ(x). (3.8)

The other coefficients are

ak := ck
k+1 =

∫
R

xpk+1(x)pk (x)dµ(x) (3.9)

ak−1 := ck
k−1 =

∫
R

xpk−1(x)pk (x)dµ(x).

To show that the coefficients are bounded if µ is compactly supported we notice that

|ak | =
∣∣∣∣∫
R

pk+1(x)xpk (x)dµ(x)

∣∣∣∣≤ ∫
R

∣∣pk+1(x)
∣∣ ∣∣pk (x)

∣∣ dµ(x) sup
x∈supp(µ)

|x|

≤ ∥∥pk+1
∥∥

L2(µ)

∥∥pk
∥∥

L2(µ) sup
x∈supp(µ)

|x| = sup
x∈supp(µ)

|x| <∞.
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We used the triangle inequality, the Cauchy Schwarz inequality and the property that pk is nor-
malised. The fact that µ is compactly supported leads to the last inequality. The same kind of ar-
gument leads to the boundedness of bk :

|bk | =
∣∣∣∣∫
R

x(pk (x))2 dµ(x)

∣∣∣∣≤ ∣∣∣∣∫
R

(pk (x))2 dµ(x)

∣∣∣∣ sup
x∈supp(µ)

|x|

≤ ∥∥pk
∥∥2

L2(µ) sup
x∈supp(µ)

|x| = sup
x∈supp(µ)

|x| <∞.

This completes the proof.

So with every set of orthonormal polynomials we can find sequences {ak } and {bk } such that (3.5)
and (3.6) hold. But the converse is also true, given the sequences {ak } and {bk }, and p0(x) = 1, we can
determine the rest of the pk as a solution, by (3.5) and (3.6). This will be shown in theorem 3.9.

We can also just use initial conditions on p0 and p1 to obtain a solution of (3.5) only. Let {rk }∞k=0 be
defined as the solution of (3.5) with initial conditions r0(x) = 0 and r1(x) = a−1

0 . By construction, the
polynomial rk has degree k −1 and we call them the associated polynomials. Notice that (3.6) is not
valid. The associated polynomials can be written in terms of the polynomials pk .

Lemma 3.4. Let {pk }∞k=0 be a set of orthonormal polynomials in L2(µ). The associated polynomial rk

can be written as

rk (x) =
∫
R

pk (x)−pk (y)

x − y
dµ(y). (3.10)

Proof. Let the right hand side of (3.10) be defined as qk (x). Now we have to show that qk satisfies
(3.5) together with the initial conditions. Then, by definition, qk equals rk .
To show that (3.5) is satisfied, we see that

xqk (x) =
∫
R

xpk (x)−xpk (y)

x − y
dµ(y) =

∫
R

xpk (x)− y pk (y)+ y pk (y)−xpk (y)

x − y
dµ(y)

=
∫
R

xpk (x)− y pk (y)

x − y
dµ(y)−

∫
R

xpk (y)− y pk (y)

x − y
dµ(y)

= ak qk+1(x)+bk qk (x)+ak−1qk−1(x)−
∫
R

pk (y)dµ(y)

using Theorem 3.3 for pk in the last equality. Noticing that p0(x) = 1 is orthogonal to all pk , k ≥ 1, the
integral is zero for k ≥ 1. Thus qk satisfies (3.5). For the initial conditions we observe that

q0(x) =
∫
R

p0(x)−p0(y)

x − y
dµ(y) =

∫
R

1−1

x − y
dµ(y) = 0

and using (3.6) to get p1 = a−1
0 (x −b0) we obtain

q1(x) =
∫
R

p1(x)−p1(y)

x − y
dµ(y) =

∫
R

x −b0 − y +b0

a0(x − y)
dµ(y) = a−1

0 .

So all conditions are satisfied and qk equals rk .

As we now have obtained two solutions of (3.5), we are able to find an expression of the k-th coeffi-
cient of the function (x − z)−1. Looking at the following simple equality for fixed z ∈C\R,∫

R

pk (x)

x − z
dµ(x) =

∫
R

pk (x)−pk (z)+pk (z)

x − z
dµ(x)

= rk (z)+
∫
R

pk (z)

x − z
dµ(x) = rk (z)+pk (z)w(z),

(3.11)

we can easily prove the following corollary.
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Corollary 3.5. Let z ∈C\R be fixed. The k-th coefficient with respect to the orthonormal set
{

pk
}∞

k=0 in
L2(µ) of ρz : x 7→ (x − z)−1 is given by rk (z)+pk (z)w(z). Hence,

∞∑
k=0

∣∣rk (z)+pk (z)w(z)
∣∣2 ≤

∫
R
|x − z|−2 dµ(x) <∞.

Proof. Let di be the i -th coefficient such that (x−z)−1 =∑∞
i=0 di pi (x). Now multiplying both sides by

pk and integrating over R gives∫
R

pk

x − z
dµ(x) =

∫
R

∞∑
i=0

di pi (x)pk (x)dµ(x) =
∫
R

dk dµ(x) = dk .

Using the equality obtained in (3.11), we see that

dk = rk (z)+pk (z)w(z).

Using Bessels inequality, see Theorem 2.5, and realising that dk = 〈
ρz , pk

〉
, yields

∞∑
k=0

|dk | ≤ ‖ρz‖2

and the second assertion follows.

As a consequence for
{
rk (z)+pk (z)w(z)

}∞
k=0 to be in `2(N), the limit

lim
k→∞

rk (z)+pk (z)w(z) = 0

should hold. This yields a requirement for w(z),

w(z) =− lim
k→∞

rk (z)

pk (z)
, z ∈C\R,

assuming the limit exists.

The next lemma assures that the fraction rk (z)
pk (z) has no poles outside the real line. This means that the

limit indeed exists for z ∈C\R.

Lemma 3.6. The zeros of pk (z) in C are real and simple.

Proof. First notice that pk (z) has degree k, so there are at most k real zeros. Let x1, . . . , xm be the
distinct real zeros with odd multiplicity (m ≤ k), i.e. where the polynomial changes sign. Then for
x ∈R,

pk (x)(x −x1)(x −x2) · · · (x −xm)

is even and so does not change sign. Therefore∫
R

pk (x)(x −x1)(x −x2) · · · (x −xm)dµ(x) (3.12)

is not equal to zero.
Now assume m < k, then the polynomial (x − x1)(x − x2) · · · (x − xm) can be written as linear combi-
nation of the orthogonal polynomials pi (x) of degree smaller than k. By orthogonality between pi

and pk it follows that (3.12) equals zero if m < k which ends up with a contraduction. Thus m = k,
which means that there are k distinct real zeros of odd multiplicity and thus the multiplicity needs to
be 1.
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3.2. Jacobi operators
For solving (3.5) and (3.6) we want to make use of Jacobi operators. These are tridiagonal infinite
matrices of the form

J =


b0 a0 0 0 0 0 . . .
a0 b1 a1 0 0 0 . . .
0 a1 b2 a2 0 0 . . .
0 0 a2 b3 a3 0 . . .
...

. . .
. . .

. . .
. . .


with ai ,bi ∈ R and ai > 0. The reason why we exclude the case ai = 0 is that if there exists a unique
m such that am = 0, then the Jacobi matrix can be split into two matrices. The first matrix has only
nonzero entries on the first m×m block and analysis can be done using linear algebra. Therefore we
are only interested in this type.

We want to define Jacobi operators on the Hilbert space `2(N). When we define the Jacobi operators
first on the standard orthonormal basis {ek }k∈N of `2(N), we will see the same structure as in Theorem
3.3:

Jek :=
{

ak ek+1 +bk ek +ak−1ek−1, k ≥ 1,
a0e1 +b0e0, k = 0.

This means that for every probability measure with finite moments we can obtain unique coefficients
{an} and {bn}, which is similar to having a Jacobi operator J . Because the linear subspace D(N) of
finite linear combinations of ek is dense in `2(N), we would like to first extend J to D(N) by defining
for v =∑n

j=0 c j e j in D(N),

J v :=
n∑

j=0
c j Je j ,

justified by the linearity of J . To show that J is symmetric, we first want to observe that for l = k−1 ≥ 1,
〈Jek ,el 〉 = 〈ek , Jel 〉. Indeed,

〈Jek ,el 〉 = ak〈ek+1,el 〉+bk〈ek ,el 〉+ak−1〈ek−1,el 〉
= al−1〈ek ,el−1〉+bk〈Jek ,el 〉+al 〈ek ,el+1〉 = 〈ek , Jel 〉,

using the property 〈ei ,e j 〉 = δi j for all i , j ∈ N. With the same technique we can easily see that the
identity holds for l = k and l = k+1. For other relations between l and k we get 〈Jek ,el 〉 = 0 = 〈ek , Jel 〉.
For the special case when either of the k or l is zero can also easily be seen that the relation holds.

As a consequence, symmetry holds for v =∑n
j=0 c j e j and w =∑m

i=0 di ei in D(N). Indeed,

〈J v, w〉 =
n∑

j=0

m∑
i=0

c j di 〈Je j ,ei 〉

=
n∑

j=0

m∑
i=0

c j di 〈e j , Jei 〉

= 〈v, J w〉.

(3.13)

This shows that J is a densely defined symmetric operator. If J is bounded on D(N), it is continuous
and therefore can be extended to a bounded operator on `2(N).
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Lemma 3.7. There exists polynomials Pk of degree k with real coefficients such that ek = Pk (J )e0. In
particular, e0 is a cyclic vector for the action of J , i.e. the linear subspace

{
J k e0 | k ∈N}

is dense in `2(N).

Proof. Trivially, e0 = P0(J )e0 for polynomial P0(x) = 1. Using (3.6), we see that Je0 = a0e1 + b0e0,
which can be rewritten as

e1 = Je0 −b0e0

a0
,

with a0 > 0. So e1 = P1(J )e0 for polynomial P1(x) = a−1
0 x −b0/a0 of degree 1.

Using induction, assume ei = Pi (J )e0 for 0 ≤ i ≤ k. Then Jek = ak ek+1 +bk ek +ak−1ek−1 leads to

ek+1 =
Jek −bk ek −ak−1ek−1

ak

= JPk (J )e0 −bk Pk (J )e0 −ak−1Pk−1(J )e0

ak

which is the sum of polynomials with degree up to k +1, and thus ek+1 = Pk+1(J )e0.
To see that the linear subspace is dense in `2(N) we remark that ek ∈ {

J k e0 | k ∈N}
and the set {ek }∞k=0

form an orthonormal basis of `2(N).

Lemma 3.8. If the sequences {ak } and {bk } are bounded, say supk |ak | + supk |bk | ≤ M < ∞, then J
extends to a bounded symmetric operator with ‖J‖ ≤ 2M. On the other hand, if J is bounded, then the
sequences {ak } and {bk } are bounded.

For a proof, see [8].

Assume that J is continuous and thus bounded, on the domain D(N). Because D(N) is dense in `(N),
we can extend J , which, together with being symmetric, leads to self-adjointness of J on `(N). Using
the spectral theorem, Theorem 2.19, there exists a unique spectral measure E such that

〈J v, w〉 =
∫
R

t dEv,w (t ), v, w ∈ `(Z≥0).

For v = w = e0 we can define the positive Borel measure µ(A) := Ee0,e0 (A) = 〈E(A)e0,e0〉, as in Propo-
sition 2.18. Moreover, the spectral theorem claims that supp(µ) ⊆ [−‖J‖,‖J‖]. By (3.2) we have an
upperbound |mk | ≤ 2‖J‖k . Therefore the moments of µ are finite. This shows that every bounded
Jacobi operator J corresponds with its unique compactly supported probability measure µ, which
will be needed in the next theorem. Using the fact that J is self-adjoint and E(A) commutes with J ,
yields

〈E(A)ek ,el 〉 = 〈E(A)Pk (J )e0,Pl (J )e0〉
= 〈Pl (J )Pk (J )E(A)e0,e0〉 =

∫
A

Pk (x)Pl (x)dµ(x).
(3.14)

The Pk ’s are as in Lemma 3.7.

Theorem 3.9 (Favard’s theorem to bounded coefficients in the three-term recurrence relation). Let J
be a bounded Jacobi operator, then there exists a unique compactly supported probability measure µ
such that for any polynomial P the map U : P (J )e0 7→ P extends to a unitary operator `2(N) → L2(µ)
with U J = MU , where M : L2(µ) → L2(µ) is the multiplication operator (M f )(x) = x f (x). Moreover, let
pk =U ek , then the set

{
pk

}∞
k=0 is the set of orthonormal polynomials with respect to µ;∫

R
pk (x)pl (x)dµ(x) = δk,l .
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Proof. The map U is defined on the linear subspace
{

J k e0|k ∈N}
, which is dense in `2(N) by Lemma

3.7. For bounded J the measure µ is compactly supported. Therefore the polynomials are dense in
L2(µ). So U maps a dense subspace of `(N) into a dense subspace of L2(µ).
To prove that U is unitary, we can take polynomials P and Q. Then, using the spectral theorem,

〈P (J )e0,Q(J )e0〉 =
〈

Q(J )P (J )e0,e0

〉
=

∫
R

Q(J )P (J )dµ(x)

= 〈P,Q〉L2(µ) = 〈U P (J )e0,UQ(J )e0〉L2(µ) ,
(3.15)

which shows that 〈u, v〉 = 〈U u,U v〉. Because U is bounded it can uniquely be extended to a unitary
operator `2(N) → L2(µ).
Observe that for pk :=U ek ,∫

R
pk (x)pl (x)dµ(x) = 〈

pk , pl
〉

L2(µ) = 〈U ek ,U el 〉L2(µ) = 〈ek ,el 〉 = δk,l , (3.16)

where we used unitarity of U . The fact that pk is a polynomial of degree k, together with (3.16), yields
a set of orthogonal polynomials

{
pk

}∞
k=0 with respect to µ.

We want to prove that U Jek = MU ek for all k ∈ N. Notice that MU ek (x) = xpk (x), so it suffices to
show that

U Jek =U (ak ek+1 +bk ek +ak−1ek−1) = ak pk+1 +bk pk +ak−1pk−1

corresponds with the three-term recurrence relation. Observe that ak = 〈Jek ,ek+1〉 and bk = 〈Jek ,ek〉.
Then using the functional calculus and (3.14) yields

ak = 〈Jek ,ek+1〉 =
∫
R

x dEek ,ek+1 (x) =
∫
R

xpk (x)pk+1(x)dµ(x),

bk = 〈Jek ,ek〉 =
∫
R

x dEek ,ek (x) =
∫
R

x
(
pk (x)

)2 dµ(x).

In the proof of Theorem 3.3 we have obtained (3.9) and (3.8), the expressions for ak and bk , which
coincide with the previous obtained expressions.

The importance of Theorem 3.9 lies in the fact that it is the reverse of Theorem 3.3. It namely implies
that given ak and bk , the polynomials generated by (3.5) and (3.6) form an orthonormal set with
respect to some unique probability measure µ. As we now have for a given J a unique probability
measure µ, we can express the moment generating function in terms of the resolvent operator.

Remark. The moment generating function w for measure µ can be written in terms of the resolvent
operator R(z) for the Jacobi operator J :

w(z) =
∫
R

dµ(x)

x − z
= 〈

(J − z)−1e0,e0
〉= 〈R(z)e0,e0〉 , z ∈C\R.

It turns out that
∑∞

k=0 |pk (z)|2 does not exist for z ∈ C\R, as will be shown in Proposition 3.11. In
developing an expression for the resolvent operator we want to find a solution of J f = z f in `2(N).

Definition 3.10. The element f (z) = {
fk (z)

}∞
k=0 is called an asymptotically free solution to J f (z) =

z f (z) with z ∈C\R if it satisfies

1. (J f (z))k = z fk (z), for k ≥ 1

2.
∑∞

k=0 | fk (z)|2 <∞.
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Notice that the second requirement can only be fullfilled if limk→∞ fk (z) = 0 with z ∈ C\R, see also
page 17. On the other hand, an asymptotically free solution does not need to satisfy (3.6) of the
three-term recurrence relation.

Proposition 3.11. Let J be a bounded Jacobi operator. Take z ∈ C\R fixed. Then f (z) = (J − z)−1e0 is
an asymptotically free solution for the Jacobi operator J . There exists a unique w(z) ∈ C\R such that
fk (z) = w(z)pk (z)+rk (z), with pk ,rk the polynomials as in Theorem (3.3) and Lemma (3.4). Moreover,
w is the Stieltjes transform of the measure µ.

Proof. Consider w as the Stieltjes transform w(z) = ∫
R(x − z)−1 dµ(x). The relation

fk (z) = 〈
f (z),ek

〉= 〈
(J − z)−1e0, pk (x)e0

〉= 〈
pk (J − z)−1e0,e0

〉
(3.17)

=
∫
R

pk (x)

x − z
dµ(x) = w(z)pk (z)+ rk (z) (3.18)

is justified by Corollary 3.5. Also, by the same corollary, we know that
{

w(z)pk (z)+ rk (z)
}∞

k=0 ∈ `2(N),
so the second requirement of Definition 3.10 is fullfiled. The first requirement is satisfied due to

z fk (z) = w(z)zpk (z)+ zrk (z)

= w(z)
(
ak pk+1(z)+bk pk (z)+ak−1pk−1(z)

)+ (ak rk+1(z)+bk rk (z)+ak−1rk−1(z))

= ak
(
w(z)pk+1(z)+ rk+1(z)

)+bk
(
w(z)pk (z)+ rk (z)

)+ak−1
(
w(z)pk−1(z)+ rk−1(z)

)
= ak fk+1 +bk fk +ak−1 fk−1 =

(
J f (z)

)
k .

So we have found a w that does the job. Now we have to be sure this w is unique. So assume w is
not unique, i.e. there is a ŵ linearly independent of w , such that f̂k (z) = ŵ(z)pk (z)+ rk (z) is another
solution to J f (z) = z f (z). But then is f (z)− f̂ (z) a solution as well and so

∞∑
k=0

|w(z)− ŵ(z)|2|pk (z)|2 =
∞∑

k=0
| f (z)− f̂ (z)|2 <∞

implies that
∑∞

k=0 |pk (z)|2 <∞ for z ∈ C\R. Therefore p(z) = {
pk (z)

}∞
k=0, z ∈ C\R, is another asymp-

totically free solution and J p(z) = zp(z) shows that z is a non-real eigenvalue of J , contradicting the
fact that J is symmetric.

To find the spectral measure for the Jacobi operator J , we need the concept of the following Green
kernel for solution p of the three-term recurrence relation and f an asymptotically free solution of J ,
with z ∈C\R,

Gk,l (z) := 1

[ f , p]

{
fl (z)pk (z), k ≤ l
fk (z)pl (z), k > l ,

(3.19)

using the Wronskian. It is worth mentioning that the Green kernel can be stated easier if we choose
the asymptotically free solution f from Proposition 3.11. Then [ f , p] = [w p + r, p] = [r, p] = 1. Never-
theless, due to the lack of decomposition of the asymptotically free solution in the next chapter, we
are forced to define the Green kernel in this way. We consider

[ f , p]2
∞∑

k=0

∣∣Gk,l (z)
∣∣2 ·

∞∑
l=0

∣∣Gk,l (z)
∣∣2 =

(∣∣ fl (z)
∣∣2

l∑
k=0

∣∣pk (z)
∣∣2 +|pl (z)|2

∞∑
k=l+1

| fk (z)|2
)

·
(
| fk (z)|2

k∑
l=0

|pl (z)|2 +|pk (z)|2
∞∑

l=k+1
| fl (z)|2

)
.
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All terms on the right hand side are finite, in particular because
∑∞

k=0 | fk (z)|2 <∞ by definition of an
asymptotically free solution. Therefore {Gk,l }∞k=0, {Gk,l }∞l=0 ∈ `2(N). We use the Green kernel to define
for v ∈ `2(N) the map

G(z) : v 7→ (G(z))v, (G(z)v)k :=
∞∑

l=0
vl Gk,l (z) =

〈
v,Gk,·(z)

〉
. (3.20)

It is clear that this is a well-defined mapping. Notice that the second requirement of Definition 3.10
is needed for this mapping to be well-defined.

Proposition 3.12. The resolvent of J is given by (J − z)−1 =G(z) for z ∈C\R.

Proof. For z ∈C\R we know that the inverse (J − z)−1 exists and is bounded, because J is symmetric
and so C\R⊂ ρ(J ). So if we can show that (J − z)G(z) = 1 on the dense subspace D(N) of `2(N), then
by continuity we have proven the proposition.

((J − z)G(z)v)k =
∞∑

l=0
vl

(
ak−1Gk−1,l (z)+ (bk − z)Gk,l (z)+akGk+1,l (z)

)
= 1[

f , p
](k−1∑

l=0
vl pl (z)

(
ak−1 fk−1(z)+ (bk − z) fk (z)+ak fk+1(z)

)
+

∞∑
l=k+1

vl fl (z)
(
ak−1pk−1(z)+ (bk − z)pk (z)+ak pk+1(z)

)
+ vk

(
ak−1 fk (z)pk−1(z)+ (bk − z) fk (z)pk (z)+ak fk+1(z)pk (z)

))
= vk[

f , p
] (

ak−1 fk (z)pk−1(z)+ (bk − z) fk (z)pk (z)+ak fk+1(z)pk (z)
)

= vk[
f , p

] ak
(

fk+1(z)pk (z)− fk (z)pk+1(z)
)

= vk .

Here we have used that for k ≥ 1 both fk and pk are solutions of J f = z f , and thus satisfy the three-
term recurrence relation.

Proposition 3.12 tells us that G(z) is bounded. Indeed, z ∈C\R is contained in the resolvent set and so
by definition (J − z)−1 is bounded. Notice that in the proof we didn’t use the fact that the Wronskian
equals 1.

Theorem 2.20 gives the inversion formula with respect to the resolvent operator R. By Proposition
3.12 we know that for Jacobi operator J the resolvent is equal to the Green kernel. Therefore, the
spectral measure of J is:

Eu,v ((a,b)) = lim
δ↓0

lim
ε↓0

1

2πi

∫ b−δ

a+δ
〈G(x + iε)u, v〉−〈G(x − iε)u, v〉dx. (3.21)
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To find orthogonality relations we need to express Eu,v in terms of pk . Notice that,

〈G(z)u, v〉 =
∞∑

k=0
(G(z)u)k vk =

∞∑
k=0

∞∑
l=0

Gk,l (z)ul vk (3.22)

= ∑
k≤l

fl (z)pk (z)[
f , p

] ul vk +
∑
k>l

fk (z)pl (z)[
f , p

] ul vk (3.23)

= 1[
f , p

] (∑
k≤l

fl (z)pk (z)ul vk +
∑
k<l

fl (z)pk (z)uk v l

)
(3.24)

= 1[
f , p

] ∑
k≤l

fl (z)pk (z)(ul vk +uk v l )(1− 1

2
δk,l ), (3.25)

by switching letters k and l in the third equality, and using the Dirac delta function to avoid dubbling
when k = l . Because pk and rk are polynomials, pk (x + iε) ≈ pk (x) and rk (x + iε) ≈ rk (x) for small ε.
The same results holds for pk (x − iε) and rk (x − iε). Then, for small ε,

〈G(x + iε)u, v〉−〈G(x − iε)u, v〉 = 1[
f , p

] ∑
k≤l

[
fl (x + iε)− fl (x − iε)

]
pk (x − iε)(ul vk +uk v l )(1− 1

2
δk,l )

≈ [w(x + iε)−w(x − iε)][
f , p

] ∑
k≤l

pl (x)pk (x)(ul vk +uk v l )(1− 1

2
δk,l ).

where we have used the expression for fl (x) stated in Proposition 2.11. Using the fact that

w(x + iε)−w(x − iε) = w(x + iε)−w(x + iε) = w(x + iε)−w(x + iε) = 2iℑ(w(x + iε)),

and combining the previous results into (3.21) yields

Eu,v ((a,b)) = lim
δ↓0

lim
ε↓0

1

2πi

∫ b−δ

a+δ
2iℑ(w(x + iε))

∑
k≤l

pl (x)pk (x)(ul vk +uk v l )(1− 1

2
δk,l )dx.

= lim
δ↓0

lim
ε↓0

1

π

∫ b−δ

a+δ
ℑ(w(x + iε))

∑
k≤l

pl (x)pk (x)(ul vk +uk v l )(1− 1

2
δk,l )dx.

= ∑
k≤l

lim
δ↓0

lim
ε↓0

1

π

∫ b−δ

a+δ
ℑ(w(x + iε)pl (x)pk (x))dx · (ul vk +uk v l )(1− 1

2
δk,l ).

= ∑
k≤l

(∫
(a,b)

pl (x)pk (x)dµ(x)

)
· (ul vk +uk v l )(1− 1

2
δk,l )

=
∫

(a,b)

∑
k≤l

pl (x)pk (x) · (ul vk +uk v l )(1− 1

2
δk,l )dµ(x)

=
∫

(a,b)

∞∑
k=0

uk pk (x)
∞∑

l=0
vl pl (x)dµ(x),

where Fubini’s theorem justifies the interchange of integral and sum. This becomes

Eu,v ((a,b)) =
∫

(a,b)
(U u)(x)(U v)(x)dµ(x),

where U : `2(N) → L2(µ) is the unitary operator defined in Favard’s Theorem, i.e. (U u)(x) =∑
k uk pk (x)

and (U v)(x) =∑
l vl pl (x).

In this section we have worked on the next theorem, which can be seen as a summary of the work we
have done so far.
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Theorem 3.13. There is one-to-one correspondence between bounded Jacobi operators and probability
measures on Rwith compact support.

Proof. Let µ be the probability measure with compact support. Then by (3.2) we see that the mo-
ments are finite. Now we are able to construct the corresponding set of orthonormal polynomials by
Gram-Schmidt. Theorem 3.3 gives us the coefficients ak and bk which results in the Jacobi operator
J . Therefore we have the map ζ :µ 7→ J . Assume that ζ is not injective. Then there exist different mea-
sures µ1,µ2 such that they generate the same Jacobi operator J . But that means that they generate
the same orthogonal polynomials and thus the same moment generating function w . But then

µ1((a,b)) = lim
δ↓0

∫ b−δ

a+δ
ℑw(x + iε)dx =µ2((a,b)).

Therefore, ζ is injective.

3.3. Unbounded Jacobi operators
Up until now we have only spoken about bounded Jacobi operators. The advantage of having a
bounded Jacobi operator is that we were able to extend the operator to a symmetric operator on
`2(N). In Theorem 3.3 we have seen that if µ is compactly supported, then the coefficients ak and bk

are bounded. Lemma 3.8 showed that the coefficients are bounded if and only if J is bounded. The
following lemma occurs as an example in which the Jacobi operator J is unbounded.

Lemma 3.14. Let µ be a probability measure with finite moments. Consider the three-term recurrence
relation and its corresponding densely defined Jacobi operator J . If supp(µ) is unbounded, then J is
unbounded.

Proof. See for [8].

We would like to be able to work with the adjoint of an unbounded Jacobi operator J . In (3.13) it
was shown that J is a densely defined symmetric operator and for J bounded we could extend the
operator to `2(N). For unbounded J we still need to verify for which elements in `2(N) the adjoint
exists. This can be done by using symmetry of J , so J v = J∗v , on D(N). The question becomes for
which v =∑∞

k=0 vk ek in `2(N) holds

J∗v = (a0v1 +b0v0)e0 +
∞∑

k=1
(ak vk+1 +bk vk +ak−1vk−1)ek ∈ `2(N). (3.26)

Proposition 3.15. Let J be a Jacobi operator on D(N). The adjoint J∗ is given by (3.26) with domain

D∗ = {
v ∈ `2(N) | J∗v ∈ `2(N)

}
.

So we see by Proposition 3.15 that J∗ is the extension of J with maximal domain D∗. If J is essentially
self-adjoint, then there exists a unique self-adjoint extension. This can only be J∗.

Proof. By Definition 2.24, the domain D(J∗) of the adjoint J∗ consists of all v ∈ `2(N) such that the
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linear operator φv (u) = 〈Ju, v〉, u ∈D(N), is continuous and bounded. So let v ∈D∗, then

|φv (u)| =
∣∣∣∣∣∑

k
uk ak uk+1vk +bk uk vk +ak−1uk−1vk

∣∣∣∣∣
=

∣∣∣∣∣∑
k

uk
(
ak−1vk−1 +bk vk +ak vk+1

)∣∣∣∣∣
= ∣∣〈u, J∗v

〉∣∣≤ ‖u‖‖J∗v‖,

which shows that φv is bounded and thus continous, and so D∗ ⊆D(J∗).

To prove that D(J∗) ⊆D∗, let v ∈D(J∗). Then∣∣∣∣∣∑
k

uk
(
ak−1vk−1 +bk vk +ak vk+1

)∣∣∣∣∣= |φv (u)| ≤C‖u‖ (3.27)

for a constant C , justified by the boundedness of φv . Now let, for N > 0

uk =
{

(J∗v)k 0 ≤ k ≤ N ;
0 k > N .

Then∣∣∣∣∣ N∑
k

uk
(
ak−1vk−1 +bk vk +ak vk+1

)∣∣∣∣∣=
∣∣∣∣∣ N∑

k
(ak−1vk−1 +bk vk +ak vk+1)(ak−1vk−1 +bk vk +ak vk+1)

∣∣∣∣∣
=

N∑
k
|ak−1vk−1 +bk vk +ak vk+1|2 =

∑
k
|uk |2 = ‖u‖2,

which, combined with (3.27), shows that ‖u‖2 ≤C‖u‖ and so ‖u‖ ≤C . By letting N →∞ we see that
‖J∗v‖ ≤C , which proves that J∗v ∈ `2(N) or v ∈D∗. Therefore D(J∗) ⊆D∗.

Observe that, with the convention v−1 = 0,

J∗v =
∞∑

k=0
(ak vk+1 +bk vk +ak−1vk−1)ek =

∞∑
k=1

(ak vk+1 +bk vk +ak−1vk−1)ek = J∗v ,

were we used that the coefficients ak and bk are real. Therefore, J∗ commutes with complex conjuga-
tion and by the remark on page 11 the deficiency indices are equal: n+ = n−. The solution of J∗ f = z f
is completely determined by f0 = 〈

f ,e0
〉

. If no such f exists on C\R, then Nz =;. Now assume f is
a solution of J∗ f = z f on C\R. Let g be another solution, then g0 = 〈

g ,e0
〉

and for λ ∈ C such that
g0 =λ f0 we find that g =λ f . Therefore Nz is either zero or one dimensional.

In the case that Nz is zero-dimensional, J is essentially self-adjoint by Proposition 2.30. For deficiency
indices (0,0) we have a corollary.

Corollary 3.16. Consider the unbounded Jacobi operator (J ,D(N)). Then the following statements are
equivalent:

1. (J ,D(N)) is essentially self-adjoint.

2.
∑∞

k=0 |pk (z)|2 =∞ for all z ∈C\R.

3.
∑∞

k=0 |pk (z)|2 =∞ for some z ∈C\R.
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Proof. Note that the only possible element in Nz = {v ∈D∗|J∗v = zv} is {pk }∞k=0.
(1) ⇔ (2). (J ,D(N)) is essentially self-adjoint if and only if by Proposition 3.15 Nz =∅ for all z ∈C\R if
and only if p(z) ∉D∗ for all z ∈C\R if and only if p(z) ∉ `2(N) for all z ∈C\R.
(2) ⇒ (3). Trivial.
(3) ⇒ (2). Let z ∈ C\R be such that

∑∞
k=0 |pk (z)|2 =∞, then p(z) ∉ D∗ and thus p(z) ∉ Nz . It follows

that dim Nz = 0 and by the remark on page 11 dim Nz = 0 for all z ∈C\R. This, in return, implies that
p(z) ∉ `2(N).

If J has deficiency indices (1,1), then the self-adjoint extensions, say (Jt ,D t ), satisfy

(J ,D(N))( (Jt ,D t )( (J∗,D∗).

Notice that by Proposition 3.15 every self-adjoint extension is a restriction of (J∗,D∗) on the smaller
domain D t . The collection of self-adjoint extensions form a one-parameter family.

In order to say more about the domains of the self-adjoint extensions in the next lemma, we need an
expression for the sesquilinear form B described in (2.7). Using the convention u−1 = 0 = v−1 again
yields

B(u, v) = 〈
J∗u, v

〉−〈
u, J∗v

〉= lim
N→∞

(
N∑

k=0
(J∗u)k vk −

N∑
k=0

uk (J∗v)k

)

= lim
N→∞

(
N∑

k=0
(ak uk+1 +bk uk +ak−1uk−1)vk −uk (ak v̄k+1 +bk v̄k +ak−1v̄k−1)

)

= lim
N→∞

(
a0(u1v̄0 − v̄1u0)+

N∑
k=1

[u, v̄]k − [u, v̄]k−1

)
= lim

N→∞
[u, v̄]N ,

by cancellation of the bk and the cancellation due to the telescoping series. By Cauchy-Schwarz,
u, v ∈ D∗ implies | 〈J∗u, v〉 | ≤ ‖J∗u‖‖v‖ <∞. It follows that |B(u, v)| < ∞ and so the limit exist. Ex-
pressing B in terms of the Wronskian has the benefit that the Wronskian is much easier to calculate
than B(u, v).

With the previous result we can describe the domains of all self-adjoint extensions of J .

Lemma 3.17. Assume that J has deficiency indices (1,1), then the self-adjoint extensions are in one-
to-one correspondence with (J∗,Dθ), θ ∈ [0,2π), where

Dθ =
{

v ∈D∗ | lim
N→∞

[v,e iθξi +e−iθξ−i ]N = 0

}
where J∗ξ±i =±iξ±i , (ξi )k = (ξ−i )k and ‖ξ±i‖ = 1.

Proof. Because N−i and Ni are one-dimensional, we can consider the basis elements ξ−i ∈ N−i and
ξi ∈ Ni , such that cξ±i ∈ N±i for all c ∈C. Let U be an isometric bijection as described in Proposition
2.30. It follows that U will rotate the element cξ−i with a phase factor, say Uθ (cξi ) = ce2iθξ−i . Again
by Proposition 2.30 we then see that the domains of the self-adjoint extensions are of the form

D(Sθ) =
{

u + c(ξi +e2iθξ−i ) | u ∈D(J∗∗),c ∈C
}

.

Note that B(ξi ,ξi ) = 2i , B(ξ−i ,ξ−i ) = −2i and B(ξi ,ξ−i ) = 0. Then for v = u + c(ξi + e2iθξ−i ) ∈ D(Sθ)
and u ∈D(J∗∗),

B(v,e iθξi +e−iθξ−i ) = B
(
u + c(ξi +e−2iθξ−i ),e iθξi +e−iθξ−i

)
= B

(
u,e iθξi +e−iθξi

)
. (3.28)
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For v = cξi ∈ Ni we notice that

B(u, v) = 〈
J∗u, v

〉−〈
u, J∗v

〉= 〈
J∗u,cξi

〉−〈
u, J∗cξi

〉
= 〈

J∗u,−i c J∗ξi
〉−〈u, i cξi 〉 = i

〈
J∗u, J∗(cξi )

〉+ i 〈u,cξi 〉
= i 〈u,cξi 〉J∗ = i 〈u, v〉J∗

using the graph norm stated in Proposition 2.30. This proposition also tells us that for u ∈D(J∗∗) and
v ∈ Ni yields B(u, v) = i 〈u, v〉J∗ = 0. In a similar way, B(u, v) = −i 〈u, v〉J∗ = 0 for v ∈ N−i . Thus, by
linearity of B ,

B
(
u,e iθξi +e−iθξi

)
= e iθB (u,ξi )+e−iθB (u,ξi ) = 0,

which results in B(v,e iθξi +e−iθξ−i ) = 0 due to (3.28).

Some previous results will change in the unbounded case. Lemma 3.8 now implies that J is un-
bounded if at least one sequence {ak } or {bk } is unbounded. Favard’s theorem, Theorem 3.9, remains
valid for a self-adjoint extension of J , although µ is not compactly supported. Still, µ has finite mo-
ments, because

∫
R xk dµ(x) = 〈

J k e0,e0
〉 <∞. Theorem 3.13 can not be extended in the unbounded

case. However, the spectral theorem tells us that for every unbounded self-adjoint operator T there
is a unique spectral measure E . Related is the moment problem, explained in the next section.

3.4. Jacobi operators and the moment problem
Consider the Hilbert space L2(µ) of square µ-integral functions. We define the moments of µ by
mn := ∫

R xn dµ(x) for all nonnegative integers n. The sequence (mn)n∈N is called the moment se-
quence of µ.

Moments can be found in many fields of mathematics and physics. Having a measure immediately
gives back the corresponding moments. But of more interest is the following Hamburger moment
problem.

The Hamburger moment problem consists of two questions:

1. Given a real sequence (sn)n∈N, does there exist a positive Borel measure µ such that (sn)n∈N is
the associated moment sequence?

2. If there exist a positive measure, is this measure uniquely determined?

If there exist such a positive Borel measure µ and it is unique, then the moment problem is called
determinate. If not, the moment problem is called indeterminate. Without loss of generality we can
assume that s0 = 1. The first question is answered in Hamburger’s theorem [10, Theorem 3.8], which
involves positive definite sequences. The second question of the Hamburger moment problem will
be discussed here.

The moments are uniquely determined by the Jacobi operator, because
∫
R xn dµ(x) = 〈J ne0,e0〉. Ja-

cobi operators are very useful in finding solutions to the Hamburger moment problem, i.e. finding
corresponding measures to the moment sequence. The next theorem is a powerful tool in answering
the second question of the Hamburger moment problem [10, 6.10].

Theorem 3.18. The moment problem for a sequence s is indeterminate if and only if the corresponding
Jacobi operator J is not essentially self-adjoint if and only if p(z) ∈ `2(N) for some z ∈C\R.

Note that the last implication follows directly from Corollary 3.16.

27





4
The q-Meixner polynomials

In this chapter we study a difference operator that is an extension of the Jacobi operator for so-called
q-Meixner polynomials. We end up with an orthogonality relation for q-Meixner polynomials.

4.1. q-Meixner polynomials
Now it is time to use the developed theory to find the spectral measure considering q-meixner poly-
nomials. This measure turns out to be the key to an orthogonality relation regarding these polyno-
mials. To define these polynomials we need some basic definitions first. Let q ∈ (0,1) be fixed. Then
for x ∈C and n ∈N∪ {∞} we define the q-shifted factorials by

(x)0 := 1

(x)n :=
n−1∏
k=0

(1−xqk ) for n ≥ 1, including ∞

(x1, x2, . . . , xk )n :=
k∏

j=1

(
x j

)
n .

Furthermore we define the basic hypergeometric series rϕs for z ∈C by

rϕs

(
x1, x2 . . . , xr

y1, y2, . . . , ys
; z

)
:=

∞∑
k=0

(x1, x2 . . . , xr )k(
q, y1, y2 . . . , ys

)
k

(
(−1)k qk(k−1)/2

)1+s−r
zk ,

where we assume that yi 6= q−N. Many identities of basic hypergeometric series are given by Gasper
and Rahman in [4]. Let’s define Mn(γ) by

Mn(γ; a,b) := 2ϕ1

(
q−n ,γ

aq
;
−qn+1

b

)
, (4.1)

which in many literature is called the q-Meixner polynomials. For convenience we rather define the
q-Meixner polynomials as

mn(γ; a,b) := 1(
q
)

n

Mn(γ; a,b), (4.2)

with a 6= q−N, b 6= 0 and γ ∈C.
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Remark. To have proper conditions on the Jacobi operator and to have a positive spectral measure
we need some conditions on a and b:

1. a < 0

2. q2 < b < 1.

Consider the q-interval
I := {−qn+1/b | n ∈N}∪{−qn+1/a | n ∈N}

. (4.3)

The space of complex-valued functions f : I → C is denoted by Fq . For the restriction on −qN+1/a
and −qN+1/b we denote the space by F a

q and F b
q respectively.

Definition 4.1. Let f ∈Fq . Then, for x 6= −q/b,−q/a, the difference operator L is defined by

L f (x) := A(x)
[

f (qx)− f (x)
]+B(x)

[
f (x/q)− f (x)

]
,

with

A(x) :=
(

a + 1

x

)(
b + 1

x

)
B(x) := q

x

(
1+ 1

x

)
.

To define the endpoints of L on the q-interval I we set B(−q/b) := 0 and B(−q/a) := 0. Later we will
see that mn is an eigenfunction of the operator L. We define the weight function for x ∈ I ,

w(x) :=
(−qx

)
∞ |x|

(−ax,−bx)∞
.

The weight function is positive on the q-interval I , assuming the conditions on a and b in the remark
on page 30. Also notice that w is symmetric in a and b. We will deduce the weight function in
section 4.2. Now we define the Hilbert spaces in the weighted L2(R, w) space, using the notation
xa

n =−qn+1/a and xb
n =−qn+1/b,

Ha :=
{

f ∈F a
q

∣∣∣ ∞∑
n=0

| f (xa
n )|2w(xa

n ) <∞
}

;

Hb :=
{

f ∈F b
q

∣∣∣ ∞∑
n=0

| f (xb
n)|2w(xb

n) <∞
}

,

with inner products
〈

f , g
〉

a := ∑∞
n=0 w(xa

n ) f (xa
n )g (xa

n ) and
〈

f , g
〉

b := ∑∞
n=0 w(xb

n) f (xb
n)g (xb

n) respec-
tively. This gives rise to the Hilbert space H = Ha ⊕Hb with inner product

〈
f , g

〉 = 〈
fa , ga

〉
a +〈

fb , gb
〉

b for f : F a
q ⊕F b

q →C, f = fa + fb .

Remark. The operator L|F a
q

is a three-term operator which is equivalent to the Jacobi operator for
the q-Meixner polynomials, as can be seen in section 4.2. So L can be considered as a generalization
of a Jacobi operator, where L is a sum of two Jacobi operators.

For the proper conditions on H for L to be self-adjoint, we define

f (0+) = limn→∞ fa(xn), f (0−) = limn→∞ fb(xn),

f ′(0+) = limn→∞ a fa (xn+1)− fa (xn )
qn+1(1−q) , f ′(0−) = limn→∞ b fb (xn+1)− fb (xn )

qn+1(1−q) ,

provided the limits exist.

In section 4.3 we are going to prove the next theorem about self-adjointness of L.
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Theorem 4.2. Consider the difference operator L with domain

D := {
f ∈H | L f ∈H , f (0+) = f (0−), f ′(0+) = f ′(0−)

}
.

Then (L,D) is self-adjoint. Moreover, the spectrum of L consists of the point spectrum

σp (L) = {−ab(1+γ) | γ ∈−q−N−1}

and there is no continuous spectrum.

The next corollary will be decuded from the theorem, which indirectly gives an orthogonality relation
for certain eigenfunctions of L.

Corollary 4.3. Define the function

ψn(x) =ψn(x; a,b; q) :=
(−ax/qn ,−bx

)
∞(−qx

)
∞

2ϕ1

(
a/qn+1, q−n

−ax/qn ; q,
qn+2

b

)
,

then for n,m ∈N
∑
x∈I

ψn(x)ψm(x)w(x) = δn,m

(
a/b,bq/a

)
∞

(
q−n

)
n qn+1

−a
(
qn+2/b, qn+2/a

)
∞

( a

b

)n
.

The prove will be given at the end of this chapter. We also give some other related orthogonality
relations for both the q-Meixner and the big q-Laguerre polynomials.

4.2. Jacobi operator and its unitary equivalent
An important three-term recurrence relation for Mn , stated in [7, 9.10], is

q2n+1(1−γ)Mn(γ) = b
(
1−aqn+1)Mn+1(γ)− [

b
(
1−aqn+1)+q

(
1−qn)(

b +qn)]
Mn(γ)

+q
(
1−qn)(

b +qn)
Mn−1(γ).

This three-term recurrence relation changes for mn into

q2n+1 1

b
(1−γ)mn(γ) = (

1−qn+1)(1−aqn+1)mn+1(γ)−
[(

1−aqn+1)+q
(
1−qn)(

1+ qn

b

)]
mn(γ)

+q

(
1+ qn

b

)
mn−1(γ), (4.4)

by dividing by b
(
q
)

n and using the identity
(
q
)

n+1 = (
1−qn+1

)(
q
)

n . Let φγ be a solution to the
eigenvalue equation

(L f )(x) =µγ f (x), x ∈ I ,

with eigenvalue µγ =−ab(1+γ), γ ∈C. Then

−ab(1+γ)φγ(x) = 1

x2 (1+ax)(1+bx)
(
φγ(qx)−φγ(x)

)+ q

x2 (1+x)
(
φγ(x/q)−φγ(x)

)
and after rewriting we get

−abx2(1+γ)φγ(x) = (1+ax)(1+bx)φγ(qx)− [
(1+ax)(1+bx)+q(1+x)

]
φγ(x)+q(1+x)φγ(x/q).

Adding (abx2 −ax2)φγ(x) to both sides yields

−ax2(1+bγ)φγ(x) = (1+ax)(1+bx)φγ(qx)− [
(1+bx)+q(1+ax/q)(1+x)

]
φγ(x)+q(1+x)φγ(x/q).
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Now consider xa
n =− 1

a qn+1. Then

−q

a
q2n+1(1+bγ)φγ(xa

n ) = (
1−qn+1)(1− b

a
qn+1

)
φγ(xa

n+1)−
[(

1− b

a
qn+1

)
+q

(
1−qn−1)(1− qn+1

a

)]
φγ(xa

n )

+q

(
1− qn+1

a

)
φγ(xa

n−1).

Finally, we are able to compare this with the three-term recurrence relation (4.4). If we consider
mn(Γ; A,B), then it follows that A = b

a , B =− a
q and Γ=−bγ, and so mn(−bγ; b

a ,− a
q ) satisfy the same

three-term recurrence relation as φγ(xn). Consequently, mn is a solution to the same eigenvalue
equation.

After a transformation by gn(γ) := νnφγ(xn) we are able to obtain the three-term recurrence relation

γgn(γ) =− (1−qn+1)(a −bqn+1)

bq2n+2

νn

νn+1
gn+1(γ)+

(
(1−qn+1)(a −bqn+1)

bq2n+2 − q(qn+1 −a)

bq2n+2 − bq2n+2

bq2n+2

)
gn(γ)

+ q(qn+1 −a)

bq2n+2

νn

νn−1
gn−1(γ). (4.5)

To fullfill the requirements of the three-term recurrence relation for an it needs to hold that

− (1−qn+1)(a −bqn+1)

bq2n+2

νn

νn+1
= q(qn+2 −a)

bq2n+4

νn+1

νn
.

With these identity we can form the recurrence

ν2
n+1

ν2
n

= q(1−qn+1)(a −bqn+1)

(a −qn+2)
,

which yields

ν2
n =

(
q,bq/a

)
n qn(

q2/a
)

n

ν2
0.

Together with (4.5) this yields the three-term reccurence relation for gn :

an =− (1−aqn)(1−bqn)

abq2n

√
(1−qn+1)

q(1−aqn)(1−bqn)

=−
√

q(1−qn+1)(1−aqn)(1−bqn)

abq2n+1

and

bn = 1−aqn −bqn −q(qn −1)

abq2n = 1+q − (a +b +q)qn

abq2n .

Without loss of generality we take ν2
0 =− q

a
(q2/a)∞

(q,bq/a)∞
, which yields

gn(γ) = νnφγ(xn), νn =
√ (−qxn

)
∞ xn

(−axn ,−bxn)∞

for xn =− 1
a qn+1. Doing the same calculations for xn =− 1

b qn+1 will lead to the same νn . Therefore in
general the weight function of section 4.2 is defined by w(xn) = ν2

n , i.e.

w(x) :=
(−qx

)
∞ |x|

(−ax,−bx)∞
,∀x ∈ I .
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Now define the Jacobi operator J on `2(N) by

Jen :=
{

anen+1 +bnen +an−1en−1, n ≥ 1,
a0e1 +b0e0, n = 0.

Also define M : Ha → `2(N) by M f (xa
n ) := νn f (xa

n ). Then M is unitary,

〈
f , f

〉
a =

∞∑
n=0

| f (xa
n )|2w(xa

n ) (4.6)

=
∞∑

n=0
|νn f (xa

n )|2 = 〈
M f , M f

〉
`2 , (4.7)

and MLM−1 = J as can be seen from (4.5). Therefore spectral analysis of L on Ha is equivalent to
spectral analysis of J on `2(N).

4.3. A suitable domain for L
In this section we are going to prove the first part of Theorem 4.2. If we restrict the domain of L to
Ha , then L is not essentially self-adjoint as will be shown in Proposition 4.6. The disandvantage of
this situation is that it turns out to be hard to find an explicit description of the spectral measure of a
self-adjoint extension of L.

We define the q-Meixner function by

φγ(x; a,b) := 2ϕ2

( −1/x,−1/γ
a,b

; abγx

)
x,γ ∈C\{0}.

Then φγ is an eigenfunction of L. The next two lemma’s can be found in [5, 3.7 and 3.8].

Lemma 4.4. Let φγ be the q-Meixner function. Then φγ satisfies Lφγ(x) =µγφγ(x) for x ∈R\{0}, γ ∈C
and µγ =−ab(1+γ).

Using the Jackson’s transformation, [4, Appendix III], we get the 2ϕ1 relation

φγ(x; a,b) := (−ax)∞
(a)∞

2ϕ1

( −1/x,−bγ
b

;−ax

)
.

To obtain the spectral measure for L we need an asymptotically free solution, as been discussed in
the previous chapter. The proof of the previous and next lemma can be found in [5].

Lemma 4.5. Let φγ be the q-Meixner function. Then

lim
n→∞φγ(xn) = lim

x→0
φγ(x) = 1

(a)∞
1ϕ1

( −bγ
b

; a

)
(4.8)

The lemma will be used to show that the operator L restricted on Ha would have not been essentially
self-adjoint.

Proposition 4.6. The unbounded operator L restricted to Ha is not essentially self-adjoint.

This proposition implies that the Jacobi operator J is not essentially self-adjoint and so the moment
problem for the q-Meixner polynomials is indeterminate.
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Proof. The proposition has been proven if we find an eigenfunction of L such that a corresponding
eigenvalue is contained in C\R. So let γ ∈C such that eigenvalue µγ of eigenfunction φγ is contained
in C\R. Due to Lemma 4.5,

lim
n→∞φγ(xa

n ) = lim
x→0

φγ(x) =Cγ,

with constant Cγ defined by the r.h.s of (4.8). Notice that w(xa
n ) =O (qn) so we have shown that

∞∑
n=0

|νnφγ(xa
n )|2 =

∞∑
n=0

|φγ(xa
n )|2w(xa

n ) <∞. (4.9)

By Corollary 3.16 the claim follows.

We also know that L restricted on Ha has deficiency indices (1,1) and so the eigenspace Nz is one
dimensional. It coincide with the statement in proposition 2.30 that Nz 6= ; with z ∈C\R. From now
on we consider L = J a + J b with J a and J b the Jacobi operators on Ha and Hb respectively.

Let’s define the truncated inner product for f , g ∈Fq by

〈
f , g

〉
k,l :=

k∑
n=0

f (xa
n )g (xa

n )w(xa
n )+

l∑
n=0

f (xb
n)g (xb

n)w(xb
n).

Notice that limk,l→∞
〈

f , g
〉

k,l =
〈

f , g
〉

for f , g ∈H . The Wronskian is defined by

W ( f , g )(x) := A(x)w(x)
[

f (x)g (qx)− f (qx)g (x)
]

=
(−qx

)
∞(−aqx,−bqx

)
∞ |x|

[
f (x)g (qx)− f (qx)g (x)

]
= (1−q)

(−qx
)
∞(−aqx,−bqx
)
∞

[
f (x)

g (qx)

(1−q)|x| −
f (qx)

(1−q)|x|g (x)

]
.

Lemma 4.7. For f , g ∈Fq and k, l ∈Nwe have〈
L f , g

〉
k,l −

〈
f ,Lg

〉
k,l =−W ( f , g )(−qk+1/a)−W ( f , g )(−q l+1/b).

Proof. Observe that

〈
L f , g

〉
k,l−

〈
f ,Lg

〉
k,l =

k∑
n=0

[
L f (xa

n )g (xa
n )− f (xa

n )Lg (xa
n )

]
w(xa

n )+
l∑

n=0

[
L f (xb

n)g (xb
n)− f (xb

n)Lg (xb
n)

]
w(xb

n).

For x ∈ I combining[
L f (x)g (x)− f (x)Lg (x)

]
w(x) = A(x)w(x)

[
f (qx)g (x)− g (qx) f (x)

]
−B(x)w(x)

[
f (x)g (q−1x)− g (x) f (q−1x)

]
together with

A(x)w(x) = B(qx)w(qx)

and B(xa
0 ) = B(xb

0 ) = 0 gives the identity[
L f (x)g (x)− f (x)Lg (x)

]
w(x) =

{
W ( f , g )(q−1x)−W ( f , g )(x), x ∈ I \{xa

0 , xb
0 }

−W ( f , g )(x), x ∈ {xa
0 , xb

0 }
.

Substitution into the first expression yields the final identity by the telescoping sum.
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Lemma 4.8. For domain D as described in Theorem 4.2 we have that (L,D) is a symmetric operator.

Proof. Let f , g ∈D. We use Lemma 4.7 where we let k, l →∞. For the first limit we have

W ( f , g )(0−) = lim
k→∞

(1−q)
(−qxb

k

)
∞(−aqxb

k ,−bqxb
k

)
∞

[
f (xb

k )
bg (xb

k+1)

(1−q)qk+1
− b f (xb

k+1)

(1−q)qk+1
g (xb

k )

]
= (1−q)

[
f (0−)g ′(0−)− f ′(0−)g (0−)

]
.

Likewise, for the other limit we obtain

W ( f , g )(0+) = lim
k→∞

(1−q)
(−qxa

k

)
∞(−aqxa

k ,−bqxa
k

)
∞

[
f (xa

k )
−ag (xa

k+1)

(1−q)qk+1
− −a f (xa

k+1)

(1−q)qk+1
g (xa

k )

]
=−(1−q)

[
f (0+)g ′(0+)− f ′(0+)g (0+)

]
.

Because we required for f ∈D that f (0−) = f (0+) and f ′(0−) = f ′(0+), we get

W ( f , g )(0−) =−W ( f , g )(0+)

and so by Lemma 4.7 it follows that L is symmetric on D.

The next proposition now proofs the first claim of Theorem 4.2 and will be in line with the proof given
in [9, section 2].

Proposition 4.9. The operator (L,D) is self-adjoint.

Proof. By Lemma 4.8 we know that (L,D) is symmetric, so D ⊂ D∗. Therefore the other inclusion
remains to show, D∗ ⊂D. So consider g ∈D∗ ⊂Fq .
Our first claim is that (L∗g )(x) = (Lg )(x). For f ,h ∈ Fq with f finitely supported, Lemma 4.7 shows
that

〈
L f ,h

〉= 〈
f ,Lh

〉
. Therefore, using h = g , we obtain〈

f ,Lg
〉= 〈

L f , g
〉= 〈

f ,L∗g
〉

.

In particular, this holds for function f that is only supported on one x ∈ I and so the claim follows.

For all f ∈D, by Lemma 4.7, we get

0 = 〈
L f , g

〉−〈
f ,L∗g

〉= 〈
L f , g

〉−〈
f ,Lg

〉=−W ( f , g )(0+)−W ( f , g )(0−).

As can be seen in the proof of Lemma 4.8 this can only hold when g (0+) = g (0−) and g ′(0+) = g ′(0−).
This shows that g ∈D and so the proposition has been proven.
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4.4. Orthogonality relation
It will turn out that finding the spectral measure almost immediately results in the desired orthogo-
nality relation of Corollary 4.3. To get the spectral measure we need the Green kernel first. For this
we have to find proper eigenvectors of L that satisfies the right boundary conditions.

4.4.1. Eigenvectors
To define the Green kernel we use the following eigenfunctions of L with eigenvalue µγ.

Lemma 4.10. Define the function ψγ by

ψγ(x) :=ψγ(x; a,b; q) =
(
qa/b, aqγx,−bx

)
∞(−qx,−q/bγ

)
∞

2ϕ2

( −aγ,−ax
aqγx, qa/b

; q,
q2

b

)
,

then ψγ satisfies Lψγ =µγψγ on I defined in (4.3).

In [5, 3.10] a proof can be found for the function
(−qγ

)−1
∞ ψγ(x). Notice that ψγ is not symmetric in a

and b. The functionψ†
γ(x) :=ψγ(x;b, a; q) is therefore another solution to the eigenvalue equation of

L. Furthermore, we can see that limx→0ψγ(x) and limx→0ψ
†
γ(x) exist. Equivalent limn→∞ψγ(xa

n ) and

limn→∞ψ†
γ(xb

n) exist. This provides the asymptotically free solutions ψγ(xa
n )ν(xa

n ) and ψ†
γ(xb

n)ν(xb
n).

The next lemma provides the poles of ψγ(x).

Lemma 4.11. Let n ∈N. The mapping γ 7→ψγ(− 1
a qn+1) has simple poles γ=− 1

b qm , m ∈N. Likewise,

the mapping γ 7→ψ†
γ(− 1

b qn+1) has simple poles γ=− 1
a qm .

Proof. Because
(
aqγx

)
∞ 2ϕ2(−aγ,−ax; aqγx, qa/b) is analytic in γ, by definition of ψγ, the poles of

ψγ are the zeros of
(−q/bγ

)
∞. The same reasoning can be applied for ψ†

γ.

With a transformation formula for q-hypergeometric functions, [4, (III.4)], we obtain

ψγ(x) =
(
aqγx,−bx

)
∞(−qx

)
∞

2ϕ1

( −aγ,−qγ
aqγx

; q,− q

bγ

)
, (4.10)

which will be helpfull in the analysis.

Now we have to calculate the Green kernel, using ψγ and ψ†
γ. We need an expansion, say

φγ(x) =αψγ(x)+βψ†
γ(x). (4.11)

To obtain α and β we will use the symmetric expression of φγ and the three-term transformation
formula, [4, III.32], with the condition that |γ| > 1:
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φγ(x; a,b) =
(
abγx,−1/γ

)
∞

(a,b)∞
2ϕ1

( −aγ,−bγ
abγx

; q,−1

γ

)

=
(
abγx,−1/γ

)
∞

(a,b)∞

( (−bγ,−bx, a, q/a
)
∞(

abγx,b/a,−1/γ,−qγ
)
∞

2ϕ1

( −aγ,−q/bx
aq/b

; q,−qx

)
+(−aγ,−ax,b, q/b

)
∞(

abγx, a/b,−1/γ,−qγ
)
∞

2ϕ1

( −bγ,−q/ax
bq/a

; q,−qx

))

=
(−bγ,−bx, q/a

)
∞(

b,b/a,−qγ
)
∞

2ϕ1

( −aγ,−q/bx
aq/b

; q,−qx

)
+(−aγ,−ax, q/b

)
∞(

a, a/b,−qγ
)
∞

2ϕ1

( −bγ,−q/ax
bq/a

; q,−qx

)

=
(−bγ,−bx, q/a

)
∞(

b,b/a,−qγ
)
∞

·
(−q/bγ, aqγx

)
∞(

aq/b,−qx
)
∞

2ϕ1

( −aγ,−qγ
aqγx

; q,−q/bγ

)
+(−aγ,−ax, q/b

)
∞(

a, a/b,−qγ
)
∞

·
(−q/aγ,bqγx

)
∞(

bq/a,−qx
)
∞

2ϕ1

( −bγ,−qγ
bqγx

; q,−q/aγ

)

=
(−bγ, q/a,−q/bγ

)
∞(

b,b/a, aq/b,−qγ
)
∞
ψγ(x)+

(−aγ, q/b,−q/aγ
)
∞(

a, a/b,bq/a,−qγ
)
∞
ψ†
γ(x)

with

α=
(−bγ, q/a,−q/bγ

)
∞(

b,b/a, aq/b,−qγ
)
∞

, β=
(−aγ, q/b,−q/aγ

)
∞(

a, a/b,bq/a,−qγ
)
∞

.

To get the Wronskian [ψγ,ψ†
γ] in Proposition 4.13 we need to find the Wronskian between φγ and ψγ

first. To obtain this we use the fact that we know that ma,b
n (γ) := mn(γ; a,b) on I>0 is a solution to the

eigenvalue problem. It can be easily seen that mb,a
n (γ) := mn(γ;b, a) is a solution as well on I<0.

Proposition 4.12. mb,a
n (γ) can be written as

mb,a
n (γ) = cψγ(xn),

with c = (−q/bγ)∞
(aq/b,q)∞

and xn =− 1
b qn+1.

Proof. Recall that

mb,a
n (γ) = mn

(−aγ; a/b,−b/q
)= 1(

q
)

n
2ϕ1

(
q−n ,−aγ

aq/b
;

qn+2

b

)
,

and

ψγ(xn) =
(−aqn+2γ/b, qn+1

)
∞(

qn+2/b
)
∞

2ϕ1

( −aγ,−qγ
−aqn+2γ/b

; q,− q

bγ

)
.

By Heine’s transformations of 2ϕ1 series, [4, III.2], we obtain the relation

2ϕ1

(
q−n ,−aγ

aq/b
;

qn+2

b

)
=

(−q/bγ,−aqn+2γ/b
)
∞(

aq/b, qn+2/b
)
∞

2ϕ1

( −aγ,−qγ
−aqn+2γ/b

; q,− q

bγ

)

So

mb,a
n (γ) =

(−q/bγ
)
∞(

aq/b, q
)
∞
ψγ(xn).
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We can use this to show that

mb,a
0 (γ) = 1 =⇒ψγ(x0) = (aq/b,q)∞

(−q/bγ)∞
mb,a

1 (γ) = b−q2−aq2γ−aq
(1−q)(b−aq) =⇒ψγ(x1) = 1−q2/b−aq2γ/b−aq/b

(1−q)(1−aq/b)
(aq/b,q)∞
(−q/bγ)∞

.

To find the Wronskian we need the contiguous relation [4, Ex. 1.10 (iii)]

q(1− A/C )ϕ(A/q)+ (1− A)(1− AB Z /C )ϕ(Aq) = [1+q − A− Aq/C + A2Z (1−B/A)/C ]ϕ(A),

where ϕ(A) := 2ϕ1(A,B ;C ; q, Z ). Now using B =−γ−1, C = b, Z =−aγ yields the identity

q(1−q/b)ϕ(1)+ (1−q)
(
1−aq/b

)
ϕ(q2) = [

1−q2/b −aq2γ/b −aq/b
]
ϕ(q).

Multiplying by (−aγ)∞
(a)∞

and realising that ϕ(1) = 1 gives us the equality, for xb
n =− 1

b qn+1,

q
(
1−q/b

) (−aγ
)
∞

(a)∞
= [

1−q2/b −aq2γ/b −aq/b
]
φγ(xb

0 )− (1−q)
(
1−aq/b

)
φ(xb

1 ).

After some straightforward calculations the Wronskian turns out to be

[
φγ,ψγ

]= (
q2/b

)
∞(

aq2/b, q2
)
∞ q/b

(
ψγ(x1)φγ(xb

0 )−ψγ(x0)φγ(xb
1 )

)
=

(
q2/b

)
∞(

aq2/b, q2
)
∞ q/b

q(1−q/b)

(1−q)(1−aq/b)

(−aγ, aq/b, q
)
∞(

a,−q/bγ
)
∞

= b
(
q/b,−aγ

)
∞(

a,−q/bγ, q
)
∞

Now we are able to calculate the Wronskian between ψγ and ψ†
γ.

Proposition 4.13.[
ψγ,ψ†

γ

]
= −b

(
a/b,bq/a,−qγ

)
∞(−q/aγ,−q/bγ, q

)
∞

, γ 6∈ − 1

a
q−N−1 ⋃− 1

b
q−N−1.

Proof. Substitution of ψ†
γ(x) = 1

β

(
φγ(x)−αψγ(x)

)
yields

[
ψ†
γ,ψγ

]
= 1

β

[
φγ,ψγ

]= (
a, a/b,bq/a,−qγ

)
∞(−aγ, q/b,−q/aγ

)
∞

b
(
q/b,−aγ

)
∞(

a,−q/bγ, q
)
∞

(4.12)

Then by
[
ψγ,ψ†

γ

]
=−

[
ψ†
γ,ψγ

]
the claim has been proved.

We are now in the position to define the Green kernel as in (3.19) by

Gγ(x, y) := 1

[ψγ,ψ†
γ]

{
ψγ(x)ψ†

γ(y), x ≤ y

ψγ(y)ψ†
γ(x), x > y,

with x, y ∈ I . Then the resolvent operator (L− z)−1 =G(z), as in Propositon 3.12, where

(G(z) f )(x) :=
〈

f ,Gz (x, ·)
〉

, z ∈C\R.
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Lemma 4.14. Denote

Ssing :=−q−N−1.

For x, y ∈ I , the Green kernel γ 7→Gγ(x, y) has simple poles at Ssing and is analytic on C\Ssing.

Proof. The zeros −q−N−1 of the Wronskian are poles of γ 7→ Gγ(x, y), because they are not zeros of

γ 7→ψγ or γ 7→ψ†
γ. The poles of ψγ satisfy

(−q/bγ
)
∞ = 0 by Lemma 4.11 and from Proposition 4.13

we see that these will be canceled by the poles of the Wronskian [ψ†
γ,ψγ]. Therefore the poles of the

Green kernel is the set Ssing.

If γ ∈ Ssing, then [ψ†
γ,ψγ] = 0 and therefore ψ†

γ and ψγ are linearly dependent solutions of the eigen-

value equation L f = µγ f , which means that ψγ =Cγψ
†
γ for some constant Cγ. To find Cγ we use the

lineair combination (4.11). Then

(−qγ
)
∞φγ(x) = α̂ψγ(x)+ β̂ψ†

γ(x),

with α̂= (−qγ
)
∞α and β̂= (−qγ

)
∞β. Now for

(−qγ
)
∞ = 0 we obtain α̂ψγ(x)+ β̂ψ†

γ(x) = 0 and so for
γn =−q−n−1 we obtain

ψγn (x) =Cγnψ
†
γn

(x), (4.13)

with

Cγn =−
(
b, q/b,b/a, aq/b, a/qn+1, qn+2/a

)
∞(

a, q/a, a/b,bq/a,b/qn+1, qn+2/b
)
∞

=
( a

b

)n
.

4.4.2. Spectral measure
The resolvent is given as in (3.20) by

(G(µ) f )(x) =
〈

f ,Gγµ(x, ·)
〉

, f ∈H , x ∈ I , µ ∈C\R

with γµ ∈C such that µ=−ab(1+γµ).

To find the spectral measure we need to integrate over µ,

E f ,g ((µ1,µ2)) = lim
δ↓0

lim
ε↓0

1

2πi

∫ µ2−δ

µ1+δ
〈G(µ+ iε) f , g 〉−〈G(µ− iε) f , g 〉dµ, (4.14)

withµ1 <µ2 and f , g ∈H . Note that if (µ1,µ2)∩µ(Ssing) =;, then limε↓0 G(µ+iε) f = limε↓0 G(µ−iε) f
for µ ∈ (µ1,µ2). So then E f ,g ((µ1,µ2)) = 0. Take µ1 <µ2 such that (µ1,µ2)∩µ(Ssing) = {−ab(1+γn)}. To
be able to evaluate (4.14) we first notice that

〈G(µ) f , g 〉 = ∑
x∈I

〈
f ,Gγ(x, ·)

〉
g (x)w(x) = ∑

x∈I

∑
y∈I

f (y)Gγ(x, y)g (x)w(x)w(y)

= ∑
x≤y

1

[ψγ,ψ†
γ]
ψγ(x)ψ†

γ(y)
(

f (x)g (y)+ f (y)g (x)
)

w(x)w(y) · (1− 1

2
δx,y )
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Due to the singular points Ssing, we need to calculate the residue of 1
[ψγ,ψ†

γ]
. So by definition

Res
γ=−q−n−1

(
1

[ψγ,ψ†
γ]

)
= lim
γ→−q−n−1

(γ+q−n−1)
1

[ψγ,ψ†
γ]

= lim
γ→−q−n−1

(γ+q−n−1)

(−q/aγ,−q/bγ, q
)
∞

−b
(
a/b,bq/a,−qγ

)
∞

=
(
q
)
∞

−b
(
a/b,bq/a

)
∞

lim
γ→−q−n−1

(−q/aγ,−q/bγ
)
∞
γ+q−n−1(−qγ

)
∞

=
(
qn+2/b, qn+2/a, q

)
∞

−b
(
a/b,bq/a

)
∞

1

qn+1
(
q−n

)
n

(
q
)
∞

=
(
qn+2/b, qn+2/a

)
∞

−bqn+1
(
a/b,bq/a

)
∞

(
q−n

)
n

.

We used the fact that

lim
γ→−q−n−1

γ+q−n−1(−qγ
)
∞

= lim
γ→−q−n−1

γ+q−n−1

(1+qγ) · · · (1+qnγ)(1+qn+1γ)(1+qn+2γ) · · · ·
qn+1

qn+1

= lim
γ→−q−n−1

1

qn+1(1+qγ) · · · (1+qnγ)(1+qn+2γ) · · ·
= 1

qn+1(1−q−n) · · · (1−q−1)(1−q1) · · · =
1

qn+1
(
q−n

)
n

(
q
)
∞

.

Now we can evaluate the spectral measure, assuming that the interval (µ1,µ2) contains only one point
µγ with γ ∈ Ssing.

Figure 4.1: Closed curve Γε.

Using the rectangled closed curve Γε around the pole, we first observe that

lim
ε→0

1

2πi

∫ ε

−ε
〈
G(θ± i y) f , g

〉
dy = lim

ε→0

ε

πi
max

y∈[−ε,ε]

∣∣〈G(θ± i y) f , g
〉∣∣= 0
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for θ ∈ {µ1,µ2}. Thus now we calculate the spectral measure for γn ∈ Ssing by

E f ,g ((µ1,µ2)) = lim
δ↓0

lim
ε↓0

1

2πi

∫ µ2−δ

µ1+δ
〈G(µ+ iε) f , g 〉−〈G(µ− iε) f , g 〉dµ

= lim
ε↓0

∫
Γε

〈
G(µ) f , g

〉
dµ= ab × Res

γn=−q−n−1

(〈
G(γn) f , g

〉)
= −a

(
qn+2/b, qn+2/a

)
∞

qn+1
(
a/b,bq/a

)
∞

(
q−n

)
n

∑
x≤y

ψγn (x)C−1
γn
ψγn (y)

(
f (x)g (y)+ f (y)g (x)

)
· (1− 1

2
δx,y )

= −(
qn+2/b, qn+2/a

)
∞ bn(

a/b,bq/a
)
∞

(
q−n

)
n an−1qn+1

〈
f ,ψγn

〉〈
ψγn , g

〉

where we changed parameter µ 7→ −ab(1+γ) such that the minus sign is canceled by the minus sign
of the residue of the clockwise oriented contour Γε. The last equality comes from substitution of
ψ†
γn

(x) =C−1
γn
ψγn (x). Now let f = g =ψγn , then we obtain〈

ψγn ,ψγn

〉= 〈
E(µ1,µ2)ψγn ,ψγn

〉
= −(

qn+2/b, qn+2/a
)
∞ bn(

a/b,bq/a
)
∞

(
q−n

)
n an−1qn+1

〈
ψγn ,ψγn

〉2 .

Because ψγ are orthogonal eigenfunctions for distinct values of γ we end up with our main result,
the orthogonality relation

〈
ψγn ,ψγm

〉= δn,m

(
a/b,bq/a

)
∞

(−qγn
)

n

aγn
(−q/bγn ,−q/aγn

)
∞

( a

b

)n
. (4.15)

The next corollary proves the last part of Theorem 4.2 about the spectrum of L.

Corollary 4.15. Let L be the difference operator and Ssing the singular points as in Lemma 4.14, then

σp (L) =−ab(1−q−N−1).

Proof. Notice thatµ(Ssing) =−ab(1−q−N−1). By Lemma 4.10 the operatorψγ ∈H with γ ∈ Ssing, is an
eigenfunction for eigenvalueµγ. Soµ(Ssing) ⊆σp (L). By definition, the spectral measure is supported
on the spectrum. The only contribution to the spectral measure comes from the poles of the Green
kernel γ 7→Gγ(x, y), which is precisely µ(Ssing). Therefore σp (L) ⊆µ(Ssing).
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4.4.3. More orthogonality relations
Finally, we get an orthogonality relation for the q-Meixner polynomials.

Corollary 4.16. Let ma,b
k and mb,a

k be the q-Meixner polynomials defined on I<0 and I>0 respectively.
Then for γn ,γm ∈ Ssing,

∞∑
k=0

mb,a
k (γn)mb,a

k (γm)

(
aq/b, q

)2
∞(−q/bγn ,−q/bγm

)
∞

w(xb
k )

+
∞∑

k=0
ma,b

k (γn)ma,b
k (γm)

(
bq/a, q

)2
∞(−q/aγn ,−q/aγm

)
∞

( a

b

)m+n
w(xa

k ) = δn,m

(
a/b,bq/a

)
∞

(−qγn
)

n

aγn
(−q/bγn ,−q/aγn

)
∞

( a

b

)n
.

Proof. Combining Corollary 4.3, Proposition 4.12 and (4.13) yields the desired orthogonality relation.

A nice consequence from Corollary 4.3 is that we can deduce an orthogonality relation for the big
q-Laguerre polynomials. By Heine’s transformation formula, see [4, (III.2)], we obtain

2ϕ1

(
a/qn+1, q−n

−ax/qn ; q,
qn+2

b

)
=

(−ax, q2/b
)
∞(−axq−n , qn+2/b

)
∞

· 2ϕ1

( −q/bx, q−n

q2/b
; q,−ax

)
.

The big q-Laguerre polynomials are defined by [7]

Pn(x; a,b; q) = 1(
b−1q−n

)
n

2ϕ1

(
q−n , aqx−1

aq
; q,

x

b

)
.

With change of parameters we get

Pn(−qx; q/b, q/a; q) = 1(
aq−n−1

)
n

2ϕ1

(
q−n ,−q/bx
q2/b

; q,−ax

)

= 1(
aq−n−1

)
n

(−axq−n , qn+2/b
)
∞(−ax, q2/b

)
∞

(−qx
)
∞(−ax/qn ,−bx

)
∞
ψn(x)

=
(
q2/b

)
n

(−qx
)
∞(

aq−n−1
)

n (−ax,−bx)∞
ψn(x).

So the orthogonality relation forψn(x) provides an orthogonality relation for the big q-Laguerre poly-
nomials.

For the last orthogonality we use duality. We write (4.15) by〈
ψγn ,ψγm

〉= δn,mhn .

Then {ψγn : n ∈ N} is an orthogonal basis for H . Define δx ∈ H , with x ∈ I , by δx (y) = δx,y

w(y) . Then
δx =∑∞

n=0αn(x)ψγn for certain αn(x). Notice that〈
δx ,ψγn

〉= ∑
y∈I

δx (y)ψγn (y)w(y) =ψγn (x). (4.16)
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Also, by substitution, we can write

〈
δx ,ψγn

〉= ∞∑
m=0

αm(x)
〈
ψγm ,ψγn

〉
=

∞∑
m=0

αm(x)δx hn

=αn(x)hn .

This, together with (4.16), shows thatψγn (x) =αn(x)hn , or equivalentlyαn(x) =ψγn (x)h−1
n . It follows

that ∞∑
n=0

ψγn (x)ψγn (y)h−1
n = δx,y w(y)−1,

which gives an orthogonality relation for the q-Meixner polynomials in x and y .

Theorem 4.17. Let x, y ∈ I<0. The following orthogonality relation for the q-Meixner polynomials
mb,a

k holds, writing x =− 1
b qk+1 and y =− 1

b q l+1,

∞∑
n=0

mb,a
k (γn)mb,a

l (γn)
qγn

(
aq/b, q

)2
∞

(−q/aγn
)
∞(

a/b,bq/a
)
∞

(−qγn
)

n

( a

b

)1−n
=

(
aqk+1/b, qk+1

)
∞(

qk+2/b
)
∞

q−kδk,l .

As we have seen om page 14, the orthogonality relation is totally determined by the moments. The
corresponding measure now yields a solution to the moment problem of the q-Meixner polynomials.
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Jacobi operators, 18

maximal symmetric, 11
minimal closed extension, 9
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moments, 27

norm, 5

orthogonal projection, 7
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point spectrum, 5
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projection valued measure, 7

residual spectrum, 5
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