

Preface
This is the final report on the DizzyData front-end (DF) Bachelor Project for
the Delft University of Technology by Mick de Lange and Mick van Gelderen.
The project was performed in assignment of the company Newviews based in
Rotterdam, the Netherlands.

The assignment was to create an easy-to-use client side application that
exposes the versatile functionality of Newviews’s digital document processing
system called DizzyData. This project was performed at the offices of Newviews,
where we had been given our very own desks. The Bachelor Project was started
in April 2013 and finished in July 2013.

In this report all details about the process and results of the project will be
described. Some parts of this document are quite technical, but it was kept in
mind that the reader might not have the same expertise as the authors.

This document includes the following documents as appendices: DF – Project
Approach, DF – Orientation Report, DF – Scrum Workflow and DF – Git Work-
flow. These document have been written during the project and their purpose
is explained in this report.

We hope you enjoy reading this report as much as we have enjoyed writing
it and we would be honored if our documented experiences can serve a purpose
even after the project.

Acknowledgements
We want to thank the following people in particular for their help:

Tim Paymans - the CEO and Founder of Newviews, our main contact and
guidance during this project.

Wessel van Leeuwen - the interaction designer who helped us get a feeling for
user interaction in the front-end.

Martin van Wezel and Amol Gathale - the key developers of the DizzyData
system and API.

Hans-Gerhard Gross - our TU coach during the project.

Martha Larson - the coordinator of the TU Bachelor Project.

Also, we want to thank our colleagues at Newviews for supporting us and making
working at Newviews an absolute pleasure.

On developing DizzyData Front-End i

Summary
With the growing use of digital systems, data processing and digital archives, the
demand for digital document processing solutions grows. Newviews is a company
that provides such a solution for digitally processing scanned invoices. And
now Newviews has developed a new product: DizzyData, a flexible document
processing solution. This solution can be implemented by other parties through
an API and the user is free to design their own way that the documents are
processed.

For this Bachelor Project a front-end was designed and developed that aims
to expose the DizzyData API’s functionality. The main objective was to create an
environment for non-programmers to get a full understanding of the capabilities
of the DizzyData system behind it. Thereby helping sales for the new product.

To guide the development process in a good fashion the Scrum methodology
was used. This methodology aims at developing small bits of the end product
in short sprints, thus making it easy to monitoring to progress of the project.
This method was new to both developers and therefore took some time to get
used to, but was eventually a great way to manage the project. Scrum is also a
method that the company wants to implement in their processes further, which
made this a great testing ground.

To create an understandable interface, the help of an interaction designer
was called in, who advised on suitable ways to visualize the application. This
resulted in the design of an easy to understand interface that would allow anyone
to create their own document processing workflow.

Implementation of this front-end was done in a young and new JavaScript
framework: AngularJS. Incorporating HTML and JavaScript as main program-
min languages, the application is very flexible and can be run on any computer
with a browser.

To guarantee code quality several testing technologies were applied, were
unit testing and coverage results played key roles. The code was also rated on
maintainability by SIG, which gave it an average rating on the first submission
of code. This holds that the code is maintainable, but some improvements were
made to improve this score.

The resulting product did not completely cover all parts that were originally
intended. This was partly due to improvements that need to be made to the
DizzyData API, which is still in a testing phase. The cooperation between the
development teams of the front-end and DizzyData system was very good, so
many of the issues could be easily fixed.

On developing DizzyData Front-End ii

CONTENTS

Contents
1 Introduction 1

1.1 Company . 1
1.2 Project background . 1

2 Task description and Requirements 3
2.1 Project client . 3
2.2 Problem definition . 3
2.3 Objectives . 4
2.4 Assignment formulation . 4

2.4.1 Deliverables . 4
2.4.2 Preconditions . 4

2.5 Requirements . 5

3 Process 6
3.1 Scrum . 6
3.2 Planning . 6

3.2.1 Realized planning . 7
3.3 Tools . 9

3.3.1 Jira . 10
3.3.2 Bitbucket . 10

4 System design 12
4.1 DizzyData API . 12
4.2 Front-end . 15
4.3 User interaction . 15
4.4 Graphical design . 16
4.5 Technical design . 20

4.5.1 OOP in JavaScript . 20
4.5.2 Class diagrams . 20

4.6 AngularJS framework . 22
4.7 Hosting the application . 23

5 Implementation 24
5.1 A web application . 24

5.1.1 HTML . 24
5.1.2 CSS . 25
5.1.3 JavaScript . 25

5.2 AngularJS . 26
5.2.1 Document structure and partials 26
5.2.2 Adding liveliness through controllers 27
5.2.3 Working with data in controllers 28

5.3 Promises . 29
5.3.1 Introduction to asynchronous programming in JavaScript 29
5.3.2 Problems of the callback method 30
5.3.3 Introducing promises 33

5.4 DizzyData API communication 36
5.4.1 CRUD . 36
5.4.2 Authentication . 37

5.5 Models . 39
5.5.1 Basic models . 39
5.5.2 Workflow translation 39

5.6 The document previewer with OCR support 40

On developing DizzyData Front-End iii

5.6.1 Laying the foundation 41
5.6.2 Navigating through the document 42
5.6.3 Adding pagination . 43
5.6.4 Implementing zooming 43
5.6.5 The OCR overlay . 47
5.6.6 Improvements . 47

6 Code quality 49
6.1 Testing . 49

6.1.1 JavaScript applications with Node.js 49
6.1.2 Dependency management with NPM 49
6.1.3 Automation with Grunt 50
6.1.4 Testing with Karma and Jasmine 50
6.1.5 Code coverage with istanbul 51

6.2 SIG feedback . 52

7 Future work 54
7.1 API improvements . 54

7.1.1 Statistics and billing . 54
7.1.2 Sharing Workflows and templates 55
7.1.3 Edit Split and Classify Steps 55
7.1.4 Ordering Steps . 55

7.2 Front-end improvements . 55
7.2.1 Creating Workflows . 56
7.2.2 Storage-specific settings management 56
7.2.3 Previewer . 56
7.2.4 Graphical design . 56

8 Conclusion 58

References 60

Appendix A: SIG feedback (Dutch) 61

Appendix B: DF – Project Approach 62

Appendix C: DF – Orientation Report 78

Appendix D: DF – Scrum Workflow 95

Appendix E: DF – Git Workflow 105

1 INTRODUCTION

1 Introduction
This document is the final report on the DizzyData front-end (DF) Bachelor
Project. The project was focused on creating an interface for the DizzyData
software created by Newviews. The functionality of the DizzyData system is
exposed through a Representational State Transfer (REST) Application Program
Interface (API) that DF can use. Due to the extensive possibilities of DizzyData
software and the characteristics of DF’s typical users, the project leaned a bit
to the field of End-User Programming .

In the coming sections we will discuss the assignment that was given to us
by the company and the requirements analysis that followed. Then the process
of this project will be illustrated by explaining what methods we used to manage
the process, which tools were used and what the planning looked like compared
to the realized planning. We will go into the system designing process and all
aspects of the design. From the design follows the implementation, were the used
methods and techniques will be discussed and illustrated using examples. Finally
we will asses the code quality, based on testing and feedback from Software
Improvement Group [4] (SIG).

The following sections will give a short introduction on the company and
why the user interface is relevant to them.

1.1 Company
Newviews (BudgetBoekers B.V.) is the company that develops DizzyData, Newviews
is a software company which currently delivers a Software-as-a-Service (SaaS)
solution to digital invoice processing. The service processes scanned invoices
provided by its clients, digitalizes the information and then sends that informa-
tion to third-party accounting software solutions. In this process the important
data on the invoice is collected using Optical Character Recognition (OCR) and
smart recognition algorithms. When the data has been transmitted to the ac-
counting software package of the clients’ choice, accountants can further process
the invoices.

Newviews is a small company with about twelve employees, based in Rot-
terdam. The employees consist of two directors, two salespersons, two support
employees and six developers. Currently, Newviews has many customers in the
Netherlands that use the software to integrate with their accounting software.
There is a growing interest in solutions like Newviews for easier processing of
invoices and other documents, this is one of the main reasons to start a new
project: DizzyData.

1.2 Project background
Due to this risen demand for digital document processing, not just for invoices,
the DizzyData project was started to provide users with the possibility to build
their own digital document processing solution. As stated in the introduction,
the functionality of DizzyData is available through a REST API which can be
used in systems created by others. The DizzyData technology has great flex-
ibility in the document processing Workflows, allowing for numerous different
applications to be created. With this great flexibility comes a problem. Because
of the vast amount of options and combinations of all these options, under-
standing the workings of the system can seem a daunting task. The complexity
makes it hard to keep an overview and to explain to potential customers the
capabilities of the solution and what they can use it for.

On developing DizzyData Front-End 1

1 INTRODUCTION

This is where our project comes in. The front-end which we created should
give the users an overview of the system, and make creating and editing the
structure and properties of a document Workflow easy and clear. This helps to
make the project accessible for users that lack experience in programming and
development, thereby also helping the sales team by allowing them to give a
graphical demonstration of the product to potential customers.

On developing DizzyData Front-End 2

2 TASK DESCRIPTION AND REQUIREMENTS

2 Task description and Requirements
For a description of the task we are going to perform, we will first describe the
client and contact at the company for whom the project is performed. Next the
problem definition will be given, along with the objectives. From this description
the assignment formulation, deliverables and preconditions will be extracted.
Based on the given task description requirements where formulated in agreement
with the product manager, these requirements can be found at the end of the
DF – Orientation Report document, see Appendix C.

2.1 Project client
As said, the client is Newviews, a small software company which develops and
offers document processing solutions. Newviews has requested us to explore
the possibilities to create a standalone front-end to their new product called
DizzyData.

Our contact at the company is Tim Paymans, founder and CEO of Newviews
(BudgetBoekers B.V.). He is the main contact and guidance to the development
team.

2.2 Problem definition
DizzyData is an all-in-one solution to document processing and recognition, of-
fering many options for processing flows and document management. The Dizzy-
Data API enables the user to design and create their own document Workflows,
edit them and look at the usage statistics of these Workflows. The problem is
that this not only makes the solution very flexible and adaptive, but also quite
complex. To manage this complexity and provide with a easy and transparent
interface for the users, a solution needs to be found. The problem challenges
consist of three main parts.

The first part of the problem is making an understandable graphical repre-
sentation of the capabilities of the DizzyData software. A wish from our client
is to expose as much of the capabilities as possible. To visualize the system, an
interface is required that can translate the capabilities of the system to a mental
model that can be understood by everyone, not just programmers. There is an
obvious challenge in wanting to cover as much of the functionality as possible
while also maintaining simplicity.

The second part of the problem is that the interface should enable users
to manage, edit and create Workflows. The challenge lies in the fact that the
interface should be usable for developers/computer experts as well as people
with no programming experience. This requires that the end-user development
environment is simple and understandable for people with no programming ex-
perience, and also allows for more complex actions for the more experienced
programmers.

The third part of the problem is the challenge to make the interface function
standalone, and possibly place the created interface in several cloud systems and
marketplaces. For easy access to the front-end application, the client wants to
explore the possibility of adding the front-end to several marketplaces and cloud
solutions. This is of lower priority than creating the front-end itself, but would
be a great way to create an extra marketing channel for the application.

On developing DizzyData Front-End 3

2 TASK DESCRIPTION AND REQUIREMENTS

2.3 Objectives
The objective of this project is defined as creating a front-end to use as a
marketing tool towards potential customers as well as an interface to provide
with a less complicated way of using the capabilities of the API.

DizzyData is a versatile but complex system, with many possible applications.
To market this and to visualize the possibilities to potential customers, even
those with no programming skills, a good visualization is needed. This is the
main objective for the project, required by the client. The client wants a visual
interface to show customers the versatility of the DizzyData system.

The second objective is to enable customers with little to no experience in
working with REST API’s or programming, to manage, create and edit their
own document processing Workflows. This level of end-user development is the
second main objective for the project. Via an accessible interface users with
minimal programming skills should be able to work with the DizzyData system.

2.4 Assignment formulation
The assignment is to create a user interface, which functions as a standalone
visual front-end to communicate with the DizzyData API. This front-end fulfils
the two main objectives, by creating an administrative environment for the user.
In the project, the deliverables are more important than the time invested in
the project. The project is expected to be an almost full-time effort for two
months, starting at the end of April 2013. The deliverables give an overview of
the specifications of the project.

2.4.1 Deliverables

1. A functional and understandable1 front-end interface for the DizzyData
REST API.

2. The interface should give a clear visualization of the capabilities of the
DizzyData system.

3. The interface should function as a administrator tool to the DizzyData
system, where account settings, Workflows, Jobs2, statistics and billing
are visually available. Without requiring the user to understand the API
methods.

4. The interface should allow for users with little to no programming skills
to create and edit Workflows.

5. The front-end should allow for the distribution of several template Work-
flows and possibly also the (publicly) sharing of user-created Workflows.

6. The front-end should work in a standalone environment, thus using only
API calls for communication with the DizzyData system.

2.4.2 Preconditions

There are several preconditions to the project which need to be taken into
account. These preconditions represent the limitations of method-use and on
the final result.

1Understandable is defined through user tests and interviews.
2Jobs are the instances of a Workflow, containing details about the processed documents

and the resulting data.

On developing DizzyData Front-End 4

2 TASK DESCRIPTION AND REQUIREMENTS

1. For development the agile SCRUM method is used.

2. The design is done in coöperation with both a graphics and interaction
designer.

3. The front-end is a web-based application, which runs standalone.

4. The server side of the web application has to be written in C# 3 using
.NET 4.

5. The web application has to be modern in terms of web technology

6. The web application has to run on semi-modern web browsers: IE8+,
Chrome 25+, Firefox 19+, Opera 12+ and Safari 5.1+ (preferably also
Safari iPad).

7. The product software complies with the Model-View-Controller (MVC)
architecture.

2.5 Requirements
Based on the task description these deliverables where translated to a require-
ments list. We used a technique called requirement analysis to determine the
scope of this project. Common requirement analysis methods are outlined in the
publication Software Development Process – activities and steps [5]. It gives a
good overview of the aspects of requirement analysis such as stakeholder identi-
fication and defining “measurable goals”. The method we employed during the
planning phase and also in the development phase is based on SCRAM as de-
fined in Scenario-based requirements engineering by Sutcliffe [7]. The complete
SCRAM approach is too extensive and time intensive for our small team and
time resources so we will not be able to elaborately cover every step.

Determining all the stakeholders will be done by interviewing the project
manager and doing the requirement analysis. In turn, specifying the stake-
holders will open up possibilities of discovering additional requirements. The
requirements analysis is an appendix of the DF – Orientation Report document,
see Appendix C.

3http://msdn.microsoft.com/en-us/library/vstudio/67ef8sbd.aspx
4http://microsoft.com/net

On developing DizzyData Front-End 5

http://msdn.microsoft.com/en-us/library/vstudio/67ef8sbd.aspx
http://microsoft.com/net
http://msdn.microsoft.com/en-us/library/vstudio/67ef8sbd.aspx
http://microsoft.com/net

3 PROCESS

3 Process
This section will cover all details about the process of the project. We will be
discussing the use of the Scrum methodology, planning and the main tools we
used for guiding the process. This section will then reflect on these aspects of
the process and what elements where successful and where improvement was
needed.

3.1 Scrum
For this project we chose the agile Scrum methodology, which was also a request
from the company. The company is currently trying to convert their processes to
the Scrum process and this seemed a good trial run. The Scrum methodology is
aimed at developing in short periods of time, sprints, resulting in working parts
of code. As explained in our adaptation of the Scrum guide, see Appendix D:
DF – Scrum Workflow, we used the Scrum framework as a guide in this project.

One important decision was to shorten the sprint length to one week, instead
of the usual length of two weeks. This was done mainly because our development
team consists of just two people and the time for the project is limited. This
way we could focus on delivering parts of code each week, although they might
be a bit smaller than is common in Scrum.

The first few sprints were needed to discover how much time was needed
for specific tasks. This meant that not all tasks we set for the first sprint were
actually finished in the first sprint, because we underestimated their complexity
or time consumption. In later sprints these complex tasks were split up in to
several smaller tasks, to comply with the target of finishing tasks in a sprint.

Also, the meetings did not have to take a long time, because we work to-
gether the whole week. When there was a small issue, this could be discussed
immediately, eliminating the need to recap the entire sprint in each meeting.
We did focus on having a daily Scrum meeting in the morning, in which the
product manager sometimes participated. This way both us as developers and
the product manager would be up to date on which elements would be focused
on that specific day and how far along we were in that sprint.

This meant that our interpretation of the Scrum process was a limited ver-
sion, but still an effective method. Especially the daily Scrum meetings were a
useful tool to keep track of the work that needed to be done.

3.2 Planning
After the assignment was defined clearly work started on writing a plan of ap-
proach, see Appendix B: DF – Project Approach, in which we drafted up an
initial planning as well. This first planning is shown in Table 3.2, where each
row represents one week of the project. Not all information was clear at the
start of the project, which resulted in a bit of a rough planning.

On developing DizzyData Front-End 6

3 PROCESS

Week Date Activities
1 22-04 - 28-04 Orientation phase

Plan of approach finished
2 29-04 - 05-05 Orientation phase finished

Orientation report finished
Contacted the designers
Interview stakeholders

3 06-05 - 12-05 First Scrum sprint
4 13-05 - 19-05 Second Scrum sprint
5 20-05 - 26-05 Third Scrum sprint
6 27-05 - 02-06 Fourth Scrum sprint
7 03-06 - 09-06 Fifth Scrum sprint

SIG code evaluation
8 10-06 - 16-06 Final Scrum sprint

SIG feedback
Final code to SIG

9 17-06 - 23-06 Final report finished
Presentation

Table 1: Original planning

3.2.1 Realized planning

At later moments in the project we edited the planning to fit the current sit-
uation. An example is that, after formulating our requirements and plan of
approach, we decided in week 3 to go with a bit different approach to the im-
plementation. This delayed the initial sprint, because we needed to change our
implementation plan.

The following part will give a more detailed overview of our realized planning
per week. In noteworthy cases additional information is added to explain the
differences to the original planning.

Week 1: Orientation phase

During the orientation phase we focussed on researching the techniques and
methods we were going to use. Because we did not have all the details on
the system design yet, we started off researching many possible techniques,
especially on the code testing part. Later on in the system design we decided
on another implementation method, which did not involve as much server-side
programming as we originally presumed. The results of this phase are a) the
orientation report which includes the requirements analysis, see Appendix C;
b) our adaption of Scrum, see Appendix D; and c) a guide on the use of Git 5,
see Appendix E.
Worked on:

• Plan of approach

• Planning

• Scrum guide

• Git guide

• Orientation report
5http://git-scm.com

On developing DizzyData Front-End 7

http://git-scm.com
http://git-scm.com

3 PROCESS

Deliverables: Plan of approach, planning

Week 2: Orientation phase

Worked on:

• Orientation report

• Scrum guide

• Git guide

Deliverables: Orientation report

Week 3: First sprint

This week we got delayed due to redefining the plan for our implementation.
We decided to adapt another approach to the implementation, where we would
focus all implementation on the client-side. The decision was made to work
with JavaScript 6 and HyperText Markup Language 7 (HTML) and not with the
server-side languages C# and .NET, as originally planned. This new approach
would lead to a more flexible product, not requiring a specific server set-up, but
just a static file server. This option was discussed and decided together with
the product manager of the company.

Worked on:

• New plan for implementation in JavaScript and HTML

• Researched several JavaScript libraries and frameworks

• Set up first basis for the implementation

Deliverables: New implementation plan

Week 4: Second sprint

In this week the decision was made to work with AngularJS 8, a framework devel-
oped by Google, which will be discussed further in Section 5 on implementation.

Worked on:

• Further research on AngularJS

• First implementations in AngularJS

Week 5 - 7: implementation sprints

Worked on:

• Further specifying the system

• Implementation

• Testing

• Report

Deliverables: System code
6https://developer.mozilla.org/en-US/docs/Web/JavaScript
7https://developer.mozilla.org/en-US/docs/Web/HTML
8http://angularjs.org

On developing DizzyData Front-End 8

https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/HTML
http://angularjs.org
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/HTML
http://angularjs.org

3 PROCESS

Week 8: Final sprint

The first SIG deadline was one week later than we originally planned. This came
in handy, as the delay from the first sprint had to be made up for in the later
sprints.

Although we had some extra time, we did have to cut some elements from
the original planning. Because we needed to send in complete code, some un-
finished parts did not make it to the final product. In Section 7 future work will
be discussed, there the unfinished parts will be explained and recommendations
on the future work will be given.

Worked on:

• Implementation

• Testing

• Report

Deliverables: First SIG deadline

Week 9: Report

Due to a late planning, our final presentation was moved to week 11. The dead-
line for the final report was kept at week 9, to allow studying for the exams in
week 10.

Worked on:

• Final report

• SIG feedback

Deliverables: Final report, finalized code to SIG

Week 10: Break due to exams

Week 11: Final presentation

The important lesson if we look at the realized planning is that we needed more
time to plan and research the work we were going to do. This resulted in a small
delay of a week, which cost us some much needed development time.

Over the course of the project we also found that not every deliverable
specified in the assignment could be realized. The planning and deliverables had
to be changed to handle this difference. There were several different reasons for
this, we will discuss these points in Section 7 on Future Work.

3.3 Tools
To help us in the process of the project, a few tools were used that guided this
process. The company behind DizzyData uses products by Atlassian [1], which
help code developers in the implementation process. Atlassian offers systems
that help plan, test, review and code. The two main tools we used to guide the
process are Jira [3] and Bitbucket [2], we will elaborate on these two. Other
tools that were used during the implementation (Section 5) and testing (Section
6) will be discussed in their respective sections.

On developing DizzyData Front-End 9

3 PROCESS

3.3.1 Jira

Jira is an issue tracker created by Atlassian, which allows the user to edit and
monitor all issues (tasks, epics, stories or bugs) that are created. By creating
issues, these are added to the backlog and can be placed in a sprint planning.
Issues describe the user story, bug or task that needs to be fixed and contain
additional information to describe the details.

The developers can assign Story Points to issues, which represent an esti-
mation of the required time to complete that task. Ten stands for the longest
or most complex task imaginable, one is the simplest task in the project. These
estimations are based on experience, which makes them vary a bit per developer.
This was new to us, so it took some time to get the estimations accurate, which
went better towards the end of the project.

At the beginning of each sprint the issues from the previous sprint were
reviewed to check that they are finished. Unfinished issues are moved to the
new sprint and reformulated, because apparently the tasks complexity was not
estimated correctly. New issues are created and together with updated old
issues they are added to the new sprint. Jira shows a Scrum board which gives
an overview of the current sprint, an example can be seen in Figure 1.

Figure 1: Part of the Scrum board in Jira

Keeping track of the issues in this manner gives a clear an simple overview
of what needs to be done in a specific sprint. We used this system for almost
all tasks that needed to be performed, but in some cases we did deviate to fix a
minor bug with high priority. This is not the way the scrum sprints are intended,
but some bugs needed to be taken care of quickly. Generally, we kept a good
record of our issues in Jira and found this tool very helpful in the Scrum process.

3.3.2 Bitbucket

Bitbucket is a Git version control system, which hosts your code as well as
provides with an interface to track all commits. The main purpose to use such
a service is that the cooperation between multiple developers requires a central
server to host the code. We wrote a small Git guide for documentation, which
can be found in Appendix E. Bitbucket was acquired by Atlassian and integrated
with their other services, such as Jira. This allowed for linking between commits
in Git and the issues in Jira. Jira can then display which commits were made
to a specific issue. Figure 2 shows a part of the commit history in Bitbucket,
where the issue numbers (the DF-XX numbers) are links to the issue in Jira.

The version control that Bitbucket offers, provides a way to track all changes
in the code. Developers are supposed to only push functional (non-disruptive)
code to the repository and therefore only the latest, working version should

On developing DizzyData Front-End 10

3 PROCESS

Figure 2: Part of the commit history in Bitbucket

be in the origin. When a developer works on a separate part of the project, a
branch can be made, allowing the developer to push partial work to that branch,
without disturbing the master branch. We only used the option of branching
once because we wanted to switch tasks. One of us was working on the so called
“previewer”, see Section 5.6, and needed to start working on something else.
This ment that we needed to transfer the experimental code to the Git server
so that another developer could continue to work on it. The previewer branch
was merged with the master once the previewer code was stable and tested.

Although we did not completely utilize all possibilities that Git provides,
we did get a good feeling for what we can do with it and how it can support
the development process. The company will make the switch from Apache
Subversion 9 (SVN) to Git soon and also asked us to draw up a manual to help
make the switch, see Appendix E. Creating this manual gave a good insight in
Git and will definitely help us in future projects using Git.

9http://subversion.apache.org

On developing DizzyData Front-End 11

http://subversion.apache.org
http://subversion.apache.org
http://subversion.apache.org

4 SYSTEM DESIGN

4 System design
The main challenge in this project was visualizing the features in the DizzyData
API. As explained, the DizzyData system is aimed at giving the users as much
freedom as possible in setting up their document processing system. This re-
sults in a system with many options and possibilities, represented by different
elements. The front-end needs to represent these elements in an understand-
able manner. To get a feeling for a good way to do this a brainstorm with an
interaction designer was organized by the product manager. This interaction
designer had many good tips, which helped design a good way to represent the,
quite complex, system in a logical user interface. Before we explain how this
representation came to be, we will first give an overview of the API itself and
explain the main elements which we worked with.

4.1 DizzyData API
The DizzyData API is the interface used by developers to manage their doc-
ument processing system. This API is designed, build and maintained by the
software developers at Newviews itself. For our project we had direct contact
with these developers for a good cooperation between the system and the front-
end. Because the DizzyData system is still in development, many functions
were under testing. This meant that some errors or incomplete functions were
found during our project, which we relayed to the developers immediately. The
development team is continually working on improving the system and is also
processing our comments. To get an understanding of the system, we will dis-
cuss the important resources provided by the API and their respective functions
in the system.

Clients

A Client in the DizzyData system represents an application or program that
incorporates the API. This means that any system that uses the DizzyData API
is registered as a Client. The Client can have multiple Users and Workflows for
several different applications. The Client can be seen as the main registration
for all settings in the DizzyData system.

Users

Users are, as mentioned, linked to a Client, they are represented by a name,
email address and password. Upon logging in, all activities in the system are
bound to that specific User. Rights and permissions can be set per User, to
manage the Users capabilities in editing, viewing or creating Workflows, Steps,
Jobs etc. Because permissions and activities are bound to a User, this can be
easily monitored to keep track of the usage of the system.

Workflows

Workflows are the important part of the DizzyData system, they represent the
processing which needs to be done on a document that is send in. The Workflows
consist of consecutive Steps which perform the actual tasks on the document
from end to finish. Just as a Client can have multiple Workflows, a Workflow
can have multiple Steps to process the documents. When a file is send in to the
API, it references the Workflow that should be used in that Job to process the
file.

On developing DizzyData Front-End 12

4 SYSTEM DESIGN

Steps

Steps define the actual processors in the system, they represent the parts of the
system that should be invoked on the documents in the process. The Steps
describe the settings that are used in the processing and the order of Steps is
used to represent the Workflow. The DizzyData system currently has a total of
about 25 different Step types., the main relevant Steps are:

• OCR
The Optical Character Recognition (OCR) Step is actually the main and
most important function in the DizzyData system, this Step uses OCR
software to convert scanned images to text. This Step is needed for almost
all further processing Steps, because the text is needed for processing.
Only a few Workflows can be used that don’t require an OCR Step.

• Convert to tiff
The convert to tiff Step is a Step which is almost always used to convert
the submitted scan to a standard grey tone for optimal OCR results. The
Step is optional, but in all Workflows created by the company itself it is
added, because it helps produce better results regardless of the quality of
the input.

• Merge
Merge is a Step that simply combines all files that are send in to one
specific Job and outputs a multi-page document containing all pages from
the original documents. It is also the only processing Step that does not
require the input to first go through an OCR Step, because no knowledge
of the contents of the documents is required.

• Extract
Extract is a processing Step that uses Elements to specify the information
that needs to be extracted from the documents that it receives. For
instance, it is possible to create a Workflow that contains an Extract step
that has an Element that defines how to find a bank account number.
The extract Step uses the data of the bank account number Element to
find all the bank account numbers in a document. The found values then
become available to the system for output or further processing.

• Split
Split is another processing Step that allows a user to split documents
based on predefined rule sets. These rules are based on found keywords
or values on the page, like the Elements used in extract. This way a multi
page document can be split into separate files based on certain rules. This
Step is especially useful when you have multiple documents that have been
put in a single file. The Split step can take the single file and cut it into
separate documents that can then be further processed.

• Classify
Classify is the third processing Step, which can be used to detect the type
of document that was send in. This does not mean the computer file type
as in the file extension, but the type of real world document, for instance:
invoice, tax form, letter or order form. Similar to the split Step, rule sets
can be created that define what type of document is to be recognized,
based on what values. Depending on the settings the classification can
either be outputted or can result in the document being send to another
Workflow which is specifically designed to process files of that type. This
Step is particularly useful as a follow up to the Split step.

On developing DizzyData Front-End 13

4 SYSTEM DESIGN

• Input and output to several storage services
The system also contains a selection of storage services like Dropbox10,
Box.net11 and Google Drive12, which can be used as input or output for a
Workflow. This way files can be automatically retrieved from a specified
folder to be processed and then delivered to any other folder or storage
service. These Steps need to be either the first or last Steps in a Workflow.
Normal in- and output go through the API, no special Steps need to be
selected for that.
Input Steps can also be placed in a separate Workflow, containing only
this Step and point to another Workflow that actually processes the files.
This allows the user to select multiple storage services to serve as input
for a single Workflow.
Multiple output Steps can be put at the end of a Workflow, they will be
completed in the order in which they are placed, so files will first be stored
in one service and then the other.

Jobs

Jobs can best be interpreted as an instance of a Workflow. When documents
are send in to a Workflow, a new Job is created. This Job resource monitors
the status in the process, showing when the Job is working, finished or gave an
error and on which Step the Job is currently working. A finished Job contains
the results of the processing Step in the Workflow and possibly files that were
generated in the process. For use of the API, outside of the creating and editing
of Workflows, only this resource is needed for sending in files and retrieving
results.

Elements

Elements are part of the processing Steps: Extract, Split and Classify and allow
for the user to define keywords and values that are of interest. An Element
contains information on how to search, where to search and what important
characteristics the results need to have. The representation of the keywords
and values is done by Anchors and Results respectively. An Anchor defines the
keyword that has a location related to the searched value, this can also be the
entire page. A Result gives a format for the resulting value in the form of a
regular expression, this way only results of the preferred type can be found. For
example, an Anchor could be “bank account”, the related area would be right
next to that keyword and the Result would be a regular expression defining a
set of numbers.

OAuth

OAuth13 is an open protocol to allow secure authorization, it is used in many
API solutions. The DizzyData API also uses this protocol to authenticate users
and verify their rights to each resource. The protocol provides a registered Client
with special keys to retrieve an access token, this token is valid for a limited
time period. Each call to the API needs to contain this access token to verify
the identity of the user. For this project, a specific addition to the protocol had

10http://www.dropbox.com
11http://www.box.net
12http://drive.google.com/
13http://oauth.net/

On developing DizzyData Front-End 14

http://www.dropbox.com
http://www.box.net
http://drive.google.com/
http://oauth.net/

4 SYSTEM DESIGN

to be implemented to allow users to receive an access token based on a login
using username and password.

In the standard OAuth flow the Client id, Client secret code and a re-
fresh token can be used to retrieve an access token. Doing so in this project
would present a dangerous leak in the system, because the front-end is build
in JavaScript. A Client secret code should never be stored in a code that is
accessible by others than the application itself, which would be the case when
using JavaScript. Another problem is that a user must sign in to its own Client,
not the Client id that could be used by the front-end. These are the reasons to
implement a new authorization flow using a username and password combina-
tion.

4.2 Front-end
For the front-end that we were going to build, several choices needed to be made
on how to display the resources from the API in a simple and understandable
manner, without limiting the users possibilities. A direct visualization of all
parts in the API would be simple and practical choice. In that case a Workflow
could be represented by a collection of Steps and each Step would have its
own specific settings page. This is the approach we chose for visualizing the
Client, User and Job resources, but after a good brainstorm with the interaction
designer a different approach was chosen for Workflows, Steps and Elements.

In the following sections we will explain this process, the choices that were
made on interaction design and how the front-end was built to realize these
choices.

4.3 User interaction
User interaction is a field that focusses on the way users interact or work with
a system or product. In our case this relates to the way users can use the
interface and in what way the users will be represented with information. For
the interaction design the company called in the help of Wessel van Leeuwen, a
senior interaction designer at BackBase14. We held a small brainstorm session
with him. First the details of the DizzyData solution were explained to him,
after which the goals of the front-end were discussed. Wessel continually gave
feedback on our ideas and brought his own ideas and solutions to the table.

The main conclusion in this session was that the complexity of displaying the
Workflows lay in the amount of Steps and Step types. A Workflow containing
up to, or possibly even more than, ten Steps would be hard to visualize in a
simple and understandable way. To solve this a simpler approach to the systems
possibilities needed to be found. We started to distil the main functions of the
system and break them down to the basics.

In this process the Merge, Extract, Split and Classify Steps came forward as
obvious main Steps. All except the Merge Step require OCR before they can be
processed, so the OCR and convert to tiff Step should be incorporated within
these main Steps invisibly. The thought behind this is that most Users have little
to no knowledge of settings that could optimize the character recognition, this
could better be handled by us. After this decision was made, we were left with
only four main Steps, which we decided to call “Workers” for the time being.
All other Steps were only meant to use as input or output to these workers.

A special case occurs when multiple main Steps are used in one Workflow,
which would extend the length of a worker and bring us back to the original

14http://www.backbase.com/

On developing DizzyData Front-End 15

http://www.backbase.com/

4 SYSTEM DESIGN

problem. The solution we thought up for this problem was to view each main
Step as a separate worker and display the first one as to have output to the next
specific worker and the other to only receive input from the previous worker.
After we made these interaction choices, we could start on the next part of the
design phase.

Because the main task in this project is to create a graphical interface we
started designing from the perspective of the user. We tried to leave the details
and possibilities of the API behind us. Therefore, after getting a rough idea
about the workings and feel of the front-end based on the interaction design,
the next step was to make mock-ups of the User interface. These mock-ups
gave a clearer picture of the things that needed to be done to translate the API
calls into an interface and vice versa.

4.4 Graphical design
Originally the plan was to work with a graphical designer to create the graphics
and look of the application. Unfortunately the designer got ill the day before
the meeting and rescheduling would delay the project too much. Therefore the
professional design was moved to a later stage after this project, more on this
in Section 7 on future work.

The ideas about the interaction design were visualized in mock-ups, to get a
feeling for the interface and the usability of the front-end. The mock-ups play a
big role in designing the models that would be used in the front-end, while the
main goal in this project is visualization of the DizzyData system. Because the
graphical look was not as important as the actual functionality of the system,
we kept the graphics simple in the mock-ups. In the actual view elements of the
implementation we used the Bootstrap library15 to handle the graphics.

One of the most interesting parts to create a mock-up for was the Worker
overview. In this view the user can see the list of all his Workers and select one
to edit. This overview would thus represent the Worker in a small and simple
block, giving the user a clear impression of its key features. As mentioned in
the Section on user interaction, this visualization required the most work.

In Figure 3 the mock-up created for the Worker overview can be seen and
Figure 4 shows the actual overview page created in this project. A difference
between the mock-up and the resulting solution is the fact that not all graphics
were available, these were replaced with braces ({}) for the time being. Also,
the mock-up shows a Worker that is four parts wide, this was mocked to get
a feel for the layout of a Worker. Workers were eventually cut down to be
maximum three parts wide, in accordance with the interaction design.

15http://twitter.github.io/bootstrap/

On developing DizzyData Front-End 16

http://twitter.github.io/bootstrap/

4 SYSTEM DESIGN

Figure 3: Mock-up of workers overview.

Figure 4: Actual workers overview.

On developing DizzyData Front-End 17

4 SYSTEM DESIGN

Another important part of the system which needed a good design was the
edit page for Workers. This page allows the user to edit their Worker settings and
define the Elements that should be searched for in the document. A decision was
made to place all Elements on the left side of the page and place an example
document on the right side, with an overlay of the recognized words on the
image. This way a document could be used to get a feeling for the working
of the system and make editing Elements less abstract. The mock-up for the
Worker edit screen is shown in Figure 5.

Creating a previewer to display an image and place recognized words on it
proved quite a challenges, more on that in Section 5 on the implementation. The
end result for the Worker edit page was very similar to what we had in mind,
although we could not implement all parts which we intended. A screenshot
of the page can be found in Figure 6. Pay special attention to the previewer,
were the word “aprii” (unfortunately, the OCR recognized “April” incorrectly) is
highlighted in the date. This is the function that displays the recognized words
on top of an image of the document.

On developing DizzyData Front-End 18

4 SYSTEM DESIGN

Figure 5: Mock-up of worker edit screen.

Figure 6: Actual worker edit screen.

On developing DizzyData Front-End 19

4 SYSTEM DESIGN

4.5 Technical design
Based on the mock-ups created for the interface, a design of the technical
background of the system could be made. The assignment required that we work
with a MVC type system, which separates the models, views and controllers in a
strict manner. Because our system is supposed to be a graphical representation
of the DizzyData system, the models we created were more closely related to
the views than one would expect in a strict MVC system. Our models are itself a
representation (or translation) of the original models: the resources that can be
retrieved from the API. In our set-up the views are HTML templates, that give a
framework for displaying information. The controllers are defined in AngularJS
through ng-controller (see Section 5.2.2), these handle the interaction between
the views and the models.

The views could be designed after the mock-ups shown in the previous section
and controllers had to be build matching that, therefore the technical system
design focussed on the models that would make the API models displayable.
The simpler parts to design were the Jobs, Users and Client details, because
these could be almost directly copied from the API resources.

4.5.1 OOP in JavaScript

Although JavaScript does not actually support Object Oriented Programming
(OOP) as a programming approach, we did want to design our models in an OOP
manner. This can be done by using several approaches, for instance JavaScript
supports nested functions and prototypal inheritance. Prototypal inheritance
allows the developer to define a prototype object which contains variables and
functions that each object of that type will have. But because JavaScript is not
as strict in this implementation method as other languages, it is still possible to
assign new variables and functions to an object and also overwrite the functions
defined in the prototype. This means that to keep the objects correct, the de-
velopment team must work according to strict –self-imposed– rules of OOP, to
prevent corrupting the objects.

4.5.2 Class diagrams

Figure 7 shows the part of the class diagram containing the Jobs resource. An
API call to the DizzyData system returns JavaScript Object Notation 16 (JSON)
that contains a list of Jobs and each Job contains a list of ResultFiles and Results.
The class diagram shows that this object tree has been directly translated to
classes. Thus, this class and resource could be easily created. The choice was
made to keep a separate object that contains all Jobs, so all functions that work
on multiple Jobs can be build here.

16https://developer.mozilla.org/en/docs/JSON

On developing DizzyData Front-End 20

https://developer.mozilla.org/en/docs/JSON
https://developer.mozilla.org/en/docs/JSON

4 SYSTEM DESIGN

Figure 7: Jobs part of the class diagram

Figure 8: ClientData part of the class diagram

For the Client details a decision was made to alter the resources that the
API returns just a little. In the API Clients and Users are separate resources,
which have their own calls and are not per se related. But a Client actually is
the owner of several Users, or put in other words: Users are bound to a Client.
As shown in Figure 8 the Client was represented in a ClientData object, which
has a list of Users. This method allowed for a better graphical representation
in the interface and made more sense in the logic towards the User. After all, a
User logs in to a specific Client and only has access to that Client and its Users,
if the User had permission to those resources.

The most interesting part to design was the Workflows, Steps and Elements.
These needed to be translated to the worker objects we decided on in the user
interaction part. To achieve this, a new class was designed: WorkflowTrans-
lator, which can be seen in Figure 9. This class contains the Workflows and
Steps retrieved from the API and has a function that translates these to the

On developing DizzyData Front-End 21

4 SYSTEM DESIGN

Figure 9: WorkflowTranslator part of the class diagram

displayable Worker objects. To limit the number of API calls the decision was
made to retrieve all Steps in one call, not per Workflow. This is also why the
Steps are not a list within a Workflow object, but rather a separate list in the
WorkflowTranslator

The Worker class contains mainly id numbers that point to the actual objects
that make up that Worker. This prevents an abundance of duplicate objects,
such as Steps repeated in the Workers and Step list. Also, this allows for the
editing of a Worker object to be done directly on the relevant resources, which
could then be synchronized with the API. A Worker consists of a main Step,
which is one of the main Steps as defined earlier in this Section, a list of input
Steps an a list of output Steps. Other Steps that are kept invisible for the user
are saved in a list of extra Steps, which makes sure that for instance the OCR
Step is not lost in the editing process.

Elements, which are not displayed in the class diagrams, are not relevant for
displaying the overview of Workers and were therefore left out. Instead, Elements
are linked directly to the controller that handles the editing of a Worker. When
editing a Worker the Elements that belong to the main Step are retrieved from
the API based on the Step id.

4.6 AngularJS framework

Figure 10: AngularJS

After designing the models we had to decide on
the JavaScript framework we wanted to use. There
are a lot of client side JavaScript libraries that help
with developing JavaScript intensive web applica-
tions. Examples of such libraries are Backbone, batman.js, Ember.js, Knockout,
Sammy.js, Spine and AngularJS. We have chosen to use the relatively young
AngularJS to develop DF.

The reason why we have chosen AngularJS over the other libraries is that
AngularJS is unique in the sense that it allows you to define your own HTML
tags and attach behaviour to them very easily. This makes it easy to reuse

On developing DizzyData Front-End 22

http://documentcloud.github.io/backbone/
http://batmanjs.org
http://emberjs.com
http://knockoutjs.com
http://sammyjs.org
http://spinejs.com
http://angularjs.org

4 SYSTEM DESIGN

components by just inserting the right tags in your HTML. Also, it does not
impose any restrictions on how you code your models. The tutorials on the
AngularJS website also demonstrate how to test your application. There will be
a time in the career of a developer where you think that testing just takes time
and doesn’t add anything to your code directly. We had both already learned
that testing can actually improve your code substantially while you are writing
it. It may actually speed up development since it is so easy to re-run all the
tests and confirm that everything still works as expected. Being able to easily
combine testing with AngularJS development was another big motivation that
led us to use AngularJS.

4.7 Hosting the application
A web application needs a server that hosts its code and assets. There are
many types of hosting available and different levels of capabilities. The project
requirements and the decisions we make during the system design affect our
hosting requirements.

An example of a requirment that affects the hosting type is the wish that the
application should be globally available by using a cloud hosting solution which
was described in Section 2.2. Even if we currently do not really need global
availability for our product to work, it is still wise to keep it in mind.

The decisions made in Sections 4.2 and 4.6 affect what our server should
be capable of. The fact that the DF models are different from the DizzyData
models means that we might have to use our own database to store additional
data, see Section 7.1.2. This would be the case if not all the data that DF needs
to store can be fit in the DizzyData models.

The fact that we use AngularJS means that our server does not need to
have a templating engine configured. achtml elements are generated on the
client from the AngularJS templates. The templates themselves are static files
that will be (asynchronously) fetched from the server.

We figured out how to translate between the two model spaces so we did
not need our own database and using AngularJS made a simple static file server
enough to suit our needs. The communication flow is illustrated in Figure 11.

An advantage of the fact that we can use a simple static file server is that
it can be fitted in any cloud hosting solution. Another advantage is that it is
easy to set up a development environment. With the help of Node.js and some
modules we could do cross-platform development by using a standard file server.

On developing DizzyData Front-End 23

5 IMPLEMENTATION

Figure 11: Server communication overview

5 Implementation
So we have our objectives set out for us and the idea of the system design is
clear. This is where the real action takes place: the implementation phase. This
section covers the most important aspects of the DF implementation. While
having a technical background and experience with web development will ease
the reading of this section, it has been written with less technical readers in
mind.

5.1 A web application
First of all, lets get a quick overview of the components that make up a web
application in 2013. Feel free to skip this subsection if you are already familiar
with HTML, CSS and JavaScript.

5.1.1 HTML

A term that you will probably have heard of is HyperText Markup Language 17

(HTML). HTML has a very long history and the purpose of the language has
changed over time. Currently, the purpose of HTML is “to describe the content
of a webpage in a structural and semantic manner”.
<html > <!-- I’m a comment -->

<head >

17https://developer.mozilla.org/en-US/docs/Web/HTML

On developing DizzyData Front-End 24

https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/HTML

5 IMPLEMENTATION

<title >Document Title </title >
</head >

</html >

Listing 1: HTML code that defines an empty document with title “Document
Title”

5.1.2 CSS

The styling of a web page is mainly captured in Cascading Style Sheets 18 (CSS)
files. Some time ago, the styling was applied by HTML. While this is still
possible, it is considered good practice to separate styling from content by using
CSS.
h1 {

font-size : 3em;
}

Listing 2: CSS code that sets the font-size of h1 elements to 3em

5.1.3 JavaScript

The standard scripting language in browsers is JavaScript 19. Scripting can be
used in a lot of different ways. What comes to mind immediately is enhancing the
application by creating interactive elements such as dialogs or image galleries.
Another use-case is asynchronously sending and retrieving data from a server
without reloading the page. There are however many other forms, if you will, of
scripting.

One of the other forms is providing backwards compatibility with older
browsers. As you might imagine, as personal computers became more pow-
erful and the internet more widely used, the most widely used browsers started
implementing new functional and graphical extensions. This led to incompati-
bilities and inconsistencies with respectively older and other browsers. There are
many JavaScript libraries, such as the popular jQuery 20 and Modernizr 21 that
try to dynamically fix these problems by providing a consistent and compatible
interface. It is usually impossible to achieve the same results with HTML and
CSS alone.

The code below is a very simple JavaScript script to give you an idea of
what a script may actually look like.
// I am a line - comment
/* I am a block comment , I can span multiple lines.

The script is not affected by comments , they
are used to document the code */

/* this is a function definition */
function square (x) {

/* return the square of x by multiplying it with
itself */

return x*x;
}
/* declare a variable called ’n’ and assign it the number

3 */

18https://developer.mozilla.org/en-US/docs/Web/CSS
19https://developer.mozilla.org/en-US/docs/Web/JavaScript
20http://jquery.com
21http://modernizr.com

On developing DizzyData Front-End 25

https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/JavaScript
http://jquery.com
http://modernizr.com
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/JavaScript
http://jquery.com
http://modernizr.com

5 IMPLEMENTATION

var n = 3;
/* print this message in an message box */
alert(’The square of ’ + n + ’ is ’ + square (n));

Listing 3: JavaScript code that prints the square of 3

When you run the code in Listing 3 it will show the famous alert box as can
be seen in Figure 12.

Figure 12: The alert box

5.2 AngularJS
It is a rare chance for a development team to work with a young and, according
to the developers of AngularJS themselves, “a superheroic JavaScript Model-
View-Whatever (MVW) framework”. Often times, the stakeholders will want to
stick to more aged methods and frameworks that over the years have proven to
be effective for projects that will be used in production. Knowing the ins and
outs of a framework is crucial if you want to develop a well-written application.
This subsection covers the lessons we have learned about AngularJS during the
development of DF.

5.2.1 Document structure and partials

AngularJS encourages you to incrementally build your application. You start
with defining the structure of a small piece of your application that very well
may be reused in other parts of your website or even in other applications. The
basis of these components is usually a piece of HTML code. AngularJS will
automatically load these pieces asynchronously if needed.
<div class="my - component ">

<input type="text" ng -model=" aTextValue ">
You typed: {{ aTextValue }}

</div >

Listing 4: A basic AngularJS template

Listing 4 shows a basic AngularJS template. It looks like plain HTML at first
sight but there are actually some special pieces of code, namely: the attribute ng
-model and the binding {{aTextValue}}. Upon load, AngularJS actually parses
your HTML documents and looks for these special attributes and bindings. This
specific example will display an input field and a span with text, once the value
in the input field gets updated by the user, the text in the span is simultaneous
updated with it.

This behaviour might seem odd at first because until now, people advised
against using JavaScript in your HTML. For example, this was considered bad
practice:

On developing DizzyData Front-End 26

5 IMPLEMENTATION

<button onclick =" myFunction ()">Click me</ button >

Listing 5: The onclick handler

With AngularJS however, you will see a lot of functionality weaved through the
HTML code.

The AngularJS template from Listing 4 can be put in a single HTML file.
A file containing a piece of HTML is called a partial since it defines a certain
part of a webpage. The partial can now be included in multiple places on the
website by AngularJS. To give an example, the following code just includes the
code in the partial without doing anything special with it:
<div ng - include =" ’/ partials / example .html ’"></div >

Listing 6: A way to include partials

5.2.2 Adding liveliness through controllers

As you may have noticed, AngularJS adds a lot of functionality without having
to write a single line of JavaScript. Once you get used to writing applications
using AngularJS this can significantly cut down development time. Though the
standard functionality in AngularJS already gives you great expressive power,
you will sometimes find yourself in need of a custom component. To write such
a component you will have to create a “directive”. A directive consists mainly
of a partial, a so called controller and some other options.
Note: There is a lot more to writing directives, such as knowing the differences
between the compile and link phase and the scope rules, but we are omitting
these details for simplicity. Although not all of the information on directives and
how to use them is comprehensively and completely documented, see http:
//docs.angularjs.org/guide/directive for the details.

An example of a simple directive is “zippy”. Zippy is a HTML element that
can be expanded and contracted by clicking on it. When it is expanded it shows
some additional content. The end result is shown in Figure 13. The zippy on
the left is expanded and the zippy on the right is collapsed.

Figure 13: Zippy

To use a zippy in your page you would just have to include the following
AngularJS template:
<zippy zippy -title=" Details : Title of the zippy ...">

Some content that goes into the zippy. It is amazing !
</ zippy >

Listing 7: Zippy usage

This is the partial that is used by the zippy directive:
<div >

<div class="title">{{ title }}</div >
<div class="body" ng - transclude ></div >

</div >

Listing 8: Zippy partial

On developing DizzyData Front-End 27

http://docs.angularjs.org/guide/directive
http://docs.angularjs.org/guide/directive

5 IMPLEMENTATION

In the controller we have to keep track of whether or not the zippy is ex-
panded and that when the zippy is clicked, the expanded state is toggled.

Controllers can also be bound to elements in a webpage with the ng-controller
directive if you need to expose behaviour to the view but there are no appropriate
directives available that do this for you and you don’t think you will re-use that
particular element somehow.

5.2.3 Working with data in controllers

So you might ask: “How does a controller affect the view? How are they
connected?”. Well, the controller has access to a $scope object. The $scope
object is essentially the glue between the view and the actual model. The
controller decides what the view can do by attaching data and behaviour to the
$scope

Figure 14 shows an overview of how an AngularJS template, the model and
the view are connected according to AngularJS. The word “model” might be
confusing because it seems to include all the scopes that are being used by the
view in this figure. The actual business models that probably exist, judging from
the figure, are the PhonesHolder and the Phone models.

Figure 14: Relation between template, model and view (from http://
angularjs.org)

AngularJS templates allow you to easily use values attached to the $scope by
using the double-curly-bracket syntax like in Listing 8. There we used {{title}}
to retrieve the title from the $scope object. Whenever $scope.title is changed,
AngularJS will update the view for you. This is one of the two biggest powers
of the $scope object. The $scope object can also be used to let the view excert
certain behaviour by attaching a function to it.

For example if we wanted the view to be able to load some data when the
user interacts with it we could do the following in the controller that is attached
to that view:
angular . module (’myModule ’). controller (’myController ’, [’

$scope ’, ’dataService ’, function ($scope , dataService)
{

On developing DizzyData Front-End 28

http://angularjs.org
http://angularjs.org

5 IMPLEMENTATION

// Attach a function to the scope
$scope . loadData = function () {

/* Assuming that dataService will immediately
return an object that will be filled with the
data eventually and assuming that angular
knows that the $scope object might have
changed when that happens . See http :// docs.
angularjs .org/api/ng. $rootScope .Scope for
details */

$scope .data = dataService . loadData ();
}

}]);

Listing 9: Exposing behaviour to the view

The controller defined above could then be used like this in the view:
<div ng - controller =" myController ">

<button ng -click=" loadData ()">Click me to load data </
button >

<div >{{ data }}</div >
</div >

Listing 10: Using functions bound to the $scope

5.3 Promises
At some point when developing JavaScript applications, you will stumble upon
asynchronous programming. Three common ways of handling asynchronous
events are through callbacks, with events and with promises. The Q 22 library
originally developed by Kowal [6], and now maintained by him and around 30
other contributors, served as the main inspiration for our own promises library.
First we will give a short refresher on asynchronous programming in JavaScript
and how it has been done for the last decade. Then we will explain what problems
occur when using the more simpler methods of handling synchronization. How
promises can help with asynchronous programming and the reasoning behind
choosing to write our own flavour of promises will be explained at the end of
this section.

5.3.1 Introduction to asynchronous programming in JavaScript

Here we will provide a very short introduction to asynchronous programming in
JavaScript. This introduction serves to give the reader a basic sense of what
asynchronous programming is. Keep in mind that it is by no means a complete
guide. The most basic asynchronous function in JavaScript is setTimeout. This
function will run a piece of code that you provide after a delay that you can
specify.
// Define the code to be delayed
function toBeDelayedCode () {

alert("A late message . ");
}
// Execute the function after 1000 miliseconds
setTimeout (toBeDelayedCode , 1000);

Listing 11: Asynchronous programming
22https://github.com/kriskowal/q

On developing DizzyData Front-End 29

https://github.com/kriskowal/q
https://github.com/kriskowal/q

5 IMPLEMENTATION

There are many other occasions where something will be done in the future.
For example, lets say we have created a login dialog as in Figure 15 that is
activated through JavaScript when the application needs the user to log in
again.

Figure 15: A login dialog

The JavaScript code on the webpage that we are currently on will want to
know when the user has logged in. One common way to be notified of such
an event is by passing a so called “callback function” when we create the login
dialog. The code looks very similar to the setTimeout example in Listing 11 in
that it also uses a callback.
var options = { // An object that contains some options

title: ’Login Dialog ’ // such as the title of the
dialog

};
createLoginDialog (options , function callback () {

// This code is run when the login dialog is closed
});

Listing 12: Login dialog callback

A more common example of an asynchronous event in JavaScript is an Asyn-
chronous JavaScript and XML 23 (Ajax) call response. The Ajax technology
can be used from JavaScript and provides a method for exchanging data asyn-
chronously between browser and server to avoid page reloads. The login dialog
actually uses Ajax internally. When the user fills in his username and password
and clicks on the “login” button, a request is sent to the API. The API then re-
sponds to this request with either a “success” or a “fail” message. The response
is then passed to a callback function so that it can be handled appropriately.

5.3.2 Problems of the callback method

As we discussed in the previous section, the most basic way of handling asyn-
chronous events is through callbacks. There are certain common problems that
arise when using callbacks. We will give some examples of these problems so
that we can use them later on to demonstrate how promises can help.

It is possible that multiple parts of your application will have to be notified
of the result of an asynchronous operation. Let us call these parts “observers”.
With callbacks, you would have to notify each observer in the place where the

23https://developer.mozilla.org/en/docs/AJAX

On developing DizzyData Front-End 30

https://developer.mozilla.org/en/docs/AJAX
https://developer.mozilla.org/en/docs/AJAX
https://developer.mozilla.org/en/docs/AJAX

5 IMPLEMENTATION

callback is registered. The example in Listing 13 shows an abstract example of
this.
someAsynchronousOperation (function (result) {

// this is the callback
notifyObserverA (result);
notifyObserverB (result);
notifyObserverC (result);

});

Listing 13: Observing with callbacks

Notice that the observers are now tightly coupled to the above code. If you
can only change the observer A code, you can not prevent notifyObserverA from
being called. The dependency of observer A on the result of the asynchronous
operation is inversed: the result is notifying the observer that it is ready rather
than the observer is listening to the result to see if it is ready.

Another problem is controlling the flow of your application. With callbacks it
is possible to create some utility functions that can help handle the control-flow.
Two often required functions are serializing a series of asynchronous operations
and doing something after a set of asynchronous operations have finished.

It should be clear from Listing 14 why it would be nice to be able to sequen-
tialize a list of asynchronous functions.
getUser (function callback (user) {

getWorkflows (user , function callback (workflows) {
getElements (workflows , function callback (elements)

{
// use all the elements of all the workflows

of the user
});

});
});

Listing 14: Callback pyramid

If you do not apply some clever technique you will end up with a gigantic
“callback pyramid”. Things get even worse if you also add error handling to the
mix.

Something like the following would be ideal:
sequentialize ([

getUser ,
getWorkflows ,
getElements

], function (user , workflows , elements) {
// Use the user , workflows and elements

});

Listing 15: Sequentializing with callbacks

However, getWorkflows depends on the result of getUser and we do not explicitly
define how the results are passed as arguments to the next function. This means
that the getWhatever functions must have a standard signature such as:
function (input , next) {

someAsynchronousOperation (input , function (output) {
// asynchronous function is done
next(output)

})

On developing DizzyData Front-End 31

5 IMPLEMENTATION

}

Listing 16: Sequential function signature

This already provides more clear an better control over the data flow than plain
callbacks. However, it does require a certain format and there are some other
drawbacks such as not being able to change the next step in the sequential chain
dynamically.

The other common utility function is parallelization. Lets say we are de-
veloping a system that does some magical interweaving of the tweets a person
wrote on Twitter 24 and the shots that that person made on Dribbble 25. We
will do some Ajax requests from the persons browser to the respective web ser-
vices to retrieve the information. We obviously want these requests to happen
simultaneously and not sequentially.
getTweets (’email@example .com ’, function (tweets) {

// We have the tweets , but do we have the shots?
})
getShots (’email@example .com ’, function (shots) {

// We have the shots , but do we have the tweets ?
})

Listing 17: Simultaneous Ajax requests

From the example you can see the problem that arises: we want to know when
both of these requests have completed. We could manually solve this by using
a counter that keeps track of the number of requests that have finished.
var tweets , shots , counter = 0;
getTweets (’email@example .com ’, function (t) {

tweets = t;
if (++ counter === 2) {

// we have both the tweets and the shots
}

})
getShots (’email@example .com ’, function (s) {

shots = s;
if (++ counter === 2) {

// we have both the tweets and the shots
}

})

Listing 18: Parallelization with a counter

Note: This code does not suffer from race conditions because JavaScript is
single-threaded.

This method is ofcourse prone to error so we would like to automate this
manual synchronization. It is possible to write a utility function that keeps track
of the number of responses for us and then rewrite our code to something like
this:
parallelize ([

function (callback) { getTweets (’email@example .com ’,
callback); },

function (callback) { getShots (’email@example .com ’,
callback); }

], function (tweets , shots) {

24https://twitter.com
25http://dribbble.com

On developing DizzyData Front-End 32

https://twitter.com
http://dribbble.com
https://twitter.com
http://dribbble.com

5 IMPLEMENTATION

// we have both the tweets and shots
});

Listing 19: Parallelization with callbacks

Note that the parallelize function expects an array of functions with signature
function(callback) where the callback has the signature function(result).
Again, this method is better than vanilla callbacks but it is still very inflexible
because of the specific function signature and because it still does not solve the
observer problem.

5.3.3 Introducing promises

A promise is a synchronization construct. The basic idea can be demonstrated
with a few lines of JavaScript code by defining a function that returns a promise
object. The example below is such a basic but naive implementation.
function defer () {

var callback ;
return {

resolve : function (value) {
callback (value);

},
then: function (_callback) {

callback = _callback ;
}

};
}

Listing 20: Naive promise implementation

The above function allows us to defer the resolution of a value. We can use it
to make a promise as follows:
function login(username , password) {

var promise = defer ();
// Does an asynchronous database query
database .login(username , password , function (user) {

// This function is called when we have a response
promise . resolve (user);

})
// Immediately return the promise
return promise ;

}

Listing 21: Using defer to wrap a callback in a promise

The function login() uses defer() to create a promise. The promise is resolved
after the user is logged in to the database. It essentially wraps the login(
username, password) function in a promise. To demonstrate how to actually
use the login() function see the listing below:
var result = login(’dragonSlayer14 ’, ’D3a1*d#!’);
result .then(function (user) {

// print a message
console .log(user.name + ’ has logged in’);

});

Listing 22: Using a function that returns a promise

From the code you can already see that the control is un-inversed. The login(
username, password) function immediately returns a value. This value is then

On developing DizzyData Front-End 33

5 IMPLEMENTATION

used to attach a function that is called when the result is ready to be used.
With synchronous functions, it is often desired to have a useful return value.
The following function is a simple example of this.
function add(a, b)

If we assume that the add computation must be done asynchronously, the func-
tion would look like this:
function addAsync (a, b, callback)

Notice that addAsync does not have a useful return value. If we were to use
promises, the function would look like this:
function addPromise (a, b)

It has the same signature as the normal add function and it’s return value is a
useful value. The only difference is that it will be resolved in the future.

So with the small amount of code in Listing 20 we already achieved an im-
provement over using plain callbacks. There are however some major drawbacks
to our little defer() function that need to be addressed:

1. It does not allow you to attach multiple observers.

2. The promise can be resolved multiple times.

3. A promise handler is not run if it is attached after the promise has been
resolved.

4. It still does not provide an improved way of handling sequentialization.

5. There is no explicit error handling.

The first three drawbacks are quite easy to remedy. The fourth and fifth
drawbacks however are not.

In order to get a deep understanding of not only how promises are to be
used but also of how they should be created, we decided to write our own
version of a promise library that is directly integrated into AngularJS. It was
developed with the design rationale of Q, which is well documented at https:
//github.com/kriskowal/q/blob/master/design, in mind. Doing so was a
very valuable experience which led us to gain a better understanding of common
pitfalls in asynchronous programming and of how promises can be used.

We decided to leave our own promises library in the project and use it instead
of Q. Our reasoning behind this was that our own promise library was already
integrated into AngularJS and that it covered our needs. An additional benefit
was that we knew very well how to use it. An example of how we use promises
can be found in the auth service. Listing 23 serves to illustrate how promises
play a role there. Note that the actual auth service code is more powerful and
correct than this simplified version.
// obtain a reference to our module
var myModule = angular . module (’myModule ’);

// Register the auth service as a part of myModule
myModule . factory (’auth ’, [’database ’, ’promise ’, function (

database , promise) {

// Some utility functions
function getError (errorCode) { /* ... */ }
function setUser (userData) { /* ... */ }

On developing DizzyData Front-End 34

https://github.com/kriskowal/q/blob/master/design
https://github.com/kriskowal/q/blob/master/design

5 IMPLEMENTATION

function clearUser (userData) { /* ... */ }

var user = {}, auth = {
authenticated : false ,
login: function (username , password) {

return promise (function (resolver) {
// Check if we are already logged in
if (auth. authenticated) {

// Immediately resolve and return
resolver . resolve (user); return ;

}

// Asynchronous database request to log in
database .login(username , password ,

function (errorCode , user) {
if (errorCode) {

clearUser ();
resolver . resolve (getError (

errorCode));
} else {

setUser (user);
resolver . resolve (user);

}
});

});
}

};

return auth;
}])

Listing 23: Promises in AngularJS

The parts of Listing 23 that we are interested in now are where the promise
is created and where it is resolved. Our promise library allows us to create a
promise with the following syntax:
function makePromise () {

return promise (function (resolver) {
// Do something asynchronous here ...
// and eventually resolve it.
resolver . resolve (’The value ’);

});
}

The following code uses makePromise() and attaches two observers, one logs
the value to the console and the other creates a dialog box with the value as
the message:
makePromise ().done(function (value) {

console .log(value); // Log the value to the console
}).done(function (value) {

alert(value); // Print a message box with the value
})

The use of our .done(callback) function is similar to that of Q’s .then(
callback) but the implementation and effects are actually totally different.
The Q library allows you to sequentialize promises by using a chain of .then
(callback) calls. The callbacks are required to return a promise if you wish
to do so. Our library allows you to sequentialize your promises more explicitly

On developing DizzyData Front-End 35

5 IMPLEMENTATION

using promise.sequentialize(promisors). This function accepts an array of
functions returning a promise. These functions returning a promise are called
promisors. The promisors are executed after the last promise has finished in
order to sequentialize the execution of the promises.

For parallelization, Q provides the function Q.all(promises) and our library
provides promise.parallelize(promises). Both of these functions return a
promise that is resolved after all of the passed promises have been resolved.

In conclusion, the Q library is a very complete and well tested library for
promises in JavaScript. Using the lessons that the developers of Q learnt and
documented we created our flavour of promises. Our own library covered the
needs we had for this application and the simplicity of it made using and de-
bugging easy for us. If needed, it is possible to switch to using Q but there was
not enough reason to do so during the project because of the reasons mentioned
before and because there were a lot more pressing concerns.

5.4 DizzyData API communication
To connect the front-end with the DizzyData system API calls are used. Because
DizzyData utilizes a web API, these calls go through HTTP request which are
made to the server. AngularJS provides with a standard function, $http, that
sends a HTTP request to the specified url. An example of this function is shown
in Listing 24, here a ‘GET’ request is made to ‘/someUrl’.
$http ({ method : ’GET ’, url: ’/ someUrl ’}).

success (function (data , status , headers , config) {
// this callback will be called asynchronously
// when the response is available

}).
error(function (data , status , headers , config) {

// called asynchronously if an error occurs
// or server returns response with an error status

.
});

Listing 24: $http call in AngularJS

Because several different types of requests are available, the $http function
takes input from an object containing these elements: method (required), url
(required), data (optional), params (optional), headers (optional). Method tells
the function what type of action should be performed, more about this in Section
5.4.1 about CRUD. The url points to the location where the request should be
done. Data and params contain the information that should be send to the
server along with the request. The headers can be used to define the format of
the data that is send with the request and the requested format in the response,
for instance JSON.

For our implementation we decided to build a service that manages all API
calls. This way all calls could be handled in the same manner and information
such as the API url could be kept in one single place. The $http function was
wrapped in a promise, as described in Section 5.3, to have full control over the
form of the response.

5.4.1 CRUD

CRUD stands for “Create, Read, Update and Delete”, these are the four different
operations which can be done on objects or elements. In our case the methods

On developing DizzyData Front-End 36

5 IMPLEMENTATION

that can be performed on the API resources are called: POST, GET, PUT and
DELETE respectively.

POST allows the user to create a new object and send the details of that
object to the server in the data part of the HTTP request.

GET allows the user to retrieve the resources that satisfy possible character-
istics given in the params part of the HTTP request.

PUT allows the user to edit an existing resource by sending the new details
in the data part and an identification number of the specific resource that needs
to be updated.

DELETE allows the user to remove a resource by specifying the identification
number of that resource.

These four operations were turned in to separate functions, which in turn
all return a promise object that contains the actual HTTP request. This way a
call can be made as in Listing 25, were a GET request is performed on the Jobs
resource, with params: {’limit’: 25, ’offset’: 0}.
ddAPIService .get(’jobs ’, {’limit ’: 25, ’offset ’: 0}).

done(function (response) {
// Handle the response

})

Listing 25: An API call using our own function and promise return

5.4.2 Authentication

As mentioned earlier in Section 4 the API uses an authentication system called
OAuth. For this specific project the API needed to be extended to support
authentication through a username and password combination. When the user
is correctly authenticated, the API returns an access token that must be used
in later calls to verify the identity of the user. These tokens expire after a given
amount of time and therefore need to be refreshed at regular intervals. Also
when a user logs in through another system or someone else uses the same
credentials to log in and receives a new access token, the old token becomes
invalid.
auth.login = function login(username , password) {

return promise (function (request) {
$http ({ method : ’POST ’,

url: ’http :// dev2 -api. dizzydata .com/v1/ oauth2 /
token ’,

data: {
’grant_type ’: ’password ’,
’scope ’: ’test ’,
’username ’: username ,
’password ’: password

},
headers : {

’Accept ’: ’application /json ’,
’Content -Type ’: ’application /x-www -form -

urlencoded ’
}

// ...

Listing 26: Part of the access token request in auth.js

The authentication process was implemented in a separate service called
auth.js, this was done because the request to the API for an access token is
fundamentally different form the normal requests. Also the fact that the normal

On developing DizzyData Front-End 37

5 IMPLEMENTATION

request need the access token to function and not the other way around, means
that separating these two types of API calls is a logical choice. The auth.js
service handles not only the access token request, but also stores this token in
a cookie and manages the login dialog when needed. By keeping these parts of
the authentication in one simple service, all other methods that require a user
to be authenticated can simply check with this service to see whether that is the
case. In Listing 26 a part of the token request can be seen, using the username
and password as data to send to the API.

Because we had to take into account that the token could become invalid
in the process, the response from the API needed to be checked for this error
specifically. When the token was expired, the current request would be discarded
and an new request for a token should be made. To prevent that a request is
discarded and possibly lost when the token is expired, we implemented a function
that requires the user to login again when their request gets denied. In the case
that an access token is expired, the API responds with a 401 StatusCode, which
indicates that access was denied to that resource. In Listing 27 part of the
$http request function is shown illustrating how the request is repeated after
successfully entering credentials in the login dialog.
$http(/* parameters */).

success (function (response) {/* handle success */}).
error(function (response) {

if (response . StatusCode === 401) {
// require the user to login again
auth. requestLogin ().done(function () {

request (result) // repeat the request
})

}
})

})

Listing 27: Part of the $http request method, showing the 401 error handling

Listing 28 shows the auth.requestLogin() function that prompts the user
with a dialog. The dialog returns a promise that is resolved when the user is
authenticated and received a new access token. This allows us to use this dialog
to verify the login and repeat an API request when the token has been renewed.
// Returns a promise that is resolved when the user has

logged in.
auth. requestLogin = function requestLogin () {

if (requestLoginPromise) { return requestLoginPromise
}

return requestLoginPromise = promise (function (resolver
) {
auth. logout ()
requestLoginResolver = resolver
loginDialog .open(’/ partials /login - dialog .html ’, ’

LoginDialogController ’)
})

}

Listing 28: requestLogin() function that request the user to login through a
dialog

On developing DizzyData Front-End 38

5 IMPLEMENTATION

5.5 Models
As explained in Section 4 we designed models to be able to visualize the resources
of the API in the interface. Most models could be an almost direct representation
of the objects returned by the API, but some special cases were handled in the
implementation of these models, which we will discuss here.

5.5.1 Basic models

The basic models are the models that did not require much transformation to
be displayable in the interface. These models contain some similar functions
which we will use to illustrate the implementation of the models.

Most models contain their own call to the API service enabling the models
to be retrieved from or send to the DizzyData API. These functions were used
mostly in the higher level models, as shown in the class diagrams in Section
4.5.2. With higher level models we mean models that contain collections of
other models. It makes sense to let these models retrieve the information from
the API, because then the resources that belong to that specific model can be
added instantly. For example: we use the Jobs model to represent all Jobs,
JobResultFiles and JobResults. The Jobs model has all the functionality to
retrieve the Jobs from the JSON returned by the API and add all these Jobs to
the collection of Jobs. The same is done with the JobResults and JobResultFiles
at the level of the Job.

Another implementation decision shared throughout all models is the decision
to use the JavaScript object literal “{}” to represent the collection of sub-
elements rather than using an array. For example: the WorkflowTranslator
object contains a list of Steps, which are added to this object , with their StepID
as the object key. This allows us to invoke a specific Step from this list using
WorkflowTranslator.steps[stepID] . This functionality comes in very handy
when a specific element needs to be retrieved from such a list when only the id
is known, more on this in the following Section about Workflow translation.

5.5.2 Workflow translation

Translating Steps and Workflows to the displayable Worker object was one of
the more complex tasks to perform. As discussed in Section 4 on System Design,
the Worker would represent a collection of Steps, with input and output Steps
and the most important Step: the main Step. This main Step is the Step that
defines the work that is done by that Worker, the other Steps are of secondary
importance to the user. The translation to Workers is performed the following
way:

1. We loop trough all Steps, to identify the main Steps.

2. For each main Step a new Worker object is created.

3. Each Worker retrieves a list of input Steps and a list of output Steps.

4. The Workflow to which the main Step belongs is retrieved to add details
to the Worker.

5. The Worker is added to the list of Workers.

Action 3 is an interesting part of this translation. Retrieving all output Steps
is an easy task, because these are just Steps that are in the same Workflow which
are of the type output. Retrieving all input Steps on the other hand can be more
challenging, because input Steps that monitor storage services can be placed in

On developing DizzyData Front-End 39

5 IMPLEMENTATION

another Workflow and then point to the Workflow that does the document
processing. Listing 29 shows what check needs to be performed to verify if a
Step is an input to a specific Workflow.
isInputTo : function (wfID) {

return this. isInput () && (this. workflowID === wfID ||
this. settings [’OutputWorkflowID ’] == wfID)

}

Listing 29: Verifying whether a Step is input to a specific Workflow

A special case occurs when a Workflow has multiple main Steps, in this case
multiple Workers are created, but in their respective in- or output they point to
the previous or next Worker instead of a list of Steps.

Action 4 is a good example why we used the ids of resources as keys in the
listing of these resources. The Workflows are stored in an object in the Work-
flowTranslator and the Step contains an attribute WorkflowID, pointing to the
Workflow to which that Step belongs. Instead of searching for the Workflow, it
can be easily retrieved using: WorkflowTranslator.workflows[step.workflowID
] .

In first instance we sketched a system that would transform these Workflows
and Steps into Workers, then allow the user to edit the Workers and transform
these back to be send to the API. But JavaScript limited us in this aspect,
because there is no easy method to save multiple variables between different
pages in a JavaScript environment without the use of databases. Therefore we
decided an another implementation approach.

The Worker objects would be used purely for visualization and generated by
retrieving all Workflows and Steps from the API. When the user edits a Worker,
the user is actually editing the specific Step belonging to that Worker. Because
all changes that can be made to the Worker object are related to either settings
in the Workflow or Step, these changes can be pushed directly to these resources.
The same goes for updating an output or input Step. Elements that belong to
the main Step can also be edited directly, because they are directly related to
that Step and need no translation to be visualized to the user.

5.6 The document previewer with OCR support
The idea behind the front-end is that you teach DizzyData how to process your
documents. Making it easy for the user to do this was one of our main goals so
we put a lot of time in thinking of ways to realize this. One of the ideas we had
was to let users upload test documents: documents that are instances of the type
of document that needs to be processed. By letting the user make recognition
rules based on the test document combined with its OCR data should be a very
natural way of guiding the system through your document. Additional benefits
would include the visual editing of search areas and easily creating recognition
rules by clicking on the overlying OCR data.

So what we needed to build was our very own document previewer with OCR
support. It had to work in older browsers and it had to be fast enough for small
to medium sized documents. The previewer also had to be extensible because
new features are constantly being added to DizzyData some of which we might
have to support in the future. Next to these project specific requirements we
also needed our document previewer to have standard features such as scrolling,
pagination, zooming and searching. Some of the features were surprisingly easy
to implement with the help of AngularJS and others proved to be quite a chal-
lenge. The complete previewer is shown in Figure 16. On the left you can see
some Elements and the block with the toolbar on the right is the previewer.

On developing DizzyData Front-End 40

5 IMPLEMENTATION

Figure 16: The previewer in action

This section starts off with a description of how the previewer is built up.
Next, the most important aspects of the previewer are discussed in detail. Pos-
sible improvements on the previewer are listed at the end.

5.6.1 Laying the foundation

There are a couple of things we required in order to realise the previewer.

1. Images of the pages

2. Page meta-data

3. OCR data usable in JavaScript

It is obvious to see why the browser needs to have access to the images of
the pages. The OCR software used by DizzyData takes a images or a scanned
documents and does some processing on them. It outputs the generated images
per page, as well as the extracted OCR data.

It is useful to have some additional meta data about each page such as the
page number in the original document, the url and the width and height of the
page image. Why this is true for the width and height is discussed in Section
5.6.3.

The OCR software provides a lot of data on each recognized character and
on character groups. For our purposes we needed only a small subset of this
information. We wanted to know the place and text of every word found on
each page.

These DizzyData API requirements led to the JSON specification in Listing
30. Note that it is not valid JSON code. The <- denotes a textual definition
rather than a value.
version : <- Version number of the JSON format as a string

in the form of "major.minor.patch", will be helpful if
we need to change the format

pages: [
{

image: <- Full path to the image as an url
width: <- The width of the page in pixels as a number
height : <- The height of the page in pixels as a

number
number : <- The page number as a number
words: [
{

On developing DizzyData Front-End 41

5 IMPLEMENTATION

left: <- distance between the left side of the
page and the left side of the word in pixels
as a number

top: <- idem for top side and top side of the word
right: <- idem for left side and right side of the

word
bottom : <- idem for top side and bottom side of

the word
value: <- the textual value of the word as a

string
}, ... <- the rest of the words if there are any
]

}, ... <- the rest of the pages if there are any
]

Listing 30: OCR data specification

The DizzyData API is not capable of providing OCR data in this format yet.
For the duration of the project we have used an example document for which
we manually created a JSON file that met the specification. At a later time this
feature will probably be added to the API.

5.6.2 Navigating through the document

Navigating through the document is an very important aspect of a document
viewer. When using a web browser you usually scroll by using the scroll wheel,
pressing the space or arrow keys or by using the find function. For document
viewers however, we noticed by experience that other forms of navigation are
much more common.

Lets first talk a bit about how the display of the previewer actually works.
We will not discuss it in detail because it is a common technique. Imagine a
big plate that hold all of the content – in our case a series of images that are
horizontally aligned on the center and vertically placed beneath each other. Now
imagine a rectangular hole that has a fixed position through which you can look
at the plate. If you want to view another part of the plate, you have to move
the plate since the position of the hole cannot be changed. Just keep in mind
that you have to move the plate in the opposite direction of what you want to
view.

In our application the plate is called the “screen”, which might not have been
the best choice, and the hole is the “viewport”. The viewport element is the
parent of the screen element. The offset of the screen relative to the viewport
is what determines what you can see. Vertically and horizontally scrolling now
amounts to simply modifying respectively the vertical and horizontal offset.

So what user actions should trigger this scrolling behaviour? Well, obviously
the mouse wheel and the arrow keys should work. Also, most document viewers
often have some form of pagination and a find function, some even have book-
marks, automatic indexes and thumbnails. Having a basic form of pagination in
addition to the mouse wheel and the arrow keys should be sufficient, or so we
thought.

While viewing our test document we noticed that we tried to use the click-
and-drag method to navigate through the document. This occurred mostly at
times when the page was larger than the viewport which meant that we needed
to scroll horizontally. It was possible to scroll horizontally by holding the SHIFT
key combined with the mouse wheel, but somehow we subconsciously kept trying
to use the click-and-drag method.

On developing DizzyData Front-End 42

5 IMPLEMENTATION

5.6.3 Adding pagination

Pagination is a standard feature of document viewers. Making sure that the
correct page number is visible and letting the user jump to the next, previous
or a page of their choice is the job of the “pager”. All these functions are nicely
grouped together on the left side of the previewer toolbar as you can see in
Figure 17. The pager exposes functions to the view that make it easy to go to
the next, the previous or a specific page.

Figure 17: Previewer toolbar

The pager is a part of the previewer module. In order to successfully do
any of its tasks, the pager must know what page is currently being viewed by
the user. The most common rule used to determine this is by finding the page
closest to the centre of the viewport. Listing 31 contains the pseudo code for
finding the page closest to a y-coordinate.
function closestPage (pages , y)

min = POSITIVE_INFINITY
closest = null
foreach page in pages

if top or bottom of page is closer to y than min
closest = page

return closest

Listing 31: Finding the closest page

Since we have access to a list of pages sorted by vertical position we could
use a binary search algorithm. For our purposes this was too complex the speed
gain with respect to a simple iterative version is negligible. Since the bottom
of a page is calculated by getting the top offset and adding its height we can
think of another optimization. By visiting the pages from bottom to top we can
prevent the expensive CSS lookup of the height property and only do a single
check per page until we passed the y-coordinate. This might be added in the
future but during development we were focused on getting it to work.

The closestPage function is used by the pager every time the screen off-
set changes to make sure that the “current page” input always contains the
correct page number. This is easily realized using the $watch(value, callback
, deepCompare) function provided by AngularJS. The function essentially allows
you to keep an eye on an object or value and do something when it changes.

Currently the pages are contained in a zero-indexed array. This means that
to go to the first page you will have to type “0” in the input box. The second
page is then “1” and so on. In the future, the pager should use the page number
specified in the page meta-data contained in the document JSON.

5.6.4 Implementing zooming

Another key component of the previewer was the zooming functionality, hereafter
referred to as the “zoomer”. Figure 17 and 18 already reveal that we managed to
implement this requirement but it was definitely not easy. There were a number
of requirements for the zoomer of which the most important ones were that the
zoomer must a) be able to zoom in and out; b) be able to find a zoom level for

On developing DizzyData Front-End 43

5 IMPLEMENTATION

which the page fits exactly in the viewport; c) work in all major browsers that
support at least CSS 2.0; d) zoom relative to the cursor position or the centre
of the previewer if the cursor is not present; and e) not depend on the styling
of the pages with exception of the fact that they are placed above one another.
The first two are not as interesting as the other three so we will not discuss
them in detail.

Figure 18: Fit page button

Not being able to use CSS versions later than
2.0, requirement c, meant that we could not use
the CSS 3.0 zoom property. We had to create our
own solution which used the automatic scaling of
images to their element’s width. This allowed us
to simulate zooming by scaling all the elements in
a page and the page itself using the zoom factor of the previewer. The elements
in a page include the OCR data, see Section 5.6.5 for more information on this
subject and how it handles zooming. The page elements are actually AngularJS
directives that watch the zoom level provided by the previewer.

Figure 19 serves to illustrate requirement d. Since almost every application
that allows you to zoom takes care of this it feels very odd when you encounter an
application that does not. Cursor-aware zooming has to work perfectly because
when it does, it feels very natural. Even to people who are not used to zooming.

Figure 19: Zooming towards the cursor

Requirement e made realizing the cursor-aware zooming even more difficult.
The fact that the styling can change meant that we could do no assumptions
on the size, margin and horizontal position of the pages. The only data we
could fetch were the position and dimensions of the pages. Figuring out an
algorithm solved only half of the problem since it had to be implemented using
AngularJS. You might ask yourself why it was harder because we were using
AngularJS. The answer is: AngularJS abstracts away flow-control. It is hard
to specify a sequence of operations on elements that are contained in different
directives because the philosophy of AngularJS is that directives, which could
be described as functional elements, should update themselves.

The eventual pseudo code for zooming consist of two parts. The first part,
Listing 32, handles getting the right zooming level and the second part, Listing
33, makes sure that the screen offset is corrected so that the cursor stays in
place. By splitting the code up in these two parts we allow ourselves to use a
step model for determining the next or previous zoom level while still allowing
any zoom level to be used.
// a list of zoom levels
steps = [5, 2, 1, 0.5, 0.2]

// returns index of the step that is closest to level
function getClosestStep (level) {

On developing DizzyData Front-End 44

5 IMPLEMENTATION

return steps.min(function (value) {
// map steps to an array with these values
return abs(level - value)

}) // and return the index of the minimum value
}

Listing 32: Finding the current zoom step

The getClosestStep(level) function is used to get the current index by
the zoom in and out functions. The index is then decremented or incremented
respectively if the resulting index is within bounds.
var mx , my , // abs coords rel to viewport

rx , ry , // rel coords rel to page
closest , // closest page
numCalls // number of calls to after

/* calculates and/or stores mx , my , rx , ry and closest and
resets numCalls */

function before () {

if mouse is over viewport
/* store absolute mouse position relative to the

viewport */
mx = viewport .mouse.x
my = viewport .mouse.y

else
/* store mouse position as the center of the

viewport */
mx = viewport .width /2
my = viewport . height /2

/* translate mouse coordinates to be relative to the
screen */

var x = screen . offset .x + mx ,
y = screen . offset .y + my

closest = closestPage (previewer .pages , y)

rx = (x - page.left)/page.width
ry = (y - page.top)/page. height

numCalls = 0
}

/* uses the stored data to determine the correct offset
after all the pages have been resized , the pages are
responsible for calling this function */

function after () {
increment numCalls
if numCalls is not equal to the number of pages

/* not all the pages have been resized yet: stop
*/

return

/* do the reverse operation of begin: translate the
relative page coords back to absolute coords
relative to the page and then back to absolute
coords relative to the screen . It will absolute

On developing DizzyData Front-End 45

5 IMPLEMENTATION

screen coordinates that are different from the
ones used in the before function because the page
dimensions have now changed . */

var nx = rx*page.width + page.left ,
ny = ry*page. height + page.top

/* using nx and ny as the screen offset would mean
that the center of zoom is the top left corner ,
subtracting the stored mouse position from nx and
ny is the final touch. It moves the screen so that

the relative mouse point stays in place. */
screen . offset .x = nx - mx
screen . offset .y = ny - my

}

Listing 33: Correcting the screen offset

Note that the after() function just sets the screen offset to a new value.
The scroller component takes care of clamping the screen offset to a valid value
when it changes.

As can be read in the code comments, the before() function is run before
the zoom level will change. This is illustrated in Listing 34:
zoom.in = function () {

before ()
var index = getClosestStep (zoom.level) - 1
if index is in bounds

zoom.level = steps[index]
}

Listing 34: Usage of before() by the zoomer

The after() function is called from the page controller which is part of
the page directive. Listing 35 shows the pseudocode of a piece of the page
controller:
$watch (

function () { return zoom.level },
function (level) {

/* the zoom level has changed and the level
variable now holds the new value */

image.css ({
width: page. originalWidth *factor ,
height : page. originalHeight * factor

})
/* notify the zoomer that this page is done

resizing */
zoom.after ()

})

Listing 35: Using after() in the page controller

The page controller watches the zoom level for changes and when it does,
it updates the size of the image element and notifies the zoomer that the page
has been updated.

This solution may not be the prettiest but it does its job very well. The
translation to and from relative coordinates in the space of the page closest to
the cursor algorithm works really well.

On developing DizzyData Front-End 46

5 IMPLEMENTATION

5.6.5 The OCR overlay

The OCR overlay has one purpose: easing the editing of Workflows. It shows
what words have been recognized by the OCR system.

The overlay consist of elements that are positioned relatively to the page.
Each word has its own element and contains the textual value of the word and
a piece of context menu code. The words become visible when you hover over
them with the mouse. A currently non-functional context menu will open if you
click on a recognized word as is shown in Figure 20.

Figure 20: Utilizing OCR data by creating an interactive overlay

The word elements are AngularJS directives that behave similar to the page
elements; they watch the zoom level provided by the previewer and scale their
properties when it changes. The difference is that the words do not need to
notify the zoomer of their size changes because they do not effect the size of
the screen, they are contained within their page. The properties that need to
be scaled are the word position, dimensions and the font size.

5.6.6 Improvements

There is a lot of room for improvement on the previewer code. For example,
we noticed that AngularJS is not particularly suited for these more complex
implementations. It might be a good idea to create a version of the previewer
that does not use AngularJS but just JavaScript with some utility libraries. This
is not worth the effort unless the zooming code breaks badly for some reason.
There are however some other improvements that can and probably will be
realized in the near future.

searching
An important requirement was being able to search through the document
by using the OCR data.

context-menu
The context-menu that is opened when you click on a word is not func-
tional at the moment. We will have to see what options can be useful
there. For now it is a proof-of-concept.

selecting areas
One of the ideas was to be able to visually create and edit areas in the
previewer. There are a number of recognition rules that allow you to
specify an area in which the rule applies by providing the coordinates.
Doing this graphically will be much easier.

click-and-drag
Something you will try to do while working with the previewer is using the
mouse to drag the document around, unfortunately this does not do any-
thing at the moment. By plain scrolling you can achieve the same results

On developing DizzyData Front-End 47

5 IMPLEMENTATION

but dragging feels much more natural when the page you are looking at
does not fit in the viewport.

scrollbars
It is, apart from the page number, hard to get a sense of where you are
in the document. We wanted to have full control over the scroll bars so
we used our own display solution. Having smart overlying scrollbars that
appear only when it feels useful would be a great addition as well.

page number
The pager should be using the provided page number data. The pages
should be sorted by their number. The implementation is halfway done.
More pressing tasks prevented the continuation.

fit to closest page
It would be nice to have the “fit to page” button and hot key change the
zoom factor so that the closest page fits precisely in the viewport. This is
more of a nicety because it will not be useful in case the document pages
are all about the same size, which is often.

event based
It may be worth the effort to rewrite the previewer to be more event based
instead of watch based. By doing so we provide better control of when
update handlers need to be run. It also allows you to cancel the events, a
functionality we would have loved to have during development.

help screen
Something should trigger a help screen where the goal of the previewer,
its functionalities and a description of how to use it is given along with
the respective hot keys if there are any.

On developing DizzyData Front-End 48

6 CODE QUALITY

6 Code quality
6.1 Testing
As we explained in Section 4.6, being able to easily test components of our
application was one of the reasons why we chose to use AngularJS. While it is
quite easy to write tests once everything is set up, we did have some trouble
configuring the required tools. In the end, we managed to get a decent set-up
that could be easily installed on other machines. This section provides an short
overview of all the tools that we had to use in order to write and execute tests.

6.1.1 JavaScript applications with Node.js

Figure 21: Node.js

Node.js 26 is a cross-platform application built on Chrome’s
JavaScript runtime. It allows you to run JavaScript with-
out a browser. This JavaScript code can interact with
the file systems and networks through the cross-platform
libraries that Node.js provides. The Node.js libraries are event-driven and non-
blocking which, in combination with the single-threaded nature of JavaScript,
allows you to write efficient enough data-intensive applications with ease.

For our project we needed a simple fileserver. We chose to use Node.js
in combination with a module called Express 27 to generate a fileserver. This
fileserver serves HTML, JavaScript and CSS files. Additionally, it automatically
compiles Stylus 28 files into CSS for us. Stylus is a stylesheet language that is
more powerful than plain CSS. It allows you to for example use variables, math
expressions and abstract away browser inconsistencies.

6.1.2 Dependency management with NPM

Figure 22: NPM

As you might imagine, a software development tool like
Node.js would benefit from having a good dependency
management tool and Node Package Manager 29 (NPM)
does exactly that. NPM is a package manager that allows
you to specify meta information on your Node.js application or, in NPM terms,
your package. This information is to be stored in a JSON file called “pack-
age.json” that must be placed in the root directory of your package. The file
describes properties such as the name of your package, who the author is, where
its readme can be found, what other packages your package depends on to run
and what other packages your package depends on when you want to develop
it. Listing 36 shows our package.json at a certain time during the project.
{

"name ": "DF",
" version ": "0.3.6" ,
" private ": true ,
" scripts ": {

"start ": "node app.js"
},
" dependencies ": {

" express ": "~3.2.4" ,
" stylus ": "~0.32.1"

},

26http://nodejs.org
27http://expressjs.com
28http://learnboost.github.io/stylus
29https://npmjs.org

On developing DizzyData Front-End 49

http://nodejs.org
http://expressjs.com
http://learnboost.github.io/stylus
https://npmjs.org
http://nodejs.org
http://expressjs.com
http://learnboost.github.io/stylus
https://npmjs.org

6 CODE QUALITY

" devDependencies ": {
"grunt ": "~0.4.1" ,
"grunt -contrib - jshint ": "~0.5.4" ,
"grunt -karma ": "~0.4.4" ,
" istanbul ": "~0.1.35" ,
"grunt - docular ": "~0.1.1"

}
}

Listing 36: package.json

The developers of Node.js noticed that NPM became inseparable from Node.js.
As a result, the latest distributions of Node.js have NPM bundled with it so that
you do not have to install it separately.

6.1.3 Automation with Grunt

Figure 23: Grunt

Grunt 30 is a JavaScript automation tool that runs on
Node.js. The installation of Grunt is very easy, especially
if you already have Node.js set up on your machine. There
are literally tons of Grunt scripts available because of its
huge user base. Authoring your own Grunt plug-ins is easy
and publishing them is done simply through NPM.

We used Grunt to automate testing, lint our JavaScript
and generate documentation. Grunt is configured by cre-
ating a Node.js module and save it as “Gruntfile.js” in the
root directory of your project. The fact that the configuration is actually a
module that is loaded by Grunt means that you have way more flexibility than
with an ordinary JSON file.

6.1.4 Testing with Karma and Jasmine

We used Karma 31 as a test runner for our JavaScript code. It was developed
by the AngularJS team. Karma is just a test runner which means that you need
another tool to actually write your test suites in. The default JavaScript test
write library that has good support in Karma is Jasmine 32.

Setting up testing was not as easy as we had hoped though because there
were little guides available for Karma. Most of the time they provided a “project
generator” that would generate a new web application that used AngularJS, had
testing set up for you and was runnable by a simple Node.js web server. We had
to figure out how to create our own Grunt and Karma configurations that would
fit in our project by looking at the generated applications. There were however
many different application generators such as the do-it-yourself angular-seed 33

and Yeoman 34 and finding a good up-to-date example was tough.
The actual configuration is not hard to understand. For Karma you can

create multiple Karma configuration files and include them in the Grunt config-
uration. The naming convention for the Karma configurations is “karma.conf.js”
and they are, just like the Grunt configurations, JavaScript files.

The unit tests we wrote used Jasmine as a testing framework. Jasmine is
extremely powerful and the tests are easy to read. The test results can be output

30http://gruntjs.com
31http://karma-runner.github.io
32http://pivotal.github.io/jasmine
33https://github.com/angular/angular-seed
34http://yeoman.io/gettingstarted.html

On developing DizzyData Front-End 50

http://gruntjs.com
http://karma-runner.github.io
http://pivotal.github.io/jasmine
https://github.com/angular/angular-seed
http://yeoman.io/gettingstarted.html
http://gruntjs.com
http://karma-runner.github.io
http://pivotal.github.io/jasmine
https://github.com/angular/angular-seed
http://yeoman.io/gettingstarted.html

6 CODE QUALITY

by various printers. By default, the output is printed in the console by Karma
which was fine for us. An example of the test results can be found in Figure 25

Figure 25: Karma output

Figure 24: Jasmine

The beauty of Karma is that the tests are run when-
ever one of the implementation or test descriptions change.
This makes for a really nice experience while developing be-
cause improving your code and tests does not require you
to manually re-run the tests.

6.1.5 Code coverage with istanbul

To get a sense of how well our tests covered the implementations we use a
code coverage tool called istanbul 35. It can be integrated with Karma by using
the right configuration. There is a guide on this on the Karma website. The
coverage reports are generated as a local website whenever you edit the files it
depends on. Figure 26 shows an example of how the output of istanbul looks
for a collection of files.

Figure 26: istanbul output

The individual files can be inspected as well to spot the lines that were not
reached during the tests. These results sometimes reminded us that we needed
to write additional test cases and thus have proven to be very useful. The

35http://gotwarlost.github.io/istanbul

On developing DizzyData Front-End 51

http://gotwarlost.github.io/istanbul
http://gotwarlost.github.io/istanbul

6 CODE QUALITY

tool does something which computers are typically good at: doing an objective
measurement (spotting untested areas) in a lot of data (the code). Although
having 100% coverage does not necessarily mean that your tests are good, it
does guarantee some level of quality.

6.2 SIG feedback
The first feedback from SIG can be found in Appendix A, the language of this
feedback is Dutch. We will summarize the remarks that SIG mentioned and
respond to these with either our corrections or justify why we chose a certain
approach.

SIG mentioned that we received a score of 3 out of 5 stars, which means
that our code is averagely maintainable. Our code is therefore maintainable,
but could use improvement to make it easier for other developers to understand
the workings of the system. The main remarks on the maintainability were:

The file structure is unclear

The files structure in the code is unclear, because many different files are in the
same folder and not neatly sorted in their respective components. Due to this,
the higher-level structure of the system is not clear to people who are new to the
code. The advice is to distribute the files into separate functional components
to make this easier.

We were aware of this problem and know that the structure needs cleaning
up. The main reason why this structure became a bit messy is because we
focussed on producing a working product rather than keeping a clean and neatly
sorted file structure. After this feedback we cleaned up the structure, added
new folders to represent specific parts of the system and keep a clearer overview
of all components.

Some constructors have too many parameters

Unit Interfacing looks at the percentage of code in units with an above average
amount of parameters. This normally relates to a lack of abstraction and leads
to confusion and long methods. For instance the constructor in element.js has
21 parameters.

It is true that these constructors have a large amount of parameters, as
they represent objects with many values. At first this seemed a good way to
implement this, but after this feedback we came to the conclusion that this is
not the case. Almost all of these constructors are only called through a function
that dissects a JSON response from the API into separate variables that are send
to the constructor. The decision was made to change the constructors of most
of these objects to only accept JSON data as input. This reduces the number
of parameters to only one and makes the constructors much more maintainable.
A restriction that follows from this is that it is no longer possible to manually
create an instance of these objects without writing it in JSON. This could cause
complications when a new object needs to be created, while this would cause
big chunks of JSON to be inserted in the code.

Some functions can also be found in common libraries

Some functions and methods that were written cover functionality that can also
be found in standard libraries. For instance, in preview.js a min and max func-

On developing DizzyData Front-End 52

6 CODE QUALITY

tion are created, which are found in the standard JavaScript Math library. Also
the cookie management is done in a self-created cookie.js, but there are libraries
that can handle cookies for you.

There are two separate parts in this remark: the Math functions and the
cookie.js. The Math functions were indeed written by our self while we could
just as easily use the standard library. In this case we initially chose for our own
function because many calls needed to be made to these, and we wanted the
code to be neat and not include too many extra text. A better solution would
be to use the standard Math.min and Math.max by changing the definition of
min and max like so: var min = Math.min, max = Math.max. This solution is
actually neater than our original solution, thus we changed our implementation
to fix this.

The cookie.js file was created by us because the standard libraries in Angu-
larJS do not provide the right options for us. We wanted to be able to store
the user details and access token as JavaScript object, preferably as JSON, in a
cookie. The $cookieStore service in AngularJS is actually a service that utilizes
the browser sessions to store information. Closing the browser would result in
loss of data. The $cookie service in AngularJS on the other hand does not allow
for JavaScript objects or JSON to be stored to or read from a cookie. We could
not find other libraries that work in AngularJS and provide the functionality we
searched. This resulted in creating a custom solution which was tailored to our
needs, but did implement some elements that could have been found elsewhere.

Good amount of test code

There is a promising amount of test code in the current project. This is good
and SIG hopes that the test code will grow accordingly when new functionality
is added. In some places, the separation of test code and functional code is
unclear, this should be fixed. For example, test.json should not be in the public
folder.

Test code should indeed be completely separate from functional code, but
in fact this is the case. The file test.json is used by the previewer as input in
order to replace JSON data which was not yet available through the API. This
file will be renamed to indicate it is used as an example until that feature in
the API is functional. All actually test related files are placed in the separate
test folder. During the cleaning up of the file system these remarks were also
be taken into account to make sure there is no unclear separation between test
code and functional code.

On developing DizzyData Front-End 53

7 FUTURE WORK

7 Future work
During the project several deliverables and parts that were originally planned to
be created could not be realized. There were different reasons why this was not
possible, some were related to functionality in the API, others to a lack of time
to finish that part. In the following sections we will address the parts that could
not be realized, the issues that caused this and an advise on how to implement
them in a later stage of development.

7.1 API improvements
As said, some deliverables could not be realized, because the functionality of
the API was not yet completed. We worked side-by-side with the developers
working on the API, so many small issues could be addressed quickly, but bigger
issues need to be fixed later on. The main issues that still need to be fixed are
mentioned here.

7.1.1 Statistics and billing

In the project description and deliverables the option to show billing and statistics
was mentioned. This is an important part for the interface in its final form,
but these options were not yet available in the API and are worked on at the
moment. Therefore, we could not yet implement these options. In the design
phase however, we did take the statistics options in to account in the design of
the dashboard, shown in Figure 27. But because the exact information given
in statistics was still unclear, this was not as detailed as other designs and
eventually left out in the implementation.

Figure 27: Mock-up of worker edit screen.

On developing DizzyData Front-End 54

7 FUTURE WORK

7.1.2 Sharing Workflows and templates

Another deliverable described in the assignment was the option to get template
Workflows or possibly even support a system where the user could share their
own Workflows. This options was already a nice-to-have in the assignment and
after puzzling on the system design it was decided that this required some major
changes to the DizzyData system. The decision was based on the fact that these
options require a special type of Workflows that can be retrieved by every user,
but not changed by every user.

There are two options on how to implement this, either the front-end needs to
provide a special collection of Workflows on a separate database or the DizzyData
system needs to be changed to allow for this. The first option, to let the front-
end host its own set of Workflows, we found not to be suitable, because the
front-end functions in JavaScript completely and having a separate database
with Workflows would cause bigger problems when changes are made to the
DizzyData system.

Templates could be build in to the DizzyData system quite simply, by altering
the API calls and for instance adding a special client that owns the template
Workflows. This way the current infrastructure can be kept on and only minor
changes are needed.

For the option to share Workflows more changes are needed. Some kind of
community structure should be build where users can upload their Workflows,
possibly rate other Workflows and search for Workflows that they might find
useful. During the design phase this was discussed with the product manager
and interaction designer and it was decided that this would be outside of the
scope of the bachelors project. It still remains an option which is nice to have,
but could be implemented at a later moment.

7.1.3 Edit Split and Classify Steps

The current front-end does not enable the user to edit Classify or Split Steps, an
important change to the system was required to make this possible. Split and
Classify work in a way that Elements can be combines in rule sets that describe
the action to take when a certain set of Elements is found on a document. The
current API does not allow the user to edit these rules, at the moment of writing
this text this function is being added and tested. In the design process we did
incorporate this functionality, but it is not yet available in the implementation.

7.1.4 Ordering Steps

Another problem in the current DizzyData API is that Steps are ordered in the
way they are created. If a user would want to edit the ordering of Steps, they
would need to delete and recreate the Steps involved and all Steps that come
after that. This is not a pressing problem at the moment, but would be a good
addition to allow more editing options and help ease the process of creating a
Worker, which we will discuss later on in this section.

7.2 Front-end improvements
The previous improvements were all related to changes to the DizzyData sys-
tem itself, but there are also some elements that could not be (completely)
implemented in the front-end due to other reasons. Here we will list these
improvements and explain what needs to be done to make that possible.

On developing DizzyData Front-End 55

7 FUTURE WORK

7.2.1 Creating Workflows

The current front-end does not yet enable the creationg of a new Worker (or
Workflow). Because the translation function that visualizes a Workflow in the
front-end was a complicated function, this part could not yet be completed. In
the design some basic steps were thought of that could enable this feature, but
still some work remains to prevent errors.

Because of the translation to Workers, the user should be able to add a
Worker and freely edit all aspects of that Worker. This means that for every
edit to the Worker should be check for validity; whether it can be translated to a
collection of Steps and Workflows. Also, the Steps that are kept invisible to the
user should be predefined in the front-end, so they can be added immediately
upon creating the new Worker. As mentioned earlier, if it would be possible to
edit the ordering of Steps in a later stage, these invisible Steps could be more
easily inserted when needed.

7.2.2 Storage-specific settings management

Currently it is only possible to textually edit the storage service settings which
are already in place. This means a user should manually edit access tokens
or secret keys that are used by some of these services. This is not very user
friendly, but was implemented in this way to have at least a simple variant of
this feature working. Also, for services such as an (S)FTP server, the setting
fields are more easy to edit. For services such as Dropbox, the settings require
much more knowledge of the service.

For adding a new storage service with these more complex tokens and keys,
a graphical interface is needed that allows the user to login to their service
account and retrieve these keys. This is a complex task to complete and requires
knowledge of all available storage services. In this project, not enough time was
available to perform the needed research and work to implement this more neatly.
In a future update to the system this would be a very good and useful addition
to really enable a user to edit all Workflows completely.

7.2.3 Previewer

The previewer, as mentioned in Section 5.6, allows you to view and work with
a document and the words recognized on it by OCR software. Currently this
document is an example image we processed manually. The final front-end
should allow the user to upload their own document to use as example in this
screen. One problem is that the API currently has no functionality that returns
the needed information to display such an example. This is a feature which we
have not yet come to a decision about with the product manager, because it
should return very basic information, which not every user should be able to
retrieve. And due to the nature of this project there is no way to limit this
feature to be only used by our front-end.

The complete list of improvements on the previewer was already discussed
in Section 5.6.6. The most important ones were searching, having a functional
context-menu, allowing the visual creation and editing of areas and adding click-
and-drag scroll behaviour.

7.2.4 Graphical design

Ans a final part that could not be completed in this project is the graphical
design of the interface. As mentioned in earlier sections, we did manage to
work with an interaction designer to improve the interaction of the system, but

On developing DizzyData Front-End 56

7 FUTURE WORK

did not work with the graphics designer. This was mostly due to the fact that
unfortunately the designer got ill and had to cancel our scheduled meeting. Of
course, his was somewhat of a set back, but we did not have enough time left
in the project to postpone the design until after a new meeting. Therefore
we decided on working with standard graphics libraries that helped create an
interface without spending to much time on the graphics.

The system and website do still need a better design and this is still an
important element in a later stage. Due to the fact that we kept the design
of our views quite basic it would not be to complicated to change graphical
elements. Changes to the lay out would bring with them some more challenges,
but these should not be to great as the current lay out was developed with the
interaction designer.

On developing DizzyData Front-End 57

8 CONCLUSION

8 Conclusion
As a final part of this report we will reflect on the work that was done, how this
relates to the original assignment and whether we were successful at completing
the project. First, as a recap we will summarize the deliverables, as stated in
Section 2:

1. A functional and understandable front-end interface for the DizzyData
REST API.

2. The interface should give a clear visualization of the capabilities of the
DizzyData system.

3. The interface should function as a administrator tool to the DizzyData
system, where account settings, Workflows, Jobs, statistics and billing
are visually available. Without requiring the user to understand the API
methods.

4. The interface should be usable by non-programmers.

5. The front-end should allow for the distribution of several template Work-
flows and possibly also the (publicly) sharing of user-created Workflows.

6. The front-end should work in a standalone environment, thus using only
API calls for communication with the DizzyData system.

Deliverable 1 is completed for the most part, because there is an understand-
able interface, developed in accordance with an interaction design. Although it
is not completed, because not all functionality is in place, a good strategy is
ready for implementing the remaining functionality.

Deliverable 2 is, just as the previous deliverable, completed for the most
part. There is a system that begins to show a clear visualization, but there is
still more that could be added to visualize all capabilities of the API

Deliverable 3 also has some parts remaining, that require changes to the
DizzyData system before they can be implemented in the front-end. The front-
end does currently provide a way to update and view Users and Workflows and
view Jobs, without knowledge of the API methods.

Deliverable 4 is successful, because no programming experience is required
to operate the front-end we created. A part that still remains to be build is
the option to create Workflows, this requires some more development than this
project allowed for.

Deliverable 5 could not be completed, because it was decided that several
changes to the DizzyData system would need to be made. These changes will
be made at a later time, our thoughts on how this should be done will be taken
into account.

Deliverable 6 was successful, the front-end runs in a JavaScript and HTML
environment, requiring no special environment other than a simple file server to
be served to a user’s browser.

The product we delivered at the end of the project was an interface that
allows a user to edit their Workflows. The product was not complete in the
sense that there are still parts that were not finished or not functional when the
project ended. The parts that we were not able to complete were discussed in
Section 7, here we also explained per part why they could not be completed.

In the end we can say that the project was a succes. We created the basis
for, what we believe will be, an amazing web application. Even though some
parts of the system could not be completed, partly because the API did not yet

On developing DizzyData Front-End 58

8 CONCLUSION

offer the required functionality, the application is well thought out and can be
improved upon when time and resources permit. The considerable amount of
work put in researching the system architecture, the application design and the
tools, libraries and frameworks that were used are, together with this document
and the tests, invaluable to the future developers.

On developing DizzyData Front-End 59

REFERENCES

References
[1] Atlassian. URL http://www.atlassian.com.

[2] Bitbucket, Git version control hosting. URL http://bitbucket.org.

[3] Jira, issue tracker by Atlassian. URL http://www.atlassian.com/
software/jira.

[4] Software Improvement Group. URL http://www.sig.eu/nl.

[5] Software Development Process – activities and steps, 2010. URL
http://www.uacg.bg/filebank/acadstaff/userfiles/publ_bg_
397_SDP_activities_and_steps.pdf.

[6] Kris Kowal. Q, A JavaScript promise library. URL https://github.com/
kriskowal/q.

[7] Alistair Sutcliffe. Scenario-based requirements engineering. In Requirements
engineering conference, 2003. Proceedings. 11th IEEE international, pages
320–329. IEEE, 2003.

On developing DizzyData Front-End 60

http://www.atlassian.com
http://bitbucket.org
http://www.atlassian.com/software/jira
http://www.atlassian.com/software/jira
http://www.sig.eu/nl
http://www.uacg.bg/filebank/acadstaff/userfiles/publ_bg_397_SDP_activities_and_steps.pdf
http://www.uacg.bg/filebank/acadstaff/userfiles/publ_bg_397_SDP_activities_and_steps.pdf
https://github.com/kriskowal/q
https://github.com/kriskowal/q

APPENDIX A: SIG FEEDBACK (DUTCH)

Appendix A: SIG feedback (Dutch)
De code van het systeem scoort bijna 3 sterren op ons onderhoudbaarheidsmodel,
wat betekent dat de code gemiddeld onderhoudbaar is. De hoogste score is niet
behaald door lagere score voor Component Balance en Unit Interfacing.

Wat opvalt bij het bekijken van de code is dat er geen duidelijke componenten-
structuur zichtbaar is op het file-systeem. Dit maakt het voor een ontwikkelaar in
eerste instantie lastiger om een algemeen beeld te krijgen van de functionaliteit
die het systeem aanbied. Wij raden aan om kritisch te overwegen om de code
in verschillende (functionele) componenten op te delen om zo een eerste indruk
te geven van de high-level structuur van het systeem. De meting Component
Balance kijkt naar de component-indeling en de verdeling van het codevolume
over de componenten, en jullie scoren hier momenteel ondergemiddeld.

Voor Unit Interfacing wordt er gekeken naar het percentage code in units met
een bovengemiddeld aantal parameters. Doorgaans duidt een bovengemiddeld
aantal parameters op een gebrek aan abstractie. Daarnaast leidt een groot aantal
parameters nogal eens tot verwarring in het aanroepen van de methode en in de
meeste gevallen ook tot langere en complexere methoden. In jullie code gebeurd
dit in bijvoorbeeld element.js (21 parameters), workflow.js (11 parameters) en
anchor.js (11 parameters).

Wat tijdens het bekijken van jullie code verder opviel is dat er in een aantal
gevallen code is geschreven voor functionaliteit die normaal gesproken door li-
braries wordt afgehandeld. Voorbeelden zijn het beheren van cookies in cookie.js
en de functies min/max in preview.js. Voor algemene functionaliteit als deze is
het beter om een library te gebruiken, je hoeft de code en bijbehorende tests
dan zelf niet meer te schrijven. Daarnaast heeft een library meer gebruikers,
waardoor de kans groter is dat obscure randgevallen goed afgehandeld worden.

Over het algemeen scoort de code gemiddeld, hopelijk lukt het om dit niveau
te verhogen tijdens de rest van de ontwikkelfase.

De aanwezigheid van test-code is in ieder geval veelbelovend, hopelijk zal het
volume van de test code ook groeien op het moment dat er nieuwe functionaliteit
toegevoegd wordt. Het valt ook op dat de opdeling tussen productie- en testcode
op sommige plaatsen wat rommelig is. In grote lijnen hebben jullie dat goed
aangepakt, maar ik zie in de public-directory een test.json staan.

On developing DizzyData Front-End 61

APPENDIX B: DF – PROJECT APPROACH

Appendix B: DF – Project Approach

On developing DizzyData Front-End 62

DF – Project Approach
Mick van Gelderen

4091566
Mick de Lange

1534068

June 27, 2013

Contents
1 Introduction 2

1.1 Company . 2
1.2 Project background . 2

2 Task description 3
2.1 Client . 3
2.2 Problem definition . 3
2.3 Objectives . 3
2.4 Assignment formulation . 4

2.4.1 Deliverables . 4
2.5 Preconditions . 4

3 Software development approach 6
3.1 Initial planning . 6

3.1.1 Methods . 6
3.1.2 Reasoning . 6
3.1.3 Responsibilities . 7

3.2 Development . 7
3.2.1 Methods . 7
3.2.2 Reasoning . 7
3.2.3 Responsibilities . 8

3.3 Deployment . 8
3.3.1 Methods . 8
3.3.2 Reasoning . 9
3.3.3 Responsibilities . 9

4 Project environment 10
4.1 People . 10
4.2 Organization . 10
4.3 Resources . 10

5 Quality control 11
5.1 Documentation . 11
5.2 Version control . 11
5.3 Evaluation . 11

5.3.1 Code testing . 11
5.3.2 SIG code evaluation . 12
5.3.3 Pilots . 12

References 13

Appendix A: Planning 14

1 INTRODUCTION

1 Introduction
This project will concern itself with creating a graphical interface, to facilitate
end-user development in the DizzyData REST Application Program Interface
(API). DizzyData is a new solution to digital document processing, which allows
for users to develop their own document processing system. In this document
we will describe what the project is about, what approaches we are going to
use to achieve the project goals and how we are going to guarantee quality in
the project. But first we will give a short introduction to the company which
facilitates this project and the background for this project.

1.1 Company
Newviews (BudgetBoekers B.V.) is the company that develops DizzyData, Newviews
is a software company which delivers a Software-as-a-Service (SaaS) solution to
digital invoice processing. The service processes scanned invoices into account-
ing software solutions by third parties. In this processing the important data on
the invoice is collected using Optical Character Recognition (OCR) and smart
recognition options. This data is then sent to the third party accounting soft-
ware, for the accountants to process the invoices further.

Newviews is a small company with about 10 employees, based in Rotterdam.
The employees consist of two directors, two salespersons, a support employee and
five developers. Currently, Newviews has many customers in the Netherlands
that use the software to integrate with their accounting software. There is
a growing interest in solutions like Newviews for easier processing of invoices
and other documents, this is one of the main reasons to start a new project:
DizzyData.

1.2 Project background
Due to this risen demand for digital document processing, not only invoices,
the DizzyData project was started to provide users with the possibility to build
their own digital document processing solution, using the knowledge gathered
by the Newviews company. As said, DizzyData is a REST API solution which
can be integrated in systems created by other companies. This API has great
flexibility in the document processing workflows, allowing for numerous different
applications to be created. With this great flexibility comes a problem. Because
of the enormous amount of options and combinations of all these options, the
workings of the system can seem a daunting task. The complexity not only
makes it hard to keep an overview, but also to explain to potential customers
the capabilities of the solution and what they can use it for.

This is where our project comes in. The DizzyData front-end (DF) which we
are going to create should give the users a good overview of the system, and make
the end-user development of a document workflow easy and clear. This helps to
make the project accessible for users that lack experience in programming and
development. Thereby also helping the sales team by allowing them to give a
graphical demonstration of the product to potential customers.

DF – Project Approach 2

2 TASK DESCRIPTION

2 Task description
For a description of the task we are going to perform, we will first describe the
client and contact at the company for whom the project is performed. Next
the problem definition will be given, along with objectives and the assignment
formulation. Based on this description the deliverables will be listed as well as
the preconditions and risks involved in the project.

2.1 Client
As said, the client is Newviews, a small software company which develops and of-
fers document processing solutions. A more detailed description of the company
was given previously. This client has requested us to explore the possibilities to
create a standalone front-end to their new product called DizzyData.

Our contact at the company is Tim Paymans, founder and CEO of Newviews
(BudgetBoekers B.V.). He is the main contact and guidance to the development
team.

2.2 Problem definition
DizzyData is an all-in-one solution to document processing and recognition, of-
fering many options in the workflow design by the user. The DizzyData REST
API enables the user to design and create their own document workflows, edit
them and look at the usage statistics of these workflows. The problem is that this
not only makes the solution very flexible and adaptive, but also quite complex.
To manage this complexity and provide with a easy and transparent interface
for the users, a solution needs to be found. The problem challenges consist of
three main parts.

The first part of the problem is making an understandable graphic repre-
sentation of the capabilities of the DizzyData REST API. To visualize this, an
interface is needed which shows (almost) all options and capabilities to the user.
This must be done in an understandable and clear manner, but on the other
hand, the versatility of the underlying software should be visible as well. The
big amount of options and possible combinations makes this a difficult challenge.

The second part of the problem is that the interface should enable users
to manage, edit and create workflows. The challenge lies in the fact that the
interface should be usable for developers/computer experts and people with no
programming experience. This requires that the end-user development environ-
ment is simple and understandable for people with no programing experience,
and also allows for more complex actions for the more experienced programmers.

The third part of the problem is the challenge to make the interface function
standalone, and possibly place the created interface in several cloud systems and
marketplaces. For easy access to the front-end application, the client wants to
explore the possibility of adding the front-end to several marketplaces and cloud
solutions. This is of lower priority than creating the front-end itself, but would
be a great way to create an extra marketing channel for the application.

2.3 Objectives
The objective of this project is defined as creating a front-end to use as a
marketing tool towards potential customers as well as an interface to provide

DF – Project Approach 3

2 TASK DESCRIPTION

with a less complicated way of using the capabilities of the REST API.
DizzyData is a versatile but complex system, with many possible applications.

To market this and to visualize the possibilities to potential customers, even
those with no programming skills, a good visualization is needed. This is the
main objective for the project, required by the client. The client wants a visual
interface to show customers the versatility of the DizzyData system.

The second objective is to enable customers with little to no experience in
working with REST API’s or programming, to manage, create and edit their
own document processing workflows. This level of end-user development is
the second main objective for the project. Via an accessible interface users
with minimum amount of programming skills should be able to work with the
DizzyData system.

2.4 Assignment formulation
The assignment is to create a user interface, which functions as a standalone
visual front-end to communicate with the DizzyData API. This front-end fulfills
the two main objectives, by creating an administrative environment for the user.
In the project, the deliverables are more important than the time invested in the
project. The project is expected to be a (almost) full-time effort in the period
of end of April to June/July.

The deliverables give an overview of the specifications of the project.

2.4.1 Deliverables

1. A functional and understandable1 front-end interface for the DizzyData
REST API.

2. The interface should give a clear visualization of the capabilities of the
DizzyData system.

3. The interface should function as a administrator tool to the DizzyData
system, where account settings, workflows, jobs2, statistics and billing
are visually available. Without requiring the user to understand the API
methods.

4. The interface should allow for users with little to no programming skills
to create and edit workflows.

5. The front-end should allow for the distribution of several template work-
flows and possibly also the (publicly) sharing of user-created workflows.

6. The front-end should work in a standalone environment, thus using only
API calls for communication with the DizzyData system.

2.5 Preconditions
There are several preconditions to the project which need to be taken into
account. These preconditions represent the limitations of method-use and on
the final result.

1. For development the agile SCRUM method is used.
1 Understandable is defined through user tests and interviews.
2 Jobs are the instances of a workflow, containing details about the processed documents

and the resulting data.

DF – Project Approach 4

2 TASK DESCRIPTION

2. The design is done in coöperation with both a graphics and interaction
designer.

3. The front-end is a web-based application, which runs standalone.

4. The server side of the web application has to be written in C# using .NET.

5. The web application has to be modern in terms of web technology

6. The web application has to run on semi-modern web browsers: IE8+,
Chrome 25+, Firefox 19+, Opera 12+ and Safari 5.1+ (preferably also
Safari iPad).

7. The product software complies with the Model-View-Controller (MVC)
architecture.

DF – Project Approach 5

3 SOFTWARE DEVELOPMENT APPROACH

3 Software development approach
Our approach to the complete development process is discussed in this section.
The process consists of a planning phase, a development phase and a deployment
phase. The methods and techniques used in these phases are listed accompanied
by why we chose to use them. Our role in each phase is discussed as well.

3.1 Initial planning
The initial planning phase consists of determining what the assignment is, who
the stakeholders are what resources are available to us and under what conditions
the project will be viewed as a success. There are several ways to cover these
aspects. To ensure a quick and useful starting phase we have carefully selected
a few techniques.

3.1.1 Methods

In order to determine what the assignment is we will be interviewing the project
manager . This gives us a basic idea of what the project manager wants to
have as a product, which is of great importance to the initial planning phase,
and what he wants to achieve with the product when it reaches the deployment
phase which is at least as important. The latter will be discussed in detail in
section 3.3, the deployment phase. Most of the stakeholders can be identified
by the project manager. The resources that are available to us should become
clear from the interview as well.

When the basic idea is clear, we will use a technique called requirement
analysis to determine the scope of this project. Common requirement analysis
methods are outlined in the publication Software Development Process – activi-
ties and steps [9]. It gives a good overview of the aspects of requirement analysis
such as stakeholder identification and defining measurable goals. The method
we will employ during the planning phase and also in the development phase
is based on SCRAM as defined in Scenario-based requirements engineering by
Sutcliffe [11]. The complete SCRAM approach is too extensive and time inten-
sive for our small team and time resources so we will not be able to elaborately
cover every step.

Determining all the stakeholders will be done by interviewing the project
manager and doing the requirement analysis. In turn, specifying the stakeholders
will open up possibilities of discovering additional requirements. We want to
create a non-software prototype of the interface and use it to interview some of
the end-users to observe what they expect to be able to do with the system.

Once we have a detailed view of what we are building and what requirements
it needs to satisfy, we can specify the win conditions. The product can be viewed
as a success if these conditions are met when the deployment phase starts.

3.1.2 Reasoning

The reason for using a scenario based requirements analysis methodology such
as SCRAM is simply that it has proven to work quite well. Uncovering the
possible uses of a product is a good starting point for defining functional and non-
functional requirements. A functional requirement describes what a product
has to be able to do while a non-functional requirement describes criteria that
can be used to judge the product. By writing scenarios, most of the functional
requirements will be discovered. The non-functional requirements are on the
other hand mostly found by interviewing the stakeholders.

DF – Project Approach 6

3 SOFTWARE DEVELOPMENT APPROACH

3.1.3 Responsibilities

In order to succesfully execute the initial planning phase we have to do a mul-
titude of things. For the interviews, we have to contact the interviewees and
schedule as well as prepare and execute the interviews. In order to properly use
scenario based requirement analysis, we have to learn how to use SCRAM and
devise our own strategy from it.

3.2 Development
The development phase will kick in immediately after we are finished with the
initial planning. In this section we discuss a software development framework
that we use to guide the development process.

3.2.1 Methods

The software development framework that we will use is Scrum. The definition
of Scrum that we will adhere to is outlined in The Scrum Guide by Schwaber and
Sutherland [10]. In short, Scrum is a framework to manage complex product
development. It forces involvement of stakeholders and managers and makes
the progress as well as what exactly is being built visible to them. This allows
stakeholders to steer the product in the right direction and it allows managers
to anticipate better on possible future problems.

To facilitate using Scrum we use a project tracker called Jira [2]. Atlassian
has developed Jira as well as several other useful products such as Greenhopper
to allow teams to efficiently plan, build and launch products and their develop-
ment.

A revision control system is indispensable in software development. The
revision control system of our choice is called Git 3.

Since we are working on the software as a team it is useful to have a central
place that permanently runs a git server for us. This means that it is always
possible to update from and push updates to this central server. Bitbucket [1]
provides this service for us and on top of that integrates nicely with Jira.

The documentation is written in LATEX which is a high-quality typesetting
system. It is used mostly in scientific documents since it allows you to write
mathematical formulas with relative ease once you are used to doing so. On
top of that it does not let you mess with the document styling as easy as other
systems.

3.2.2 Reasoning

Because of the nature of the assignment we wanted to use an iterative software
development methodology. Since our project manager wanted us to use Scrum
in order to gain some experience with the method within the company, we did
not have much of a choice. Luckily, the agile software development method
is perfectly suited for a Bachelor project because we have to periodically write
reports on the project progress for our coaches. The reports can be written
without much effort by using the Scrum Board and the information presented
during Sprint Reviews. Also, Scrum gives insight in the progress which is vital
for a project with a strict deadline. The Scrum methodology is a framework and
should be adjusted to your needs. We decided for example that the scrum sprint
length should be a week. This allows us to adjust the project coarse weekly and

3http://git-scm.com

DF – Project Approach 7

3 SOFTWARE DEVELOPMENT APPROACH

prevents us from having to diverge from the Scrum methodology in such cases.
These decisions are documented in DF – Scrum Workflow .

We use Jira as a project management application simply because the newviews
has experience with using it and it satisfied their needs.

Bitbucket will stop supporting the revision control software Apache Subver-
sion 4 (SVN) and its users will have to switch over to either Git or mercurial .
Since one of us has experience with Git and sees it as a reliable and flexible piece
of software, the choice to work with Git was an obvious one.

Choosing LATEX to write the project documentation was because we valued
consistency over visual prowess. LATEX ensures a consistent document markup
but on the other hand does not allow you to create beautiful documents unless
you put a lot of effort into it. We will satisfy our urge to make things pretty by
putting our efforts into the interface design.

3.2.3 Responsibilities

Setting up the project and the accounts for the project management tools is
mostly our responsibility. We will have to create a collection of resources and
a small description for these resources with which someone who is new to the
tools can start working on our project. This includes for example links to how
to use Git and what the work flow is that we use for this project with respect
to Git.

3.3 Deployment
The deployment of the product will be mostly the responsibility of the project
manager. However, to comply with his wishes we will have to keep a number of
things in mind. Hypothetical examples of such wishes are:

1. the code needs to be maintainable by someone new to the project.
2. the support department needs to be able to inspect a client’s account.
3. the software needs to be accessible through a software channel such as

google play.

3.3.1 Methods

By interviewing the project manager we have to get an overview of what he has in
mind for the deployment phase. In bigger projects, it might be useful to talk for
example with the sales or distribution departments to uncover additional aspects
we have to keep in mind during development. For our small scale project, the
project manager will be able to provide all the product requirements regarding
deployment.

A very important requirement we have to keep in mind is that this project
will actually be used in a business environment. This implies that the software
will have to be maintained after the deployment phase and this is not necessarily
done by the original software authors. This in turn means that new developers
should be able to pick up where we left off without spending a lot of time trying
to figure out how the software works. To facilitate this, we will be documenting
the code as well as the assignment and the choices that have been made. The
exact code documentation software we will use depends on the languages that we
will use. After the initial planning phase is done, we will know what languages
we have to use and which code documentation tools are available for those
languages.

4http://subversion.apache.org

DF – Project Approach 8

3 SOFTWARE DEVELOPMENT APPROACH

3.3.2 Reasoning

Interviewing the project manager, stakeholders and specialists from the compa-
nies’ departments seems like a logical thing to do. In fact it is, since the only
other option is to guess what the requirements are. Note that this is a serious
issue because it is not uncommon for developers to make assumptions about
product requirements which turn out to be wrong. How succesful this approach
is highly depends on the time you put into preparation and your interviewing
skills.

Since we have to write a detailed description of the project and our approach
to creating the product for the Bachelor project, the problem of documentation
is partly solved. Adding high quality code documentation on top of that will
ensure that new developers can start working on the project without much effort.

3.3.3 Responsibilities

Our responsibilities for the deployment phase are not directly present. We do
have the indirect responsibility to make sure that we know exactly what the
project manager is planning to do in this phase and to facilitate the means to
do so or to point out problems in a timely fashion.

DF – Project Approach 9

4 PROJECT ENVIRONMENT

4 Project environment
The project environment will be covered here, we will discuss the people involved,
the organization and available resources.

4.1 People
The project team consist of two team members, Mick van Gelderen and Mick
de Lange, a supervisor from Newviews, Tim Paymans, and a TU coach, yet to
be defined. The team members will perform the tasks required to fulfill the
project and spend about nine weeks working on the project. They are expected
to perform their tasks as an independent software developing team.

Next to the development team a graphical and an interaction designer will
be working on the design of the application. These designers are located outside
of the company, but there will be a cooperation between the team members and
the designers.

4.2 Organization
The organization is as follows. The team members will work on the project
and report back to the supervisor and TU coach. The company supervisor and
TU coach will monitor the progress and serve as a feedback reference for the
team members. The input and feedback from the supervisor and TU coach are
used to steer the project in the correct direction. This reporting is done on
a regular basis, preferably weekly with the supervisor and/or TU coach. Daily
short meetings with the team members and possibly the supervisor are used
to monitor the day-today progress. This organization structure abides to the
schematics of the Scrum development process.

4.3 Resources
There are not that many resources needed to perform the project, those needed
are mentioned here. Two workspaces in the office in Rotterdam are provided
by the company, where the team members can work the whole week. Also, the
necessary software and development tools are provided by the company. The
team members use their personal laptops to work on during the project.

The company provides in some human resources as well. For instance the
designers mentioned earlier, but also contacts with potential customers or stake-
holders for interviewing purposes.

DF – Project Approach 10

5 QUALITY CONTROL

5 Quality control
Quality control is an important aspect of the project. As said, the application will
be distributed and used in a business environment and needs to me maintainable
by developers that where not involved in the building of the application. To
guarantee the quality of the project result, several procedures and tools will be
used. These focus on specific aspects of the quality assessment: documentation,
version control, evaluation and pilots.

5.1 Documentation
Documentation is important to deliver a fully functional and maintainable prod-
uct. The documentation should hold information on the specific design choices
and implementations applied in the process. Also should there be a manual, or
instruction documentation on the working of the interface. This manual should
be understandable for the end-users of the product.

To create good documentation, the documentation needs to be maintained
during the entire process. The Scrum sprint planning meetings, stories and
issues should therefor be carefully written down, so these can be used as docu-
mentation. In accordance with this, the interviews and other discussions should
be noted and recorded as well.

5.2 Version control
For version control Git is used, in a Bitbucket environment. This allows for an
accurate registration of file history and version history. By using branching and
other built-in git features, version control becomes an easy to manage task.

5.3 Evaluation
Evaluation consists of a few parts. Firstly, the code needs to be evaluated, tested
and monitored on a continuous basis. Secondly the Software Improvement Group
[6] (SIG) does an evaluation of the maintainability and quality of the code and
gives feedback on their findings. And finally, on a higher level, user tests need
to be done in the form of a pilot, or bèta tests.

5.3.1 Code testing

To test the coding during the process, we will use several automated techniques
to monitor the code. Unit testing will be one main part of this testing. For
unit testing, extra test classes need to be created that test and verify the actual
code. Since we will be performing our coding in the .NET framework, using
C#, HTML, CSS and JavaScript as main programming language, we will use
the following test tools.

NUnit [4] is a tool developed for performing unit tests on .NET/C# code.
Unit tests are automated tests that verify the outcome of a function with the
expected result. These tests can be used to check that methods behave as
expected, but do require the developer to define the expected outcome manually.
This tools is similar to the Junit tool (for Java unit testing) we worked with earlier
in the Software Quality and Engineering course in the bachelor’s second year.

QUnit [5] is a similar tool for performing unit tests on JavaScript code.
Visual Studio [7] is a developer tool that allows for debugging, coverage

testing and functions as the code editor. This tool will be used to run debug
tests and coverage checks on the developed code.

DF – Project Approach 11

5 QUALITY CONTROL

Moq [3] is a tool that enables developers to mock or imitate a class to
control and observe interactions between classes. We will use Moq for interaction
testing. A simple example would be to imitate API calls to produce either
desirable or erroneous results.

W3C validation [8] can be used for testing HTML and CSS for errors and
misuse. The validation will be used to confirm the correct implementation of
these languages.

Browser support We will manually test several different browsers that were
specified in the preconditions.

5.3.2 SIG code evaluation

SIG is a company that analyzes code, partly automated, partly by hand. This
company will evaluate the created code for the bachelor project and give a good
measure (1 through 5 stars) on the maintainability of the code. This is a good
quality check and gives an accurate indication if the product is in fact ready to
be transferred to other developers.

5.3.3 Pilots

The final, but crucial, quality control will be user testing, or pilots. This will
be done at least once the project is finished, but preferably also during the
project. The user will be presented with the interface and instructions and the
experience will be documented. Interviews need to be taken from the test users,
to monitor their expectations and findings, respectively before and after testing
the environment.

The product owner will also function as a test user to control whether the
results match his expectations.

DF – Project Approach 12

REFERENCES

References
[1] Bitbucket, Git version control hosting. URL http://bitbucket.org.

[2] Jira, issue tracker by Atlassian. URL http://www.atlassian.com/
software/jira.

[3] Moq, mocking library for .NET. URL https://github.com/Moq.

[4] NUnit, unit testing framework for .NET languages. URL http://www.
nunit.org/.

[5] QUnit, unit testing framework for JavaScript. URL http://qunitjs.
com/.

[6] Software Improvement Group. URL http://www.sig.eu/nl.

[7] Visual Studio, a .NET code development tool. URL http://www.
microsoft.com/visualstudio.

[8] W3C Markup Validation Service. URL http://validator.w3.org/.

[9] Software Development Process – activities and steps, 2010. URL
http://www.uacg.bg/filebank/acadstaff/userfiles/publ_bg_
397_SDP_activities_and_steps.pdf.

[10] Ken Schwaber and Jeff Sutherland. The Scrum Guide. 2011.

[11] Alistair Sutcliffe. Scenario-based requirements engineering. In Require-
ments engineering conference, 2003. Proceedings. 11th IEEE international,
pages 320–329. IEEE, 2003.

DF – Project Approach 13

APPENDIX A: PLANNING

Appendix A: Planning
This is a basic outline for the project planning:

Week Date (Monday) Activities
1 22-04 Orientation phase

Plan of approach finished
2 29-04 Orientation phase finished

Orientation report finished
Contacted the designers
Interview stakeholders

3 06-05 First Scrum sprint
4 13-05 Second Scrum sprint
5 20-05 Third Scrum sprint
6 27-05 Fourth Scrum sprint
7 03-06 Fifth Scrum sprint

SIG code evaluation
8 10-06 Final Scrum sprint

SIG feedback
Final code to SIG

9 17-06 Final report finished
Presentation

DF – Project Approach 14

APPENDIX C: DF – ORIENTATION REPORT

Appendix C: DF – Orientation Report

On developing DizzyData Front-End 78

DF – Orientation Report
Mick van Gelderen

4091566
Mick de Lange

1534068

June 26, 2013

Contents
1 Introduction 2

2 Requirements 2

3 Scrum 2

4 Git 2

5 MVC 3
5.1 The MVC model . 3

5.1.1 Model . 3
5.1.2 View . 3
5.1.3 Controller . 4
5.1.4 Communication . 4

5.2 Project specific implementation of MVC 4

6 Testing methods 5
6.1 NUnit . 5
6.2 QUnit . 5
6.3 Visual Studio . 5
6.4 Moq . 5
6.5 W3C validation . 5

References 6

Appendix A: Requirements Analysis 7

4 GIT

1 Introduction
This is the orientation report, in this report we will discuss several important
techniques and methods which we will use in the project. We will discuss not
only techniques that are relevant for the implementation, but also methods that
are used in this project. For instance, we will be working with an agile Scrum
project management method, which we will explain here.

The concept of the different methods and techniques are explained and ref-
erences are made to other work concerning the topic. Then we will discuss our
stance on the matter and the way we will implement the method or technique
in our project.

2 Requirements
Next to determining and exploring methods and techniques, we also did a re-
quirements analysis.

These requirements can be found in Appendix A.

3 Scrum
Scrum is an agile software development method. We will use this method to
develop the software in our project.

For this, we made an extensive manual on the SCRUM method and our
application, which can be found at the end of this report. DF – Scrum Workflow .

4 Git
Git 1 is a version control system, which we will use for the software development.

For Git we also made a manual on how we will use this software, which can
be found at the end of report. DF – Git Workflow .

1http://git-scm.com

DF – Orientation Report 2

5 MVC

5 MVC
For the implementation of the front-end interface we will us the Model-View-
Controller (MVC) model. This is a structured method to setting up web-
applications and was requested by the client as a pre-condition. This model
is used as architectural guide to building an application with strict separation
of program logic (Model), user interface (View) and interaction handling (Con-
troller). Here we will explain the basic theory behind the MVC model and how
we are going to apply it.

5.1 The MVC model
For the theory behind MVC we used Deacon [6] as a source. The MVC model
aims to make the user interface interchangeable, by separating the front and
back of the software application. This means that all programming logic is
done separate from the user interface and all graphics are irrelevant to the
programming logic. We will briefly explain the three parts of the MVC model
and how these separate parts communicate or interact with each other.

We will use a simple example to illustrate the MVC model. We have a
basic HTML page with a CSS stylesheet attached to it. The HTML contains
the information or data that needs to be represented. The CSS contains the
styling information and therefore knows how to represent the data, but has no
knowledge of the data itself. The browser allows the user to interact with the
HTML page.

5.1.1 Model

The Model part is the main functionality of the program In this layer all objects
and classes are defined that make op the application. The Model is not aware of
any outside environments or user interactions. It only provides with the aspects
of the underlying application and solution.

In our example, the HTML page is the Model, because it contains the infor-
mation that needs to be represented.

In some cases two separate models are used [6]. These two are the Ap-
plication Model and Domain Model. The Domain Model is what is classically
described as the model, like the definition given above. The Application Model
is a Model which has knowledge of the View and understands that data needs to
be represented. This type of Model is specifically useful to facilitate connectivity
with the Views.

5.1.2 View

The View part is centered about giving a (visual) representation of the system
to the user. This means that the view of an application often consists of for
example a Graphical User Interface (GUI) or an Application Program Interface
(API). The View layer only knows how the information should be formatted to
represent it to the user. The information itself is unknown to the Views, this is
retrieved from the Model. The View is aware of the Model, but the Model is
not aware of the View.

The CSS stylesheet in our example is the View, because it contains informa-
tion about styling, but has no knowledge of the content.

Mostly the View is a GUI , which graphically represents the information of
the system to the user. The example of an API is used in the DizzyData system
and our project consists of building a GUI for the DizzyData API.

DF – Orientation Report 3

5 MVC

5.1.3 Controller

The Controller is the part that allows the user to manipulate the view. In other
words, the Controller is used to interact with the information represented in the
View. In strict terms the Controller is aware of the View, but the View is not
aware of the Controller.

In the example given above, the browser represents the Controller. It allows
the user to manipulate the View.

Often the Controller and View are combined for simplification, in which case
the strict separation does not hold. This way the user interface is used to both
represent the data and interact with it. Obvious reasons can be thought of for
this implementation, whilst most interfaces provide the buttons and controls
require visual representation.

5.1.4 Communication

The different parts of the MVC model are clearly separated, but they need to
communicate to function. Communication in the MVC model is done through
messages. Here we will explain how the different parts communicate.

The View and Controller interact with the Model through requests and up-
dates, to request the Model data or to post an update to the data. In the case
where the Model is split into an Application Model and a Domain Model, the
Application Model handles these interactions and translates these to requests to
the Domain Model.

The Model can also communicate to the View. But because the Model is
not aware of the view’s existence it can only use events to broadcast changes. If
the View is listening to this type of event, it can update the appropriate fields.

5.2 Project specific implementation of MVC
Here we will briefly discuss our view on the MVC model and the way we plan to
implement it in this project.

We will implement the View in our HTML and CSS and use a template
structure to insert any data in this View. This way the View is a strictly separate
part of the system.

The Controller will be mostly implemented in Javascript, which will handle
all interactions with the interface. Again, this is a strictly separate part of the
system, handling only interactions and placing calls to the Model.

We will also use just one Model at the back-end of the software. This will
be an .NEt implementation that will be used as a translation between the API
calls to DizzyData and the graphical representation in the View. In a more loose
definition one could say that our Model will be an Application Model and that
we use the DizzyData API as the Domain Model.

DF – Orientation Report 4

6 TESTING METHODS

6 Testing methods
As previously mentioned in the plan of approach, we will be using several different
automated testing methods. These methods are summed up again here, with
references to their relative websites and a brief explanation of the method.

6.1 NUnit
NUnit [2] is a tool developed for performing unit tests on .NET/C# code.
Unit tests are automated tests that verify the outcome of a function with an
expected result, as provided by the user. These tests will be used to check
that methods behave as expected, but do require that we define the expected
outcome manually. This tools is similar to the Junit tool (for Java unit testing)
we worked with earlier in the Software Quality and Engineering course in the
bachelor’s second year.

6.2 QUnit
QUnit [3] is a similar tool as NUnit, only for performing unit tests on JavaScript
code.

6.3 Visual Studio
Visual Studio [4] is a developer tool that allows for debugging, coverage testing
and functions as the code editor. This tool will be used to run debug tests and
coverage checks on the developed code.

6.4 Moq
Moq [1] is a tool that enables developers to mock or imitate a class to control and
observe interactions between classes. We will use Moq for interaction testing. A
simple example would be to imitate/mock API calls to produce either desirable
or erroneous results.

6.5 W3C validation
W3C validation [5] can be used for testing HTML and CSS for errors and mis-
use. The validation will be used to confirm the correct implementation of these
languages.

DF – Orientation Report 5

REFERENCES

References
[1] Moq, mocking library for .NET. URL https://github.com/Moq.

[2] NUnit, unit testing framework for .NET languages. URL http://www.
nunit.org/.

[3] QUnit, unit testing framework for JavaScript. URL http://qunitjs.com/.

[4] Visual Studio, a .NET code development tool. URL http://www.
microsoft.com/visualstudio.

[5] W3C Markup Validation Service. URL http://validator.w3.org/.

[6] John Deacon. Model-view-controller (mvc) architecture. 2009.

DF – Orientation Report 6

APPENDIX A: REQUIREMENTS ANALYSIS

Appendix A: Requirements Analysis

DF – Orientation Report 7

DF Requirements
Target release DF 1.0

Theme DizzyData Front-End project

Document status DRAFT

Document owner Mick van Gelderen, Mick de Lange

Designer -

Developers -

QA -

Goals

Create a visual interface for interaction with the DizzyData API.
Allow users to manage their workflows.
Allow users to manage their account settings.
Allow users to manage their third party account settings.
Allow users to view template WorkFlow and use them as a basis for a new WorkFlow.
Allow users to view template Element and use them as a basis for a new Element.
Allow users to view their usage statistics.
Allow users to view job details.

Background and strategic fit

The objective of this project is dened as creating a front-end to use as a marketing tool towards potential customers as well as an interface to
provide with a less complicated way of using the capabilities of the REST API.

DizzyData is a versatile but complex system, with many possible applications. To market this and to visualize the possibilities to potential
customers, even those with no programming skills, a good visualization is needed. This is the main objective for the project, required by the
client. The client wants a visual interface to show customers the versatility of the DizzyData system.

The second objective is to enable customers with little to no experience in working with REST API's or programming, to manage, create and
edit their own document processing work ows. This level of end-user development is the second main objective for the project. Via an
accessible interface users with minimum amount of programming skills should be able to work with the DizzyData system.

Assumptions

The user uses the interface through a browser.
The user has no knowledge of programming.
The API is constantly available.

User interaction and design

Users

For this application we expect one type of user, which we will describe here.

The user is an employee (possibly administrator) of the consumer applications. This means that they work for the software company that
implements the DizzyData system in their product.
The user has knowledge of the document type they wish to process.
The user knows how to use a computer and web browser.
The user does not necessarily understand the DizzyData API.

There is one aspect in which the users may differ, this is their skill in software development. Some user may have little to no programming skills,
they are users that mainly use the front-end to get an insight in the possibilities and create and manage their workflows in a visual manner.

The users that do have skills in programming / software development will probably be more accustomed to working with an API and will mainly
use the front end to the same means as the user with lesser programming skills. These users might want to have more control over the system,
they could use direct API interaction for this extended functionality.

Requirements

User Story Title User Story Description Priority

1 User logs in As a user of the DizzyData API, I
want to log in to the DF to use
the functionality.

Must have

2 User logs off As a user, I want to log off,
because I'm finished.

Must have

3 View WorkFlows As a user, I want to be able to
view my WorkFlows and filter
them by name.

Must have

4 CRUD WorkFlow As a user, I want to be able to
create, read, update and delete
a WorkFlow.

Must have

5 View templates As a user, I want to be able to
view WorkFlow templates.

Must have

6 Statistics As a user, I want to be able to
view my WorkFlow and account
statistics.

Must have

7 View Job As a user, I want to be able to
view the running Jobs and their
details.

Must have

8 Manage account As a user, I want to be able to
manage my account.

Must have

Generated from requirements.ted:

Activity Diagram Requirement Priority

1 Create WorkFlow A user should be able to create a
new WorkFlow

Must have

2 Create WorkFlow A user should be able to create a
WorkFlow from a template

Must have

3 Delete WorkFlow A user should be able to delete a
WorkFlow

Must have

4 Edit WorkFlow A user should be able to edit a
WorkFlow

Must have

5 Edit WorkFlow A user should, while editing a
WorkFlow, be able to save his
WorkFlow

Must have

6 Edit WorkFlow A user should, while editing a
WorkFlow, be able to stop
editing his WorkFlow

Must have

7 Edit WorkFlow A user should, while editing a
WorkFlow, be able to restore his
WorkFlow to a previous version

Must have

8 Edit WorkFlow A user should, while editing a
WorkFlow, be able to edit his
WorkFlow settings

Must have

9 Edit WorkFlow A user should, while editing a
WorkFlow, be able to add a Step
to his WorkFlow

Must have

10 Edit WorkFlow A user should, while editing a
WorkFlow, be able to view a
Step

Must have

11 Edit WorkFlow A user should, while editing a
WorkFlow, be able to edit a Step

Must have

12 Edit WorkFlow A user should, while editing a
WorkFlow, be able to delete a
Step

Must have

13 Edit WorkFlow A user should, while editing a
WorkFlow, be able to connect
Steps

Must have

14 Edit WorkFlow A user should, while editing a
WorkFlow, be able to disconnect
Steps

Must have

15 Edit WorkFlow A user should, while editing a
WorkFlow, be able to copy and
paste Steps

Should have

16 Log in A user should be able to log in
with his DizzyData account

Must have

17 Log in A user should be able to log in
with his account from any
external OpenID supporting
service

Must have

18 Log in A user should be able to restore
his password

Must have

19 Log out A user should, while being
logged in, be able to log out

Must have

20 Edit Step A user should, while editting a
Step, be able to change the Step
type

Must have

21 Edit Step A user should, while editing a
Step, be able to edit the settings
specific to the Step type

Must have

22 Edit Step A user should, while editing a
Step, be able to apply his
changes

Must have

23 Edit Step A user should, while editing a
Step, be able to stop editing

Must have

24 Edit Step A user should, while editing a
Step, be able to save and stop
editing

Must have

25 Edit Step Settings A user should, while editing an
input storage service Step, be
able to select which storage
service I want to use

Must have

26 Edit Step Settings A user should, while editing an
input storage service Step, be
able to select an input and
processed folder

Must have

27 Edit Step Settings A user should, while editing an
input storage service Step, be
able to enter the storage service
account and its credentials

Must have

28 Edit Step Settings A user should, while editing an
output storage service Step, be
able to select which storage
service I want to use

Must have

29 Edit Step Settings A user should, while editing an
output storage service Step, be
able to select an output folder

Must have

30 Edit Step Settings A user should, while editing an
output storage service Step, be
able to enter the storage service
account and its credentials

Must have

31 Edit Step Settings A user should, while editing an
Extract Step, be able to view the
Extract Elements

Must have

32 Edit Step Settings A user should, while editing an
Extract Step, be able to remove
an Extract Element

Must have

33 Edit Step Settings A user should, while editing an
Extract Step, be able to add a
new Extract Element

Must have

34 Edit Step Settings A user should, while editing an
Extract Step, be able to add a
new Extract Element based on
template

Must have

35 Edit Step Settings A user should, while editing an
Extract Step, be able to edit an
Extract Element

Must have

36 Edit Step Settings A user should, while editing an
Element, be able to add an
Anchor

Must have

37 Edit Step Settings A user should, while editing an
Element, be able to edit an
Anchor

Must have

38 Edit Step Settings A user should, while editing an
Element, be able to remove an
Anchor

Must have

39 Edit Step Settings A user should, while editing an
Element, be able to change the
order of the Anchors

Must have

40 Edit Step Settings A user should, while editing an
Element, be able to view the
Anchors

Must have

41 Edit Step Settings A user should, while editing an
Element, be able to set the name
of the Element

Must have

42 Edit Step Settings A user should, while editing an
Element, be able to set the
description of an Element

Must have

43 Edit Step Settings A user should, while editing an
Element, be able to save the
Element as a user template

Must have

44 Edit Step Settings A user should, while editing an
Anchor, be able to set the name
of the Anchor

Must have

45 Edit Step Settings A user should, while editing an
Anchor, be able to edit the
matching expression which is
either a literal string or a regular
expression

Must have

46 Edit Step Settings A user should, while editing an
Anchor, be able to edit the
exclude expression

Must have

47 Edit Step Settings A user should, while editing a
Split Step, be able to view the
Split Rules

Must have

48 Edit Step Settings A user should, while editing a
Split Step, be able to remove a
Split Rule

Must have

49 Edit Step Settings A user should, while editing a
Split Step, be able to add a new
Split Rule

Must have

50 Edit Step Settings A user should, while editing a
Split Step, be able to edit a Split
Rule

Must have

51 Edit Step Settings A user should, while editing a
Split Rule, be able to add
Elements

Must have

52 Edit Step Settings A user should, while editing a
Split Rule, be able to edit
Elements

Must have

53 Edit Step Settings A user should, while editing a
Split Rule, be able to remove
Elements

Must have

54 Edit Step Settings A user should, while editing a
Classify Step, be able to view
the Classify Rules

Must have

55 Edit Step Settings A user should, while editing a
Classify Step, be able to remove
a Classify Rule

Must have

56 Edit Step Settings A user should, while editing a
Classify Step, be able to add a
new Classify Rule

Must have

57 Edit Step Settings A user should, while editing a
Classify Step, be able to edit a
Classify Rule

Must have

58 Edit Step Settings A user should, while editing a
Classify Rule, be able to add
Elements

Must have

59 Edit Step Settings A user should, while editing a
Classify Rule, be able to edit
Elements

Must have

60 Edit Step Settings A user should, while editing a
Classify Rule, be able to remove
Elements

Must have

61 Edit Step Settings A user should, while editing an
Enrich Step, be able to select an
Enrich Module from a predefined
set

Must have

62 Edit Step Settings A user should, while editing an
Enrich Step, be able to view the
input fields

Must have

63 Edit Step Settings A user should, while editing an
Enrich Step, be able to select the
input values

Must have

64 Edit Step Settings A user should, while editing an
UBL2 File Step, be able to edit
the settings of this Step

Must have

65 Manage account A user should, while logged in,
be able to manage his account

Must have

66 Manage account A user should be able to view his
plan details

Must have

67 Manage account A user should be able to view his
invoices

Must have

68 Manage account A user should be able to view his
account details

Must have

69 Manage account A user should be able to edit his
account details

Must have

70 Manage account A user should be able to request
a new API key

Must have

Technical requirements

Short Description Priority

1 Server-side implementation The server-side programming is
done in a .NET environment.

Must have

2 Client-side implementation The latest Javascript, HTML and
CSS are used to present the
interface to the client.

Must have

3 MVC The system is build using the
Model-View-Controller model.

Must have

4 Browser support The web interface is compliant
with popular browsers: IE8+,
Chrome 25+, Firefox 19+, Opera
12+ and Safari 5.1+.

Must have

5 iPad support The web interface is compliant
with Safari iPad.

Should have

6 Stand-alone front-end The front-end functions
standalone, without direct
(database) access to the
DizzyData system.

Must have

7 Minimum data transfer The data sent between server
and client is kept to a minimum.

Must have

APPENDIX D: DF – SCRUM WORKFLOW

Appendix D: DF – Scrum Workflow

On developing DizzyData Front-End 95

DF – Scrum Workflow
Mick van Gelderen

4091566
Mick de Lange

1534068

June 26, 2013

Contents
1 Introduction 2

2 The Scrum Team 3
2.1 Product Owner . 3
2.2 Development Team . 3
2.3 Scrum Master . 3

2.3.1 Scrum Master service to the Product Owner 3
2.3.2 Scrum Master service to the Development Team 4
2.3.3 Scrum Master service to the Organization 4

3 Scrum events 4
3.1 The Sprint . 4
3.2 Sprint Planning Meeting . 4

3.2.1 What . 5
3.2.2 How . 5
3.2.3 Goal . 5

3.3 Daily Scrum . 5
3.4 Sprint Review . 5
3.5 Sprint Retrospective . 6

4 Scrum artifacts 6
4.1 Product Backlog . 6
4.2 Monitoring progress towards a goal 6
4.3 Sprint Backlog . 6

4.3.1 Monitoring sprint progress 6
4.3.2 Increment . 6

5 Definition of Done 6

6 Conclusion 7

References 8

1 INTRODUCTION

1 Introduction
This document defines the project workflow for DizzyData front-end (DF). The
basis of our workflow comes from Scrum as described in The Scrum Guide by
Schwaber and Sutherland [2].

DF – Scrum Workflow 2

2 THE SCRUM TEAM

2 The Scrum Team
The Scrum Team consists of the Product Owner , the Development Team and
the Scrum Master . Scrum Teams choose how best to accomplish their work
and consists of members who’s skills combined cover all the skills required to
complete the project.

2.1 Product Owner
The Product Owner is responsible for “maximizing the value of the product and
work of the Development Team” [2, p. 5]. For DF, the Product Owner is the
project manager : Tim Paymans. His tasks include:

• Clearly expressing the Product Backlog items

• Assigning priorities to the Product Backlog items to best achieve goals

• Ensure that the Product Backlog is updated and reflects the project state

In our case the Product Owner assigns part of the Product Backlog man-
agement tasks to the Development Team but as stated in The Scrum Guide,
the Product Owner will always remain accountable for the Product Backlog.

2.2 Development Team
The Development Team consists of “professionals who do the work of delivering
a potentially releasable increment of Done product at the end of each Sprint”
[2, p. 6].

Our Development Team is not as cross functional as we would like. Our De-
velopment Team consists of two software developers: Mick de Lange and Mick
van Gelderen. We have limited access to other human resources such as a in-
teraction designer and graphical designer. Ideally they would participate directly
in our Development Team so that they can participate in an agile manner. This
is not the case however which makes the agile development a bit harder since
they need more complete information on what we require them to do.

2.3 Scrum Master
The ScrumMaster is “responsible for ensuring Scrum is understood and enacted”
[2, p. 6].

Our Scrum Master is Mick van Gelderen. He will be a servant-leader for the
Scrum Team. This guards the Scrum process by helping the Product Owner,
Development Team and those outside the Scrum Team.

The following list is largely adopted from The Scrum Guide.

2.3.1 Scrum Master service to the Product Owner

The Scrum Master serves the Product Owner in several ways, including:

• Finding techniques for effective Product Backlog management.

• Clearly communicating vision and goals to the Development Team.

• Teaching the Development Team to produce clear and concise Product
Backlog items.

• Facilitating Scrum events as requested or needed.

DF – Scrum Workflow 3

3 SCRUM EVENTS

2.3.2 Scrum Master service to the Development Team

The Scrum Master serves the Development Team in several ways, including:

• Coaching the Development Team in self-organization and cross-functionality.

• Removing impediments to the Development Team’s progress.

• Facilitating Scrum events as requested or needed.

• Teaching the Development Team how to act in organizational environ-
ments in which Scrum is not yet fully adopted and understood

2.3.3 Scrum Master service to the Organization

The Scrum Master serves the Organization in several ways, including:

• Leading and coaching the organization in its Scrum adoption.

• Planning Scrum implementations within the Organization.

• Helping employees and stakeholders understand and enact Scrum and em-
pirical product development.

• Causing change that increases the productivity of the Scrum Team.

• Working with other Scrum Masters to increase the effectiveness of the
application of Scrum in the organization.

3 Scrum events
There are a number of Scrum events defined in The Scrum Guide. They are
aimed at creating regularity and minimizing the need for meetings not defined in
Scrum. The events are time-boxed so that every event has a maximum duration.
“This ensures an appropriate amount of time is spent planning without allowing
waste in the planning process” [2, p. 7].

Our take on the events will be described in this section. The details on each
event can be found in The Scrum Guide.

3.1 The Sprint
A Sprint will consist of the Sprint Planning Meeting , the Daily Scrums, the
development work, the Sprint Review and the Sprint Retrospective. Each Sprint
will have a time-box of one week. Reasons for this choice are having a small
Development Team that works closely together and the very limited time that
is available to work on the project. We have to be able to refocus on particular
goals during the process.

3.2 Sprint Planning Meeting
Our Sprint Planning Meeting is time-boxed to two hours since our Sprints occur
every week. The Sprint Planning Meeting is aimed at answering two questions:

• What will be delivered in the Increment resulting from the upcoming
Sprint?

• How will the work needed to deliver Increment be achieved?

DF – Scrum Workflow 4

3 SCRUM EVENTS

3.2.1 What

The Product Owner and Development Team will decide what Product Backlog
items will be treated during the upcoming Sprint. But, only the Development
Team will decide how many of the selected items it can process during the
Sprint. This will be done in a one hour period.

After the Product Backlog items have been chosen, the Scrum Team crafts a
Sprint Goal . “The Sprint Goal is an objective that will be met within the Sprint
through the implementation of the Product Backlog, and it provides guidance
to the Development Team on why it is building the Increment” [2, p. 7].

3.2.2 How

The Development Team will make a plan that describes how to approach creating
a solution for the Sprint Backlog items. This plan encompasses for example the
people that will be put on the design of a system. In this phase of the Sprint
Planning Meeting it should become clear how the functionality will be built into
a Done product Increment during the Sprint. The Product Owner and possibly
domain experts may or may not be present during this part of the meeting.

3.2.3 Goal

The Sprint Goal gives the Development Team some flexibility regarding the
functionality implemented within the Sprint. If the functionality and technology
turns out to be different from what the Development Team expected, then they
collaborate with the Product Owner to negotiate the scope of the Sprint Backlog
within the Sprint.

3.3 Daily Scrum
Our Daily Scrum will be held in the morning from 9:15 to 9:30. We will shortly
discuss what has been accomplished since the last meeting, what will be done
before the next meeting and what obstacles are in the way. If possible, the
Product Owner will attend these meetings as an observer to get a feeling for
what Scrum is like. Officially this should not be the case since the Daily Scrum
is not a status meeting but in our case this project is also a test project for agile
development.

3.4 Sprint Review
The Sprint Review will be an informal one hour meeting held at the end of a
Sprint. The following elements are included in the Sprint Review:

• The Product Owner identifies what has been Done and what not.

• The Development Team discusses what went well and what problems it
ran into and how these were solved.

• The Development Team demonstrates the work that it has Done and
answers questions about the Increment

• The Product Owner discusses the Product Backlog as it stands and tries
to give a projected completion date based on the progress made so far if
an educated estimate can be made.

• The Scrum Team collaborates on what to do next so that the Sprint
Review provides valuable input to subsequent Sprint Planning Meeting

DF – Scrum Workflow 5

5 DEFINITION OF DONE

3.5 Sprint Retrospective
The Sprint Retrospective focuses on the Scrum process as a whole and provides
a formal opportunity to give feedback on it. This meeting will be scheduled
between the Sprint Review and the Sprint Planning Meeting and take a maximum
of 45 minutes.

4 Scrum artifacts
“Scrum’s artifacts represent work or value in various ways that are useful in
providing transparency and opportunities for inspection and adaptation. Arti-
facts defined by Scrum are specifically designed to maximize transparency of key
information needed to ensure Scrum Teams are successful in delivering a Done
Increment. ” [2, p. 12].

4.1 Product Backlog
The Product Backlog is hosted on Jira [1]. The initial Product Backlog will be
constructed from the results of the orientation phase of the project, see DF –
Project Approach for details on the project phases.

4.2 Monitoring progress towards a goal
“At any point in time, the total work remaining to reach a goal can be summed.
The Product Owner tracks this total work remaining at least for every Sprint
Review. The Product Owner compares this amount with work remaining at
previous Sprint Reviews to assess progress toward completing projected work
by the desired time for the goal. This information is made transparent to all
stakeholders.” [2, p. 13].

4.3 Sprint Backlog
The Sprint Backlog will hold the backlog items that are planned to be treated
in the current Sprint in addition to the plans used or required to work on the
Sprint Backlog items. Working on the Product Backlog or Sprint Backlog items
should not be considered as items themselves.

4.3.1 Monitoring sprint progress

The total remaining work in the Sprint Backlog items can be summed. The De-
velopment Team tracks these sums daily and projects the likelihood of achieving
the Sprint Goal.

4.3.2 Increment

The Increment is the sum of all the Product Backlog items that have been
completed, that means they are Done, in a Sprint.

5 Definition of Done
Everyone in the Scrum Team must know what it means for work to be complete
to ensure transparency. This is what we call Done. Initially this definition may
be slightly loosely formulated but, as the Scrum Team matures, it is expected
that their definition of Done will become more strict to enforce higher quality.

DF – Scrum Workflow 6

6 CONCLUSION

6 Conclusion
Our approach to Scrum heavily relies on the definitions provided in The Scrum
Guide. There are however a number of choices and trade-offs that have had to
be made when we decided to use Scrum such as selecting the length of a Sprint.

DF – Scrum Workflow 7

REFERENCES

References
[1] Jira, issue tracker by Atlassian. URL http://www.atlassian.com/

software/jira.

[2] Ken Schwaber and Jeff Sutherland. The Scrum Guide. 2011.

DF – Scrum Workflow 8

APPENDIX E: DF – GIT WORKFLOW

Appendix E: DF – Git Workflow

On developing DizzyData Front-End 105

DF – Git Workflow
Mick van Gelderen

4091566
Mick de Lange

1534068

June 26, 2013

Contents
1 Introduction 2

2 Initial setup 3

3 Daily workflow 3
3.1 Grab an item from the Sprint Backlog 3
3.2 Develop . 3
3.3 Collaborate . 3
3.4 Test . 3
3.5 Complete . 3

4 Sprint workflow 3

References 4

1 INTRODUCTION

1 Introduction
This document describes the Git 1 workflow used in the development of Dizzy-
Data front-end (DF). The basis of our workflow comes from Git as described in
Pro Git by Chacon [2].

To start working on git you should get a general idea of what git is. I
recommend you skim over this online manual and read the parts that you think
are interesting and the topics below. Do not start by reading everything in detail.
Just make sure you have an idea of what Git is and of what it can do. Only
when you have a working Git setup, experiment with a test repository using the
basic commands given below. When you feel comfortable, dive into topics such
as branching.

Note: Installing git might not be necessary depending on the tool you will
use, I recommend learning what Git is before installing something. I also recom-
mend installing something before learning how to use Git so that you can learn
by doing it yourself.

• Git basics, especially about the workflow.

• Changing the repository.

• Branching.

• Required basic commands

– git clone2.
– git pull3.
– git status4.
– git add5.
– git commit6.
– git push7.

• Other commonly used and advanced commands

– git log8

– git branch9

– git merge10

– git tag11

– . . .
1http://git-scm.com
2http://git-scm.com/docs/git-clone
3http://git-scm.com/docs/git-pull
4http://git-scm.com/docs/git-status
5http://git-scm.com/docs/git-add
6http://git-scm.com/docs/git-commit
7http://git-scm.com/docs/git-push
8http://git-scm.com/docs/git-log
9http://git-scm.com/docs/git-branch

10http://git-scm.com/docs/git-merge
11http://git-scm.com/docs/git-tag

DF – Git Workflow 2

4 SPRINT WORKFLOW

2 Initial setup
Configure your git installation to use your name, email and other settings. Then
create a clone of the repository you wish to work on with git clone so you
can work on the project on your machine. The repository will probably have to
be fetched from a central server only a limited number of people have read and
write access to. Common hosting platforms include github 12 and Bitbucket [1].

3 Daily workflow
This section describes the general item-to-item workflow for our project.

3.1 Grab an item from the Sprint Backlog
Take an item from the Product Backlog and create a new branch using git
branch. This will be the branch on which you develop functionality for that
particular item. If you have to switch and work on another item, create a new
branch for the other item so that you always start with a working version of the
software: the master branch.

3.2 Develop
While writing a solution to the Product Backlog item be sure to commit each
time you are be able to write a meaningful commit message.

3.3 Collaborate
If you need to collaborate with someone else you will have to make your local
branch public by pushing it to the central repository.

3.4 Test
Write if you have not done so already and run tests for the new piece of func-
tionality. Be sure to move the Product Backlog item from in progress to testing.

3.5 Complete
If the tests ran successfully and everything is working correctly you can merge
the master branch with the Product Backlog item branch with git merge. Be
sure to move the Product Backlog item from testing to done.

4 Sprint workflow
Every Sprint, the master branch should be tagged as being a releasable version.
This can be done using git tag.

12http://github.com

DF – Git Workflow 3

REFERENCES

References
[1] Bitbucket, Git version control hosting. URL http://bitbucket.org.

[2] Scott Chacon. Pro Git. Apress, 2009.

DF – Git Workflow 4

	Introduction
	Company
	Project background

	Task description and Requirements
	Project client
	Problem definition
	Objectives
	Assignment formulation
	Deliverables
	Preconditions

	Requirements

	Process
	Scrum
	Planning
	Realized planning

	Tools
	Jira
	Bitbucket

	System design
	DizzyData API
	Front-end
	User interaction
	Graphical design
	Technical design
	OOP in JavaScript
	Class diagrams

	AngularJS framework
	Hosting the application

	Implementation
	A web application
	HTML
	CSS
	JavaScript

	AngularJS
	Document structure and partials
	Adding liveliness through controllers
	Working with data in controllers

	Promises
	Introduction to asynchronous programming in JavaScript
	Problems of the callback method
	Introducing promises

	DizzyData API communication
	CRUD
	Authentication

	Models
	Basic models
	Workflow translation

	The document previewer with OCR support
	Laying the foundation
	Navigating through the document
	Adding pagination
	Implementing zooming
	The OCR overlay
	Improvements

	Code quality
	Testing
	JavaScript applications with Node.js
	Dependency management with NPM
	Automation with Grunt
	Testing with Karma and Jasmine
	Code coverage with istanbul

	SIG feedback

	Future work
	API improvements
	Statistics and billing
	Sharing Workflows and templates
	Edit Split and Classify Steps
	Ordering Steps

	Front-end improvements
	Creating Workflows
	Storage-specific settings management
	Previewer
	Graphical design

	Conclusion
	References
	Appendix A: SIG feedback (Dutch)
	Appendix B: DF – Project Approach
	Appendix C: DF – Orientation Report
	Appendix D: DF – Scrum Workflow
	Appendix E: DF – Git Workflow

