

Delft University of Technology

Improving the Performance of a Large Scale Spreadsheet
A Case Study
Swidan, ALaaeddin; Hermans, Felienne; Koesoemowidjojo, Ruben

Publication date
2016
Document Version
Accepted author manuscript
Citation (APA)
Swidan, AL., Hermans, F., & Koesoemowidjojo, R. (2016). Improving the Performance of a Large Scale
Spreadsheet: A Case Study. (TUD-SERG-2016-003). Delft University of Technology Software Engineering
Research Group.

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

Delft University of Technology
Software Engineering Research Group

Technical Report Series

Improving the Performance of a Large
Scale Spreadsheet: A Case Study

Alaaeddin Swidan, Felienne Hermans and Ruben
Koesoemowidjojo

Report TUD-SERG-2016-003

SERG

TUD-SERG-2016-003

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Accepted for publication in the Proceedings of the 23rd IEEE International Conference on Software
Analysis, Evolution, and Reengineering, 2016, IEEE Computer Society.

c© copyright 2016, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.

Improving the Performance of a Large Scale
Spreadsheet: A Case Study

Alaaeddin Swidan
Delft University of Technology

Delft, Netherlands
Email: alaaeddin.swidan@tudelft.nl

Felienne Hermans
Delft University of Technology

Delft, Netherlands
Email: f.f.j.hermans@tudelft.nl

Ruben Koesoemowidjojo
BitBrains IT Services

Amsterdam, Netherlands
Email: ruben.koesoemowidjojo@bitbrains.nl

Abstract—Spreadsheets are used extensively for calculations in
several domains, especially in finance and insurance. Spreadsheets
offer a clear benefit to their users: they are an easy to learn
application in which to express their business needs, however,
there are downsides too. Like software, spreadsheets can have
a long life span in which they are used by several people. This
leads to maintainability issues, including errors, but also often to
issues with performance. In this paper we present a case study in
which a model for shortfall calculations, originally implemented
in a spreadsheet, was adapted to run on an HPC cluster. We
present the design, analysis and implementation of the solution
which clearly improved the performance of the spreadsheet, with
a factor of 50 in some cases. We subsequently reflect on challenges
related to reverse engineering, testing and scalability. Finally, we
identify opportunities that would provide automatic support to
refactoring, dependency recognition and performance profiling in
future spreadsheet optimization projects.

I. INTRODUCTION

Research shows the prevalent use of spreadsheets in var-
ious business domains in general, and financial services in
particular [1], [2], [3]. Spreadsheet usage ranges from trivial
data manipulation to complex modeling and simulation [3].
A spreadsheet model in principle is easy to create: domain
experts convey their ideas into the intuitive UI, allowing for
immediate results to show, and thus providing the ability to
react with a business decision such as buying or selling certain
stock. Within organizations, spreadsheets are used for long
periods of time [2], which could lead to a spreadsheet model
growing in size and complexity. Increased size and complexity
could affect the performance of the spreadsheet, hampering
immediate output and thus inhibiting one of the strongest
features of spreadsheets [2]

To investigate the issues around spreadsheet performance in
practice, we present a case study of one large-scale spreadsheet
model which suffered from performance problems. The spread-
sheet was developed at a major insurance company in the
Netherlands. It was used to support risk analysts in comparing
pension investments and obligations. The spreadsheet suffered
from severe performance issues, as the execution regularly
exceeded 10 hours. This situation was inconvenient to the busi-
ness operations, as the time-consuming runs of the spreadsheet
caused additional difficulties in its maintenance and usability
for the analysts. To address these problems, a parallel-based
solution was applied to the spreadsheet, based on a Microsoft
HPC cluster. In this paper, we highlight the steps followed to
improve the performance of the spreadsheet.

The contributions of this paper are: (i) providing an indus-
trial investigation into addressing performance issues related
to simulation models in spreadsheets, (ii) identifying the chal-
lenges that we faced throughout the project, and how they were
overcome. Finally, (iii) we introduce possible enhancements,
which we foresee could mitigate the risks in similar projects.

II. BACKGROUND AND MOTIVATION

Simulation models in general can be either deterministic
or stochastic. In deterministic models, input values are set
before the run, and calculations are built to produce an output
accordingly. Running a deterministic model for many times
will produce the same result in each run. Opposite to that is
the stochastic modeling, where the knowledge of the inputs
is neither complete nor certain. In a stochastic model, some
of the inputs are chosen randomly, and usually independently,
from within a range of distributed values. This is a common
modeling approach used in the financial service-providers,
banks and insurance companies that highly depend on live
information of stocks. In each run of the model, a different
set of inputs is used, leading to unique and discrete results.
One of the most popular stochastic modeling techniques for
numerical analysis is the Monte Carlo simulation [4]. As
illustrated in Figure 1, Monte Carlo simulations aim to evaluate
a specific calculation, a function, depending on a group of
input parameters that are discrete, independent and randomly
evaluated from a range of possible values. In Monte Carlo,
the main calculation function is executed for a predefined
number of iterations n. Each iteration’s result is recorded, and
participates in presenting the final outcome to the user in the
shape of graphs, aggregations and probability analysis.

Fig. 1: Monte Carlo Simulation Summary

SERG Swidan, Hermans & Koesoemowidjojo – Improving the Performance of a Large Scale Spreadsheet: A Case Study

TUD-SERG-2016-003 1

A. Motivation

Monte Carlo simulations by nature suffer from performance
issues. This is usually the case since analysts and domain
experts prefer to run their simulations for as many iterations
as possible. By this, they aim to produce more precise and
reliable results. However, this leads to a high utilization of
computing resources, and thus a growth in the runtime of the
model relative to the number of iterations. The overall health
of the model is also affected, because its maintenance becomes
an issue. In our case for instance, modifying the model meant
that a simple debugging, of any change, would take tens of
hours to finalize.

III. CONTEXT

The company at which the spreadsheet was developed, is
one of the largest financial service providers in the Nether-
lands, with millions of customers and thousands of employees.
In the next subsections we provide information about the use
case and aspects of the spreadsheet model. From now on, the
company will be referred to as the insurance company.

A. Shortfall Analysis

The investigated spreadsheet model is called the shortfall
risk calculator (SFC), and contains an application of a Monte
Carlo simulation. A shortfall analysis aims to numerically
predict the deficit of the pension liabilities of a company,
compared to their stock market capitalization [5]. This is
implemented through a stochastic evaluation of the expected
returns of the company’s investments in equity markets for ex-
ample, while simultaneously comparing it to the probabilities
of the pension obligations at a certain point in the future. An
SFC model usually involves a high level of uncertainty and
deals with continuously changing data, such as the interest
rate, stock compounded market rate, and mortality intensity of
a person in a certain age [5].

In our case, the SFC model was implemented using Excel,
and used to run it on the common enterprise PCs. The problem
is that the model usually took many hours to complete, some-
times days. Worse case, the model would crash unexpectedly
and the analysts had to run it again. The performance of the
model caused a major problem to the risk analysis department
by delaying the decision making process. Moreover, this made
it difficult to maintain the spreadsheet model. For example to
add a new functionality, debug or test any modification, meant
that a new run will start, which then will take another tens of
hours to complete.

B. Features of the Model

In this section we present the metrics of the original
spreadsheet model and the contained VBA code. For that,
we used our research spreadsheet analyzer [6], and a leading
software tool for VBA code quality [7]. These metrics are
shown here to illustrate the model features, but were not used
by the developers in the case.

The SFC model in our case, features one core spreadsheet
which is the shortfall calculator. The core spreadsheet depends
on three external spreadsheets for providing input data and

Fig. 2: Microsoft HPC Standard Package [10]

configurations. It produces data into three other spreadsheets.
The core spreadsheet contains 12 worksheets, and a total of
3,329 nonempty cells. Within these cells, 329 contain formulas
of which 72 are unique. The formulas used have low level of
complexity, which is indicated by the number of cells (16)
containing functions such as VLOOKUP, OFFSET, and IF.

The VBA project in the core spreadsheet has 37 source files
with more than 7,000 LoC. The code contains 23 modules,
146 methods, and 58 user-defined types. We generated the
standard complexity metrics for methods and types, finding
the maximum Cyclometic Complexity (CC) of 386 paths for
the main() method. Another 16 methods are labeled as too
complex by the software tool we used, since they have CC
value above 20 paths.

IV. THE CASE STUDY

As an HPC solution provider, our industry partner Bit-
Brains [8] was approached by the insurance company to
improve the spreadsheet’s performance. In collaboration with
GridDynamics [9], the solution we provided is based on a
framework called the HPC for Excel Acceleration Toolkit
(HEAT). HEAT, developed by GridDynamics, is built on top
of a standard Microsoft HPC cluster [10], and allows for
the spreadsheet calculations to be offloaded into the HPC
nodes (Figure 2). The project was carried out in three phases
that included: setting up the design based on parallelism
(Section IV.A), followed by analyzing the spreadsheet model to
decompose its components (Section IV.B), and implementing
needed changes to the original model (Section IV.C), leading
to clear improvements in the model performance as presented
in the evaluation (Section IV.D).

A. Design

In determining the design, the aim was to handle two major
requirements: (i) the parallelization of the model, and (ii) the
scalability of the provided solution.
The parallelization of the model was achieved through a map-
reduce derived algorithm. However, a limitation in Excel pre-
vented user-defined types from being communicated between
HPC nodes. In VBA, a user-defined type is a data structure that
is defined by the keyword Type, and contains a combination
of built-in types. Since the model contained more than 50
user-define types (Table I), the solution was to serialize them
into built-in types before sending to the cluster nodes, and to
deserialize them back to the original types on receiving.
The second requirement considered in the design was the

Swidan, Hermans & Koesoemowidjojo – Improving the Performance of a Large Scale Spreadsheet: A Case Study SERG

2 TUD-SERG-2016-003

TABLE I: VBA Code Metrics extracted from the spreadsheet model

VBA Code Analysis

of modules 23 Cyclomatic Complexity for Methods Max=386, Average=14.36 # of projects invoked 2

of methods 146 Cyclomatic Complexity for Types Max=546, Average=69.3

of types 58 Methods too complex (Cyclomatic Complexity >20) 17 (11.6% coverage)
of methods invoked 65

lines of code (total) 7,372 Methods too big (LoC >= 30) 53 (36.3% coverage)Size

comments coverage 12.79% (1081 LoC)

Complexity

Types with too many fields (fields>20 and not enumerated) 5

External Dependency

types used 14

scalability. The insurance company’s aim was to evaluate as
large as 30K scenarios in the future, and this would bring up
two issues: a high memory utilization, and an increased time in
splitting the input data. Consequently, the original model was
redesigned, and that included some code refactoring, such as
minimizing the creation of temporary arrays inside the loops.

B. Analysis

In the analysis phase, the spreadsheet model was analyzed
to determine what methods to parallelize and how. The analysis
consisted of three operations:

a) Performance profiling: The profiling was done by
instrumentation, where a time-logging library was called on
each VBA method’s entrance and exit. Three methods were the
most time-consuming, one of them was the main() method.

b) Complexity evaluation: Through standard tools, the
complexity and size of the VBA project were measured. The
main() method was the largest and most complex.

c) Dependency analysis: This was done by studying
the input and output data flows of the methods, with the aim
of avoiding parallelizing a method with high level of data
coupling. The original VBA code was written in a way that
introduces a considerable amount of data coupling between
the methods, where the main() method exhibited the most
dependency on other methods.

As a direct outcome of the analysis, various loops in a
number of VBA methods were candidates for parallelization.
Of which, the main() method was the most feasible since it
contained the most time-consuming code. Important to note
here, the analysis process was difficult, since the software
engineers lacked the needed domain knowledge of the model.
As such, information were regularly required from the model
owners at the insurance company (discussed further in the
Challenges, section VI.A).

C. Implementation

The implementation comprised rewriting parts of the VBA
code, and adding other parts (i) to apply parallelization and
(ii) to deliver a scalable solution.

The parallelization targeted various loops in the main
method, and the focus was on splitting the arrays used in
these loops’ iterations. The mapping for an array was done
by dividing the total number of scenarios by the number of
cluster cores, consequently creating split copies of that arrays.
On the other hand, the reduce process was performed based
on each function’s requirements: some arrays were averaged or
summed, others were concatenated. To ensure successful paral-
lelization, dependencies between the methods were minimized.

In this manner we refactored, when applicable, code parts
that include passing parameters by reference, or modifying the
passed parameters inside a function’s body.

Because of the parallel approach, serialization and deseri-
alization code was developed to allow the communication of
each user-defined type in the model. This is due to a limitation
in Excel, which forbade the proper transfer of user-defined
types between the cluster nodes (described in section IV.A).

Finally, to ensure scalability both in terms of the number
of scenarios and the number of cores, re-design of the model
in some loops was implemented. For instance the creation of
temporary arrays inside the loops was not allowed. In addition,
the array splitting and copying were moved to the cluster
instead of the client for some loops, and some data structures
were made smaller through using data types with smaller sizes.

D. Evaluation

As a result of the parallelization approach and the modifica-
tions to the model, the run times showed clear improvements.
In this section we present (i) the performance figures of the
various runs of the model, (ii) the verification of the model’s
health throughout the migration process.

a) Performance Results: There were two factors that
directly affected the performance: the number of scenarios in
the model and the number of cores utilized. First, Figure 3
shows the effect of increasing the scenarios on the model’s
performance, while the number of cores was fixed: a single
core for the sequential original model, versus a 24-core cluster
for the parallel modified model. When the original model
was considered, the runtime increased exponentially as we
increased the number of scenarios. In the meanwhile, the
modified model runtime increased as well, but in an almost
linear manner. In Figure 3-b, we see that the modified model
in parallel performed 39 and 52 times faster than the original
model, for 480 and 960 scenarios respectively. To run 960
scenarios for instance, the original model required 729 minutes
(more than 12 hours), while the modified model completed the
run in 14 minutes on the 24-core cluster. Figure 4 illustrates
the effect of increasing the number of cores on performance,
while the number of scenarios is fixed. For 1008 scenarios, the
original model needed more than 15 hours to complete. For
the parallel runs, started by 8-cores and increased gradually
up-to 48 cores, the runtime goes down almost linearly, from
105 minutes to 33 minutes respectively.

b) Model Accuracy: The accuracy of the obtained
results was verified throughout the migration of the model.
The verifications were carried out by the insurance com-
pany’s team, who manually compared the outcomes of the
calculations between the original and the modified models.

SERG Swidan, Hermans & Koesoemowidjojo – Improving the Performance of a Large Scale Spreadsheet: A Case Study

TUD-SERG-2016-003 3

Fig. 3: Results: Effect of increasing the number of scenarios
on the performance of the original model and the modified
model. (a) On a small scale: up to 96 scenarios. (b) On a

larger scale: up to 960 scenarios

Fig. 4: Results: Effect of increasing the number of cores on
the performance of the parallel model

In one case for example, the results were slightly different,
and an investigation showed that a conditional statement was
not migrated correctly. However, the outcome of the modified
model was more accurate than before, due to running more
simulations, which is expected in a Monte Carlo simulation.

c) Migration Cost: According to the project plan sheet,
the migration was finalized in 431 working hours. The recorded
work included development of the new model and changes
to the HEAT, testing and verification, bug fixing, and writing
documentation. 93 hours of the recorded hours were related
to providing support for the insurance company’s employees,
helping them through the running of the model.

E. Maintainability of the Modified Model

The insurance company wanted to ensure business continu-
ity. They required that the modified model is easily changed
and maintained by their end-users, without continuously re-
ferring to the engineers in BitBrains. To achieve this, the
HEAT provides an option for the end-users to run the model
sequentially on a local machine. This is important to test the
introduced changes, before the model is run on the cluster.
Furthermore, the engineering team performed several hand-
over sessions, and provided thorough documentation materials,
that detailed how to modify the core parallel part of the code.

V. RELATED WORK

Related to our study is the work of Pichitlamken et al.
[11], where they provided a prototype that is similar to the
one we presented. The prototype, presented as an Excel add-in,

offloads the calculations of a spreadsheet model to a computer
grid. However, the two solutions still differ. The solution
in [11] built its own resource management and scheduling
unit, based on FCFS algorithm. In our solution, HEAT ex-
ploits the well-established Microsoft HPC services for these
functionalities. Additionally, the solution they provided as a
prototype, was not validated on a large-scale spreadsheet, or
in an industrial setup. In another related work, Abramson
et al. in [12] presented ActiveSheets, a solution designed to
evaluate the parallel user-defined functions of a spreadsheet
in the background. ActiveSheets is different to our solution by
targeting independent user-defined functions, and the lack of an
industrial application. Another related approach is ExcelGrid
[13], in which a middle ware tool was designed and built to
connect an Excel spreadsheet with either a private or a public
cluster. Even though ExcelGrid applies a parallel solution to
distribute work on a cluster, it does not target spreadsheet
models built completely inside Excel, as it uses the spreadsheet
as a means for providing input data to another software.
To the best of our knowledge, our paper presents the first
industrial and large-scale case, involving the parallelization of
a spreadsheet model.

VI. LESSONS LEARNED

In the above, we described the steps used by BitBrains and
GridDynamics, to improve the performance of a spreadsheet-
based model. This was done by creating a design based on
a software framework, that allows Excel spreadsheets to run
in parallel on an HPC cluster. Subsequently, the model was
analyzed by the software developers to identify candidate
methods for parallelization. Following that, the solution was
implemented by modifying parts of the the methods, and
adding other code parts to ensure a successful integration
between the spreadsheet and the HPC cluster. In this section,
we reflect on the project, identifying challenges that arose
along the way to the final implementation. Subsequently, we
introduce possible opportunities that can be addressed in future
work, to minimize the efforts in similar spreadsheets projects.

A. Challenges

Throughout the phases of the solution, a number of issues
proved to be challenging. We foresee that these challenges will
also be faced in future projects that optimize other spreadsheet
models. Therefore, the followings are our insights into some
of the challenging issues.

a) Reverse Engineering and Restructuring: The anal-
ysis of the spreadsheet model was a difficult process. Four
weeks were needed to reverse engineer the data flows and
the algorithm of the original spreadsheet model. The difficulty
originated from the fact that the developers lacked financial
domain knowledge, which required holding several meetings
with the model owners. These meetings hampered a speedy
development process. On the other hand, the implementation
phase involved applying several refactorings to the VBA code,
as well as rewriting and adding some components to the HEAT
framework, for the sake of fitting all the parts together. These
recursive and continuous processes of reverse engineering,
restructuring and integration development were vital to prepare
the spreadsheet model for the parallel execution, without
any unwanted result. These preparations however were done

Swidan, Hermans & Koesoemowidjojo – Improving the Performance of a Large Scale Spreadsheet: A Case Study SERG

4 TUD-SERG-2016-003

manually, neither planned nor systematic, which was time
consuming.

b) Preserving the Model’s Functionality: The trans-
formation process is risky; each modification applied to the
original model compromises the accuracy of the output results,
thus forcing continuous validations throughout the process.
These validations, in our case, were performed manually and
remotely by the insurance company’s team. With the lack of
domain knowledge added, It was difficult for the developers in
some cases to track the root causes of the variances, causing
some delays to the implementation process.

c) Scale of Improvement: When to consider the perfor-
mance improvement enough in a similar project? This question
was not answered in our case. The computational power
was increased gradually to see the reflection on performance.
However, we believe that a turnover point exists, at which the
model’s run may take longer time. This would happen since the
increase of the computation nodes means the increase of the
number of intermediate results to be reduced. Depending on
the size of the data structures used, the intermediate data may
grow rapidly to utilize more memory, increasing the processing
time. Therefore, the computing resources that would achieve
the optimal performance is not previously defined, and is
challenging to measure.

B. Opportunities

In this section we present areas for researchers to inves-
tigate in future. The aim is to provide tools and solutions
to issues that could hinder the implementation of similar
spreadsheets projects. We identify the following opportunities,
categorized per phase of the solution:

1) Design: The solution was primarily based on paral-
lelization of the spreadsheet model, by offloading the core
computational parts to the underlying cluster. An improvement
to the design is possible by accompanying the core parallel
solution with a concurrent approach. For example, we envision
a new design that includes a step related to detect and refactor
spreadsheet smells that may cause performance issues, such as
long calculation chains [14].

2) Analysis: In analyzing a spreadsheet model, software
engineers could benefit from having tools in the following
areas:

a) Dependency Recognition: To analyze the depen-
dency between the VBA methods, the developers carried
manual checks to the data flows and algorithms of the model. A
systematic approach, through a tool for example, is needed to
identify dependencies inside a spreadsheet model. This would
allow the developers and spreadsheet users to decide possible
parallel sections in their spreadsheet easily, and more quickly.

b) Performance Profiling and Hot-spot Analysis: In
the same manner to the dependency checks, profiling of the
VBA methods was done manually by writing code to log
the run times, and upon that deciding the major functions.
A spreadsheet model consists of different parts (both formulas
and VBA code), that can consume time and resources. The
manual process is error-prone and time consuming, thus a tool
that detects code runtime , and links it directly to the associated
formula or VBA method, would produce more assured results.

3) Implementation: The development cycles in the solution
involve repetitive work that has room for improvement, in the
form of automation or semi-automation of some processes.
The developers identified a predefined set of code behaviors
that lead to heavy dependencies between functions, such as
the passing parameters by reference, and the modification of
parameters inside the function body. A tool can be developed
to detect and refactor the code to eventually remove, or reduce,
the dependencies.

Finally, the solution presented is fully customized towards
a specific spreadsheet model. This suggests that for each new
spreadsheet model (new in terms of the simulation type, or
the used data structures and algorithms) the same procedure
shall be followed again. An opportunity to improve would be
widening the targeted models, by specializing in a specific
category of financial simulations, such as Monte Carlo. The
solution would automatically analyze any model that fits the
simulation criteria, based on a predefined set of rules and steps,
reducing the amount of repetitive work in future projects.

REFERENCES

[1] R. Baxter, “Enterprise spreadsheet management: A necessary good,”
in Proceedings of the EuSpRIG 2007 Symposium, 2007, p. 7.
[Online]. Available: http://arxiv.org/abs/0908.1584

[2] F. F. J. Hermans, Analyzing and visualizing spreadsheets. TU Delft,
Delft University of Technology, 2013.

[3] G. J. Croll, “The importance and criticality of spreadsheets in the city
of london,” in Proceedings of the EuSpRIG 2005 Symposium, 2005.
[Online]. Available: http://arxiv.org/abs/0709.4063

[4] J. Wittwer, “Monte carlo simulation basics,” 2004. [Online].
Available: http:
//www.vertex42.com/ExcelArticles/mc/MonteCarloSimulation.html

[5] A. Orlando and M. Politano, “Pension funds risk analysis: stochastic
solvency in a management perspective,” Problems and Perspectives in
Management, vol. Volume 8, no. Issue 3, 2010.

[6] F. Hermans and E. Murphy-Hill, “Enron’s spreadsheets and related
emails: A dataset and analysis,” Delft University of Technology,
Software Engineering Research Group, Tech. Rep., 2014.

[7] Vbdepend.com, “Vbdepend :: Achieve higher vb6/vba code quality,”
2015. [Online]. Available:
http://www.vbdepend.com/Metrics#MetricsOnMethods

[8] Bitbrains.nl, “De bits en de brains achter uw bedrijfskritische
applicaties - bitbrains,” 2015. [Online]. Available: http://bitbrains.nl

[9] Griddynamics.com, “Blog — grid dynamics.” [Online]. Available:
http://www.griddynamics.com/solutions/excel-hpc.html

[10] Technet.microsoft.com, “How hpc services for excel work.” [Online].
Available: https://technet.microsoft.com/en-us/library/ff877825%28v=
ws.10%29.aspx?f=255&MSPPError=-2147217396#BKMK soa

[11] J. Pichitlamken, S. Kajkamhaeng, P. Uthayopas, and R. Kaewpuang,
“High performance spreadsheet simulation on a desktop grid,” Journal
of Simulation, vol. 5, no. 4, pp. 266–278, 2010.

[12] D. Abramson, P. Roe, L. Kotler, and D. Mather, “Activesheets:
Super-computing with spreadsheets,” in 2001 High Performance
Computing Symposium (HPC01), Advanced Simulation Technologies
Conference. Citeseer, 2001, pp. 22–26.

[13] K. Nadiminti, Y.-F. Chiu, N. Teoh, A. Luther, S. Venugopal,
R. Buyya, and B. Street, “Excelgrid: A .net plug-in for outsourcing
excel spreadsheet workload to enterprise and global grids,” in
Proceedings of the 12th International Conference on Advanced
Computing and Communication (ADCOM 2004, 2004.

[14] F. Hermans, M. Pinzger, and A. van Deursen, “Detecting and
refactoring code smells in spreadsheet formulas,” Empirical Software
Engineering, vol. 20, no. 2, pp. 549–575, 2014.

SERG Swidan, Hermans & Koesoemowidjojo – Improving the Performance of a Large Scale Spreadsheet: A Case Study

TUD-SERG-2016-003 5

Swidan, Hermans & Koesoemowidjojo – Improving the Performance of a Large Scale Spreadsheet: A Case Study SERG

6 TUD-SERG-2016-003

TUD-SERG-2016-003
ISSN 1872-5392 SERG

