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Abstract

In this thesis we present a study of quantum Markov semigroups. In particular, we mainly consider
quantum Markov semigroups with detailed balance that are defined on finite-dimensional C*-algebras.
They have an invariant density matrix p. Carlen and Maas showed that the evolution on the set
of invertible density matrices that is given by such a semigroup is gradient flow for the relative
entropy with respect to p for some Riemannian metric. This result is a non-commutative analog of
certain diffusion equations that are gradient flow in the second order Wasserstein space. We provide
a self-contained and accessible account to these issues. Moreover, we give a complete introduction
to Tomita-Takesaki theory which has a close relation with quantum Markov semigroups satisfying
detailed balance. Finally, we present some examples of these semigroups that arise from quantum
theory.
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1 Introduction

A natural problem that arises in the economic sector is optimal transportation. To elaborate on
this and give a motivation, one can think for example of farms and bakeries. Suppose there are n
farms where grains are grown, and there are n bakeries which use the grains to make bread. The
grains that are harvested need to be transported to the bakeries and it needs to be done in such a
way that the cost is minimized. Let A and B denote the sets consisting of the farms and bakeries,
respectively. Then we may define a cost function ¢ : A x B — R, so that c(a,b) is the cost of
transporting one load of grains from farm a to factory b. For simplicity, suppose that each farm
can only supply one factory of grains and each factory requires precisely one shipment of grains to
operate. Then we may also define a transport map function 7" : A — B which is a bijection such
that each farm a € A supplies exactly one factory T'(a) € B. The goal now is to find the optimal
transport map 7', that is, the map 7" whose total cost ¢(T') := >, 4 c(a,T(a)) is minimized over all
possible transport maps from A to B. This (easy) example brings a whole theory called (optimal)
transportation theory and an exhaustive treatment can be found in [28].

An important topic within optimal transportation theory is about gradient flows. The gradient flow
(for steepest descent) associated to a function f: M — R (with M a Riemannian manifold) is the
flow induced by the differential equation

dx
T _gradx(t)f7

dt
whatever grad, ;) f may mean. Heuristically, one may think of it as a flow which makes f decrease
as fast as possible. An important classical result concerning gradient flows is that of Otto [18]. Otto
showed that a large number of classical evolution equations could be viewed as gradient flow in a so
called 2- Wasserstein metric for certain functionals. Carlen and Maas studied a non-commutative
analogy of this problem and considered M equal to invertible density matrices in a proper context
involving quantum Markov semigroups [5]. In particular, Carlen and Maas were able to show
non-commutative results in line with [18]. This thesis will mainly revolve around the results from

[5].

The notion of a quantum Markov semigroup (QMS) can be viewed as a non-commutative analog of
classical Markov semigroups motivated by the study of (open) quantum systems. A classical Markov
semigroup (F%)¢>o defined on Cp(R) for example satisfies P;(1) = 1 (conservation of probability)
and P;(f) > 0 (positivity) for all ¢ > 0 and f > 0 by definition. In the non-commutative setting a
quantum Markov semigroup needs to preserve the identity and has a property called “complete
positivity” which shows the duality between a classical Markov semigroup and a quantum Markov
semigroup.

The quantum Markov semigroups that we will discuss are uniformly continuous (or norm
continuous). This is a condition which is not fulfilled in many infinite-dimensional applications.
However, it is still important to study the form of a QMS satisfying the strong condition of uniform
continuity. For example, in the finite dimensional setting all quantum Markov semigroups are
uniformly continuous. Plenty can be said about generators of quantum Markov semigroups in this
finite-dimensional setting but also in a more general setting while still assuming uniform continuity.
Namely, the characterization of generators of quantum Markov semigroups on M, (C) of all n x n
complex matrices was given by Gorini, Kossakowski and Sudershan [10]. And around the same time
Lindblad [14] characterized the generators on hyperfinite von Neumann algebras but still assuming
uniform continuity. (An example of a hyperfinite von Neumann algebra is B(H) where H is an
arbitrary separable Hilbert space.)



The main mathematical object in [5] that we will consider are quantum Markov semigroups
satisfying a (quantum) detailed balance condition in a finite-dimensional setting. Detailed balance
has a classical definition in terms of reversible Markov chains and we wish to extend this definition
to the quantum setting. To be more precise, a classical Markov chain with transition matrix P
satisfies the classical detailed balance equations if and only if P is self-adjoint with respect to the
inner product (v, w) = Y i | mv;w; (v,w € C"), where m = (m;)!"_; is the invariant distribution for
the Markov chain. There are a number of different ways to generalize this to the quantum setting
and it will turn out that the definition we use for quantum detailed balance can be viewed as an
extension of classical detailed balance.

A remarkable observation about quantum Markov semigroups with detailed balance is that they
have an intimate relation with Tomita- Takesaki theory which is often not mentioned in the literature.
Namely, such semigroups commute with the modular operator and modular automorphism group.
As the name already suggests, Tomita introduced this theory in 1967 and Takesaki [24] published a
slim volume elaborating Tomita’s work as Tomita’s work was hard to follow and mostly unpublished.
Tomita-Takesaki theory (or modular theory) has a lot of applications in mathematical physics and is
essential in the structure theory of von Neumann algebras (of type III) ([3, 4, 25]). A von Neumann
algebra M is by definition a x-subalgebra of B(H) with H a Hilbert space such that M = M",
where A’ is the set of elements in B(H) that commute with A for some subset A C B(H). The
structure of (type IIT) von Neumann algebras was quite intractable for some time, but with the
introduction of Tomita-Takesaki theory it has led to a good structure theory.

Our aim of this thesis is to give a self-contained, in-depth and accessible exposure of [5] with
some detours that involve Tomita-Takesaki theory and general (norm-continuous) quantum Markov
semigroups. The first chapter is a short introduction in optimal transport and the emphasis is put
on Wasserstein spaces. We will state a result (Theorem 2.3.2) involving these spaces and much later
on a non-commutative form of this theorem will be given.

The aim of the third chapter is to present Tomita-Takesaki theory in an accessible way with
detailed proofs. Nevertheless, the proof of the main theorem of Tomita-Takesaki will be referred to
[26]. We will consider o-finite von Neumann algebras but still in an infinite-dimensional setting. It
starts with certain involution operators and by means of these operators we are able to construct a
one parameter group of automorphisms defined on the von Neumann algebra. Moreover, it also
gives a connection between the commutant and algebra itself. We are then able to show explicit
computations with matrices that are important for later in the thesis. However, we will not discuss
any structure theory of von Neumann algebras nor explicit applications in mathematical physics.

In Chapter 4 we start with complete positivity and study uniformly continuous quantum
Markov semigroups on M, (C) but also on hyperfinite von Neumann algebras and in particular
on B(H) where separability is the only condition on the Hilbert space H. The emphasis is put
on semigroups in a finite-dimensional setting with detailed balance. The main results consist
of complete characterizations of generators of such quantum Markov semigroups. Subsequently,
Chapter 5 compares classical detailed balance with quantum detailed balance and quantum detailed
balance can be in fact seen as an extension of classical detailed balance.

The main results of this thesis are in Chapter 6.2 (Theorem 6.2.7 and 6.2.8). In particular,
Theorem 6.2.8 shows that associated to any ergodic QMS satisfying detailed balance in a finite-
dimensional setting, there is a Riemannian metric such that the flow on the set of invertible density
matrices is gradient flow for the relative entropy induced by the dual generator.

Lastly, we give examples of quantum Markov semigroups with detailed balance that arise in
quantum theory.



2 Optimal transport

Optimal transport theory came to light when mathematicians wanted to formalise the mathe-
matics behind transporting mass from one location to another location with minimal cost. (Think
about the farms and bakeries in the introduction.) In this section we give a short introduction on
optimal transport theory and especially bring attention on Wasserstein spaces and gradient flows
that will follow the one in [28].

We start with some conventions: When a measure space or measurable space is considered, we will
usually not explicitly mention the associated o-algebra. If (X, i) is a Polish (complete separable
metric) probability space, then p will always denote the Borel probability measure.

If o is a measure on a measurable space X and T : X — ) is a measurable function from
X to a measurable space ), then T,u stands for the push-forward measure of u by 7', that is,
(Tup)(A) := u(T~1(A)) for measurable sets A C ).

2.1 Couplings

Definition 2.1.1. Let (X, ) and (Y, v) be two probability spaces. A coupling of u and v is a
measure 7 on X X ) (with its tensor-product o-algebra) such that = admits p and v as marginals
on X and Y respectively, i.e. 7(AxY) = p(A) and 7(X x B) = v(B) for all measurable sets A C X,
B C Y. The set of all couplings of p and v is denoted by II(u,v). The coupling 7 is said to be
deterministic if there exists a measurable function 7' : X — Y such that 7 = (idx, T')«u, where
(idy,T) is the map x +— (x,T(z)) for x € X. The function T is called the transport map.

Let (X, 1) and (Y, v) be two probability spaces. If 7 is a deterministic coupling of x4 and v with
transport map T, then it follows immediately that T, = v. This is seen by a direct computation:

T.u(B) = (T (B)) = u(X N T~(B)) = p((idx, T) " (X x B))
= ((idx, T)up) (X x B) = 7(X x B) = v(B)

for all measurable sets B C ). So intuitively, one can say that 1" transports mass represented by
the measure p to the mass represented by the measure v.

Note that there exists always a coupling, namely the product measure. This is the trivial
coupling. However, unlike couplings, deterministic couplings do not always exist. (Take p equal to
Dirac measure and v any other measure.)

One important example of coupling is optimal coupling or optimal transport: Let (X, u) and (), v)
be two probability spaces, and define a measurable cost function ¢ : X x Y — [0, 00| that can be
interpreted as the work needed to move one unit of mass from location z € X to y € ). First
assume that there exists a deterministic coupling of i and v. Then to minimize the cost, one can
consider the following optimal transportation problem that is also know as Monge’s minimization
problem:

inf {/ c(z, T(x)) du(z) | T : X — Y is measurable and Ty = u} .
X

The goal is now to find the transport map 1" that realizes this infimum. A transport map that
attains this infimum is called an optimal transport map.

However, Monge’s formulation of the optimal transport problem can be ill-posed, because a
deterministic coupling does not always exist as we have already noted. Hence, we need to find a
relaxation of this minimization problem if we want to consider the problem in a more general form.



One way to do this is using coupling measures. Then one considers the so called Monge-Kantorovich
minimization problem:

inf / c(x,y) dr(x,y).
mell(pr) Jxxy (z.9) dn(z.y)

In this context, a coupling 7 of u and v is also called a transference plan (or transport plan, or
transportation plan). Those achieving the infimum are called optimal transference plans or optimal
couplings.

Evidently, the solution of the Monge-Kantorovich minimization problem depends on the cost function
c. If the probability spaces and the cost function are “nice” enough, then an optimal coupling exists
which is stated in the next theorem.

Theorem 2.1.2. Let (X, u) and (Y, i) be two Polish probability spaces. Let a : X — RU{—o0} and
b:Y — RU{—0c0} be two upper semi-continuous functions such that a € L*(X, ) and b € LY(Y,v).
Let c: X x Y — RU{oo} be a lower semi-continuous cost function such that c¢(z,y) > a(x) + b(y)
for allz € X andy € Y. Then there is a coupling 7' € I(u,v) of p and v such that

/ o(z,y) dn'(2,y) = inf / () dn(z,y).
X XY m€ll(p,v) J xxy

Proof. Theorem 4.1 in [28]. O

2.2 Wasserstein distances

Assume that we are in charge of distributing products between producers and consumers and
they are modeled by probability measures. We would like to summarize the cost of transporting
these goods and minimize it. For that purpose it natural to consider the optimal transport cost
between two probability measures, say u and v, that are defined on some probability spaces X and
Y respectively:

Cluv)= inf / () dn(z,y),
mell(p,v) Jxxy

where ¢(z,y) is the cost for transporting one unit of mass from x to y. This is just the Monge-
Kantorovich minimization problem, but now we do not care about the minimizer (so much). We are
more interested in the value of C(u,v).

If we now suppose that X = Y, and X is a metric space with metric d, then an intuitive choice
for the cost function c is the distance measured by d. This results in Wasserstein distances:

Definition 2.2.1. Let (X, d) be a Polish metric space and let p € [1,00). For any two Borel
probability measures u, v on X, the Wasserstein distance of order p between p and v is defined by
the formula

Wyt = (it [ dtegy anan)’

mell(p,v)

Example 2.2.2. Fix a,b € X, then W),(d4,05) = d(a,b) where §, and J, are Dirac measures. To
see this, we note every coupling m € II(d,, ) is a product measure of the form m = d, x . Hence,

Wo (0. 00) = (/de(w)p d(da % 5b)(x,y)>; = </X/Xd(x,y)p dba () d&(y))i

~ ([ dtay d5b<y>)’l’ — d(a,b).
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Definition 2.2.3. Let p € [1,00) and take a Polish metric space (X,d). The space of Borel
probability measures on X is denoted by P(X). The Wasserstein space of order p is defined as

R = { e P) - [ dton o dua) <

where z¢ € X is arbitrary and note that P,(X) does not depend on the choice of xy.

It is not directly clear that W, defines a metric since it might take the value +oc. But when
restricted to P,(X') it becomes a metric as it will be checked now using the Gluing lemma.

Lemma 2.2.4 (Gluing). Let (Xj, 11i), i = 1,2, 3 be Polish probability spaces. If w19 € II(p1, p2) and
mo,3 € I(pa, u3) are couplings then there exists a Borel probability measure p on Xy x Xo x X3 such
that v has marginals w12 and w3 on X1 x Ao and Xy x X3, respectively. Moreover, the marginal of
w to X1 x X3 is a coupling between p1 and ps.

Proof. Lemma 5.3.2 and Remark 5.3.3 in [2] O

Proposition 2.2.5. Let (X,d) be a Polish metric space and let p € [1,00). Then the Wasserstein
space (Py(X), W) equipped with the Wasserstein distance is a metric space.

Proof. To show that W), is finite on P,(X), we let g € X and p,v € Py(X). Let m € II(, v) be a
coupling between p and v. Then, since

o) < (Ao a0) + dleo, ) <2 (dlo.ao) + Jalan,)) < 27 Ao o)+ doo. )

using the convexity of t — tP, we have

Wp(p,v)? < /

XxX

d(z,y)P dr(x,y) < 2P~! </X d(x,z0)? dr(x,y) +/

Ao, y)? dr(z, y>>
XXX

XX
=2 ([ oo dute) + [ aan, P ant)) < .

Thus, W), in finite on P,(X).

Symmetry of W), is clear. Now let 4 € P(X) and we show that Wp(u, ) = 0. Define
v := fopu with f : X — A given by f(z) = (x,z), i.e. A is the diagonal of X x X. Now define
a Borel measure m on X x X by w(M) = v(M N A) for all Borel sets M. Then for all Borel
sets A C X we have 1(A x X) = u(f~H(Ax X NA)) = u(A) as f(A) = {(a,a) x X :a € A} =
{la;z);rac A,z e X} NA=Ax XNA. And since we have A x Y NA =X x AN A, we also
have (X x A) = u(A). It follows that = € II(u, pr). Combined with the facts that d(A) = {0} and
m(A€) = 0, we obtain

Wo(p, p) < /

[ gy dnlan) - /A d(z, y)P dr(z,y) + / d(z,y)? dr(z.y) =040 =0,

and this obviously implies that Wj,(u, 1) = 0.
Conversely, suppose that W,(x,v) = 0. Let v € II(p, ) be an optimal coupling with respect to
dP between p and v. With the same definition for A, we see that

0< /C d(z,y)? dy(z,y) < /XXXd(w’y)p dy(z,y) = Wy, v) = 0.



Thus, v(A¢) = 0as d(x,y)P > 0 for all x # y. It then follows that u(A) = y(AxX) = v(AxXNA) =
(X x ANA) =~(X x A) = v(A) for all Borel sets A C X by the marginal properties of v and the
fact that the support of v lies in A. Therefore, ;= v.

Note that there exists an optimal coupling with respect to the continuous cost function ¢ = dP
for each pair u,v € P(X) by Theorem 2.1.2. To prove the triangle inequality, let p1, po, 13 € Pp(X)
with optimal couplings 71 2 € II(p1, p2) and mo 3 € II(u2, p3) with respect to the cost function dP.
Then, by Lemma 2.2.4, there exists a Borel probability measure u on X x X x X such that u
has marginals 71 2 and m 3 on X x X’ to the “left” and “right”, respectively. And, we denote the
marginal of u to X x X (first and third X) by 71 3 € II(x1, 13) which is a coupling between p; and
u3. It follows, by the marginal properties and Minkowski inequality in LP(X3, i), that

W) < ([ ey dmaen)) = ([ dwoy dutens))

1

</X><X><X 2,y) + d(y, 2))P du(z, y, Z)>p
</X><X><X z,y)? du(z,y, 2 ))’1’ + (/Xxchd(y’ 2)P dﬂ(l’,y7z));

=Wy umm) + Wy (p2, 13)- O

IN

IN

From now on, all Wasserstein spaces are endowed with their corresponding Wasserstein distance.
The Wasserstein space has many convergence and topological properties. For example, (P,(X), W),)
is a Polish space again when X is Polish (Theorem 6.18 in [28]). For other results we refer to
Chapter 6 in [28].

2.3 Gradient flows in Wasserstein space

Definition 2.3.1. Let (M, g) be a Riemannian manifold and let f : M — R be continuously
differentiable. The Riemannian gradient of f at p € M, denoted by grad, f or V, f, is the unique
tangent vector in T}, M satisfying the equation

% t:of(’Y(t)) = gp(grad,f,7(0))

for all smooth curves 7 : (—e¢,€) — M such that v(0) =

Let (M, g) be a Riemannian manifold and let f : M — R continuously differentiable. Fix
p € M. Then one might ask for which smooth curve v : (—¢,¢) — M with «(0) = p the derivative
%! o/ (7(1)) is as large or as small as possible. By the definition of the Riemannian gradient, we see
that we need to choose 7 such that 4(0) and grad, f are linearly dependent. So essentially, grad,, f
indicates the direction in which f increases and decreases most rapidly. The corresponding gradient
flow equation for strongest ascent associated to f is the flow induced by the differential equation

y(t) = gradw(t)fa 7(0) = p.

Similarly, the gradient flow equation for steepest descent associated to f is the flow induced by the
differential equation

V(t) = _grad'y(t)fv 7(0) =D-

8



The gradient flow for steepest descent is most important for us. Henceforth, when we write “gradient
flow” it will always mean the gradient flow for steepest descent. Heuristically, one may think of the
gradient flow as a flow which makes f decrease as fast a possible.

Every Riemannian manifold has a metric space structure that is induced by the geodesic distance.
Keeping this in mind, we boldly state the next theorem that identifies certain diffusion equations as
gradient flows in the Wasserstein space of order 2.

Theorem 2.3.2. Let M be a compact separable Riemannian manifold equipped with a reference
measure v. Let V € C*(M) and let L = A — V'V -V where A is the Laplace operator on M. Let
o € Po(M) and define a path ()0 in Po(M) by p(A) = fA pt dv where p; satisfies

Then (pt)e=o0 18 a trajectory of the gradient flow associated with the energy functional

/ d” lo < > dv (Z’u is the Radon-Nikodym derivative)

v
in the Wasserstein space Py(M).
Proof. Theorem 23.19 and Corollary 23.23 in [28]. O

Much later in this thesis, we will consider a non-commutative form of this theorem involving
quantum Markov semigroups with detailed balance and relative entropy.



3 Tomita-Takesaki Theory

In the theory of von Neumann algebras, Tomita-Takesaki theory is a method for constructing
a one parameter group of automorphisms on a (o-finite) von Neumann algebra from the polar
decomposition of a certain involution. It also gives a connection between the algebra itself and its
commutant.

Definition 3.0.1. Let 7 be a positive linear functional on a von Neumann algebra M. Then 7 is
called

a state, if ||| = 1;

e pure, if T is a state and is an extreme point of the set of states on M;

faithful, if T(a*a) = 0 implies that a = 0;
tracial, if T(ab) = 7(ba) for all a,b € M;

normal, if T(sup, ay) = sup, 7(ay) for all increasing nets (ay) in M with an upper bound.

3.1 Von Neumann algebras with faithful normal tracial state

Theorem 3.1.1. Let ¢ be a bounded linear functional on a von Neumann algebra M C B(H). The
following conditions are equivalent:

1. ¢ is normal;
2. ¢ is weakly continuous on the unit ball of M ;
3. ¢ is o-weakly continuous;

4. There exists a trace-class operator u € L*(H) such that ¢(a) = Tr(au) for all a € M.
Proof. Theorem 2.4.21 in [3] or Theorem 3.6.4 in [20]. O

Proposition 3.1.2. Let M be a von Neumann algebra with a faithful normal state ¢. Let (Hy, g, €p)
be the GNS representation of M associated to ¢. Then wg(M) C B(Hy) is a von Neumann algebra
and M is x-isomorphic to wy(M). Moreover, my(M) admits a vector which is separating and cyclic.

Proof. First, let (ay) be an increasing net in M+ which is bounded. Then (ay) is strongly convergent
to a :=sup, ay € MT by Vigier. Now, since ¢ is normal, we have for all b € M that

Lim g (ax)mo (0)€p, 7 (b)€s) = lim(my(b"axb)&s, £s)
= liin d(b*anb)
— 6(b"ab)
= (mg(a)(0)Es, Ty (0)Eg)-
So, using polarization and the facts that &, is cyclic for m4(M) and (mg(ay)) is bounded, we obtain
mg(ay) — my(a) weakly. But then also my(ay) — 74(a) o-weakly as the weak (operator) topology
coincides with the o-weak topology on bounded sets. Hence, limy w(mg(ay)) = w(mg(a)) for all

o-weakly continuous states w on B(Hy), or equivalently by Theorem 3.1.1, for all normal states w
on B(Hy). But this implies that w o 74 is normal for all normal states w on B(Hy). Or, equivalently

10



by Theorem 3.1.1 once again, womy is a o-weakly continuous state on M for all o-weakly continuous
states w on B(Hy). Now, every o-weakly continuous linear functional on B(Hy) is of the form Tr(-u)
for some u € L*(Hg). Moreover, every o-weakly continuous linear functional is a linear combination
of o-weakly continuous states. Therefore, 74 : M — B(Hy) is o-weakly continuous.

It clear that 74 is injective since ¢ is faithful. Thus, 74 is isometric. It follows that 74 (M<1) = my(M)<;.
But we know that M<; is o-weakly compact and 7 is o-weakly continuous. Therefore, m4(M)<; is
o-weakly compact and also weakly compact. And, in particular, 74(M)<; is weakly closed. But

then we also have that 74(M )< is strongly closed as my(M)<; is convex. Consequently, by the
SOT) —F——S0T ————S0T

Kaplansky density theorem, (7r¢(M) o= me(M)<1 = my(M)<1. So, if a € mg(M)

———S0T
then 25 € <7r¢(M) )

strongly closed and we see that 7g(M) is a von Neumann algebra such that M is x-isomorphic to it.

L= 7g(M)<1 which implies that a € 74(M). In other words, wg(M) is

We already know that £, € H, is cyclic for my(M). So suppose that my(a)és = 0 for some a € M.
Then ¢(a*a) = (my(a*a)ép, &) = ||mp(a)éyl|* = 0. Hence, a = 0 since ¢ is faithful. Therefore, &, is
also a separating vector for 74 (M). O

Let M be a von Neumann algebra with a faithful normal tracial state 7 defined on M. Denote
the pair (H,, ;) as the GNS representation of M associated to 7. To be more precise, H; is the
Hilbert space completion of M with respect to the inner product (a,b) := 7(b*a). This inner product
is well defined since 7 is faithful. Furthermore, the operator 7(a) € B(M) with a € M defined by
m(a)b = ab for b € M can be uniquely extended to a bounded operator 7 (a) on H; by density.
And the map

7 M — B(H;), aw m:(a)

is a faithful *-homomorphism. Note, by Proposition 3.1.2, that 7,.(M) is a von Neumann algebra
because 7 is a faithful normal state.

Denote & := 1 € M and the set 7(M)& := {mr(a)éy : a € M} = M lies dense in H, by construction
of H;. So & is cyclic for 7,(M). Moreover, & is also separating for m (M) since 7, (a)y = 0
implies a = 0 for all a € M. Now identify M with the von Neumann algebra (M) and we can do
this because 7, is injective. We may therefore also write 7(a) = (ao, &) for all a € M in view of
7(a) = (7w (a)&o, &) formally speaking. In particular,

<ab£07£0> = <ba£07€0>a for all a, be M
as 7 is tracial. The map
Jo: M& — M&, Jo(alo) = a*$p

is a well-defined map because & is separating for M. It also clear that Jy is conjugate linear. In
addition,

170(ago) 1> = {aa*&o, &o) = {a”ago, &o) = [latol|?

so that Jp is an isometry (and hence bounded). Let J be the unique extension of Jy to H; = M&.
Since Jg = idpze¢,, one also has J 2 = idy, by density and continuity.

Lemma 3.1.3. Suppose that M is a von Neumann algebra on a Hilbert space H. Then £ € H is
cyclic for M if and only if £ is separating for M’'.
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Proof. Assume that § € H is cyclic M and let a’ € M’ such that a’¢ = 0. Then a’al = aa’{ =0
for all a € M, i.e. ' M& = {0}. Therefore, o’ H = {0} since M§ = H (cyclicity of £ for M) and
continuity of a’. Thus a’ = 0.

Now suppose that £ is separating for M’. Let p be the projection onto M¢. Now note p € M’ if
and only if p(H) is invariant for M. It is clear that p(H) = M¢ is invariant for M. Thus, p € M'.
Using the fact that & € M¢, it follows that p¢é = € = idgé. Consequently, p = idy as € is separating
for M’ which implies that M¢ = H. O

Corollary 3.1.4. Suppose that M is a von Neumann algebra on a Hilbert space H. Then £ € H is
cyclic and separating for M if and only if € is cyclic and separating for M’.

Proof. This follows almost immediately from Lemma 3.1.3. Use that M” = M and that M’ is also
a von Neumann algebra. O

Proposition 3.1.5. Let J and M be as above, then JMJ C M’.

Proof. Let a,b,c € M. Then

JaJ(be&y) = J(ac*b*€p)
= bea™&y
= bJ(ac*o)
= bJaJckp.

Hence, JaJb and bJaJ coincide on M &y which is dense in H; by cyclicity of £&. Thus, JaJb = bJaJ
by continuity and therefore JaJ € M’ which gives JM.J C M’. O

Theorem 3.1.6. Let J and M be as above, then JMJ = M’'.
Proof. Let a,b € M and a’ € M’'. Then

(Ja&o, b&o) = (a"&o, b&o) = (b*&o, alo) = (Jbo, a&o) = (J a&o, b&p),

where the second equality comes from the fact that & is a tracial vector and the last equality is
the definition of the adjoint of an conjugate linear operator. Consequently, J = J* using density of
M¢g in H; twice. It follows that

(Jd'&, alo) = (J*a&o, a'&o) = (Ja&o, a'&o) = (a*&o, a'&o) = ((a’)*&o, alo)-

And here the first equality is the definition of J*, the second equality is J* = J and the last equality
is the tracial property. Therefore, Ja'§y = (a')*&p for all @’ € M’ using density of M¢&y in H, once
again.

Remember that £ is cyclic and separating for M. Thus, & is also cyclic and separating for M’ by
Corollary 3.1.4 . So there exists a well defined operator J' € B(H,) with J'(a'§y) = (a’)*&p for all
a’ € M'. But then J'M'J" C M" = M by applying Proposition 3.1.5 with J" and M’. Note that
J = J'" such that JM'J C M. Lastly, since J? = idy,, we obtain M’ = J(JM'J)J C JM.J and
together with Proposition 3.1.5 this results in JM.J = M’. O
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3.2 Von Neumann algebras with faithful normal state

Definition 3.2.1. A von Neumann algebra M is o-finite if each collection of mutually orthogonal
nonzero projections in M is countable.

Proposition 3.2.2. Let M C B(H) be a von Neumann algebra. Then M is o-finite if and only if
M has a faithful normal state.

Proof. Suppose that M is o-finite. An application of Zorn’s lemma shows that there exists a maximal
family of units vectors () in H such that the spaces M’¢) and M’¢), are orthogonal whenever
A # N. Let py be the projections onto M’¢y. Then py € M for all \ as py(H) is invariant for M.
Thus, p) is countable since we have assumed that M is o-finite. We may therefore consider the se-
quence (py, )nen of mutually orthogonal projections with p, (H) = M’&,, such that (py,)nen is maximal
and ||&,|| =1 for all n € N. Now let € € (UnGNMi/gn)L. Then (a’&,0'¢,) = (€, (a/)*V'E,) = 0 for all
a’,b/ € M'" and n € N. This implies that M’¢ and M’&,, are orthogonal for all n € N. It follows from
maximality that £ = 0. Hence, H = ;- pn(H). (H is the orthogonal direct sum of the spaces
pn(H) = M'&,.)

Define the state ¢(x) := Y 02 | 27" (2, &) for o € M. Tt is clear that ¢ is o-weakly continuous,
hence normal by Theorem 3.1.1. Now if ¢(z*x) = 0, then ||z&,||? = (z*x&,, &) = 0 for all n € N.
But then zM’¢, = M'z, = {0} which implies that z(p,(H)) = x(M’¢,) = {0} by continuity.
Consequently, w(UfLo:l pn(H )) = U2, z(pn(H)) = {0} and using continuity once again, we obtain

z(H) = x(Uzozlpn(H» = {0}. This means that z = 0 and hence ¢ is also faithful.

Conversely, assume that M has a faithful normal state ¢. Let (py) be a collection of mutually
orthogonal nonzero projections in M. Let (Hg, 74,&s) be the GNS representation of M associated to
¢. Then &, € Hy is cyclic and separating for my(M) by Proposition 3.1.2. Set p =", py € M with
convergence in the o-strong topology (Vigier) and hence also in the o-weak topology. Remember
that we have shown in the proof of Proposition 3.1.2 that 7, is o-weakly continuous. Therefore,

Z 17 (PA)Es]1* = Z(%(px)fqﬁa To(Px)E0)
\

AN
= (m(p)€ps o (P)Es)
= |Ime(p)€sl* < o

Therefore, only a countable number of (74(px)€s) is nonzero and thus the same is true for (py). O

One of the goals is to extend Theorem 3.1.6 to von Neumann algebras with a faithful normal
state or, equivalently by Proposition 3.2.2, to o-finite von Neumann algebras. Let M be a o-finite
von Neumann algebra. Using Proposition 3.1.2, we may assume that M acts on Hilbert space H
such that M admits a cyclic and separating vector £y € H (and thus also for M’). So we may define:

So: M& — M&y, a&o— a*&o;
FO : leg — leg, a’§0 —> (a/)*fg.

Lemma 3.2.3. Adopting the foregoing definitions. It follows that (So&,n) = (&, Fon) for all
€ € D(So) = ME and for all n € D(Fy) = M'&y.
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Proof. Let a € M and a’ € M’, then

(Soako, a’éo) = (a"&o, a'&o) = (€0, aa’éo) = (&0, a'alo) = ((a')"&o, a&o) = (ao, Foa'éo),
where the third equality comes from the fact that a and @’ commute since a € M and o’ € M'. [
“Easy” case: Assume that Sg is bounded on its domain.
(This happens if M = M,,(C) for example, which will be important later on.)

Let S be the unique (continuous) extension of Sy to H. Then S* coincides with Fy on M’y by
Lemma 3.2.3. In particular, Fj is bounded on its domain and therefore has a unique (continuous)
extension F' to H. Moreover, S* = F by the uniqueness of extension. Note that S and F' are
conjugate linear bounded operators. Define the modular operator

A:=58*S =F8S.

It is clear that A is positive. Moreover, A is invertible with A~! = §5* = SF because S? = I and
F? = 1. Write S in the left and right polar decomposition:

S =J|S|=|S"J, or
S =JA> = A3,
where J is a conjugate linear partial isometry. Note that J = SA~2 = A2S such that J?

SA“2AzS = . In particular, J is invertible (with J=! = .J) and hence ker(J) = {0}. Therefore, .J
is isometric on ker(J)* = H which implies that .J is a conjugate linear unitary operator.

Lemma 3.2.4. Let S and F be as mentioned above. Then SMS = M', SM'S = M, FMF = M’
and FM'F = M.

Proof. First note that it will be sufficient to prove the inclusion ”C” at each place since the other
inclusion follows (almost) directly using S? = F? = I.
Let a,b,c € M, then

SaSbcy = Sac*b*y = bea™ &y = bSac*y = bSaScéy.

Consequently, SaSb and bSaS coincide on M§y which is dense in H by cyclicity of &. Thus,
SaSb = bSaS by continuity and therefore SaS € M’ which gives SMS C M'. But then, FaF =
S*aS* = (Sa*S)* € (M')* = M, so also FMF C M'.

In the same way as in the last part of the proof of Theorem 3.1.6, it is possible to exchange M with
M' in order to obtain SM'S C M" = M and FM'F C M" = M. The details are omitted. O

Corollary 3.2.5. A"MA™™ =M for alln € Z.

Proof. 1t is clear for n = 0 and for n € {1, -1} :

AMA™' = FSMSF = FM'F = M,
AT'MA =SFMFS =SM'S = M

by Lemma 3.2.4 and using A = FS, A~! = SF. Now use induction or iterate to obtain the
result. O
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Lemma 3.2.6. Let h be a bounded analytic function on the open unit disk {z € C : |z| < 1} with
h #0. If a1, a0, as, ... are the zeros of h, then

oo

> (1= an]) < 0.

n=1

Proof. Theorem 15.23 in [21]. O

Lemma 3.2.7. Let f,g be analytic functions in the right open half-plane {z € C : R(z) > 0}.
Assume that
1. f(n) =g(n) for alln € N>q;

2. |£(2) — g(2)| < c1e2®3) for some constants ci,co > 0.

Then f =g.
Proof. Define F(z) := f(z)e™“?% and G(z) := g(2)e”?* and let H := F — G. Then

H(2)| = [F(2) = G(2)| = |f(2) = g(2)| - |e=**| = | f(2) = g(=)|e”*™) < ey

by assumption 2. Hence, H is a bounded analytic function on {z € C: R(z) > 0} with H(n) =0
for all n € N> by assumption 1.

Define @ : {z €C:lz] <1} = {2 € C: R(z) > 0} by ®(z) = 1==. Then @ is a bijection with
ol (w) = Let h := H o ®. It is clear that h is well-defined bounded analytic function on

w+1
{z€C:|z] <1} and h is zero on ® 1 (N>1) since h(®1(N>1)) = H(N>1) = {0}. However,

le_@ :Z<1_n+1>:Zn+1:
n n=1 n=1

Therefore, h = 0 by Lemma 3.2.6. (Note that A may contain more zeros but it will only have a
positive contribution to the sum). It follows that H = 0 which implies that f = g. O

Lemma 3.2.8. Let A = S*S = F'S be the modular operator. Then AMA~ C M for all a € C.

Proof. First fix a € {z € C : %(z) > 0}. Define the continuous functions f,g € C(a(A)) by
F(t) = 1% and §(t) = t°. Note that |A~1| = S5| = |§*[? = |S|* = |5*S| = | A] using the
C*-identity. Now, o(A) C (0, ||A[]] such that o(A™1) C [|JA||7L, [JA7L|] by the spectral mapping
theorem and therefore o(A) C [||A[ 71, ||Al|] using the spectral mapping theorem once again and
the fact that |A~!|| = ||A[. Consequently,

1l = sup [t%] = sup " =A™, and
teo(A) teo(A)

i o 1\ () N
3lee = sup |2 = sup (5)" =A™
teo(A) teo(A)

Now let a € M, o' € M" and ¢ € B(H)*. Define f,g : C — C by f(a) = ¢((A%A™*)a’) and
g(a) = ¢(d'(A%aA™")).

15



It follows that for all « € {z € C: R(z) > 0},
|f(a) = g(@)] < [f(@)] + |g(a)]
< 2l¢|[lalllla’[ A% AT

= 2| éllllallla’ [l F(A)13(A)]

= 2| ¢llllalllla [l fllsol1Flloc
= 2| gllllalllla’ | A
= 2g]|[lall]|a’ | sIADT,

where the isometry property of continuous functional calculus and the values for || f]|oo and ||§|loo
have been used. Moreover, A"aA™" € M for all n € N>; by Corollary 3.2.5 which implies that
f(n) = ¢((A"aA™™)d') = ¢p(a/(A"aA™™)) = g(n) as @’ € M'. But then f = g when restricted
to {z € C: R(z) > 0} by Lemma 3.2.7. This implies that f = g on C by uniqueness of analytic
continuation. Now since ¢ € B(H)* was arbitrary,

(A%A™)d = d/ (A%A™), forallaeC
by Hahn-Banach theorem. But this implies that AMA~* C M" = M. O

Theorem 3.2.9. The following two statements hold:
1. A*MA~™ =M for all a € C;
2. JMJ =M.

Proof. Statement 1 follows almost directly from Lemma 3.2.8:
M =AYAT"MAY)A™* CA*MA ™™ C M, forall aeC.
But then, using this, Lemma 3.2.4 and that J = SA™2 = A%S, we obtain

JMJ =SA IMAZS = SMS = M'.

General case: What if Sg is unbounded?
First, for the sake of completeness, we give the definition of the adjoint a densely defined conjugate
linear operator.

Definition 3.2.10. Let H and K be Hilbert spaces and let T : H O D(T) — K be a densely
defined conjugate linear operator. Then the domain of T is

D(T*) :={n € K | 3¢ € H such that V¢ € D(T) : (T¢,n) = (£,¢)},

and we set T%n := ( for n € D(T™*). (Note that that there is at most one such ¢ for a given 7 since
D(T) is dense in H.)

The following proposition will be frequently used.

Proposition 3.2.11. Let H and K be Hilbert spaces. If T: H O D(T) — K is a densely defined
(conjugate) linear operator, then:
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1. T* is a closed operator;
2. T* is densely defined if and only if T is closable;

3. if T is closable, then its closure is T**.
Proof. Proposition X.1.6 in [7]. O

Let M be a von Neumann algebra with a faithful normal state, or what is the same, a o-finite
von Neumann algebra. Once again, using Proposition 3.1.2, we may assume that M acts on Hilbert
space H such that M admits a cyclic and separating vector £y € H (and thus also for M’). Define
again:

So: M& — M&, a&o— a*&p;
Fo: M'§y — M'&y, a'& — (a)*&o,

but now we do not assume that Sy is bounded on its domain.

Remark 3.2.12. Remember that (So&,n) = (&, Fon) for all £ € D(Sy) = M¢ and for all n €
D(Fy) = M'¢y from Lemma 3.2.3. But this implies that Fy C S§ (S5 is an extension of Fy) and
So C F§ (Fy is an extension of Sp). In particular, S§ and Fj are densely defined which implies
that Sy and Fy are closable by Proposition 3.2.11. Let S := Sy be the closure of Sy, that is,
G(S) = G(Sp) where G(T) is the graph of a linear operator 7. Similarly, let F' := Fy be the closure
of Fy. Then Fy C S5 = S* and Sy C Fj = F* so that FF C S* and S C F* where we used the fact

that 7" = (T')* whenever T is a densely defined closable operator and the fact that S* and F™* are
closed operators (by Proposition 3.2.11).

Definition 3.2.13. A closed densely defined operator 7' is said to be affiliated with a von Neumann
algebra M if U'T(U’)* =T for each unitary U’ € M'.

The polar decomposition of unbounded operators is required from here on. We refer to ([12],
Theorem 6.1.11) for more background and other properties.

Lemma 3.2.14. Assume that T is affiliated with a von Neumann algebra M C B(H). If T = U|T|
is the (unbounded) polar decomposition of T, then U and the spectral projections of |T'| lie in M.

Proof. Let U’ € M’ be unitary. Then U := U'U(U’)* is a partial isometry and m =UT(U)* is
positive such that

OIT| = U'U(W'y U T|(U')* = UUIT|(U') = U'T(W') =T,

where the third equality is the polar decomposition of T" and the last equality is the fact that T is
affiliated with M. It follows, therefore, from the uniqueness of the polar decomposition that U=U
and |T| = |T|. Or equivalently, U'U(U’)* = U and U'|T|(U")* = |T|. Note M’ is a C*-algebra. So
in particular, the unitaries linearly span M’. Now since U commutes with U’, U commutes with all
elements in M’ as U’ € M’ was arbitrary. Hence, U € M" = M.

Now let E be the resolution of the identity for |T|. Then E(-) := U'E(-)(U’)* defines a spectral
measure on the Borel sets of o(|T|): First note that for all Borel sets A C o(|T|), E(A) is a
projection because E(A) is projection. Clearly, E()) = 0 and E(c(|T])) = 1. AndLE(Al NAy) =
UEANA)U ) =UE(A)E(A2)(UN)* =U'E(A)(U)*U'E(A2)(U")* = E(A1)E(Az2) for Borel
sets A1, Ay C o(|T]). Moreover, if (A4;)2, C o(|T]) are pairwise disjoint Borel sets, then
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E(UZ, A) = UBUZ, A4)U)* = Y2 U'E(A)(U')* = Y.2°, E(A;) where the convergence
is in the strong operator topology (SOT).

Let &,m € H and A C o(|T|) be a Borel set, then

B¢ wryn(A) = (EA)U)E, (U)n) = (U'BA)(U"),n) = Eey(A)

so that Eqry«¢ wrym = Ef,n' But then, using this, it follows that

({U'(J zdE)U')*&,m) = ((J 2dE)(U')*E, (U") ) = /U(T) 2 dErye, () = /a(lTl) 2 dBg(2)

which implies that U'( [ zdE)(U')* = [ zdE. Consequently, by the spectral decomposition for |T|
and the fact that U’'|T|(U")* = |T| , we obtain

IT| = U'|T|(U")* = U’(/z dE)(U’)* - /z dE.

This implies that E = E by the uniqueness of the resolution of the identity for |T'|. Hence,
E(A) =UE(A)(U’)* for all Borel sets A C o(|T]). Using the same argument to deduce that U lies
in M, we also see that the spectral projections of |T'| lie in M" = M. O

Theorem 3.2.15. Sy and Fy are closable with closures, say, S and F respectively such that S* = F
and F* = 5.

Proof. Due to Remark 3.2.12, it is sufficient to show that S* C F and F* C S. But to prove
this theorem it will actually be enough to show that F* C S because then F* = S which implies
F = F* = 8%

So let £ € D(F*) and 1) := F*¢. Then (Fo,€) = (o,n) for all ¢ € D(F) by definition. Consequently,
using the definition of F, ((a')*&o,&) = (a’&y, n) for all ' € M’. Define the densely defined operators
a,b: M'¢§y — H by a(2'&y) = 2'¢ and b(y'&y) = y'n. In particular, a§y = £ and by = n. It follows
that for all 2,1y’ € M’,

(a(2'80), /&) = (2'€,y'€0) = (& (&)Y &) = (((2)"y) S0, m) = ("0, y'n) = (€0, b(y'%0))

where the third equality is that ((a')*&g, &) = (a’&p, n) for all o’ € M’. This implies that b C a*
and a C b*. In particular, a* and b* are densely defined which implies that a and b are closable by
Proposition 3.2.11. Let ¢ := @ be the closure of a, then c£y = £. Additionally, ¢* = a* O b such that
c*&o = b&o = 1.

Now let v/ € M’ be an arbitrary unitary operator. Note that «/(D(a)) C D(a) such that
D(a) C D(Wa(u’)*). But also, if { € D(v'a(u')*), then (u')*¢ € D(a) and it follows that ¢ =
' ((v)*¢) € D(a). Hence, D(a) = D(u'a(u')*). Moreover, for all 2’ € M’,

va(u') 2’ = ' (W) '€ = 2'€ = a(2'&y)

and this, together with the equality of domains, implies that u'a(u’)* = a. Hence, a is affiliated
with M. But then also, v'a(u’)* =@, so ¢ is also affiliated with M.

Let ¢ = ulc| be the (unbounded) polar decomposition for ¢. Then w and the spectral projections of |c|
lie in M by Lemma 3.2.14, i.e. u, 119, (|¢|) € M. It follows that f(|c|) € M for every bounded Borel
function f on [0, 00) because bounded Borel functions can be uniformly approximated by simple
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functions, the fact that || f(|¢|)|| < ||fllco and M is norm closed. Also note that u is isometric on the
closure of the range of |c|. Define the bounded Borel functions f, : [0,00) — R by fy(t) = t1jg ()
for n € N and let ¢, := uf,(|c|) € M. Then

1€ = endoll = [I(c — cn)&oll
= [[(ule] = ufn(le])éoll
= |[(e] = fu(lel)éoll

|
= [I(1 = Loz (lc))leléoll = 0, as n — oo.

since 1jg )(|c|]) — 1 as n — oo in the strong operator topology by Theorem 4.1.2. in [16]. Similarly,

~~ I~

In = ol = ll(c” = cp)éoll

= [[(lelu” = fa(lcl)u™)Sol
= [I(lel = fa(lel))u*Sol
(

= It = Tpom(Ie)leluoll = 0, asn — oo

Thus, (§,71) € G(So) = G(5) as G(Sp) = {(ao,a*&p) : @ € M} and with that we have shown that
F*C8S. O

Theorem 3.2.16 (Tomita-Takesaki). Let A := S*S = F'S be the modular operator with S := Sy
and F = Fy. Then A is positive, self adjoint and injective, and A~' = SS* = SF. Let
S =JA2 =A"2] be the left and right polar decomposition of S. Then:

1. J2=1;

2. J is a conjugate linear isometry (“unitary”);
9. JMJ = M’;

4. AYMA~=®% = M for all t € R.

Proof. Theorem VI.1.19 in [26] O

The operator J in Theorem 3.2.16 is often called the modular conjugation. Also note, as a
consequence of this theorem, that the map

o M —> M, a— AaA™"

defines a x-automorphism on M for each ¢ € R. And it is clear that o445 = 0405 for all ¢, s € R by the
properties of the functional calculus. Therefore, (0¢):cr is a one parameter group of automorphisms
on M. In addition, (o¢)icr is pointwise strongly continuous which will be shown in the next
proposition.

Definition 3.2.17. Let M be a o-finite von Neumann algebra. Let ¢ be a faithful normal state
on M and identify M with the von Neumann algebra 74(M) C B(Hy) where (Hy,mg) is the GNS
representation of M associated to ¢. Let A be the corresponding modular operator. The one
parameter group of #-automorphisms (07);cg on M defined by of (a) = A*aA~% is called the
modular automorphism group associated with ¢.

If the dependence on ¢ is clear, we may write oy = Jf .
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Proposition 3.2.18. The modular automorphism group (o;)icr on a (o-finite) von Neumann
algebra M is pointwise strongly continuous, i.e. t — oy(a) is strongly continuous for a fized a € M.

Proof. Fix a € M. Let £ € H and let E be the resolution of the identity for A. Note that

2% — 2%|? < 4 for all z,s,t € R. Moreover, fU(A) 4 dE¢¢(z) = 4E¢¢(0(A)) = 4€]|? < o0. So, by
the Dominated Convergence Theorem,

: is _ A2 — i is _ it|2 _
fim (A%~ AT = Jim [ 1 B =0

And, similarly, lim;_ ||[(A™% — A~#)¢||2 = 0. Hence, the maps

R — (B(H), SOT), R — (B(H), SOT),
t— A ts AT
are continuous. But then, using the fact that A% is unitary for all ¢t € R and therefore ||A%|| = 1,

we obtain

. B 1 is  A—is _ Ait, A —it

lim [|(o5(a) = ar(a))¢]| = lim [(A®aA™" — A%aATT)E]|
<1 s At —1is : it —is _ A —it
< lim [[(A% — A")aA €] + lim |ATa(A™ — A7)e]|
<1 s At —is : —is _ A —it
< lim [[(A% — A")aA =] + [la] lim | (A7 — A~ ")¢]
=0.

3.3 Tomita-Takesaki for M, (C)

Let ¢ be a faithful normal state on M, (C). Then there exists a unique invertible density matriz
h € M, (C) (a density matrix is a positive operator with trace equal to 1) such that ¢(x) = Tr(zh)
for all z € M, (C). Without loss of generality we may assume that h is a diagonal matrix with
positive diagonal entries such that Tr(h) = 1 by changing to an appropriate basis. Let (Hg, my) be
the GNS representation of M, (C) associated with ¢. In particular, Hy = M,(C) equipped with
the inner product (x,y) = ¢(y*z) for x,y € M,(C). Note that this inner product is well-defined
as ¢ is faithful and that completion is not needed since M, (C) is finite-dimensional. Moreover,
Ty Mp(C) — B(Hy) is defined by my(z)y = zy. It is clear that 1y, € Hy is the cyclic and
separating vector for mwy(M).

It is important to note that the theory of Tomita-Takesaki does not work on M, (C) = B(C") for
n > 2. Suppose on the contrary that it does work on B(C™), then we would obtain

n? = dim(JB(C").J) = dim(B(C")) = dim(Cidcn) = 1

by Theorem 3.2.16 which is of course a contradiction. It is necessary to proceed on the image of the
GNS representation 74(M,(C)) € B(Hy) (which we have always implicitly done in the preceding
sections!).

Theorem 3.3.1. Let ¢(-) = Tr(-h) be a faithful normal state on My, (C) with h € M,(C) an
invertible density matriv. Let (Hy, 7y, 1n,) be the GNS representation of M, (C) associated with
¢. Then the modular operator, the modular conjugation and the modular automorphism group are
respectively given by:
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1. A:Hy — Hy, Az)=hzh™!;
2. J:Hy— Hy, J(x)=hza*h"2;
3. 00 1y(Mpn(C)) = 74(Mn(C)), of(my(x)) = mp(hitah™) for x € My(C).
Proof. First of all, we can assume that h = diag(A1, ..., \n) with \; > 0 for i = 1,...,n by changing

to an appropriate basis. Note that my(M,(C))1y, = Hy such that S : Hy — Hy is defined by
S(x) = z*. Consequently, for all z,y € Hy,

(5*5(x),y) = (S(y),S(x)) = (¥, z") = d(xy")
= Tr(zy*h) = Tr(y*hz) = Tr(y*hah1h)
= ¢(y*hah™") = (hah™',y).
Hence, A(z) = $*S(z) = hah™! for all z € H,.
Now let (Ek)i<ki<n be the matrix units of Hy. Then for all k,1 € {1,...,n} we obtain
A(Egy) = hEgh™ = N\ M By,

which implies that E}; is an eigenvector of A with eigenvalue )\k)\l_l. Therefore, f(A)Ey; = f ()\kAfl)Ek,l
for all f € C(c(A)) by the continuous functional calculus. In particular, using the fact that h is a
diagonal matrix,

A"Epy = (MN D By = NI "By = h" By h™"  and similarly,
A_itEkJ _ h_itEk,lhita
A Ey, = h2Egh” s,
Then, by linearity, A% (z) = hitzh~=it, A=it(z) = h=itzhi* and A2z = hizh 2 for all z € Hy. Tt
follows that the modular conjugation J = A3 S is given by
J(x) = A28z = A2g* = h2g*h 2
for all z € Hy. In addition, for all y € Hy,
of (ms())y = Al () (Ay) = Aty () (h*yh')
— Ait(ihfityhit) — hitthityhithfit _ hitthity
= g (hzh ")y,
So indeed, af(w¢($)) = mg(hxh™") for all z € M, (C). O
Remark 3.3.2. Note that Sy = S is bounded on Hy as Hy is finite dimensional. So it possible to
invoke Theorem 3.2.9 to give a stronger statement than the one in Theorem 3.2.16.(4). Namely,

A%my (M (C))A™ = 74(Mp(C)) for all o € C. However, m4(a) — A%my(a)A™ is not necessarily a
s-automorphism on 74(My(C)) anymore. It is a x-automorphism if and only if () = 0.

Remark 3.3.3. The modular automorphism group Uf is defined on 74(M,(C)). It is actually
possible to define a ‘new’ modular automorphism group ozf on M,(C) via af’ : M, (C) — M, (C),
af () == W;I(af (mg(x)). (This also works for the general theory of Tomita-Takesaki on o-finite von

Neumann algebras.) But then, af(x) = W(Z%T@(h“mh‘“)) = hitxh=% for all z € M,,(C) by Theorem
3.3.1. Hence, without loss of generality, we may consider o’ on M, (C) defined by o7 (z) = hitzh~.
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3.4 KMS state and Connes’ Cocycle
We now continue with general von Neumann algebras again.

Definition 3.4.1. Let t — o; be a pointwise strongly continuous one parameter group of auto-
morphisms on a von Neumann algebra M. Let ¢ be a normal state on M. Then ¢ satisfies the
KMS"-condition with respect to oy (or is called o;-KMS) if ¢ 0 0y = ¢, and for all x,y € M there
exists a bounded continuous function F': {z € C: 0 <Im(z) <1} — C, such that

1. Fis analyticon {z € C:0 <Im(z) < 1};
2. F(t) = ¢(oe(z)y) for all t € R;
3. F(t+1) = ¢(yor(z)) for all t € R.
Theorem 3.4.2. Let M be a von Neumann algebra with a faithful normal state ¢. Then:
1. ¢ is KMS with respect to the modular automorphism group Uf) ;
2. If ¢ is KMS with respect to a pointwise strongly continuous one parameter group of

x-aqutomorphisms oy, then oy = af.

Proof. We first prove 1. Let &y be the separating and cyclic vector for M from the GNS representation
associated to ¢ where we identify M with its GNS image. First, note that A&y = FS& = & by
definition of S and F. In other words, & is an eigenvector of A with eigenvalue 1. So &y is an
eigenvector of A~% with eigenvalue 1-% = 1 because if E is the resolution of the identity for A, then

1A™" & — &lf* = /(A) |27 =17 dEg, ¢ (2) = /(A)\{l} |27 =1 dEg, ¢, (2)

< 4B, ¢, (0(A)\ {1}) = 4(E(0(A) \ {1}, &)

= H{E(e(A)\ {1} E({1})é0, So) = 4(E(0)&o, o)
=0,

where we used the fact that E({1}) is the projection onto ker(A — I) and §, € ker(A — I).
Consequently, for all z € M,

$(of (x)) = (07 (x)é0, &) = (A" aAT"E, &) = (@A™, AT"¢o) = (w0, 2E0) = ¢(2).

Therefore, ¢ o o? = ¢ for all ¢ € R.
Now let x,y € M. Then, using the fact that A=%¢; = &, once again,

o(af (x)y) = (oF (2)y&o, L) = (y&o, of (x7)€0) = (Yo, ATx* ATHE) = (y€o, Atz*&o) = (A7 Y&y, 27&p),

and, also using the polar decomposition S = J A%, we see that

d(yof (x)) = (yof (x)&, &) = (o] (x)é0, y*&0) = (S0 (z*)€0, Sy&o)
= (JATAZ* AT JATyE) = (JAZ A"z ¢, JAZyE)
— (Azyg, ATTargg) = (A3 7y, ATatE).

'Kubo-Martin-Schwinger
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Let &€ := yéo and n := x*&y for convenience. Then

— 1y 1
O(of (2)y) = (A7"¢.m) and g(yo}(x)) = (A2, Aln).
Define the Borel functions f, : [0,00) — C by fu(t) = t1jg (t) for n € N. Let p, := 1[ ](A) be

1n
the spectral projections for A corresponding to the interval [%, n] Now note that f,(A) is bounded
since f,, is bounded. In other words, A restricted to p,(H) is bounded and the same is true for A~
Hence, we can define entire functions F}, : C — C by F,,(z) := (A™%p,&,n) for n € N. It follows
that F,(t) = (A %p,&,n) and F,(t +1) = (A17¥p, & n) = (A%_itpnﬁ, A%m for ¢t € R. Hence, since
|A%|| = 1 for t € R, we obtain for all t € R:

|En(t) — o (o] (2)y)] = {A™ (pp — 1)E,m)| < [|(pn — 1)E]| Il and
|Fu(t+1) — d(yo? ()] = (A7 (p, — 1)€, AZn)| < [(AZ(p, — 1)E, AZ)]
= ((pn — )AZE, AZn)| < [[(pn — DAZE]| A7)

This implies that lim,,_, F,,(t) = qﬁ(af(:c)y) and lim,, o0 F(t+1) = d)(yaf(:c)) uniformly for ¢ € R

since p, — 1 strongly. So F,, converges uniformly on 95 where S :={z € C:0 <Im(z) < 1}. By

a maximal modulus argument (Phragmén-Lindel6f theorem) and completeness, it follows that F),

converges uniformly to a continuous bounded function F' on S. Moreover, F' is analytic in int(.S)

because F), is analytic in int(.S) for each n € N and the convergence is uniform. Furthermore,
F(t) = lim Fy(t) = 6(0f (x)y) and F(t+i) = lim F,(t +i) = o(yof (2)).

n—o0

Therefore, ¢ is U?—KMS.
The proof of statement 2 can be found in [26], Theorem VIII.1.2. O

If ¢ is a positive faithful normal functional, then S, F'; J, A and Jf’ can be defined in the same
way.

Lemma 3.4.3. Let M be a von Neumann algebra with a positive faithful normal functional ¢. Let
a€ M. If p(ax) = ¢p(za) for all z € M, then 0¥ (a) = a for all t € R,

Proof. Let & be the separating and cyclic vector for M from the GNS representation associated to
¢ where we identify M with its GNS image. Suppose that ¢(ax) = ¢(xa) for all € M. Then for
allz € M,

(Soxo, alo) = (x*&o, alo) = (&0, vabo) = ¢(wa) = ¢(ax)
= (ax&o, o) = (2o, a*&o) = (&0, Soalo).

Using this and the fact that S5 = S* = F, it follows that a§y € D(S;) = D(F) and Fay = S*ay =
Sga&y = Spa&y = Sa&y. But F = F~1 so Safy = Fa&y € D(F) and Aa&y = FSa&y = F2a&y = a&p.
In other words, ay is an eigenvector of A with eigenvalue 1. So afy is an eigenvector of A% with
eigenvalue 1% = 1 by the same argument that was used in the proof of Theorem 3.4.2. The details
are omitted for this case.

Moreover, we have already shown that A~%¢y = & in the proof of Theorem 3.4.2. It follows that
of ()6 = AtaA gy = Aagy = abo,

and since & is separating for M, we conclude that Uf) (a) =a for all t € R. O
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Let Ma(M) denote the set of 2 x 2 matrices with entries in a von Neumann algebra M. Then
M>(M) is a von Neumann algebra again. Let ¢ and ¢2 be two positive faithful normal functionals
on M. Define ¢ : Ma(M) — C by

o (:c11 a:12> = ¢1(x11) + P2(222).

€21 X22

Then ¢ is a positive faithful normal functional on My(M) and Tomita-Takesaki theory also works

for My(M) with ¢. Let e := <(1) 8), and let x € My(M). Then
olex) = (9361 96(;2) = ¢1(r11) and ¢(xe) = (i; 8) = ¢1(r11)

so that Uf (e) = e for all ¢t € R by Lemma 3.4.3. Using this, we can consider

T 0 T 0 T 0
ot (55 o) =t (e ("5 o) e) ottt (731 3) ot

and

By similar computations and linearity, we get that af <x11 :C12> = <at(x11) b t(xm)) for some
To1 T2 Yt(z21)  Ot(w22)

o, Bes e, 0 € B(M) (as of (x) € My(M) for all & € My(M)).

Lemma 3.4.4. Following the above-mentioned computations, we have that

$1
é 11 0 o (xll) 0
= , forall teR and x11,T90 € M
ot <O xzz) < 0 Ufz(xgg) J e

Proof. By symmetry, we can assume that 290 = 0. Since af <:g 8) = (at(()x) 8) , it can be (easily)

seen that oy is a pointwise strongly continuous one parameter group of x-automorphisms on M as

af’ is one on My(M). Moreover, using Theorem 3.4.2, it will be sufficient to prove that ¢; is KMS

with respect to a;. We check this. Let x € M. Note ¢ is af’ -KMS by Theorem 3.4.2, in particular

¢ = pool. It follows that ¢1(z) = ¢ z 0) _ poo? z 0) _ o) a(x) 0y _ o1(au(x)), ie.
0 0 0 0 0 0

$1 =10,

Now let z,y € M. Using the fact that ¢ is O'f) -KMS once again, there exists a bounded continuous
function F : {z € C: 0 <Im(z) < 1} — C which is analytic in {z € C: 0 < Im(z) < 1} such that

For=o (ot (2 O)) (2 0))ant ri=o (2 0)of (2 2)) bt Bu non

writing out the matrix multiplications, we obtain F'(t) = ¢(ay(x)y) and F(t + i) = ¢(yay(x)) for all
t € R. Hence, ¢ is ay-KMS which was sufficient to prove the lemma. O
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w 0) "t\1 0

Lemma 3.4.5. Define fort € R the bounded operator uy € M by (O 0) =o? (O O> (which is
possible by the computations preceding Lemma 3.4.4). Then u; is unitary for each t € R.

Proof. Using the fact that O’f) is a *-homomorphism and Jf (e) =e,
wfug 0\ (0 w0 0\ (0 0\ /0 0
0 0 o 0 0 Ut 0 o Ut 0 Ut 0
(5[0 0\\ 5/0 0\ _ 5[0 1\ 4(0 O
_<"t<1 0>>Uf<10_“t00"t 10
(0 1[0 O\\ 4, . (10
— % ((0 0) (1 0))=@=e=1{g o)

Now by a similar computation, we get that (0 0 *> = Jf(l —e)=1—-e= <0 0). O
0 wupu; 0 1

Proposition 3.4.6. Let u; be defined as in the previous lemma. Then the following two statements
hold:

1. gy = uso P (uy) for all s,t € R;

2. a,?Q(x) = utaflui‘(:):) forallt € R and all x € M.

Proof. Using the definition of u;, Lemma 3.4.4 and the fact that O'? is a one parameter group of
k-automorphisms, we see that

0 0\ 4 (0 0\ 4 4(0 0y ,(0 0
<us+t 0)‘”8“ (1 0)—%% <1 0)_08 uy 0
0 0\ (u O 0 0 u; 0
_ 0 t _ gt o (Ut
= (0 (5 0) =3 0)# (5 )
(0 0\ (ol (w) O 0 0
T \us 0 0 0 usafl(ut) 0/’

which shows statement 1. Now we show statement 2:

(0 o) = (0 ) =7 (1 0) 83

+ o

O

Definition 3.4.7. Let M be a von Neumann algebra with two positive faithful normal functionals
¢1 and ¢y on M. Define a positive faithful normal functional ¢ on Ma(M) by

o (:c11 xlz) = ¢1(x11) + Pa(222).

€21 X22
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Then (D¢y : Dp1)s := uy € M defined by <3 8) = Uf <(1) 8) is called Connes’ cocycle Radon-
t

Nikodym derivative.

Obviously, a Connes’ cocycle Radon-Nikodym derivative (D¢ : D¢y); is unitary for each t € R
and satisfies the properties in Proposition 3.4.6.

Example 3.4.8. Let M = M, (C) and let ¢ and ¢2 be two positive faithful normal functionals on
M. Then there exist unique invertible positive matrices hi, ho € M, (C) such that ¢;(-) = Tr(-h;)

and we have 0,7 (z) = h;ta:hj_it for j = 1,2 by Theorem 3.3.1 (and Remark 3.3.3). Define a positive
faithful normal functional ¢ on My(M) = My, (C) by

¢ (x” x12> = ¢1(en1) + da(222), with zy; € My (C).
To1 T2

Then for all x = <m11 :E12> € My, (C) with z;; € M,(C), we have
To1 T22

Illhl O

gb(m) = gbl (1'11) -+ 5252(1'22) = TI"(:Eth) + Tr(:Egghg) =Tr ( 0 l’gzhg) = TI"(:Eh)

hi 0

0 ho
by o (x) = hitzh= for 2 € My, (C). But then,

0 0\ /0 0\ (h O0\'[0 0\ (hy O\ "
<ut o)“’t (1 o>_<o h2> (1 o)(o h2>
_(hif o)(o 0> <h;“ 0>
“\o0 AfJ\1 o)\ 0 nyt
0 0

i.e. (D¢o: Do) = héthl_it is the Connes’ cocycle Radon-Nikodym derivative.

where h := < > It follows that the modular automorphism group associated with ¢ is given
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4 Quantum Markov semigroups and their generators

Before we give the definition of a quantum Markov semigroup and analyze their generator,
a (short) introduction on completely positive maps is necessary. It turns out that positive maps
are not sufficient to have a physical interpretation and we must demand the stronger property of
complete positivity. The focus in this section will be on uniformly continuous quantum Markov
semigroups and particular emphasis is put on such semigroups with detailed balance.

4.1 Completely positive maps

Let A be a C*-algebra. Then M, (A), the x-algebra of all n x n matrices with entries in A,
admits a unique norm making it a C*-algebra. If ® : A — B is a linear map between C*-algebras,
then for n € N> define the extensions ®™ : M, (A) — M, (B) through

ailp ... A1n <I>(a11) NN @(aln)
oM. e

Gnl .. Qnn D(ap1) ... Plapn)
In other words, if M, (A) is identified with M, (C) ® A and M, (B) with M, (C) ® B, then

™ =id, ® ® : M, (C) ® A — M,(C) ® B.

Definition 4.1.1. A linear map ® : A — B between C*-algebras is said to be completely positive if
(") is positive for all n > 1.

Let ® : A — B be completely positive. Then it follows immediately from the definition that
®™ : M, (A) — M,(B) is completely positive for all n € N. Moreover, ® (a)* = & (a*) for all
a € A and n € N since

+iS(a)* = @™ (R(a)T — R(a)™ +iS(a)* — iS(a))*

(R(a)
=2 (R(a)")* — M (R(a))" — i@ (I(a)*)* +2‘I’(”)(%(a) )’
= 2 (R(a) ") — 2" (R(a)7) — i@ (S(a)") + @™ (3(a) ")
= 20 (R(a) — i3(a)) = 2 (a”)

where the third equality is the fact that ®(™ is positive.

Remark 4.1.2. Suppose now only that ® : A — B is a linear map between C*-algebras and there
exists M > 0 such that | ®(a)|| < M for all a € AT N A<q. Then @ is bounded with norm ||®|| < 4M.
We show this: First assume that a € Ag, such that ||a|| < 1. Then also, a*,a™ are positive elements
of the closed unit ball of A, and therefore | ®(a)| = ||®(a™) — ®(a7)|| < || P(a™)|| + || ®(a™)|| < 2M.
Now let a € A<; arbitrary, then write a = b+ ic with b,c € Ag,. Note that ||b]], [|c|| < 1. Then we
obtain [|[®(a)|| < [|2(b)|| + [|P(c)|| < 2M + 2M = 4M. Thus, ¢ is bounded with ||®|| < 4M.

Proposition 4.1.3. If & : A — B is a positive linear map between C*-algebras, then it is bounded.

Proof. Suppose ® is not bounded. Then by the preceding remark sup,cg ||®(a)|| = oo, where S is
the set of all positive elements of A of norm not greater than 1. Therefore, we can find a sequence
(an)n>1 € S such that 4" < [|®(ay )| for all n € N. Define a := ), -, 27 "a, € A. Note that a is
indeed an element of A because the sum is absolutely convergent and A is a Banach space. But now,
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for all n € N, we obtain a—27"a, = ) j>1 2_jaj > 0 because 2_jaj > 0, the sum of positive elements
Jj#n

is a positive element and using the fact that A" is norm closed in A. But then, ®(a) > 27"®(a,) > 0
for all n € N as ® is positive. Consequently, ||®(a)| > 27"||®(a,)|| > 27" 4" =2" for alln € N
by Theorem 2.2.5(3) in [16]. This is a contradiction since ||®(a)|| < co and we conclude that ® is
bounded. O

Remark 4.1.4. Let ® : A — B be a completely positive map between unital C*-algebras. There is
actually an easier way to show that ® is bounded with ||®|| = ||®(1)|| using the Kadison-Schwarz
inequality: ®(a)*®(a) < ||®(1)||P(a*a) for all a € A. We show this: Let a € A. Then the inequality
a*a < ||a*al|1 follows from the Gelfand duality applied to the commutative C*-algebra generated
by 1 and a*a. Hence, [@(a)|> = [ ®(a)*®(a)] < [&(1)]|@(a*a)] < |(1)a*a] = |D(1)]>]al?
where we repeatedly used Theorem 2.2.5(3) in [16], the Kadison-Schwarz inequality and the fact that
® is positive. But then, ® is bounded with ||®|| < ||®(1)|| which directly implies that ||| = ||®(1)]|.

There exists a canonical decomposition of completely positive maps due to Stinespring.

Theorem 4.1.5 (Stinespring). Let A and B C B(H) be unital C*-algebras. Then ® : A — B is
completely positive if and only if there is a representation w: A — B(K) for some Hilbert space K
and a bounded linear map V : H — K such that

®(a) = V*r(a)V  forall a € A.
Moreover, |[V||? < ||®]|.

Proof. Theorem 1 in [23]. O

If A= B(H), then there exists another decomposition which is called the Kraus decomposition or
Chot canonical form on the condition that the completely positive map is also o-weakly continuous.
Theorem 4.1.6 (Kraus). ® : B(H) — B(H) is o-weakly continuous (normal) and completely
positive if and only if there exists a family of operators (a;) C B(H) such that

O(x) = Zaf:cai for all x € B(H),

and the series Zl a;xa; converges in strong operator topology.

Proof. Theorem 3.3 in [13]. O

4.2 Generators of uniformly continuous quantum Markov semigroups
Firstly, we state the definition of a general quantum Markov semigroup (QMS).

Definition 4.2.1. Let M C B(H) be a von Neumann algebra. A quantum Markov semigroup
(QMS) is a one parameter family (®;);>¢ of linear maps of M into itself satisfying the following five
properties:

(a) @, is completely positive for all ¢ > 0;
(b) ®:(idg) = idy for all ¢ > 0;
(¢) ®spt = PPy for all s,t > 0;
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(d) limyyo ®¢(x) = « in the o-weak topology for all x € M;
(e) ®; is o-weakly continuous (normal) for all ¢ > 0.

The infinitesimal generator, or briefly generator, of (®;);>0 is the (generally unbounded) linear
operator L with domain D(L) C M defined by

D(L) = {x eM: (U—weak)—ltiﬁ}t*l(q)t(x) —x) exists} ;

q)t(flf) —

L(z) =lim x, x € D(L) with the limit taken in the o-weak topology.

t10

The usual assumption that ®q is the identity for (semi)groups is in fact redundant as it follows
from the other properties: ®(z) = Po(limyo P¢(x)) = limy o Po(Pe(x)) = limyg P¢(x) = x for all
x € M where the limits are taken in the o-weak sense. The first equality is property (d), the second
equality is property (e), the third equality is property (c) and the fourth equality is property (d)
again. Hence, ®¢ = id;y;.

The purpose of this subsection is to derive an explicit form for the generator of a quantum Markov
semigroup that is uniformly/norm continuous, i.e. limy g ||®; —idps|| = 0. This is a condition which
is not fulfilled in many applications. Nevertheless, a QMS defined on a finite dimensional C*-algebra
is always uniformly continuous since its generator is bounded. The main result of this subsection is
Corollary 4.2.10 and is due to the works of Lindblad [14].

So let (®;);>0 be a uniformly continuous QMS on a von Neumann algebra M. Then there exists a
unique bounded linear operator L : M — M such that

o, =e" t>0 and lim |L —t (@ —idy)|| = 0,

with L the generator of (®;):>0 by Corollary 1.4 in [19]. Now, from the fact that the set of
o-weakly continuous (normal) functionals on M is norm closed it follows that the set of o-weakly
continuous linear maps of M into itself is norm closed ([8], section 1.3.3). This, combined with
limyjo ||L — ¢t~ 1(®; — idas)|| = 0 and property (e), we also have that L is o-weakly continuous. It is
actually possible to characterize exactly which maps generate a uniformly continuous QMS and this
will be stated in Theorem 4.2.4.

Definition 4.2.2. Let M be a von Neumann algebra. A bounded linear map L : M — M is called
completely dissipative if

1. L(idy) = 0;
2. L(x)* = L(z*) for all z € M;
3. D(L™;x,2) >0 for all n € N and = € M, (M),
where D(L™); z,y) := L (z*y) — L0 (2*)y — 2* L™ (y) for =,y € M,(M) (and n € N).

Example 4.2.3. Let ®; = e’ be a uniformly continuous QMS on a von Neumann algebra M, then
the bounded generator L is a o-weakly continuous, completely dissipative map. Indeed,

L(idy) = i 204w Zid i =iy o (1im M)* i 20(2)" 2"
t10 t t10 t 10 t tl0 t
— hmm = L(z*) (z €M)
tl0 t
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where the limits can be either taken in the o-weak topology or norm topology.

Now fix n € N and = € M, (M) arbitrary. Note that @En) = el for t > 0. Define ft) ==
@En) (m*)fbgn) () and g(t) := @En) (z*z) for t > 0. Then f(t) < g(t) for all ¢ > 0 by Kadison-Schwarz
inequality. Moreover, f and g are differentiable at ¢ = 0 with

LW (") + z* L™ (z) = f'(0) = 1}51(} f(h);f(())

. f(h)—g(0) .. g(h)—g(0) (n)

lim A < lim = g9(0) (z"x),
and this exactly means that D(L(”); x,z) > 0. Hence, L is completely dissipative and the fact that
L is o-weakly continuous has already been shown due to the remark(s) prior to Definition 4.2.2.

Theorem 4.2.4. (®¢):>0 is a uniformly continuous QMS defined on a von Neumann algebra M if
and only if ®; = et with L : M — M a o-weakly continuous completely dissipative map.

Proof. = : This is Example 4.2.3.

<= It is clear that (®¢);>¢ is uniformly continuous as L is bounded. Moreover, ®; is o-weakly
continuous for all t > 0 as ®; = ZZOZO (tﬁ!)n
maps (Ef:o (til)n ) NeN and using the fact that the set of o-weakly continuous linear maps of M
into itself is norm closed ([8], section 1.3.3). We have lim; |y ®;(z) = = in norm for all z € M. So, in
particular, lim; o ®¢(x) = = in the o-weak topology for all z € M. And, &1 = &P, for all s,z >0
by (continuous) functional calculus. Since L(idy) = 0, we see that idy is an eigenvector of L with
eigenvalue 0. It follows that idy is a eigenvector of ®; = e'* with eigenvalue ¢® = 1 by (continuous)
functional calculus. Therefore, ®;(idg) = idy for all ¢ > 0. The only thing left to prove is that &,
is completely positive for all ¢ > 0.

To this end, we will use the result that L generates a semigroup of contraction operators if and only
if

can be approximated in norm by o-weakly continuous

O(L) := lgfgt_l(]\idH +tL|| —1) <0,
see Theorem 2.1. in [15]. Moreover, from Corollary 1 in [22] we obtain

lidg +tLl| = sup |lu+tL(u)],
ueU(M)

where U(M) is the set of unitary elements in M. Now since L is completely dissipative, we have for
all u e U(M) and ¢t > 0,

lu+tL(w)|* = |[(w* + tL(u")(u + tL(w)]| = [lida + ¢(L(w")u + u*L(w)) + t*L(u") L(u) |
= llidar + t(L(u")u +u"L(u) — L(u*w)) + *L(w") L(u)]|
< |lidg + *L(u*)L(u)|| <1+ t*||L)>.

From this, it follows that |Ju + tL(u)| < /1 + t2]|L||? < 1 + t?||L||? such that
t7Y(|lu + tL(u)|| — 1) < t|L||?, for all u € U(M) and t > 0.

Hence, O(L) = limy o t~1(|lidg + tL|| — 1) < limyyo || L||* = 0 and this implies that || ®;]| <1 for all
t > 0. And we have already shown that ®;(idy) = idy and thus ||®;|| = 1 for all t > 0. Corollary 1
in [22] also states that ®, is positive if and only if ||®;|| = 1 on the condition that ®;(idy) = idy
and that is the case. Thus, ®; is positive. We can repeat this same argument to L™ for each n € N

and conclude that @gn) is positive, i.e. ®; is completely positive. O
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We shall give an implicit form for o-weakly continuous completely dissipative maps defined on a
special class of von Neumann algebras, namely the hyperfinite ones.

Definition 4.2.5. A uniformly hyperfinite algebra or UHF algebra is a unital C* algebra A which
has in increasing sequence (A,)5 ; of finite dimensional simple C*-subalgebras each containing the
unit of A such that (J77 ; A, is dense in A.

A von Neumann algebra M C B(H) is hyperfinite if it has a weakly dense C*-subalgebra that
is a UHF algebra and whose unit is id.

Example 4.2.6. If H is a separable Hilbert space, then B(H) is hyperfinite. This is clear if H
is finite dimensional. To prove the infinite dimensional case, we let A be an infinite dimensional
UHF algebra. In particular, there exists a non-zero irreducible representation (H, ) of A (Theorem
5.1.12 in [16]). Since A is simple (Theorem 21, page 88 in [27]), 7 is a *-isomorphism from A
onto m(A) C B(H), so m(A) is also a UHF algebra (use that 7 is isometric). Now let # € H be
any non-zero vector. Then z is cyclic for (H, ), that is, 7(A)z = H by irreducibility (Theorem
5.1.5(2) in [16]). This shows that H is separable as A is separable and it is already clear that H is
infinite dimensional since A is infinite-dimensional. Therefore, H is isometrically isomorphic to H
as they both are separable and infinite dimensional. It follows that B(H) = B(H) as an isometric
isomorphism. Moreover, 7(A)' = Cidj as (H, ) is irreducible using Theorem 5.1.5(1) in [16]. But

then 7(A)” = B(H) or, equivalently, m(A) is weakly dense in B(H) by the double commutant
theorem. Hence, B(H) is hyperfinite and so is B(H).

Proposition 4.2.7. Let M C B(H) be a hyperfinite von Neumann algebra. If L : M — M is a
o-weakly continuous completely dissipative map, then there exists a o-weakly continuous completely
positive map ¥ : M — M and a self-adjoint h € M such that

L(z) = U(z) - %{\I/(idH),x} +ilhya] for all x € M.

Proof. Since M is hyperfinite, there exists an increasing sequence (M;);>1 € M of finite-dimensional

—s - —WOT —=—— 50T
simple C*-subalgebras each containing idy such that Uoil M; = U?o 1 M; =M. FixjeN

and let U(M;) be the set of unitary elements in M;. Then U (Mj;) forms a compact (topological)
group. So there exists a (unique) Haar measure p on U(M;) with ,u(U(M )) =1 (see Section 2.2 in
[9] for more details and background on Haar measure)

Now define ¢; : H? — C by ¢;(£,n) fU u*)ug, n)dp(u). It is clear that ¢; is sesquilinear.
It is also bounded, because

0| < /U( L(uT)ug, m dp(u) < [IL]E] /U(M_) [ [[[Jell dpe()

= LA€7l (U (M) = LI Il

Therefore, there exists a unique operator k; € B(H) such that
()= [ (g ndutw). gneH
U(M;)

by Theorem 2.3.6 in [16]. Moreover, ||k;|| = [[¢|| < ||L||. We actually have k; € M because for all
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2’ € M and &,m € H we have

Wy = 6. @' = [ e ) dut = [ Ly ) du

U(M;)

N / (L(u)ua'&,n) dp(u) = (k;a's,n)
U(M;)

where in the third equality we used that L(u*),u € M for all u € U(M;). So indeed, kj € M" = M.
Define f¢,, : U(M;) — C by fe,(u) = (L(u*)u,n) for convenience. But then for a v € U(M;),

kot = [ o (A0 ) ) = /

U(M;)

() duw) = [ fuegfu’) du(u)

U(M;)

= [ (Tt dato) = [ (L)t ) duw),
U(M;) U(M;)
where third equality is the invariance of the Haar integral. And since U(M;) spans M, we obtain
(kjxé,m) = fU(Mj)(L(xu*)ué’,mdu(u) for all x € M;. Consequently, using the fact that L is
*-preserving, we have for all z,y € M; and {,n € H

(T yk;&,m) = (€, kjy*an) = (kjy*an,§) = /U(M') (L(y*u*)uzn, §) du(u)

- / (e L{ug)E) dyu(u) = / (™ u* L(uy)€, ) ds(u).
U(Mj)

U(Mj)
Using these observations, we have for all z,y € M; and §,n € H that

(L(z*vw*uy) — L(z*u)uy — z*u* L(uy))&, n) dp(u)

/ (D(Ls uz, uy)é. n) dys(us) =
U(M;) (Mj)

T I

L6 dulw) — [ (L et dila) -

(M) U (M)

S

(z*u" L(uy)§,m) du(u)
(M)

L(z*y)&,m) — (kja™y&,m) — (2 yk;&, )
(L(z*y) — kjz*y — 2*yk}) &, m).

Define for each k € M the linear map ¥y : M — M by

o~ o~

Uy(x) = L(x) — ko — zk*.

Then, as L is completely dissipative, we have for x € M;

(U, (2" @), &) = (L(z"w) — kja"a — 2" zk])E, §) = / (D(L; uw, ux), &) du(u) = 0,

U(M;)

~

which implies that Wy |, is positive. We can repeat this same argument to M,,(M;) = M,(C) ® M;

for every n € N since D(L"™; uz,uz) > 0. It follows that Wy, |n; is completely positive as a map
from M into M.
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Define the set
[ :={k € M : V|p; is completely positive as a map from M; into M and ||k < [|L]|}.

We have shown that k; € T'; so that I'; # () for all j € N. Moreover, I';41 CT'; as M; C Mj4 for
every j € N and hence any finite intersection of I';’s is nonempty.

Claim: I'; is weakly closed. To show this we let (ky) C I'; be a net such that kyx — k € M in the
weak operator topology. Then for all n € N, x € M,,(M;) and £ € H®)

<\I’/(§n) (z*2)€, &) = (L™ (a*2) — (k @ idy)a*z — 2”2 (k ®id,))E, €)
- li/{n((L(") (*z) — (ky ®idy)z*s — 2z (ky ®idy))E, )

= lim (¥} (¢"2)6,€) > 0
such that Wy| M; is completely positive as a map from M; into M. Moreover,

(K€, m)| = lim | (kA& m)] < sup 1Bl Hlyll < L[z llyl]  for all &,n e H

such that k|| < ||L||. So indeed, k € I'; and thus IT'; is closed in the weak operator topology.
As a consequence, I'; is compact in the weak operator topology since the unit ball in M is compact
in the weak operator topology. Thus, I' := ﬂ;’il I'; # 0 by a standard topology argument. So there

exists a k € I'. Tt follows that U := W, is completely positive on U;’il M;. Moreover, ¥ is o-weakly

continuous as L is o-weakly continuous and the maps x — kx, x — zk* are o-weakly continuous.

Jr
To show that ¥ is completely positive on M, we first note that the closed unit ball of (U‘;‘;l M j>
SOT) +

is strongly dense in the closed unit ball of (U;O:1 M; = M™ by Kaplansky density theorem

+
and by hyperfiniteness. The closed unit ball is convex so that the closed unit ball of <U;’i1 M j)
is weakly dense in the closed unit ball of M ™. Furthermore, the weak operator topology and the
+
o-weak topology coincide on the unit ball which implies that the closed unit ball of <U‘;i1 M j) is

o-weakly dense in the closed unit ball of M ™. Now let x € M ™, then ||:$T|| is an element of the closed

+
unit ball of M*. So there exists a net (yy) C (U‘;‘;l M]-> with |lyx]| < 1 such that limy yy = o

in the o-weak topology. Now using the o-weak continuity of ¥, positivity of ¥ and the fact that the
set of positive elements is o-weakly closed, we obtain ﬁ\l’(m) = limy ¥(yy) > 0. Hence, ¥(z) > 0

and this means that U is positive on M. We can repeat this argument to ¥ and M, (M) to
conclude that ¥ is completely positive on M.

Obviously, ¥(idy) = —k — k* as L(idg) = 0. So setting h := %z(l;:* — k) € Mg, results in
1 ~ ~, 1, < - -
U(z) — 5{\11(idH), x} +ilh,x] = L(z) — kx — xk* — 5(—]4::17 —k*x — xk — k™) +

i —(k*z — kx — (zk* — zk))

N | .

~ 1 - 1 - - -
= L(z) — kx — k™ + §(k:x+ k*x + xk + zk™) + 5(16%‘ — k*x — xk 4+ xk")
= L(x)

for all x € M, which gives the statement. O
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The converse is also true on any von Neumann algebra:

Lemma 4.2.8. Let M be a von Neumann algebra. If ¥ : M — M is completely positive and h € M
is self-adjoint, then L : M — M defined by L(z) = W(z) — 3{¥(idp), z} + ik, 2] is completely
dissipative. Moreover, L is o-weakly continuous if W is o-weakly continuous.

Proof. 1t is clear that L is bounded as ¥ is bounded and multiplication operators are bounded. We
have

L(idy) = B(idy) — %(\If(idH) +W(idy)) +i(h — h) = 0,
and
L(z)" = U(2)" — %(\IJ(idH)m b 20 (dg))* — ilhs — zh)”
= W) — S (W) + Wlidp)et) — i h — ha)
— W) - %{\I}(idH),x*} +ifh, 2]
— L(a).

Let W(xz) = V*m(z)V be the Stinespring decomposition (Theorem 4.1.5). We may choose 7 such
that w(idg) = idg. Then, for all x € M, we have

D(Lyz,z) = L(z*z) — L(z* )z — 2™ L(x)
= U(z*r) — %(\I/(ldH)w*x + 2"z (idy)) + i(ha*x — 2™ xh) —

(U(2") — S(W(idg)a" + 2" U(idy)) + i(ha* — ")) —

[\

2 (U (z) %(\II(idH)x + 2W(idg)) + i(he — zh))

=VU(z"z) — U (z")z — 2" V(x) + 2"V (idy)z
=Vir(z*2)V = Vir(a* )W — 2*Vir(z)V + 2*V*Va
= (m(z)V = Vo) (r(z)V = V)

> 0.

Now the same argument applied to L(™ and W™ shows that D(L™);z,z) > 0 for all z € M, (M)

and n € N. Consequently, L is completely dissipative. Furthermore, L is o-weakly continuous if ¥
is o-weakly continuous since z — ${¥(idy),z} + i[h, 2] is a o-weakly continuous map. O

If we consider the full algebra B(H) for some separable Hilbert space H, then the o-weakly
continuous completely dissipative maps can be entirely characterized.

Theorem 4.2.9. Let H be a separable Hilbert space. Then L : B(H) — B(H) is completely
dissipative and o-weakly continuous if and only if there exists a family of operators (a;) C B(H)
and a self-adjoint h € B(H) such that

L(z) = Z (a;xaj — %{a;aj,:r}) +ilh,z] for all x € B(H),
J

and the series converges in the strong operator topology.
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Proof. = : This follows from Proposition 4.2.7 (note that B(H) is hyperfinite) and Kraus
decomposition (Theorem 4.1.6).
<= This follows from Lemma 4.2.8 and Kraus decomposition (Theorem 4.1.6) again. O

Corollary 4.2.10 (Lindblad). Let H be a separable Hilbert space. Then (®¢)i>0 is a uniformly
continuous quantum Markov semigroup defined on B(H) if and only if ®; = e and L : B(H) — B(H)
can be represented in the form

L(x) = Z (a;xaj - %{a;aj,x}) +ilh,z] for all x € B(H),
J

where (a;) € B(H) is a family of operators and h € B(H) self-adjoint such that the series in the
formula for L converges in the strong operator topology.

Proof. This follows from Theorem 4.2.4 and Theorem 4.2.9. O

4.3 Detailed balance

An important observation in physics is that many equations (e.g. kinetic systems) are valid
regardless of whether time goes forwards or backwards. The principle of detailed balance plays a
central role in here and can be defined through Markov chains.

Let X = (X,)o<n<n be a discrete time Markov chain taking values in a finite state space
S = {1, ...,z } with transition matrix P = (p; ;)i jes. Moreover, assume that X is irreducible and
positive recurrent so that it has a unique invariant distribution = = (7;);cs. If X has distribution
7 (so that X,, has distribution 7 for every n), then the ‘reversed chain’ Y = (Y},)o<n<n defined by
Y,, := Xn_, is an irreducible Markov chain with transition matrix P = (Pi,j)ijes given by

Bij= pjq fori,jes,
m
and with invariant distribution 7 (see Theorem 12.109 in [11]). We say that X is reversible if X
and Y have the same transition matrices, that is,

TiDi,j = TjDji for alli,j € S

and these equations are called the detailed balance equations. If the detailed balance conditions are
satisfied we might also say that P satisfies the detailed balance condition with respect to m and it
characterizes time reversal invariance of X.

There is another way to characterize the detailed balance equations via self-adjointness: the
matrix P satisfies the detailed balance condition with respect to 7 if and only if P is self-adjoint
on C" equipped with the inner product (v, w), = > | mv;w; (v,w € C"). One might want to
generalize this inner product to the quantum setting and therefore have a notion of (quantum,)
detailed balance defined through self-adjointness. Hence, matrix algebras will be considered and in
this subsection A will always denote a unital C*-subalgebra of some matrix algebra M,,(C) with
14 =idcn.

Definition 4.3.1. A density matriz or density operator p € M,(C) is a positive operator on C"
with Tr(p) = 1. We denote the set of invertible density matrices belonging to a C*-subalgebra
A C M,(C) by 64+(A) and we write &4 for &4 (M, (C)). (It should be emphasized that the density

matrices in & are invertible.)
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Definition 4.3.2. An inner product (-, -) on A is compatible with p € G4 (A) in case Tr(pa) = (a, 1)
for all @ € A, where 1 = idcn.

Definition 4.3.3. Let p € &, be an invertible density matrix. For each s € R and each a,b € A,
define the inner product (-,-), s on A by

(@,5) s 1= T (o179 20p2)* (o1 2ap?/2) ) = T (' ~%a)

Note that for all s € R the inner product (-, -), s is compatible with p € &, (A).

Definition 4.3.4. A quantum Markov semigroup (®:):>0 on a A satisfies the (quantum) detailed
balance condition (DBC) with respect to p € &4 (A) if for each t > 0, P, is self-adjoint in the p-GNS
inner product (-,-),1. We say that the QMS (®;);>0 satisfies the p-DBC.

By applying Theorem 3.3.1 to A C M,,(C) and Tr(-p) on A for some p € &4 (A), we obtain the
modular operator A, and the modular automorphism group (o7 );er on A given by

P t

Ap(x) =prp~t and of(z) = p'tzp™™ for x € A.

Then, by continuous functional calculus, we have (a,b), s = Tr(b*A}fs(a) p) for a,b € A and s € R.
More generally, given any function f : (0,00) — (0, 00) (which is automatically continuous on every
discrete spectrum of an invertible positive operator), define the inner product on A by

(a,b), 5 :=Tr(b*f(Ap)(a)p) for a,be A.

It should be clear from the context when we use this definition or Definition 4.3.3 and we notice that
(-,-)p,1 is the p-GNS inner product whether 1 is interpreted as a number, or as the constant function
f(t) = 1. It turns out that self-adjointness with respect to the p-GNS inner product (-, -),1 implies
self-adjointness with respect to (-,-), ; for every f :(0,00) = (0,00). As a direct consequence, a
QMS satisfying the p-DBC is self-adjoint with respect to (:,-), s for every f: (0,00) = (0,00) and
as a by-product the QMS commutes with the modular operator A, and the modular automorphism
group (0f)ier. We will show this.

Note that since A finite-dimensional, o/ is an automorphism on A for all ¢ € C and we refer to (o7)iec
also as the modular automorphism group. Keep in mind that o} will only be a *-automorphism if
and only if ¢ € R (see Remark 3.3.2).

Lemma 4.3.5. Let s € R and p € & (A). Then for allt € R and a,b € A,
(024(a), 0)p,s = (a,b)s—t = (@, 07 ;,(b))p,s

In particular, o”,, is self-adjoint with respect to (-,-)p.s.

Proof. Using the definitions we obtain

<afit(a), b)ps = Tr(psb*pl_sptap_t) = Tr(ps_tb*pl_(s_t)a) = (a,b)s—¢, and
(@,0” 4 (0))p.s = Te(p*(p'bp™")"p" ~*a) = Te(p*'b*p' = "a) = (a,b)5—. 0

Lemma 4.3.6. Let p € 6 (A) and let K be any linear operator on A that is self-adjoint with
respect to (-, )1 and such that K(a)* = K(a*) for alla € A. Then K commutes with A, and ol
for allt € C.
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Proof. For all a,b € A, we have

(K (07 (a)), B = (07 (a), K (b)) pt = Tr(pK (b)* pap™") = Te(K (b*)pa)
— Tr(pak (")) = (K (%), a")p1 = (0", K(a)" )y
— Tr(pK ()b") = Te(b* pK (a)) = (K (a), b)0.

Now apply Lemma 4.3.5 with s = ¢ = 1 to obtain (¢” (K (a)),b),1 = (K(a),b),0. It follows that
(K(o”,(a)),b)p1 = (c”;(K(a)),b), for all a,b € A and this implies that

—1
KA, :Kaﬁi :U'iiK: A K.

Since K commutes with A,, K commutes with every polynomial in the self-adjoint operator A,,.
By Stone-Weierstrass, K commutes with f(A,) for every continuous function f : o(A,) — C. In
particular, K commutes with of for every t € C (choose f(x) = x). O

Lemma 4.3.7. Let p € G4 (A). Let K be any linear operator on A such that Kof = of K for all
t € C, or equivalently, KA, = A,K. If K is self-adjoint with respect to the inner product (-,-),
for some function f : (0,00) — (0 o0), then the same holds for every function f: (0,00) — (0, 00).

Proof. Suppose that K is self-adjoint with respect to the inner product (-, ),  for some function
f:(0,00) = (0,00). Let g : (0,00) = (0,00) be arbitrary and set h := ¢g/f. Since K commutes
with A, it commutes with h(A,) (by Stone-Weierstrass). Consequently, using the definitions and
multiplicativity of the continuous functional calculus, we have for all a,b € A that

(K(a),b)pg = Tr(b"g(Ap)(K(a))p) = Tr(b" F(Ap)h(A,)(K(a))p) = Tr(b" f(Ap) Kh(Ap)(a)p)
= (Kh(&y)(a),b)p.r = (h ( )(a) K(b))p.; = Tr(K (1) f(Ap)h(Ap)(a)p)
= Tr(K(0)"9(Ap)(a)p) = (a, K (b)) .-

This give the desired result. O

Theorem 4.3.8. Let p € G (A) and let K be any linear operator on A. If K is self-adjoint with
respect to the GNS inner product (-,-),1 and K(a)* = K(a*) for alla € A, then K commutes with A,
and of for all t € C. Moreover, K is self-adjoint with respect to (-,-),  for all f : (0,00) — (0, 00).

Proof. This follows immediately from Lemma 4.3.6 and Lemma 4.3.7. O

Corollary 4.3.9. Let p € G (A) and let ®; = e'* be a QMS on A satisfying the p-DBC.
Then (®4)i>0 and L both commute with the modular operator A, and the modular automorphism

group (o))iec. Moreover, for all t > 0, ®; and L are self-adjoint with respect to (-,-),  for all
f:(0,00) = (0,00).

Proof. Since ®, is (completely) positive for all ¢ > 0, it is also *-preserving: ®;(a)* = ®4(a*) for all

a € A. Therefore, ®;A, = A,®; and <I>ta, = Jt,CI)t for all t > 0 and ¢’ € C by Theorem 4.3.8 as @,
is self-adjoint with respect to (-,-),1 for all ¢ > 0. Moreover,

LA, = 13%17:—1(@ —id4)A, = %t—l(@Ap —A,) = 13%1 AP — A,) = AL,

where the limits are norm limits. The same computation for ¢! yields Lo} = of L for all t € C.
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Let f:(0,00) — (0,00) be arbitrary. It is clear that for all ®; is self-adjoint with respect to (-,-), ¢
for all t > 0 by Theorem 4.3.8. Let K*»./ be the adjoint of K with respect to (-, ), y for any operator
K on A. Then, using q):"’f = &, for all £ > 0, we obtain

*o,f
L*nf = (limt_l(@t - idA)> = lim¢t~! (@jf”f - idA) = lim, (B — idy) =
£10 10 10

where the limits are norm limits. O

The condition that a QMS commutes with the modular automorphism group may be viewed as
a quantum analog of time-translation invariance or stationarity.

The class of ergodic quantum Markov semigroups also plays a main role and an important property
of such a semigroup is that it has a unique invariant density matrix for its Hilbert-Schmidt adjoint.
This is shown in the next proposition.

Definition 4.3.10. A quantum Markov semigroup (®;);>p on A is called ergodic if the identity
operator spans the eigenspace of ®; for the eigenvalue 1 for all ¢ > 0.

Proposition 4.3.11. Let (®¢)i>0 be an ergodic QMS on M, (C). Then there exists a unique density
matriz p € My (C) such that p is invariant under <I>;r (@I(ﬁ) = p for all t > 0), where t is the adjoint
with respect to the Hilbert-Schmidt inner product (-, -)us

Proof. Since ®;(1) = 1, we see that TI‘(CPI(:L’)) = TI‘(CI)I(IL’)l) = Tr(z®:(1)) = Tr(z) for all x € M, (C)
so that <I>;r is trace-preserving for all ¢ > 0. Moreover, <I>:5r is also (completely) positive for all ¢ > 0.
To see this, let x € M,,(C) and £ € C". Note that |£)({| € B(C") is a positive operator so that
O,(|€)(&]) > 0. It follows that

(] (z*2)€, &) = Tr((|E)(E]) @] (2*2)) = (@] (a7z), |€)(El)ms = (2", De(|E)(E]))ms = Tr(Py(€)(€]) 2" )
= Tu (@ ([€) (€]) 2 2@ (1€)(€])2) = Tr((x@e(1€)(€])2)* (x@4(1€) €])2)) = 0

and this implies that <I>,ir is indeed positive for all ¢ > 0. (Repeat this argument for the extensions

N

(<I>I )™ and <I>§n) to conclude that <I>I is completely positive.) So in particular, ®,(p) is a density
matrix whenever p € M,,(C) is a density matrix. Now, as the set of density matrices form a compact
convex set and the fact that CIDX is continuous, Schauder fixed-point theorem implies that there
exists a density matrix § € M, (C) such that ®}(5) = . Note that ®L| = s+t for all s,¢ > 0. But
then, using this semigroup property, we have lim; CIDI(ﬁ) = limn%m(éi)"(p) = lim, oo p = p
where (@D" is @J{ applied n times. Consequently,

ot

S

(7) = Jim ®{@[(p) = lim ®],(5) = lim [(5) =p for all s > 0.

To prove uniqueness, we note that dim Im(®; — 1) = dim M,,(C) — dimker(®; — 1) = n? — 1 by the
dimension theorem and ergodicity. Therefore,

dimker(®] — 1) = dim Im(®; — 1)~ = dim M, (C) — dimIm(®; — 1) = 1.

So if p; is another density matrix invariant under <I>;r , then p = ap; for some o € C. However,
a = Tr(ap;) = Tr(p) = 1 so that p is the unique density matrix invariant under @I. O

2Theorem (Schauder). Ewvery continuous function from a nonempty convexr compact subset K of a Banach space to
K itself has a fized point.
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Remark 4.3.12. Let p € 6 (A). For each s € R the inner product (-, ), is compatible with p.
From now on a dagger 1 will be used to denote the adjoint with respect to the Hilbert-Schmidt
inner product (-, -)us. Now, if a QMS (®;);>0 on A is self-adjoint with respect to an inner product
(+,-) that is compatible with p € &4 (A), then for all a € A and ¢ > 0 we have

(a, ] (p))s = (@1(a), phis = Tr(p®(a)) = (®4(a), 1) = (a, ®4(1)) = {a,1) = Tr(pa) = (a, p)ns,

or equivalently, @I (p) = p for all t > 0 and thus p is invariant under @I. In particular, p is invariant
under <I>:5f if (®4)¢>0 satisfies the p-DBC because then, for all ¢ > 0, ®; is self-adjoint with respect to
(-,-)p,1 which is compatible with p. If, moreover (®;);>¢ is ergodic and can be extended to M, (C),

then p is the unique density matrix invariant under <I>I by Proposition 4.3.11.

Proposition 4.3.13. Let ®; = ' be an ergodic QMS on M,,(C) satisfying the p-DBC for its unique
mvariant density matriz p € G. Then limy o @I(h) = p for all density matrices h € M, (C).

Proof. Let L' be the adjoint of L with respect to (,-),1. Then, using the fact that L is *-preserving,
we have for all a,b € M, (C) that

Tr(pb* L1 (a)) = (L¥(a), bp)us = (a, L(bp))us = Tr(L(pb*)a) = Tr(p~" pL(pb*)a)
Tr(pL(pb*)ap™") = (ap™", L(bp))p1 = (L' (ap™"),bp)p1 = Tr(p*b* L' (ap™ "))
Tr(pb* L' (ap™")p) = (L'(ap™")p, b) 1.

This implies that Lf(a) = L'(ap™")p for all a € M, (C). Note that L = L' by Corollary 4.3.9, so in
this case we have LT(a) = L(ap™')p for all @ € M, (C). Using induction one can show that

<LT(Q)7 b>071

(LNY¥(a) = L*(ap™)p for all a € M, (C) and k € N.

Moreover, L has spectral decomposition L = >, g P, where py, € R are eigenvalues of L and
Py, are the corresponding projections onto the py-eigenspace. Note that ker(L) = span(idcn) by
ergodicity of (®;):>0. Hence, we may assume that p = 0 and Py is the projection onto span(idcn).
Furthermore, p < 0 for & = 0,...,r. Otherwise, if p = pi > 0 for some k € {1,...,r} with
eigenvector z € M, (C), then

' = lim [l (2)]| = lim [le"z|| = lim e||z] =
Jim [|@y(2)]| = lim e’ ()] = lim [|ea]| = lim e"]lz] = oo,

contradicting the contractivity of (®;);>0. So, indeed, ui < 0 for k = 0,...,7 and in particular
pr < 0 for k=1, ...,r. But then, for any density matrix h € M, (C) we obtain

-~ (ELD)*(h) o~ (tL)*(hp™)p

. t BT BRT BERT tL —1
A i) =l 2 = po e e
k=0 k=0
T T
5 ik “1y, _ 1 t0 —1 . i -1
tglglok_oe Pi(hp™)p = lim e"*Py(hp )p+kZ_1t1;ngoe Pp(hp™")p

= PO(hIO_l)p = ap,

for some o € C. Since <I);r maps density matrices to density matrices for all ¢ > 0, we necessarily
have o = 1 and this finishes the proof. O
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4.4 Generators of quantum Markov semigroups on M, (C) with detailed balance

This subsection focuses on the generators of quantum Markov semigroups defined on matrix
algebras satisfying detailed balance. Obviously, Corollary 4.2.10 also applies to these quantum
Markov semigroups since we are working finite dimensional and thus the generators are bounded.
However, it turns out that another expression for generators of quantum Markov semigroups with
detailed balance is also helpful.

Theorem 4.4.1. Let ®; = e'* be a QMS on a C*-subalgebra A C M, (C). Suppose that (®4);>0

satisfies the p-DBC for p € &4 (A) and that ®; has an extension ®; to a QMS on M, (C). Regard
the modular operator A, built from Tr(-p) as an operator on My (C). Then the generator L : A — A
of ®; has the form

o= 35 ] ) o
JjeJ

=D e (vjla, v + (0], alvy) (4.2)
JjeJ

where J is a finite index set such that w; € R for all j € J, and {v;}cg is a set in M, (C) with
the properties:

(1) Tr(vjvg) = ¢;djk for all j,k € T and some constant ¢; >0 ;

(2) Tr(vj) =0 forallj € J;

(8) {vj}jeq = {U;}jej;

(4) {vj}jeq consist of eigenvectors of the modular operator A, with A, v; = e “iv;.

Conwversely, given any p € S (A) and any set {vj}jcg C My(C) satisfying (3) and (4) for some
{wj}ieqs CR, the operator L given by (4.1)/(4.2) is the generator of a QMS (Pt)i>0 that satisfies
the p-DBC.

A couple remarks will be made before a proof will be given.

Remark 4.4.2. Note that the eigenvectors {v;};cs of A, are not necessarily self-adjoint. Never-
theless, if p = %1, then A, is the identity so that each v; is an eigenvector of A, with eigenvalue 1.
So in this case we have w; = 0 for all j € J and it is then possible to take each v; to be self-adjoint.
It follows that (4.2) reduces to

L(a) = — Z[Uj’ [vj,a]] for a € A.
JjET

This is verified by a straightforward computation:

L(a) =Y (vj]a, v5] + [vg, alvy) = > (vjav; — vjva + vjav; — avsv;)

VISVA VISVA
=~ (vvja —vjav; —vjavj +avjvy) = = ) (v5lvj.a] = [vg,alvy) = =Y _[vj, [v5, d]]-
JjEJ JjeJ JjEJ

Remark 4.4.3. By Theorem 4.4.1, the Hilbert-Schmidt adjoint of L is given by

LT(b) = Z (e_“’j/Q[vjb, vil + e‘“j/2[v;f, bvj]) for b e A.
jeJ
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To see this, let a,b € A. Then, using (4.1),

(L(a),b)ys = Z (e*‘*’j/2 ((vjavj, byus — (vjvja, b>HS> 4 ewil? (<vjcw;-“, byus — (avjvj, b>HS))
jeJ

= Z <e_wj/2 (Tr(b*v;-‘avj) - Tr(b*v;‘vja)) + evil? (Tr(b*vjav;‘) - Tr(b*avjv;)))

jeJ
=2 (e_wj/2 ({a, v5bvf)us — (a, viv;b)us) + e/ ((a, vbvs)us — (a, b”j“pHS))
JjeJ
= Z (e_wj/g <a, [’Ujb, U;DHS + ewj/Q <av [’U;f, bvj]>Hs)
jeJ
_ <a,2 (e fuyb.vg) + e“f/2[v;f,bvj])> ,
jeJ HS

and this exactly implies that LT(b) = > jes (e“*’j/z[vjb, vr] + e‘*’f/z[v;‘, bvj]>.

The proof of Theorem 4.4.1 relies on few other results and it starts with an isometry property
that is crucial to the characterization of generators of quantum Markov semigroups given by Gorini,
Kossakowski and Sudarshan [10].

For any Hilbert space H, let L?(H) denote the Hilbert space consisting of Hilbert-Schmidt
operators from H — H equipped with the Hilbert-Schmidt inner product (a, b) L2(H) = Tr(b*a) for
a,b € L*(H). We may also just write (-,)is for (-,-);2(y) as before and both these notations will
be used interchangeably. The dagger T denotes the adjoint with respect to (-, -) r2(m) as usual. We
also set H,, := (M,,(C), (-, -)us) for convenience.

There is a natural identification H, ® H, = L*(H,) using the following multiplication on H,,:
For a,b € H,,, define

#(a®b): H, — H,, #(a®b)x = axb.

Lemma 4.4.4. Let {f,} and {gg} be two orthonormal bases of H,, so that {fo, ® gg} is an
orthonormal basis of Hy, @ Hy,,. Then {#(fa ® g3)} is orthonormal in L*(H,). In particular, the
map # is unitary from H, ® H, onto L*(H,).

Proof. Let {e; j}1<ij<n be the matrix units of H,, and note that {e;;}i<ij<n is an orthonormal
basis for H,,. It follows that

n

(#(Fa ® 95) #(fu © 9))s = Tr (#(f © 9)H(fa © 99) ) = Y (fatiggs, fueigou)ms

ij=1

n n
= > T ((fueijgu) fatijgs) = > Tr(gre;if;ifacijgp)

i,j=1 i,j=1
n
2,7=1
= 557'/5“7&'

Hence, {#(f.®gs)} is orthonormal in L?(H,) and since dim(H,, ® H,,) = dim(L?(H,,)) we conclude
that # : H, ® H, — L?(H,) is unitary. O
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Consider any linear transformation K on H,. Let {f3} be any orthonormal basis for H,,. Then
{fx} is also an orthonormal basis for H,, and by Lemma 4.4.4, {#(f} ® fz)} is an orthonormal
basis for L?(H,). Thus K can be written as

K= an,g#(f; ® fg), or equivalently, K(a) = anﬁf;afﬁ for all a € H,,
a,f a,B

where the coefficients ¢, g are uniquely determined by
Ca,p = (K, #(fo @ [8)) L2 (H,0)-

Definition 4.4.5. Let K be a linear operator on H,. The n? x n? matrix (Ca”g)awg with entries

ca,p = (K, #(fa @ f8))12(m,) 1s called the GKS (Gorini-Kossakowski-Sudarshan) matriz for the
operator K with respect to the orthonormal basis {f,} for H,. When we wish to emphasize the
dependence on K, we write ¢ g(K) for cq g.

Remark 4.4.6. Let a,b € M, (C), consider the case K = #(a ® b). Since # is unitary (by Lemma
4.4.4), the GKS matrix of K with respect to an orthonormal basis {f,} is given by

Cap = (#(a®@b), #(fa @ f8)) 2(,) = (@ @b, f5 @ [5)Hu0mH, = (@, fa)us(b, fa)us = Tr(faa)Tr(f50).

In particular, taking a = b = 1 gives K = idjy,(c) so that the GKS matrix of the identity with
respect to {f,} is given by

Ca,3 (idMn(C)) = Tr(fa)Tr(fg).

Lemma 4.4.7. Let K be a linear operator on M,(C) and let {fo} be an orthonormal basis of Hy,.
Then the GKS matriz of K with respect to {fa} is self-adjoint if and only if K(a)* = K(a*) for all
a € M,(C).

Proof. We have the GKS expansion K = }_, 5 ¢a g#(f5 ® f3). Let a € M, (C), then

K<a*)* = an,ﬁf;a*fﬂ an ,Bfﬁafa = ZC,B af afﬁ = Zcﬁ,a# & f,B)
a,B

By the uniqueness of the GKS-expansion, we have K (a)* = K(a*) for all a € M,,(C) if and only if
Ca,8 = CBq for all a, 5. O

For all a,b € M,(C), one can consider their tensor product a ® b € M, (C) @ M,(C), which
sends E@n € C"®@C" to e ® bn € C" @ C*. If C" @ C™ is identified with M, (C) through
E@n— 00 injeiy (eij’s are matrix units), then a ® b becomes an operator on M,(C). This
identification will be used in the next lemma.

Lemma 4.4.8. Let K be a linear operator on M, (C) and {e; ;}1<i j<n be the matriz units of M,(C).
Then C(K) =371 K(eij) ® €ij € Mp(C) ® My(C) viewed as an operator on Hy, satisfies

<C(K)f> >HS - <K #(g ® f )> 2(Hy) fOT all f’g € Hn7

where Y " K(e;j) ® e;; may also be viewed as an element of My(My,(C)) whose i,j entry is

K(eij)-

2,J=1
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Proof. By a direct computation we obtain

n

CEgms = D TemCE)Pem= Y. TemlK (i )lraleijlmpfip

k,m=1 4,9,k m,p=1
n n
= Y fwlesdpmTem K e ki= > (Fejag unlK(ei)ke
ivjvkvl'm7p:1 Z‘?j?k?l:l
n n
= Y (geiifinE )y =Y (K(eiz), geijf Ims = (K, (9 ® f*)) 2, O
ik, 1=1 ij=1

Remark 4.4.9. The matrix C'(K) in Lemma 4.4.8 is called the Choi matriz of K and a fundamental
theorem of Choi states that C'(K) is positive on H, if and only if K is completely positive [6]. Let
{fa} be any orthonormal basis for H,. Then, by Lemma 4.4.8,

<(Ca,ﬁ)a,ﬁx> X>C,L2 = Z Caghars = O (K, #(f2 @ f3)) r2(m) Aars
Y

= Z (K, #((Aafa)* © Mg o)) 12, = D _(CU) A f5)"s (Aafa) )us

a7/3
< S fﬁ,zw> |
B «

HS

for all X € C"". It follows that the GKS matrix (ca,p) is positive if and only if K is completely
positive by Choi’s theorem and the fact that {f*} is also an orthonormal basis for H,,.

Going forward, it will be convenient to assume that the orthonormal bases {f,} for H, are
indexed by o € {1,...,n} x {1,...,n}, and for such bases we make the following definition:

Definition 4.4.10. Let L be a linear operator on M, (C) such that L(1) =0 and L(a)* = L(a*)
for all a € M, (C). Let {fa} be any orthonormal basis of H,, such that f(; 1) = 1. Let (ca,) be the
GKS matrix of L with respect to {f,}. The (n® — 1) x (n? — 1) matrix with entries ¢, g where a
and 8 range over the set {(4,7) : 1 <i,5 <n and (i,5) # (1,1)} is called the reduced GKS matriz
of L for the basis {fa}.

Lemma 4.4.11. Let L be a linear operator on M, (C) and let ®, = e'* be x-preserving. Let {fa}
be an orthonormal basis for Hy, with f11) =1. Then ®; is completely positive for all t > 0 if and
only if the reduced GKS matriz of L for the basis {fs} is positive.

Proof. Suppose that ®; is completely positive for all ¢ > 0. By Remark 4.4.6 and orthogonality we
obtain ca (1) = Tr(fa)Tr(f3) = 6a,1,1)0p,1,1)- In particular, we see that the reduced GKS matrix
of the identity is zero. Now since ¢, g(t71(®; — 1)) =t Leq g(®1) — t71ea (1), it follows that the
reduced GKS matrix of t~1(®; — 1) is equal to the reduced GKS matrix of t~1®;. Moreover, the
GKS matrix of t~1®; is positive by Remark 4.4.9 and the reduced GKS matrix of ¢t~1®; is thus also
positive. Now taking the limit ¢ — 0 we conclude that the reduced GKS matrix of L is positive

Conversely, suppose that the reduced GKS matrix of L is positive. First note that the GKS
matrix of ¢, is self-adjoint for all ¢ > 0 by Lemma 4.4.7. And for small enough t > 0, we have
Cop(®1) = a,5(1) + tca s(L) + o(t) using the series expansion of ®; = e!L. Now since the reduced
GKS matrix of L is positive and cq,g(1) = 64,(1,1)03,(1,1), the GKS matrix of ®; is positive for
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sufficiently small ¢ > 0. It follows that ®; is completely positive for sufficiently small ¢ > 0 by
Remark 4.4.9. Consequently, ®; is completely positive for all £ > 0 by the semigroup property. [

Proposition 4.4.12. Let L be a linear operator on My (C) such that L(1) =0 and L(a)* = L(a*)
for all a € M, (C). Let {fa} be any orthonormal basis for Hy such that f1 1y =1. Let (ca,5) be the
GKS matriz of L with respect to {fn}. Then L has the form

La) =il + 5 3 cas (il fol +1falfs)  (a€ M (O))
o,B#(1,1)

where h is the traceless self-adjoint matriz given by

1 *
h=35; > (eansfs —csanfi).
BA(L)

Proof. Using the facts that c, 3 = ¢4 for all @, by Lemma 4.4.7 and f(; 1) = 1, L has the
GKS-expansion

a) = anﬁf;afg =g'a+ag+ Z caplaafs,
a,B Oé,ﬁ?é(l,l)

where g := %1 + Z cany,pfp Let k= %(g +g*) and h = %< — g*) be self-adjoint such

B#(1,1)
that g = k + ih, then we have

L(a)=g"a+ag + Z capfaafs = —ilh,a] + ka + ak + Z capfaafs,
o, B#(1,1) a,B#(1,1)

1
for all a € M,,(C). Using this and the fact that L(1) = 0, we obtain k = —3 Z capfafs and

a,f#(1,1)
therefore

L(a) = —ilh,a] + ka + ak + Z capfaafs = —ilh,a] + Z <f;afg - %f;fga - ;af;fﬁ>

a,#(1,1) a,B#(1,1)
. 1 .
=—ilhal+5 Y cap(fala, fol + [fa,alfp).
a,B#(1,1)
Furthermore, Tr(g) = % c(1,1),(1, ) r(1) + 2/#(1 1) €(1,1), gTr(fg) = 5ca,1),a,1) € R by orthogonality,
so this implies that Tr(h) = 0 as Tr(h) is the imaginary part of Tr(g). And,
1 1 X
h = 21(9 g) = % Z c,8fp — Z caongls | = Z ca,8f8 —caa)fi)

#(1,1 B#(1,1) »375(171

as (cq,) is a self-adjoint matrix. O

Next, we give the definition of a modular basis. Let p € &4. Then we first note that
the modular operator A, is also positive with respect to the Hilbert-Schmidt inner product:
(Ap(@), z)ms = Tr(z*Ay(w)) = Tr(z*prp~t) = Tr(p~2a*p!/2p! 2wp=1/2) = Te(|p" 2zp™/22) > 0
for all z € M,,(C). So there exists an orthonormal basis {z1, ..., z,2} for H,, consisting of eigenvectors
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of A, and all eigenvalues of A, are non-negative. Since A,(1) = 1, we may assume that 1 = 1. In
this case, we have Tr(z) =0 for v =2, ..., n? by orthogonality. Moreover, since A, is invertible, all
eigenvalues of A, are strictly positive and we can write them in the form e~ for some wy € R.

Now since (A,(z))* = A1 (z*) for all z € A, we have

Aj(z) =e Yz <= Ay(z") =e“z" forze Aand weR.

This important equivalence will be used tacitly. In particular, e™ is an eigenvalue of A, if and only
if e is an eigenvalue of A,, and the set of eigenvectors of A, is self-adjoint. Hence, it follows that
there exists an eigenbasis for H,, with the following properties that are stated in the next definition:

Definition 4.4.13. Let p € &,. The modular basis of A, is an orthonormal basis {z1, ..., z,2} for
H,, with the following properties:

(1) {z1,..,z,2} consists of eigenvectors of A, ;
(2) z1=1;
(3) {1, ..., zp2} = {2],...,27,}, i.e. the set {x1,..., 2,2} of eigenvectors is self-adjoint.

Theorem 4.4.14. Let L be the generator of a QMS that satisfies the p-DBC for some p € &. Let
(ca,p) be the GKS matrixz of L with respect to a modular orthonormal basis {fo} for Hy. Then for
all o, B we have

e cqp = Ca e’ and cop=e “cg o,

where for each o, wq is the real number satisfying Ap(fo) = e “*fo and o/, 3" are defined by
Jfo =[5 and fg = f; In particular, the GKS matriz of L commutes with the diagonal matrix

(50[,56‘“”‘)0[75
Proof. By Corollary 4.3.9, L and A, commute and it follows that for all a € M, (C),

p~ L(pap™t)p = p ' L(A,(a))p = p~'Ay(L(a))p = p~ ' pL(a)p™'p = L(a).

From A,(fs) = €% f,, it follows that p~1 fXp = A,(fa)* = e o fx and p~L f5p = Ap(fg)* = e“ f3.

«
Consequently, using the GKS-expansion of L, we see that

> capfiafs=Lla) =p 'Lipap™Np=> capp ' fipap~ fap =D P frafs,
a7ﬁ a7/8 a75

and we obtain e“>c,g = ¢, ge”? by the uniqueness of the coefficients. And in particular, the
GKS-matrix of L commutes with the diagonal matrix (64 g6“*)q,3

Now note that for all a,b € M, (C) we have

(L(a),b)us = Tr(b*L(a)) = Y _ Tr(b*casfiafs) = Y Tr(casfab* fra)
a,fB a,B

= ZTI(<mfabe)*a) = <Q’Z%,Bfabf§> )
HS

a,fB a,B
which implies L (b) = "ea5fabfs =Y ¢gafabfs, where the last equality follows from Lemma

a?ﬁ a7ﬁ
4.4.7. In the proof of Proposition 4.3.13 we have shown that Lf(b) = L'(bp~")p for all b € M, (C),
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where L' is the adjoint of L with respect to (-,-),1. And since L' = L, we obtain LT(b) = L(bp~!)p,
or equivalently, L(b) = Lt (bp)p~! for all b € M, (C). Using the GKS-expansion of L,

> capfibfs = L) = L(bp)p™ = cpafabpfip™ = cg.ac” fabf},

a?ﬂ a75 a7ﬁ
where the last equality uses p!)"g‘p_1 = Ap(fg) =e“s f; Since fy = f], we have w, = —w, for all 7.
Continuing with the last floating equation, we then have

D capfibfs = cal fubfi = cy o€ fubfh = cy e fibfs.
C!,B C!,ﬂ C!,B Ot,ﬂ

Using the the uniqueness of the coefficients again, we obtain c, g = cgr ve”“? for all a, 8. Therefore,
Cpl o = Ca,pe”? = €“co g and this is obviously equivalent to ¢, 5 = e “cg o for all a, 5. O

Remark 4.4.15. An important observation is that the condition e*>c, g = c, ge*? implies that

Wa #wg = Ccq =0.

Proof of Theorem 4.4.1. By assumption ®; has an extension ®, to a QMS on M, (C). It suffices

to consider (®;);>¢ and for convenience we suppose that the extension is done and ®; is a QMS on
M,,(C) satisfying the p-DBC.

To this end, let {f.} be a modular basis of A, for H, and for each «, w, is the real number

satisfying A,(fa) = €79 fo, and ' is defined by fo = f&. Let ¢4 3 be the GKS matrix of L with
respect to {fo}-

By applying Proposition 4.4.12, we have

L) =il + 5 3 cas(fila fo +[f2alfs) for all a e M, (C)

a,B#(1,1)

where h is the traceless self-adjoint matrix given by

h=2 > (e pls —caanfs)-
B#(1,1)

Since w(y,1) = 0, it follows that c¢(1 1) 5 = ¢g,(1,1) = 0 whenever wg # 0 by Remark 4.4.15. Moreover,
the modular basis { f,} may be chosen such that f5=1Tsifwsg=0 (by considering their real and
imaginary parts and noticing that the real and imaginary parts are eigenvectors of A, again with
eigenvalue 1) and in this case 8 = §’. Thus,

o1
h=o D (cansfo—csanft) =5 >, (cans—coan)fs
B#(Ll) B?é(l’l): w,B:O

However, cgr (1,1) = ew<1,1yc5/,(1,1) = ¢(1,1), for all B by Theorem 4.4.14 as (1,1) = (1,1) and
wer,1y = w1 = 0. Hence, h = 0.

Since L has GKS-expansion L(a) = Z capfaafs, we can replace o with 5" and  with ¢/ to obtain

a?ﬂ
L(a) = capfiafs =Y cpofyafa =Y cyafsafs = cape foafs,
O(,ﬂ a,ﬂ Q,B a)ﬂ
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where we used fJ = f,/ for all v and Theorem 4.4.14. Applying Proposition 4.4.12 to this GKS-
expansion for L, we can rewrite it as

L(a) = —iffal + 5 3 cope™ (fola 20+ [fonalf2)
a,B7#(1,1)

for some self adjoint matrix h e M,,(C) and by the same argument as before we also have h=0. At

this point we have two expressions for L, namely

1 1

L) =5 >, cap(fila.fo)+[faalfs) and Lia)=5 > cape™ (fola, fo] + [fa,0lf2)
o,B7#(1,1) o,B7#(1,1)
We can average these two to get
1 * W, * *
L(a) = 7 > cap(fila, fol + (2 alfs + e (fsla, £2]+ (S5, al £2)) -
a”@;ﬁ(l,l)

Since the reduced GKS matrix of L is self-adjoint by Lemma 4.4.7 and commutes with the diagonal
matrix (6a,56%*)q,g£(1,1) by Theorem 4.4.14, there exists a (n? — 1) x (n? — 1) unitary matrix u
that diagonalizes the reduced GKS matrix of L and commutes with (d4,56)qs 3£(1,1)- By the same
argument as in Remark 4.4.15, we have u,, = 0 if w, # w,. We may then write each ¢, g in the
form

Ca,ﬁ—’ Z Uyae " Cv“vﬁ
775(1 1)

for some constants c, such that {%e*“”/ 207}7#171) are eigenvalues of the reduced GKS matrix of L.
Each ¢, is non-negative since the reduced GKS matrix of L is positive by Lemma 4.4.11. Now since
Uany = 0 if wo # wy, we also have

1
€ Cap = 9 Z “'y,aeM/zcvu%ﬂ'
v#(1,1)

Define v, := Z uy 3fs € My(C) for v # (1,1). Then, for all a € M,(C),

B#(1,1)
> caplilafsl= > e Peyuy g | (faafs = fafsa)
a,f#(1,1) a,f#(1,1) ’77'5(1 1)
1 _ _
=5 X Y ee P @ausfiafs — Tawsfafse)
a,B#(1,1) v#(1,1)
Z cveiw#Q Z (Uyatiy,gfaafs — Uy auypfofsa)
y#(1,1) a,B#(1,1)
1
=3 Z c e/ (viavy — vivya) = Z c e/ v3[a, vy],
#(L1) '775(1 1)
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and similarly,

Z Ca,8lfa Z ¢ye w7/2v ;ajvy

o,B8#(1,1) 775 (1)
D Cape fala, Z cye v a, 03] ;
a,BE(L1) 7# (L)
Z Ca,ﬁewa [f,Ba Z C’V w’y v’Y? ] 'y7
a,B#(1,1) ’y;ﬁ (1,1)
so that
1 * * w * *
L(a) = > cap(fila, fol + 2 alfs + € (fsla, £2] + [f5, al 2))
a,B#(1,1)
1 —w " "
=3 Z Cy (e /2 (vila, vy] + [v3, alvy) + e wy /2 (vy[a, v3] + [Uy,a]vv)> .
#(1,1)

By symmetry, we may assume without loss of generality that ¢, = ¢/, so that v,y = vJ for all
v # (1,1). But then,

Z 0767“7/2[1)1;&]1)7: Z cwfe_“’V’ﬂ[v Hna Z e ?[v,, alv’ vy, and
7#(1,1) 7#(1,1) #(1,1)

Z c,Y(3°J‘*/2 Z Cyre ’/2 a, v = Z c,ye_w”/QU:[a,vfy],
#(1,1) v#(1,1) 7#(1,1)

so that the expression for L(a) reduces to
L(a) = Z Cy (e_wﬁ/%i[a,vy] + e“’”/Q[vw a]v,j) :
v#(1,1)

This is (4.1) up to some constants. On the other hand, using the expression

1
L(a) = 3 Z cap (fila, f8] + [fa,alfz) (that was shown in the beginning), we also have

75#(1’1)
1 " *
L(CL) = 5 Z Ca,p (fa[avfﬂ]+[fa7a]fﬂ)
a,B7#(1,1)
= Z cye ‘“7/2 a,vy] + [v3, alvy) .
7#(1,1)

which is (4.2) up to some constants.
Now since u has orthonormal rows, we have

Tr(v y) Z Upaty, g Tr(fo fp) = Z Up,alUy,a = Opy-
a,B#(1,1) a#(1,1)

For all v # (1,1), we also have Tr(vy) = 3_5(1 1) uy,8Tr(f3) = 0 as {fa} is an orthonormal basis
for H, and f 1y = 1. And {v3},21,1) = {vy}y2(1,1) since v = v,,. Moreover, using the fact that
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Uy g = 0if wy # wg,

Ap(vy) = p”'yp_l = Z uv,ﬁpfﬂp_l = Z uy,50,(f3)
B#(1,1) B#(1,1)
= Z Uy ge P fg = e Z uypfp =0y
B#(1,1) B#(1,1)
for all v # (1,1).

The final step is to absorb all the constants ¢, into v,: Since ¢y, > 0 for all v # (1,1), we
can make the substitution v, — ,/¢yv,. It is readily verified that properties (2),(3) and (4) of
Theorem 4.4.1 still hold for the new v,. For property (1) we have Tr(vjvy) = cyd,,. Letting
J={(i,7): 1<, <nand (,j) # (1,1)}, we see that the generator L has the specified form as
n (4.1) and (4.2).

For the converse, if L has the form (4.1)/(4.2) then it is clear that L(1) = 0 and

Z e “’3/2 Fla,vi] + vy, alv;)’ = Z e~wil? (viav; — vivja + viav; — av;‘vj)*
JjeJ JjeTJ

= Z e wil? (via*vj — a*vjv; + via*v; — vjva*) = Z e~wil? (vila®,vj] + [v}, a*]vy)
Jj€T JET

= L(a").

One can restore the ¢;’s by normalizing the v;’s. Then the set {v;};cs together with 1 and any
vi’s with ¢, = 0 form an orthonormal basis for H,. The reduced GKS matrix of L for this basis is
positive as the argument starting from Proposition 4.4.12 shows, which implies that L generates a
QMS ®; by Lemma 4.4.11. Furthermore, we have

(a, [vj,b]))p1 = (vja — e avi,b),1 and ([vj,b],a)),1 = (a,vjb— e bv}),1 forall j e J,

using the fact that A,(vj) = e™“v; (compare with Lemma 6.1.6 as a similar computation is done
there in detail). But then from this we obtain

e_wj/2<[vj,a]>[vj7b]>P71 e_wj/2< J[Ujaa]_e [Ujv ]U*f,b>[),1
= (70 vy, a] = €/%[u;, alu}, ).

—(e™ 2z la, v;) + €2 [vj, alv}, b1,

and similarly,

e_wj/2<[vjv al, [Ujv b]>ﬁ71 = —(a, e_UJj/QU; [b, Uj] + ewj/Q[vb b}v;>ﬂvl'
Consequently,
<L(a)7 b>p,1 = Z<eiwj/2v; [a, Uj] + ewj/Q [7)]‘, a]v;7 b>071
JjeT
= - Z e_wj/2<[vj7 al, [vj,0])p1
JjeJ
= {a, 7203 [b,v;] + €9/%[v;,b]0}) 1
JjeT
= <a7 L(b)>p717
so that ®; = !’ satisfies the p-DBC. O
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5 Classical detailed balance vs. quantum detailed balance

The main result (Theorem 5.0.2) of this section shows that ergodic quantum Markov semigroups
satisfying detailed balance induce a continuous-time Markov chain that satisfies the classical detailed
balance condition when a restriction of the QMS to a commutative subalgebra is possible.

Lemma 5.0.1. Let A C M,(C) be a unital commutative C*-subalgebra. Then A has a basis
{e1,...,em} consisting of mutually orthogonal projections in A with Y -, e, = 1. Consequently,

m
= Z Tr(exa) er for all a € A.
— Tr(ex)

Proof. Since A is a unital abelian C*-algebra, there exists a compact Hausdorff space X such that
the Gelfand representation 7 : A = C(X) is an isometric *isomorphism. Now note that C'(X) is
finite dimensional if and only if X is finite. Thus, X is necessarily finite, say X = {z1, ..., x,} since

1, z=ux;

A is finite dimensional. Now define for i = 1, ..., m the functions f; € C(X) by fi(z) = 0 .
— T

Set e; ;== !(f;) € Afor i =1,...,m. Then for all i = 1, ..., m, we have
G=n () =r')=rf)=e and ef=a(fi)  =a () =7 (i) =es
so that {ej,...,en} C A are projections. Moreover, if i # j then

eiej = ' (f)m N (f) =7 (fif)) =7 1(0) =0 and,
ep = Zﬂ'_l(fi) = (Z fl> =7 1(1)=1.
k=1

This implies that {e1,...,en} is a set of mutually orthogonal projections in A summing to 1. It is
clear that {fi,..., fm} is a basis for C'(X), but then it follows almost immediately that {e1, ..., e}
is a basis for A using 7—! once again.

Equip A with the Hilbert-Schmidt inner product (-, -)us. Then for all @ € A, we can write

(a, ex)us Tr(era
M e I

ekaek’ HS 1

O

A vector A = (A1, ..., A\p) € R™ is called a distribution or probability vector if A > 0 for all
k=1,..,mand > " A\ = 1.

Theorem 5.0.2. Let ®; = el be an ergodic QMS on M,,(C) that satisfies the p-DBC for its unique
invariant density matriz p € &4. Let A C M, (C) be a unital commutative C*-subalgebra that is
imwvariant under (I>I (@I(A) C A forallt >0). Let {e1,....,em} C A be a basis for A consisting of
mutually orthogonal projections such that Y -, e, = 1. Then the following statements hold:

(a) The m x m matriz Q = (Qk,1)1<ki<m defined by

Tr(exL(ep))

Q1 = Tr(cs)

1<k, l<m)

specifies a continuous-time Markov chain with state space {1,...,m} and jump rates Qi from

k tol.
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(b) The corresponding forward equation, governing the evolution of site occupation probabilities is

*)\z Z A(t

where AGﬁ) = (A1(t), ..., \m(t)) € R™ is a probability vector.

(¢) A time-dependent probability vector X(t) = (A1(t), ..., Am(t)) € R™ satisfies the equation in (b)
if and only if the time-dependent density matriz A(t) € A given by

_ e ()
N Z Tr(ek c

k=1

Z (O)Qri — N(t)Quk) -

k=1

satisfies EA(t) = LT(A(1)).

(d) The probability vector p'= (p1, ..., pm) given by pr = Tr(pe) for k = 1,...,m is the unique
invariant distribution for the Markov chain, and the classical detailed balance equations

PkQri = Qe (1 <k, 1< m)

are satisfied.

Proof. We first show that the matrix @ satisfies > ", Qx; = 0 for all £ € {1,...,m} and that

Qr,g > 0 for all k£ # [, which makes it a transition rate matrix. First note that ®;(1) = 1 for all
t > 0 so that 0 = L(1) = >, L(e;) which implies that > ", Qr; = >0 W = 0 for all
k=1,...,m. Let L be given in the form (4.2) of Theorem 4.4.1. Then for k # [, we have

Tr(exL(er)) = Y e 2T (er (vi[er, vj] + [0, e]v;))
jeJ
= Z e wil? (Tr (ekvjelvj) —Tr (ekv;vjel) + Tr (ekv;elvj) —Tr (ekelv;-‘vj))
JjeT
= Z e wil2 (Tr (ekv;‘elvj) —0+Tr (ekv;ewj) - O)
€T
=2 Z e Wil 2Ty (ekv;elvj) >0,
JjeJ
where in the third equality we used the pairwise orthogonality of {eq, ..., ey, } and the last expression
is positive since e, > 0 and vje;v; > 0 and that implies that Tr(egviev;) > 0 (take square roots).
Further, Tr(ex) > 0 for all k. Thus, Qx; > 0 for all k # [ and therefore @) is a transition rate matrix.

It is now possible to construct a continuous-time Markov chain with state space {1,...,m} and jump
rates Q from k to [, see section 2.6 in [17]. This proves (a).

The forward equation in (row) vector form is given by %X(t) = X(t)Q where X(£) = (AL(t), ..., Am (1)) €
R™ is a probability vector. For [ = 1,...,m this can be written as

*Az ZM = > k(O)Qkt — M(D)Quk)

k=1

and the last equality follows from Q;; = —>, 2l Qi - This proves (b).
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Let X(8) = (A1(£), ..., Am(t)) € R™ be a time-dependent probability vector. Define the time-dependent

density matrix A(t) € A by A(t) :== > o, T)\‘r’“(ii)) er. Since A is invariant under <I>T it is also invariant
under L. In particular, we can write LT(A(t)) = 1", LLGYAIC) P 1 TrLeMt) oy

Tr(ek) Tr(ey)
Lemma 5.0.1. On the other hand, we have $A(t) = Y3 L\, (+)Tr(ex) Ler. Now since {e1, ..., e}
is a basis for A, we see that

CZM) LIA®D) %/\l() Te(L{e)A(t)) for all L =1, ..m

Now note that for each [ = 1, ..., m we have

Te(L(e)A(t)) = ( ) kz DRGNS S WAT W

— Tr(ex) P

From this and the ‘iff’ statement above, it follows that A(t) satisfies the equation in (b) if and only
if 4\(t) = LT(\(t)) and this proves (c).

Note that p = limy o0 @I(h) for any density matrix h € M, (C) by Proposition 4.3.13. But since
A is invariant under (I>;f , we see that p = limy_, CIDT(h) € A for any density matrix h € A as A

is closed. Thus we can write p = > ", %ee’“kp =>, Tr Y Ck by Lemma 5.0.1. In particular,
per = %ek = ep for all £ = 1,..,m by orthogonality. It follows for 1 < k,l < m that

Tr(exL(er)) = Tr(pexL(er)) = Tr(pL(ex)er)

Tr(e;L(er)) = p1Qi ks

Pk
PeQr1 =

Tr(ex)

Pl
=Tr(e;pL(e))) = ——
(eipL(er)) To(e)
where in the third equality we used the self-adjointness of L with respect to (-,-),1. Hence, @
satisfies the classical detailed balance conditions with respect to p. Furthermore, for [ = 1,...,m
we have Z}le PEQr = Z?:l pQuk = Pt Z?Zl Q11 = 0 since @ has rows that sum to 0. Therefore
pQ = 0 and this implies that g is the unique invariant distribution for the Markov chain with
semigroup P; = e!?. This proves statement (d). O

Example 5.0.3. Let A C M,,(C) be unital C*-algebra, and let p € G, (A). Since p is self-adjoint,
the commutant of {p} is a C*-subalgebra of M, (C) and we set A, := {p} N A. Then A4, is a
C*-subalgebra of A and we call it the p-modular subalgebra of A. It consist exactly of those element
in A that commute with p and it also readily verified that A, equals the eigenspace of A, with
eigenvalue 1.

Now let (®¢):>0 be an ergodic QMS on M, (C) satisfying the p-DBC for its unique invariant
density matrix p € &,. Moreover, assume that ®;(A4) C A for all t > 0. Since ®; and A, commute
for all £ > 0 by Corollary 4.3.9, we have for all @ € A, and ¢ > 0 that

Ap(Pi(a)) = Pi(Ap(a) = Bi(a).

Therefore, ®;(a) commutes with p and ®;(A,) C A, for all t > 0. Moreover, for all « € A, and
be A,

(Ap(®] (@), b)us = {a, Be(A(0))mis = (a, A, (Be(b)))mis = (D] (Ap(a)), bus = (] (a). bs,

where we also used that A, is self-adjoint with respect to the Hilbert-Schmidt inner product. Thus,
Ap(@z(a)) = @I(a) and this means that A, is invariant under <I>I as well. Now let {n1,...,m,} be an
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orthonormal basis of C" consisting of eigenvectors of p with pn; = e N n; for j =1,...,nand \; € R.
If the numbers Ay, ..., A, are all distinct, then the eigenspace of A, for the eigenvalue 1 is exactly
the span of the set {|n;)(n;|}]_; [1]. So in this case A4, is an n-dimensional abelian C*-subalgebra
of A and Theorem 5.0.2 applies.
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6 Riemannian metrics and gradient flow

The notion of non-commutative differential operators associated to a quantum Markov generator
will be introduced. By means of these operators, it is possible to consider forms associated to a
quantum Markov generator.

One of the important results (Theorem 6.2.8) shows that associated to any QMS ®; = e*! with
detailed balance, the flow induced by the dual generator L' is gradient flow with respect to some
Riemannian metric gy, for the relative entropy.

In this section A will be a fixed unital C*-subalgebra of some matrix algebra M,,(C).

6.1 Forms associated to generators of quantum Markov semigroups

Let ®; = €'’ be a QMS on A that satisfies the p-DBC for some p € &, (A) and assume that
(®4)¢>0 has an extension to a QMS on M, (C). Then we know that the generator L can be written
in the form given in (4.2) of Theorem 4.4.1. Throughout the rest of this subsection we fix such a
generator L, and the sets {v;};es € M,(C) and {w;}jcs C R that specify L according to Theorem
4.4.1.

Definition 6.1.1. The (non-commutative) partial derivatives associated to L are the operators
0; : A — A defined by
0j(a) := [vj,a] forae Aand je J.

An immediate consequence is that for all a,b € A we have
(9(a), b)us = Tr(b*v;a)—Tr(b*av;) = Tr(b*vja)—Tr(v;b*a) = (a, v;b)us—(a, bvj)us = (a, [v], b])us,

so that
olb = [v},b] forallbe AandjeJ.

Having a notion of ‘non-commutative partial derivatives’ available, allows us to introduce
non-commutative analogs of the Laplace operator, gradient and divergence associated to L.

Definition 6.1.2. The (non-commutative) Laplace operator associated to L is the operator
Lo : A — A defined by

Lo(a) == 019;(a) = = > _[v]},[v),a]].

JjET JjET
Clearly, LT = L and we also have
Lo(a) = — Z[v;, [vj,a]] = — Z (v;-“[vj,a} - [vj,a]v;-‘) = — Z (v;-‘vja — vjav; — vjav; + avjv;-‘)
JjeT JjeT JET
= Z (vjav; — vivja + vjav; — avjuy) = Z (vila, vs] + [vj,alvf)  for all a € A.
JET JET

Thus, by Theorem 4.4.1, Lo is the generator of a quantum Markov semigroup ®¢; = etlo satisfying

the h-DBC where h = %1 because in this case Ay, is the identity and w; = 0 for all j € J. We call
tL

Do = etlo the heat semigroup associated to &, = e*~.
Define the C*-algebra
A®T .— @ AW,
jeJ

54



where each AY) is a copy of A. In other words, A®7 is the direct sum of | 7| copies of A. For
a€ A®7 and j € J, let a; denote the component of a in AU) . Thus, by picking some linear ordering
of J, we may suggestively write

a = (al, ceey a|J|) .
We equip A®7 with the inner product (a, b)us := 3¢ 7(a;, bj)us for a,b € AP7.

Definition 6.1.3. The (non-commutative) gradient associated to L is the operator V : A — A®7
defined by

V(a) = (al(a), ,8U|(a)) .

Definition 6.1.4. The (non-commutative) divergence associated to L is the operator div : A7 — A

defined by
div(a) := Z@T (ay) Z aj, v;].
jeJ JjeJ

Remark 6.1.5. We have divl = —V since
(divi(a), bius = — > (9](a;), bhus = — D _ (a5, 9;(b))ms = (a, —V (b)) s
JjeT Jj€T
for all a € A®7 and b € A. Consequently, in our finite-dimensional setting,

ker(div)t = Im(div’) = Im(-V) = Im(V).

Lemma 6.1.6. Let s € [0,1], j € J and a,b € A. Then

(a,0(b))p,s = €™ (e “Ivia — avy,b), s

Proof. We first note that (A,(z))* = A;l(a:*) for all x € A. This implies that
Aj(z) =e “x <= Az =ez" forz e A

In particular, we have Az_l(v;f) = 6(3_1)°’iv; and Aj(vy) = e*iv} since Ap(vj) = e v, by

Theorem 4.4.1 and functional calculus. Using this, we obtain for all a,b € A,
(@, 05(0)) s = Tr(p* (05(0)) 1) = Te(p* (ub — buy)"p~a)
= Tr(p*b"v! p=%a) — Tr(p b 1=50)
_ (psb*pl sAz—l(U) ) — Tr(A3(v})p*b*p 1=s)
— (571w Tr(psb*pl_svj a) — e Tr(v; p°b*pt~%a)
= e (Tr(psb*plfse*wfv;a) — Tr(psb*plfsav;))
= esijr(pr*pl_S(e_wjvja —avy)) = e™i (e vja — avi,b)p s

This is exactly what we needed to show. O

Using Lemma 6.1.6, it follows that
2995(9;(a), 05(D)) p,s

e1/2=9)w; 659 (¢ “Yvilv, a] = [, alvg, b)p,s

[vj,
=i/ (e B ] [vj, alvj; b)p,s
— <e ""1/2 ;[’UJ, ] wi /2 [j ] >
— —<efwﬂ/21);[a, Uj] +e wi/ [7)37 ] > K]
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For each s € [0, 1] define

EiAx A C, &lab) =Y e?(9;(a),0;(b))ps-
jeJ

Then & is called a form associated to L and by (4.1) of Theorem 4.4.1 we obtain

Es(a,b) = —(L(a),b), s

In particular, taking s = %, we see that

51/2(61, b) = Z<aj(a)7aj(b)>p,l/2 = _<L(a)7b>p,1/2v
JET

for a,b € A and &, is called the Dirichlet form associated to L.
A simple consequence of the Dirichlet form is an ergodicity result:

Theorem 6.1.7. Let ®; = e'* be a QMS on A that satisfies the p-DBC for p € G (A). Then the
commutant of {v;}jes equals the kernel of L. In particular, (®.)i>0 is ergodic if and only if the
commutant of {vj}jcy is spanned by the identity.

Proof. We may assume that L is in the form (4.1) of Theorem 4.4.1. Let a be in the commutant of
{v;j}jes. By definition, this means that [v;,a] = [a,v;] = 0 for all j € J. Therefore, L(a) =0 as L
has the form (4.1).

Conversely, let a € ker(L). Then, using the Dirichlet form of L, we see that

Z<6j(a)vaj(a)>p,1/2 = 81/2(a7a) = _<L(a)7a>p,1/2 =0.
JjeJ

Consequently, [v;,a] = 0j(a) = 0 for all j € J, that is, a belongs to the commutant of {v;};c7.
Thus, the commutant of {v;};ecs coincides with the kernel of L.

Note that (®);>0 is ergodic if and only if ker(L) = span(idcn) which follows almost immediately
from the definition of ergodicity. Hence, (®;);>0 is ergodic if and only if the commutant of {v;};c 7
is spanned by the identity. O

Remark 6.1.8. For all x € A, we have

(Lo(x), z)us = — »_(010;(x),2)us = — > _(95(x),0j(x))us = —(V(2), V(2))us.
JjET JjET
We claim that {v; : j € J} =ker(Lo) = ker(V). Indeed, if 2 € ker(Ly), then [v;, z] = 9;(x) = 0 for
all j € J by the above relation. In other words,  belongs to the commutant of {v;};c7. Conversely,
if z belongs to the commutant of {v;}je7, then Lo(z) = — 3, 7[v}, [vj, 2]] = 0 by definition of L.
Therefore, {v; : j € J} = ker(Ly). Further, ker(Lg) C ker(V) is clear from the relation above. And
ker(V) C ker(Lyg) follows from the fact that Ly = divo V.

Theorem 6.1.9. Let ®; = ' be an ergodic QMS on A that satisfies the p-DBC for p € G, (A).
Let Lo be the associated Laplacian operator. Then for given b € A, there exists an v € A such that
Lo(z) = b if and only Tr(b) = 0. Consequently, if Tr(b) = 0, then there exists a non-trivial affine
subspace of A7 consisting of elements a for which div(a) = b.
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Proof. Since (®;);>0 is ergodic, it follows that ker(Lg) is spanned by the identity according to
Theorem 6.1.7 and remark 6.1.8. Let b € A given. Then there exists an z € A such that Lo(x) = b
if and only if b € ker(Lg)J— = ker(Lg)* = (C1)* by the Fredholm alternative, where L denotes the
orthogonal complement with respect to (-,-)gs. But b € (C1)* if and only if Tr(b) = 0, so that
Lyt ({b}) is non-empty if and only if Tr(b) = 0. In particular, when Tr(b) = 0 then the solution
space Ly ' ({b}) defines a non-trivial affine subspace. Using the fact that Lo = div o V, we see that
there exists a non-trivial affine subspace of A®7 consisting of elements a for which div(a) =b. O

Going forward, R, : M, (C) — M, (C) denotes the right multiplication by a € A.

Lemma 6.1.10. For allv € M,(C), h € &4 and w € R, we have

1
/ YRy AT (v log(e™/?p) — log(ew/2h)v> ds = e™*/2vh — e“/?hu,
0

where the integral is a Banach-valued Riemann integral.

Proof. This is a consequence of the calculus rules. Define f(s) = e?(1/2=)p1=syhs then f is
continuously differentiable on [0, 1] with

f/(S) _ _wew(1/2—s)h1—svps + ew(l/Q—s) (_pl—s log(h)vhs + pl—svhs log(h))
_ _wew(l/Qfs)hlfs,Ups _ ew(l/Zfs)hlfs log(p)vhs + ew(1/275)hlfsv log(h)hs
(/2= p1=s (v — log(h)v + vlog(h)) h*
= (1/2=8)pl=s (log(e*”/Z)v — log(e*/?)v — log(h)v + v log(p)) h?

= (1/2=s)pl=s (v log(e=“/?h) — log(ew/2h)v) h®.
Consequently,
/01 G2 Ry AS (vlog(e™“/?h) — log(e®/?h)v) ds =
/01 e(s=1/2) s <v log(e™“/?h) — log(e‘”/2h)v> hi=s ds = /01 f'(1—s)ds
_ /01 £ dt = (1) — F(0) = e/2ph — /2y,

which is the desired identity. O

Remark 6.1.11. For each w € R, define the function f, : (0,00) — R by

1
Folt) = / (#(s=1/2)43 .
0
Then the identity in Lemma 6.1.10 can be reformulated as
Ry, fu(Ap) (v log(e™*/2h) — log(e“’/2h)v> = ¢ %/ 2vh — ¢/ ho,

and for w = 0 it reduces to Ry, fo(Ar)([v,log (h)]) = [v,h]. Take v = v; and then from the latter
identity we obtain Ry fo(Ar)(0;(logh)) = 0;(h) and this can be seen as the non-commutative
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analog of g(x)V log(g(z)) = Vg(x), which holds for all smooth, strictly positive probability density
functions g : R" — R.

Moreover, if a € A commutes with h € &, then fy(Ay)(a) = a by definition of fy. So for each
w € R, the operation a — R}, f,(Ap)(a) can be viewed as one of the non-commutative interpretations
of multiplication of a by h.

The previous remark motivates the following definition:

Definition 6.1.12. For w € R and h € &, define the operator [h],, : M, (C) — M, (C) by
[h]w = Rh o fw(Ah)v
where f, is defined as in Remark 6.1.11.

Note that [h],, is invertible for all h € &, and w € R with [h];! = (1/f.,)(Ap) o Rj—1 and may
be viewed as the corresponding non-commutative interpretation of division by h.

Lemma 6.1.13. For all w € R, the maps h — [h], and h — [h]
for all a € M, (C) we have

oL are C® on &,. Furthermore,

[Alw(a)” = [h]—w(a”) and [A5"(a)" = [R5 (a").

—w

Proof. First note that the following identities hold for A, u > 0:

1 o]
A— 1 log A — 1
/ )\SMI_S ds = 7,& and / -  dt= u’
0 log A — log pu o (E+A)(t+p) A—p

1 00 1

so that / A pt—s ds) </ — dt) =1 for all A\, > 0. Using the definitions we
0 o (E+A)(t+p)

obtain for all h € &4,

1 1 s 1—s
[h]w = Rufu(Ap) = / XV RIS ds = / <€w/2Lh) (e‘w/QRh) ds,
0 0

where Ly, is the left multiplication by h. Note that ¢ + e*/2L;, and ¢ + e"“/2Ry;, are invertible for all
t >0 (where (t + e“/2L;)~" is the left multiplication by (t1 + e*/2h)~! and (t + e=“/?R})~! is the
right multiplication by (t1 + e~“/2h)~!). But then,

1 s 1-s\ ! o0
ho! = (/ (e“’/QLh) (e’“/QRh) > ds = / (t+e*/2Lp) " (t + e~ /2 Ry) " dt.
0 0

Now using the fact that taking inverses is C*° ([16], Theorem 1.2.3), we see that the map h —
(t +e“/2Ly) Yt + e /2Ry,) "1 is C™ on & for all t > 0. It follows that h — [h];" is C™ on &,

w
and C* of the map h — [h],, follows immediately since taking inverses is C*°. Furthermore,

1 . 1
[h]w(a)* _ (Rhfw(Ah)(a))* _ / <ew(871/2)hsah175> ds :/ ew(sfl/Q)hlfsa*hs ds
0 0
0 1
_ _/ ew(l/Q—t)hta*hl—t dt :/ e—w(t—1/2)hta*h1—t dt = [h]_w(a*),
1

0

for all a € M, (C). Consequently,



Lemma 6.1.14. Let ®; = ¢'* be a QMS on A that satisfies the p-DBC for some p € &, (A), and
let L be given in the form (4.1) or (4.2) . Then for all h € S4(A) and all j € J, we have

d;(log h — log p) = v; log(e™*i/2h) — log(e*i/2h)v;.
Proof. Note that Ajv; = e™*%v; by Theorem 4.4.1 and functional calculus, so that
0s(Ajv;) = Os(e™v;) = —wje *Iv;.
On the other hand, we have
ds(Ajv;) = 0s(p°vip~°) = p°log(p)vip~* — p*vjp~*log(p).

Evaluating at s = 0 with a minus yields [v;,log(p)] = —0s[s=0(Ajv;) = wjv;. Consequently, for all
h e 6+(A)>

9j(log h —log p) = [vj,10g(h)] — [vj,log(p)] = v;log(h) —log(h)v; — wjv;
= v;log(h) — log(h)v; — log(e“s/*)v; + log(e™“1/?)v;
=vj log(e~“1/%h) — log(e“’j/Qh)vj,

which is the desired identity. O

Theorem 6.1.15. Let ®; = e’ be a QMS on A that satisfies the p-DBC for some p € & (A), and
let L be given in the form (4.1) or (4.2). Then for all h € & (A) we have

—Li(h) =" 9! ([P, 0;(log h —log p)) .

JjeT
Proof. Let h € 6, (A), then
> 0] ([, 05 (10g h ~ log p)) = > 8] ([hl., (v log(e™/2h) — log(es/2h)v; ) )
JjeT JjeT
= Z 8} (e_wj/%jh - e“j/thj)
Jje

where the first equality follows from Lemma 6.1.14, the second equality follows from Lemma 6.1.10
and/or Remark 6.1.11 and the last equality follows from Remark 4.4.3. O

6.2 Riemannian metrics and gradient flow for the relative entropy

As in the preceding subsection, we let ®; = !X be a QMS on A that satisfies the p-DBC for
some p € 61 (A) and assume that (®;);>0 has an extension to a QMS on M, (C). But now we also
assume that (®;);>¢ is ergodic. As before, L can be written in the form (4.1) and (4.2) by Theorem
4.4.1. Throughout this subsection we fix such a generator L and the sets {v;};cs € M,(C) and
{wj}jes € R that specify L according to Theorem 4.4.1.
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Let I C R be an open interval containing 0 € R and let h : I — &,(A) be a differentiable

path in G,(A). We denote h(t) € A for the derivative of h in t € I. Since Tr(h(0)) =

lim;_g w = limy_,q % = 0, there exists by Theorem 6.1.9 an affine subspace of

A®7 consisting of elements a € A®7 such that
h(0) = div(a).
We wish to rewrite this as an analog of the classical continuity equation which arises in the study of

fluid dynamics:

gIZ(m, t) + div(h(z, t)y(z,t)) =0,

(where in this case h(z,t) is a fluid density and y(z,t) is a flow velocity vector field). To achieve
this, we first extend Definition 6.1.12:

Definition 6.2.1. Let X € RV! and h € &, (A). Define the linear operator [h]5 : A®7 — A9 by

(Blglars s ay) = ([blxs (@), o Bl () )

Note that [h]; is invertible with [h];\l(al, e ayg]) = <[h];11(a1), vy [h];lljl(a‘j‘)) But now if

a € A®7 satisfies h(0) = div(a) for some differentiable path h : I — &, (A), then by setting
y = —[h];l(a) we obtain

h(0) + div ([h](y)) = 0,

which is an analog of the classical continuity equation. Note that we abuse some notation here,
since h(t) is a differentiable path but h is also an invertible density matrix.

Remember that we have fixed a generator L and the sets {v;};c7 € M, (C) and {w;}jes CR
that specify L according to Theorem 4.4.1. We will also set & := (wl, ey wm) e RV, The following
inner products on A®7 will be of relevance and can be seen as a non-commutative analog of weighted
L?-norms.

Definition 6.2.2. For each h € &, define an inner product (-, )1, on A%7 by
<X7Y>L,h = <X7 [h]ﬁ(Y»HS = Z(xb [h]wj (y])>H57
JjeT
where x = (21, ..., 217)) ,y = (y1,-..,y)7/) € A%.

Theorem 6.2.3. Let h(t) be a differentiable path in S (A) defined on (—e¢,€) for some € > 0 such
that h(0) = hg € & (A). Then there exists a unique x, € A®7 of the form x; = Vu with u € A,
for which the non commutative continuity equation

h(0) = —div([ho]z(xn)) = —div([ho]s(Vu))

holds and such that
HthLJlo < HYHL,ho

for ally € A®7 satisfying h(0) = —div([ho]s(y)). Moreover, u can be taken traceless, and is then
uniquely determined and self-adjoint.
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Proof. By Theorem 6.1.9, R := {a € A®7 : i(0) = div(a)} is a nontrivial affine subspace of A®7.
In particular, R is convex and so is —[ho] ' (R) as —[hg];" is linear. In our finite-dimensional
setting, —[ho]5'(R) is a closed convex set consisting exactly of elements y € A%7 such that
h(0) = —div([ho)sy) by our previous discussion. Hence, there exists a unique x; € A®7 satisfying
h(0) = —div([ho]zxp) and such that |xplln, < |[¥llzae for all y € A®7 satisfying h(0) =
div([holzy)-

We now show that x;, is gradient using Remark 6.1.5. Let a € ker(div) and set w := [ho]5"(a) and
Ve := xp, — cw for ¢ € C. Then

(0) + div([Bola(ye)) = h(0) + div((ola(xa)) — ¢ - div([hola(w) = 0
as h(0) +div([ho]s(xz)) = 0 and div(a) = 0. Hence ||xp||1.ny < |¥ellLn, for all ¢ € C, or equivalently,
2R[c(x, W)L ho] < el WIIT ng
for all ¢ € C. Taking ¢ = mLﬁo/”WH%,ho’ gives

|<Xh7W>L7h0|2 |<Xh’W>L7hO|2

IWiZ e~ W,

)

which is only possible if (xp,, W), n, = 0, and therefore
(Xn,a)us = (X, [ho]W)us = (Xp, W)L h, = 0.

It follows that xj, € ker(div)® = Im(V) by Remark 6.1.5, i.e. there exist u € A such that x;, = Vu.
By subtracting a multiple of the identity from u, we may take u to be traceless. And if there exists
another traceless @ € A such that x;, = Vi, then V(u — @) = 0 so that u — 4 = al for some o € C
by Theorem 6.1.7 and Remark 6.1.8 ((®);>0 is ergodic). But then oo = Tr(u) — Tr(a) = 0 so that u
is then uniquely determined.

To show that in this case w is self-adjoint, we define the operator Ly, on A by Ly, (a) = div([ho]zVa).
A direct computation gives

Ly (a) = div([holu, 01(a), .., [holwy; 017(@) = D [[holw; (95(ay), v}]
JjeJ

=D [[hol, (fvg a)), 03] = D ([holu, (vja — av))v} = > v} ([holu, (vja — avy)).

JjeT JjeJ jeTJ

Then using Lemma 6.1.13, we get

Lig(@)* = S vj([ho)u (a0} — va)) = S ([ho)—u (a*v} — via*))u

jeJ JjeJ
= ([ho]-w,; (vja* — a*v}))v; = > vj([ho] -, (V0" — a*v})).
JjET Jjeg

By the fact that {v;}jes = {v]}jes and that for all j € J, Ay(vj) = e “iv; and A,(v]) = vy,
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we may define j' € J by vy = v} so that wj = —w;. So continuing with the expression for Lp,(a)*,

Lp,(a)* = Z([ho]—wj (v}‘a* — a*vj))vj — Z v;([ho] -, (v}‘a* — a*vj))

JjeT JjeJ

= Z([ho],wj, (vja® —a*vy))vy — Z vjr([ho]—w, (vja™ — a*v}))
JjeTJ JjeT

= ([holw; (via* — a*vy))v; = > 05 ([holw, (vja* — a*v;))
JjeT jeJ

= Lp,(a").

However, Lp,(u) = —h(0) and since h(0) is self-adjoint, we obtain div([ho]szVu*) = Ly, (u*) =
Lp,(u)* = —h(0). Now by the uniqueness of u, we see that u = u*. O

Theorem 6.2.3 allows us to define a Riemannian manifold (&4 (A),g) for some Riemannian
metric g which we will show. Set m := dim(A). Let ay, ..., a;m—1 be an orthonormal set of self-adjoint
traceless elements in (A, (-, -)us) such that the orthogonal complement of the identity is the span
of ai,...,am—1. We can regard & (A) as an m — 1 dimensional manifold with one coordinate map
u: G, (A) — R™ ! defined by

é(h) = (Tr(arh), ..., Te(am_1h)).

This map is indeed a chart, because if ¢p(h1) = ¢(he), then (hy — ho,ax)us for all k =1,....,m — 1.
But hy — he € span(ay, ..., am—1) so that (hy — he,h; — ha)pys = 0, or hy = hg. If follows that
¢:64(A) = ¢(64(A4)) C R™ ! is a homeomorphism.

Let hg € 61 (A). By Theorem 6.2.3, there is a one-to-one correspondence between the tangent
space Th,64(A) and the set G := {Vu:u € A, Tr(u) =0 and u = u*}. Henceforth, we will identity
the tangent space Tj,&4(A) with G through Theorem 6.2.3.

Definition 6.2.4. Let hy € &, (A). Let h'(t), h%(t) be two smooth paths in &, (A) defined on
(—¢,¢€) for some € > 0 such that h*(0) = h%(0) = ho. We define the (complex) Riemannian metric
9rLho * ThoS+(A) X T, &4 (A) — C by

9Lho (R (0), B2(0)) = (X1, Xp2) L 1o

where h' and x;; are uniquely related by Theorem 6.2.3 (i = 1,2). We denote the norm with respect

to this metric by || - [[g, -

To show that gy, j, indeed varies smoothly with h € & (A), we let ¢ (h) = Tr(axh) be the kth
coordinate function. We may define uz, 5, to be the unique traceless self-adjoint matrix in A such that
ap = —div([h]g(Vug p)) by choosing a smooth curve h(t) := h + tay with h € & (A) and without
loss of generality we may assume that there exists an interval (—e, €) such that h(t) € &4 (A) for all
t € (—€,€). Tt follows that A(0) = —div([h]z(Vug,s)). But, by orthonormality of {a, ..., am_1}, the
corresponding coordinate of /(0) is

¢(h+tag) — o(h) (Tr(ai(h + tag)), ..., Tr(am—1(h + tag))) — (Tr(aih), ..., Tr(am—1h))

lim = lim
t—0 t t—0 t
— lim t(Tr(arag), ..., Tr(am—1ax)) — e R
t—0 t
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where ey, is the kth is the standard unit vector of R”~!. Hence, the kth coordinate basis vector
for 7,64+ (A) ~ G is given by % = Vuy,, (where we identified 7S (A) with G through Theorem
6.2.3). Therefore, in this coordinate system, the k,! component of the metric tensor is given by

l9L.kd = 908 (Vugn, Vp) = (Vg Vi) o = Y (05 (ke p), (w05 (uin))us.
jer

Now by Lemma 6.1.13, the map h — [h],,, is C° for all j € J. Consequently, g5 is a C°° function
of h € &, (A) which is what we needed to show.

Definition 6.2.5. Let f : &4(A) — R be differentiable. The differential of f at h € &4(A),
)
denoted by %(h), is the unique traceless self-adjoint element in A satisfying

L ta) = f() < ‘;}{<h>>HS = <§}f<h>’a>Hs

t—0 t

for all traceless self-adjoint elements a € A.

In Chapter 2 we introduced gradient flows. For the sake of completeness, we introduce it again
as it will not hurt to repeat these concepts.

Definition 6.2.6. Let (M, g) be a Riemannian manifold and let f : M — R be continuously
differentiable. The Riemannian gradient of f at p € M, denoted by grad, f, is the unique tangent
vector in T, M satisfying the equation

d

dt t:of(V(t)) = gp(grad,f,7(0))

for all smooth curves 7 : (—¢, €) — M such that v(0) = p.

Let (M, g) be a Riemannian manifold and let f : M — R continuously differentiable. Fix
p € M. Then one might ask for which smooth curve 7 : (—¢,¢) — M with v(0) = p the derivative
%| o (7(t)) is as large or as small as possible. By the definition of the Riemannian gradient, we see
that we need to choose v such that 4(0) and grad, f are linearly dependent. So essentially, grad, f
indicates the direction in which f increases and decreases most rapidly. The corresponding gradient
flow equation for strongest ascent associated to f is the flow induced by the differential equation

V(t) = grad'y(t)fa ’7(0) =D-

Similarly, the gradient flow equation for steepest descent associated to f is the flow induced by the
differential equation

f)/(t) = _gra‘dfy(t)fv /Y(O) =D

Now take f: &(A) — R continuously differentiable. Let h € &, (A). The identification of
Th64+(A) with G = {Vu :u € A, Tr(u) = 0 and u = u*} through Theorem 6.2.3 shows that we
can interpret the Riemannian gradient grad, f of f at h € & (A) with respect to the Riemannian
metric g7, as the unique element in G satisfying

d
dt lt=0

for all smooth curves h(t) in &1(A) defined on (—¢,¢) for some € > 0 with h(0) = h and
h(0) = —div([h]z(Vu)) for some self-adjoint u € A.

f(h(t)) = (grad;, f, Vu)
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Theorem 6.2.7. Let f: S (A) — R be a continuously differentiable function. The Riemannian
gradient grad, f of f at h € &4 (A) with respect to the Riemannian metric gr, is given by

of
grad, f =V (5h( ))
Furthermore, the corresponding gradient flow equation (for steepest descent) is
: . of
h(e) = div (10O 51 (h(0) )

Proof. Let h(t) be a smooth curve in & (A) defined on (—¢,¢) for some € > 0 with h(0) = h and
h(0) = —div([h]z(Vu)) for some self-adjoint v € A. Then, using the definitions,

fgrad f, [0 (Va))s = {grach f, V)i = 5| (h(t)) = i TSRO
i TR ATRO) = F(R) _ /O )
= lim = <5h(h),h(0)>HS

t—0 t

— (Grm.ai(la(vn)) = (9 (G) a(vn))

where the last equality follows from V = —div' (Remark 6.1.5). In particular, we see that the

identity (grad,f, [h|z(Vu))us = <V (gi(h)) , [h]@(Vu)> is path-independent. So by Theorem
HS

6.2.3, we obtain (grad,, f, [h]5(x))us = <V <§{L( )) [h]@(x)> for all x € A®7 and since [h]z
HS
of

5h( )> The identification of G with 7,5, (A) through

Theorem 6.2.3 shows that the corresponding gradient flow equation (for steepest descent) is

is invertible, we obtain grad,f = V <

h(t) = div | [h(t .
() = aiv (1nsV 1 1(0)

O
The relative entropy with respect to p € &4 (A) is the functional D(-||p) : &4+ (A) — R defined by

D(h[|p) = Tr(h(log h —log p)).
Applying Theorem 6.2.7 to D(-||p) yields:
Theorem 6.2.8. Let ®; = e'* be an ergodic QMS on A that satisfies the p-DBC for p € &, (A).
Then

d
Soh(t) = L (h(t))

is gradient flow for the relative entropy D(:||p) in the Riemannian metric g, canonically associated
to L through its representation in the form (4.1)/(4.2).
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Proof. For all traceless self-adjoint a € A we have

D(h + tal|p) — D(h) - Tr [hlog(h + ta) + talog(h + ta) — hlog(p) — talog(p)]

lim =1

t—0 t t—0 t
i Lx(filog(h) — hlog(p))
t—0 t

L . Tr[hlog(h + ta) — hlog(h)]
= lim Tr[a(log(h +ta) —log(p))] + lim .
= Tr(a(log h — log p)) + Tr(a)
= Tr(a(log h —log p)) = (log h — log p, a)us,
hlog(h + ta) — hlog(h) d

li = —
a0 t dt

©(t) = a with ¢(t) := hlog(h + ta). Thus,
t=0

5
sp D(hllp) =logh —log p.

But then by Theorem 6.1.15, we obtain

h(t) = L(h(t)) <= h(t) == 0! ([h(t)],0;(log h(t) — log p))
jeTJ
= h(t) = div ([h(t)]5V (log h(t) — log p))

= te) = div (1) (5300010 )-

So indeed, %h(t) = LT(h(t)) is equivalent to the gradient flow equation for the relative entropy
D(:||p) by Theorem 6.2.7. O
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7 Quantum Ornstein-Uhlenbeck semigroups

In this section we present some examples of quantum Markov semigroups with detailed balance.
The semigroups that we will discuss are motivated by quantum theory.

7.1 The infinite-temperature Fermi Ornstein—Uhlenbeck semigroup

Definition 7.1.1. Let n € NU{oo} and let gy, ..., ¢, be self adjoint operators on a finite-dimensional
Hilbert space H such that g;q; + ¢jq; = 20; ;1 for all 1 <4, < n. The equations ¢;q; + q;q; = 20; ;1
are called the canonical anti-commutation relations (CAR) and the C*-algebra generated by q1, ..., ¢n
is called a CAR algebra.

Fix n = 2m for some m € N and let €" be the (finite-dimensional) CAR-algebra generated by
some self-adjoint operators gy, ..., ¢, on a finite dimensional Hilbert space H. Define the (unique)
automorphism I' : € — €" by I'(¢;) = —¢; for all j =1,..,n and define w € €" by

2m
w=14" H qj-
j=1

Since the operators iga;j_1¢o2; are self adjoint and unitary for all j = 1,...,m by the canonical
anti-commutation relations and they commute with each other, it follows that w is also self-adjoint
and unitary. Moreover, I is given by

I'(a) = waw = w*aw = waw™ for all a € €"

as wgjw = —g; for all j = 1,..n (use that w and ¢; anti-commute and w? = 1). For a multi-index
a=(aq,...,ap) € {0,1}" (and in this context a is also called a fermion multi-indez), we define

n
¢ =q¢"...qy" and |of:= Zaj.
j=1
Now also define

1
L:¢" =" La)= 5 Z(qu(a)qj —a) and

vji=wg;, j=1,..,n.

By a direct computation,

3

n

L(g%) = (g (1) - - Tlgn™)aj — 4%) = % ((—D""qua% - qa)

j=1 j=1

(—¢% = ¢%) = —|alg®.

N = N

Jia=1

Hence, —L is called the fermion number operator. Note that v; is self-adjoint and unitary since w
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and ¢; anti-commute for each j. In particular, 0]2- =1 so that

n n

L(a) = ; Z(q]I‘( %Z (gjwawg; — a) = %Z(vjavj —a)

J=1 =
1 BN
= =7 2_2a—2av)) = =3 3 _(vfa —vjav; — vjav; + avf)
i=1 7=l
1 o Ly
== 2 _Wjlvj,al = [vjalvy) = =7 > [vj. [vj.a
j=1 =t

By making the substitution v; — %vj, we see that L has the expression as in Remark 4.4.2. Thus,
®; = etl is a QMS satisfying the dim(H) '1-DBC by Theorem 4.4.1 and we refer to it as the
infinite-temperature Fermi Ornstein—Uhlenbeck semigroup.

7.2 The finite-temperature Fermi Ornstein—Uhlenbeck semigroup

Let {q1,..,Gm, D1, .-, Pm} be a set of self-adjoint operators acting on some Hilbert space that
satisfy CAR:

4k + qxq; = PPk +pkpj = 20,11 and  qpr +prg; =0 forall1 < j k< m.
Denote @2™ as the CAR-algebra generated by q1, .., ¢m, P1, ..., Pm. Define the operators
1
zi:=—=(q; +1ip;) forj=1,..m
J \/i(q] ;) J

It immediately follows that for all 1 < j,k < m,

1 . . .
zjzk + 20z = 5 (45 + ip;) (g + ipr) + (g + ipk) (g5 + ;)
1 . . . .
= 5 (@@ + 14;px + 1jqk — Pipk + akdj + irpj + ipkgj — prpj) =0, and
1 . . ‘ .
22, + 225 = 5 ((gj +ipj)(ar — ipk) + (qk — ipk)(q; + ip;))
1 ) . . .
= 5 (40 = 1q;pr + i) + PiPr + akd; T iqP; — ipkd; + Prpj) = 205k,
Define
rii=—z'z; and ri:= 1z;z’-‘ forj=1,...,m
J 277 J J 9 79
Then r; is a projection since 7“]2» = %(zjzj)(z;fzj) = 1(2 - zjz;)z;zj =2 (22"-‘zj - zj(z;)22j> =
%z;zj =rj as (z:]) = 0 and it is clear that 7 = r;. Similarly, 7; L is a projection and r; and r are
mutually orthogonal (as the notation already suggests) since 2]2 (z J) =0.

Now, using z;zj, + z;2; = 20;1 and 235 = (2})? = 0, we have

e — el o — oyl
ZiT =T % = % and TjZj = ZjT; =0.

Furthermore, for all j # k,
1 1

“2tzioe = =zjzta, = e and similarly  zirp = ribz;.

*
TEZj = ZZLRkR = —
k25— 9 kReRE] 2 2
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In the same vein, the set {r1,...rm, ri, ..., 7 } is a set of commuting projections.

For any set of m real numbers {u1, ..., um} € R and any 8 > 0 (5 in interpreted as the inverse
temperature), we define the free Hamiltonian h and Gibbs state og by

m
1
— . — —Bh
h—;:l wir; and og= r(e—ﬁh)e .

Since 1, ..., 7 are commuting projections, we note that e #" = HTzl e PHiTi = H;n:l (eiﬁ’” r; + rj-)
where in the last equality we used functional calculus and the fact that the spectrum of r; is {0,1}.
Hence,

m m
Agy(zr) = H (e"g“jrj + r]l) 2, H <e*3“jrj + rj)
j=1 7=1
= (eiﬁ“krk + ré‘) H (e*ﬁ“jrj + rj‘) 2k H (eﬁ“jrj + rj‘) (eﬁ“krk + r,i‘)
j#k | J#k
= <e_5”’“rk + ’I“é) 2k H <e_6“jrj + ’I“]L) H (6_5“3'7“3- + r]l) (eﬁl‘krk + Tﬁ)
ik i#k

= (e‘ﬁ’““rk + r,ﬁ) 2 (eﬁ“krk + r,ﬁ)

= rR2ETE + e_ﬁ“krkzkrﬁ + eﬁ“’“rﬁzkrk + r,ﬁzkr,ﬁ

— P 2k
where we used that rq, ..., 7y, Tf, ..., T;- commute with each other, the third equality is because zj, com-
mutes with r; and rjl for j # k, the fourth equality is the fact that (e‘ﬂ“f rj + rj) <eﬁ“j rj + TJJ‘) =
T+ er =1 for all j and the last equality comes from zyr; = r,ﬁzk =z and rpzE = zkré =0.

For each j = 1,...,m, gjp; commutes with both g, and p; for all & # j by CAR and ig;p; is
self-adjoint and unitary also by CAR. Consequently, as in the previous subsection,

m
=i [[ ¢
j=1

is also self-adjoint and unitary. Note that w commutes with every even element in ¢2. In particular,
w commutes with r; and rj- for all j. Therefore, Aaﬁ (wzy) = eBlkqzy, by a similar computation as

before and it directly follows that A, (z;w) = e Pk i,
Define the operators
v =wz; forj=1,...,m

Then the set {vi,...,Um, v}, ..., vy, } satisfies properties (3) and (4) of Theorem 4.4.1 so that Lg

defined by

°) m

Z { guj/2 “la,v;] + [U],G]Uj) + e Bri/2 ( ][a,v]] + [vj,a]v;f)}

NH
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is the generator of a QMS ®; = e'L# that satisfies the o5-DBC by Theorem 4.4.1. The QMS @, = et
is called the finite-temperature Fermi Ornstein—Uhlenbeck semigroup. The justification of calling it
the finite-temperature Fermi Ornstein—Uhlenbeck semigroup is because in the infinite temperature
limit, that is when 8 — 0, we recover the infinite-temperature Fermi Ornstein—Uhlenbeck semigroup:
Proposition 7.2.1. Adopt the foregoing definitions. Then, for all a € €2™,

1 m
lim Lg(a) = —— Z vj, [v [ [vj,a]]) =3 Z(qu(a)qj + p;I'(a)p; — 2a),

—0
8 =

where I' : € — € s the automorphzsm defined by I'(a) = waw.
Proof. By a direct computation, we obtain

lim Lg(a) =

Jim, (vla, vj] + [v], alv; + vjla, v}] + [vj, avy)

<
I
-

.-lk\'—‘

* * * * *
(viavj —vjvja +vjav; — avjvj + vjav; —

* * *
; 7 —vjvia + vjavi — av;v;)

<
Il
-

Il
=~ =

* * * * * * * *
(vjvia —vjav; — viavj + avjv; + vivia — viav; — vjav; + avv;)

I
ol

<
Il
—

I
-

(vj[vj, a] = [v, alv; + v} [vj, a] — [v;, a]v])

<
Il
-

Il
ol

([vj; (o5, al] + [v], [vssal])

<
Il
—_

Remember that z; = ( i +1g;), so that I'(z;) = —z;. Using this and the definitions,

%\

[vj, [V}, a]] = vjvia — vjav; — viav; + aviv;
_ * K . *, 2
= wz]zj Wa — WZjaZ;W — 2, WAWZ; + az; W z;

=T'(z527)a — T(zjaz;) — 2;T(a)zj + azj2;
= zjzja — zjT(a)z] — 2;T(a)z; + az}
= 2rja— 5 ((pj + ;)T (a)(p; — ig;) + (p; — iq;)T(a) (pj +iq;)) + 2ar;
1
= 2rjla + 2arj — 5(2p]F( a)pj + 2¢;T'(a)g;)
= 2er& + 2ar; — piI'(a)p; — ¢;T(a)g;.
By a similar computation, we also have
[} [vj, al] = 2rja + 2arj — p;T(a)p; — ¢;T(a)g;-

Hence,

33 (o fogoal] + [0, oy al]) =
j=1

|

(2(7‘j + T]»L)CL + 2a(r; + ’I“]L) —2p;I'(a)pj — 2qu(a)qj)
1

<
Il

(¢;I'(a)g; + p;T'(a)p; — 2a).

Il
N
]

1

<
Il
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