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Summary

Ray-based stochastic inversion of pre-stack seismic
data for improved reservoir characterisation

To estimate rock and pore-fluid properties of oil and gasrveses in the

subsurface, techniques can be used that invert seismic ddeeby, the
detailed information about the reservoir that is availadtlevell locations,

such as the thickness, wave propagation velocity, porositg pore-fluid

type of individual layers, is extrapolated to all locatianghe reservoir on
the basis of seismic reflections. The initial layered resiemodel of which

the properties are updated using the inversion is derivad frell-log data,

seismic trace data at the well location, seismic reflectiokgand geological
information. An advantage of the class of stochastic ingaralgorithms is

that also uncertainties in the property estimates can bg@uted.

Standard inversion techniques invert the seismic reflestipresent in the
form of band-limited signals called wavelets, from migdatiata using a 1D
convolutional forward modelling kernel; these methodsebg rely on the
preceding migration procedure to take into account theggapon effects
of seismic waves travelling through the subsurface. Intgratowever, in-
evitably wavelet distortion as a function of reflector diglaeflection angle
is present on the migration image, and angle-range sulsstimlenhancing
signal-to-noise ratios, blur the reflection-angle infotimathat is needed for
resolving reservoir parameters. Any possible flaws in thgration cannot
be accommodated for by the inversion.

To overcome the above-mentioned difficulties, in this thesi alternative
approach to stochastic inversion is introduced, in whighdhginal wave-
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path and reflection-angle information is taken inside thesiision. This
means that the data must be inverted pre-stack before moigrathich has
the advantages that angle-dependent reflection informatiwot blurred and
that migration-induced wavelet distortion does not ocdime reflection re-
sponse corresponding with these data is modelled using &oelynamic
ray-tracing. The usage of the ray-tracer as forward mougngine makes
it possible to interweave seismic trace-inversion withckhoff-type migra-
tion, in which ray-tracing is used as well. The new methodabed ray-
based stochastic inversion, and can be regarded as a gesuwgval of cur-
rent amplitude-versus-offset/amplitude-versus-angiéQ/AVA) inversion
techniqgues. The new method is designed to outperform starstiachastic
inversion techniques in cases of reservoir parameter agtimin a struc-
turally complex subsurface with substantial lateral v®joeariations and
significant reflector dips.

In this thesis, also a simplification of the new method is @nésd for in-
verting the normal-incidence response from reservoirs &fproximately
planar layering at the subsurface target locations seldotanversion. The
simplification concerns the use of 1D convolution to modelrgflection re-
sponse from the target; the effects of wave propagatioreterburden are
still modelled using 3D ray-tracing. 1D convolution hasitn@ortant practi-
cal advantage of being readily available in common inverswfitware. The
simplified new method inverts along ray-paths that are pefigealar to the
reflectors, the direction which offers optimal resolutiam €liscerning the
reservoir layering.

Results from synthetic data tests show that in strongly idgppeservoir
structures, dip-dependent wavelet stretch due to migrateverely deteri-
orates the reservoir parameter estimates obtained witliatd inversion.
Ray-based inversion has a much better performance in ties saswn.
Finally, in a test on field data from the Gulf of Mexico, a comipan is
made between reservoir parameter estimates obtained hétkitmplified
new method, the estimates found by conventional stochasgesion, and
the actual values at a well drilled after the inversion waseddDespite the
fact that 1D convolutional ray-based stochastic inversiggs only 2% of the
pre-stack data, the result indicates it has improved acgwa the dipping
part of the reservoir, where conventional stochastic sieer suffers from

wavelet stretch due to migration. Dennis van der Burg



Samenvatting

Stochastische inversie van pre-stack seismische data
met behulp van de stralenbenadering van het golfveld
voor een betere karakterisering van reservoirs

Om de eigenschappen te schatten van gesteenten en pdawifea in

aardolie- en aardgashoudende formaties in de ondergn@se(voirs’), kun-
nen technieken worden gebruikt die seismische data imeertélierbij wordt
de gedetailleerde kennis die beschikbaar is op de locatiedeaboorput-
ten, bijvoorbeeld de kennis over de dikte, golfpropagag#®eid, porosi-
teit en porievloeistoftype van afzonderlijke gesteemetain het reservoir,
geéxtrapoleerd naar andere lokaties in het reservoir gtailp van seismi-
sche reflecties. Het gelaagde beginmodel van het resewamrvan de ei-
genschappen worden aangepast via inversie, wordt bepaaldehulp van
boorgatmetingen, seismische data op de boorputlokatgjriterpretaties
op seismische data en geologische informatie. Een voovdeetle klasse
van stochastische inversiealgoritmen is dat ook de onnaurdheden in de
schattingen kunnen worden berekend.

Standaard inversietechnieken inverteren de seismiséleeties, aanwezig
in de vorm van bandgelimiteerde signalen die wavelets wognoemd,
van gemigreerde data, gebruikmakend van een voorwaartsell@ding ge-
baseerd op 1D convolutie; daarbij wordt aangenomen datderafgaande
migratieproces de propagatie-effecten van zich in de gnded voortplan-
tende seismische golven in rekening te brengt. In de pkakgpdt echter
onvermijdelijk waveletvervorming op in het migratiebeell$ functie van
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hellingshoek van de reflector en reflectiehoek. Ook vergtidiet optellen
van reflectiesignalen bij het construeren van het uiteijkdemigratiebeeld
de hoekafhankelijke reflectie-informatie die benodigd a®whet schatten
van reservoireigenschappen. Mogelijke tekortkomingemeinmigratiepro-
ces kunnen niet meer worden tenietgedaan door de inversie.

Om bovengenoemde problemen op te lossen, wordt in dit priogfiseen
alternatieve aanpak voor stochastische inversie geinteerd, waarbij de
oorspronkelijke informatie over golfpaden en reflectidteebinnen de in-
versie wordt gebracht. Dit betekent dat de data geinvertemeten wor-
den voordat deze worden opgeteld en gemigreerd, wat alsi@ebheeft
dat de hoekafhankelijke reflectie-informatie niet is veetreld en dat wa-
veletvervorming als gevolg van migratie niet optreedt. Biectierespons
behorend bij deze data wordt gemodelleerd met behulp van&ioeyna-
mische stralentheorie. Het gebruik van stralentheorie deovoorwaartse
modellering maakt het mogelijk om seismische inversie methoff-type
migratie te verweven; immers, Kirchhoff-type migratie rkiaaok gebruik
van stralentheorie. De nieuwe methode heet in het Engelsbaged sto-
chastic inversion’ en kan worden beschouwd als een gegatialivan hui-
dige amplitude-versus-offset/amplitude-versus-raféactek (AVO/AVA) in-
versietechnieken. De nieuwe methode is ontworpen om begsuodtaten op
te leveren dan de standaardtechnieken voor stochastisaTsie in een on-
dergrond met een ingewikkelde structuur, waarin aanzkenlaterale vari-
aties in de golfpropagatiesnelheid en grote hellingshoeke reflecterende
laagbegrenzingen voorkomen.

In dit proefschrift wordt ook een vereenvoudiging van deumie methode
geintroduceerd om opnamen met loodrechte invalshoek/éteren wan-
neer het reservoir een bij benadering evenwijdige inteslaagdheid heeft
op de lokaties waarvoor inversie uitgevoerd wordt. De wareediging be-
staat uit het gebruik van 1D convolutie om de reflectieresp@m het reser-
voir te modelleren; golfpropagatie in de bovenliggendeeggelagen tot
aan het aardoppervlak gebeurt nog steeds met behulp vamédénstheorie.
Het gebruik van 1D convolutie heeft als praktisch voordelieet beschik-
baar is in de meeste standaardinversiesoftware. De veredigde nieuwe
methode inverteert langs straalpaden die loodrecht stpate seflectoren;
dit is de richting die optimale resolutie biedt voor het zidar maken van
de gelaagdheid.



Resultaten van tests op synthetische data laten zien daérk sellende
reservoirstructuren, hellingshoekafhankelijke wawedetorming als gevolg
van migratie de schattingen van reservoirparametersegekrmiddels stan-
daardinversie aanzienlijk verslechteren. Inversie gedyaisop stralentheorie
geeft in de getoonde voorbeelden veel betere resultaten.

In een test op seismische velddata, gemeten in de Golf vamchlexordt
tenslotte een vergelijking gemaakt tussen reservoirpetenschattingen ver-
kregen met de vereenvoudigde nieuwe methode, met de stdnusthode
en met de werkelijke waarden verkregen uit een boorput ndelatversie
was uitgevoerd. Ondanks het feit dat de nieuwe methode ndaarad de
opgenomen data gebruikt, wijst het resultaat op een vedet@auwkeu-
righeid op het hellende gedeelte van het reservoir, hetajedeaar stan-
daardinversie last heeft van hellingshoekafhankelijkeahgvervorming als
gevolg van migratie.

Dennis van der Burg
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Introduction

Inversion of seismic data is commonly used in oil and gas fikddelop-
ment for refining structural interpretation and reservaompetry, reservoir
characterisation, property prediction, and reducing tiaggies in field de-
velopment. Hereby, the detailed information about therteseknown at
the wells is extrapolated to all locations in the reservaitloe basis of seis-
mic reflections. At reservoir level, a link between the setstiata at the well
location and the well needs to be established with a seisoaveell tie.
Specifically challenging is the accurate reservoir parameéétermination,
including uncertainty estimation, in a structurally coewpbubsurface with
substantial lateral velocity variations and significarftector dips. In this
thesis, a new inversion method is presented for estimatioaservoir pa-
rameters from seismic data, which is suitable for use in sutisurface set-
tings. The method, called ray-based stochastic inversieas ray-based
modelling and inverts pre-stack unmigrated data.

The basic principles of seismic exploration of the Earthibssirface, yield-
ing the seismic data to be inverted, and the basics of colvetversus
novel inversion will be explained in this first chapter, tigy introducing
seismic terms used throughout the remainder of this work. cFapter ends
with the formulation of the research goal and an outline efttiesis.
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Source Receivers 4
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Figure 1.1: A seismic experiment at the Earth’s surface; axes displajzbiotal
distance vs. depth. A single wave path from source to recewsown, reflecting
at a contrast between two layers in the subsurface. The narthe contrast at
the reflection point divides the angle between source angivecray in two equal
parts@: the angle of incidence and the reflection angle.

1.1 Imaging subsurface structures

Exploration seismology is aimed at producing a migratioage, revealing

the structures in the Earth’s subsurface. To obtain sucimage, e.g. for
pinpointing the location of a gas or oil bearing reservoisifioned at a few
kilometers depth, a seismic survey has to be deployed.

In Figure 1.1, the most important elements of a seismic survey are shown.
From a seismic source, sound waves travel in all directibraigh the sub-
surface, forming wavefronts. Part of the wavefield refleaetsktat subsurface



1.2 Zooming in on the target 3

contrasts in medium properties, to arrive at receiversgula the surface.
One of the paths from source to receiver is depicted, congistf a part
from the source to the subsurface contrast (reflector), dheceray, and a
part from the contrast to the receiver, called receiver Ngte that, strictly
speaking, the concept of rays so conveniently used in thasrgeion, is
a high-frequency approximation. At the contrast, specrdfiectiontakes
place with a certain reflection anglemeasured between source or receiver
ray and the normal to the reflector.

The traveltime of the reflection response recorded at trewercgives infor-
mation about the location of the reflection point, while thepéitude carries
information on the size of the contrast. During a seismiveyrrecordings
are made for many different shot and receiver positionddiyig sufficient
information to build an image of subsurface contrasts wighcegedure called
migration At the seismic data processing centre, the data, corgistiall
reflection responses recorded during the survey, are fegpqocessed for re-
moval of undesired events and for migration velocity modelding. Once
a good velocity model has been found, which is usually thetrdifcult
task in the entire processing sequence, one of the manybiaihigration
algorithms is chosen to migrate the datéraz, 2001, Sheriff and Geldart
1995 Gray et al, 2001].

Ideally, migration yields an accurate image of the Eartéfectivity [Black
et al, 1993, reflectivity being a function of subsurface density casts and
wave propagation velocity contrasts. In such a migratioagenin depth,
schematically displayed in Figurke2, contrasts are depicted on their cor-
rect positions by a pulse in depth (corresponding to a wavelthe time-
domain), of which the amplitude is a measure of the wave waipan ve-
locity and density differences between both sides of thérash

1.2 Zooming in on the target

The input data for migration, i.e. the recorded reflecti@ponses as a func-
tion of traveltime, ardband-limiteddue to the finite duration of the source
wavelet. The used source wavelet causes the reflections recbeded as
wavelets too. The image obtained by migration is band-&chas well: the
time pulses from the input data are converted to depth pusascertain
length when migrated to depthyjgel et al, 1994.
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Figure 1.2: Migration image of subsurface contrasts; axes display zuntal dis-
tance vs. depth. The image is spatially band-limited dubedihite duration of the
source pulse. The area of interest is labelled 'target’, htersected by a well.

A wavelength can be assigned to the depth pulses. Dominamievayths at
reservoir depths on the migration image in the order of hedsliof meters
are quite common for exploration seismic surveys, see élgaz [2001],
p. 1801]; this seriously confines the minimum thickness péta that still
can be discerned on the image. As a rule of thumb, a layer #saa lthick-
ness of less than 1/8-th of a dominant wavelength is not diatée anymore
[Widess 1973 Kallweit and Wood 1983.

Itis the area of interest on the migration image,tdrget(Figurel.2), where
we would like to resolve layer thicknesses below the seisesolution limit,
to reduce uncertainties in reservoir development, e.g.déermining the
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position of thin reservoir sands or optimizing the placetrtérdevelopment
wells. In theoverburdenoverlying the target, the resolution offered by the
migration image is generally sufficient.

m 1.2.1 Estimating reservoir parameters

In the target areageismic trace inversiomtegrates seismic data, informa-
tion from nearby wells (Figuré.2) and geological information, to make it
possible to estimate from the migration image the thickeess fine lay-
ers, as well as many other reservoir layer parameters likeeiyg density,
porosity, pore-fluid type and pore-fluid saturation. Thisgsmally accom-
plished in a trace-by-trace, iterative fashion wherebyratiai subsurface
model, derived from nearby well-log data and geologicalvidedge about
the region, is updated at the trace location. Initial positig of reflectors in
the starting model is derived from seismic reflection evacks taken from
the migration image.

The wavelet for inversion is derived from a seismic-to-wadl (which is
an inversion procedure by itself). In practice, the wavelethe migration
image will be similar, but not identical to the source wavelige to a number
of factors. For example, preferred absorption of high feegues occurs
during wave propagation in dissipative media will change shape of the
wavelet Aki and Richards198Q ‘frequency-dependent Q-factor’].

Many trace inversion technigues exist; a recent overvieyivsn byVeeken
and Da Silvg2004. Throughout this thesis, th&tochastic inversiokernel
will be used. In stochastic trace inversion, Bayes’ rulepplieed to trace
inversion, enabling an elegant incorporation of prior mfation available
from geology and well-logs, and at the same time allowing antjfica-
tion to be made of uncertainties in reservoir parametemasés Puijndam
1988ab]. In Chapter2, seismic trace inversion and the stochastic inversion
kernel are explained in detalil.

m 1.2.2 Limitations of current inversion methods

A basic flow sheet for inversion is given at the right-haneséFigurel.3.

The seismic trace inversion method inverts migrated dategus 1D con-
volutional forward modelling kernel; realistic wave pattidrmation is not
used in the inversion process. Conventional trace inversleally relies
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Pre-stack Macro Pre-stack
unmigrated velocity depth
data model migrated data
1D vertical

depth-to-time
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‘tNormal PreSDM’ed
vector field’ data in
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reflector twitt

3D elastodynamic
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Reservoir-
layer
parameters

1D convolutional
modelling

Reservoir-

layer
parameters

Ray-based inversion

Standard inversion |

Figure 1.3: Flow chart for the new ray-based inversion (left) and thensad
method (right). Both employ stochastic inversion kernatsyever the new scheme
uses 3D ray-based modelling, and is applied to pre-stackignated data.

on so-called true-amplitude pre-stack depth migratioméaroving all wave
propagation effects, including those related to interfee@smissions, within
overburden and target zone. Pre-stack depth migratiomjisrex in case of
strong lateral subsurface velocity variations.

However, the 1D convolutional kernel does not take into aotdhat the
migration image displays finite lateral resolution and tediillumination of

reflectors Chen and Schustgl999 Toxopeus et aJ]2003. The same holds
for dip-dependent pulse distortiomygel et al, 1994 on the migration im-

age. Consequently, also the true-amplitude migration imeed above, be-
sides the fact that it is often not available, does not yikklperfect band-
limited image of the Earth’s reflectivity as required for 1Dngolutional
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forward modelling. Moreover, the migration image is the dixesult of an
extensive, separate processing scheme. Some of the pracsteps, such
as angle-range substacks for enhancing signal-to-noiies rélur the re-
flection angle information that is crucial for resolving @egir parameters
[Levin, 1998. Any possible flaws in the preceding migration have to be
taken for granted and cannot be accommodated for by thesioverAbove-
mentioned complications are suspected to degrade inversgults, espe-
cially in a structurally complex subsurface with substaintateral velocity
variations. In ChapteR, current inversion practices will be looked upon
more closely.

1.3 New approach to reservoir parameter estimation

For inversion of rock and pore-fluid properties in a latgralrongly vary-
ing, fine-layered target reservoir sequence, itis proptisbdng the original
ray-path and reflection angle information, contained ingheestack unmi-
grated data, inside the inversion algorithm. Doing so, tigration-related
limitations of inversion described in the previous sectan thus be lifted.
Below, the principles of the new inversion method, that fetimne subject of
this thesis, are outlined.

m 1.3.1 Principles of ray-based inversion

3D elastodynamic ray-tracing for the forward modelling oé4gtack unmi-
grated data, founded on a parameterisation of the refleptimress in terms
of reflection angles, is the basic ingredient of the new isiogr technique.
Therefore, the ray-method is briefly described in the nelzsseation.

The subsurface model for the new method is hybrid: a coarssusiace
macro-model describes the elastic parameter distributitrte overburden,
whereas the target is described by a detailed layered modshich all
reservoir parameters of interest for inversion are incafsal. The coarse
overburden model may consist of a single grid of elasticpatars P-wave
velocity, S-wave velocity and density, or a set of grids karoh by inter-
faces. The detailed thin-layered target model, which cdw lo@ built with
the aid of well-logs giving rock and pore-fluid information a sub-seismic
resolution, is characterised by layer parameters suchveesve-velocity and
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density of mineral grains and pore-fluid, porosity, porédflype, pore-fluid
saturation, sand-fraction and thickness. From such pdeasmehe three
elastic layer-properties are subsequently calculateddoh target layer us-
ing lithology-dependent rock models.

Ray-based modelling by the new method requires that reflet® picked
on the migration image for the purpose of generating refteatamal vector
fields. Ray-tracing is used for mapping reflection pointshie target, con-
necting a ray-pair, to source/receiver positions at théasar as a function
of reflection angle (Figuré.4). In the ideal case, isolated inversions are car-
ried out for a selected reflection angle (or for a reflectioglamange) and
for a pre-specified set of reflectors in the target zone. Thanpeterisation
of the reflection process in terms of reflection angle followasurally and
logically from the important role that the reflection coa#fitt as a function
of reflection angle plays in estimating reservoir propsrtie

Reservoir parameters are estimated by iteratively upgl#tia layered target
model until a satisfactory fit is obtained between measunelchaodelled re-
flections. More specifically, ray-tracing is performed te thrget interfaces,
and synthetic traces are generated using a wavelet derverithie data. In
each iteration, the synthetic traces are compared, inriewindow corre-
sponding to the target zone, with the traces having the sanreefreceiver
positions from the pre-stack unmigrated dataset.

The proposed workflow is depicted on the left hand side of leiGLB. Note
that the new approach concerns the integration of exisicigrtologies: the
building blocks, such as the elastodynamic ray tracer, teestack depth
migration and the stochastic inversion kernel, are allitlpadailable. The
method will be introduced formally in Chapt8&r

m 1.3.2 Principles of the ray-method

3D elastodynamic ray-tracing forms the basic ingrediethehew inversion
technique. It is useful to briefly describe the ray-methddwemeanwhile,
a few more concepts are introduced that are used throughetii¢sis. An
exhaustive treatment of the ray-method is foundCierveny[200]. Ray-
amplitudes are discussed in detail in secof

In the ray-method, a high-frequency approximate solutidih® acoustic or
elastodynamic equation for wave propagation is derivedgugiie ray se-
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ries approach. The derivation of the acoustic and elastrdymwave equa-
tion from generalised Newton’s law and Hooke’s law is expdal in many
textbooks, e.g.Wapenaar and Berkho(it989 Chapter I, Il]. For wave-
propagation in an inhomogeneous, isotropic, elastic stdus, the (source-
free) elastodynamic equation rea@efveny 2001, Eq. (2.1.4)],
62ui . a’TZ’j

o = Bu;
which relates the spatial variations of stress tensor comapis;; [Pa =
kg/(m )] to the time variations of the particle displacement vectampo-
nentsu; [m], with p the density [kg/mi]. Einstein’s summation convention
is used to write this equation in a compact form. The sub&ctgke val-
ues 1, 2, or 3 and refer to the component in correspondingtdire in a
right-handed Cartesian coordinate system with positi@ssidbed by;.
To obtain expressions for the kinematic and dynamic progsedf the wave-
field, in the elastodynamic equation of motion Ef.1§, a ray series expan-
sion solution in inverse powers of frequency is substitutéda form valid
only in the high-frequency approximation,

(1.1)

wi(@,t) =Re |y UM (@) F(t — 7(2))] (1.2)
n=0

with ¢ denoting traveltimeF,, the so-called analytical signal, ‘Re’ indicating
taking the real part to obtain a physically meaningful solutand the dy-
namic and kinematic behaviour contained in amplitude (meﬁtsU(” (%)
and eikonal- (), respectively; see e. Gerveny[2007 or Verdel[198:i for
detailed derivations. Solutions are sought fof), yielding ray-paths and
traveltimes via the system of eikonal equations,

(Vr)?=a?) (Vr)* =577 =0, (1.3)
in which (V7)? is a shorthand fok/7 - V7. A wave satisfying Eq.1.3)
is called a compressional wave (P-wave)Vir(7))? = a~%(Z), or a shear
wave (S-wave) i V7(7))? = 372(%); «(Z) and3(Z) are the wave prop-
agation velocities of the respective waves, expressed agdidn of the
medium parameters densjtyz’) and Lamé coefficient§(7) andu(Z),

1/A T2 (1.4)
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In the rest of this thesisy, is used as notation fax, andv, for 3. From
Eq. (1.9 it follows that in an inhomogeneous isotropic elastic suface,
the P- and S-waves can propagate independently in the hreghdncy ap-
proximation. In this work, we will model only the propagatiof P-waves.
Furthermore, solutions are sought mf)(f), yielding the amplitudes via
the transport equations for P- and S-waves,

ou; 1 9 Oln (pv?)\
s + 2UZ (UV T+ B =0, (1.5)

with s the arclength along the ray, andhe corresponding velocity for P- or
S-waves. Usually, it is sufficient to consider only the legdierm ¢ = 0) of
equation {.2): for the zero-order amplitude functidv‘éo) () and analytical
signal F(t), equations are given in sectiGn.

In principle, the approximate expression iz, t) obtained by ray-theory
gives valid results only for high frequenciesor, equivalently, small wave-
lengths\ in relation to the variations present in the medium. More for
mally phrased, in the application regime for ray-tracirgg tollowing con-
dition must be fulfilled: A\ < [;, where\ is the dominant wavelength of
the regarded wave, aridare lengths describing the scale of medium prop-
erty variations in the subsurface, and/or radii of cunvatirlayer-interfaces
[Cerveny 2001, section 5.9.1]. The ray-validity conditions are desaiie
more detail in sectioB.4.

Although a fine-layered target is not strictly obeying al-teacing valid-
ity conditions, in this work primaries-only ray-tracingused to model the
target’s reflection response, in order to achieve sub-wagth resolution at
target-level through inversion of the recorded responseeby it is assumed
that the total reflection response can be linearised as theofthe separate
reflection responses of the individual contrasts. Thesaraép responses
can be modelled by ray-tracing without problems. For thisrapch to be
a success the contrasts between the thin layers must be sthaliwise in-
teractions between the reflections have to be taken intouatdryy special
ray-codes Q’Doherty and Anstey1971].
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Source Receivers A

Over-
burden

MNormal Vector Fields

Figure 1.4: Subsurface with an inversion target. A ray-pair to the targeshown,
with reflection angled. Normal-vector fields in the target, needed to map reflection
points to source/receiver positions via ray-tracing, andicated by arrows.

1.4 Potential benefits from the new approach

The potential benefits of the new method include the follawikirstly, it

is expected that by incorporating the original ray-path eaftéction angle
information, contained in the pre-stack unmigrated dattn the inversion
algorithm, a more accurate reflection amplitude representan the target
zone can be obtained, and hence a more accurate descripteseovoir pa-
rameter distributions, in comparison with existing invenspractices. Con-
ventionally, seismic data is inverted in which the amplé@udformation is
(partly) lost during the stacking and migration processesyen in earlier
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pre-processing steps).

Evenly important is that with the new approach, it would beegoossible
to re-use selected parts of wave path information alreadyg urs(ray-based
types of) migration, creating a direct link between migratand trace in-
version, at the same time reducing the amount of extra camgppbwer

required to invert on unmigrated data. The wave path inftionaontained
in the migration operators, as it was used in the precedimggation, is nor-

mally not exploited after finalisation of the migration pess. At least part
of that information could be re-used with the new method.

1.5 Research objective

The objective of this research is to develop a novel stoghasiersion

method that is suitable for use in complex velocity mediae mbvelty lies

in the fact that two existing techniques, stochastic ineerand ray-based
modelling, are combined. The inversion will be performedhea pre-stack
unmigrated domain.

It is assumed that, prior to inversion, pre-stack depth atign has been
applied to the seismic data. In contrast to currently albélanversion tech-
niques, wave path information as it was used in the precedipgh migra-
tion will be exploited in the new inversion approach.

1.6 Outline of the thesis

Since the new approach to inversion integrates differahttigues, it is nec-
essary to cover a broad range of subjects: the thesis is sa$ tqlows.

Chapter2 introduces the conventional scheme for seismic trace simwer
using the stochastic inversion kernel, called Stochastiersion (Sl). The
stochastic inversion kernel is presented first, by intradydayesian in-
version theory, and its application to seismic trace ineexs Then, an Sl-
workflow is given for the estimation of reservoir parametigosn seismic

data. Finally, the focus is put on the two fundamental défferes between
the conventional and new inversion method: the inversianaln, and the
forward modeller used. These are, for Sl, the migrated inzagkthe 1D

convolutional model, respectively.
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The third chapter presents the new inversion scheme, RageBatochastic
Inversion (RBSI). The principles of the method and an RBStkilow are
given for reservoir parameter estimation. As in the presichapter, the two
fundamental differences are highlighted between the cdiveal and new
inversion method: RBSI inverts pre-stack unmigrated datd,uses 3D elas-
todynamic ray-tracing as forward modeller. It is this fordranodeller that
enables a link with Kirchhoff-type migration, which useg-taacing as well,
for generation of traveltime tables and migration weigfitse discussion of
a special case of RBSI, 1D Convolutional RBSI, concludesc¢hapter.

The potential of the new inversion method is investigatethin next two
chapters. First, in Chaptd this is done by performing tests on synthetic
models. RBSI is tested against Sl in inversion for densityanodel with
Gaussian reflectors and layer-density variations, andatsowedge model.
Using the test results, an assessment is carried out of iestasources of
misestimation in Sl. Subsequently, 1D Convolutional RBSksted against
Sl in inversion for P-velocity and thickness for a series afdels, ranging
from the simple but illustrative single dipping layer to colex multi-layer
models. Finally, a few simple offset tests are done, totitate the advan-
tages of the RBSI-workflow in a more general case.

Chapter5 describes the testing of the new inversion method on field dat
from the Gulf of Mexico. The real dataset was carefully clmoseinclude
an inversion target with a relatively simple horizontaltpgradually chang-
ing into a complex part with a substantial dip more suitable(1D convo-
lutional) RBSI. Starting with the same prior reservoir micaieSl, inversion
is done using the new scheme for the key reservoir parameteesocity,
layer thickness and sand-fraction. The chapter concludtesascomparison
of the results with those obtained by SI, and with the actadles along a
borehole drilled through the inversion target later on.

Assembling the information gathered in all previous chepten Chapteb
conclusions are drawn with respect to the novel inversiotinoteand a set of
recommendations is formulated for future research on esed inversion.
Finally, note that for the reader’s convenience, the chiaee set up to be
separately readable as much as possible. This choice wigver lead to
some redundancy in the text and figures.
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Introduction




Stochastic inversion

After the first phase of seismic exploration and procesangjgration im-
age of subsurface structures has been built, and the aretecdst has been
successfully localised in the subsurface (Chapter 1). émixt phase, we
would like to extract from the seismic data more informatadoout the tar-
get, such as the positioning of thin layers, as well as thaaghstribution
of many other layer parameters, like porosity, fluid type satliration. It is
here, that seismic trace inversion comes in.

In this chapter, it is explained how trace inversion for resg parameters
commonly is achieved, so that the analogies and differentteghe new in-
version scheme (Chapter 3), and the need for that new scltamég better
appreciated. The method discussed is a scheme for seisoeitiversion
using a stochastic inversion kernel, a Stochastic Inver&) scheme.

The chapter is structured as follows. First, in order to gagme understand-
ing of SI, inversion theory is introduced in general, and &agn inversion
theory in particular, followed by application of the lat@n seismic traces.
Subsequently, by means of the SI workflow, the various aspEcteismic
trace inversion are illuminated. Finally, attention is eotmajor aspects
discerning Sl from the new method: the domain of inversiod e for-
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Forward modelling

———————_
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g data d
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Figure 2.1: Forward modelling and inversion. Dataare the measured outcome of
an experiment. Aftebuijndam and Drijkoningeh 1997, Figure 1.1].

ward modeller; for Sl these are the migrated image and 1Daiatignal
modelling, respectively. The chapter ends with a discussio

2.1 Inversion theory

Stochastic trace inversion is a specific subset of tracesie techniques,
which allows a quantification to be made of uncertaintieseservoir pa-
rameter estimates. This is achieved by applying Bayes'tcuseismic trace
inversion (sectior2.2). As a prelude, the Bayesian approach to inversion is
introduced in this section. To that end, first the generatephof paramet-

ric inversion, or parameter estimation, is explained. Thlea fundamentals
of probability theory are reviewed. Subsequently, Bayek is derived. Fi-
nally, the method used in this thesis for evaluating Bayeisizersion results,
including uncertainties, is discussed.

m 2.1.1 Introduction to inverse problems

Consider an experiment and its measured outcome, and & thedirex-
plaining the phenomena encountered in the experiment. n"Ghe theory
and the set of parameters associated with the theory andxpeziment,
the measured data can be predicted, in principle. This isct#te forward
problem, see Figur2.1 From this figure, it is also seen that, obviously, the
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reverse of the situation just described is called the irv@reblem: given
the observations made during an experiment, and the apat@gneory, the
unknown model parameters are estimated.

Let the data, consisting a¥/ observations, be put in a column vectbre=
(di,da, ..., dy)T (with the “I” denoting transposition), and’ model pa-

rameters be put imn = (my,mo,...,my)T. Using the parameters, the
theory g describes the outcomeof the experiment; this can be written as
the forward modell = G(m). If a noise-termi = (ny,na,...,ny)7 is

added to take into account theoretical or experimentakrgritbe result is
the so-called standard reduced modeulijndam and Drijkoningen1997,
Eq. (4.5)],

d = g(m)+1. (2.1)
In the particular case thgtm) can be written as,
g(m) = A, (2.2)

with matrix A of size M x N independent of7, the forward model is
called linear inm, and can be analysed more easily, Begndam and Drij-
koningen[1997, Chapter 2].

Regarding the relation between inversion solutiginand the forward model
g(m), two situations can occuDjuijndam and Drijkoningen1997 sec-
tion 1.4]. Firstly, it is possible that n@ can be found such that= g(m).
In this case the solution 13on-existente.g. because the forward modgl
does not completely describe the finer details in the experimAs long as
g(m) approaches? close enough for parametersin the range of interest,
this is acceptable.

The second case arises when multiple soluti@rgive the same optimal set
of modelled measurements e.g. 7(im,) = §(m2). Without more infor-
mation, it is not possible to prefer one of the solutions &bthe other: a
more fundamentahon-uniquenesproblem has arisen. By bringing in ad-
ditional information using the Bayesian inversion techmdsectior2.1.3,
the non-uniqueness problem can be alleviated.

Due to measurement-noise and incomplete forward modelsertainties
appear in data and theory. With Bayesian inversion, unicéia in data and
theory can be handled adequately. It will be shown that tesbitained with
this inversion technique not only consist of a set of optipakmeters, but
include their associated uncertainties as well.
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F(m)

p(m)

Figure 2.2: Cumulative distribution functiod’(m) and associated probability den-
sity functionp(m) for a Gaussian distributed stochasf [Eq. (2.25), with for this
plotoc = 1 andu = 0]. The shaded area represeria < M < b), see EQ.Z.10.
After Duijndam and Drijkoninger§ 1997 Figure 3.1].

m 2.1.2 Introduction to probability theory

Before the Bayesian inversion method is presented, theepdsiérom proba-
bility theory that are necessary for the derivation of Bayale are reviewed

in this subsection. In one go, statistical terms used througthis work

are introduced. The shown material can be found in any dde&tiiook

on statistics, as well as iDuijndam[19884, Duijndam and Drijkoningen
[1997 and Tarantolg2003.

Consider a continuous variableg in R, which is the numerical result of
an experiment; such a variable is called a stochastic Variabstochast
The probabilityP, called degree of belief in the Bayesian approach, that the
stochastV/ is less than or equal to a certain valugas written as,

P(M <m), (2.3)

with 0

< 1: for P(M < m) = 1, the propositionV/ < m is true;
for P(M

P
< m) = 0, the proposition is false. The cumulative distribution

<
m
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function (cdf) F' of stochastV/ is defined as,

F(m) =P(M <m), (2.4)

with,
lim F(m) =1, (2.5)
lim F(m) =0. (2.6)

The probability density function (pdf) of stochastV/ is defined as,
_ dF(m)

dm

p(m) : (2.7)

and as a consequence,
F(m) = / p(u)du , (2.8)

with F'(m) continuous, non-decreasing and differentiable. A prdigbi
density function meets the conditigriz) > 0; moreover, a strict pdf is
normalised:

/_OO p(m)dm =1. (2.9)

[e.e]

The probability that\/ assumes a value within the range{] is,
b
Pla<M<b) = / p(m)dm = F(b) — F(a) . (2.10)

Figure2.2illustrates the relationship betweét{m) andp(m). The shaded
area in the lower graph represeitén < M < b).

Now consider a set aV stochasts\/y, M., ..., My and a set ofV values
my, Mo, ..., my. The stochasts and values are gathered in vedtoands.
The joint probability of proposition8/; < mq, My < mao,..., My < my
occurring together (i.e. in conjunction) is given by thenfjotumulative dis-
tribution function F ofM:
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where the shorthand'(m) for F(m, ms,...,my) has been applied. The
joint probability density functiop of M is defined as,
, ONF(m
p(i7) = ) (2.12)

N 8m18m2 ce 8mN ’

in whichp(m) is the abbreviated notation fptmy, m,, ..., my); note that
the order of elements in vecteoi is of no importance, since the order of
differentiation does not matter. As a multidimensionallagg of Eq. .10),
the probability of stochast/ taking values in volumet is,

P(M € A) = //.../Ap(m) dmydms ... dmy . (2.13)

Given two sets of variable®/ andD, themarginalpdf gives the information
on one set of variables regardless of the other set. It isrestdy integrating

the joint pdf over the disregarded set of variables; e.gntaginal pdfp(d)
for D disregarding\/ is given by,

p(ch://.../_Zp(_;ﬁi)dmldmg...dm]v, (2.14)

WheI’Ep(d_; m) stands fop(dy, . .., dy, mq, . .., my). The shorthand version
of the previous equation is,

p(d) = / " p(d ) diih (2.15)

Theconditionalpdf gives the information on one set of variables, when val-
ues for the other set of variables have become availablaititrgly, it should

be proportional to the joint pdf with the values for the otketfilled in. The
conditional pdfp(i7|d) for M given values forD, is defined as:

—

p(ild) = P (2.16)

p(d)

in which the denominatap(d), with the obtained values fab substituted,

—

is a scaling factor making(mi|d) a strict pdf [see Eq.2.9)]. Note that
p(ni, d) = p(d, m).

~—~—
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Two sets of variables/ and D are independent when their joint pdf can
be written as the product of their individual (marginal) Ipability density
functions,

-

p(ri, d) = p(m) - p(d) . (2.17)
It follows from Eq. .16 that in that case,
p(|d) = p(i), p(dli) = p(d) . (2.18)

The expectation or mean of valuesm; from M are defined as,
e =EB(m) = [ mipli) di. (2.19)

with i € {1,2,...,N}. TheseN equations can be rewritten as follows
[Duijndam and DrijkoningerEq. (3.46)],

i = B(m) = /_OO 7 p(17) s (2.20)

This equation should be evaluated separately for each vajdem vector

M; the p(m;) then appearing in the equation is the marginal pdf ¥éor
disregarding the remainder of the variables frdfn

The covariance between two variables andM; gives an indication of the
dependence between the variables, i.e. how much the twablesivary to-
gether. The covariance matr, containing covariances between elements
of the vector of variables/, is defined as,

C = E[(m — @) — i)7] = / (1 — ) — )T p(i)dim , (2.21)
which is shorthand for,

Cij = E[(m; — Mi)(mj - ,Uj)] = / (m; — Mi)(mj - /ij)p(m)dﬁ% (2.22)
wherec;; indicate the elements of matrix. On the diagonal of this ma-
trix are found the variances? = c¢; = E[(m; — p;)?] of variablesM;.

The square roots; of the variances are called standard deviations. From
the standard deviations and covariances;;, one can calculate correlation
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coefficientsp;;, which indicate thdinear dependency betweel; and /.
The correlation coefficients are defined as,

Cii

Pij = —L, (2.23)

00
and have properties1 < p;; < 1 andp;; = ¢;;/0? = 1.
Finally, several often-used types of probability densitgdtions exist, see
e.g. Tarantolg[2005 Chapter 6]. The most often used one is @aussian
or normal pdf:

1 162 NTO—1(7—it
N —5 (M—p)" C~H(m—i)
p(m) = 2 et O ez : (2.24)

orfor N =1,

L o i(msey’

p(m) = (2.25)

ovV2r
Other types of pdfs may be more appropriate in certain casgsit is known
that the amplitude distribution of a series of primary rdftat coefficients
derived from sonic well-logs is non-Gaussialidlden 1985. We will as-
sume that the Gaussian distribution describes the vamiaficeservoir-layer
properties around their mean values in the reservoir model.
In the next subsection, the Bayesian parameter estimateihad is intro-
duced. With this method, it is possible to adequately deti wmcertainties
in data and theory. Furthermore, the technique elegandiples the combi-
nation of different sources of information, usually leaglin a more accurate
parameter estimation.

m 2.1.3 Bayesian inversion

From the material discussed in the previous subsectioneBaule is eas-
ily obtained as followsDuijndam 19883. Combining Eq. 2.16) and the
similar relationp(mi, d) = p(d, m) = p(d|m)p(m) yields Bayes’ rule,
L= p(dm)p(m
p(ii|d) = PAmIPCT) (2.26)
p(d

In this equationp(mi|d) is thea posterioripdf, giving all information on the
model parameters given the observed datai.e. the solution of the inverse

~—
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problem. The conditional pdf(d|s7:) contains the information on data
given the model parameters, i.e. it holds the theory, requio forward
model the datal from parametersn. After the measurements are done, it
can be seen as a functiomn@fonly and is then called thelihoodfunction
1(Z). The termp (i) is the marginal pdf fori of p(17, d), giving information
on model parameters disregarding the measured datahis is thea priori
information on the parameters. The last terfa) is a constant scaling factor
after the data are measured, rendering EQ.26) a strict pdf.

Especially appealing is the way Bayes’ rule describes thegss of learning
by experience, allowing the integration of informationrfrdifferent sources
[Duijndam 1987. This process can be shown as follows. Supposediata
were used to estimate th@, using Eq. 2.26), and that new datd, are

measured. Applying Bayes’ rule gives:

L. dy, do) ) p (1
ol dy) = PU p(d*)‘ j))“ ). (2.27)

Repeatedly applying Eg2(16) on the equation above yields,

_ ol et} (2.28)

Furthermore, two simplifications can be made. Firstly, asag indepen-
dence ofd; andd, yields p(da|d;) = p(d») according to Eq.4.18. Sec-
ondly, assuming conditional independencecf@fandc@ given m implies
P(sz\(cﬂ, m)) = p(dy|m). Inserting all of this into Eq.2.27) gives,

The last factor in the equation above, recognised as thempasof the first
parameter estimate, has become the prior knowledge foetumd estimate!
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m 2.1.4 Estimating uncertainties with Monte Carlo

Using the standard reduced modek g(m) + 7 [as given in Eq.2.1)] to
formulate the inverse problem, the likelihood functio@) can be written as
[Duijndam and DrijkoningerEq. (4.8)],

1(17) = p(d]m) = pa(d — §(m)) , (2.30)

with p,, (1) the pdf of the noise&, and7 independent ofi(17:). As an exam-
ple, consider the case that the noise is Gaussian and hembe ckescribed
using Eq. .24 with zero meanj = 0) and a covariance matri,,. The
likelihood /() is then given by,

. 1 - (d-g(m)T Oy (d-g)

10 = G eaer G © ' (2:31)
The solution of the inverse problem now follows from Bayaser given in
Eqg. (2.26: multiplying the likelihoodi(7:) by prior informationp() and
dividing it by the constanp(d) yields the a posteriori pdf(i7i|d). How-
ever, for more than three parameters, it is hard to insped ffosteriori pdf.
In this work, a Monte Carlo algorithnDuijndam and Drijkoningen1997
Leguijt, 2007 is applied to find theglobal extreme and the shape of the pos-
terior pdf, providing parameter estimates and their asgediuncertainties.
Local optimisation techniques, such as conjugate gradudten give diffi-
culties with inversion problems using non-linear forwarddeals, because
they have no means to escape from local extrema that mightdsem in
the corresponding posterior pdf.
With an increasing amount of parameters, the model space saimpled
grows quickly out of bounds. The crude Monte Carlo methodoanly takes
samples to estimate the posterior pdf, i.e. the unifornridigion is used to
draw samples from parameter space. However, by appiyipgrtance sam-
pling, the space to be searched is reduced, e.g. by taking sampmesHe
Gaussian instead of uniform distribution, based on prit@rimation, or by
putting constraints on the parameters (e.qg. if one of thematers were den-
sity, it cannot be negative). Furthermore, a guided “Mar&inain” Monte
Carlo method (as used in this thesis) ‘learns’ during theckganaking it
possible to estimate many more parameters than with crudgeMearlo, in
a statistically sensible wayspmbridge and Mosegaa@D02 Duijndam and
Drijkoningen 1997.
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Figure 2.3: Iterative trace inversion loop (Figure courtesy of J. LgQuiA Markov
Chain Monte Carlo algorithm is used to propose parameteratesl in order to
properly sample the parameter space.

The guided Monte Carlo search finishes with a collectiort ahodel pa-
rameter setsi; (i € {1,2,...,S5}) that properly samples the posterior pdf
(each parameter set defines a model; the amount ofsstgser-definable).
The estimated mean and covariance of model parameéteen be obtained
simply by averaging the sets found by Monte Cafijjndam and Drij-
koningen Egs. (8.23) and (8.24)]:

1 S

() = 5D i (2.32)
1 Zzl

(C) = 5 D7 = i) (s — (i) (2.33)

.
I
—
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2.2 Stochastic trace inversion

In the following, it is shown how the 1D convolutional forvaamodel com-
monly used in trace inversion techniques, can be fit into kiersion- and
Bayesian-theory introduced in sectidri; doing so, trace inversion becomes
stochastic trace inversion. For the workflow around stonh#ésce inver-
sion, see sectioR.3. For a more detailed treatment of the complete forward
modelling step, see secti@b.

In simple terms, it can be stated that in stochastic tracergiwn, estimates
of rock and pore-fluid parameters of a layered reservoir btaimed in an
iterative fashion, by minimising the mismatch between avéod modelled
(synthetic) part and recorded part of a seismic trace, tikemthe migration
image (sectior2.4) at the level of the inversion target. The estimates for the
reservoir parameters are obtained including their assgtiancertainties.
The trace inversion process, schematically depicted iarEig. 3, is repeated
for every trace in the inversion window on the migration iragig this way
laterally progressing through the target.

Using the terms of sectio®.1.1on pagele6, the ‘experiment’ for stochastic
trace inversion is the matching of the ‘measured data’, #hensic traces
from the migration image, with the forward modelled synihétaces, ob-
tained by inserting the layer ‘model parameters’ of the mesie model de-
scribing the layered reservoir into the ‘theory’. The ‘thgalescribing the
traces in stochastic trace inversion is the 1D convolutionadel. It is de-
fined as, see e.@ldenburg et alf1983 or van Riel and Berkhot1989,

s(t) = w(t) = r(t) +n(t), (2.34)

in whicht denotes recording time, the asterisk denotes temporabtaion,

s(t) is the recorded seismic signal (i.e. the trace), ard is the seismic
wavelet. The frequency content of the additive neisg is assumed known.
The waveletw(t) is assumed known from a so-called seismic-to-well tie
(section2.5). Finally, r(¢) is the subsurface spiky reflectivity: the impulse
response of a 1D layered earth, considering the earth asa Bystem, with
the expressionvan Riel and Berkhoutl985 Eq. (2)],

N
r(t) =Y Ris(t—1), (2.35)
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with NV the amount of reflectors}; the reflection coefficients,Dirac’s delta
function, andr; the lag time ofj-th reflector.

Inserting Eq. 2.39 into Eg. .34 and discretising, gives the following
description of the trace as a sum/@freflected wavelets, with time delays
and reflection coefficient®,; [van Riel and Berkhoytl985 Eq. (4)],

N
s(ti) =Y Ruw(t; — ) +n(t:) (2.36)

where the trace is uniformly sampléd times, ont; (: € {1,2,..., M}).
The problem is now in the form of the standard reduced modEbof2.1):

-

d = () + 7 with,

= (s(t1),s(ta),...,s(tm) )", (2.37)
= (n(t1),n(ta),...,nltx) )", (2.38)

SLoey

the model parameters split up in two vectors,

777LR = (R17R27"'aRN)T ’ (239)

m, = (1m,7,... ,TN)T , (2.40)

and g;(mg,m,) = Zj.vzl Ryw(t; — 7). (In fact, R; is reflection angle de-
pendent and, in turn, a function of reservoir parametess fi&rosity and
fluid-content, see sectidh5, but for simplicity that is not considered here).
Subsequently, after measurement of datthe likelihood function is estab-
lished according to Eq2(30), and inserted in Eq2(26) (Bayes’ rule), to-
gether with the prior distributions(r7) of the model parameters. The result
is an expression in terms of a misfit functidn- §(;7:) [due to the inclusion
of the likelihood function, see Eq2(30)], with which the desired posterior
pdf p(73|d) can be evaluated for one set of model paramefess a time.

As stated in the previous section, in order to find the shaplegéwbal ex-
treme of the posterior pdf, it is sampled in a statisticafiysible way using
the Markov Chain Monte Carlo algorithm. Iteratively updatia collection
of initial model parameters sef’, the outcome is a collection of model pa-
rameter setsy; properly sampling the posterior pdf (Figuzed), with which
the posterior mean and covariance of the model parametersparameter
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p(m|d) p(m|d)

-

Figure 2.4: Markov Chain Monte Carlo sampling of the posterior pdfri|d) for a
model consisting of two parameters= (m1,ms). On the left-hand side an initial
collection of 25 models:? (i € {1,2,...,25}), on the right-hand side the situation
is sketched after a certain number of updates.

estimates including uncertainties’, can be calculatedgigigs. 2.32 and
(2.33.

Notice that during the sampling of the posterior pdf, thevand problem
g(m) is solved many times, because for each proposed update & pad
rameter setr; originating from:?, the Markov Chain Monte Carlo algo-
rithm needs to re-evaluaggmi|d) [with the expression containing the misfit
functiond — g(m)]. For example, in the Metropolis scheme, a new model

m' is accepted only with the probabilitshmbridge and Mosegaa2D02
Eq. (6)],

=/

P — min (1, p(”f)) , (2.41)
p(1)

with 7 the vector containing the current set of model parameters. itS

is during this sampling stage in the stochastic inversimt@dure that two

processes occur that were mentioned in the beginning odégison and dis-

played in Figure2.3: the ‘minimising the mismatch between measured trace

d with synthetic tracegj(n:)’ and ‘updating reservoir parameters in an itera-

tive fashion’ take place in the evaluation of the misfit fuaotd — (%) for
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Figure 2.5: Flow chart for the new ray-based inversion (left) and thensad
method (right). Both employ stochastic inversion kern#ig (oops refer to the
Markov Chain Monte Carlo sampling), however the new schesae 8D ray-based
modelling, and is applied to the pre-stack unmigrated data.

each model update. In the next section, it is shown how theatatutional
model fits in the complete workflow for stochastic inversion.

2.3 Workflow for stochastic inversion

The workflow for stochastic trace inversion is depicted oa tight-hand
side of Figurel.3, which is repeated in Figur2.5 for convenience. In this
section, attention will be focussed on the procedures rediio successfully
execute the workflow. Note that the inversion domain and &mdwmodeller
are the migrated image and the 1D convolutional model, mmedy: sec-



30 Stochastic inversion

tions2.4and2.5are devoted to them. Notice also from Figar, that the
new inversion method shown on the left-hand side and discussChap-
ter 3, has a different inversion domain and forward modeller

The first item of the standard inversion workflow, depicteth@upper-right
part of Figure2.5, is the input dataset: the migrated data. See se&ién
for the migration procedure and some properties of the rtegrdomain.
Following Veeken and Da Silvf2004, the inversion procedure starts with
a quality control and pre-conditioning of the input datarresponding to
the selected target area from the migration image. The tg@beftom the
migration image of an inversion window at the reservoir I¢see the upper-
left part of Figure2.12for an impression), makes inversiomaaget oriented
procedure.

Of course, the ideal input for trace inversion are tracesmfroigrated data
containing primary reflections only, of which the amplitsdare directly
proportional to subsurface reflection coefficients: theselae assumptions
underlying Egs. Z.34 and @.35. Hence, conditioning the input data e.g.
involves multiple suppression (since multiple arrivalsuiebbe interpreted
as primaries by 1D convolutional inversion) and other nogseoval. Also,
care should be taken that the pre-conditioning processestddestroy the
desired amplitude behaviour, described above, that ilyda@sent on true-
amplitude migrated data (see the next section). Noticeathate-mentioned
proportionality means that a (constant) factor betweenligudes from the
target on the migrated data and reflection coefficients magrésent; this
factor is determined using a seismic-to-well match (seci®), which also
yields the wavelet for inversion.

The next step in the trace inversion workflow concerns 1Dicedrtiepth-to-
time conversion of the depth migrated data, to obtain theategl image in
vertical two-way traveltime; again see Fig@® (right-hand side). This step
is required because inversion is performed in the time-dion@onsider an
acoustic subsurface, in which locatiohs- (1, 2o, x3)" are described using
a right-handed Cartesian coordinate system, and in whefth z,)-plane
is coinciding with the surface and, following the seismadadjconvention,
x3 IS chosen positive in the direction of increasing depth e ghbsurface.
The trace-by-trace operation of converting depth to vartiwo-way time is
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described by,

to(x1, 20, 23) = / ——d~v, (2.42)
0 Up(xh%zﬁ)

with ¢,(xy, 22, x3) the vertical two-way traveltime corresponding to some
depth locationz, andv,(x1, z2, z3) the laterally varying P-velocity. Natu-
rally, the factor two in the numerator of EqR.42 takes into account the
fact that a two-way traveltime is required while a one-wagpgagation ve-
locity is given. Furthermore, note that using E.4Q2 results in a laterally
varying stretch applied to the depth axis. Note also thatidaptime con-
version occurs along the vertical direction and not alomgr#ty-path, which
is perfectly valid since the preceding migration has rerdoak propaga-
tion effects: in the conversion, actual wave paths do noehawe obeyed
anymore. Notice finally that Eq2(42 may also be used in an isotro@las-
tic subsurface, for depth-to-time conversion of depth migrateconverted
primary P-wave reflections.

The migration image in, is a structural, band-limited image of (reflection-
angle-averaged) subsurface reflection coefficients in hwHepth is repre-
sented by vertical two-way traveltime, that is in princiglgitable for in-
version with 1D convolutional modelling. In contrast, nttat unmigrated
data, i.e. data before migration, represented in two-wayettime (record-
ing time) ¢, do not fulfil the assumptions underlying the 1D convoluéibn
model, since wave propagation effects, like geometricedaging, are still
contained in them. In the following, traces from the depthymraiied data at a
certain lateral positioifiz, z2) are denoted by(z3), or after depth-to-time
conversionv(t,), whereas the migrated tracesdelledusing Eq. 2.36) in
vertical two-way traveltime, i.e. synthetic traces, araated withs(t,).

The next step in the inversion procedure is applying theahdtace inver-
sion, which makes use of the 1D convolutional modelling k&ran traces
v(t,) from the selected target area on the migrated image in aétio-way
traveltime (see the right-hand side of Fig@&). In the inversion process,
modelled traces(t,) are produced and compared witft,). The complete
inversion step is explained in detail in sectidrb, and results in posterior
pdfs for each reservoir-layer parameter, i.e. estimateshi® parameters
including their uncertainties.

The workflow ends with a visualisation and interpretatiomesfults; usually
this is done by generating reservoir property maps inclydincertainties,
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and by building an updated (posterior) reservoir modelithabw consistent
with seismic, geologic and petrophysical data. The nexi@ediscusses in
more detail the inversion domain of stochastic inversiba nigrated image.

2.4 Inversion domain - the migrated image

Stochastic inversion ideally requires true-amplitudegteeck depth migrated
data to invert on, since this type of data resembles clokestdta generated
in the forward modelling step of the inversion, in which a 1d@heolutional
model is assumed. Therefore, in this section, an algoritiath generates
these data is introduced first: 3D Kirchhoff true-amplitd@®) pre-stack
depth migration (PreSDM).

From the many types of migration techniques that ex@sty et al, 2001],
Kirchhoff migration is chosen in this work, because it usagtracing to
calculate the traveltimes and weights necessary for theatng: this offers
the link to integration with the new inversion procedure tiges ray-tracing
as well. Ray-tracing, the forward modeller of the novel ns#en method, is
discussed in more detail in sectiBrl. The choice for Kirchhoff migration
automatically means that the ray-tracing validity coruis (see p74) are
inherited.

In this section, first the Kirchhoff migration algorithm isttoduced. Then,
two properties of the output image it generates are looked upore closely:
the resolution on the migration image, and the presencegrfation wavelet
stretch. Wavelet stretch and lateral resolution are nagrtakto account
in stochastic inversion when forward modelling a trace fritve migration
image using 1D convolution.

m 2.4.1 TAKirchhoff migration: retrieving reflection coeffic ients

In the following, first the seismic experiment is describeuich yields the
data to be migrated. Then, the migration equation is gived,al the sym-
bols in the equation are explained. Finally, a simplified raiigpn equation
is given for a special combination of subsurface and actijpiisgeometry.
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Figure 2.6: Layered isotropic elastic subsurface. A ray-path is showmfsource
Zs to receiverZ,, with reflection occurring at‘r on interface,. See text for
details.

Description of seismic experiment

Consider the isotropic elastic subsurface spAce- R? with a free sur-
facedX atx; = 0, andN layers with smoothly varying elastic layer prop-
erties P-velocity, S-velocity and density, [ (), v,;(Z) and p;(Z), with
i€ {1,2,...N}], bounded byV smoothly curved interfaces; (Figure2.6).
Interfacey,, denotes the top of the target zone for inversiaR, denotes
the base. The subsurface is assumed to satisfy the rayetlwadvalidity
conditions, since the migration algorithm presented beklies on the ray-
method to produce proper results.

At the free surface, a series of seismic experiments is pagd, in which,
after detonating an isotropic point source (e.g. simugatinburied dyna-
mite charge, but not surface sources like vibroseis), titcaé component
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u5 of particle velocity vectorZ is measured in the recording time window
[0, T (with 7" the maximum time recorded since detonation of the source)
at single-component receivers. The position of a sourcedsated by,
that of a receiver by,. It is assumed that the set of recordings contains
the primary P-wave reflections that are later modelled fagration by ray-
tracing.

Figure2.6shows a ray-path for such a primary P-wave reflection fronncgou
to receiver for a fixed source/receiver pait (7,); 0(Zs) andd(Z,) are the
take-off and emergence angles. Reflection takes place ettieft pointr'y

on interface®,,, with specular reflection angté 'z ), measured with respect
to the interface normai atrr € X,,. Indexk counts the interfaces traversed,
and the signs-, + indicate incidence and transmission sides; for clarity, an
enlargement shows the counting convention at the lastfatehbefore the
reflection pointX:,,_;, which is not shown on the main figure.

Knowledge on the reflection amplitude behaviour as a functeflection
angle or offset is crucial for reservoir parameter estioratin the next para-
graph, the true-amplitude Kirchhoff migration equatiorgigen in a form
suitable for the migration of data sorted to common offskis thakes it
possible to analyse the reflection Amplitude Variation vittiset (AVO) of
migrated common-offset gathers, as is commonly done wit® Awersion
techniques to estimate reservoir properties, see €aptagnd1993. To
obtain a simple notation of the migration equation for thes@mon-offset
sorted data, it is useful to follow the approachSufhleicher et al[1993 in
describing the source and receiver positions: the two ipositof a source-
receiver pail 7, ) are described by a single common coordinate vegtor
(e.g. the midpoint position betweeh) andz,) and certain constant acquisi-
tion configuration matrices; this concept is explained irreretail shortly.

In the foregoing? = (¢1, v2)7, Zs = (741, T52)" andT, = (2,1, 7,2)7.

Migration equation

Schleicher et a[.1993 describes 3D Kirchhoff TA PreSDM of the measured
dataseti; as follows:

o 1 L0y, L
(RG0@)) =5 [ RW(ED TG Dtz derden.
%]
(2.43)
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This pre-stack migration integral is often called ‘difftia stack’ to empha-
sise the fact it describes a stacking procedure along diftratraveltimes,.
The symbols occurring in this equation will each be clarifietbw.

For the evaluation of this integral and the determinatiothefweight func-
tion W, ray-based modelling of primary P-waves in an elastic stiase
model is performed. Therefore, the migration outcome isbidued-limited
primary P-wavereflection coefficient, and all signals in the recorded data
other than primary P-wave reflections are considered to s&no

Notice that, due to the usage @f Eq. .43 applies to a certain measure-
ment configuration only. For data that is sorted to commosebfthe migra-
tion equation is evaluated separately for every offsetgares the dataset,
after which the results may be stacked and averaged to dbifinal mi-
grated image.

Migration output  ( R (7, 0(%)) ) is the Zoeppritz-type displacement-nor-
malised plane wave specular reflection coefficient (dkeand Richards
[198Q sec. 5.2],Young and Braild1974, or Cerveny[2001, sec. 5.3]) for
primary P-waves incident from above, at subsurface pginthe brackets
“( )" denote spatial band-limitedness on the migration imagased by the
temporal band-limitedness on the input data (due to thefautation of the
source wavelet), and finite migration intervalC 0X, theaperturearea in
which all source and receiver positions are contained; seekys. .56
and @.57).

Notice that a single migrated common-offset gather costtie reflection
coefficients for different reflection anglé§z). This is even true for the
reflection coefficients from a single horizontal reflectance the velocity
distributionu, (%) in the subsurface between source, receiver and reflection
point may vary for differentf,, z,)-pairs from the common-offset gather;
the eikonal equations given in EdL.8) show that the exact P-wave ray-
trajectory, hence als#, is dependent on,(z). Generally speaking, the ob-
served reflection angle in a common-offset gather decregiiencreasing
reflector depth.

The proportionality sign) indicates firstly that the effect of the density dis-
tribution in the subsurface on the reflection amplitudeseglected (so that
the effect of density is still incorporated into the outcoreee also p41).
Also, it denotes that a certain constant scaling term netalgdt a dimen-
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Figure 2.7: Sketch of relation the between the coordinate vectoand the
source/receiver positions, and z,, as described by Eqs2¢44) and 2.45. &,
#2 and #¥ indicate some reference starting positioggcan e.g. be interpreted as
the midpoint position of a source/receiver paif,(Z,). MatricesT'; andT',. depend
on the acquisition geometry. Aft8chleicher et alf1993 Figure A-1].

sionless outcome has been omitted; this is a consequenice whly Schlei-
cher introduces the pre-stack Kirchhoff migration intégnathout referenc-
ing to any particular form of the wave equation.

2D coordinate vector

The simple form of the migration formula is

due to the introduction of coordinate vectgr without it the 3D Kirchhoff
PreSDM formula would have involved integration over fourighles,z; 1,
Zs2, Tr1, aNdx, o, instead of just two. The vectar relates to the two po-
sition vectorsz, and 7, as follows (Figure2.7), [Schleicher et a].1993

App. A],

o ® o

7s(P)

@
T (P)

z

X

<

€ 6y

(2.44)
(2.45)

)

_@0’
- 3%,

in which (22, #°) is a reference source-receiver pair definedz2y and in

s§I1°r

which Iy, T, are constan? x 2 transformation matrices determined by the
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Figure 2.8: Left: Common-offset acquisition, with sources and receiversgua
along a line at the surface} is the single coordinate vector. (Modified frdachle-
icher et al.[1993 Figure 5a]). Right: Three random 2D orthogonal coordinate
systems at sourcg;, receiverz, and subsurface poing. See the text on ‘Hessian
matrices’ for details. For clearer presentation it was asgd that the ray-pair falls
into the plane throught;, Z,. and . Note thatf,, 6, and 6,,, are shorthand for
anglestd(zs), 6(zZ,) andé(z). (Modified fromSchleicher et alf1993 Figure 4b]).

data acquisition geometry,

85’35,1 85’35,1 85’37‘,1 85’37‘,1
A1 O O 02
I's= I, = . 2.4
s ams,? ams,? ! T amr,? amr,? ( 6)

01 Op2 Op1 Op2

To describe a position of a particular source/receiver fpam the set of all
N source/receiver pairs in a surveyi’, 7./} !, the corresponding vector
from the set{ @ '}, ! is inserted in Eqs. .44 and @.45).

For the common-offset acquisition considered here (selethband side of
Figure2.8), the matrices have the propeity = I', = I, in which I is the

2 x 2 identity matrix; on substitution of in Egs. .44 and @.49 it then
follows that#, = 7, + (20 — Z7), in which || 20 — Z?|| is the offset. Hence,

for zero-offset acquisition, in additio®’ = z° should apply.
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Recorded data The dataset to be migrated with EQ.43 is the mea-
sured vertical component of the particle veloaity= dus /0t (in Schleicher
et al.[1993, the particle displacement magnituda|| = /u? + u2 + u2 is
used instead).

The time derivative) /0t operating onis in the migration equation makes
that the phase of the wavelet present on that data is preservéhe migra-
tion output, i.e. it compensates for the phase-shift effiee to the double
integration Newman 1975.

The superscript?) aboveu; in the migration equation indicates thai-
alytical data are being migrated. The analytical da&é?(gz; t) are calcu-
lated from the recorded datg(g; t) as follows Cerveny 2001 Eq. (A.3.2)]
(omitting the spatial argument for notational convenience),

a$V(t) = a(t) + jH(us(t) (2.47)

with H denoting the temporal Hilbert-transform, andhe imaginary unit
with property;j? = —1. The temporal Hilbert transform af;(¢) is defined
as Bracewel| 1984,

M (i3(t)) = % / 33(72 dr = / ig(7)g(t — 7)dr, (2.48)
taking the Cauchy principle value in the integral to avoid #iingularity at
T = t; the alternative integral notation makes clear the Hilbrarisform is a
convolution ofis(t) with g(t) = —=.

The sign convention in Eq2(47) corresponds to the following definition of
the Fourier-transformGerveny 2001, App. A], with w = 27 f the angular

frequency:

(e}

F (i(t)) = / ag(£) 9t dt (2.49)

—00

Traveltime function  ¢,(Z, &) provides the (two-way) diffraction travel-
times from source-receiver pairs (with their locationsquely identified by
variabley) to a fixed subsurface point The traveltimes may be computed
by ray-tracing through the migration P-wave velocity modeht should re-
semble the true P-wave velocity distribution in the sutmefsufficiently
well for the migration to be successful.
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The two-way diffraction traveltime, is the sum of the one-way traveltimes
from %, (&) to ¥ and fromz to Z,. (). The summation of input datéA) (F; t)

in Eq. 2.43 occurs along these diffraction traveltime surfates ¢,(, )

in the (o1, vo; t)-space (see alswilmaz [2001, p. 484] for an instructive
geometrical explanation of Kirchhoff migration).

True-amplitude weight function W (g, ¥) takes into account the cho-
sen acquisition parameterisation, the passing of raysitfirgaustic points,
and removes the geometrical spreading. It is given ®sh[eicher et a).
1993 Eq. (19), modified for free surface and vertical displacethe

p(Z, ) v, (T, \/COS¢9 ) cos 0(Z,) BN .
)Up(fs) cos Q(xr)C'o(xr)
)

)det(FSTN(:E 7)+ ITN(Z,, 7 ))

\/} det N (%, & }\/‘det (N )}

where the original equation fror8chleicher et al[1993 was multiplied
with the P-wave velocity at the source,(Z;), to be compatible with the
definition of relative geometrical spreading fraderveny{2001 used later
on, see also B1 andVanelle et al[2004. Furthermore, following Vanelle
et al., a factor was added to compensate for the effect cdreifit density
and P-wave velocity at source and receiver [this is the seeif the factor
before the product in Eq2(52)].

The original equation from Schleicher is modified to take iatcount the
free surface and measurement of tieetical component of the particle ve-
locity as follows. FactoiCy(Z,) in the denominator of Eq.2(50 is the
free surface conversion coefficient [see E§.10)], and cosd(Z,) in the
denominator takes into account the fact that the verticalmanent of the
particle velocity, i3, is measured instead of the total magnitydg| =
Vud + ad + .

The exponential in Eq.2(50), in which quantityx(Z,, Z,.) is the so called
KMAH index (named after Keller, Maslov, Arnold and Hormamyl takes
into account the phase shift due to (line or poitalstics. « is the sum of
caustic indices of all caustics encountered on the ray{fpatihz, via Z to Z,.
This factor may be calculated by dynamic ray-tracing. Maferimation on

(2.50)
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caustics is found in e.gBkker, 1999 or [éerveny 2001, section 3.10.5].
Note that the minus-sign in the exponential of Etj50 corresponds to the
plus-signin Eq.2.47) (and to the sign convention chosen in the definition of
the Fourier-transform). Also notice that near caustic {the amplitudes
calculated by dynamic ray-tracing are not reliable anyn{er¢ensions of
the ray method exist that can solve this problem).

The last factor in Eq.2.50), together with the factot/cos 0(%,) cos 0(Z,.),
removes the geometrical spreading and takes into accoarmbtndinate
transfor mation with respect taz. Transform operatorE? andI'? are de-
fined in Eq. .46, and angle9(%,) andd(z,) are the take-off- and emer-
gence-angles, measured with respect to the vertical, afath&om source
Z, via subsurface poinf to receiverz, (see Figure.6; note thatr in that
figure is positioned on an interface and hence is labellgd

Geometrical spreading in Schleicher’s formulation of the weight function
shown in Eq. 2.50), is described in terms of second-order traveltime deriva-
tives of paraxial rays: the x 2 matricesN (7, ¥) and N (Z,, ¥) appearing

in the last factor of Eq.4.50), are second-order mixed-derivative Hessian
matrices of traveltimes, set up as follows.

Consider three arbitrary 2D Cartesian coordinate systdmse.of them are
situated in the acquisition plang = 0: the firsts’ = (s, s9) is centered
at 7, the second” = (ry,r9) is centered af,. The thirdm = (my, my)

is centered at a subsurface paihénd is situated in the plane of which the
normal bisects the angle between the ray-pair fiblo Z, and fromx to .,
into two equal angle8(z) (Figure2.8, right-hand side). These coordinate
systems are used to describe the location of pdififsz,’, '} of a paraxial
ray in the vicinity of the point§z;, Z,, #} of the central ray.

The functionr(Z/, #') describes the traveltime along the ray fraim to

Z'. Using all the above, and introducing the shorthand natatig, =
N(#s, %), N, = N(&,, ¥), the Hessian matrices can be written as,

Fr(@,7)  PT(EF) Fr(@.7)  OPr(F,T)

ds10mq 0s10ma or10mq Or10ms

Ns = 92+ (2. 7' 2. (2 2 ' NT = 2 (= 2 (=
T(@,7) 0 T(T, ) 0°r(Z,.,&") 027 (&, %)

Ds20mq 0s20ma Oro0m1 Oro0ms

(2.51)
These second order mixed-derivative matrices are evaltéhe origins
of the introduced 2D coordinate systems, s&'at m = 0 for N, or at
7 = m = 0 for N,. The evaluation can be readily done with dynamic ray-
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tracing, seeﬁ;erveny 2007, section 4.6].

Remark on the term “true-amplitude” In most literature, the phrase
“true-amplitude” (TA), as used in Eq2.43 and .50, indicates compen-
sation of the recorded reflection amplitudes for geomdtepeeading loss
only, so that the resulting TA reflections in EG.43 still include the losses
in amplitude due to transmissions across all interfacasgaloe ray Schle-
icher et al, 1993,

(_, S 2(n 1)
(g, 7) = (@) f H T,

(pvpcos O) i+ (2.52)
(pvp cos b)),

with k& counting the interfaces traversed in the path from soutocga sub-
surface pointr to receiverr,, and with 7, being the Zoeppritz-type dis-
placement-normalised plane wave transmission coeffi¢@ninconverted
P-waves, at encountered interfacen the direction of propagation (Fig-
ure 2.6, with ¥ = #g). The signs— and + indicate the incidence- and
transmission-side of the encountered interface, at whichandd are eval-
uated;f is the angle between the ray and interface normal. Trangmiss
losses are discussed in more detail in secddgn

Arguments in favour of the approach to compensate for getraéspread-
ing only are, that the transmission term given by EQ59) is close to unity
and is only slowly laterally varying for a fair amount of ristiic subsurface
models, and that an accurate density-model needed for theved of the
transmission term, is hardly ever available. However, tbelsstic inver-
sion assumes this term having been determined and subskgqeemoved.

Migration equation for zero-offset caustic-free data

In the synthetic data examples of Chaptethe subsurface and acquisition
geometry are chosen such, that no caustic points occur atgngaths; in
that casex = 0 so that the exponential in the weight function of E2.50
disappears. Furthermore, apart from the offset test, tamples from Chap-
ter 4 use a zero-offset acquisition, = 7,, so that eithef’, or ', describe
source and receiver positions fully and may be substituded.fIn that case,
alsol'y = I', = I andN, = N,. It follows that the last term in Eq2(50
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becomes,
| det(TTN, +TTN,)| | det(2N,)| _
VIdet(N[y/[det(N)] /[ det(No)[y/[det(N,)]
Moreover,cos §(Z;) = cos §(Z,): the cosine-terms in Eq2(50 cancel.
Applying before-mentioned simplifications to Eq8.50 and .43 yields

for the 3D Kirchhoff TA PreSDM of a measured zero-offset ¢cadufee
particle velocity dataset,

(2.53)

) 2 0.
<R($> > = —; //%TGA m gu;g(x,«, t)‘t:tdde’,lde’,zl (254)

in which a term was added, EQ.62) adjusted for normal-incidence rays, to
take into account transmission losses,

(%, =%)= ] T. (2.55)

With accurate macro-velocity and density models, the eguatove yields
the true band-limited reflection coefficient, as desired toglsastic inver-
sion. The final migration image is built by evaluating EZ.54) at regular
intervalsAx, Az, and Axs within predetermined bounds (i.e. on the sub-
surface positions specified by a migration output grid), assembling the
result in traces(z3) for the various output positions:, z).

m 2.4.2 \Vertical and lateral resolution

The depth-migrated image is vertically and laterally béimdted, mainly
due to the finite duration of the source-wavelet, and thetéichillumination
aperture. Starting with the vertical resolution, let thendlmant wavelength
on the depth-migrated image bg; the dominant wavelength is defined as
the distance between successive principal troughs (orspehkhe wavelet,
see e.g.Kallweit and Wood[1987 or Sheriff [200]. For a thin layer to
be resolved on the migration image, according to Widesslugisn crite-
rion [Widess 1973 Kallweit and Wood 1987 it needs to extend a vertical
thicknessh of,

h> é)\d . (2.56)
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From Chen and Schust¢f999 Eq. (20)], in which Rayleigh’s resolution
criterion [Kallweit and Wood 1987 is used, thdateral resolutionAr; on
the Kirchhoff-type 3D pre-stack depth migrated image in:ithelirection is
given by,

Aq3

Ary = (2.57)

Lmax
An analogous expression exists for thedirection [Chen and Schuster
1999. In Eg. .57, A\, is the dominant wavelength on the seismic im-
age, andr; is the observation-depth on the image. The maximum migratio
aperture half-length in the, -direction, Ly, is a function of the acquisition
geometry: itis given by max = max{L,, Ly}, with 2L, the separation be-
tween the receivers having maximum and minimeyycoordinate, and L
the similar relation for the sources.
So, Eq. .57 specifies that the lateral resolution is linearly propmrél to
the observation depth and dominant wavelength, and inygpseportional
to migration aperture half-length.x. The role of migration aperture in
Kirchhoff migration is discussed in more detail lertweck et alJ2003.
Note finally that Rayleigh’s resolution criterion leads tenenimum sepa-
ration between events which is about 4 times larger thandibt@ined with
Widess' resolution criterion.
Edge diffractionsTrorey, 197Q Berryhill, 1977 that may be present on the
unmigrated data due to discontinuities in the subsurfatecters are effec-
tively removed by the migration algorithm. Of course, mariyeo factors
are also involved in determining the final threshold of raoh on the mi-
gration image, such as signal-to-noise ratio on the inpta fta migration,
and migration noise.

m 2.4.3 Pulse distortion

Regardless of the employed migration algorithm, pulseodisin occurs on
the migrated imagelLfevin, 1998 Tygel et al, 1994 Brown, 1994 Black
et al, 1993. This distortion involves a migration-induced lengthamyi or
stretch, of the wavelet with respect to the wavelet presarthe pre-stack
unmigrated data (which is here assumed to have a fixed shEp&amMount
of lengthening is a function of reflection angle, reflectqp dnd velocity.
In the following, a ratio between wavelet duration in twoywtsaveltime
(i.e. before migration) and wavelet length after depth =tign is defined.
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X3

Figure 2.9: Left: 2.5D setting. The acquisition survey is confined to a line in
the z1-direction, above a 3D subsurface that is invariant in thedirection. Two
spherical wavefronts are shown, spreading in all 3 dimemsifvtom a point source
at ;. Right: Three interfaces with varying dig in a 2.5D setting, with three
corresponding traces from the depth migrated image exhiwvavelet stretch.

Subsequently, two specific cases of pulse distortion aneishtogether with

a brief indication of their relevance to trace inversion.

Consider a seismic survey with, to facilitate the followiagalysis, a 2.5D
setting Bleistein et al, 2001, p.123]: in such a setting, subsurface parame-
ters vary only in one lateral direction (say alang and the depth direction
(z3), while the measurements at the surface are taken only ahengingle
lateral direction. However, wave propagation is still yJulD and not con-
fined to the 2D(z4, x3)-plane. This 2.5D case is depicted on the left-hand
side of Figure2.9. For migrated primary unconverted P-wave reflection data
acquired in a 2.5D setting with an isotropic elastic sutzef the governing
expression that measures wavelet stretch in the verticattibn is [Tygel

et al, 1994,

2
mo(vy(Z), 0, 5) = — cosfcos 3, (2.58)
Up
with my = A7/Az; the ratio between a small time interval in the two-
way recording time domain and the corresponding depthvatéxz; in the
depth migrated domain. In Eg2.69, 6 is the angle of incidence of the
ray-pair to the reflection point, and the reflector dip measured from the



2.4 Inversion domain - the migrated image 45

Amplitude

depth [m]

Figure 2.10: Wavelet asymmetry of wavelet “B” after depth migration ofamtrast
with vy (z, ;) = 2200 m/s and,(z; ;) = 3000 m/s. See the text for details on the
symmetrical reference wavelet “A”. Amplitudes are norrsedl to unity.

horizontal at the same location (see Fig@r, right-hand side). The P-
wave velocity is indicated by, (Z). For blocky velocity models, the stretch-
evaluation pointt on the depth migrated image must be chosen just above
or below the velocity discontinuity. Notice further that.Hg.58) is also
perfectly valid in a 3D setting; in that casg,and 5 are measured in the
so-called plane of reflectionygel et al, 1994. Finally notice that in the
following equations, the invarianty-direction due to the 2.5D setting will

be omitted.

Wavelet asymmetry

As a first example, consider a reflector dipping with angle- 3, at sub-
surface point4 on a zero-offsetd{ = 0)" depth migrated image (Figuge9,
right-hand side). Using Eq2(58), the migration-induced stretch in the depth

fStrictly speaking, only in a subsurface with not too largpsgizero-offset data and
normal-incidence data (= 0) are equivalent, otherwise reflections with# 0 may still
occur for a zero-offset acquisition geometry.
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domain at point? " = (z,,, 74 5)" just below the interface, relative to the
stretch at positio’;” = (z,,,2, 4)" justabove it, is written as,

Aw(#) _ [Awy/AT)ED) _ mo(v,(a3).0 = 0.62) _ u(@)
Avs(d)  [Daa/A)E)  mo(0,(@5).0=0.01)  u(Fy)

where it was used thahr is constant on the recorded data. Hence, for
vp(x;l,:,)) + vp(ng) atz, = x4, a zero-phase wavelet of durati@p cen-
tered around a reflector, will besymmetricafter depth migration (using a
migration velocity model with mentioneg,-jump at the reflector), because
the equal time interval$,;/2 around the reflector will convert to different
depth intervals\y(Z ) /2. In the case that,(z} ;) > v,(x 4), the deeper
part of the wavelet in the depth domain will be longer, as tdlconfirmed
with a numerical test below. Observe finally that the wavatmmetry
described in this paragraph, is introduced by thgump in the migration
velocity model (which in practice will not always coincidetiwvthe true in-
terface position).

Figure2.10shows an enlargement of trasér; = x4, z3) taken from a
zero-offset depth migrated section, around a single iaerfvithv, (z; ;) =
2200 m/s andy,(z} ;) = 3000 m/s (which is dipping with angle = 45°).
The used migration velocity model was exact and includedhecity jump
at the interface. The wavelet “B” appearing on this tracenftbe depth mi-
grated image is clearly asymmetrical, while the wavelehatinterface be-
fore migration, taken from a trace of the normal-incidenatadet, was sym-
metrical (Figure2.11, wavelet “A’). The symmetrical reference wavelet “A’
on Figure2.10was obtained by migrating the same normal incidence dataset
while providing a velocity model with a homogeneays= 2200 m/s below
the interface, so that,(z} ;) = v,(z}5) = 2200 m/s. From Eq.2 59,
the amount of stretch in the depth domain on the deeper sitleeahter-
face with respect to the shallow side (i.e. the amount of asgtry of the
wavelet), as visible on wavelet “B” from Figu21Q, is v,(7}) /v,(7;) =
(2200 m/g/[3000 m/g = 1.36.

One aspect of 1D vertical depth-to-time conversion thaersdficial to trace
inversion is that it eliminates the above-mentioned wavatgmmetry (al-
though a stretch remains in comparison with the wavelet enr¢icorded
data before migration in the two-way traveltime domain, theenext sub-
section). After 1D vertical depth-to-time conversion Gdes(z 41, z3) to

(2.59)
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Figure 2.11: Wavelet “B” shows the depth migrated wavelet “B” of Figu2el0
after 1D vertical depth-to-time conversion. The waveledyismmetrical again, but
stretched compared to wavelet “A”, which was taken from tbemal-incidence
dataset. Amplitudes are normalised to unity.

s(xa1,t,), the asymmetrical wavelet in depth obtained after depthatiimn
(Figure2.10Q wavelet “B”) is symmetrical again in vertical two-way travel-
timet, (Figure2.11, wavelet “B”). This can be seen by calculatitig using
Eq. (.42, for the shallow part and stretched deeper part of the eavblat
is centralised around depihy 3 (with x5 abbreviated ta):

M9 2 [ A
¢ pper — / dz = —— / dz = 2L (2.60)
za—2d Up(2) up(2y) 24— up(2y)
zA+a 2 2 zZA+a
 lower — / dz = —— / dz = Ad_ (2.61)
zA vp(2) Up(24) Jza vp(24)

in which the two short-hand notations = \,;(7;) anda = \y(Z})/2 =
Na(T3)/2- v, (Z}) /v, (25) were used. Hence, after 1D vertical depth-to-time
conversion, the asymmetry has disappeatgepe’/t over = 1,
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Wavelet stretch

As a second example, consider the stretch induced by a mfldiptc = G5
at positionz'z, relative to the stretch at pointy with zero dip, on the zero-
offset migrated image,

n (6 ) . mO(Up(fA)’e =0,0= 0) _ U;D(_)B) 1
oNE mo(v,(Tg),0 = 0,3 = 3g) a vp(Za) cos Bp

As shown in the previous subsection, stretching due to utgloa the zero-
offset depth-migrated image is eliminated by 1D verticadttieto-time con-
version: a scaling of the migration image along the vertweish local ve-
locity occurs [Eq. 2.42)], effectively removing the velocity dependency in
the stretch-equation above. This yields the expressiothéodip-dependent
migration-induced wavelet stretely(3) on the depth-to-vertical-time con-
verted migrated image:

(2.62)

no() = — (2.63)

cos (3
In practice this means that the wavelet representing thitiguosf a reflec-
tor on the migration image in vertical two-way time is insemly stretched
with increasing reflector dipp. Regard again wavelet “B” in Figur2.11,
taken at an interface dipping with angbe= 45° from the depth migrated,
1D vertical depth-to-time converted data in vertical twaywraveltime. It
shows the stretch, (3 = 45°), as compared to a wavelet from the same in-
terface at zero dip. The reference wavelet “A” without stineth Figure2.11,
actually was not taken from depth-to-time converted dataead dip, but
(as mentioned in the previous example) from the normaldence data at
the interface dipping with5°: this wavelet is equal to the wavelet from the
depth-to-time converted migrated image at zero dip, aparh fan ampli-
tude scaling factor due to the removal by TA migration of atnde losses
related to wave propagation effects (such as geometricabdmg and in-
terface transmissions).

2.5 Forward modeller - 1D convolutional modelling

In order to model traces within the target zone on the 1D ea@riiepth-
to-time converted, depth migration image, conventionatlsastic inversion
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makes use of a 1D convolutional forward modelling kernelwas pointed
out briefly in sectior2.2 The mathematical formulation of 1D convolutional
modelling was introduced already in sectidr2 to explain the relation be-
tween stochastic trace inversion and Bayesian theory. isnsection, this
forward modelling step in stochastic inversion, and itcela the total in-
version scheme, is explained in more detail.

An example target zone for inversion is schematically depidy a box
around an area of interest on the migration image, in the rupfteof Fig-
ure 2.12 only the traces from the depth-to-time converted migraiio-
age within the target zone are modelled, in the vertical wey-traveltime-
interval bounded by the traveltimes that correspond to taptettom of the
target zone. A different local 1D model is used for everydrtmat is forward
modelled, progressing sequentially through the 3D target.

Before the forward modelling of the portion of the trage, ) from the depth-
to-time converted migration image that falls within thegietrcan take place,
the initial reflectivity trace(¢,) for the current position in the target, and the
wavelet for inversionu(t,) need to be determined. Both are constituents of
the 1D convolutional model of EG2(34) that is used to generate the forward
modelled trace(t,),

S(tv) - w(tv) * T(tv> + n(tv) ) (264)

in which the traveltime is specified more precisely as the¢icadrtwo-way
traveltimet,, since the forward modelling takes place in the depthseeti
converted migrated domain.

Waveletw(t,) is usually taken the same for all traces in the inversion tar-
get of the migration image. It is derived from a seismic-telvwnatch at
the well position near the inversion target (Fig@ré2, upper left), see e.g.
White and Simn{2003; Veeken and Da Silvf2004; Duijndam and Drij-
koningen[1997. This process can be summarised as follows: from the
acoustic impedance well-log, a reflectivity trace is conepthat is consid-
ered correct for the target zone. This reflectivity traceasvolved with a
first-estimate seismic wavelet to produce a synthetic tfacéhe inversion
window at the well position. In the target zone, this synthetce is then
compared to the actual trace from the migration image. titexig updating

the seismic wavelet, until the match between synthetic amagahtrace is
optimal, yields the desired wavelet for inversion.
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The initial spiky reflectivity trace is built from a local 1ubsurface model
at target level (see the next paragraph for a more detailecrigéon of this
building process) that varies from trace to trace in thensiom target. The
local 1D prior model at the trace position, that include®preservoir pa-
rameter uncertainties, is derived from a detailed 3D resemiodel made
from local petrophysical data at nearby wells, regionallggical knowl-
edge and structural information from the migrated image.
The complete forward modelling step performed in a singeation loop
(see Figure2.3) of stochastic inversion is graphically depicted from keft
right in the lower half of Figure2.12 Initial estimates of rock and pore-
fluid properties, obtained from the detailed reservoir ni@dehe current
trace position, are inserted into a 1D rock/fluid propertydel@appropriate
for each identified layer in the inversion target. Using thesck models,
the elastic layer-properties P-velocity, S-velocity areasity @,, v, andp)
are calculated from the basic constituents of that rock. example, the
so-called critical concentration model calculates the, and p of sands,
carbonates or dolomites from the propertigs, andp of the grains, and
the actual and critical porosity of the matrix surroundihg grains Chen
1997. The foundations of rock modelling are explained in, fostance,
Mavko[1999.
Subsequently, with the full Zoeppritz-equations, givereig. Young and
Braile [1974; Sheriff [2002, or approximations (see e.gShuey[1989;
Bortfeld[1961]]; Aki and Richard§198Q p.153]), the reflection coefficients
R(0) at each layer-interface as a function of angle of incidehaee calcu-
lated (usuallyy = 0 is chosen), locally assuming a 1D layered earth. With
initial thicknesses taken from the well, the spiky refleityitrace r(t,) is
built using Eq. 2.35),
N
r(ty) =Y Ri(0)5(t, —73) (2.65)
j=n

in which the following refinements were madg; is substituted for, the
summation occurs over the interfagethroughN in the target for inversion
(with the interface numbering corresponding to that of Feg216), and the
dependency ofz on reflection anglé is explicitly shown. As beforef;
andr; are the reflection coefficients and the lag times in vertica-tvay
traveltime ofj-th reflector, and is Dirac’s delta function.
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Note thatR;(¢) in Eq. (2.65 must correspond to the type of reflection co-
efficient present on the depth-to-time converted migratata that are in-
verted; e.g. when using ER.64) for migration, R; is the normal-incidence
(¢ = 0) displacement-normalised plane wave specular reflectefficient
for primary unconverted P-waves. The spiky reflectivitggaesulting from
Eq. (2.69 is convolved, according to Eq234), with waveletw(t¢,) from
the seismic-to-well tie, to generate the desired forwardiefied trace on
the migration image, at the current position in the inversarget.

As mentioned before, the forward modelling step is repeatbile itera-
tively updating the reservoir parameters, until the misias minimised
between the forward modelled and recorded part of the seisaue (upper
right of Figure2.12, and Figure2.3), taken from the migration image at the
level of the inversion target — at that stage, the estimatesskservoir rock
and pore-fluid properties, including their associated grast uncertainties,
are yielded at the current position in the inversion targéie entire trace
inversion process is repeated for each trace in the invetsi@et on the
depth-to-time converted migration image, to finally yiehe tupdated (pos-
terior) reservoir model including uncertainties.

2.6 Discussion

For laterally variable subsurface media, conventionaisg trace inversion
ideally relies on TA PreSDM for removing all wave propagateifects, in-
cluding those related to interface-transmissions, withierburden and tar-
get zone. Only then, an image is produced that approxime@&sraflectiv-
ity sequence ina;, =2, t,) convolved with waveletv(t,) along the vertical
direction. In such a 3D band-limited reflectivity sequeratea fixed surface
position (1, x3), we then have a 1D reflectivity sequence convolved with the
wavelet, so that Eq2(34) adequately describes these data.

In practice however, TA PreSDM does not yield the perfectdbiamited
image of the Earth’s reflectivity: in sectidh4 it was shown that the image
has a lateral resolution dependent on the migration apertepth of obser-
vation and the dominant wavelength. Also, a finite migratiperture (as
encountered in practice) limits the maximum dip of struetuthat can be
seen on the migration image: the steeply dipping parts a@remaged, see
e.g.Hertweck et al[2003, and Toxopeus et a[.2003 Fig. 7]. These effects
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are not included in the 1D convolutional modelling. Notitatt one can
try to improve the migration image before inversion by usitiger types of
migration, such as two-way wave-equation migration omiige migration;
also with these types obtaining a TA result is not a triviareise.

Apart from these effects, it often occurs that reflectionlangformation
needed for resolving reservoir parameters is blurred byggssing steps,
such as angle-range substacks for enhancing signal-se-maiios [evin,
199§. Furthermore, it was presented in sectidd that on the migration
image, wavelet distortion inevitably occurs. However, tricace inversion
algorithms make use ofstationarywavelet, or one of which the phase can
be adjusted at most. Note that some inversion methods danveffset-
dependent wavelet that is different for each migration tadbsinput to in-
version [Guilloux et al, 2004. Also attempts are being made to deliver a
stretch-free Kirchhoff-migration, at least removing theetch due to reflec-
tion angled [Perez and Marfuy2007.

As mentioned before, the inversion procedure totally setie the separate
pre-processing step of migration to remove effects of wagpggation. This
also means that migration artifacts, imperfect removakgérberations, or
inaccuracies due to a wrong velocity model in the inversimgdt have to be
taken for granted and cannot be accommodated for by thesiover

The inversion process has to deal in some manner with alleebw@ntioned
complications, which are suspected to degrade inversgultee especially
in a structurally complex subsurface with substantialrkdteelocity varia-
tions and significant reflector dips. Of course, inversioarigterative pro-
cedure (Figure.3) thus the forward modelling has to be fast, justifying the
choice for 1D convolution. However, with processing powkcemputers
yearly still increasing according to Moore’s laMpore, 1969, this advan-
tage in speed becomes less important; more advanced fomadelling
kernels become feasible.

One possible way to improve the inversion kernel could bevdéod mod-
elling migrated traces with a so-callegsolution functionreplacing the 1D
convolutional model, to incorporate the effects introdubg migration into
the inversion kernel. More on the resolution function carfduend in Tox-
opeus et al[2003 2004. In the next chapter however, a different approach is
chosen that avoids the complications mentioned above:@amgl the orig-
inal wave-path and reflection angle information inside tiversion kernel.
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Box 2.1: Stacking in Astronomy

Contrary to the concept of seismic interferometrgganov et a).2007 that
is currently receiving much attention in geophysics and it success-
fully applied by astronomers in solar seismology, a few geago stacking
was (re)discoverddby amateur astronomers as a useful procedure to enha
signal-to-noise ratio; something that was already knowrmaflong time in geo-
physics Mayne 1963.

When observing heavenly bodies, the Earth’'s atmospheseaach source of
noise since it is in continuous motion - it acts like an eveatging lens which
constantly displaces the observed position of stars; acteffe see as the ‘twin-
kling’ of stars in the sky. This twinkling of stars may be vegmantic, it is not
much loved by astronomers; in their jargon they refer to ibasl seeing’.

The idea is to neutralise the noise of the atmosphere byirghiéind stacking
a large amount of images taken in a short time-span. Takexammple the
pictures of the beautiful planet Saturn: on the left-harml® ©f Figure2.13 a
few images of a set of 90 are displayed taken at a rate of 30 tHzsegjuently,
the images are stacked, and on the right-hand side we seestlié r

The pictures were taken in Rijswijk by the author using a ¥i2® mm refrac-
tion telescope and a Nikon CP4300 digital camera.

L

Figure 2.13: Stacking images of Saturn.

ince

t The foundation of the technique was laid Byed[1966.



Ray-based stochastic
Inversion

Stochastic trace inversion does not always yield accues&ryoir parameter
estimates, due to the nature of the inversion domain, theateid image
which is the predetermined result of an extensive procgssiguence, and
due to the fact that the 1D convolutional modeller does neg e correct
migration response (ChaptaY.

In this chapter, therefore, a novel seismic inversion metfow improved
reservoir parameter estimation, ray-based stochasgcsion (RBSI), is in-
troduced. The scheme is based on high-frequency asympégtitheory,
which has the added potential benefit of providing a traregdink between
Kirchhoff pre-stack depth migration and stochastic inierdor reservoir
properties (Figure.1). The method has in common with stochastic inver-
sion, that it is a Bayesian type of inversion.

This chapter is structured in a similar manner as the prevatapter, thus
using the sequence: workflow - inversion domain - forward etied, for
RBSI, the inversion domain and forward modelling kerneltaeepre-stack
unmigrated image and 3D elastodynamic ray-tracing, résehe However,
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/Ray-based stochastic inversion (RBSI)\

Pre-stack depth
migration (PreSDM)

3D ray-
tracing

Stochastic inversion (Sl)
for reservoir properties

- J

Figure 3.1: Ray-based stochastic inversion. 3D elastodynamic ragiigpas the
integrating tool between Kirchhoff pre-stack depth migmatand stochastic inver-
sion for reservoir parameters.

the chapter starts with a description of RBSI principles] #re presentation
of two ways in which parameter updating in the target can beddn the
section on forward modelling, the method of ray-tracingaerially intro-
duced. At the end of the chapter, the advantages and drawbétke RBSI
approach as compared to existing trace inversion techgigreeexplored—
numerical experiments on synthetic- and field data (Chapteand 5) will
test the potential of RBSI in practice. Finally, a speciaecaf RBSI is pre-
sented, in which the 1D convolutional forward modellingriaras found in
much inversion software is applied, hereby reducing thgeani application
but offering substantial practical advantages.

3.1 From stochastic inversion to RBSI

For inversion of rock- and pore-fluid properties in a latigratrongly vary-
ing, fine-layered target reservoir sequence, it is propaseddis thesis to
employ the original ray-path and reflection-angle inforimat contained in
the pre-stack unmigrated data (recording time domainigéhe inversion
algorithm. This change with respect to conventional stettbanversion (Sl,
Chapter) is anticipated to yield a more accurate reflection ampéitrepre-
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Table 3.1: Conventional stochastic inversion vs. Ray-based stoichasersion.

Conventional SI Ray-based Sl
Inversion domain| migrated domainp  recording time domain
Forward modellert 1D convolution | 3D elastodynamic ray-tracer

sentation in the target zone and hence a more accurate estiof reser-
voir parameter distributions. The new scheme is calledoaged stochastic
inversion (RBSI), to emphasise that Bayesian inversion takes place in
the recording time domain, using 3D elastodynamic rayitaas forward
modeller. Table8.1 summarises key discriminators as compared with Sl.

m 3.1.1 RBSI principle

For RBSI, the isotropic elastic subsurface sp&ice R? with surface bound-
ary0X atzs = 0 is parameterised as an overburden macro-model overlying
a layered target reservoir sequence (FiguB& and is assumed to satisfy the
standard ray-theoretical validity conditions, given ictsan 3.4.

In RBSI, 3D elastodynamic ray-tracing is used as forward elled instead
of the 1D convolutional model of SI. Concentrating on uneated, primary
P-wave reflections, the key vehicle for RBSI is formed by glsipair of P-
wave rays leaving the specular reflection paiat on then-th reflection
surfaceX, (within the reservoir sequence), at anglgs= 6, to the normal-
vectorii(Z) on Y, see Figure.2

As was the case in Sl, layer parameters in the inversionttargeteratively
updated using a guided Monte Carlo algorithm (secfidn4), but this time
the mismatch is minimised between the reflection respomse/afd mod-
elled by 3D elastodynamic ray-tracing, and the real recgslirom the pre-
stack unmigrated data, see Fig&. For more details on the ray-tracing
used and the restrictions it puts on the target model, s¢®sEcA.

In this work, the receivers measure the vertical componéthe particle
velocity 73 as a function of recording timg a recording at receiver, due
to a source af; is called a trace (75, Z,; t) (note that in Chapte? the no-
tationus(g; t) was used, withg uniquely defining the source-receiver pair
{Z,,Z,}). Atrace contains the reflection responses from severaifades;
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Figure 3.2: Subsurface parameterisation for RBSI, with overburden tamget.
Notice the different convention for labelling traversetknfiaces along the ray-path,
and for labelling the reflection angle, as compared to Figdr& The numbering
corresponds to the structural interfaces instead of theoantered interfaces.

the portion containing the response from the target intedas denoted by
Us(Zs, Tp, Try; t) With i € {n,..., N} (assuming a single response from
each reflector). By forward modelling of traceg @, z,, Zr,; t) with ray-
tracing, source and receiver positiofig, .} are mapped via ray-paths to
subsurface reflection points; ; in the target interval. In the target, the pa-
rameter updating takes place, until a satisfactory fit isioletd between real
tracesu; (s, Z,, Zr,;; t) and the forward modelled trace&rs, 7, Tr; t).
The mapping oft'k is uniquely defined by initial directiong{, ¢) (with

g+ measured fromi(Z) in the plane of propagation at anglewith the
azimuth), and by migration velocity mode}(Z). The migration velocity
model generally is smooth without interfaces; initial &trtayers need to be



3.1 From stochastic inversion to RBSI 59

Layer-parameter
Update

Synthetic
Trace

Satisfactory Etflﬂlatad
fit? ayer-
parameters

Figure 3.3: Iterative inversion loop for RBSI. A Markov Chain Monte @aalgo-
rithm is used to propose parameter updates. In grey boxeschihnges are indi-
cated, as compared to Sl (Figuge3).

inserted before any specular reflection point ray-traceng @mmence. To
that end, a clearly distinguishable target interfageas picked from the depth
migrated image, and inserted in the velocity-depth modelbs8quently,
initial target layers and interfaces are built around it émegrate the prior
model for RBSI (using petrophysical and geological infotiom, similar to
initial model building in SI). With the initial target inteaces?; in place
(@ € {n,...,N}), reflector normal vector fields(%;) can be generated for
the ray-tracing, see Figur&2and1.4.

For RBSI, the process of generating synthetic traces frark-rand pore-
fluid properties is not much different from that applied in(8épicted in
the flow chart on Figur@.12); both use rock models to calculate the elastic
layer-properties and the Zoeppritz equations to computecten coeffi-
cientsR(6;"). As depicted in Figur&.3, the main difference lies in the fact
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that the synthetic traces for RBSI are not generated via YDatation of a
reflectivity trace, but via 3D elastodynamic ray-tracingitarget model.
Trace recordings from the pre-stack unmigrated datasetesmonding to
ray-pairs having the same angle of incided¢e are conveniently located
together in angle-gathers. The normal-incidence gathenéswell-known
example(f; = 0); it is extensively used in the numerical tests of Chap-
ters 4 and 5. Inverting on different angle-gathers shouldrinciple lead
to the same estimated parameters, giving a data redundhaatydn be
used to reduce uncertainty. In amplitude-versus-offsgildude-versus-
angle (AVO/AVA) inversion techniques, the angle-inforimatis made use
of as well, albeit in the form of migrated substacks.

Note that also a trace from a NI-section carries informatiotayer-proper-
ties related tov,, albeit not at reflection pointgz, where the expression
for R(A = 0) is independent of, (Eq.3.17), but at overlying transmission
pointszy in the target where transmission with incident angles 0 usually
occur, introducingu, into the expressions for transmission coefficiehts
(e.g. compare Eq. (5.3.3) with Eq. (5.3.18)3erveny[2001]). Even atzy
an ‘estimate’ for properties relatedtgis made, using the prior information
onv;.

m 3.1.2 Linking inversion with Kirchhoff-type migration

The subsurface model for RBSI is hybrid, with a coarse elagtbsurface
macro-model in terms af,, v,, andp for the overburden, and a detailed lay-
ered model in the target, specified in terms of reservoir+ackl pore-fluid
parameters (Figur@.4). The overburden is assumed known from migration,
hence the macro-model for the overburden is fixed—updatmhgaccurs in
the layered target model.

Notice that in practice, it is difficult to determine and especially for the
overburden. Commonly, it is assumed that lateral variatiop are slow so
that the impact on reflection amplitudes is minimal. In theeatze of more
detailed information, S-wave velocities in the overburdesa often simply
calculated as a fixed fraction of, and densities taken constant.

Also note that for Kirchhoff-type migration, three impantayrids with dif-
ferent cell-spacing can be defined: the above-mentionedively coarse
grid often called ‘migration velocity grid’, on which theaatic parameters
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Figure 3.4: Hybrid subsurface model for RBSI, consisting of a coarse gfielastic
parameters (grey) for the overburden, and a detailed layeredel of reservoir
parameters (black) in the target.

are defined, a finer ‘ray-trace diffraction grid’ specifyittge positions of
points from which rays are traced to the surface, to caleuiaveltimes,
amplitudes and other ray-properties needed in the diftlactack, and the
finest ‘migration output grid’ defined by the spacing betwéantraces on
the migration image and the spatial sampling of depth oreth@ses.

The connection between ray-based inversion and Kirchiyp-migration

is made as follows. With the overburden assumed known, fptreecing

through the overburden, in principle the rays calculatedhendiffraction

grid for preserved-amplitude Kirchhoff-type migrationnche re-used (in-
terpolating between them if necessary), to save compuiting. tNew ray-

tracing by the forward modelling kernel of RBSI is then onBriprmed in
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the target, with ray transmission locations and angles extdp target in-
terface linking overburden- and target ray-paths. Howethes procedure
has not been explored more closely in this work. It appearetcessary
to apply the procedure in the numerical tests of Chaptersidbanhe 2.5D
configurations used there, did not nearly demand as mucht@®as true
3D configurations would do.

m 3.1.3 RBSI in ‘layer-stripping’ mode

In SI, the traces from the migrated image, that are forwardetfied using
the 1D convolutional model, are laid out vertically over theget (usually,
see e.g.Levin [199§ or Vermeer[199Q Figure 2.2] for some horizontal-
trace displays) the direction corresponding to depth. rakes it possible
to invert trace-by-trace, starting the estimation of |gyarameters at a cer-
tain horizontal position and then progressing lateralhptigh the target.
However, in general, RBSI cannot be performed trace-bgetralo under-
stand this, consider the following. Traces from the prelstanmigrated
data reside in the recording time domain; mapping of therosmb reflec-
tions to corresponding reflection points in the spatial donsdone with
ray-tracing, using the migration image and velocity modiethen appears,
that a single trace from the pre-stack unmigrated data iscaged with
reflection- and transmission points that are distributezt @wvolume, rather
than along a line (Figurd.5a). The reflection responses on the trace cannot
be handled separately due to wavelet-interference. Tloenration from a
single trace should then be used for estimation at once ef lpsoperties
at the respective reflection- and transmission positiorswév¥er,different
traces generally haveverlappingvolumes of reflection- and transmission
points (Figure3.5a), hence also overlapping volumes of parameter estima-
tion, preventing a separate trace-handling for RBSI. Irotlexlapping area,
all information must be used for parameter estimation, mby that corre-
sponding to one trace.

The only way to correctly deal with this situation is to upelgie 3D target
subsurface modeals a wholeusing the guided Monte Carlo technique. Both
layer-parameters and their spatial distribution would pdated, as well as
the interface positions. After each update, all relevaatgiack unmigrated
traces (e.g. the NI-section) are forward modelled againcantpared to the
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Figure 3.5: (a) NI ray-paths from geophones A (solid) and B (dashed)reetub-
surface reflectors. Open circles denote transmission poifit) RBSI in ‘trace-by-
trace’ mode, for two target-interfaces; and X,. Circles denote reflection points;
dashed lines indicate normal directions on the interfacse text for details.

measured data. This approach involves a considerable eharthe way
how model-building and updating is done, compared to thaludd models
of Sl built separately for each trace in the migrated domain.

However, if separation between the layers in the inversawget is large
enough to prevent interference of target interface retlaatesponses on the
recorded pre-stack unmigrated traces, RBSI can be pertbimemore tra-
ditional, trace-by-trace, layer-by-layer mode. Each &f teflection points
corresponding to a trace recording (Fig@r&a) can then be handled sepa-
rately with the following procedure. Notice that the pretiren of wavelet
interference in the target on the normal-incidence sectqgnires the target
layer-thicknesses to be larger than the dominant waveiexngt

Assuming the overburden known, layer parameters on therlside of the
top target interfac&,, are iteratively updated, passing laterally over the inter-
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face trace-by-trace, using the guided Monte Carlo algoriitn minimise the
mismatch between the modelled;, 7,, ¥ ,; t) and realis(Z, Z,, Trn; t)
portions of traces containing the reflection response ottimsidered inter-
face. Once the properties are estimated at a lower side oitaridce, they
are extrapolated vertically downwards through the layethé upper side of
the underlying interface, so that they can be used as knawitisd inversion
over the next interface. Hereby, it is assumed that the prppariations in-
side the layer are known; e.g. geological information majjaate that the
layer properties vary laterally, but not vertically insithe layer (inside the
layer, the properties then are a function(of, x5) only).

The procedure is repeated for all layers inside the targegrpssing down-
ward through the inversion interval, until the propertidseach layer are
estimated. This process is schematically depicted in Ei§uib, for two
interfaces:; and, that both fall in the target area: RBSI is first performed
over interfaceX;, laterally progressing over the interface as indicated by
arrow (1), for the unknown layer properties at the lower sideXf(indi-
cated by shaded circles). Subsequently, the inversiotseme downwards
extrapolated t@, (assuming that the vertical property variations inside the
layer are known), where they are used as knowns for the sexsedp of
RBSI, along>; as indicated by arroy2), for properties belovL,.

An example of the application of this type of RBSI on syntbetata, to
determine a laterally varying density distribution thahicat be retrieved
with usual inversion, is given in Chapter 4. In sect®f, a simplified variant
of RBSI is presented, that can be applied trace-by-trackowitthe need
of large separation between the target interfaces. In the seztion, the
differences are discussed between the workflow for RBSI and S

3.2 Workflow for RBSI

The process of ray-based stochastic inversion is scheaigtadepicted on
the left-hand side of Figur&.3, which is repeated in Figuré.6 for conve-
nience. In this section, the practical aspects for a sufidessecution of this
scheme are discussed. These aspects are especially tébevhe field data
test of Chapteb. The main differences with the stochastic inversion method
(Chapter 2), are the inversion domain and forward modeller, respelstiv
the pre-stack unmigrated image and 3D elastodynamic eeyAty; these are
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Figure 3.6: Flow chart for the new ray-based inversion (left) and thensad
method (right). Both employ stochastic inversion kern#ig (oops refer to the
Markov Chain Monte Carlo sampling), however the new schesae 8D ray-based
modelling, and is applied to the pre-stack unmigrated data.

described in more detail in sectioB3and3.4.

Quiality check on seismic datasets

In the upper part of Figur8.6, it can be seen that RBSI makes use of two
seismic datasets, the pre-stack unmigrated data and thstgme depth mi-
grated data. Following the workflow for Sl described in sat2.3, the
RBSI procedure starts with a quality control and pre-coadihg of these
input data. The migration image should be of good enoughitgualallow
the picking of reflector normal vector fields in the targetare

For RBSI however, not only the migration image, but also treegiack un-
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Figure 3.7: On the left, a target zone on a migrated dataset, plotted profahe

migration velocity model. The picked reference reflectadapicted in cyan. On
the right, the corresponding (near) normal-incidence mect In red, traveltimes
calculated by ray-tracing to the reference reflector.

migrated data corresponding to the inversion target iskdwedor quality:
this is the dataset on which the actual inversion takes plaoedetermine
which traces from the pre-stack data contain reflections filwe inversion
target (so to determine which portion of the data should lexkéd), ray-
tracing is performed to a target interface; this yields #levant source/re-
ceiver combinations to be fetched from the pre-stack urexegrdata. This
operation requires picking of the target interface fromniigration image,
and knowledge of the correct overburden migration velogitydel, as in-
dicated on Figur&.6. Often, the required information is already available
from ray-tracing done for Kirchhoff-type migration.

On the selected portion of pre-stack unmigrated data, greabkto-noise ra-
tio must be sufficient to allow visual inspection of the targeea—the inver-
sion algorithm cannot make reliable estimates if even thisi possible. To
indicate the target area on the pre-stack data, the trangdtio the chosen
target interface calculated by ray-tracing can be plottethe data; doing
so, also the quality of the migration velocity model can beakted by ver-
ifying whether the traveltimes coincide with the interatéin of the target
interface (Figure3.7). If signal-to-noise §/N) ratio is unsatisfactory, the
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S/N can be increased by stacking, although this operation biilir* the
reflection coefficient information contained in the sigrdde to summing
and averaging of reflection responses corresponding terdift reflection
angles.

Amplitude-preserving pre-conditioning

Again, care should be taken that the pre-conditioning mees do not de-
stroy the real amplitude behaviour, this time on the prekstanmigrated
data: only amplitude-preserving processing should beegglone plans to
perform RBSI. The ideal input data for RBSI do contain wavepagation
effects such as spherical spreading and transmissiorslosse

Most conveniently, RBSI is able to use the pre-stack unnegraata that
was pre-processed for depth migration. Such pre-proapsgpically in-
cludes filtering to change the wavelet to zero-phase, nialtggmoval, deab-
sorption (inverse Q filtering), static corrections and datularisationYil-
maz 200]. The signal processing should be applied while presersing
plitudes as much as possible, a common practice nowadaysdper TA
PreSDM.

Itis not needed to apply 1D vertical depth-to-time conwargo the migrated
data when picking target reflectors for RBSI. To the contrtrig reflector
picking is best done in the depth-domain, not in the vertiaa-way trav-
eltime domain; only then the reference interface can betiyranported in
the velocity-depth model, for ray-tracing to the target.

Wavelet extraction

In forward modelling of the reflection response from the ¢&r@ seismic
wavelet is needed to generate synthetic traces. Thedhgtitee wavelet
as is derived for Sl by a seismic-to-well tie on the migratedadsection
2.3), can also be used for RBSI (as depicted in Figu, provided that it is
derived from the migrated data in the vertical two-way tfaree domain, on
a horizontal part of the structure. To see this, notice thamnigrated image
of a 1D structure after depth-to-time conversion is exaetjyivalent to the
normal-incidence section from the recorded dataset, asudnitn migration
wavelet stretch occurs for zero dip, see Ej68. This approach has been
used for most tests in the next chapters.
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Figure 3.8: Normal-incidence rays to a curved reflector, displayingyiag reflec-

tion point spacing along the interface due to reflector ctuwa The overburden
velocity model is homogeneous, and the shot-point spatiting @lanar acquisition
surface is regular.

In practice, however, various tapering filters affecting thavelet may be
applied during Kirchhoff migration, to improve the migi@tiimage. In that
case, the wavelet before and after migration would be differso that the
wavelet for Sl can no longer be used. Also the source wavetbsitlynis
either not available or is not representative for the wavetethe recorded
data, because of dispersion effects occurring during wagpggation in
the subsurface, or because of the pre-processing of the @atapproach
to obtain the wavelet before migration would be to perfornoa-standard
seismic-to-well tie, which includes wave propagation@feon a trace from
e.g. the normal-incidence section. For a vertical wells thell tie would
need to be performed at a horizontal part of the structuré¢haoray-path
and well-trajectory coincide in the target area.

Inversion, and visualisation of results

After derivation of the proper wavelet, the inversion algon is run on the
pre-stack unmigrated data; this data is forward modelle@Dyelastody-
namic ray tracing, using the macro velocity and density rhtatehe over-
burden, and a reservoir model tied to the reference reflémttine target. Fi-
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nally, the obtained reservoir-layer parameters are visehland interpreted.
The visualisation of the RBSI-results obtained along tlyepaths generally
involves interpolation to a regular grid in depth, due tofde that, usually,
a regular distribution of shot/receiver positions at thgaste does not lead
to a regular reflection point distribution on a reflector ie #ubsurface, due
to reflector curvature (Figurg 8) and/or inhomogeneous overburden.

In the next section, the first major difference between SIRB&| methods
is discussed: the inversion domain, which is the recordimg tdomain in
the case of RBSI. The data to be inverted are pre-stack uatejdata.

3.3 Inversion domain - the recording time domain

Ray-based stochastic inversion operates on pre-staclguated data; inside
the inversion loop (Figurd.3), this data is matched with data that is forward
modelled with 3D elastodynamic ray-tracing. In this settiadvantages
and disadvantages are discussed of performing the inwarstbe recording
time domain.

The outstanding advantage of inverting pre-stack unmegdrdata is that all
original reflection angle information is directly availabior the inversion
algorithm, without having been affected by processes sadtacking; the
availability of the original reflection angle informatios ¢rucial for obtain-
ing good inversion results.

The signal-to-noise ratioS{/ N) on the pre-stack unmigrated data, e.g. on
common-offset gathers, is low compared to stacked migrdegd. Ide-
ally, stacking improvesS/N with a factor/n (or in decibels: a gain of
20log +/n), wheren is the subsurface multiplicity or fold. Hence, if the
S/N is unsatisfactory, a way to improve it is to build offset-garor angle-
range substacks of a certain fold, so to apply stacking aallystdione in
migration workflows. However, in the synthetic data testedteon4.4, it
will be demonstrated that this operation ‘blurs’ the andépendent reflec-
tion coefficient information contained in the signal, duétte summing and
averaging over different reflection angles; preserving ithiiormation is the
main incentive for working in the pre-stack unmigrated dorha

An inconvenience of inverting traces from pre-stack uniatigd data is that
recordings corresponding to source-receiver pairs relguestributed at the
surface, generally yield inversion results obtained &giatarly distributed
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reflection points on interfaces in the target. This requardgitional resam-
pling and/or interpolation of RBSI-results if a comparigemade with the
Sl-results, obtained on a regular migration output grid.teNihat by ray-
tracing through the (known) overburden velocity model he interfaces in
the target picked from the migration image, the trace pas#tfrom the pre-
stack unmigrated data are linked to reflection points in #iget. Hence,
reflector illumination depends on acquisition geometryjclths the distri-
bution of sources and receivers at the surface, on the ondbwelocity
model and on the reflector-shape. As an example, Figugelisplays the
illumination of a curved reflector, with homogeneous veipenodel and
normal-incidence acquisition. In this case, the irregudfliection point dis-
tribution is caused by reflector curvature alone.

Resolution

An advantage of the unmigrated domain concerning resalutiohe direc-
tion perpendicular to the reflectors is (obviously) the albseof migration
stretch. For example, on the normal-incidence sectiondigyday direction
for each trace from that section is along the ray-path in tteetion of propa-
gation, and thus always perpendicular to the reflector efast (Figures.8):
the direction of best axial resolution for that reflectbeyin, 1994. On the
zero-offset migration image, the same applies for horiaiaeflectors, since
the (usually) vertical trace-display is perpendiculariterh. However, dip-
ping reflectors are encountered with an angle, causing easektch as a
function of dips3, see Eq.Z2.63.

Lateral resolution on the pre-stack unmigrated data igdidiby the fact that
one trace contains not only energy from the reflection pomitalso from a
region around it called the (first) Fresnel zone. This zonereds away from
the reflection point up to a distance called the Fresnel sg@iberiff, 1980,

. )\d.iﬂg )‘?l ~ \/)\dﬂfg

with )\, the dominant wavelength and the depth of observation. Migration
collapses these zones, so that an improved lateral resolatier migration

is reached given by Eq2(57). Therefore, in the RBSI-scheme, extensive
usage is made of the migrated data: target reflectors aregitkm the
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migration image, and the ray-tracing to connect trace ostfrom the pre-
stack unmigrated data with reflection points in the targeloise in the mi-

gration velocity model. Nevertheless, traces to be inddoteRBSI do come
from the pre-stack unmigrated data, hence they contairtiaddi reflection

information from a zone surrounding the reflection pointwdueer the maxi-

mum sensitivity is at the reflection point, and hindrance/aacurs if lateral

variations are present within the Fresnel-zone. Note tieevaluation at a
point instead of a zone is consistent with the high-frequexpproximation

in ray-theory.

Finally, on pre-stack unmigrated data, events may be recbotidat are not
modelled by 3D elastodynamic ray-tracing, and thus mustegarded as
noise in the context of RBSI. For example, edge diffractioray be present
in the data. A closer look at edge diffractions is taken in shbsection

below.

Edge diffractions

Edge diffractionsTrorey, 197Q Berryhill, 1977 may be present on the un-
migrated data due to discontinuities in the elastic progedf the subsurface
violating the ray-tracing validity conditions. The ‘suddehange in elastic
properties should occur within a dominant wavelength; ¢his happen e.g.
at interface discontinuities along a fault plane. The edfjeadtions disturb
the inversion process, since they interfere with the prymeflections on the
data.

For a horizontal reflector, the reflection signal is distarlo@ to a signifi-
cant distance from the edge, as depicted on the left of Fig&€elhe figure
shows a normal-incidence recording of an edge diffractioira horizon-
tal distance, caused by the termination of a horizontalreshin density
p at 1500 m depth, withR(6 = 0) = 0.06, in a subsurface with homoge-
neous parameters, = 3000 m/s andp = 1500 kg/m’ above the contrast.
The edge diffraction is modelled in the time domain using(®g311) from
Trorey[1970. A polarity reversal occurs at 0 m horizontal distance.He t
trace display at the upper-left of FiguBed, the polarity reversal is not well
visible, because the edge diffraction interferes with #iftection response
of interest (having constant amplitude) from the horizbd&sity contrast.
However, from the graph on the lower-left panel of the same&gin which
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Figure 3.9: Edge diffraction on normal-incidence section (left); carnpgon with
true-amplitude zero-offset migrated result (right). Tlige is positioned & m hor.
distance, at the right end of a horizontal reflector with e¢ast R(6 = 0) = 0.06.
Fresnel width i2rpr ~ 510 mand Ar ~ 130 m. See text for details.

the amplitude is displayed as measured on the NI-sectian(@tms two-
way traveltime, the presence of the polarity reversal catdakiced.

To quantify the distance up to which significant interfer@nccurs between
reflection and edge diffraction, as observed on the lefdhside of Fig-
ure 3.9, the concept of Fresnel radius again can be used, with tHeatian
point on the reflector positioned on the edge. However, adtiat for edge
diffractions, contrary to the conditions for which the Frekzone is derived,
the wavelet shape changes with increasing distance froradge, that de-
structive instead of constructive interference occurselm the edge, and
that the amplitude decreases rapidly away from the edge.
Nevertheless, it is assumed that the major part of intanterelue to the edge
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diffraction occurs within the first Fresnel zone, of whicle ttadius is given
by Eq. @.1). Insertingz; = 1000 m and)\; = v,/fs = 3000 m/s/35 Hz=
85 minto Eq. B.1) gives2rr ~ 510 m. Note that, although good enough for
the example above, the concept of Fresnel radius is validionmonochro-
matic waves in homogeneous media; for band-limited signals,atoimig
more than one frequency, the zone of influence should be @sédl[et al,
1994.

For comparison, the right-hand side of Fig®.8 shows the true-amplitude
zero-offset Kirchhoff-migrated result, using an apertaree of 2L = =
1000 m. The edge diffraction has been destructively stacked dwathe
migration process because of its polarity reversal at tlex,dpence it does
not appear anymore on the migration image. From E&7 it follows that
the lateral resolution i&r ~ 130 m, which is a considerable improvement
as compared torp.

One possibility to deal with the disturbing edge diffraagoin the unmi-
grated data, is to first interpret edges on the migration anagnd then
forward model the resulting edge diffractions in the unmigd domain
(expressions for the forward modelling in the time domaie found in
Trorey[197Q). With ‘edge diffraction migration’ techniques, as praeal in
e.g. Landa et al[1987; Kanasewich and Phadk&989; Khaidukov et al.
[2004, the process of finding edges on the migration image isitatal.
Already kinematic modelling of the edge diffractions in thee-stack un-
migrated data is useful, since in that way potentially ttesbme areas for
RBSI can be identified. With dynamic modelling, that woulduige TA
PreSDM, it would even be possible to subtract edge diffoaationtributions
from the unmigrated data, leaving a clean image for RBSI.

In the following section, the focus is on the second majded#ince between
S| and RBSI methods: the forward modeller, which is 3D eldgtamic
ray-tracing in the case of RBSI. The ray-tracing is used toéod model
pre-stack unmigrated data.

3.4 Forward modeller - 3D elastodynamic ray-tracing

In order to model traces in the recording time domain, RBSkesause of
an elastodynamic ray-tracing kernel. Ray-theory is a liighuency asymp-
totic method based on an approximate solution of the equétiovave-pro-
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pagation through an acoustic or elastic subsurface. Int€haphe form of
the solution for the elastodynamic equation was shown. Jirinacing, only
the leading term of the formal asymptotic ray series exmansf the elasto-
dynamic equation is used. Ray-tracing has two differentatpmal modes:

in kinematic ray-tracing, only ray-paths and traveltimes@alculated using
the eikonal equations, whereas in (elasto)dynamic rayrtgaalso particle
displacement amplitudes are calculated using the trahgpgomations, see
section1.3.2 For an exhaustive treatment of the method, the reader is re-
ferred toCerveny[200]. The aspects of the method relevant to RBSI are
discussed below.

Dynamic ray-tracing makes it possible to calculate ray tbgcal seismo-
grams for elastic subsurface models. The reflection tiave#t and ampli-
tudes calculated by the ray-tracer are converted to synttrates by con-
volution with the seismic wavelet(t), using Egs. 2.34) and @.395, but
now with 7; the traveltimes calculated by ray-tracing aRidthe calculated
ray-amplitudes. In RBSI, the calculated synthetic tracesused to invert
recorded seismic data. The elastic model parametg3, v,(Z) andp(Z)

are coupled to rock- and pore-fluid properties via rock/fhaindels.

m 3.4.1 Ray-validity conditions

General validity-conditions of the ray method are giverCierveny[2001,
section 5.9.1] anc€erveny et al[1977, Chapter 8]. The first condition, al-
ready discussed in Chaptébut repeated here for convenience, states that
the dominant wavelengthhas to be smaller than the scale of medium prop-
erty variations in the subsurface and of interface curestuHence, a valid
subsurface for RBSI consists of layers bounded by ‘smoathtyed’ in-
terfaces and having ‘smoothly varying’ layer propertiesthvihe quoted
words indicating the relation with wavelength of the obserwave. More
specifically, for ray-tracing across interfaces, ray-tiggequires at least’-
smoothness of, [Cerveny 2001, section 4.4.1] (i.eX, being twice con-
tinuous differentiable), determined from reflection evpitks on the mi-
grated image for the sake of generating reflector normalbovdilds (see
Figure3.10for an interface which is nat’;-smooth).

The second ray-validity condition states that the ray agipration becomes
poor near areas with irregular behaviour of the wavefielgl, aear caustic
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Figure 3.10: Normal-incidence rays to a curved reflector that is Kétsmooth.
The point of non-smoothness on the interface is revealeddmdden jump in the
reflection point distribution (compare with the smooth ifaee of Figure3.8), even
though the overburden velocity model is homogeneous, andhbt-point spacing
at the planar acquisition surface is regular.

points or transition zones between shadow and illuminaggtbns in the
subsurface, so that RBSI should also not be applied closeetet More
sophisticated ray-tracing methods exist to overcome tmistsoming, see
e.g. Popov[1983, and could be employed in the RBSI-scheme instead of
standard ray-tracing.

For angles of incidencé larger than the critical angl., transmission gen-
erates evanescent waves which cannot be modelled withdahdasd ray-
method Cerveny 2001, section 3.2.3]. The critical angle is the angle of
incidence for which the transmitted ray is tangent to therfiace (i.e. the
transmission anglé equals 90). Postcritical incidence does not occur if the
velocity drops at the transmission-side: upon inserdng 90° in Snell’s
law (or Snel's law? See Box 3.19in6/sin 6, = v;/v, (with P- or S-wave
propagation velocity at incidence and transmission sideated byy; and
vy), it follows thatsin 6. = v; /v;, from which it can be seen that no solutions
for 6. exist ifv; > v;.

To forward model the reflection response of the inversiogerwhich is
made up of layers that are thinner than the dominant waviieRBSI will
use primaries-only ray-tracing. Hereby it is assumed thgtfme-layering
effects that may appear, like the apparent amplitude-tvanavith-angle ef-
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fects of internal multiple reflections and wave conversiimtsractions in
thin-layered structured§apenaar et gl1999 Simmons and Backy4994
O’Doherty and Anstey1971]] are neglected or assumed to have been com-
pensated for, so that the total primary reflection resporm® the target
can be linearised as the sum of separate reflection respohesindivid-

ual contrasts. Alternatively, wave-mode conversions antfiptes could be
included in the ray-tracing used by RBSI.

m 3.4.2 Ray-amplitudes in a 3D configuration

In this and the next subsection, ray-tracing formulatiamsihconverted pri-
mary P-wave reflection responses are given for two subsuanfigura-
tions. First the formulation for a general 3D configuratisigiven, which is
then used to derive a simpler formulation for a caustic-g#&#® configura-
tion with normal-incidence acquisition. Most exampleshia hext chapters
will make use of the latter configuration.

For the 3D configuration, consider a 3D isotropic, lateradyying, layered
elastic subsurface, with target interfatg underlying then-th layer (Fig-
ure 3.2). The receiver and omnidirectional point source are paséd at
locationsz, andZ, on the surfacéX . No overturned reflectors are present,
and only subcritical angles of incidence are considered.

Displacement vector

The vertical components of the particle displacement vector, due to an
unconverted primary P-wave reflectingzat on ¥,,, using ray-theory can be
expressed a’Jerveny 2001, Egs. (5.2.1) and (6.1.1)],

us(Zy, 7y, Tri t) = Re(US (7, &, Tr) Fo(t — 7(Z,, &, ZR))} . (3.2)

where the expression on the right-hand side representeddenly term (de-
noted by zeros) of the formal asymptotic ray series exparsitution of the
general elastodynamic wave equation Eqgl), see sectiod.3. It is conve-
nient to perform the calculation fas; using theanalyticalsource wavelef|,
and thecomplex-valuedlisplacement amplitude functidméo); afterwards,
the real-valued solution is obtained by taking the real, et }, of the result
[Cerveny 2001, section A.3].
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The analytical source waveldj(t), with ¢ being the two-way traveltime
(recording time), is defined a& (t) = Fo(t) + iGy(t), with G, the Hilbert
transform [see Eq2(48)] of the bandlimited source wavel&}, (having unit
amplitude) for the zero-order approximation of the rayessolution. The
wavelet is placed at, the two-way traveltime to refection poif;.

Amplitude function

The vertical componerﬁféo) of the vectorial complex-valued displacement
amplitude functiorU/ () is given by,

e—i%n(fs,f,«)

e i A (o
L(Z,, 7)) Co(Z,)R(Zr, 0,)T(Zs, Z,)Ao(Zs) . (3.3)

U7, &, @) =

where Eq. (5.2.88) oferveny[200] was used as a starting point. In the
following, the components of this equation are describaedane detail; new
concepts are introduced where necessary.

Isotropic point source The rightmost symbol of Eq.3(3) represents
the amplitude of the isotropic point source placed atThe isotropic point
source is represented 8%, t) = Fo(t)Ao(7s) 0(F — Z5), in which ¢ is
Dirac’s delta-pulse. The amplitude radiated in each dimacits assumed
equal, so it can be plainly indicated witly () without additional argu-
ments specifying direction, following Eq. (5.2.31) 6&rveny[200]. Ex-
pressions exist to describe the effect of the free surfatteeagtource, but for
simplicity it is assumed here that this effect is alreadytainto account.

Transmission coefficients ScalarT'(Z,, &) accounts for the amplitude
losses due to transmissions across all interfaces alomgyh&he expression
for T"was given before in Eq2(52) but is repeated below for convenience,

2(n 1)

p(Zs)v (pupcost )i
T = T 3.4
p(Z, )0, (Z)) H (pvp cos @ ) (3-4)

with & counting the interfaces along the ray (Fig®.@), and — denoting
evaluation at the point of incidence at the side of the incaymay,+ at the
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point of transmission of the outgoing ray of the encountengerface. 7},

is the Zoeppritz particle displacement-normalised plaagestransmission
coefficient for unconverted P-waves, corresponding toetisad of interface

k in the direction of propagation. Angl is the angle between ray and
interface Qormafi at the— or + side.

Note thatCerveny[200] uses the notationos ¢ = /1 — v2p?, with p =

sin f /v, the horizontal slowness (or ray-parameter) and imaginquase
roots taken positive; this choice is consistent with thenilédin of the Fourier
transform in Eq.2.49 and assures that evanescent waves decrease in ampli-
tude with away from the interface.

FurthermoreCerveny[2001]] considers the term of Eq3(4) before the prod-
uct to be part of the relation for continuation of amplitudésng a ray be-
tween pointsé, and, in medium without interfaces, and hence excludes it
from his product of transmission/reflection coefficieRtS in Eq. (5.2.88).
The last term of Eq.3.4) is in agreement with the concept of energy-flux-
normalised transmission/reflection coefficients, presghyCerveny{2007]

in Eq. (5.3.10). In analogy to that equation, the flux-nolis®a transmission
coefficientZ, may be written as,

(90, c050 )i

T, =T, :
g g (pvpcos @ )

(3.5)

which is easily recognised in Eg3.4). The flux-normalised transmission
coefficient has the convenient property of being reciproeddich means
that the coefficient is the same for a ray traversing an iaterfand the ray
traversing the interface along the same path but in oppdsetion.

To avoid possible confusion, it is noteworthy to state héed the expres-
sion for the elastic flux-normalised P-wave transmissi@ffa@ment given by
Eq. 3.9, is slightly different from the form usually found in thedrature
to describe flux-normalisation in the acoustic case. In tlge, a P-wave
potential-field description is used for deriving the traission coefficient,
whereas in this work the P-wave transmission coefficient desribed in
terms of particle displacement. The relation between hgtbg of transmis-
sion coefficients isde Haas1992 Eq. (A15)],

(Pvp) k—
(o r (3.6)

Tk,disp - Tk,pot
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Inserting this equation into Eq3(5),

(905 0 )1t

77@ = Tk,disp (37)

(pvpcosf )i

gives,

7o [ Jovpeostles g (o) (cosd e
P o)z | (oopcos @)~ " FP\ (pu )i (cos )

(3.8)
which is the form that is found for the acoustic flux-normedi$-wave trans-
mission coefficients derived using a P-wave potential-fielscription in e.g.
Cerveny[2001, Eqg. (5.1.16) and p. 457] &Wapenaaf1999.

Later on, it will also appear handy to have Eg§.4) with the running index
1 corresponding to the structural interfaces defined in B2, rather than
to interfaces encountered along the ray,

p(xs [T+ ‘TTN z'_(‘f?z’e ) X

2

[pH-lUp i+1c080 2] (f}_z) [pzvp i COS et i) (37T z)
\/ \/ [ ) ] , (3.9)

[pivp,z' cos ‘9+]( z) Pi+1Up,i+1 COS 0 ](xT,i

with T the Zoeppritz transmission coefficient at laydor incidence from
above,T; from below, transmission poini&-; as defined on Figuré.2, and
anglesh as defined on Figurd.11 Notice that for a constant propagation
velocity in the entire subsurface, E§.9) can be rewritten as,

7= [ [ 7@ 00T, (57,000)]
p(Zs) 17 pi+1(f}r7i)\/ pi(Zr;)
p(Tr) i=1 [\/ pl(f;z) Pi+1(f}7i)] ' (3.10)

in which the product in the upper line equals tefhfrom van der Burg et al.
[2004 Eq. (2)], and in which the complete lower line is equivalenterm
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R T T

Figure 3.11: Notations used for properties related to reflection from\abg, and

transmission from abové* and belowT~, with i referring to layer-interfaces.
Anglesf; are measured with respect to the normal to interfateat the reflection
or transmission point§x ;, ;.

D fromvan der Burg et a[2004 Eq. (3)],

p(Zs) ﬁ[ /)z'+1(f+T,¢) Pi xTz ] ﬁ[ Pi xTz 1 /)z(fT_z) ]

p(Zr) paley pi(Z7;) \ pin1(Z7,) i1 pi(Z7) \ pilTr;1)
(3.11)

where it was used on the right-hand side thgj = 7, 7, = #, andz;’, =

Ty, = Tr (Figure3.2), which enables incorporation gf p(7)/p(%,) into
the product for this constan}, case.

Reflection coefficient ScalarR(Zg,0) in Eq. 3.3 is the Zoeppritz
particle displacement- normalised plane wave speculaatesh coefficient
for unconverted P-waves, at subsurface painton contrast:,,, for angle
of incidenced;” as defined on Figurd.2; in this work the models are such
that only reflections from above occur, so there is no neednapticate the
notation toR* /R~ as was necessary for the transmissions.

Note thatR is equal to its energy flux-normalised countergarfCerveny
2001, Eq. (5.3.13)]: the equation for the flux-normalised reftattcoeffi-
cient is equal in form to Eq.3(5), however for specular reflectiokh;+ and
k— are on the same side of the interface, and the angle of inoédequals
the reflection angle, so that the last term cancels.
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Interface conversion coefficient At the free surface, incident P-waves
from below are reflected to P- and S-waves only; no transorigakes place.
The interface conversion coefficiefit, takes this effect into account for re-
ceivers placed at the Earth’s free surfaCg.evaluated aft’, is,

2(1—2 =022
Co(Z,) = (L= 2vp%) 1 — v (3.12)

(1 —20v2p?)2 + 4p?vdv;ty /1 Up\/ v2p?

where Egs. (5.3.33), (5.3.5) and (5.3.9)@rven)’/[20011 were used. In
the equationy,,, v, are all taken at the receiver positign= sin 6, /v, is the
horizontal slowness for the incident P-wave withthe angle of incidence
at the receiver, i.e. the angle with the vertical for a flafatez; = 0 (Fig-
ure3.2). Note thatCy(Z,) agrees with the value given ki and Richards
[198Q p.190],

Cu( e (3 - 27) 3.13
0(‘737") B 1 Cos@ 0059 ’ ( - )
(%2 ) At ST

whered$ is the angle of reflection at the receiver of the P-to-S cdeder
wave; this can be seen by substituting 6, = /1 — v2p? andcos 05 =
/1 —v2p? (usingp = sinby/v, = sin6j /v, and trigonometrical relation
sin? z + cos? x = 1), and multiplying numerator and denominatorddy

KMAH index (caustics) Phase shifts due to passage through caustic
points are handled by KMAH index, which in isotropic media equals
the sum of caustic indices encountered on the total path ffoto 7., see
Egs. (3.10.50) and (5.2.46) Gferveny[2001. As on p.39, the minus sign

in the exponential of Eq.3(3) corresponds to the sign-convention chosen in
the definition of the Fourier-transform [E®.49]. Notice again that ampli-
tudes near caustic points calculated using standard aajng are unreliable,
but that extensions of the ray-method exist to overcomeptfuiblem.

Relative geometrical spreading Finally, relative geometrical spread-
ing along the ray-path due to a point source‘gtincluding the effects of
reflector curvature, is indicated by(Z,, 7). The spreading factor takes
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into account the change in size of an elementary crossesettarea of the
ray-tube during ray-propagation from source to receiveanidetailed ex-
pressions forC in different types of media are found erveny[2001, sec-
tion 4.10], Cerveny et al[1977; Cerveny and Ravindrf1971. Note that
the geometrical spreading definition@érveny{2007 is adapted; geometri-
cal spreadingd. from Cerveny and Ravindifd. 971 andCerveny et alf1977
should be multiplied by a factar,(Z,) to comply.

The next section shows how the 3D expressions discussedsisehtion
simplify for a caustic-free 2.5D geometry with normal-idence acquisition.

m 3.4.3 Ray-amplitudes in a 2.5D caustic-free NI configuratio n

In the synthetic data examples of Chaptathe subsurface and measurement
configuration are chosen such that rays do not pass througgticg@oints.
Also, most examples use a normal-incidence acquisitionfNE ) in a
2.5D setting (the concept of 2.5D settings is explained @rlp.In this sub-
section, the ray-tracing equations valid in such a settieglarived from the
general equations of the previous subsection. Again, nduwved reflectors
are present, and only subcritical angles of incidence amsidered.

Displacement vector

With the absence of caustics, the exponential in Bd) (equals unity be-

causex = 0: the vertical componerﬂ@fo) of the vectorial particle displace-
ment amplitude function becomes real-valued for subaiitieflection an-

gles. If also using the real-valued wavelgi(t), Eq. 3.2 can be rewritten

as,

us(Zs = &), Bpit) = U (@, = &, Tp) Fot — 7(Z, = ., Tr)) . (3.14)

This is the vertical component of the particle displacemesttor for an
unconverted, primary P-wave normal-incidence reflectesponse of the-
th contras®,, in the 2.5D case.

Amplitude function

The elements of the displacement amplitude function &) 6ther than the
KMAH index discussed above, change as follows. For normeidence ac-
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quisition and considering one single reflection paipt source and receiver
locations at the surface are the sanig € Z,), transmission locations for
the up- and down-going ray-branches become equal, anebtlteterms in
Eq. 3.4) cancel. It follows that Eq.3.4) simplifies to,

2(n—1)
r= [ %, (3.15)
k=1

with £ counting the interfaces along the ray, and reflection takilage on
the n-th structural interface (Figur2.6). This equation has already been
used in the previous chapter, see Ej56. Alternatively, Eq. 8.9) simpli-
fies to,

n—1
T =17 & = 80,0 00T (3, = T0,,6;) - (3.16)
i=1

with ¢ counting the structural interfaces above the reflectingctaral inter-
face (Figure3.2), and the notation for transmission poiats and angle®
defined on Figur&.11

For normal-incidenceq,” = 0, so that the Zoeppritz reflection coefficient
simplifies to the well known form@erveny 20071, Eq. (5.3.17)],

R(fR 9+ _ 0) _ Prn+1 (fR)'Upm-i-l(fR) - pn(fR)vpm(fR) . (317)
o Pn—i—l(fR)Upm-i-l(fR) + pn(fR)Up,n(fR)

The relative geometrical spreadiggz,, ) along the ray-path, from source
to receiver, decouples into two independent factors fol5® Zetting (also
for 6+ £ 0) [Cerveny 2001 Eq. (4.13.52)],

Lz, 2,) = LWz, )1z, 7,) , (3.18)

in which LIl refers to the in-plane relative geometrical spreading, &ndo
transverse relative geometrical spreading. The tranewmeading is given
by [Cerveny 2001, Eq. (4.13.54)],

1/2

LHF, 7)) = ‘ / Cop(s)ds | (3.19)

with the integral expressing integration of velocity alahg complete ray-
path from source to receiver, withdenoting the arclength.
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Note that in the 2.5D case with a homogeneous medium overbyifpossi-
bly dipping) plane reflector, Eq3(18 would yield,

LT, =F) = /vl , (3.20)

with [ the total length of the straight NI-ray-path from sourcedosiver, via
reflection pointtz. Appreciating the symmetry properties of a homogeneous
subsurface leads 0! = £*. With a curved reflector, howevet, is found

to be, usingCerveny et al[1977, Eq. (3.77)],

l
2 1
@ G
revealing the influence of the curved reflector, withthe reflector radius
of curvature atr’z, taking positive values if the centre of the corresponding
circle of curvature resides on the upper side of the reflgetesuming ray-
incidence from above and the absence of overturned refigctor
In the 2.5D case with a subsurface consisting setof »n flat, homoge-
neous layers, hence an extension of the setting for Eg0), the following
equations apply,

Lz, =xz,)=rct (3.21)

o= ol (3.22)

L& =2) = | vpili, (3.23)

=1

with [; the two-way NI pathlength in layer (overlying interfacei). This
follows from Cerveny et al[1977 Eq. (3.77)] orCerveny and Ravindra
[1971], EqQ. (2.143)], or can be found by using E§.19.

Applying all the simplifications discussed above to E3)3) yields the ex-
pression for the vertical component of the vectorial pttisplacement
amplitude function for an unconverted, primary P-wave ralfincidence
reflection response of theth contrast in the 2.5D case,

Co(Z,)R(Tr, 0F = 0)T(T, = 7)Ao (Z,)
LIz, = 7,)LL(Z, = 7,) '

This finishes the treatment of ray-theory. In the next sectioe strengths of
RBSI in relation to S| are explored.

UN(&, = &, Zg) = (3.24)
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3.5 Discussion

Ray-based stochastic inversion differs from conventi@athastic inver-
sion on two major points that are closely connected. Firstlperforms
inversion directly on the pre-stack unmigrated data, inrdeording time
domain. Secondly, to forward model the reflection respo8Beelastody-
namic ray-tracing is used. Below, a comparison is made Whaipproach
taken by stochastic inversion, phrasing the potential fitsreend drawbacks
of the new method along the way.

As was discussed in Chapt&rstochastic inversion does not always provide
an accurate estimate of reservoir parameters. First offadlis due to the
limitations of the 1D convolutional modeller in forward madting the cor-
rect migration response. Secondly, it is due to the naturtheinversion
domain (the migration image), which is the predetermine@dfresult of an
extensive processing sequence, possibly with errors itatiget area, which
cannot be corrected anymore during the inversion.

Performing the inversion on pre-stack unmigrated data haslistinct ad-
vantage of having access to the original, unmodified, adgfgendent reflec-
tion coefficient information. This information is cruciairfgood inversion,
as the rock- and pore-fluid parameters are estimated frorhé&well-known
and widely available AVO/AVA inversion techniques alreatiyke use of
the angle-dependent reflection information, albeit aftegration and sub-
stacking. By (sub)stacking, the angle-information is s&ed for a better
signal-to-noise ratio on the migrated image. However, #ta-dedundancy
assumption to legitimate stacking for bettefV, applies only to the com-
mon position of the reflection point, but not to the angle-ategent reflection
amplitude. Of course, als®)/ N on pre-stack unmigrated data may expected
to be low without any form of stacking applied.

Working with common-angle gathers or angle-range gatlesms most nat-
ural for the ‘angle-oriented’ method of RBSI. In practicejs much eas-
ier to simply sort the pre-stack unmigrated data to comnitsebgathers.
Commonly, the angle-gathers are subsequently computedtfre common-
offset gathers using a 1D subsurface model. This approacis e consid-
erable inaccuracies for subsurfaces with strong laterétans.

Obviously, migration-induced wavelet stretch as a funcod reflector dip
and reflection angle is absent in the pre-stack unmigrateshdyg as well
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as moveout stretch due to normal moveout or dip moveout psirtg steps
(NMO/DMO). Also, the usage of ray-tracing has the added mttaebenefit
of providing a transparent link between Kirchhoff pre-&tdepth migration
and stochastic inversion for reservoir properties.

On the pre-stack unmigrated data, several events are nanmot be for-
ward modelled by the ray-tracer, and as such must be coesicer noise.
For example, it was shown that edge diffractions rendercdiffithe appli-
cation of RBSI up to considerable distance away from the eddering
migration, edge diffractions are destructively stackedwlpich much im-
proves lateral resolution on the migration image near dhiscontinuities
due to geological truncations.

Employment of 3D elastodynamic ray-tracing as forward nledé much
more computationally expensive than simple 1D convolutievertheless,
as mentioned at the end of the discussion in the previous@haipis op-
portune to improve upon the 1D convolutional forward moeleWith the
present- and future generation of computers. Procesgimg ¢an poten-
tially be saved by re-using ray-path information calcudater preserved-
amplitude Kirchhoff-type migration. Hereby the travelartables available
on the coarse migration grid need to be interpolated to tleedirget grid for
inversion, with the cost of interpolation likely to be muamaler than the
cost of a new ray-tracing job to (reflection points in) the fiarget grid.

The last point discussed in this section concerns the wayiawparameter-
updating is done. Updating the target model-parametersBi§IRs more
complicated than the trace-by-trace updating used in & tdwverlapping
volumes of reflection- and transmission points for adjatextes from the
pre-stack unmigrated dataset (Fig®.&). However, special cases of RBSI
exist, such as described in secti®ri.3and in the next section, in which
model updating can be done in a trace-by-trace manner sitoifl. In these
special cases, parameter estimation still occurs alongatheath and gen-
erally not in the vertical direction as in Sl. Inverting atpnormal-incidence
ray-paths offers the optimal resolution for discerningleyering within the
target. The inversion along ray-paths as done in RBSI alghi@sithat, for
representation of inversion results on a regular grid rptdkations are gen-
erally required.

In the following two chapters, the results of numerical expents and real-
data tests are presented to determine the potential of REBSlUs Sl. Before
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Figure 3.12: Reduced RBSI as a special case of ray-based stochastisioneil he
forward modelling kernels are printed in italic.

advancing to the numerical tests however, in the next seotie special case
of RBSI is considered that offers substantial practicaleién

3.6 Special case - 1D convolutional RBSI

In this section, a ‘reduced’ RBSI scheme is presented in lwtoaly in the
target zone, the 3D elastodynamic ray-tracer is replaced b forward
modelling kernel as found in common inversion software-eniffg great
practical advantages. The scheme is a special case of RRSIr€R.12).
As long as the inversion target underlying the 3D overbusigisfies the 1D
assumption reasonably well, this reduced, or 1D convabaficscheme is a
good approximation of the RBSI-scheme.

In the following, first, the principles of 1D convolutionalBSI are given.
Then, a set of equations is derived describing the methodsagdplicability
to a given reservoir configuration.
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m 3.6.1 Principles

1D convolutional RBSI uses 1D convolution to model tracesnfra pre-
processed normal-incidence (NI) dataset in the target evinchence the
inversion is carried out along NI ray-paths. As will be désed on p92, the
NI-dataset is pre-processed such that amplitude effectseé propagation
through the overburden are removed. Note that the pre-gsowecan only
be done correctly if sufficient knowledge on the overburdeavailable. Just
like the conventional trace inversion methods, the new otethill assume
this information is present. As was done for RBSI, only unested single
P-wave reflections are considered in the following.

Using 1D convolution to model NI-data

In general, for a sequence of smooth target interfaces afampshape (Fig-
ure 3.13), the seismic normal-incidence response recorded bygéesie-
ceiver at the surface will contain information about spactflection points
T, associated with non-overlapping ray-paths. Since the3miéorward
modelling must be employed also in the target, to correcihgiit for reser-
voir parameters in the target of a 3D subsurface model, thlacgement of
3D forward modelling by 1D forward modelling using a local Approxi-
mationinside the targewill generally be inadequate.

Moreover, by using 1D convolution as the forward modelleN6-data, also
the amplitudes of the reflection responses in the target wilhbe handled
inadequately. This is due to the fact that traces from thel®&set, apart
from the reflection amplitud®, also contain transmission and spreading ef-
fects because of wave propagation within the target inteses Eq. 8.3).
However, the 1D convolutional model only accounts fyrsee Eqgs.4.34)
and @.35. Nevertheless, if the target satisfies certain conditiensploy-
ment in the target zone of a 1D forward modelling kernel—urfig great
practical advantages — while still using 3D modelling foe thverburden,
can be a good approximation of the, generally 3D, RBSI-seéhem

Requirements to the target zone

The conditions for applying ‘reduced’ RBSI are given in Tal3.2. The
first condition listed, relates to how well the target geamettisfies the 1D
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Table 3.2: Application regime for 1D convolutional RBSI.

For 1D convolutional RBSI, the target inversion interval:

- consists of a set of plane-parallel layers,

- contains a moderate amount of layers, (typicall{0)

- consists of not too large impedance contrasts, (typ10¢Xg/n?s)
- has total thickness of at most a few dominant wavelengths.

assumption. It is assumed, that the target behaves locabysequence of
plane-parallel thin layers (Figurg.13). The target is allowed to incline
vertically; in fact the new inversion method is expectednpiove the re-
sults of Sl especially on the dipping parts, on the horiziquaigts S| has the
advantage of a more favourable signal-to-noise ratio ofntigrated sub-
stack as compared to the single-fold NI-data, while it isyeithampered by
migration-induced dip-dependent wavelet stretch. As wasase for RBSI,
the target is identified by a clearly distinguishable refiedhe reference re-
flector; for convenience,,, is taken, but it does not necessarily have to be
the top interface of the target interval.

The remaining conditions for applying ‘reduced’ RBSI |dte Table 3.2
relate to the impact of neglecting transmission- and spngadsses in the
target, by using the 1D convolutional model. Note that tlgrineements are
formulated in rather general terms: they depend on the erneoad target
geometry and the total error one is willing to allow. Express that re-
late the error in modelled amplitude to target thicknessnioer of layers
and size of impedance contrasts are given in the next secBefore ap-
plying 1D convolutional RBSI, the modelling error shoulddaéculated and
if considered too large, the amount of layers to be inventetthé same 1D
convolutional RBSI-job should be lowered by narrowing theersion win-
dow or splitting it in parts. An example calculation is foumdChapter4,
sectior4.2.2

The specific values found in the table are meamly to give the reader an
idea on the order of magnitude. The mentioned average acaugtedance
in combination with the number of layers gives an amplituderedue to
neglect of transmission of about 10%; assuming an avergge-laickness
of 10 m and a target depth of 2 km, also the error due to negfespluer-
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ical spreading amounts to 10%. The example impedance sbigrhased
on values from the sandstone-shale sequence found in a GMExico
field discussed in Chaptéx It is important that no high-contrast layers are
present, like e.g. salt-layers in the presence of which @apee contrasts
can easily go up to-40° kg/m?s: strong contrasts like these lead to a large
amplitude error due to neglecting transmission losses remsmall num-
ber of layers, and more importantly, generate strong makiwhile only the
primary response is modelled with 1D convolution.

Pre-processing: removing overburden amplitude effects

In the reduced RBSI-scheme, amplitude effects due to 3D \pavpaga-
tion in the complex overburden are first removed from the atldn a pre-
processing step, before applying inversion. All ampliteffects in the tar-
get zone, apart from the primary reflections, are neglectedgsumed to be
corrected for). This includes amplitude effects due torfatee transmissions
and spreading, and due to wave conversions and internailpheslt In this
way, 1D convolution can be used to do forward modelling intdrget zone.

m 3.6.2 Theory

In this section, the 2.5D configuration of section 3.4 willdzapted, since it
leads to more illustrative equations than the 3D case—ichvthie method is
also perfectly feasible. Consider the 2.5D caustic-fre&apic-elastic sub-
surface model of Figurd.13, consisting of an inhomogeneous overburden
overlying a set ofV — n homogeneous plane-parallel layers. The dip angle
of the package of layers in the target zongjsand vertical thicknesses are
hi < A4, With \; the dominant wavelength. The real layer-thicknesges
are related to the vertical thicknessewia the dip angles, as shown in the
following equation,

hi = h;cos 3. (3.25)

The two-way path lengths through the overburden and targdtzaand [
(with [ > Iy ). Two-way path lengths through an individual layer are
l;. Overburden P-velocity- and density- macro modelg (%), pp(%) are
assumed known; the unknown layer P-velocities and degsitithe target
are denoted as,;, p;.
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Figure 3.13: (a) Nl-rays to a sequence df — n smooth target layers; angles of
incidence are9;t = 0, source- and receiver-positiafi;= %, at the surfaced X. (b)
Subsurface parameterisation for 1D convolutional RBSI.

The vertical component of the vectorial particle displaeat@amplitude func-
tion for the primary NI P-wave reflection response of ifi¢h plane reflector
Yy inthe target, due to an isotropic point SOustig’; t) = Fy(t) Ao (Zs)0 (X —
Z,), with Ay the source strength arfg the wavelet, can be calculated using

Eq. 3.29):

U(O) (f _ 2 7 ) o OB(fsa fT,n)R(fR7N7 0]—{_/' = O)TN(fs = fr)
3 s — Lry FRN) — S -+ _ o= . =
Lp(%s = T T ) + Lo(Tr, = Tr,; TrN)

(3.26)

where a separation between overburden and target has deetured in
the notation, withr',, the intersection point of the Ni-ray with,,, dividing
the ray-path in parts through overburden and target, sagd-8y13. The
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relative geometrical spreading has been separatéd=nCz + L1, with,

N N
Lr= ) vli=2 Y vl (3.27)

1=n-+1 1=n+1

using Eqgs. 8.23, (3.22, (3.18 and!; = 2h.. C'z accounts for the overbur-
den amplitude-effects other than geometrical spreadingsuch as overbur-
den transmission losses and oblique ray-incidence at tii@ceu Note that
for a homogeneous overburdéry; and L take the form,

Cp = AolZ,)Co(Z, = ,), (3.28)
,CB 2Up7Bh//B . (329)

The factors from Eq.3.26 that govern reflection and transmission in the
target are:RR, the NI Zoeppritz reflection coefficient for normal-incidenat
reflection pointéz y on interfaceXy in the target [see Eq3(17)], and Ty,
the product of NI Zoeppritz transmission coefficients in téuget while the
ray-pair crossed’ — n interfaces in the target,

2

N-1
Ty(#, = &) = [[ T (@7, 07 = 0)T; (1,6, =0), (3.30)

where Eq. 8.16) has been usedy > n andn > 1 (for n = 1, the overbur-
den does not contain interfaces).

Removing overburden amplitude effects

Before applying 1D convolutional RBSI, amplitude effectedo wave prop-
agation in the overburdefiz and £z need to be removed from the NI-data.
After pre-processing, the signal in the target zone resesnblreflectivity-
trace convolved with the source wavelet that may be modeledy 1D con-
volution: besides the target reflection information, ongnaall contribution

of target spreading and transmission losses remains.

To see this, consider the following. The zero-offset phetaisplacement
dataset;(7; = #,;t) is pre-processed for 1D convolutional RBSI. The ver-
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tical component of the amplitude function after procesﬁéﬁ is,

UCNE, = &, @rn) = [Lo/CelUO(E = &, Try),  (3.31)
Lp

= RITN|—T7=], 3.32

N (L:B + L:T) ( )

whereU?EO) is given by Eqg. 8.26. If subsequently amplitude losses within
the target, due t@ andLr, are neglected (i.&y ~ 1 andLr/Lp < 1 as
done in 1D convolutional RBSI), from Eq3.32) it follows that,

USH(F, = T, Trx) ~ R(Fry, 0 = 0) (3.33)

a condition for the application of a 1D convolutional inviers kernel on
the dataset, since that type of forward modeller can onlydlgareflection
coefficients, not spreading or transmission (see setign

Impact of target transmissions and spreading

From Eq. 8.26), the target amplitude-losses along the NI ray-péthand
Ly, that are not included by the 1D convolutional forward méetehtzr
onXy, as compared td;,, on the incidence-side ai, read:

Lp
L;(H) = 1———FF——— 3.34
c(H') L+ Lo(H') (3.34)
Lr(N) = 1-Ty(# =) (3.35)
with H' = ||#7., — Zrn|| = X ., k.. This set of two equations gives
s 5 i=n+1"%

insight in the relationship of the last three conditionselisin Table 3.2. The
amount of layers and contrast sizes affegt whereas the total thickness of
the inversion window is incorporated i-. As an example, suppose that a
maximum tolerabld. = L + Ly has been set by the user, then choosing an
inversion interval with a few low contrasting interfacedhailow inversion
over a thicker total intervall’, sinceL+ will be low in that case.

Note that due to the fact that: should be small in the application regime of
1D convolutional RBSI, the amount of generated multiplergg too is ex-
pected to be small, justifying the choice to model only thenpry response

in the inversion kernel of 1D convolutional RBSI.
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Finally, note that in some shot pre-processing schemes fgration, an

approximate spherical spreading removal is applied on teesfack unmi-
grated data, based on an average regional velocity funddonormal RBSI

this would be unfavourable, but for 1D convolutional RBSktwill lessen

the effect of Eq. 8.34), allowing inversion of thicker intervals.

In the next chapter, results of synthetic data tests are i)t up to inves-
tigate the potential of 1D convolutional RBSI and the moraegal RBSI

(discussed in this chapter) compared to that of SI (Chapter 2

Box 3.1: The spelling of Snel’'s law

No, this is not a spelling error! Willebrord Snel
van Royen (1580-1626) is the Dutchman from
Leiden after whom the law of refraction was
named. But why do we use a spelling with ‘[I'?
The problem lies in the fact that for his scientific
publications, following the fashion of that time,
Snel used a latinised form of his last name: Snel-
lius. If we introduce the latinisation operator for
Dutch spelling a7, we can write this process
asSnel | i us = Ly (Snel ), notice the double

‘I needed for proper Dutch pronunciation; in En-
glish this would not be done.

In the English-speaking world, the ending us was recognised as Latin and
removed (this is the de-latinisation operator for Englighllng E;J}v), but not
the ‘'l In equations:

Ly {LnL(Snel )} = Snel,
LonA{Lyr(Snel )} = Snell,

the last of which is the form we see in publications up to today




Synthetic data tests

In the previous chapter, the method of ray-based stochastcsion was
introduced. To investigate the potential of this new metfadreservoir
parameter estimation in comparison with conventionallsetic inversion
(discussed in Chapt@), several synthetic data tests were performed and the
results are presented in this chapter.

The synthetic data tests are presented in the followingrorist, a sub-
surface is discussed with widely separated Gaussian-gdhapfaces that
bound layers with smoothly varying layer densities; thissuface is suit-
able for testing RBSI in ‘layer-stripping’ mode against 81, estimating
density distributions for each layer from top to bottom. &lsa wedge-
like density anomaly is examined, to investigate the eftécip-dependent
migration-induced wavelet stretch on SI.

Subsequently, a setting is explored that consists of anlggpiane thin layer;
Sl is used to estimate the P-wave velocity and thicknesseofayer. This
simple setting is appropriate to further investigate theihental effect of
dip-dependent migration-induced wavelet stretch on ther®ir parameter
estimation capabilities of SI. To that end, the layer dipasied from O to
60°. Naturally, the corresponding normal-incidence data fBiISRdo not
contain this migration stretch.

The subsurface setting with a single dipping layer is thgraaxded to five
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plane-parallel thin layers with layer-velocity contrastisnilar to the flank of
a structure present in the real dataset that will be invataajin Chapteb. In
this setting, Sl is tested against 1D convolutional RBSidalalled ‘reduced
RBSI’) in estimating layer thicknesses and P-velocities.

The same comparative test is also performed on a target wethpfane-
parallel layers below a laterally varying layered overlardin contrast to
the previous setting, the five layers are not strictly plpaeallel (while strict
plane-parallel layering is assumed in 1D convolutional RBdps are lat-
erally varying, and the overburden is not homogeneous.

Next, 1D convolutional RBSI is tested on a model in which thgers have
a lithology, specified by the rock models that are used in & ohapter
on the real data; an example of a rock parameter to be invéstad this
case is the sand-fraction of a sand-shale mixture. Thereifte with the
previous cases is that a rock model is inserted describengetation between
rock/pore fluid properties and the bulk elastic parameters.

Finally, a simple offset test is performed, to investigéie ¢ffect of angle-
range substacks on the Sl inversion result, and to see ifetthendancy in
the RBSI parameter estimates on different angle-gathersethuce overall
estimation uncertainty.

Below, the chapter begins with a description of the first Bgtit data tests,
done to determine lateral layer-density variations.

4.1 Lateral layer-density variations

In order to make a comparison of capabilities of Sl versus IRBSdeter-
mining laterally variable layer-properties, a series afthgtic data tests is
performed using a Gaussian density model presented ind-iglr and a
wedge-like density model shown in the inset of Figdt8 [van der Burg
et al, 2004 Verdel et al, 2004; wave propagation velocities in both mod-
els are chosen to be constant throughout the model. The pteato be
inverted for by both SI and RBSI is the layer density.

m 4.1.1 Gaussian density model

An (x1, x3)-slice trough the Gaussian density model is shown in Figute
The subsurface is invariant in thg-direction, and has constant wave prop-
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Figure 4.1: Normal-incidence rays to interfacEg in a Gaussian density model
(note that the angles seen in the plot are distorted due twé¢htical exaggeration).

agation velocities (resulting in straight rays).g£2500 m/s and,=v,/1.7.
In the following, the model geometry is defined first. Subssgly, the com-
putation of the normal-incidence dataset for RBSI and thgratéd dataset
for Sl is clarified. Finally, the density estimates obtaibgd| and RBSI are
compared.

Model geometry

Using =z for x3 for notational convenience, the subsurface density Oistri
tion is described as follows: density is constant at 200@nKg/utside three
contrasting layers that are bounded by Gaussian refleEtor3he depths
z; of these reflectors (interfaces) are described as a funofidrorizontal
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distancer, i.e. {T € &, | z = z;(x1)}, with,

_ _ 2

ZZ(.CL"l) = Zmaz,i —AZZ exp% V 1€ {1,2,...,6}, (41)
o

in whicho = 1000 m, ;o = 3000 M, Az = Zmazi — Zmin.i» WhErez,,q, ; and

Zmin,i CaN be read from Figuk. 1 The interfaces are”;-smooth’: z;(z4) is

twice continuously differentiable with respect to horizrdistancer;.

The contrasting layers contain, also Gaussian, layeriyemsiationsp, (1),

2
_ x JR—
pk('rl) = Pmax — Ap €Xp ( ; 2 M)

g

vV ke {2,4,6}, 4.2)
with o, u the same as in Eq4(2), and Ap = (pmae — Pmin) = (3000 —
2100) kg/m®. See Figuret. 1

The model just described obeys all standard ray-tracingditaconditions.
Moreover, it is assumed for the numerical tests that intkrbaltiples have
been removed from the pre-stack unmigrated data, that serweput for
the RBSI inversion. The underlying motivation for this otwiis that any
zero-offset interbed multiple event in the model descriabdve could be
modelled (and thus removed) with ray-tracing.

Furthermore, the minimum layer thicknesses are chosentkatthere is no
wavelet interference on the migrated or zero-offset datahis way, RBSI
can be performed in layer-stripping mode (secfioh 3.

The added benefit of the absence of wavelet interferencleatdtp-depen-
dent migration-induced wavelet stretch will not yet inflaerSI density es-
timation in the Gaussian density model: the peak amplitudkthe corre-
sponding vertical traveltime, needed by Sl for the denstingation, are not
affected by the stretching. Hence, the Sl estimates depeinelg on the
ability of migration to correctly recover the reflection alityrles and reflec-
tor position.

Normal-incidence dataset

Elastodynamic ray-tracing is used to numerically simutheevertical com-
ponent of the zero-offset particle velocity datasetr, = 7., Zg; t) ob-
tained by a zero-offset acquisition experiment. The adtoims(using om-
nidirectional point sources) is performed along theaxis at the free sur-
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Figure 4.2: Hanning-tapered zero-phase bandpass wavelet with coreguéncies
4-12-50-75 HzLeft: Amplitude spectrumRight: Signal in time domain.

face 0.X, so that acquisition and subsurface (invariant in thelirection)
together form a 2.5D configuration.

The dataseis (7, = Z,, ¥r; t) is computed for 601 source/receiver-positions
with 10 m spacing at the surfaé¢eX, using a Hanning-tapered zero-phase
bandpass waveléf, (¢) with corner frequencies 4-12-50-75 Hz (Fig4ré).
With the choice of model- and acquisition parameters dieedrin the geom-
etry subsection aboveg (7, = 7., Zg; t) is caustic-free and only contains
normal-incidenced = 0)-reflections. Thus the ray-theoretical expression
with the analytical waveleky, [after Eq. 8.2), notice the additionad /1],

is(Zs = T, Zp; t) = R{UN(Z, = T, Tr) By (t — 7(Zs = T, Tr))} (4.3)
simplifies to,
Us(Zy = &), By t) = U (@ = &, Bp) Folt — 7(Z, = %, Tr))  (4.4)

with the amplitudeﬁ]?fo) (¥s = Z,., Zr) of this dataset described by E§.24),
with Ay (%) = v, V ;. Moreover, due to the homogeneous velocity model,
in Eqg. 3.24), the normal-incidence reflection coefficient given by E3J17)
simplifies to,

+/= + o pn-i—l(xR) - pn(-TR)
R (0 = 0) = FErg i Prghs (4.5)
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Figure 4.3: Zero-offset datasels(¥s = #,, Zg; t) corresponding to Figuré.l

The transverse and in-plane relative geometrical sprgadimgiven by equa-
tions (3.20 and @.21). In Figure4.3, every 20th trace ofs(7; = %, Tr; t)
is shown.

PreSDM migrated dataset

To migrateus(7s = Z,,Tr; t), a true-amplitude (TA) Kirchhoff pre-stack
depth migration (PreSDM) algorithm based on Efj5€) is used. In order to
provide a high quality migration image for Sl, the followipgrameters are
provided to the PreSDM algorithm: the migration output dgeide;, Ax3) is

10 x 2 m, with origin at(x;,z3) = (0,0). The migration half-aperture is
4000 m. The migration operators are calculated on a dense rag-tliffrac-
tion point grid of10 x 10 m, with rays spraying up from each diffraction point
to points with 10 me;-spacing at the surface (within the migration aperture).
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Figure 4.4: True-amplitude zero-offset depth migrationigfzs; = #,, Zr; t) with
the laterally constant density model from the well dispthiyeFigure4.1

Velocity and density distributions are specified as anedyfunctions, using

a layer-based parameterisation. Time-sampling after Iriceé depth-to-
time conversion is 1 ms (equalling the sampling of the normeldence
dataset).

In Figure 4.4, the data are shown after ‘true-amplitude’ PreSDM (and 1D
vertical depth-to-time conversion) af (7, = Z,, ©r; t) with the exact P-
wave velocity model, while using a lateraltpnstantdensity model 4, =
2100 kg/m?) such as derived from the density log taken in the hypothktic
well atz; = 3000 m. This is a reasonable assumption, as, prior to inversion,
density information is only available at this well locati(see Figurel.1) and

no further prior information on density is available. Thetps around ‘true-
amplitude’ emphasise that the migration-image contaiosriiect reflection
strengths due to usage of the wrong density model; transmiéssses in
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Figure 4.5: Difference (scaled) between Figude4 and migration using exact den-
sity model (not shown) obtained from RBSI; differences oreagp to 25%.

the true-amplitude migration operators are thereforeutaed incorrectly.
Consequently any subsequent inversion for target resdexyer densities,
and related parameters as porosities and pore fluid satsatpplied on
that image, is bound to fail.

Figure4.5shows the difference between Figurd and the migrated result
using the correct, laterally variable, density model désd by Eq. 4.2
such as can be obtained from the pre-stack data using RB&khsenext
subsection). The difference becomes larger further aveay the well loca-
tion because of the increasing difference between assuntedciual layer-
densities, and deeper down in the model because of the atatimglerrors
due to incorrect transmissions. This is also demonstratEdjure4.6which
shows the reflection amplitude alohyg after true-amplitude PreSDM using
both a laterally constant density model (black line) and ékact density
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Figure 4.6: Reflection-amplitude along interfagg after migration using constant-
density layers (black line) and exact density model (greyy@npared to the theo-
retical R(Zg, 03 = 0) (dashed).
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Figure 4.7: Densityps determined from Sl and RBSI, the latter converging to de-
sired value. Error bars denote posterior standard deviagio
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model (grey line), in comparison with the theoretical reftat coefficient
(dashed line), which is the ideal true-amplitude PreSDMiltesNote that
the amplitude artifacts in the; -intervals[0, 300] m and[5700, 6000] m are
due to Kirchhoff migration boundary effects.

Inversion: Sl vs. RBSI

The goal set for inversion is the estimation of the lateraflyying density
of the sixth layerpg(z1). Sl inverts the PreSDM migrated dataset obtained
using the constant density modg} (= 2100 kg/m?), while RBSI inverts the
normal-incidence dataset.

The following information is supplied to both inversionga®r knowledge:
subsurface P-wave velocity is constanvgt= 2500 m/s, andv, = v,/1.7.
Note that for transmissions at overlying interfaces thdaogincidence is
nonzero (exept at; = 3000 m), so that P-S conversions do occur. Exact
positions are known for all interfacés. The prior density distribution for
the contrasting layers two, four and six are given in the fofrmnormal pdf,
with constant meam(p;,) = 2100 kg/m? and standard deviation(p;,) =
800 kg/m?. For the other layers, density is known to8®0 kg/m?. Finally,
the exact wavelet is supplied to RBSI and the exact zero-adigelet to Si
(both wavelets are assumed to have been correctly derived drseismic-
to-well tie at the well location).

RBSI is performed in layer-stripping mode, starting witle #gstimation of
p2(z1) below interfaceX;. However, notice that in contrast with the pro-
cedure explained on B4, at the second interface, it is chosen to invert
again forpy(z,), aboveX, (and not forp; below,, sinceps = 2000 kg/m?

is already known prior to inversion). This yields estimdt@sp, (z;) at the
reflection point positions ol; and Xs.

Subsequently, thg,(z;)-estimates found with RBSI at the irregularly dis-
tributed reflection points on each interfatge and X, are interpolated to a
regular lateral interval of 10 m, coinciding with the migaat output grid.
These interpolated values fpg(z;) at both interfaces are averaged to ob-
tain the final estimate (for the RBSI standard deviations,glain relation
(p2) = [0%,(p2) + 02, (p2)]/?/2 is used, a slightly more accurate equation
leading to a smalles is given on p.148). The same procedure is repeated
for the estimation op, () and finallyps(x;), with RBSI each time re-using
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the obtained knowledge on the overlying layers.

Sl inverts the migrated data fpg(z;) directly.

In Figure4.7, inversion results are shown fpg(z;): Sl (lower curve) ver-
sus RBSI; error bars denote standard deviations. The rieflestrengths
as determined from RBSI are almost identical to those desdrby theory
(Eq.4.5), whereas the Sl-results, including their error bars, mapide the
desired results (the artifacts in Sl-estimates for thentervals|0, 300] m
and[5700, 6000] m are due to migration boundary effects).

m 4.1.2 Wedge-like density model

For the previous model, dip-dependent migration wavelettct did not
have a negative impact on the density estimation by Sl, [secaa wavelet
interference was present on the migrated data. Althoughlifigeof the six
interfaces are different for a given away from the apex, which means that
each interface is represented by a differently stretchedeleton a given
trace from the migration image, this imposes no problem tio 8hding the

2000 kg/m®

p=45°
,72400 kgim® RS
—1 9372000 kgim® 37.5m

«—225m

15 20 25 30
thickness [m]

5 10 15 15 20 25 30 35 40
distance [m] thickness [m]

Figure 4.8: Detail of ideal migration Figure 4.9: Density po as determined
result of wedge model (see inset). Varfrom SlI (top) and RBSI (bottom). Dashed
wig: with migration stretch (input for line: desired result. Error bars denote
SI). Dash-dot: without wavelet stretch. posterior standard deviations.
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correct peak amplitudes and corresponding two-way triaves.

However, as soon as two interfaces come closer than a wagblemeach

other, wavelet interference arises on the migrated image tlee constant
wavelet assumption of SI will become a problem in the derestymation:

the actual interference pattern of two interfaces, haviffgrént dip, on the
migration image can become significantly different comgaoethe interfer-

ence pattern of two equally shaped wavelets as forward rieatley Sl.

Model geometry

In order to systematically investigate the detrimenta&fbf dip-dependent
migration-induced wavelet stretch on Sl, the three cotitrgdayers of the
Gaussian layer model are replaced by a single wedge-lilex laith a den-
sity of 2400 kg/m? (background-density amourt§00 kg/m?, see the inset of
Figure4.8), such that the separation of the interfaces becomes srttadiea
wavelength. The wavelet interference pattern changes/astlaickness de-
creases. As in the previous test, the normal-incidenceséatantains only
the unconverted primary P-wave reflection response.

Ideal migrated datasets

Figure4.8 shows a detail of two ‘ideal’ migration results (ideal in thense
that all migration artifacts besides the wavelet-stretthe-effect considered
here—were suppressed). The one without the effect of wastktch (wig-
gle display) was generated by 1D convolution of the exadtysgaflectivity
trace (computed using ER.65, with § = 0°) with the wavelet for 0 dip,
the one that includes it (varwig display) uses the stretchaeklet for 45
dip for the upper interface. Only the first, fictitious, caaHils the wavelet
requirements for Sl.

Inversion: effect of migration wavelet stretch on S

The barplots in Figurd.9 represent the inversion results for the density of
the middle layer obtained with SI and RBSI respectively (#tter inverted
the normal-incidence data that have no wavelet stretchg prlor knowl-
edge supplied to the inversion methods was the same as imahieps test
(see p.104), of course apart from the fact that the three contrastiggria
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have been replaced by a single wedge with prigs) = 2400 kg/m? and
o(p) = 800 kg/m?. It can be seen that RBSI determines the density of the
middle layer much better than Sl: for Sl, the posterior eateny(p) are
often more than @(p) away from the desired values.

4.2 Lateral P-wave velocity and thickness variations

The tests discussed so far involved the estimation of ldyerarying layer-
density. In this section, three numerical tests are diszugshich have been
conducted to compare the capability of Sl versus 1D conwmiat RBSI in
determining lateral P-wave velocity,{) and thicknessH) variations.

The subsurface models in which the tests are done, haveasiogecom-
plexity: the first model contains a single dipping layer onihe second has
five plane-parallel dipping layers, and the last has a tarfjgte layers in an
anticlinal setting with laterally varying dips.

Before advancing to the comparative tests, first a furthalyais on the
detrimental effect of migration wavelet stretch on Sl is €ofhe two nu-
merical examples were publishedvian der Burg et al.2009.

m 4.2.1 Single dipping layer

In the migrated domain in vertical two-way traveltime, thearsion domain
of S, dip-dependent migration wavelet stretgfi3) is present. The detri-
mental effect of it is analysed on the ability of Sl to estiengt and’ from
the migration image. 1D convolutional RBSI operates in thenigrated
domain that is stretch-free, hence is expected to give gpesults.

Model geometry

A series of synthetic data tests is performed on a model septiag the
flank, locally dipping with angle3, of a subsurface structure with a well
at the apex (Figurd.10. At the apex, the reflector dip is zero, so that
the seismic-to-well tie is done on a portion of the migratecti®n without
migration stretch on the wavelet [i.eq(5 = 0°) = 1, see Eq.2.63]. The
2.5D isotropic-elastic subsurface has unifasnconstant background, =
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Figure 4.10: Subsurface model with a singlg-contrast and dip angle?; v, and
h of the target layers to be inverted for. The wavelet for S| wasgved from a
seismic-to-well tie at zero dip.
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Figure 4.11: no() on a detail of ideal migration results, for the subsurfacedelo
of Figure4.10with dip angle as indicated. Trace separation is 10 m. Dadivexs
denote contrasty;.
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2000 m/s and contains a single contrasting, thin layer wjtk 2500 m/s
andh =10 m(< Ag).

Ideal migrated and normal-incidence datasets

Figure4.11shows a set of true-amplitude pre-stack depth migrated,etb v
tical depth-to-time converted, ideal migration images;heeorresponding
to a different dip of the flank. These images are constructefirét com-
puting the exact spiky reflectivity traces using E2.66), with § = 0°; one
trace is sketched in Figuke1Q Subsequently, for each dify these traces
are convolved with the wavelet from the normal-incidenceaslet stretched
by the corresponding factor,(3). Hence, on the ideal migration images,
all migration artifacts besides the clearly visible watelgetch—the effect
considered here—are suppressed.

The normal-incidence dataset is computed using the sameitptapered
zero-phase bandpass wavelet with corner frequenciessB4/5 Hz as used
in the previous tests. A (pre-processed) trace from thigsat for O dip, is
shown on the left-hand side of Figu4€l8

Sl inversion: effect of migration wavelet stretch

The experiments for Sl involve the estimation of unknowrelagroperties
v, andh, using the exact wavelet derived/at= 0°, on a single trace from
a set of true-amplitude pre-stack depth migrated, 1D \adrtiepth-to-time
converted, ideal migration images, each image correspgridia different
layer dip.

As prior knowledge, the exact mean valygs,) andu(h), and the exact
position of >; are supplied to Sl in the experiments. The prior standard
deviations weres(v,) = 1000 m/s ando(h) = 5 m. Also the relation
vs = v,/1.7 is given, as well as the velocities and density of the ovagdyi
and underlying layer.

Figure4.12shows they, andh of the middle layer, estimated by SI for the
various dip angles. For higher dip angles, inversion residviate consider-
ably more than two standard deviations2rom the desired values.

To further investigate the Sl results, consider FigitE3 In Figure4.13,,
one Sl-modelled trace (dashed) is plotted on top of the spareding input
trace (varwig) from the migration image (Figutell), for each dip anglé.
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Figure 4.12: v, andh as determined from SI, for the various dips indicated on the
horizontal axis. Error bars denote posteriof(v,) and o (k). Dashed horizontal
lines denote desired values foy (grey) andh (black) respectively.
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Figure 4.13: a) Quality of the match between input traces (varwig) from thgraa

tion image (Figure4.11) and Sl-modelled traces after inversion (dashed) using the
zero-dip wavelet. Zero-dip input is repeated in thin linesdll dips. b) Migration
response peE;, showing the dip-dependent wavelet required for a corréct S
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Figure 4.14: v, and h as determined from Sl in a model like FigutelQ yet with
swapped P-velocities. Error bars denote postewdr,) ando(h). Dashed lines
denote desired values.
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Figure 4.15: Sl-modelled traces (dashed) using the zero-dip wavele§lanput
traces (varwig) from the migration image. In thin lines: utmt zero-dip.
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Figure 4.16: v, and h as determined from Sl in a model like FigutelQ yet with
h = 25 m and underlying layet;, = 3000 m/s. Error bars denote posterier(v,,)
ando(h). Dashed lines denote desired values.
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Figure 4.17: Sl-modelled traces (dashed) using the zero-dip wavele§lanput
traces (varwig) from the migration image. In thin lines: utmt zero-dip.
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These SI-modelled traces provide inversion diagnosticednyolving the
most likely SI outcome with the supplied wavelet.

Notice in Figure4.13 that the match with traces from migration is rela-
tively good. In this case, though, the adequate match sesulhisestimates
in v, andh that stem from positioning- and amplitude-misalignments d
to matching with the wavelet derived at zero-dip. The goodfihus mis-
leading: the inversion algorithm adjusts the model to adrfer forward
modelling errors.

Also in Figure4.13, the input traces without migration stretch are displayed
as thin lines: these traces are equal to the zero-dip inpaetrOnly these
traces fulfil the wavelet requirements of SI when using theelet derived at
zero dip angleg = 0°. Figure4.13 shows for each dip the corresponding
stretched wavelet that would have given correct Sl resdltese wavelets
are readily visible on the migration image if only a singléerfiace would
have been present: the dotted traces correspond to a roigliatage in
which only the upper interfacg, is present, the dashed traces to an im-
age with only the lower interfacg,, and finally the varwig traces show the
composed signal corresponding to the actual situation.

Finally, notice that in Figurel.12 thicknesses as found by Sl are always
overestimated and P-velocities underestimated. An urat#sisystematic
overestimation of reservoir volume by Sl at increasing digles would be
the result. To test if the thickness-overestimation alscucg for different
layer properties, the original model of Figutel 1lwas changed firstly by in-
terchanging the P-wave velocities so that the laydsrecome2000 m/s and
elsewherey, = 2500 m/s, and secondly by thickening the middle layer to 25
m, while increasing P-wave velocity of the underlying lafrem 2000 m/s

to 3000 m/s.

The inversion results obtained in these two altered modelgiaen in Fig-
ures4.14and4.16 Sl-modelled traces and traces from the migration image,
for the two modified models at varying dips can be seen on Egil5
and4.17. The results show that the final misestimation-behaviouslat
indeed dependent on the geometry of the inversion-targetsy¥tematic
overestimation of thicknesses by Sl occurs when using treedip wavelet,

as Figure4.16gives an example of thicknessmderestimation (and P-wave
velocity overestimation) — although the large difference between the-mod
elled and actual trace in this particular example will nougmoticed during
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Figure 4.18: Left: Comparison between a trace from the pre-processed normal-
incidence dataset and a trace from the data after TA PreSDMY alip. Right:
Comparison between traces from the data after TA PreSDM dt@and 30 dip.

subsequent quality control of the inversion.

1D convolutional RBSI inversion

In order to test 1D convolutional RBSI in a manner most analsgo S,
with varying dip in the model, thesal layer-thickness measured along the
direction of the normal to the interfaces is kept constant’ at 10 m, as
was the vertical layer-thickness for Sl; also the one-waypath through
the homogeneous overburden is kept constanf@d m, as was the depth
to the reference reflector for Sl. In the absence of migratiavelet stretch,
this means that the normal-incidence traces for all dipes)glare equiva-
lent: therefore, the remainder of this discussion is retgtti to one normal-
incidence trace only. Naturally, thg-values of Figuret.10are used in the
modelling test.

The pre-processed normal-incidence trace suitable faramn with 1D
convolutional RBSI, i.e. from which overburden losses hiaeen removed
via Eq. 8.3)), is shown as leftmost trace on Figutel& Notice the small
difference, shown on the third trace, with the true-ampitpre-stack depth
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migrated, 1D vertical depth-to-time converted trace ab zip (second trace).
Hence, it is no surprise that the 1D convolutional RBSI rsstdr all dip
angles practically coincide with the zero-dip (ideal) Suk: 1D convolu-
tional RBSI finds posteriop(v,) = 2497 m/s witho(v,) = 17 m/s, and
w(h) =9.96 mwitho(h) = 0.41 m.

The small difference is explained by the fact that the amgétlosses in
the target {7 and L), causing errors in the 1D convolutional RBSI results
as they are neglected in the 1D convolutional RBSI schenmesé3), are
small, especially compared with the difference betweerzéne-dip and the
30° migrated traces caused by migration-induced waveletstrdlustrated
by the rightmost three traces of Figutd 8 that are causing S| misestimates.
To be preciselr and L, are both 0.012; compare also with the losses found
in the experiment discussed in the following subsection.

m 4.2.2 Five plane-parallel dipping layers

In the previous one-layer test, 1D convolutional RBSI hadkasy task in
estimating reservoir properties, due to the absence offattes within the
target reservoir zone and the modest target-thicknessffix of neglecting
amplitude-losses in the target was small. In the followihg, performance
of 1D convolutional RBSI vs. Sl for estimation of layer P-weavelocities
and thicknesses will be tested in a more realistic settirggcuence of five
plane-parallel dipping layers.

Model geometry and datasets

The single-layered model of Figu#el0is extended to five, plane-parallel,
thin layers {; < \;) with fixed dip of 3 =30° (Figure4.19. The first
layer is chosen to be significantly thicker than the othdrsrdfore, its top
interfaceX:; will appear relatively free of interference on the seismatad
(and hence clearly distinguishable), so that it can servefasence reflector
for the inversion target.

Figure 4.20 shows the datasets on which inversion is applied: on the left
for 1D convolutional RBSI, Ni-traces acquired in the sulisce model of
Figure4.19 from which overburden amplitude-losses [due to geonwdtric
spreadingC i in the homogeneous overburden and amplitude-effects other
than geometrical spreadingz, see Eqs.3.28-(3.29] are removed. On
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the right, for Sl, the true-amplitude pre-stack depth nteglalD depth-to-
vertical-time converted, ideal migration image; notice tavelet stretch.

Inversion: Sl vs. 1D convolutional RBSI

The aim set for inversion is the estimation of unknown vatttbicknesses
h andv, for each of the five layers in the target. Both types of invarsi
are supplied with the following prior information: the cect number of
target layers, exact layer-densities,= v,/1.7, and finallyp, v, andv, for
overburden and underlying halfspace are exactly known.cohect wavelet
is assumed to have been derived from the normal-inciderat®sdor 1D
convolutional RBSI, and from the migrated section, at azwrial part of
the target, for SI.

The prior knowledge on the layer-parameters to be invedgdf andh, is
contained in the form of normal pdfs, parameterised by meand standard
deviationo: for all layer P-wave velocities, the prior mea(w,) coincides
with truew,,, whereas the uncertainty is described by a standard deviati
o(v,) = 250 m/s. For all layer-thicknesses prior meanyu(h) coincides
with true h, with an uncertainty described by a standard deviation(6j =

5 m for the first (thick) target layer and(h) = 1 m for the remainder of
the target-layers. The two-way traveltime to the referaedflector is known
exactly up to a standard deviation of 2 ms.

First, an Sl reference test is done at zero-dip0°), to get a feeling for the
best achievable estimation accuracy: the migration imégj@ecstructure at
G = 0° and the zero-dip wavelet used in S| form the ideal combimatio
The inversion results are given in Table 4.1. It can be seanthie ideal SI
estimates closely match the desired results, only for timaést (third) layer
a deviation of about one occurs inv, andh.

Next, a trace from the migrated sectiondat= 30° is inverted with SI; the
inversion results are given in Table 4.2. Notice from thelsstandard devi-
ations that the inversion seems to have resulted in quitera parameter
estimates for all layers. Finally, a trace from the nornmaidence section
is inverted with 1D convolutional RBSI; the inversion resuare given in
Table 4.3 (note that true layer-thickness measured alanditbction of the
normal to the layer-interfaces, = h cos (3, is inverted for in this case).
The inversion results are summarised in Figdr2l, which gives misesti-
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Figure 4.19: Subsurface model with five plane-parallel thin layers digpat3 =
30°; v, and h to be inverted for. Also shown the wavelet supplied to Siyvddrat
8 = 0°, and a spiky reflectivity trace.
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118 Synthetic data tests

Table 4.1: Exact vs. estimated layer-parameters for Sl for a model néifo dip;
this is the ideal Sl result. Velocity, is in [m/s], vertical thicknes# is in [m].

Layer no.| property| exact| posterioru | posterioro
1 Uy 2500 2500 9
h 50 50.1 0.3
2 Uy 2000 1996 22
h 8 8.2 0.7
3 Uy 2500 2619 126
h 5 4.4 0.6
4 Uy 2000 2004 19
h 10 10.5 0.8
5 Uy 2500 2519 73
h 7 6.9 0.8

Table 4.2: Exact vs. estimated layer-parameters for Sl. Veloejtyis in [m/s],

vertical thicknesg: is in [m].

Layer no.| property| exact| posterior. | posteriors
1 Up 2500 2556 8.9
h 50 47.0 0.2
2 Up 2000 2168 8.4
h 8 11.4 0.6
3 Up 2500 2086 6
h 5 7.4 0.7
4 Up 2000 2168 13
h 10 10.6 0.6
5 Up 2500 2333 19
h 7 7.4 0.9
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Table 4.3: Exact vs. estimated layer-parameters for 1D convolutidRBESI. Veloc-
ity v, is in [m/s], true thicknes&’ is in [m].

Layer no.| property| exact| posterior. | posteriors
1 Up 2500 2496 8
h' 43.3 43.2 0.4
2 Up 2000 2003 30
h' 6.9 6.6 0.6
3 Up 2500 2476 106
h' 4.3 4.3 0.6
4 Up 2000 2026 17
h' 8.7 9.2 0.6
5 v, || 2500] 2427 63
h' 6.1 6.0 0.7

mates in layer-parameters obtained from both types of snwer 1D convo-
lutional RBSI results are much closer to the desired valhas Sl results.
From Table 4.2 it follows that most of the Sl-estimates areertban 2
away from the desired values. Table 4.3 shows that this doekappen
for 1D convolutional RBSI, although for the lower two layéhe estimates
deviate from the desired values by abeutAlso from thev,-estimates by
1D convolutional RBSI in Figuré.21 one can infer that the performance
deteriorates for the deeper layers.

In Figure4.22a, the cause of the observed deteriorating performance of 1D
convolutional RBSI for the deeper layers is visualised. @mnleft, an input
trace for 1D convolutional RBSI is shown (varwig), from the{processed
NI dataset of Figuret.20a; the match with the 1D convolutional RBSI-
modelled trace (not shown) is almost perfect. The trace enright of
Figure4.22a however, shows the difference with the hypothetical igeed
processed Nl-trace for 1D convolutional RBSI (left, thind) which has
losses in the target due to spreading and transmission@lsected for (the
difference was scaled by a factor 5 for visibility). The difnce is increas-
ing with two-way traveltime and hence is causing the 1D ctuti@nal RBSI
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misestimates for the lower layers.

Using Eqs. 8.34) and @3.35), it is found that in the chosen model (n=5), the
neglected target amplitude losskg and L are 0.087 and 0.060 approxi-
mately — values that still give satisfactory inversion fes(irable 4.3).
Importantly, the amplitude errors due to neglect of targepktude losses
are considerably smaller than those occurring by neglatigifation stretch
(compare with Figuret.22b, trace on the right, which was not amplified).
Hence, Sl estimates can be expected to be worse than th@eezbby 1D
convolutional RBSI.

The cause of the SI misestimates is visualised in Figuzgb: on the left the
SI-modelled trace (dashed) is plotted on top of the cormnegipg input trace
(varwig) from the migration image on the right-hand side ajure 4.20
Also visible on the left, in thin lines, is the hypotheticdeal trace for Si
without migration stretch — fulfilling the wavelet requiremis of SI when
using the wavelet derived at zero-dip. This trace was pickath the mi-
gration image of a subsurface similar to that displayed guFg4.19, yet
with horizontal layers § = 0°). The trace on the right-hand side of Fig-
ure 4.2 shows the difference, causing Sl misestimates, betweenreti
and hypothetical trace for SI.

Finally note that, due to the fact that in the applicationimegyof 1D con-
volutional RBSI, Ly should be small (which implies the absence of large
impedance contrasts in the target zone), the amount of geaemultiple-
energy is expected to be small too, justifying the choice taleh only the
primary response in the inversion kernel of 1D convolutldRRSI.

m 4.2.3 Gaussian model with target of five layers

In order to test the capabilities of SI versus 1D convolwidRBSI in de-
terminingv, andh for a thin-layered structure with laterally varying dips
under an inhomogeneous overburden, a new model is syrgldefstsn the
interfaces of the Gaussian model and the target of five lagississed in
the previous section. First, the model geometry is disausSabsequently,
the datasets to be inverted are presented: the ideal ndgaaig normal-
incidence dataset. Finally, the inversion results are @eth
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Figure 4.22: a) Pre-processed normal-incidence trace (left, varwig), dtipetical
trace without target losses (left, thin line), and diffezen<5 (right). b) Left: trace
from the TA PreSDM image (varwig), SI-modelled trace (ddshed trace from the
TA PreSDM image for dipg = 0° (thin line). Right: difference between the traces
from the TA PreSDM image. Dashed lines denote interfaces.
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Figure 4.23: P-velocity distribution.
Below, an enlargement of the dashedBelow, an enlargement of the dashed
area shows distribution in the target. area shows distribution in the target.

Figure 4.24: Density distribution.

Model geometry

As in the tests before, the model properties are invariattiemn:,-direction
so that the variations are restricted to the (3)-plane, and data acquisition
(using point sources and 3D spreading) is performed aloag tuirection

to obtain a 2.5D configuration.

In constructing the new model, the six interfaces from thessan density
model are re-used for the overburden, and five thin layersmgasonstant
vertical thicknesses equal to those in the model discusséldei previous
subsection are inserted below the sixth interface, to eraathin-layered
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target interval with laterally varying dips suited for test Sl vs. 1D convo-
lutional RBSI. All interfaces are depicted in Figute23

Applying the overburden/target parameterisation intomadlin Figure3.13
of the previous chapter, the reference reflector has numbers, the total
number of interfaces in the model ¥ = 11, with six target interfaces
{Z, ..., %11}, and the number of target layersis— n = 5.

From the description given above, it follows that the positof the over-
burden interfaces including the target reference refleEtocan again be
calculated using Eq4(1), whereas the positions of the additional five target
interfaces below the reference reflector are calculategplymg a transla-
tion in depth toXg,

zi(z) = zioa (o) +hy ¥V i€{7,8,... 11}, (4.6)

with h; the (laterally constant) vertical target layer-thickresss [m] given
by h; = {50,8,5,10,7} fori € {7,8,9,10,11}, i.e. equal to vertical layer-
thicknesses in the model discussed in the previous subsgecti

Note that this target configuration is favourable to Sl in ¢kase that dips
G for all target interfaces are the same for a giver{iwhich means that the
associated dip-dependent migration wavelet stretgly) in the target will
be constant per trace from the migrated image), wherea®dtadly plane-
parallel layer assumption for 1D convolutional RBSI is nollyf satisfied
since dips are not exactly the same along reflector-normals.

The elastic layer-properties are distributed as followagel-density,. alter-
nates between 1600 kg’mand 2000 kg/min the overburden, while in the
target it is constant at 2000 kg#r(Figure4.24),

pr=1800 —200-(—1)* V ke{1,2,...,6}, (4.7)
o = 2000 V ke{78,.. . 11}. (4.8)

P-wave velocity is constant at 2000 m/s in the overburdeigwinthe target
it alternates between 2500 m/s and 2000 m/s (Fig.28),

Upe = 2000 vV ke{1,2,...,6}, (4.9)
Upp = 2250 —250- (=1)F ¥V ke {78,... 11}. (4.10)

Everywhere, layer S-wave velocity is calculatedgsl.7.
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Figure 4.25: Ideal depth migrated image after 1D vertical depth-to-tinuaver-
sion, for the Gaussian model with fine-layered target.

Ideal migrated dataset

Sl inverts the pre-stack depth migrated, 1D vertical depttime converted
image of the normal-incidence data for layer-thicknessRuwave velocity
in the target. In Figurel.25 every 20th trace of this migrated dataset is
displayed. Note that again the ideal migrated image wastaaed (see
the text below), so that the effect of dip-dependent migretvavelet stretch
on Sl can be isolated; the effects of e.g. illumination amdited lateral
resolution were suppressed.

This ideal migration image is generated by first applying avéBical depth-
to-time conversion [Eq.2.42)] to the model of elastic properties in depth,
using the exact P-wave velocity model. In this way, the epasition of all
interfaces in vertical two-way traveltime is known, as wadlthe size of the
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Figure 4.26: Comparison of the Gabor and Hanning-tapered bandpass pesse
wavelets mentioned in the text.

impedance contrasts associated with the interfaces.

Subsequently every 10 m in the-direction, an acoustic impedance trace is
synthesised from the density and P-wave velocity modelsiitical two-way
traveltime, with which the normal-incidence reflection ffimeents are cal-
culated using Eq.3.17). Subsequently, a spiky reflectivity trace can be com-
puted via Eq. 2.65, and convolved with a varying, dip-dependent, wavelet
which has the proper migration wavelet stretgfi) depending on the lo-
cal dips§ of the reflectors encountered. The stretch is calculatedlgusi
Eq. 2.63, and applied to the original Gabor wavelet derived at z&po-
(which is equal to the wavelet from the normal-incidenceadat).

The zero-phase Gabor wavelet is given Bybral and Tygel1989 Eq. (1)],

= cos(2m fyt) e "4 2, .
w(t) (2m fat) e~ fat/7) (4.11)

with ¢ the two-way traveltimef, = 35 Hz the dominant frequency and pa-
rametery = 4. Note that at zero-dip in the chosen model, the two-way
traveltime coincides with vertical two-way traveltime, gt the equation
above also applies to the zero-dip wavelet present on thia-degime con-
verted migrated image. Also, note from Figyr@6 that at least the central
peak of this wavelet is very similar in shape to the Hanneygeted zero-
phase bandpass wavelet with corner frequencies of 4-12558z used in
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Figure 4.27: Nl-datasetis for the Gaussian model with fine-layered target.

the previous tests. The change of wavelet is a consequensengf a differ-
ent (more advanced) modelling software for the remainistgte

Normal-incidence dataset

The normal-incidence datasét(7, = %,;t¢) for 1D convolutional RBSI

is generated using elastodynamic ray-tracing. It is disgaan Figure4.27.

The acquisition configuration was equal to that used for thesSian density
model of sectiort.1 (see the first two paragraphs of the subsection named
‘Normal-incidence dataset’), apart from the fact that therse wavelet was
the Gabor wavelet mentioned above.

The dataset needs to be pre-processed before it can be uséD fmn-
volutional RBSI: the overburden amplitude losses (Figus), calculated

by elastodynamic ray-tracing to the reference reflecta,ramoved using
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Figure 4.28: Factor [L/Cp] from Eq. 3.3]) calculated for the current model.

Figure 4.29: Sketch of the effect of flattening of the layers in the tardmigthe
reference horizon (bold) for the current model.

Eq. 3.31), to compensate for the effect on target-reflection amghditof the
laterally varying overburden.
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Figure 4.31: As above but for 1D convolutional RBSI. Notice the improvexbti-
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Inversion: Sl vs. 1D convolutional RBSI

The goal set for inversion is the estimation of vertical kinessesh and
P-wave velocityy, for each layer in the target. In the following, first, the
knowledge on the inversion target available before ineergs given. Then,
the Sl and 1D convolutional RBSI results are discussed lligjiae effect is
investigated of target spreading losses on 1D convolutiRB&I.

Note that 1D convolutional RBSI inverts for true layer-ttmessh’, which
afterwards was converted to vertical layer-thicknesssing the local dip at
the reflection points on the top interfaces of the targegiigayThe reflection
points at the reference reflector (the top-target intejface known from
ray-tracing, as well as the dips since the reference refléstoicked from
the migration image. The reflection points with the loweg#drinterfaces
are calculated using thié-estimates and assuming straight ray-paths in the
target (following the convention for 1D convolutional RBSTo obtain the
dips of the lower target interfaces, the prior knowledgesedithat in the
target the layer-dip stays unchanged in the vertical doact

Furthermore, thé:- andv,-estimates for 1D convolutional RBSI, found at
irregularly distributed reflection points on each targeeiface, are inter-
polated to a regular lateral interval ®® m, coinciding with the migration
output grid, so that a direct comparison with the estimataained by Sl
can be made.

Prior knowledge  The prior knowledge for both type of inversions involves
the correct number of target layers, with exact layer-d&ssiv, = v,/1.7,
and finally p, v, andv, for overburden and underlying halfspace exactly
known. The correct wavelet is assumed to be derived from trenal-
incidence section (1D convolutional RBSI), and from theirmmtal part of
the zero-offset migrated section (SI).

The prior knowledge on each layer-parameter to be estimateontained

in the form of normal pdfs, parameterised by mgesand standard deviation
o: for all layer-P-velocities, the prior megn(v,) coincides with truev,,
whereas the uncertainty is described by a standard deviafio(v,) =
250 m/s. For all layer-thicknessés (and /'), prior meanu(h) coincides
with true h (and '), with an uncertainty described by a standard deviation
of o(h) = 5 m for the first (thick) target layer and(h) = 1 m for the
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remainder of the target-layers. The normal distributioeserbounded at a
minimum value of 0; during the stochastic inversion, sampli@wn outside
this bound were rejected. The two-way traveltime to theresfee reflector
was known exactly up to a standard deviation of 2 ms.

Inversion results ~ To facilitate the observation of thickness misestimates,
the estimated reservoir model is displayed after flattealogg the reference
reflector, and with only a portion of the bottom of the firsgatrlayer shown;
the inside of the dashed frame on Figdr@9 gives an impression of what
the reservoir geometry then ideally should look like.

Also, for improved display, a six-point moving average fili® applied on
the - andv,-estimates for each layer in the lateral direction. Withaeer
spacing of 10 m on the migrated image (also 1D convolutiorSRre-
sults are interpolated to this spacing before filtering}y theans that lateral
variations smaller than 60 m are smoothed away. To get antpédr the
size of this smoothing, notice that the lateral resolutibtagget level on a
real (i.e. not ideal) migration image of the considered subsarfstructure
would beAr =~ \;z/L =~ 60 m too [Eq. €.57)], with dominant wavelength
i = v,/ fa = 2000 m/s / 35 Hz ~ 60 m, depth of observation = 1250 m
and half-aperturé, = 2500/2 m.

The posterior reservoir models obtained after Sl and 1D @oitional RBSI
are depicted in Figure$.30and4.31 For each of these two figures, the
colours in the top subfigure indicate the thickness misegésin %, whereas
in the lower subfigure they depict the absolute standardatienis. Compar-
ing with the lower image on Figur€.29, it is clearly visible that Sl overes-
timates layer-thicknesses (apart from the thickness oftimmest layer) in
the parts of the reservoir that have strong dips. In contté&stonvolutional
RBSI thickness estimates do not suffer from the dips (alghotlhey have
slightly higher posterior standard deviations).

The posteriomw,-estimates for Sl and 1D convolutional RBSI are depicted,
in a similar way as the thicknesses, in Figuke82and4.33 For Sl, it
can be seen that a thickness overestimate leads to a P-wingityein-
derestimate and vice-versa (while deviations are not @e las those ob-
served in Sl-estimated thickness). 1D convolutional RB&igda better job
in v,-estimation, although misestimates increase for the ldayars due to
the neglect of spreading and transmission losses in thettarga similar
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behaviour was previously seen in the five plane-parallgbidigp layers test
(Figure4.21).

Effect of target spreading losses on 1D convolutional RBSI In or-
der to investigate whether an (approximate) removal of dinget spreading
based on the prior reservoir model improves the 1D convabaliRBSI|v,-
estimates, the testis rerun on the pre-processed NI-d#dtidaxget spreading
losses removed. As described in the subsection named ‘rawledge’,
the prior model used in this test coincides with the exactehod

This removal of target geometrical spreading losses is dsrfellows: for
each normal-incidence ray, the loss-facfoy/(Lr(H') + L) [taken from
Eq. 3.34)] is calculated at the intersection points of the normaldence
ray with the prior target interfaces (assuming straighsrdyough the tar-
get perpendicular to the reference interface, conform ddrconvolutional
RBSI, and using prior layer;). Linear interpolation of the loss-factor is
performed in-between the interfaces, to calculate the dssa function of
two-way traveltime. Finally, each trace from the NI-dataligided by the
corresponding loss-function to obtain the desired outfrates with ampli-
tudes in the target that are amplified more with increasistpdce from the
reference interface.

Thew,- andh-estimates obtained with 1D convolutional RBSI after reaiov
of target spreading losses and the previous 1D convolUtRB&I results
are displayed together in Figurés34and4.35(for improved display, again
a six-point moving average filter is applied per layer in tietal direction).
It can be seen that the misestimation errowjrhas been reduced for the
fifth and second layer, while for the first layer the error hasdme slightly
worse. The thickness estimates have slightly improvedHerfirst layer.
The standard deviations are not displayed, since for bathdv, they show
virtually no change.

In conclusion, removing the target spreading losses (basealgood prior
model) before applying 1D convolutional RBSI improves and k- esti-
mates, as expected. However, for this particular model tifgavements
are modest; for targets with a larger overall thicknesgdamprovements
may be expected. The described procedure may give the pibgsio ex-
tend the application regime of 1D convolutional RBSI to stengets with
larger total thickness.
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Figure 4.34: 1D convolutional RBSb,-misestimates, inverting pre-processed NI-
data with (solid) and without spreading (dash-dot) in they& corrected for.
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4.3 Rock model test

A look back to Figure2.12learns that in the forward modelling kernel of the
inversion algorithm, from initial rock- and pore-fluid pamaters, the elastic
layer parameters are calculated using a rock/fluid propedstel (the ‘rock
model’). So far, a very simple rock model has been used, inghse that the
reservoir model was built directly from the elastic propestP-wave veloc-
ity, S-wave velocity and density. Before advancing to the ohapter where
a more complicated rock model is used in the inversion of field, it needs
to be validated whether the parameters describing suchkanmodel can be
correctly retrieved by the 1D convolutional RBSI inversgmocedure.

The test has the following setup: first, a simple reservoidehds built of
which the layer-properties are described by two rock modks encoun-
tered in the next chapter. Subsequently, using the rock motihe elastic
parameters of each layer in the reservoir are calculatethatocan elastic
model can be set up in which elastodynamic normal-incideageracing
can be performed. Finally, the normal-incidence dataset tibtained, after
necessary processing, is inverted by 1D convolutional RBS& subset of
reservoir parameters that are assumed unknown.

m 4.3.1 Model geometry

In this rock model test, the geometry of the model with fivenplgarallel
layers is re-used (Figu.19; however, the dip of the layers is taken zero
(since RBSI is unaffected by dip-dependent migration wetveretch any-
way), so that the model varies only in the-direction.

Layers one, three and five consist of a sandstone-shale i@jxayers two
and four consist of shale (which has higher propagationcieés). The rock
models used to describe these two lithologies are givenaméxt subsec-
tion, followed by a specification of the rock-parameters ggsiilting elastic
properties for the five layers in this test.

The elastic properties of the homogeneous isotropic elasgrburden and
the halfspace underlying the target apg; = 2700 m/syp, 5 = v, /1.7 and
pp = 2300 kg/mi. The reference reflectdt; is placed at 1350 m depth, so
that normal-incidence P-wave two-way traveltime from thdace atr; =

0 m to this reflector is 1000 ms.
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m 4.3.2 Rock models

The rock models used for the five target layers are the sanimas tised in
the layers in the Gulf of Mexico field discussed in the nexfatba the shale
model and the sandstone-shale mixture model.

To describe the relation between the rock properties of ia¢ysandstone
reservoir rocks typically encountered in the Gulf of Mexregion, and the
elastic propertieg, v, andv,, a rock model is used that takes advantage of
property trends derived from well logs.

The effective media model that will be given in this secticem correctly de-
scribe the encountered alternating sequences of thin sahghale layers for
(near) normal incidence waves; for larger angles of inaigethe anisotropy

of the rock should be taken into account. The effect of poid/as prop-
erties on the elastic properties of the rock is accountedifothe Gassmann
equationslavko, 2009, which assume isotopic rocks, homogeneous min-
eral moduli, and low (i.e. seismic) frequency of propagatiraves.

The model consists of a sandstone and shale counterpapathéescribed
next is the shale counterpart. After that, the sand couategmnd the mixed
model for the shaly sandstone are described.

Shale model

With the shale model, the elastic properties of the shalebeaoalculated
given as prior information a regional linear depth-trend jlerived for the
particular rock from well logs, valid for a certain depthrgge |2, z»] (with
zy > z1), and assuming a correlation betwegrandv,, andv, andp. Note
that in this section; is used as shorthand of thg-direction to improve
readability of the equations. The shale model is given by,

vp(2) = vp(20) + %” (z — 20), Vz € |21, 29 (4.12)

vs(2) = wy(20) + gz; vp(2), Vz € [21, 29 (4.13)
b

o) = p(=2) Vielnozm  (414)

with z, some convenient reference defth, z;] the depth-interval for which
the equations hold, angb,/Jv, is determined from empirical linear fits to
well log data. Note that often, extrapolation of the deridegth-trend in,
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occurs tozy = 0 in order to simplify Eq. 4.12); in that casezy ¢ [z, 22, SO
thatu,(2) itself can be non-physical, e.g. negative.

Eq. @.13 has the form of Castagna’s empirical relation betwegandv;
[Mavko, 1998 Table 7.8.1]. Eq.4.14) is the Gardner-Gardner-Gregory em-
pirical relation between, andp [Mavko, 1998 Table 7.9.1] in dimension-
less form p andv, the average density and P-wave velocity in the model).
Since Eq.4.14) is in power law form) can be determined fromla (p(z)/p)
vs.In (v,(2)/0,) cross-plot of the relevant log data.

Note that since the three elastic properties are assumealated, this model
in fact is simpler than the ‘basic’ rock model in whighv, andv, are in-
verted for independently.

Porous sandstone model

The porous sandstone model makes use of a regional linethr-ttepd in
v, derived for the particular rock from well logs, valid for artzen depth-
range(z, z;|, and assumes linear correlation betwegandv,, andv, and
porosity¢, in order to calculate the elastic properties of the samisfitied
with a reference fluid, or fluid 1,

vp(2) = vplz0) + 22(2 — %), V2 € [z,2)] (4.15)
vs(2) = ws(20) + gz; vp(2), Vz € [21, 29 (4.16)
o(2) = P(z0) + aa—;‘; vp(2), Vz € [21, 29 (4.17)

in which z, is a convenient reference depth gnd ;] is the depth-interval
for which the equations hold, aréth, /dv, andd¢/dv, are determined from
empirical fits to log data. Subsequently, the density iswdated as the sim-
ple volumetric average of the rock constituent densities,

p(z) = (1= ¢(2))pmin + ¢(2)p1 (4.18)

with pmin the density of the mineral grains, apgl; the density of the refer-
ence pore fluid.

To take into account the effect of pore fluid properties, Fos porous sand-
stone model the fluid (or gas) substitution recipe describédiavko [2005
is applied below. From the measured elastic propepties andv, for the
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sandstone with reference fluid 1, the bulk moduljsand shear modulys;
are calculated as follows:

4 4

Ki=p (vﬁ — gvs) : p = pv. (4.19)

The bulk moduluds, for the sandstone filled with the actual fluid 2 is cal-
culated using the Gassmann substitution,

Ky Ki 2 _ K, Ki 1

— = — , (4.20
Kmin - KQ Cb(Kmin - Kﬂ,2) Kmin - Kl Cb(Kmin - Kﬂ,l) ( )

with Ky, and K7y » the bulk moduli of fluids 1 and 25, the mineral mod-
ulus, andyp the porosity. The shear modulug remains equal tg, i.e. the
shear modulus is unaffected by fluidddvko, 2005. The densityp, of the

sandstone filled with fluid 2 is calculated using,

p2 = (1 = @)pmin + dpni2 = p1 + ¢(pn2 — pia) (4.21)

with p; and p, the density of rock with fluids 1 and 2, ang; and py -
the density of fluids 1 and 2. Finally, the propagation velesiafter fluid
substitution can be calculated,

| K>+ 4 [
vy = 27?’/&, v, = JH2 (4.22)
P2 P2

Laminated sandstone-shale model

The laminated sequence of the bulk of thin sand and shaleslaye de-
scribed using the previously discussed shale model for hlakes and the
sandstone model for the sands as follows,

p = SFpsst+ (1 — SF)psh, (4.23)
1 SF 1-SF

1 __SFE | 1-5F (4.24)
PU, Psstlp sst PShUp sh
1 F 1-SF

__oF 129 (4.25)

02 o 2 U2 !
PUg pSSst,SSt Psh s,Sh
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with ‘Sst’ referring to sandstone properties, ‘Sh’ to shpteperties, and
SF the sand fraction in the mix (aka. net-over-gross). As in @dL8),
bulk density is again calculated using a simple volumetvierage. The
velocities are calculated using the Reuss average, whithhaess lamination
perpendicular to the wave-patMvko, 2003. Since the shales have no
porosity, the bulk porosity can be calculated using the gemdsity only,

¢ = ¢saSF . (4.26)

m 4.3.3 Exact rock parameters

The rock parameters for the shale and sandstone-shalerenirtadels speci-
fied below, the ‘true’ parameters that will be inverted forllly convolutional
RBSI, are loosely based on the parameter values used in ti@Guex-
ico field example described in the next chapter. Everywhgre; 0 m and
[21, 22] = [1000, 1500] m.

Shale layers

For the shale, in Eq4(12 v,(z) = 2650 m/s and the terndv,/0z was
set to zero. In EQ.4.13), vs(zp) = —600 m/s, anddv,/dv, = 0.617. In
Eq. @.14, v, = 2700 m/s,b = 0.215 andp = 2313 kg/m*. Thus the
equations4.12-(4.14) become:

vp(2) = 2650, (4.27)
vs(z) = —600+ 0.617v,(2), (4.28)
0.215
o(z) = 2313 (%) . (4.29)

Sandstone-shale mixture layers

The shale found in the sand-shale mixture is described ubmgarame-
ters specified above. For the sandstone counterpart, irdEd) (v, (zp) =
2400 m/s anddv,/0z = 0 s . In Eq. @.16), dv,/ov, = 0.8335 and
vs(20) = —1200 m/s. In EqQ. £.17), 0¢/0v, = —0.00012 s/m andp(z) =
0.635. In Eq. @.18), pmin = 2650 kg/m* and pg ; = 1000 kg/m?: the pore-
space in the sandstone is chosen to be fluid-filled with wager (500 m/s,
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Figure 4.36: Left: Acoustic impedance logMiddle: A single trace from pre-
processed:s. Right: difference with ideal input by generated 1D convolution.

p = 1000 kg/ni). This is also the reference fluid, so that Gassmann sub-
stitution need not be done: the bulk elastic parametershierfltiid-filled
sandstone follow directly from Eqs4.(L5-(4.18):

vp(z) = 2400, (4.30)
vy(2) = —1200 + 0.83350,(2), (4.31)
6(2) = 0.635— 0.000120,(2), (4.32)
p(z) = 2650(1 — ¢(z)) + 1000¢(z2), (4.33)

Finally, the elastic properties of the sand-shale mixtwieow from Egs.

(4.23, (4.24 and ¢.25.

The true values for the rock-parameters to be inverted fediared in the
third column of Table 4.4 (these values coincide with thepmean values
for the inversion; the, s listed is that of a sandstone fluid-filled with wa-
ter). From these true values, and the other known paransersibing the
rock, such as porosity, the true elastic parameters for kegein can be cal-
culated using the rock model; these values are depicteceithitd column
of Table 4.5.
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m 4.3.4 Normal-incidence dataset

A normal-incidence data acquisition experiment is perfealpwith omni-
directional point sources and receivers placed at positipn= 7, along a
straight line at the surface; thus in combination with thedeliagyeometry,
a 2.5D configuration is formed. The primary unconverted Rengormal-
incidence particle velocity datasét(r, = 7,;t) is calculated with elasto-
dynamic ray-tracing, using in the target interval the exaastic layer pa-
rameters listed in the third column of Table 4.5.

The normal-incidence data needs to be pre-processed hHbmnvolu-
tional RBSI can be performed; for the chosen model geomidteyprocess-
ing involves merely the removal of the spherical spreadimmgugh the over-
burden (Eqs3.28and3.31, with A, = v, 5 andCj = 1).

A single trace fromus is shown in the centre of Figu#e 36 the peak am-
plitude is about 0.072. Also shown in this figure, on the hedtid side, is
the acoustic impedance log, with minimum?&bs - 10° and maximum at
6.21 - 10° kg/(n?s). Furthermore, it is interesting to see the difference be-
tween the pre-processed normal-incidence trace and thaétidee for 1D
convolutional RBSI, generated by convolving the exact wp#dlectivity
trace with the exact wavelet: this difference is shown orritfiet-hand side.
Notice that differences due to neglecting the transmiskisses and spher-
ical spreading in the target accumulate for the lower lgygeak amplitude
is about 0.007, or 10%.

m 4.3.5 Estimated rock parameters by 1D convolutional RBSI

The parameters to invert for are for the shales: thicknessd P-wave ve-
locity v,. For the laminated sands, thicknésssand-fractionS F’, v, sstand
vp,sh are inverted for. Also, the two-way traveltime to the refere reflec-
tor is inverted for. The prior and posterior values of thesekfparameters
are found in Table 4.4. Using the rock model formulationg, ¢stimated
bulk elastic layer-parameters were calculated from thk-parameters, see
Table 4.5 (fourth and fifth column).

Comparing the estimated values with the exact values, ibeaseen that all
exact parameters are within one standard deviation frorpdlgerior means.
Hence, this test on the ‘five plane-parallel layers’ mode¢hwhale and sand-
shale rock models instead of the basic rock model, has shuoatratso the
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Table 4.4: Prior distribution and 1D convolutional RBSI inversion s for the
rock model test. P-Velocity, is in [m/s], h in [m]. Sand-fraction0 < SF < 1is
dimensionless. Layers two and four are shales, the otheasmid-shale mixture.

Layer no.| property|| prior . | prior o | posteriory | posterioro
1 Up,Sst 2400 | 120 2418 101
Up.sh 2650 | 133 2592 141
h 50 5 49.9 1.2
SF 0.6 0.2 0.55 0.27
2 Up sh 2650 | 133 2659 37
h 8 1 7.6 1.2
3 Up,Sst 2400 | 120 2428 109
Up.sh 2650 | 133 2634 226
h 5 1 6.0 15
SF 0.9 0.2 0.81 0.17
4 Up.sh 2650 | 133 2657 50
h 10 1 9.6 0.9
5 Up,Sst 2400 | 120 2440 53
Up sh 2650 | 133 2580 156
h 7 1 7.3 0.8
SF 0.9 0.2 0.85 0.20

parameters describing more complicated rock models caethiewed suc-
cessfully from the normal-incidence data using 1D convohdl RBSI.

4.4 Offset tests

To conclude this chapter, a test in a simple model contaiaisingle in-
terface is presented, in which the P-wave velocity of theeulythg layer
and two-way traveltime to the (reference) reflector is ested. RBSI es-
timates these two parameters by inverting different paelstunmigrated
angle-gathers. The RBSI results for the different speaeifection angles
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Table 4.5: Calculated exact vs. estimated bulk elastic layer-paransetVelocities
vy, vs are in [m/s], density is in [kg/iH.

Layer no.| property| exact| posterior. | posteriors
1 Up 2482 2481 49
Vs 868 882 31
p 2168 2175 39
2 Up 2650 2659 37
Vs 1035 1040 23
P 2304| 2305 7
3 v, | 2419] 2456 96
Vs 815 850 71
p 2100 2124 29
4 Up 2650 2657 50
Vs 1035 1039 28
P 2304| 2305 9
5 v, || 2419 2448 37
Vs 815 847 30
P 2100| 2114 33

0 are assembled into a single estimate for mean and standaedide; sub-
sequently these values are compared with the estimateisettay Sl on a
single stacked migrated image. In this way, the claim thagriting on differ-
ent angle-gathers should in principle lead to the same atnirparameters,
made in sectioR.1.1 is verified. Note that the effects of noise and wavelet-
stretch due to normal moveout (NMO) and migration are noarggd in
this test, so that the single effect of (stacking) the amgpendent reflection
coefficientR(#) remains.

m 4.4.1 Model geometry

An (z1, x3)-slice through the model is depicted on the left-hand sifle o
Figure4.37. One horizontal interface at; = 1000 m separates two ho-
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Figure 4.37: Left: Model geometry for the offset teRight. Raypaths correspond-
ing to reflection angles of 0, 15 and 30 degrees.

mogeneous isotropic elastic halfspaces, the upper witetaohP-wave ve-
locity v,,, = 2000 m/s, the lower withv,; = 2500 m/s. S-wave veloc-
ity is calculated as); = v,/1.7, while density for both layers is equal:
pu = pr = 2000 kg/m?.

m 4.4.2 Prestack unmigrated datasets

Responses are calculated using elasto-dynamic ray-grafointhree differ-
ent shot/receiver pairs with the same common midpoint; tdogiigition is
performed at the free surfaag = 0 with isotropic point sources, and re-
ceivers that record the vertical component of particle eigjous. Only a
single midpoint position is considered since the modelter&ly invariant.
The shot/receivers are placed such, that the corresporaaggirs have Q
15° and 30 angle of incidence and reflection at the interface. The embst
propagation velocities combined with the horizontal reflecause the ray-
paths to be straight and reflection points to be the same fontmn midpoint
source/receiver pairs; see the right-hand side of Figus&for a sketch of
the situation.

It is assumed that all amplitude effects besides the refiettave been sup-
pressed, so that a single trace from particle velocity @atasz, 7,; t) has
the peak of the source wavelet (Hanning-tapered 4-12-5@778ero-phase
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Figure 4.38: Traces from the angle-gathers in two-way traveltime withveowt

and moveout-stretch completely removed (left), and frarstibstacked ideal mi-
grated images in vertical two-way traveltime (right). Aegland angle-ranges are

indicated on the horizontal axis, respectively.

bandpass) positioned at the two-way traveltime to the fiaxter and peak
amplitude calculated by the full Zoeppritz equation. Alke moveout in
traveltime compared to the normal-incidence responsesigasd to be per-
fectly removed by a stretch-free NMO-correction for thé &4Bd 30 traces,
to facilitate the comparison of the signals for the différeffsets. Note
that in practice, doing a stretch-free NMO-correction isatrivial exercise
[Dunkin and Levin 1973 Perroud and TygeR004. On the left-hand side

of Figure4.38 five identical traces from each of the three angle gathers ar

depicted.
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Figure 4.39: Reflection amplitudes for unconverted P-waves in the currerdel.

Reflection amplitude versus angle

The reflection amplitudes in Figt.38 vary with reflection angle; how ex-
actly they vary is better visualised by Figu4e39 In this picture, the un-
converted primary P-wave reflection amplitudes calculatsiehg the full

Zoeppritz equations are displayed by the solid line. Nost #il plotted

angles are in the subcritical range, i.e. the angles arelanthan the crit-

ical anglef. = arcsin(v,,/v,;) ~ 53° for which the transmitted ray is
parallel to the interface. This calculation follows eadilgm Snell’s law

sinf/sinf, = v,./v,;, With 8 the angle of incidence art the angle of

refraction, and setting, = 90°.

In practical applications, often the reflection amplitudes not calculated
using the full Zoeppritz equations, but rather using cohealfy and com-

putationally simpler approximations such as ‘small-pki and Richards
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1980 p. 153] given in Eg. 4.34), valid for smalld (< 30°) and small
impedance contrasts, or the Bortfeld equatiddsrifeld, 1961]; the ampli-
tudes calculated using these approximations are alsotddpicFigure4.39

Since the inversion software used for this test calculagéeation ampli-
tudes using the small-p approximation, where ‘p’ stand$iéwizontal slow-
ness, it needs to be explained in more detail. A well knowmfof the
small-p approximation isGerritsma 2003 chapter AVO/AVA],

R(0) ~ A+ Bsin?6, (4.34)
with,
A-Ro=0)~ g (G242, (4.35)
2\ U p
2
B=gr - (4252, (4.36)
2 v vy, \ P Vs

in which B is called the AVO gradient] is the reflection angley is the hori-

zontal slowness, the sine-term can be writtesia% = (pv, )%, subscripts
u, [ are referring to upper and lower layer, and difference amdaming op-
erations are defined asp = p; — pu, p = (1 — pu)/2 (With equivalent
formulations forv, andwy).

Note that the small-p approximation can optionally be madeenaccurate
for large reflection angles by adding a third terBh[iey 1983 (see Fig-

ure4.39),

R(0) ~ A + Bsin?6 + C[tan® 0 — sin* 0], (4.37)
with,
o= Lav (4.38)
2 v

In generating the pre-stack unmigrated traces, usage is ofatie small-p

approximation to calculate the full Zoeppritz reflectioreffients, in or-

der to eliminate errors in the small-p-inversion estimales are due to this
approximation implemented in the software (the accuradh®tmall-p ap-
proximation is not the effect under consideration).
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m 4.4.3 Ideal stacked migrated datasets

Because in this test we are merely interested in the effe& amversion ca-
pabilities of averaging the reflection coefficients by stagkagain usage is
made of ideal migrated datasets. The horizontal interfachasen to elim-
inate the dip-dependent migration wavelet stretch, migmastretch due to
offset will occur (from Eq. 2.59 it follows that reflector dip? and specular
reflection anglé® play a similar role in migration stretch) but is not modelled
for the same reason.

With these simplifications, traces from the zero-offsetnaigd data in ver-
tical two-way traveltime are equal to the final normal-ireside dataset de-
scribed in the previous subsection. The same applies fomigeated 158
and 30 angle gathers and corresponding pre-stack unmigratedetata
However, in practice stacks of the migrated angle-gathersreade to in-
crease the signal-to-noise ratig)/(V) on the migrated data, in which differ-
ent angles are summed and averaged (in fact not angle- laat-ofathers
are stacked in practice, but for this test both types arevatgrit). For exam-
ple, in the real dataset discussed in the next chapter,’;riead’ and ‘far’
stacked migrated datasets are generated as final outpué-ataunk depth
migration, in which the ‘near’ stacked migrated datasetkstaip reflection
angles at the inversion target of roughi/td 18°.

A stack is made for the°Cand 15 migrated angle gathers, and for the 0O
15° and 30 migrated angle gathers. Five traces from the stacked meigjirat
datasets are displayed on the right-hand side of Figu3g& only a small
portion of traces from each migrated dataset is shown simeartodel is
laterally invariant.

m 4.4.4 Inversion results: Sl vs. RBSI

For both inversions, the prior knowledge is,, = 2000 m/s, p, = p, =
2000 kg/m* andv, = v,/1.7. Also the exact wavelet is known for the
normal-incidence and zero-offset migrated data. The gnowledge on the
parameters to be estimateddig:= 250041000 m/s,tz = 10004+4 ms. For
Sl, the inversion uses the wavelet derived from the zersebfhigrated data
(which was not substacked). The inversion results are pteden Table 4.6.
First of all, the two-way traveltimes to the reference rafieare estimated
very well by both methods, the largest standard deviaticsmaller than
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Table 4.6: Inversion results fow, of the underlying layer andg to the interface.
The upper three rows refer to RBSI results, the lower two f@Skubstacks).

0| RO) [ p(v,) I/s]| o(u,) [mIs] [ pltr) [ms] | o(ts) [ms]
0° 0.1111 2495 102 1000.27 1.47
15° | 0.0979 2515 58 1000.06 0.64
30° | 0.0620 2519 88 1000.61 3.07
0-15 2466 75 1000.09 1.28
0-30° 2376 56 1000.07 0.62

0.3%; it is therefore most interesting to concentrate onvjhestimates.
Regarding the,-estimates for SI and RBSI, it can be concluded that the
stacking of gathers up to 1%as only marginal effect; this is closely re-
lated to the shape of the reflection amplitude-versus-angiee shown in
Figure4.39 in the 0-15 interval, reflection amplitude does not change radi-
cally so that the zero-offset assumption in S| does not thtce large errors.
However for the stack up to 30a significant deviation larger thaar@,) in
thewv, estimate does occur.

Again concentrating on the,-estimates, from Table 4.6 it can also be seen
that the standard deviations for the individual RBSI ini@rs seem to be
slightly larger than that of SI. However, if results for thedividual RBSI
inversions are aggregated together to calculate the dweesn(v,) and
standard deviatiofi(v,) [pers. comm. J.Leguijt],

1 1 1 1
S =St Tt = =44, (4.39)
a 0y O15 O3

i = o [“—;’ + BBy “—j"} — 2507, (4.40)
0p 015 O30

in which the subscripts refer toof the inverted angle-gathers, it can be seen

that the aggregated mean is closer to the real value than the&h, and the

aggregated standard deviation is smaller. Hence, the Btia&es obtained

with RBSI are more accurate than those obtained with SI.

Finally, notice that in practice the low&y/ N on the individual angle-gathers

compared to the migrated (sub)stacks is likely to negativeéluences, al-
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though it is unlikely to introduce a bias in theas is present in thg(v,)
estimated by SI.

45 Discussion

The benefits of ray-based inversion as compared to existhgntersion
have been demonstrated, for zero-offset acquisition, ertélsts of the first
two sections of this chapter. Two issues have been addressegl zero-
offset data: lateral layer-density determination, anceisions in strongly
dipping subsurface structures.

The results from the laterally varying density model shoat tRBSI, con-
trary to Sl, can correctly determine lateral layer-deng#giations, a require-
ment for true-amplitude PreSDM: if lateral density vaoats are present,
these should be specified for the Kirchhoff-type migratilgoethm in order
to compute true-amplitude migration operators, and ealytto generate a
migration result on which Sl could correctly operate.

In strongly dipping subsurface structures, migrationtstreseverely affects
Sl and should be accounted for in some way, before inverting,f %, p and
related reservoir parameters as porosity and pore-fluittadbim a strongly
dipping target reservoir sequence. 1D convolutional RBSecific imple-
mentation of RBSI, however, operates in the pre-stack domwhiere this
stretch is non-existent.

The performed synthetic data tests on the single dippirgylagd five plane-
parallel dipping layers model and also the Gaussian modeél avtarget of
five layers have shown that 1D convolutional RBSI, in its gnogpplication
regime, resolves, andh much better than SI. The same has also been shown
for RBSI in determining in the wedge-like density model.
Subsequently, in the simple offset test, assuming a stfetehNMO and
stretch-free migration of non-zero offset data, it has b&leown that as-
sembling the RBSI results on different common-angle gatteads to more
accurate parameter estimates, than the estimates obteithe®l on the cor-
responding ideal migrated substack. It should be notedgttnathat the per-
formance of Sl is closely related to the shape of the reflactimplitude-
versus-angle curve for the reflector of interest: in the gdanshown, Si
performance on the 0-1Substack was not much worse than RBSI, because
reflection amplitude remained fairly constant for that anginge. For O-
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30, significant SI misestimations did arise. In this respddg interesting
to mention that the ‘near’ migrated substack of the realsitdiscussed in
the next chapter contains reflections from the target witfiesup to roughly
20°.

Finally, the results obtained in the rock model test havevshitat also the
parameters specified via a rock/fluid property model can tieeved with
RBSI. This is an important observation with regard to thetrdsapter, in
which Sl will be tested against RBSI on a real-life datasetthis real-data
case, the target reservoir is parameterised using rockIstide describe the
relation between the desired reservoir rock/fluid pararsgter layer and the
bulk elastic layer-parameters.



Field data test

For testing 1D convolutional RBSI and comparing it with centional sto-
chastic trace inversion (Sl), a real-life dataset from thdf ®f Mexico,
acquired above a hydrocarbon reservoir with a strong strakctlip, was
kindly made available by Shell Offshore Inc. of New Orleddsijted States
of America. By using 1D convolutional RBSI to invert thesdajaa first
impression is obtained of the potential of this newly depeld method for
estimating reservoir properties in a realistic case.

For a fair comparison, both methods perform a seismic-tih-tieeat the
same calibration well on a horizontal part of the target, hotth make use
of the same prior information. At the dipping part of the &trghe reservoir
parameter estimates are compared with the measuremeastsitala later
evaluation well drilled after the initial inversion was dgri.e. a so-called
‘blind well’ test is carried out.

This chapter is structured as follows. First, the data agitjoin and process-
ing sequence are briefly summarised. Also, the availableat@d and pre-
stack unmigrated data that result from the processing @&septed. Next,
the strategy is presented for making the comparison betstemard and
novel inversion. Then, a selection is made from the 3D datsecthe in-
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dip—line% ﬁg\ i
sailline \\e w

direction

-

crossline
direction

Figure 5.1: Dip-line in 3D seismic data-cube: around this selectedIse| the
subsurface is assumed laterally invariant in the crosstiivection. A specular ray-
pair is shown to the top interface of the target, with reflestangled.

version is restricted to a single sailline. The migratecadatinverted by
standard stochastic trace inversion, and the pre-stackguated data by 1D
convolutional RBSI. Finally, the reservoir parameterrasties obtained with
both methods are compared with values observed at the se@ihdn the
slope. From the comparison, conclusions are drawn. Partbthis chapter
have been taken froman der Burg et al[2007.

5.1 Seismic data description

The deep water Gulf of Mexico field in which the inversion seate done,
is a hydrocarbon-bearing reservoir consisting of layershaet sands and
shales. The reservoir contains a horizontal part and armigmart with dips
to a maximum of 31, see the sketch of the target in Figird. A 3D high-
resolution seismic survey was conducted over the area.

In the following, first the acquisition parameters relevarthe inversion are
described. Then, the processing sequence as applied dystied seismic
data is given. This sequence consists of two main parts: -pnoeessing
part to prepare the pre-stack unmigrated data for migratod the true-
amplitude pre-stack depth migration (TA PreSDM) itself.
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Figure 5.2: Dual source flip-flop interleaved marine data acquisitiorurhbers are
from Table 5.1 . ‘Streamers’ are cables incorporating hyshrones. CMP stands
for common-midpoint (between source and hydrophone).rf8oshell E&P Co.]
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Figure 5.3: CMP-distance is 25 m crossline non-interleaved (left), 85Im in-
terleaved: this is the crossline binsize. Inline CMP-dista equals half the hy-
drophone spacing, 6.25 m (right): this is the inline binsize
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Table 5.1: Main acquisition parameters.

Parameter Value
Shooting direction 315 from due N, interleaf lines at 135
No. of source arrays 2
Source depth 5m
Gun spacing 50m
Cable configurations 6 cablesx 512 channels
Cable depth 5m
Cable spacing 100 m
Cable length 6400 m
Shot interval 18.75m
Shot interval per CMP-line 37.5m
Offset rangé 450 - 6750 m
Offset increment 75m
Fold 84
Binsize (inlinex crossline) 6.25mx 12.5m
Recording length 6.6s
Time sampling interval 0.002 s

m 5.1.1 Acquisition parameters

The seismic data discussed in this chapter were recorded &guisition
campaign that was a follow-up of a previous 3D seismic surviéywas
deployed to support well placement, to reduce uncertaimdyta allow pre-
stack interpretation. To succeed in these goals, a verg lasgble signal
bandwidth of up t®0 Hz was needed. The desired high-frequency preserva-
tion and structural detail called for an unusually fine sggaampling at the
surface of 6.25 minlinex 12.5 m crossline (which was later interpolated to
6.25 m), and a temporal sampling of 2 ms.

*Note that the source document stated a range of 450 - 6300wevieo 6750 m is
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Because the geometry of the target was already known fropréweous sur-
vey, the acquisition configuration could be optimised byirsgithe marine
acquisition vessel approximately in dip-lines over thge¢drsee Figuré.l

In Table 5.1, a summary is given of the acquisition paranset€he vessel
towed 6 streamers, each 6400 m long and with 512 channelanabé&ow
sea-level; acquisition was done in a so-called ‘dual-sediip-flop inter-
leaved’ mode (Figur&.2). This yielded the desired fine spatial sampling in
the crossline and inline directions, see Figbra A total of 2 TeraByte of
data were collected.

m 5.1.2 Processing before migration

This section describes the processing applied by Sheljogue the data for
TA PreSDM. The resulting pre-stack dataset is inverted bydivolutional
RBSI (after some additional pre-processing described ¢tige5.6). Fig-
ure5.4shows the complete TA PreSDM workflow; here the part from &re
binning’ up to the so-called ‘Inverse 3D NMO/DMO’ is discesks Note
that during the processing care has been taken to preseraenplitude be-
haviour as well as possible.

The 3D raw data were delivered by the marine acquisitionreatdr in sail-
line/shot sort, which means that for each line that the Jéssesailed over
the acquisition area, the hydrophone data recorded aftér fdang of the
airgun-array are stored sequentially on magnetic tapesdiiéne direction
is called ‘inline’ in the following, whereas the directioregpendicular to
it is called ‘crossline’. Upon arrival of the data in the pessing centre,
areal binning was applied, using a rectangular Bin grid 866n x 12.5 m
(inline x crossline) laid out over the survey area. During the binnthg
midpoint of every source-receiver pair is used to decide ickvBin the
corresponding trace should be assigned.

Subsequently, to improve the interpretability of the d#ia,airgun-wavelet
present on the data was shaped to zero phase by applying Beléfiar (a
procedure also known as signature deconvolution), and tareheiver con-
sistent scaling was applied for removal of variations ingbarce strength
and the receiver sensitivity.

consistent with the fold and offset increment within a CMdkger. Consequently, it is
assumed that the last 8 channels per cable are inactivardest.
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Figure 5.4: Processing workflow for TA PreSDM. The flow after inverse
NMO/DMO is given in greater detail in FigurB.6. Also indicated are the entry-
points for ray-based and standard inversion.

Surface-related multiple removal was achieved using tferdint techniques:
the first subtracts predicted multiples, the second apfliesng in the so-
called — p domain. Multiple elimination could only be employed in 2D
mode, not in the more optimal 3D mode, to ensure a timely dsliof the
processed data. As a result, some residual multiple energgiined present
on the data.

To enhance the visibility of deep reflectors, a rudimentasgraxction for
spherical spreading loss was applied to the data, usingrafgaction de-
pending on two-way traveltime and a laterally constantaegi velocity
function. De-absorption was done to take into account gndigsipation
during wave-propagation in the subsurface, followed byinsastatic cor-
rections to compensate for up to 4 ms time shifts in compangth neigh-
bouring saillines.
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Table 5.2: Pre-stack data parameters changed by processing beforatiug.

Parameter Value
Offset range 450 - 6325 m
Offset increment 125m
Fold 48
Time sampling interva 0.004 s

After that, a 3D normal moveout (NMO) / dip moveout (DMO) - arge
NMO/DMO sequence was applied to the data. The reasons fowtre two-
fold: firstly, it was desired to obtain an early structurabige of the target via
pre-stack time migration (PreSTM), before applying the @Rtgnsive and
hence time consuming TA PreSDM. To improve the positionifgmictures
on this image, 3D DMO must be applied to remove the dip-depehpart
of moveout with offset on CMP-gather8lpck et al, 1993 Deregowski
1984; after DMO, the reflection point smear in the CMP-gathers haen
compensated for, enabling a correct NMO/stack of dippiranat reflec-
tors [Sheriff, 2003. For the DMO, a common-offset Kirchhoff summation
method was used, which correctly handles the wavelet phase.

The second reason for the NMO/DMO - inverse NMO/DMO step & th
allows acquisition footprint suppression and data regsdéion. During the
inverse DMO, an offset depopulation was done from 80 to 48etdf, with
output offsets ranging from 450 m to 6325 m with 125 m offsetément.
After inverse NMO/DMO of the data ready for PreSTM, the datesuit-
able for PreSDM, see Figu®4. In Figure5.5 a portion of these data is
shown: the 575 m common-offset gather for sailline 2313 cwis the dip-
line selected for inversion with 1D convolutional RBSI (8en 5.3.1). The
reflectors seen around 4000 ms on the right-hand side maratpet for
inversion. On these high quality data, pre-stack integi@t is attainable
and pre-stack inversion should be feasible.

In Table 5.2, a subset of pre-stack data parameters is gite@mndata regu-
larisation and offset depopulation. Notice the smallesetffange due to the
discarding of offset outliers.
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Figure 5.5: Portion of a common-offset gather for sailline 2313; theeifis 575 m.
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Figure 5.6: Detail of flowsheet depicted in Figuke4 after inverse 3D NMO/DMO,
with the RBSI-branch made specific for 1D convolutional RBSI

m 5.1.3 True-amplitude pre-stack depth migration

A common-offset true-amplitude pre-stack P-wave Kircliloepth migra-
tion (see sectior2.4.1) was applied on each offset gather from the pre-
processed pre-stack data, using the velocity model olutdhoen velocity
analysis during a preceding pre-stack time migration aadettime inver-
sion. The P-wave velocity model used for the migration wasd\gith an
inline/crossline/depth spacing of 100 m. The migrationrap® grid was
sampled twice as dense, with a spacing of 50 m.

The migration output was available in vertical two-way &tivne (suitable
for Sl); conversion to the depth domain can be done easilizgig2.42) us-
ing the migration P-wave velocity model. A down-samplinglad pre-stack
unmigrated data from 2 ms to 4 ms two-way traveltime had todsfopmed,
to obtain a manageable datasize for the processing cenénewie PreSDM
was done; 4 msis also the output sampling in vertical two-tivag after mi-
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gration. The spatial output sampling in the inline and dineglirection was
12.5 m, twice the size of the inline Binsize. Consequenty,a given dis-
tance along the inline direction, the data before migrationtain twice as
many traces as the migrated data.

After pre-stack migration, a stack was made for the 16 neafésets from
450 m to 2325 m in order to increase the signal-to-noise tati@cilitate
structural interpretation; the tuning thickness on thiearstack’ migrated
result in the target area is 11 m. Stacks were also made fepffadts from
2450 m to 4325 m, and for far-offsets from 4450 m to 6325 m, tabémn
amplitude-versus-offset (AVO) analysis.

Prior to inversion, a phase-rotation of*9@as applied to the image, an op-
eration sometimes applied to facilitate the interpretatibinversion results
in the target. The flow from pre-processed pre-stack unrédrdata to the
nearstack migrated result is summarised in Figou@(right branch). In
Figure 5.7, a portion of the nearstack migrated section at sailline3231
displayed. The reflectors seen inside the target interndicated on the
right-hand side of the figure) mark the target for inversion.

5.2 Inversion strategy

To determine the best setup for the Sl vs. 1D convolutionagbREBmpar-
ative test, it is necessary to review some of the exploradiwh production
history of the reservoir under consideration.

On the migration image obtained from an earlier seismics#dia potential
hydrocarbon reservoir was discovered. First, to prove dgahbon pres-
ence in the potential reservoir, based on the migration @nag exploration
well was drilled. In this case it was placed through the rantal part of
the reservoir, visible around 3900 ms vertical two-way éttmne, between
14500 and 15000 m horizontal distance on Fiduié

After the discovery, the new seismic dataset describedaticses. 1 was ac-
quired and migrated in order to reduce uncertainty in stimecand reservoir
properties for the development of the field and to suppothé&rrwell place-
ment. Sl was applied to invert the PreSDM migrated dataagprlating the
detailed knowledge at the exploration well over the flankhef $tructure.
However, based on results from synthetic tests done in @hdpit is our
suspicion that the artifacts due to migration deteriorageitversion results
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Figure 5.7: Portion of the nearstack migrated image for sailline 2313.
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Figure 5.8: The capabilities in lateral prediction of target reservgarameters
away from Well-I (the exploration well) to the dipping pafttbe target at Well-1|
are tested for Sl versus 1D convolutional RBSI.

precisely in this dipping part of the reservoir; this shobh&tome apparent
by checking the inversion results with the logs of the sedapgraisal) well,
which was drilled right through the slope after the first irsten was done.
In the comparative test (Figute8), 1D convolutional RBSI is applied using
the same prior information as the standard inversion (8lkee whether
more accurate results can be obtained in the flank of thetsteuduring the
first inversion process right after drilling of the first emption well.

5.3 Seismic data selection for inversion

The selection (from the total data volume) of the migrated pre-stack
unmigrated data to be inverted is performed on the basisreétbriteria:

conformity to a 2.5D setting, proximity of wells, and dataatjty.

Obviously, the data should contain the reflections from hbéhorizontal

and dipping part of the inversion interval (the reservoingp a reference
reflector is needed that clearly indicates the position einkiersion interval
on the data. In this case, the most prominent reflector inmrsion inter-

val of which the interpreted position was available, is thginhterface of the
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Figure 5.9: Reference reflector as visible on the migrated data (lef) @m the
575 m common-offset gather before migration.

sheet sand at the bottom of the interval. It is clearly vesidoh both migrated
and pre-stack unmigrated data (Fig&:&; note that the phase-rotation ap-
plied to the migrated data [1.6(0 complicates direct comparison with the
unmigrated data). It has been used as reference reflectmarsions carried
out before this research started, too.

m 5.3.1 2.5D setting

Although no fundamental limitations exist that prevent #pplication of
1D convolutional RBSI in a 3D setting, the comparative tegtsinst Sl are
performed in a 2.5D setting, so that data overhead is suitgneduced by
confining the analysis to the migrated and pre-stack unnadrdata along a
single sailline.

Hence, from the 3D data cube, a ‘dip-line’ is selected sueh tthe subsur-
face (velocity model) and acquisition configuration logalte approximat-
ing a 2.5D setting (see again Figusel). The migrated section along the
selected sailline 2313 has already been shown in Figufe Figure5.10
displays a crossline from the migrated data and the correipg part of the
migration velocity model, from which it can be inferred tlia¢ zone around



depth [m]

164 Field data test

horizontal distance [m] x104
1.2 13 14 . . 1.7

3200
3000

2800

2600
2400
2200

2000
1800
1600

v p[m/s]

Figure 5.10: Cross-section at inline position 14500 m of the nearstaajrated
image on top of the corresponding migration velocity modéie target area near
the selected sailline (dashed) is indicated with a box.

the selected sailline comes close to being laterally cohsta

m 5.3.2 Proximity of wells

Apart from being located in a 2.5D setting, the selectedisails conve-
niently close to the vertical well, ‘Well-I', where the smg-to-well tie is
done: the offset in the crossline direction at the level efriéference reflec-
toris 112.5 m. Also the well at the dipping part of the struetuWell-11’,
where the validation of inversion results is done, is nofffam the sailline
(250 m offset at target depth). Another potential validatreell, “Well-11I’

at the base of the slope, is at 220 m offset at target depth.

The well-paths of the mentioned wells in the target are diggdl in the inline
and crossline directions in Figutel1ll The crossline is taken at the point
where Well-Il intersects the reference reflector. The peehows again that
the target remains approximately laterally constant irctiessline direction
between sailline and Well-11.

Note that the close proximity to another well passing thiotlte steepest
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Figure 5.11: Well paths (dashed) projected on the migrated image, in riliee
direction (left) and in the crossline direction at the irdiposition indicated with a
dash-dotted line, where Well-Il intersects the refererefiector (black line).

part of the reservoir had a strong weight too in the sailseection proce-
dure; unfortunately however, later that particular wepp@gred unusable.

m 5.3.3 Data quality

From the selected sailline, the migrated section has exajuality, as can
be seen in Figur®.7. For this sailline, the pre-stack unmigrated gathers
were available after the pre-processing mentioned in@e&til.2 From
these pre-stack data, ideally, 1D convolutional RBSI wdodgberformed on
a zero-offset gather. However, measuring true zero-offats in practice is
troublesome, therefore in reality the ‘first acceptable’térms of data qual-
ity) common-offset gather close to zero-offset is invertdthis common-
offset gather should contain reflections from the target watlection angles
0’ close t00°; how thed’ can be evaluated is explained in secttf.1l Us-
ing this common-offset gather instead of the zero-offséheyais tolerable
aslongask(0 =6") ~ R(6 = 0°).

To select the first acceptable common-offset gather, a daibtyjanalysis
was done by visual inspection of the gathers for offsetsesb® 0 m. In
Figure5.12 the portions containing reflections from the reservoiaané
the first two available common-offset gathers (for offséi8 s and 575 m)
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are displayed. Also, the gather for offset 950 m is displayest to show
the data quality for larger offsets. It can be seen that thieegdor 450 m
suffers significantly more from high-frequency noise ambtime target zone
at 4000 ms than the gather for 575 m. Although already far dveey zero-
offset, the next available gather, for 700 m offset, was alspected, but it
was not of better quality than the gather for 575 m. Therefibvecommon-
offset gather for 575 m was chosen to be inverted with 1D clutiemal
RBSI. In the following, a closer look is taken at three noigergs visible on
the offset gathers: (remains of) multiples, triplicati@msl diffractions.

Multiples

Some of the noise-events on the offset gathers are idenéifiegémains of
sea-bottom multiples not properly removed by the 2D mudtigimoval that
was applied. To see this, in Figusel 3for the 450 m common-offset gather
the sea-bottom is displayed in the upper image, and thettimgmversion
in the middle image. In the middle image, the remains cal&titecognised
of the multiple from the sea-bottom (a), the peg-leg mudtipt (a) and the
first strong reflector below the sea-bottom (b), and the ipleltf (b).

Triplications and diffractions

A few other observations can be made from Figbrg2 around 12000 m
horizontal distance and 4500 ms two-way traveltime, a lagiplitude event
occurs that is caused by seismic waves passing through aocaoisit in the
subsurface. This behaviour has been confirmed during théraeyng to
the reference reflector for 1D convolutional RBSI, see sedi6; it limits
the range along the reservoir for which parameters can beasd with this
special case of RBSI. Furthermore, for recording times Emngdan 3800 ms
(which are outside the inversion window), faint tails fronffrdctions in
the overburden are present in the data; the diffractiondatier seen in
Figure5.5. Finally, the increasing traveltime to the reflectors dugh®e
increasing offset can be seen in the respective gathers.
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Figure 5.12: Three common-offset gathers along sailline 2313. See oexidtails.
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Figure 5.13: Two details from the 450 m common-offset gather, showingtiwog
primary reflections at the sea-bottom and below it (top) asdomiated multiple
reflections in the target (middle). A sketch of the corresiiom ray-paths is given
in the bottom image.
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Figure 5.14: Inversion interval on the nearstack migrated image. Therirdl con-
tains seven layers with two lithologies shale (Sh) and ssrale mixture (Sst/Sh)
arranged as shown in the enlargement.

5.4 Model geometry

The reservoir model consists of a sequence of seven layaedesi directly
above the reference horizon, see the right-hand side ofré&tgd4 This
sequence is a subset from a larger sequence originally os&l;fthe sub-
set complies to the application regime of 1D convolutionBSR The total
thickness of the subset is about 100 m, with layer-lithasgilternating be-
tween shale and sand-shale mixture.

In Figure5.14 the bounds of the inversion interval are indicated in black
lines on the nearstack migrated image; away from Well-1 tols#he left, the
layer-dip is increasing to a maximum of 31 degrees. The giwarinterval
was chosen to extend laterally from the steepest part atQL@8Rorizontal
distance until 15100 m, situated on the horizontal part.&&®Figure$.18
and5.24

To describe the relation between the rock properties of llaéyssandstone
reservoir rocks used in the model and typically encountareétie Gulf of
Mexico region, and the elastic propertigsv, andv;, the shale and lami-
nated sandstone-shale rock models are used that takedagvai property
trends derived from well logs. These models are describsddtion4.3.2
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The reservoir rock-parameters that will be inverted folviabth SI and 1D
convolutional RBSI are the P-wave velocitigsss;:andv, sp, vertical thick-
nessh, and sand-fractio /'. Only Gaussian distributions of these param-
eters are considered; the Gaussian distribution is unygiescribed by the
mean valug: and standard deviatian see sectio.1

5.5 Applying SI

In the first part of the comparative test, Sl is used to invieet nearstack
migrated image for the unknown reservoir layer-parametgrss;, v, sn, h
andSF). First, a wavelet for inversion is derived from the migchtiata in
the target zone, using a seismic-to-well match. Subsety arqrior model
for the reservoir-layer parameters is built. Finally, thegrated data are
inverted for the unknown reservoir parameters.

m 551 Wavelet derivation

A seismic-to-well match is done to derive the wavelet for 1®hi the mi-
grated data, using the detailed log-information presem/eit-1, the first-
drilled well vertically penetrating the horizontal parttbk target. The upper
panel of Figures.15shows the migrated data around this vertical well and
the derived wavelet.

In the inversion process for the wavelet, a synthetic tradmuilt within the
target interval using the impedance log of the well and a &stimate for
the wavelet. Updating the wavelet until the mismatch betwtbe synthetic
trace and the corresponding portion of the migrated tratieeawell position
is minimised, yields the desired wavelet. Figbr&6shows the goodness-of-
fit of the final synthetic trace and the traces from the migtdega around the
well, in the inline and crossline direction. Note that thilise along which
the inversion will be done (displayed in FigugelH is at approximately
+100m crossline distance from Well-I.

The shape of the derived wavelet is plausible when compasiitiy the
wavelet seen at the water-bottom (Figird7), assuming that the water-
bottom acts as a strong isolated reflector which thus shogvsitidistorted
wavelet, and assuming that the wavelet shape does not chamgfewhile
the wave is propagating through the subsurface.
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Figure 5.18: Prior interface positions and,-distribution (in colour, for legend
see Figures.19[middle-left]) of the inversion target (top), with the cesponding
portion of the nearstack migrated image. Dashed line dencgéerence reflector;
2x vertical exaggeration.

m 5.5.2 Prior model

The prior mean valuesu§ and standard deviationg) for the layer-para-
meters vertical thicknes&), P-wave velocity ¢,) and sand-fractionyF’)
are displayed in Figurg.19after flattening along the reference reflector (the
mean values of,, are shown before flattening as well in Figure.§). Al-
though the mean vertical thicknesses can in principle beriefl from the
interface positions, in the top panels of Figdré9the vertical thickness is
shown as a layer property, in order to make it easier to spamtigds and to
enable display of the thickness standard deviations. A pnidel forv, is
used which has little variation in the lateral direction,esas more lateral
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variations occur irh. The prior sand-fraction is taken laterally constant.

m 5.5.3 Inversion results

Posterior,, h and SF' obtained from SI, inverting the migrated ‘near’ sub-
stack containing offsets from 450-2325 m, are depicted guie5.20 The
seemingly rapid lateral changes in layer-thickness ardaltiee chosen way
of plotting with much vertical exaggeration. The postestandard devia-
tions are smaller than the prior standard deviations in iplases, indicating
a inversion convergence.

Notice that before plotting, a five-point moving average wpplied on the
results obtained for the separate traces, so that with @ $y@ecing of 12.5m
on the migration image, lateral variations smaller tharb 62.are smoothed
away; a distance not chosen too large, since the lateralutesoon the
migration image, at target level i8&r ~ \;z/L ~ 210 m (Eq.2.57), with
dominant wavelength, = v,/f; = 2500 m/s /35 Hz ~ 70 m, depth of
observatior: = 3500 m and half-aperturé = 2325/2 m.

5.6 Applying 1D convolutional RBSI

In the second part of the comparative test, 1D convoluti®B&l is used
to invert the pre-stack near-offset section for the unknogservoir layer-
parametersy, ss, vp, sn, h @ndSF). First, the data from the 575 m common-
offset gather containing the reflection information frore thversion target
is selected by means of ray-tracing. Then, a wavelet forgiwn is derived
from the offset gather in the target zone, using a seismigeilbmatch. Sub-
sequently, the prior model for Sl is transformed in such a thay 1D con-
volutional RBSI can make use of it. After that, an overburdemplitude
correction is applied to the traces from the offset gatharally, the offset
gather is inverted for the unknown reservoir parameterd tha results are
transformed back to the Sl-grid to make comparison feasible

m 5.6.1 Pre-stack seismic data selection

After the processing step of binning, each source-recgigérin the pre-
stack unmigrated data is assigned to a specific Bin. In oadeeliect from
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Figure 5.20: Overview of S| posterior estimates fbr(top), v, (middle) andSF
(bottom). On the left-hand side, means are shown, on the-righd side, the cor-
responding standard deviations.
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Figure 5.21: Elastodynamic ray-tracing in the migration P-wave velgeitodel to

the reference reflector (dashed; dotted parts outside tea af interest have only
a computational use). The migration image shown is in thé&dp@eind, the water-
bottom is around 1300 m.

the pre-stack unmigrated data, in this case the 575 m conufiset gather,
those Bins that contain reflection information on the spedifnversion tar-
get, ray-tracing is done in the migration P-wave velocitydeldor PreSDM
to the reference reflector. In this way, reflection point tawas on the ref-
erence horizon are connected to surface Bins. During theeps also the
two-way traveltimes to the reference reflector are caledlathese are re-
quired for tying the inversion window to the traces.

The ray-tracing is performed in a 2.5D setting, with the setneceiver pairs
on sailline 2313 and no variation in the crossline migraftowave veloc-
ity model and reference reflector surface. The sourceveceiistance is
575 m. For convenience, the Bins on this single line will bienred to as
common-midpoint positions (CMPs); CMP-separation wa$ &2o mimic
the acquisition configuration of the real data. Ray-traeuag performed for



178 Field data test

CMP-positions from 10000 m to 18000 m in the sailline direxati

Figure 5.21 shows every 10-th ray traced through the migration velocity
model to the reference reflector. The angles of incidence eaehis fig-
ure amount up t@ = 6°, considered close enough o= 0° assumed by
1D convolutional RBSI in the target. The reference reflecsoa mildly
smoothed version from the original n@ry-smooth hand-picked interface
between shale laye#1 and the underburden, which still fits the true re-
flector quite well as can be seen from the nearstack migratiage in the
background. Also, the migration velocity model was smodihnea trade-off
between kinematic accuracy and dynamic stability, seecses16.4

Notice from the same figure that the P-wave velocity distidyuis not con-
form to the subsurface structure. One possible explan&itimat gravita-
tional pull on the dipping layers causes a stress build-ughéndown-dip
direction, resulting in higher P-wave velocities in the évleft of the image
(assuming no lateral change in layer-lithology).

Figure5.22 also shows that a range of source-receiver pairs existshwhic
has more than one reflection point on the reference reflettt iimits the
reservoir-range that can be inverted well by the new methdiug part on the
right-hand side of the steepest dip, because in the invergiodow, a trace
is assumed to contain only a single response from the saneetwafl The
assumed single-valuedness of pre-stack reflection eventd a fundamen-
tal limitation of RBSI. However, this assumption is madeehfar practical
convenience. The chosen reflection point range is indicatddan arrow
along the reference reflector. The corresponding midpainge is 12700-
15100 m, which includes the vertical well at 14500 m. On thedrrecorded
at midpoint 12700 m, two arrivals from the reference refleate separated
at time-differences smaller than the length of the inversiondow (100 ms).
Finally, the box indicates a part of the reservoir of whiclaegements are
shown in Figures.24

Figure5.22shows the seismic data for Sl (top) and 1D convolutional RBSI
in the chosen inversion range, flattened along the referesftactor. The
offset data are plotted as a function of the reflection poodigpon on the
reference reflector to facilitate comparison with the ntigdadata for Sl.
Notice the trace density on the convex part of the slope ferdtifset data,
the seemingly absent wavelet stretch on these close-teeftset data, but
also the lower signal-to-noise ratio because of the sirate f
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m 5.6.2 Wavelet derivation

The seismic-to-well tie is repeated for the pre-stack umateyl data, since
it is expected that the derived wavelet will be much différbacause of
the wavelet shaping applied to the migrated data. The loweelpof Fig-
ure5.15shows the area around the vertical well on the 575 m commizetof
gather, and the wavelet derived for 1D convolutional RB3le Trace from
the offset gather that corresponds to the location of Waliféund using the
ray-tracing exercise discussed in the previous sectismitipoint position
corresponds to the ray-pair which has the reflection pointherreference
reflector at the position of Well-I. Before wavelet extractj the rudimen-
tary correction for spherical spreading loss applied tod#i earlier on in
the processing workflow for TA PreSDM (Figuged) is removed from the
data, by dividing the traces by (instead of multiplying thesith) the same
laterally constant traveltime-dependent gain function.

The derived wavelet is shown again in the upper right of FeguR3 Note
that also in the wavelet derivation for 1D convolutional RBED convolu-
tion is applied in the forward modelling step. Consequentg spherical
spreading and transmission losses in the reservoir zoreelde®n neglected,
as well as the small extra traveltime in the target due torttagimall offset
data while assuming zero offset, and the slightly diffenefiection coef-
ficients for small non-zero angles of incidence at the raflectn a more
general case of RBSI, a 3D elastodynamic ray-tracer wouldsed in the
wavelet derivation, properly taking into account the abmentioned ef-
fects.

The left-hand side of Figurg.23shows the goodness-of-fit of the final syn-
thetic trace and the traces from the 575 m common-offseegaitound the
well. Contrary to the Sl-case, where also crossline dat@wseed in the
wavelet derivation, the wavelet for 1D convolutional RBSisaderived ex-
clusively using seismic data in the inline direction: ptaek unmigrated
data were only available on the selected sailline.

The shape of the derived wavelet is plausible when compasiitiy the
wavelet seen at the water-bottom (Figbr23 bottom), again assuming that
the water-bottom acts as a strong isolated reflector whiak #thows the
undistorted wavelet, and that the wavelet shape does nogehrauch while
the P-wave is propagating through the subsurface.
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Figure 5.23: Counterclockwise from upper-right: derived wavelet for ¢@nvo-

lutional RBSI; goodness-of-fit between traces from theebfjather around Well-I
and synthetic trace (middle) generated using the reflagtisformation at the well
and the derived wavelet; wavelet seen at the sea-bottormig#es derived wavelet.

m 5.6.3 Transforming the Sl prior model

For a fair comparison with the Sl-method, in 1D convolutioR8SI the
same prior information should be used as was available tbl&tever, for
RBSI the layer properties and thicknesses need to be spkaifieg the ray-
path, which generally does not correspond with the vertiaa&ction along
which Sl is operating: Figuré.24 shows the situation for a portion of the
current reservoir model, marked with a box on Figbr2l

To get things right for the RBSI prior model, a dip-dependemrtversion
of the SI prior model must be done; this conversion assunegstltle tar-
get satisfies the application regime of 1D convolutional RB&entioned
in Table 3.2. As a consequence of the plane-parallel lageassumption,
normal-incidence raypaths to the reference reflector esenasd to be go-
ing straight all the way through the inversion target. ThéaSeér-properties
are evaluated along these Nl-rays, starting from the réflegtoints on the
reference reflector.
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boxed areas bounded hy andz” are displayed in Figuré.22

Required data

For the conversion of the prior SI model, the following data meeded: the
position and local dig of the reference reflector, and the reflection point
positions on the reference reflector; the correspondingvay traveltimes
are used to tie the inversion window to the unmigrated data.

For the current dataset, the reference reflector is choséme tihve lower
bound of the inversion interval, clearly visible on the naitgrd and pre-stack
unmigrated data (Figurg.9). The reflector was accurately picked from the
migrated data, and a mild smoothing was applied to oltaklsmoothness.
With the position of the reflector known, dips and normal vestcan be
calculated easily.

The reflection point positions on the reference reflectortaedcorrespond-
ing two-way traveltimes have already been calculated bytnaging for pre-
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stack data selection in the previous section.

Building the model for 1D convolutional RBSI

Building the prior model for 1D convolutional RBSI startsthe reflection
points on the reference reflector (Figlwe5. The properties for the low-
est layer (#1) in the inversion target, available in thelis&ildirection on
a regular Sl-grid of 12.5 m (indicated with dots in the figurae linearly
interpolated to the (irregularly distributed) reflectioniqt positions on the
reference reflector, indicated with crosses. This yieldstiak properties for
the lowest layer in the RBSI model, including the interpethvertical layer
thicknessh, whereas true thicknessis needed as indicated in the figure.
Assuming plane-parallel layering, from the reflection peion the low-
est layer, straight normal-incidence raypaths are caledlto the overlying
layer-interfaces in the target. The length of such a rayfé)hs calculated
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from the interpolated vertical thicknessnd reflector dig using the simple
goniometric relation (inset of Figur&25),

h' = hcos (3, (5.1)

that was introduced in E®.25 With 7/, the set of parameters for the lowest
layer in the model for 1D convolutional RBSI is complete: waynadvance
to the next layer, starting from the intersection points ¢fréy/s and the
top interface of the current layer (for convenience, in tbkofving these
intersection points are also referred to as ‘reflection {soion top of the
layer).

The distanceg\xzr and Az needed to go from the reflection point at the
reference interface to the reflection point at the overlyimgrface (inset of
Figure5.25, are given by,

Azp = h'sinf3, (5.2)
Azp = h cosf3. (5.3)

At each intersection point of the NI-rays with overlying éag found in this
way, the layer-properties of the next layer from the SI madel evaluated
and interpolated using the procedure just described fostdnging interface
(the reference reflector). In calculatingfrom i for the next layer, the dip
at the intersection points is taken to be equal to the dip @féfierence re-
flector at the same lateral position. Again the rays are coctgd to the next
interface, and the total procedure is repeated until théntiepface of the in-
version interval is reached, which completes the model Bbcdnvolutional

RBSI.

Now that the traces from the unmigrated data containingatifle informa-

tion from the target have been selected, and a 1D convohltioodel for

each trace has been built, only an overburden amplitudecton for each
trace still needs to be applied before the 1D convolutiorzbRcan start.

m 5.6.4 Overburden amplitude correction

Apart from associating the reflection points on the refeedrmarizon with the
surface source/receiver midpoint positions, the elastadyc ray-tracing
through the migration velocity model to the reference hamialso yields the
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laterally varying overburden losses needed for pre-psingshe pre-stack
unmigrated data in 1D convolutional RBSI.

To determine these overburden losses, first the primary \R-weflection
response of the reference reflector is computed using diasamic ray-
tracing. As mentioned in sectidn6.], the subsurface model for ray-tracing
is generated by taking the model for PreSDM at the sailling @spying
this model in the crossline direction to obtain a 2.5D sgttiay-tracing is
performed along the sailline from isotropic point souragseceivers both
placed at zero depth (the reference-level after sourcaecstatic correc-
tions), with an offset of 575 m between source and receives, @25 m
midpoint increment.

Subsurface model details relevant to amplitude

To clarify the amplitude calculation, a bit more detail ore tubsurface
model is needed: the subsurface model consists of threeneslwith the
water-bottom and reference reflector as separators. The paai consists
of the migration velocity model defined onl&0 x 100 m grid. Above the
water-bottom, a (nearly-) homogeneous water-column (aiglight depth
gradient in P-wave velocity,) is situated. Below the reference reflector, a
homogeneous halfspace with constais placed.

For computational convenience, throughout the model,itfeissconstant at
2200 kg/ni, and S-wave velocity is specified as= 3v,. Concerning the
densities, taking a density of (slightly more than) 1000nkgould have
been more obvious for the seawater. However, since we ayarmslested
in the lateral amplitude changedative to the amplitude at the well where
the seismic-to-well-tie is done, another convenient cmstalue will do.
For the rest of the subsurface, insufficient density infdromais available to
justify an inhomogeneous gridded density model.

Concerning the S-wave velocities, specifying an S-wavearsi for water
means that the software interprets it as an elastic meditinerahan an
acoustic one. In this particular case, this only mattersreorsmission at the
sea-bottom: there, a small amplitude error will arise duB-® conversion
on the water side, which in reality does not occur. Howevalpaer look
at the computed Zoeppritz unconverted P-wave coefficiemtsdnsmission
through the sea-bottom learns that the effect will be néglkgfor the angles
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of incidence at the sea-bottori & 8° — 15°), only a 0.2% variation in
the transmission coefficient occurs. So in approximati@diror made is
laterally constant and does not influence the relative aogsibehaviour.
For unconverted primary P-waves, the S-wave velocity hasther effects
on the calculated overburden amplitudes (i.e. disreggrittia reflection co-
efficient): in the transport equations for P-waves,does not appear, see
Eq. @1.5. Hence the fact that, for example, taking a value)gfv, = 1.7
instead ofv,/vs = 2 would have been more physically plausible for the
sandstones in the targefifvko, 1999, is not a problem.

At the sea-surface, in reality the interface conversiorffmment C, at the
receiver is constant and independent of the angle of incelgmence of no
importance to the preservation of the relative amplitudealb®ur. There-
fore, the free surface is omitted in the model for ray-trgcifio simulate the
original hydrophone measurements, the calculated displanot amplitudes
are not decomposed along the horizontal and vertical directhe total dis-
placement vector corresponds to pressures (measured bypiyhes) via
the equation-V P = p(82i/0t2) [Cerveny 2001, Egs. (2.1.4) and (2.1.15)],
with P the pressurey the density and’ the displacement vector.

The medium under the reference reflector is chosen as a homoge half-
space with known elastic properties. With the medium prigeabove the
reflector also specified by the model, the Zoeppritz uncaaddP-wave re-
flection coefficientR(#) at the reference reflector (with~ 6°) is exactly
known and can be divided out, leaving the desired overbuedeplitude
effectsCz /L in the calculated amplitudes, see sectio®

Smoothing the velocity model

To obtain usable amplitudes, the original gridded migratielocity model
(between the two interfaces at the waterbottom and targedjled to be
somewhat smoothédin a trade-off between kinematic accuracy and dy-
namic stability of the ray-tracing. Figufe26illustrates this statement by
showing ray-paths to the reference reflector and assocrafesttion am-
plitudes found by ray-tracing through the original migoatiP-wave ve-

TThe approach of smoothing the velocity model and/or the adeatpray-amplitudes to
compensate for the sensitivity of ray-amplitudes to minetads in the model is proposed
in Cerveny[2001, Chapter 5].
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Figure 5.27: Effect of smoothing the migration velocity model on thedtawmes to
the reference reflector calculated by ray-tracing. Backmm shows data from the
575 m offset gather; traveltimes calculated in the origimaddel (00 x 100 m) are
presumed to have the best fit to the data.

locity model (top) and two smoothed versions. The smootlhthe ve-
locity model is done by resampling using linear interpaatthe original
100 x 100 m grid to a larger grid indicated in the picture, and aftexgar
sampling it back again to the origin&d0 x 100 m.

From Figureb.26it can be seen that the amplitude behaviour is fairly chaotic
for the original model (although it can already be noticeat tieflection am-
plitudes are higher for the shallower part of the structure tb spherical
spreading losses being lower), whereas in that case thedtirags observed
from the data are most accurately reproduced (FigL2é). Smoothing the
velocity model stabilises the amplitude behaviour, butréases the good-
ness of fit with the traveltimes from the data.
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Figure 5.28: Overburden amplitude correction. After smoothing, therections
are applied to the traces from the offset gather.

Final amplitude correction

The final amplitude correctiof 3 /Cp is indicated with the solid line in
Figure5.28 The figure confirms the intuition that reflections from deepe
interfaces need to be amplified more because the waves hpesienced
more spherical spreading loss on their way from source Viaater to re-
ceiver. Lateral amplitude variations faster than the &tezsolution on the
migration image (which is about 210 m in the selected reserange, us-
ing Eq.2.57), that are still present after ray-tracing through4hé x 400 m
smoothed model (dash-dotted line), are smoothed away asiBgth degree
polynomial fit.

Note that the amplitude correction depicted in Figir@8 was normalised
with respect to the value of this correction at Well-1 befaqgplying it to
the data, to avoid having to redo the wavelet derivationrigeision (which
was done on the offset gather after undoing the rudimentamgction for
spherical spreading loss).

Finally notice that, differently from the theory discussedection3.6, the
reference horizon is chosen to be the bottom reflector ofversion target,
so that the tern g also contains a small term due to ray-traversal through
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the coarse migration velocity model in the target. Hencthefoverburden
correctionLz/Cp is applied to the traces, the reflection amplitudes for the
target interfaces above the reference interface are Bligia high for the

1D convolutional kernel (while they are slightly too low bel the reference
interface for the example of secti@6). This effect may be neglected as
long as the target satisfies the application regime for 1Da@otional RBSI.

m 5.6.5 Inversion results

The layering obtained from 1D convolutional RBSI, invegtihe near offset
gather, was already shown in Figuse24 Notice again the different eval-
uation direction along the normals to the reference reftegthich should
improve capability of resolving reservoir-layers on thepd: as shown in
synthetic data tests of ChaptISl is hampered by dip-dependent migration-
induced wavelet stretch.

After resampling to the grid used by Sl (upper part of Figbir24), using
the ‘inverse’ of the procedure described in sectof.3 and after applying

a five-point moving average filter, thg v, and SF-estimates are shown in
Figure5.29 As was done in smoothing the overburden amplitudes, ing&hoo
ing the width of the moving-average filter, care was takertmstnooth more
than the lateral resolution on the migration image.

At the end of this chapter, a full comparison of inversiorutesof Sl and 1D
convolutional RBSI is given in Figures.31-5.33 The estimated thickness
of the total package does not vary so much laterally (i.e.hwitreasing
reflector dips) than was the case for Sl. Notice the decretasaldpackage
thickness as compared to Sl, a result expected for the djppant of the
reservoir. The anomalous depressions with a peak in betwedéme right-
most part of the reservoir above 14800 m, correspond to aopoof the
seismic data with low reflection amplitude and a portion \sitlong remains
of water-bottom multiples (Figurg.13); inversion results in that part should
not be trusted too much, as indicated by the very high standeviations
o(h) ando(v,) for the depressions. Also the estimates for S| have a some-
what larger uncertainty in the same area.

In doing all these observations, it should be realised thotiwat the only
place where a quantitative judgement of the inversion tessn be made,
is at the well location: this is the subject of the next settio
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5.7 Comparison at Well-II

In the third part of the comparative test, the inversion ltssabtained with
the old and new method are compared with the values found HtlMie
Fig.5.30 A wide range of well-logs is available for interpretatidrttee sand
and shale layers at Well-11, including gamma-ray, sonic §Rd S-wave),
density and neutron. Gamma-ray and sonic logs are welldstaoteliscern
between sand and shale, since the rock properties for whegettwo logs
are sensitive, clay-content and wave propagation velanié/much different
for the respective lithologie$eeters1995 Ellis, 1987.

All logs for this deviated well are available in true vertidepth, converted
from logging-depth along the well-trajectory. From thewh of target lay-
ers (Figures.14 right-hand side), the sandstone-shale mixture layers UDB
#2, #4 and OVB are well discernable using the gamma-ray amid,stue to
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their high sand-fraction. In the area around Well-1l, it ism@troublesome to
discern sand-shale mixture layer #6 due to its low sand#nacand conse-
guently its low contrast with the surrounding shale-layaditional trends
from the neutron log were needed. After interpretation @f ldyers, per
layer the average P-wave velocity was determined from tloeked’ sonic
(P) log.

Figure 5.30 shows that, generally, Sl overestimates the layer-thickes,
while 1D convolutional RBSI estimates are slightly betteith the values
from Well-1I within one standard deviation from the estimdimeans; how-
ever for the two thin layers #2 and #4 Sl thickness-estimatedetter (but
still overestimated). The,-estimates are closer to the actual values using
the new method.

Standard deviations are higher for the new method, due toi¢gfer amount
of noise on the offset gather as compared to the nearstackat®eigsec-
tion. The philosophy for ‘full’ RBSI is to reduce these standl deviations
by adding more measurements (offset gathers) into thesiorernow only
slightly less than 2% of all pre-stack data was used (one #8moffsets).
Moreover, an estimate with a larger standard deviation doesecessarily
have to be worse: take for example the P-wave velocity estisrfar layer
#2. For this layer, the means are estimated about the samveyBoSI gives
a misleadingly small standard deviation: the true valuis fakll outside the
error bar.

The total package thickness of 86.5 m at Well-1l is overeated by Sl,
as predicted by theory, to 98.5 m - the new method somewhat under-
estimates the package-thickness, but remains within @melatd deviation
from the true value: 816.5 m.

Finally, note that Well-Il is at a crossline distance of 200rom the sec-
tion; changes in reservoir properties may have occurreugatios direction
assumed invariant in the 2.5D configuration, although apeoson of the
seismics does not suggest this (see the right-hand sidgofd5.11).

5.8 Discussion

Inversion results from the Gulf of Mexico field dataset, shawthis chap-
ter, indicate that the new method, 1D convolutional RBSk haproved
accuracy on the dipping part of the reservoir, where Sl ssiffem wavelet
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stretch due to migration.

1D convolutional RBSI ideally inverts the normal-incidendataset; in the
field data the 575 m offset gather appeared to be the subsettipre-stack
unmigrated data closest to normal incidence with a useadptalsto-noise
ratio. It is important to check and undo any pre-processipgrations on
the pre-stack unmigrated data that disturb the relativecedin amplitude
behaviour.

To determine which part of the offset gather contains thecgtin informa-
tion from the inversion target and calibration well, elagtoamic ray-tracing
was done down to the reference reflector picked from the mggramage.
Ray-tracing requires this reflector to li&-smooth. In principle, this in-
formation could also have been obtained from the Kirchingée migration
preceding the inversion, by interpolations in the ray-retfraction grid.
During wavelet derivation from the offset gather, again actibvolutional
forward modeller was used, thereby neglecting the spHespraading and
transmission losses in the target, as well as the small gatraltime (about
0.5% extra) in the target due to having small offset dataewdmslsuming zero-
offset, and the small (i.e. non-zero) reflection angles oiuall® leading to
slightly different reflection coefficients.

The SI prior model along the vertical direction of the trafresn the mi-
gration image are transformed in a model for 1D convoluti&®®SI along
normal incidence rays to the reference reflector. Herebgethiays are as-
sumed to go straight all the way through the inversion tamebnsequence
of the plane-parallel layering assumption for 1D convalnél RBSI.

A laterally varying overburden amplitude correction is g to the offset
gather before the actual inversion is done. The amplituegsired for this
operation come from the same elastodynamic ray-tracinempearlier for
the positioning. In determining the overburden losses,viiecity model
for ray-tracing needs to be somewhat smoothed, in a tradeetfieen kine-
matic accuracy and dynamic stability.

The time needed to invert a single trace (from the migratektia@ pre-stack
data, respectively) is the same for Sl and 1D convolutiorEbR

A further investigation of the performance of RBSI on theatads recom-
mended: only 2% of the available pre-stack data has beenxittediD con-
volutional RBSI, whereas with ‘full’ RBSI each of the remaig common-
offset gathers could be used as an independent means ofaeoifi of the
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result obtained with 1D convolutional RBSI. Also, contraoythe 1D con-
volutional variant, the general method is capable of hawgdiays that have
passed through caustic points. To obtain correct ray antgg alsmearthe
caustic points, one could make use of extensions of the ralgadesuch as
Gaussian beams in RBSI.
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Figure 5.31: Overview of inversion results for thickness The means (left) and
standard deviations are displayed for, from top to bottdme, prior model, S| esti-
mates and 1D convolutional RBSI estimates.
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Figure 5.32: Overview of inversion results for P-wave veloaity The means (left)
and standard deviations are displayed for, from top to buottthe prior model, Si
estimates and 1D convolutional RBSI estimates.
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Conclusions and
recommendations

In this work, a new method for reservoir parameter estinmati@s intro-
duced that inverts pre-stack seismic reflection data befogeation using
stochastic inversion along ray-paths. The novelty in tlehrieque is the
combination of ray-tracing and stochastic inversion, ieoito use the orig-
inal wave-path and reflection angle information containethe pre-stack
data for estimating reservoir parameters including uaggies. The method
is called ray-based stochastic inversion and can be regasia generalisa-
tion of current amplitude-variation-with-offset or -aeglAVO/AVA) tech-
niques. By using a 3D elastodynamic ray-tracer to forwardehoeflection
responses from the target, more ‘physics’ is put into thenson kernel,
as compared to the 1D convolutional model used in convealtstochastic
inversion methods. Moreover, the usage of the ray-tracéorasard mod-
elling engine makes it possible to interweave seismic tragersion with
Kirchhoff-type migration, in which ray-tracing is used asliv
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The new method can be applied instead of standard stochasision tech-
niques for reservoir parameter estimation in a structyi@mplex subsur-
face with substantial lateral velocity variations and gigant reflector dips.
Also, a simplification of the new method was presented thdtemaise of
local 1D convolutional forward modelling in the target demterval, and
inverts normal-incidence data. Although 1D convolutioless suitable than
3D ray-tracing in forward modelling of the reflection respenn the target
interval, it has the distinct practical advantage of beiegdily available in
common inversion software.

6.1 Conclusions

From the results of the synthetic data tests and the fieldtdstathree main
conclusions can be drawn.

e The distortion of the wavelet in the seismic migration image function
of reflector dip and reflection angle is an important effeat th not taken
into account by conventional trace inversion techniqué® dew method
operates in the pre-stack unmigrated domain, therefoeeriot affected
by this migration-induced wavelet stretch.

e The pre-stack data before migration inverted by the new atktontain
the original angle-dependent reflection information nelfde a good in-
version for reservoir parameters. To the contrary, coneaat trace inver-
sion techniques operate on migrated (sub)stacks, whefe-dagendent
reflection information is sacrificed for better signal-toise ratio with re-
spect to reflector positioning.

e When applied on normal-incidence data, the new method tsnadong

ray-paths that are perpendicular to the reflectors, thettirewhich offers
optimal resolution for discerning the layering in the resar

6.2 Recommendations for further research

A list of recommendations for further research is given anrtbxt page.
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¢ Rays calculated on the diffraction grid for preserved-amgé Kirchhoff-
type migration could be re-used in ray-based stochasteramn for ray-
tracing through the known overburden, to save computing tiamd to
integrate inversion with migration.

¢ In the field data test (Chapter 5), only a small portion of thelable pre-
stack data was used when 1D convolutional ray-based stichagrsion
was applied. With the general form of ray-based stochastersion, all
common-offset gathers could be used as an independent rotaes-
fication of the obtained results. Also, contrary to the 1Dvobational
variant, the general method is capable of dealing with nualliedness.

e To overcome the fact that ray amplitudes near caustic regiothe sub-
surface are unreliable, in ray-based stochastic inveesxtensions of the
ray-method such as Gaussian beams could be used as forwdedleno
instead of standard ray-method.

e The positions of diffracting edges could be determinedgistge-diffrac-
tion migration techniques, so that areas in the unmigrastd suffering
from diffraction events can be marked and avoided using thegmt im-
plementation of ray-based stochastic inversion (of whiah ray-tracer
cannot forward model edge diffractions).

e For improved understanding of the influence that noise aamkstg have
on the reservoir parameter estimates obtained with theettional and
new methods, the offset test from Chapter 4 could be repedtbddded
noise of appropriate level pre- and post-stack.

e To better understand the effect of neglecting interbediplak in the re-
flection response from the target, the new method could hedesith
synthetic data that include these multiple arrivals, eenegated by finite-
difference modelling.

e For improved forward modelling of the seismic reflectionp@sse from a
thin-layered target, generally dominated by significanbants of energy
from multiple reflections, the wave propagation within tleget could
be modelled using a method for automated dynamic ray-tgagirthese
multiple reflections in addition to the required ray-tragiof the single
P-wave reflections.
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