
European Conference on Computational Fluid Dynamics
ECCOMAS CFD 2006

P. Wesseling, E. Oñate and J. Périaux (Eds)
c© TU Delft, The Netherlands, 2006

ADJOINT APPROACHES IN AERODYNAMIC SHAPE
OPTIMIZATION AND MDO CONTEXT

Nicolas R. Gauger∗†

∗German Aerospace Center (DLR), Institute of Aerodynamics and Flow Technology
Lilienthalplatz 7, 38108 Braunschweig, Germany

e-mail: Nicolas.Gauger@dlr.de
web page: http://www.dlr.de/as/

†Humboldt University Berlin, Department of Mathematics,
Unter den Linden 6, 10099 Berlin, Germany

e-mail: gauger@mathematik.hu-berlin.de

Key words: Aerodynamic Shape Optimization, Adjoint Approaches, MDO

Abstract. Methods for aerodynamic shape optimization based on the calculation of the
derivatives of the cost function with respect to the design variables suffer from the high
computational costs if many design variables are used. However, these gradients can be
efficiently obtained by solution of the adjoint flow equations, even for multidisciplinary
optimizations.
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organizers J. Periaux and H. Deconinck of the STS 5: VKI course summary report on
introductory optimization and multidisciplinary design with applications to aeronauts and
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1 INTRODUCTION

Because detailed aerodynamic shape optimizations still suffer from high computational
costs, efficient optimization strategies are required. Regarding the deterministic optimiza-
tion methods, the adjoint approach is seen as a promising alternative to the classical finite
difference approach [15, 16]. With the adjoint approach the sensitivities needed for the
aerodynamic shape optimization can be efficiently obtained by solution of the adjoint flow
equations. Here, one is independent of the number of design variables with respect to the
numerical costs for determining the sensitivities.

One distinguishes between continuous and discrete adjoint approaches. In the contin-
uous case one formulates the optimality condition first, then derives the adjoint problem
and finally does the discretization of the so obtained adjoint flow equations. On the other
hand, in the discrete case one takes the discretized flow equations for the derivation of the
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discrete adjoint problem. This can be automated by so called algorithmic differentiation
(AD) tools.

The different adjoint approaches will be explained for single disciplinary aerodynamic
shape optimization first and then their extension to MDO problems will be discussed for
aero/structure cases. Finally, we will discuss the so-called one-shot methods. Here one
breakes open the simulation loop for optimization.

All activities and results presented in the following sections are linked to the project
MEGADESIGN [18] within the framework of the German aerospace research program.
The main goal within this project is the development of efficient numerical methods for
shape design and optimization.

2 NOMENCLATURE

(x, y) ∈ IR
2 cartesian coordinates M∞ Mach number

(ξ, η) ∈ [0, 1]2 body fitted coordinates )∞ ... at free stream
D ⊂ IR

2 flow field domain γ ratio of specific heats
∂D = B ∪ C flow field boundary Cref cord length
B = {(ξ, 1)} farfield Cp pressure coefficient
C = {(ξ, 0)} solid wall CD drag coefficient

~n =

(

nx

ny

)

⊥ D
outward pointing
normal unit vector

CL lift coefficient

α angle of attack Cm
pitching moment
coefficient

ρ density (xm, ym)
pitching moment’s
reference point

~v =

(

u
v

)

velocity I cost function

p pressure −d(I)
adjoint boundary con-
dition’s RHS on C

E specific total energy X ∈ IR
n vector of design

variables
H total enthalpy Z displacement field

3 OPTIMIZATION CHAIN

In aerodynamic shape optimization a geometry is either given by a parameterization
or can be changed by parameterized deformation. This means in detail that based on
these parameters a shape can be built up or deformed by a design vector. Furthermore
the obtained shape has some aerodynamic properties like the drag coefficient or pressure
distribution. Therefore the task of the aerodynamic shape optimization is to optimize
this design vector and its dependent shape for some aerodynamic cost function.

When optimizing, there must be some chain to calculate the cost function value at a
given parameterization. This can be done by deforming a static initial shape or surface
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mesh and its dependent computational grid based on the parameterization and afterwards
evaluating the cost function. This procedure is visualized in Figure 1.

design vector + initial grids

⇓

surface deformation
⇓

computational grid deformation

⇓

flow computation

⇓

cost function value

Figure 1: Cost function computation

3.1 Surface deformation

The basic idea for deforming the surface of an airfoil is to compute functions and adding
their values to the upper and lower side of the surface. Therefore every design parameter
is used to scale a specific function which is afterwards added to the shape. The result is a
surface deformation which maintains the airfoil thickness. This maintaining of the airfoil
thickness is needed to prevent the optimization to converge to a flat plate.

Several kinds of functions are considered for the deformation. The first are the Hicks-
Henne functions which are defined as

ha,b : [0, 1] → [0, 1] : ha,b(x) = (sin(πx
log 0,5
log a ))b.

These functions have the positive property that they are defined in the interval [0, 1]
and map to the interval [0, 1] where their peak is at position a. Furthermore they are
analytically smooth at zero and one.

The used parameterization operates with Hicks-Henne functions with a fixed b of 3.0
and a varies from 3

n+5
to n+3

n+5
where n is the number of design parameters.

The second considered kind of functions are transferred cosine functions. These cosine
functions are defined for q ∈ [0, 1] as cq(x) : [0, 1] → [0, 1] where

cq(x) =

{

1
2
(1 − cos(x

q
π)) for x ≤ 2q

0 for x > 2q

}

for q ≤
1

2

and

cq(x) =

{

0 for x < 2q − 1
1
2
(1 − cos(x−2q+1

1−q
π)) for x ≥ 2q − 1

}

for q >
1

2
.
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Figure 2: Hicks-Henne functions for b = 3 and a = 0.3 − 0.7 (left) and transformed cosine functions for
q = 0.3− 0.7 (right).

These functions have the positive property that their impact on the surface deformation
is local because their support is 2 ∗ min(q, 1 − q). The used parameterization operates
with these functions where q varies from 3

n+5
to n+3

n+5
.

3.2 Grid deformation

After having deformed the surface there is a need to deform the computational grid
as well. This deformation should be related to the changes of the surface. Within the
following work this is done via the volume spline method by Hounjet et al. (see [14]).
This method is a general interpolation approach for n interpolation points (xi, yi, zi) and
their values fi(1 ≤ i ≤ n) which is given by

f(x, y, z) = α1 +α2 ∗x+α3 ∗ y+α4 ∗ z+

n
∑

i=1

βi ∗
√

(x− xi)2 + (y − yi)2 + (z − zi)2. (1)

The coefficients αi and βi can be determined by the condition that the interpolation f
should be exact at its n interpolation points

f(xi, yi, zi) = fi (1 ≤ i ≤ n)
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and the four additional conditions

n
∑

i=1

βi = 0,

n
∑

i=1

βi ∗xi = 0,

n
∑

i=1

βi ∗yi = 0,

n
∑

i=1

βi ∗zi = 0,

which can be physically interpreted as equilibrium equations.
This results in solving the following linear system of equations



























0
0
0
0
f1

f2
...
fn



























=



























0 0 0 0 1 1 . . . 1
0 0 0 0 x1 x2 . . . xn

0 0 0 0 y1 y2 . . . yn

0 0 0 0 z1 z2 . . . zn

1 x1 y1 z1 0 ε12 . . . ε1n

1 x2 y2 z2 ε21 0 . . . ε2n

...
...

...
...

...
... . . .

...
1 xn yn zn εn2 εn2 . . . 0



























·



























α1

α2

α3

α4

β1

β2
...
βn



























where εij =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 is the Euklidian distance between the
interpolation points (xi, yi, zi) and (xj, yj, zj).

After solving this system of equations the interpolation is ready to be used with the
given formula (1) for arbitrary points (x, y, z).

This general interpolation method is now applied to the differences of the original and
deformed surface dx, dy, dz. These functions are each interpolated with the differences of
the surfaces as interpolation points. Afterwards dx, dy, dz are applied to the computa-
tional grid and therefore yield a grid deformation.

Therefore, let (xold,i, yold,i, zold,i) be the old and (xnew,i, ynew,i, znew,i) be the new sur-
face points (1 ≤ i ≤ n). Then the functions dx, dy, dz can be interpolated with the
interpolation point values

dxi = xnew,i − xold,i,

dyi = ynew,i − yold,i,

dzi = znew,i − zold,i
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at (xold,i, yold,i, zold,i). These obtained functions dx, dy, dz can then be computed at ar-
bitrary points. Now let (aold,j, bold,j , cold,j) be the old computational grid points and
(anew,j, bnew,j, cnew,j) their corresponding new points (1 ≤ j ≤ m). Finally, the grid
deformation is given by

anew,j = aold,j + dx(aold,j, bold,j , cold,j),

bnew,j = bold,j + dy(aold,j, bold,j , cold,j),

cnew,j = cold,j + dz(aold,j , bold,j, cold,j).

Instead of deforming the computational grid there is also the possibility to generate a
new grid at each optimization step. But this results in a computation overhead because
grid generation is expensive. Therefore the present work uses the above explained volume
spline interpolation method to deform the grid and save computation time.

4 GRADIENT-BASED AERODYNAMIC SHAPE OPTIMIZATION

For convenience reasons, the following analysis is restricted to the 2D Euler equations.
Let X ∈ IR

n denote the vector of design variables. Then X determines the airfoil C(X)

and its physics w(X) , where w =









ρ
ρu
ρv
ρE









is the vector of the conserved variables. w is

assumed to be the solution of the quasi-unsteady Euler equations

∂w

∂t
+
∂f

∂x
+
∂g

∂y
= 0 in D, (2)

where ~n>~v = 0 on C = C(X), with f =









ρu
ρu2 + p
ρuv
ρuH









and g =









ρv
ρvu

ρv2 + p
ρvH









. On the

farfield free stream conditions are assumed. For a perfect gas

p = (γ − 1)ρ(E −
1

2
(u2 + v2)) (3)

holds for the pressure, and finally Cp, CD, CL and Cm are defined as

Cp :=
2(p− p∞)

γM2
∞p∞

, (4)

CD :=
1

Cref

∫

C

Cp(nx cosα + ny sinα)dl , (5)

CL :=
1

Cref

∫

C

Cp(ny cosα− nx sinα)dl , (6)
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Cm :=
1

C2
ref

∫

C

Cp(ny(x− xm) − nx(y − ym)) dl . (7)

If the geometry is now perturbed from C(X) to C(X + δX), then via the solution of

∂(w + δw)

∂t
+
∂(f + δf)

∂x
+
∂(g + δg)

∂y
= 0

⇔
∂(δw)

∂t
+
∂(δf)

∂x
+
∂(δg)

∂y
= 0 in D, (8)

where
~n>~v = 0 on C = C(X + δX) , (9)

the associated variation of pressure is as follows

δCp =
2δp

γM2
∞p∞

≈
2(p(X + δX) − p(X))

γM2
∞p∞

. (10)

Finally via
δnx ≈ nx(X + δX) − nx(X) (11)

and
δny ≈ ny(X + δX) − ny(X) , (12)

the variations of CD, CL and Cm are obtained as

δCD =
2

γM2
∞p∞Cref

∫

C

δp(nx cosα + ny sinα)dl

+
1

Cref

∫

C

Cp(δnx cosα+ δny sinα)dl , (13)

δCL =
2

γM2
∞p∞Cref

∫

C

δp(ny cosα− nx sinα)dl

+
1

Cref

∫

C

Cp(δny cosα− δnx sinα)dl , (14)

δCm =
2

γM2
∞p∞C

2
ref

∫

C

δp(ny(x− xm) − nx(y − ym)) dl

+
1

C2
ref

∫

C

Cpδ(ny(x− xm) − nx(y − ym)) dl . (15)

Proceeding as described above for the n perturbations δiX in each of the n components of
the design vector X, the gradient of the cost function I (e.g. drag, lift or pitching moment
coefficients) is obtained as ∇XI = (δiI)i=1,...,n after n + 1 flow calculations. The easiest
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gradient-based optimization strategy is the steepest descent method. There a recursive
line search in the direction −∇X(k)I, starting from the point X (k), leads to an optimal
geometry

X(k+1) = X(k) − ε(k)∇X(k)I (16)

with respect to the cost function I in that direction. This is repeated until the norm of
the gradient of the cost function becomes zero.

But one can see that the numerical costs for the determination of the gradient of the
cost function, are directly proportional to the number of design variables. This finite
differences or brute force approach becomes more and more inefficient as the number of
design variables increases.

5 SENSITIVITY COMPUTATIONS

In aerodynamic shape optimization, the task of computing sensitivities is very im-
portant in order to have the possibility to use gradient based optimization strategies.
Gradient computations for a given cost function I(X) for a design vector X out of a
defined design space can generally be done with several methods.

5.1 Finite difference method

The first is the finite difference method (FD) which approximates the gradient as follows

∂I

∂xi

(X) ≈
I(X + h ∗ ei) − I(X)

h
(1 ≤ i ≤ n) (17)

where n is the number of design parameters, ei the ith unit vector, and h is the scalar
step size. Problems with this method occur if the computation of the cost function is
extremely expensive. As can be seen in the approximation (17), this cost function has to
be calculated once at point X and further n times at (X + h ∗ ei) for 1 ≤ i ≤ n. This
results in (n+ 1) cost function evaluations which can take a long time. Another problem
may occur if the step size h is not accurately chosen. This is based on the fact that

I(X + h ∗ ei) = I(X) +
∂I

∂xi

(X) ∗ h+
∂2I

∂2xi

(X) ∗ h2 +O(h3)

which can be transformed into

∂I

∂xi

(X) =
I(X + h ∗ ei) − I(X)

h
−

∂2I

∂2xi

(X) ∗ h +O(h2). (18)

If h is chosen too large, the first order term on the right side of equation (18) would
have a large impact on the quality of the approximation in (17). This means on the
one hand, that h has to be chosen relatively small. On the other hand, h can not be
chosen arbitrarily small, because of numerical stability. This is based on the division in
the approximation term (17) which will be error intensive if h is too small and therefore
result in numerical noise. Therefore the step length h has to be manually tuned with
respect to the cost function, parameterization and used geometry.
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5.2 Continuous adjoint formulation

The second method to compute sensitivities is the continuous adjoint approach. Just for
convenience reasons, the following analysis is restricted to the 2D Euler equations. In order
to determine the gradient of the cost function independently of the design variables with
respect to the numerical costs one can use the following continuous adjoint formulation.

Let ψ =









ψ1

ψ2

ψ3

ψ4









denote the vector of the adjoint variables. Instead of solving n+1 times

the quasi-unsteady Euler equations to get the gradient, the Euler equations are solved just

once in order to get the transposed Jacobians
(

∂f

∂w

)>
,
(

∂g

∂w

)>
and then the quasi-unsteady

continuous adjoint Euler equations

−
∂ψ

∂t
−

(

∂f

∂w

)>
∂ψ

∂x
−

(

∂g

∂w

)>
∂ψ

∂y
= 0 in D, (19)

where
nxψ2 + nyψ3 = −d(I) on C = C(X) , (20)

and
δxξ, . . . , δyη = 0, δw = 0 on B = B(X) , (21)

are also solved just once.
The right hand side −d(I) of the wall boundary condition of the quasi-unsteady adjoint

Euler equations is dependent on the cost function I. The adjoint farfield boundary con-
dition describes just that the geometrical position of the farfield is fixed and free stream
conditions apply there.

Finally the components of the gradient ∇XI = (δiI)i=1,...,n can now be determined via
an integration just over the adjoint solution and the metric sensitivities δxξ, . . . , δyη and

δI = −

∫

C

p(−ψ2δyξ + ψ3δxξ) dl +K(I)

−

∫

D

ψ>
ξ (δyηf − δxηg) + ψ>

η (−δyξf + δxξg) dA (22)

is obtained, where K(I) is again a term dependent on the cost function I.
For the gradient of the drag, the following right hand side adjoint boundary on C is

used

d(CD) =
2

γM2
∞p∞Cref

(nx cosα+ ny sinα) (23)

and to get the corresponding gradient, K(I) is

K(CD) =
1

Cref

∫

C

Cp(δnx cosα + δny sinα)dl , (24)
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for the gradient of the lift

d(CL) =
2

γM2
∞p∞Cref

(ny cosα− nx sinα) (25)

and

K(CL) =
1

Cref

∫

C

Cp(δny cosα− δnx sinα)dl (26)

are used, and for the gradient of the pitching moment

d(Cm) =
2

γM2
∞p∞C

2
ref

(ny(x− xm) − nx(y − ym)) (27)

and

K(Cm) =
1

C2
ref

∫

C

Cpδ(ny(x− xm) − nx(y − ym)) dl (28)

are used. For more details see [6] or [5].

5.3 Algorithmic differentiation (AD)

A third method is a discrete approach which is usually called algorithmic or automatic
differentiation (AD) and depends on a specific implementation of the cost function. This
implementation consists of various elemental operations (like +,−, ∗) which build up the
cost function as their concatenation. Therefore, applying the chain rule to this concate-
nation results in a differentiation of the cost function (after having dealt with possible
inconsistencies and other problems which are beyond the scope of this lecture, see [9] for
detailed information).

To give the reader a feeling of the principal ideas of AD we will introduce the two basic
concepts with the help of a simple example. Let f be a cost function which depends on
two input parameters x1 and x2 which is given by

f(x1, x2) = sin(x1/x2) + x1/x2.

We now wish to compute the value of y = f(1.5, 0.5) and its derivative by AD. Then a
possible evaluation trace is given in Table 1.

The first possibility to apply the chain rule is to differentiate every single operation
in the order of the evaluation trace. Let us suppose we want to differentiate the output
variable y with respect to x1. Then we associate with every variable vi of the evaluation
trace another variable v̇i = ∂vi/∂x1. Applying the chain rule to each line in the evaluation
trace, in order, leads to a numeric value of ẏ which is the wanted sensitivity of y with
respect to x1. Clearly, v̇−1 = ∂v−1/∂x1 = 1.0 and v̇0 = ∂v0/∂x1 = 0.0. Augmenting the
evaluation trace of Table 1 gives the derived trace in Table 2. The total floating point
operation count of the added lines to evaluate ∂y/∂x1 is a small multiple of that for the
underlying code to evaluate y.
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v−1 = x1 = 1.5
v0 = x2 = 0.5
v1 = v−1/v0 = 1.5/0.5 = 3.0000
v2 = sin(v1) = sin(3.0) = 0.1411
v3 = v1 + v2 = 3.0 + 0.1411 = 3.1411
y = v3 = 3.1411

Table 1: An evaluation trace of the simple example.

v−1 = x1 = 1.5
v̇−1 = ẋ1 = 1.0
v0 = x2 = 0.5
v̇0 = ẋ2 = 0.0
v1 = v−1/v0 = 1.5/0.5 = 3.0000
v̇1 = v̇−1/v0 − v−1 ∗ v̇0/v0/v0

= (v̇−1 − v1 ∗ v̇0)/v0 = (1.0 − 3.0 ∗ 0.0)/0.5 = 2.0000
v2 = sin(v1) = sin(3.0) = 0.1411
v̇2 = cos(v1) ∗ v̇1 = (−0.99) ∗ 2.0 = −1.9800
v3 = v1 + v2 = 3.0 + 0.1411 = 3.1411
v̇3 = v̇1 + v̇2 = 2.0 − 1.98 = 0.0200
y = v3 = 3.1411
ẏ = v̇3 = 0.0200

Table 2: Forward differentiated evaluation trace.

Exactly the same code can be used to evaluate ∂y/∂x2 as well; the only change is to
set ẋ1 = 0.0 and ẋ2 = 1.0 at the beginning.

The second possibility is to apply the chain rule in reverse order and is called the reverse
mode. This concept can be seen as a discrete adjoint approach. Therefore we associate
for every vi another variable vi = ∂y/∂vi called the adjoint variable. By definition y = 1.0
and since the only ways in which v1 can affect y are via the definitions v2 = sin(v1) and
v3 = v1 + v2 it is

v1 =
∂y

∂v1

=
∂y

∂v3

∗
∂v3

∂v1

(29)

= v3 ∗
∂(v1 + v2)

∂v1

= v3 ∗
∂v1

∂v1
+ v3 ∗

∂v2

∂v1
(30)

= v3 ∗ (1 +
∂(sin v1)

∂v1
)

= v3 + v3 ∗ cos(v1). (31)
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This can also be evaluated by the iterative equations

v1 = v3

v2 = v3

v1 = v1 + v2 ∗ cos(v1).

Thus applying the chain rule to every line in the evaluation trace of Table 1 we obtain
the reverse differentiated code in Table 3. Note that the adjoint statements are lined up
vertically underneath the original statements that spawned them.

1 v−1 = x1 = 1.5
2 v0 = x2 = 0.5
3 v1 = v−1/v0 = 1.5/0.5 = 3.0
4 v2 = sin(v1) = sin(3.0) = 0.1411
5 v3 = v1 + v2 = 3.0 + 0.1411 = 3.1411
6 y = v3 = 3.1411
7 v3 = y = 1.0
8 v1 = v3 = 1.0
9 v2 = v3 = 1.0
10 v1 = v1 + v2 ∗ cos(v1) = 1.0 + 1.0 ∗ cos(3.0) = 0.01
11 v0 = −v1 ∗ v1/v0 = −0.01 ∗ 3.0/0.5 = −0.06
12 v−1 = v1/v0 = 0.01/0.5 = 0.02
13 x2 = v0 = −0.06
14 x1 = v−1 = 0.02

Table 3: Reverse differentiated evaluation trace.

Note also that line 7 of Table 3 belongs to the expansion of Equation (29), lines 8 and
9 to the expansion of Equation (30) and line 10 to the expansion of Equation (31).

As with the forward propagation method, the floating point operation count of the
added lines is a small multiple of that for the underlying code to evaluate y. But this
time the complete gradient has been computed.

The main advantage of the automatic differentiation method over the above two men-
tioned methods is that gradients can be computed with best possible accuracy. In forward
mode the gradient computation speed is dependent on the number of design variables
which can be expensive if the evaluation trace for the cost function is long. In reverse
mode the gradient computation is independent on any input and therefore very efficient
if many design variables are needed.

There are mainly two possible implementations of AD methods. The first is the so
called source to source which means that the primal evaluation trace is transferred into a
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differentiated evaluation trace. The second is based on operator overloading which only
yields an executable.

However, the problem in reverse mode for both implementation strategies is that primal
computation informations have to be recomputed and/or stored to compute backwards
again. This results in dependence on the chosen approach in a need for much memory.

For more information, including vector valued functions, for multiple output and mul-
tiple input variables, please refer to [9].

6 ADJOINT FLOW SOLVERS

6.1 Continuous adjoint flow solvers

Within the MEGAFLOW project [17] an adjoint solver following the continuous adjoint
formulation has been developed and widely validated for the block-structured flow solver
FLOWer [6, 5]. The adjoint solver, which was implemented by hand, can deal with the
boundary conditions for drag, lift and pitching-moment sensitivities. The adjoint option
of the FLOWer code is validated for several 2D as well as 3D optimization problems
[7, 2] controlled by the (adjoint) Euler equations. Within MEGADESIGN the robustness
and efficiency of the adjoint solver will be improved, especially for the Navier-Stokes
equations. In case of Navier-Stokes applications, currently the turbulence model is frozen
in the adjoint mode. It is planned to make use of Algorithmic Differentiation (AD) in
order to create adjoint turbulence models, which will then be linked to the hand coded
adjoint solver.

Furthermore, it is planned to transfer the adjoint solver implemented in FLOWer, to
the unstructured Navier-Stokes solver TAU. Here, the implementation work is already
completed and validated for the inviscid adjoint solver [21] (see also Figure 3).

6.2 Discrete adjoint flow solvers

In addition to the continuous one, a discrete adjoint flow solver has been developed by
hand within the unstructured Navier-Stokes solver TAU [1]. The implementation consists
of the explicit construction of the exact Jacobian of the spatial discretization with respect
to the unknown variables allowing the adjoint equations to be formulated and solved.
Different spatial discretizations available in TAU have been differentiated, including the
Spalart-Almaras-Edwards one-equation, and the Wilcox k-omega two-equation turbulence
models.

For both solvers, FLOWer as well as TAU, first activities are launched for the auto-
mated generation of discrete adjoint solvers by the use of AD tools. For the FLOWer
code the AD tool TAF [8] is used and ADOL-C [10] for the TAU code.
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Figure 3: Gradient of the drag computed for 20 B-spline variables by finite differences with TAU and by
the continuous adjoint approach with FLOWer and TAU. (RAE 2822, M∞ = 0.73 and α = 2.0◦)

7 AUTOMATIC DIFFERENTIATION APPLIED TO AN ENTIRE OPTI-
MIZATION CHAIN

For the surface deformation the tool defgeo has been used. This tool has been im-
plemented in order to compute deformations based on Hicks-Henne as well as cosine
functions.

The grid deformation within our optimization chain is done by a tool named meshdefo.
This tool uses a public domain linear equations solver to compute the above mentioned
coefficients of the interpolation.

For the optimizations presented in this section, DLR’s flow solver TAUij is used. TAUij
solves the 2D Euler equations on structured grids with a standard central Jameson-
Schmidt-Turkel scheme. Moreover TAUij provides the dimensionless lift and drag co-
efficients.

To compute the difference vectors of the original to the transformed shape geometry,
another program named difgeo had to be implemented.

The chain to compute the cost function value is visualized in Figure 4. This entire op-
timization chain has been differentiated by the Dresden University of Technology with the
use of ADOL-C (see [10]) which operates in reverse mode based on operator overloading.
This differentiated chain can be written as

∂drag

∂p
=
∂drag

∂m
·
∂m

∂dx
·
∂dx

∂x
·
∂x

∂p
.

Note that the first term on the right side corresponds to the differentiation of TAUij, the
second term to the differentiation of meshdefo, the third term to the differentiation of
difgeo and the last term to the differentiation of defgeo. Since difgeo computes only the
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design vector (p) initial surface (xs)
↘ ↙

defgeo initial surface (xs)

↓ (x) ↙

difgeo initial computational grid (ms)

↓ (dx) ↙

meshdefo
↓ (m)

TAUij

↓ (drag)

Figure 4: Chain to compute the cost function value.

differences dx = x− xs and xs is a static initial surface, its corresponding factor becomes
the unit matrix and therefore

∂drag

∂p
=
∂drag

∂m
·
∂m

∂dx
·
∂x

∂p
. (32)

The optimization strategy in the following computations is a steepest descent method
which was implemented as an optimizer into the optimization framework Synaps Pointer
Pro. This framework has the possibility to read in user defined gradients. Therefore, the
gradients are calculated by separate routines and are then submitted to the optimizer.

7.1 Test case definition

As test case for the validation and application of AD generated adjoint sensitivity
calculations an RAE2822 airfoil is chosen with a Mach number of 0.73 and an angle
of attack of 2◦. The drag coefficient for this test case has been optimized with both
parameterizations, Hicks-Henne and cosine function parameterizations (see subsection
3.1). In both optimizations 20 design parameters have been used. The computational
grid has 161x33 grid points.

7.2 Finite differences

To compute the finite differences in order to have a validation framework for the AD
sensitivities, the first task was to tune the stepsize h for the approximation

∂I

∂xi

(X) ≈
I(X + h ∗ ei) − I(X)

h
(1 ≤ i ≤ n) (33)

as mentioned in section 5. Therefore the quotients of both parameterizations have been
calculated for varying stepsizes with respect to all n = 20 parameters.
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Figure 5: Quotients of Hicks-Henne (left) and cosine (right) functions parameterization for parameters
6, 10 and 15 and varying stepsizes.
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Figure 6: Optimization history of FD and AD for Hicks-Henne (left) and cosine (right) functions param-
eterization.

As can be seen in Figure 5 a good choice for the stepsize h is 10(−3) for both pa-
rameterizations. Another possibility which has not been used is to tune the stepsize for
each parameter seperately, which means selecting n stepsizes hi for every approximation
in (33). With this possibility a more accurate result might be achieved for the original
airfoil, but based on the fact that this tuning cannot be done for every optimization step
due to the high computational effort, it might cause worse optimization results at the
end. Therefore a stepsize of 10(−3) has been used for all gradient computations within the
optimizations for both parameterizations.

In Figure 6 the optimization history for both parameterizations can be seen. In case of
the Hicks-Henne functions parameterization the optimization converges after nine gradient
computations which are marked by a filled out green square. The optimization with cosine
functions converges after 13 gradient computations. The pressure distribution for both
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Figure 7: Pressure distribution of the original test case and the optimum of FD and AD for Hicks-Henne
(left) and cosine (right) functions parameterization.
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Figure 8: Surface geometry of the original test case and the optimum of FD and AD for Hicks-Henne
(left) and cosine (right) functions parameterization.
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Figure 9: Comparison between FD and AD gradients on RAE2822 with Hicks-Henne (left) and cosine
(right) functions parameterization.

optimizations is drawn in Figure 7 and the optimal geometries can be found in Figure 8.
As one can see, the strong shock of the original baseline geometry nearly vanished

in both cases and one ends up with more than 50 % decrease in drag. In contrast to
the optimum with the help of Hicks-Henne functions, the optimum with cosine functions
parameterization shows slight oscillations in the pressure distribution, which is due to
the fact that cosine functions only have local impacts on the surface deformation whereas
Hicks-Henne functions have global impacts.

7.3 Automatic differentiation

In Figure 9 one can see the comparisons between the FD and AD gradients for the
original RAE2822 airfoil with Hicks-Henne and cosine functions parameterization. This
validates the AD approach and shows also that the chosen stepsize for the FD gradient
is accurate enough.

As with the finite differences method the optimizations have also been done with the
automatic differentiation approach. The optimization histories, the pressure distributions
and the surface geometries of the optimum with AD are also visualized in Figures 6, 7
and 8. This clearly validates the automatic differentiation approach.

8 ADJOINT APPROACH FOR AERO/STRUCTURE COUPLING

The use of successively performed single disciplinary optimizations in case of a multi-
disciplinary optimization problem is not only inefficient but in some cases has been shown
to lead to wrong, non-optimal designs [19]. Although multidisciplinary optimization is
possible with classical approaches for sensitivity evaluation by means of finite differences,
this method is extremely expensive in terms of calculation time, requiring the reiterated
solution of the coupled problem for every design variable.

A new approach that allows the evaluation of the gradient with low computational cost
takes advantage of the adjoint formulation of the multidisciplinary optimization problem
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[19, 20]. Therefore, the FLOWer adjoint option has been coupled with the structure
solver MSC Nastran for an efficient coupled aero-structure adjoint solver. This approach,
its implementation and validation is described in detail in [3, 4].

8.1 Adjoint formulation for aero/structure coupling

Figure 10: Plot of residual (log scale) of flow equation during coupled computation (multigrid is used):
AMP wing, M∞ = 0.78, α = 2.83◦, 2-block structured grid of about 140.000 nodes each.

The derivation of the adjoint equations in case of a multidisciplinary problem is similar
to what has been carried out for the pure aerodynamic case, with the difference that we
will end up with a dual adjoint variable for each set of state variables of the problem. An
adjoint formulation is possible for any problem involving the calculation of the gradient of
a function of one or more sets of variables obeying one or more constraint equations. We
will restrict ourselves to the case of two sets: one represents the flow variables, the other
the structure nodal displacement. As already seen I(X,w, Z) denotes the cost function of
the optimization problem, dependent now also on the displacement field Z, the solution
of the structural problem. Then, the gradient takes the form

∇I =
dI

dX
=

∂I

∂X
+
∂I

∂w

∂w

∂X
+
∂I

∂Z

∂Z

∂X
, (34)

or , in terms of differentials

dI =
∂I

∂X
δX +

∂I

∂w
δw +

∂I

∂Z
δZ. (35)

The fields (w,Z) are the solution of the system of partial differential equations

R(X,w, Z) = 0, (36)
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Figure 11: Plot of residual (log scale) of adjoint flow equation during coupled computation: AMP wing,
M∞ = 0.78, α = 2.83◦, 2-block structured grid of about 140.000 nodes each. Each 100 iterations, the
boundary conditions of the adjoint flow solver are updated.

S(X,w, Z) = 0, (37)

being (36) the flow and (37) the structural equations. We take the first variation of the
PDEs. This yields

δR =
∂R

∂X
δX +

∂R

∂w
δw +

∂R

∂Z
δZ = 0, (38)

δS =
∂S

∂X
δX +

∂S

∂w
δw +

∂S

∂Z
δZ = 0. (39)

We multiply Equations (38) and (39) with the Lagrange multipliers ψ and φ respectively
and add the result to the expression for the differential increment of I in terms of the
differentials of the independent set(X,w, Z), obtaining

dI =

(

∂I

∂X
+ ψT ∂R

∂X
+ φT ∂S

∂X

)

δX

+

(

∂I

∂w
+ ψT ∂R

∂w
+ φT ∂S

∂w

)

δw +

(

∂I

∂Z
+ ψT ∂R

∂Z
+ φT ∂S

∂Z

)

δZ. (40)

Since we want to avoid recalculation of the (w,Z) fields, we cancel the terms in δw
and δZ from dI by imposing the fields φ and ψ, to be the solution of the equations

(

∂I

∂w
+ ψT ∂R

∂w
+ φT ∂S

∂w

)

= 0, (41)

(

∂I

∂Z
+ ψT ∂R

∂Z
+ φT ∂S

∂Z

)

= 0. (42)
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Figure 12: Wing structure model

These are the adjoint equations for the problem of coupled aeroelasticity. After their
solution, the gradient can be recovered from the expression

dI =

(

∂I

∂X
+ ψT ∂R

∂X
+ φT ∂S

∂X

)

δX. (43)

We can assume the cost function to be a functional in the form

I(X,w, Z) =

∫

V

i(X,w, Z)dV, (44)

with

i(X,w, Z) =
Cp

Cref
(nx cosα + ny sinα)δ(η), (45)

where δ(η) being the Dirac delta function and η = 0 the equation defining the airfoil
shape in the body fitted coordinates (ξ, η). For the Dirac delta function under integration
the following equation holds

∫

δ(η)f(η)dη =f(0). (46)

In the context of Equation (44), it reduces the volume integral to a surface integral. We
suppose that the fluid obeys the Euler equations, which in body fitted coordinates take
the form

∂F

∂ξ
+
∂G

∂η
= 0, (47)

where the transformed F,G are appropriate combinations of f and g

F = J
∂ξ

∂x
f + J

∂ξ

∂y
g =









ρU

ρuU + ∂ξ

∂x
p

ρvU + ∂ξ

∂y
p

ρHU









. (48)

21



Nicolas R. Gauger

Figure 13: Validation of the aero-structural coupled adjoint with finite differences (AMP wing, M∞ = 0.78
and α = 2.83◦).

Since our cost function I is of the form shown in Equation (44), as first step we have to
formulate Equations (41) and (42) in an appropriate way, using the following property

δI(X,w, Z) =

∫

V

δi(X,w, Z)dV

=

∫

V

(

∂i(X,w, Z)

∂X
δX +

∂i(X,w, Z)

∂w
δw +

∂i(X,w, Z)

∂Z
δZ

)

dV . (49)

The derivation is identical to what has already been seen, and gives the adjoint equations

∫

V

(

∂i

∂w
+ ψT ∂R

∂w
+ φT ∂S

∂w

)

dV = 0, (50)

∫

V

(

∂i

∂Z
+ ψT ∂R

∂Z
+ φT ∂S

∂Z

)

dV = 0. (51)

And for the gradient we get

δI(X,w, Z) =
∫

V

(

∂i(X,w, Z)

∂X
δX + ψT ∂R(X,w, Z)

∂X
δX + φT ∂S(X,w, Z)

∂X
δX

)

dV. (52)
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Figure 14: Optimization history for the drag reduction by constant lift while taking into account the static
deformation (left picture) and for the range maximization (right picture) of the AMP wing (Mach =
0.78, α = 2.83◦). For both optimizations free-form deformation with 240 design variables was used for
parameterization and feasible directions was used as optimization strategy.

It can be shown that Equation (50) is equivalent to the equation

∫

V

(

(

∂ψ

∂ξ

)T
∂F

∂w
+

(

∂ψ

∂η

)T
∂G

∂w

)

dV = 0 (53)

and the boundary condition (in the case of the drag)

ψ2nx + ψ3ny + nx cos(α) + ny sin(α) − nTφ = 0. (54)

Note that the structural adjoint variables appear only in the boundary condition (54),
while the adjoint flow equation (53) is unchanged. This implies that in order to implement
the coupling, only the boundary condition treatment in the FLOWer code has to be
modified. Equation (42) represents the structural adjoint equation and its boundary
conditions. The structural equation reads in the case of linear elasticity

S(X,w, Z) = K · Z − a = 0, (55)

where K is the symmetric stiffness matrix and a is the aerodynamic force. The derivative
∂S
∂Z

in (42) can thus be replaced by K and the product φTK by Kφ. In this way, the same
solver can be used for the structural direct and adjoint equation, with different boundary
conditions, given by the first and second term in Equation (42). The first term is reduced
to a surface integral by the presence of the Dirac delta function, giving a vector defined
by

Vi =

∂
∫

S

I(X,w, Z)dS

∂Zi

, (56)
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Figure 15: Pressure distribution for the baseline AMP wing shape and for the optimal wing shapes for
drag minimization and range maximization (Mach = 0.78, α = 2.83◦).

that is the derivative of the cost function with respect to a structural degree of freedom.
The second term, namely

∫

V

(

ψT ∂R

∂Z

)

dV, (57)

represents the integral of the scalar product of the adjoint field ψ and the partial derivative
of the flow operator R(X,w, Z) with respect to a structural degree of freedom, thus
keeping the flow field and the design variables constant. It is evaluated by making use
of the finite volume formulation implemented in FLOWer. A similar term appears in the
expression for gradient (52), which explicitly becomes

dI

dX
=

∂I

∂X
+

∫

V

(

ψT ∂R

∂X

)

dV +

∫

V

(

φT ∂S

∂X

)

dV. (58)

We already know how to evaluate the first two terms. The third term reduces to the
surface integral of the adjoint field φ multiplied by the term

∂S

∂X
=
∂K

∂X
Z −

∂a

∂X
. (59)

Of the two terms on the right hand side, the first has been neglected, which is equivalent
to assuming that shape deformations do not act on the structural mesh and thus on the
stiffness matrix.

8.2 Implementation

In order to solve the coupled equations of the aero-structural system, a sequential stag-
gered method has been implemented, where forces are transferred from the flow mesh to
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the structure mesh and give the nodal loads, and deflections are transferred back from
the structure mesh to the flow mesh which is consequently deformed. The flow around
the body described by the Euler equation is solved by the DLR solver FLOWer, while
the structural problem is solved by MSC Nastran. The transfer of information between
the two meshes is managed by a module developed in-house based on B-spline volume
interpolation [6, 5]. Typically, 20 exchanges of information between the two codes are
more than enough to reach a converged aeroelastic solution, as shown in Figure 10.

The same staggered scheme has been used to solve the systems of the coupled adjoint
equations, with the difference that now only adjoint deflections are interpolated from the
structural mesh to the flow mesh, in order to evaluate the boundary condition (54) for
the new adjoint flow computation. Each 100 steps of the adjoint flow solver, boundary
conditions coming from the coupling are exchanged and updated, as shown in Figure 11.

8.3 Validation and Application

The validation of both the theory and the implementation of the adjoint formulation for
the aeroelastic system has been achieved by comparison with the finite difference method.

As test case for the validation the AMP wing has been chosen. The structure has been
modelled with a simplified model of 126 nodes, all lying on the wing surface, connected by
422 tria/quad shell and 198 beam elements. Such a model, unlike its fluid counterpart, is
not state of the art, but is sufficient to demonstrate the features of the method. In order
to underline the effect of aeroelasticity, the thickness of the beam elements of the wing
has been tuned to reach a deflection of about 10% of the wing span at the wing tip.

Making use of the finite difference method, the gradient of the drag with respect to
the shape parameters has been calculated, this time including the effect of aeroelastic
interaction. This means that after a deformation of the jig shape (undeflected shape), an
aeroelastic coupling was called and a stationary state was reached, as shown in Figure 10.
This operation was repeated for every design parameter.
On the other hand, after the solution of the coupled adjoint equations, both the flow and
structural adjoint fields have been used to reconstruct the gradient according to Equation
(58). The comparison of both methods is shown in Figure 13, together with the gradient
obtained when neglecting the aeroelastic coupling (rigid).

Finally, Figures 14 and 15 illustrate the application of the coupled aero-structural
adjoint approach to the drag reduction of the AMP wing by constant lift while taking
into account the static deformation of this wing caused by the aerodynamic forces as well
as for the Breguet formula of aircraft range, where in addition to the lift to drag ratio the
weight of the wing is taken into account.
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Figure 16: Convergence history of state and costate (RAE 2822, M∞ = 0.73 and α = 2.0◦).

9 ONE-SHOT METHODS

The algorithmic approach of the so-called one-shot methods is based on an embedding
of optimization strategies within the iterations of the respective flow solver. A contin-
uous reduced SQP method is developed to solve the optimization problem in one joint
pseudo-timestepping iteration for all variables (flow state, adjoint and wing design vari-
ables) [11, 12]. In this way we look for the steady states of the pseudo-time embedded
non-stationary system of state, costate (or adjoint state) and design equations. The
preconditioner used corresponds to Karush-Kuhn-Tucker matrices, which are used in an
approximate reduced SQP method.

A first demonstration of the capability of the one-shot method is given for the drag
reduction of the RAE 2822 airfoil in inviscid flow with M∞ = 0.73 and α = 2.0◦. Figure
16 presents the convergence history of the optimization iterations. The optimization is
started with the initial solution of the state and costate equations obtained after 500 steps
with Runge-Kutta time integration. The convergence of the optimization is achieved after
3,700 optimization iterations. After convergence is achieved for optimization, we perform
another 600 time iterations for state and costate solvers to reduce the residual of these
two variables further to get more accurate values of surface pressure and force coefficients.
Figure 17 shows the inexact and exact drag reduction during the optimization iterations.
Inexact here means, that the drag is evaluated for the less converged state and costate
variables used in the design loop. Afterwards, on the trace of modified shapes generated
during the one-shot approach, the drag was recomputed up to an accuracy of 7 digits and
compared with the inexact one. The final drag reduction after the optimization is about
68% and the shock completely vanished (Figure 18) as expected for inviscid cases. Figure
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Figure 17: Convergence history of design (inexact/exact drag), RAE 2822, M∞ = 0.73 and α = 2.0◦.

18 presents the comparison of the initial and final surface pressure distributions achieved
with the one-shot approach (present) and with the conventional gradient based adjoint
approach (steepest descent).

Altogether, the numerical cost of the one-shot optimization is of the magnitude of just
4 flow simulations, which is a dramatic reduction in computation time compared to the
conventional approach.
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