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ABSTRACT
The link transmission model is a macroscopic network traffic flow simula-
tion tool based on Lighthill–Whitham–Richards theory. While its efficiency
and accuracy are superior to thewell-known cell transmissionmodel, appli-
cations of its current numerical formulations are limited by the inability to
apply changes to the fundamental diagramsof linkswithin a simulation and
the need to start the simulation with an empty network. We resolve both
limitations by developing a methodology for initialising the discrete-time
linkmodelwith anon-empty initial condition and for computingwithin-link
densities during the simulation, which can then serve as an initial condition
for continued simulation with a new fundamental diagram. Since the com-
putation of within-link densities is algebraic, no new numerical errors are
introduced. Optional support for multiple commodities, subcritical delays
and platoon dispersion, are retained. The resulting model is demonstrated
on a motorway corridor network with variable speed limits and dynamic
lane management.
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1. Introduction

Lighthill andWhitham (1955) andRichards (1956)were the first tomodel traffic flowusing adifferential
equation combining conservation of vehicles with an equilibrium flow-density relationship referred
to as the fundamental diagram (FD). The traditional cell-based numerical solution scheme to this
Lighthill–Whitham–Richards (LWR) theory is known as the cell transmission model (CTM) (Daganzo
1994) and can simulate the propagation of traffic in a network of links and nodes using macroscopic
variables (Daganzo 1995). While this solution scheme with links discretised into small homogeneous
cells is intuitive, it has turned out to be neither the most efficient in terms of computation time nor
the most accurate in terms of numerical error. Based on Newell’s (1993) recipe using the cumulative
numbers of vehicles as the main variable, Yperman, Logghe, and Immers (2005) and Gentile and Pap-
ola (2009a, 2009b) developed the link transmission model (LTM). This alternative numerical solution
scheme for solving traffic propagation in a network does not discretise links into small cells, improving
the efficiency and accuracy compared to the CTM and variants (Yperman, Logghe, and Immers 2005;
Yperman 2007, 46–49).

Since then, the LTM has accumulated improvements and extensions. Yperman et al. (2006) devel-
oped a multi-commodity version keeping track of heterogeneous traffic composition, to which Yper-
man (2007) added support for general nodes with multiple incoming and outgoing links. Gentile
(2010) added general nodes to his formulation as well. These and other general node models have
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Figure 1. Link travel time L/u in stationary homogenous free-flow conditions as a function of flow q.

Figure 2. Flow q versus time t at four locations showing platoon dispersion.

further been improved to satisfy the criteria for traffic flow at junctions formulated by Lebacque and
Khoshyaran (2005) and Tampère et al. (2011). This resulted in a family of node models described by
Smits et al. (2015), and possibilities to simulate signalised junctions (Tampère et al. 2011) and ramp
metering (Hajiahmadi et al. 2013).

Furthermore, while the formulations by Yperman, Logghe, and Immers (2005, 2006)were limited to
triangular FDs on links, Yperman (2007) proposed piecewise-linear FDs aswell, andGentile and Papola
(2009a, 2009b) andGentile (2010) proposed strictly concave FDs. SuchFDs introduce subcritical delays,
i.e. demand-dependent increases in link travel time before the capacity of the link is exceeded as illus-
trated in Figure 1. Due to an initially sharp front of a platoon dispersing into an acceleration fan, they
also introduceplatoondispersion as illustrated in Figure 2 (Geroliminis and Skabardonis 2005). Vander
Gun, Pel, and Van Arem (2017) improved the numerical accuracy in both proposals and allowed any
concave FD. Van der Gun, Pel, and Van Arem (2017) furthermore extended the link and node models
to support the capacity drop phenomenon with a mixture of moving jams and standing queues. For
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triangular FDs, other linkmodel extensions have been proposed for supportingmultiple vehicle types
(Smits, Bliemer, and Van Arem 2011) or variable speed limits (Hajiahmadi et al. 2013).

Contrary to the above discrete-time approaches, Raadsen, Bliemer, and Bell (2016a) introduced
an event-based continuous-time version of the LTM, to which multi-commodity support and general
concave FDs without capacity drop also have been added (Raadsen and Bliemer 2018).

Meanwhile researchers have also been working on creating an iterative variant of the numerical
solution scheme (Himpe, Corthout, and Tampère 2016), computing a user-equilibrium traffic assign-
ment (Gentile, Meschini, and Papola 2007; Gentile 2015; Himpe and Tampère 2016; Long, Szeto,
and Ding 2017), investigating mathematical properties of the continuous-time network loading (Jin
2015; Han, Piccoli, and Szeto 2016) and user-equilibrium (Han et al. 2015), and utilising the LTM for
optimisation purposes (Hajiahmadi 2016; Long et al. 2018; Van de Weg et al. 2016).

1.1. Problem statement

The above literature offers a rich set of features for macroscopically simulating the propagation of
traffic in a network over time, also known as dynamic network loading. Nevertheless, except for the
triangular-FD variable speed limits model by Hajiahmadi et al. (2013), all of these studies assume that
the FDs of all links remain constant during the simulation, which can be problematic for certain appli-
cations. Firstly, it precludes time-varying link-based traffic control. Besides variable speed limits, this
could also include e.g. temporary lane closures, lane reversal (Wolshon and Lambert 2006), or opera-
tion of peak-hour lanes such as hard shoulder running (Sultan, Meekums, and Brown 2008; Geistefeldt
2012; Guerrieri andMauro 2016). Secondly, it precludes time-varying driving behaviour within a simu-
lation. Thismaye.g. occur due to changes inprecipitation, visibility and road surface conditions (Chung
et al. 2006; Rakha et al. 2008; Dixit, Gayah, and Radwan 2012; Kwon, Fu, and Jiang 2013), changes to
driver activation levels basedon time-of-day (Dixit, Gayah, andRadwan2012) or evacuation conditions
(Yuan, Pel, and Hoogendoorn 2014), or changes to the average vehicle composition over time.

Another drawback of current LTM simulations is the need to start with an empty network. Only Jin
(2015) considered more general initial conditions for triangular FDs, but did not develop a numerical
solution scheme. This missing feature can also be restrictive, particularly for real-time applications.
For example, non-empty initial conditions are used for rolling horizon optimisation of traffic control
(Papageorgiou et al. 2003).

The solutions to these two limitations are related. To instantaneously change the FD of a link, it suf-
fices to compute the density of traffic at all places within the link, and use those as the initial condition
for a subsequent simulation with the new FD (see Figure 3). In the CTM this is trivial, since the state
vector of the model consists entirely of the current cell densities. On the contrary, the LTM state vec-
tor does not contain within-link densities and spans more than one time instant. The LTM thus needs
to be supplemented with two additional procedures: one to compute the within-link densities, and
one to employ these as initial conditions. Hence, although the LTM is normally more efficient than
the CTM, it will incur some additional computational cost each time within-link densities need to be
used. A convenient property of this setup is that one can even use the within-link densities at time
t∗ to decide whether and how the FD or within-link should change at the same time t∗. This enables
real-time corrections to within-link densities or FD parameters (i.e. data fusion) as well as simulations
with real-time traffic-responsive control measures.

1.2. Contribution of this paper

The main contribution of this paper is a novel link model for the discrete-time LTM that includes such
methodologies for computing within-link densities and applying initial conditions, offering a single,
computationally-efficient, LWR-theory-based simulation tool supporting subcritical delays and pla-
toon dispersion, non-empty initial conditions, computation and modification of densities within links
and changes to any FD parameters during the simulation.
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Figure 3. Space–time (x, t) illustration of an FD change for a link from x0 to xL .

As shown by Van der Gun, Pel, and Van Arem (2017), it is possible to develop constant-FD discrete-
time LTM linkmodels without numerical errors other than those introduced by the time discretisation
of node flows. This suggests the possibility of using algebraic descriptions of within-link densities for
particular choices of the FD shape, akin to how Raadsen, Bliemer, and Bell (2016a) use boundary flows
without numerical errors. This paper will exploit that possibility to avoid introducing any additional
numerical errors so that, e.g. changing an FD into an identical FD does not affect the numerical results
in any way.

Thispaper is structuredas follows. Section2describes the structureof theLTMandexplainshowour
extension is embedded in this structure. Section 3 introduces the main methods needed to construct
an LTM link model, relating to the traffic flow theory and the FD. Section 4 applies these methods to
formulate our extended LTM link model. A practical demonstration of the extended LTM is provided
in the simulation study in Section 5, including comparisons with the unextended LTM and the CTM.
This is followed by a discussion of the extended model in Section 6 and our conclusions in Section 7.

2. Structure of the LTM and its extension

The LTM consists of a link model describing traffic flow on homogenous road stretches, and a node
model describing traffic flow at discontinuities, including intersections. This section describes the role
of both models within the LTM and discusses how they are affected by our extension for variable FDs
and initial conditions.

Please note that one can refer to Appendix 1 for a complete overview of all notation that will be
introduced in this section and the next two sections.

The link model of the LTM originally consists of two components. The first is the sending flow
algorithm that computes the maximum number of vehicles S(t) that can leave the link between now
t and some point in the near future t + �t, under the assumption that the downstream node does
not impose any constraints. Similarly, the second is the receiving flow algorithm that computes the
maximum number of vehicles R(t) that can enter the link between now t and some point in the near
future t + �t, again under the assumption that in this case, the upstream node does not impose any
constraints. Both are done by comparing the maximum possible cumulative vehicle number N at the
end of the time window (t, t + �t) with the known value of N at the start of the time window:

S(t) = Nmax(xL, t + �txL) − N(xL, t)

R(t) = Nmax(x0, t + �tx0) − N(x0, t),
(1)
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where xL denotes the downstream link end, x0 denotes the upstream link end, and Nmax denotes N
assuming the downstream and upstream node imposes no constraints on outflow and inflow respec-
tively during (t, t + �t). Consistent with Yperman (2007, 25) and Van der Gun, Pel, and Van Arem
(2017), each node can be updated with a different time window �t. We use �tx0 and �txL to denote
the time window sizes of the upstream and downstream node of a link respectively. To be clear, this
means that every incoming link of the same node has the same �txL and every outgoing link of the
same node has the same �tx0 . By the Courant–Friedrichs-Lewy (CFL) condition (Courant, Friedrichs,
and Lewy 1928), the time window sizes of nodes must satisfy⎧⎪⎨

⎪⎩
�tx0 ≤ − L

v′

�txL ≤ L

uF

(2)

for all connected links, where L is the link length, uF is the free speed, and v′ < 0 is the wave speed in
congestion.

The sending and receiving flows from Equation (1) serve as inputs to the node model of the LTM
which, after resolving conflicts and applying node capacity constraints, determines the actual link
inflows and outflows during such time windows, known as transition flows, forming new parts of the
boundary conditions in the link models of the links connected to the node. This interaction between
the link and node models is outlined in Algorithm 1.

Algorithm 1: Calculating node flows for time window (t, t + �t), after Yperman, Logghe, and Immers
(2005).

1. Compute sending flow Si(t) for each incoming link i using the link model.
2. Compute receiving flow Rj(t) for each outgoing link j using the link model.
3. Determine turning fraction Sij(t)/Si(t) for each turn ij.
4. Compute transition flow Gij(t) for each turn ij using the node model.
5. Extend downstream boundary condition of each incoming link i with

∑
j Gij(t).

6. Extend upstream boundary condition of each outgoing link j with
∑

i Gij(t).

The extension of the LTM to variable FDs and initial conditions, as proposed in this paper, adds
a third component to the link model, namely the ability to compute the densities within links. Fur-
thermore, the sending and receiving flow algorithms are adapted to take the initial condition into
account. Figure 4 illustrates the three link model components in the space–time plane: computation
of within-link densities at time t, computation of the sending flow for a time window (t, t + �txL),
and computation of the receiving flow for a time window (t, t + �tx0). The figure also illustrates their
inputs: an upstream boundary condition at location x0, a downstream boundary condition at location
xL, and an initial condition at time t∗.

The nodemodel on the other hand is not affected by our extension of the LTM. Despite the sending
and receiving flows being calculated differently by the extended link model, the node model pro-
cesses these sending and receiving flows in the same way. Any driving behaviour parameters of the
node model, e.g. priorities or signal capacities, can be trivially changed during the simulation. We will
therefore not discuss node models any further in this paper. The disaggregation of traffic required for
step 3 of Algorithm 1 can be modelled exogenously by means of pre-specified turning fractions or
endogenously with a multi-commodity LTM. Appendix 2 describes how to add support for multiple
commodities to our extended LTM.

As mentioned in the introduction, the LTM can be used with either discrete or continuous time.
In case of discrete time, the �t of each node is its constant time step size. In case of continuous time,
each�t is variable anddeterminedadhoc. Theuseof continuous time requires the FD tobepiecewise-
linear or tobediscretisedas such (Bliemer andRaadsen2018). Since theFDshape,we choose in Section
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Figure 4. Illustration of the three link model components in the space–time (x, t) plane.

3.2 is generally not piecewise-linear, we opt for the discrete-time approach in this paper. For each time
t∗ onewishes to change the FD,we require that t∗ is an integermultiple of both�tx0 and�txL , because
the link model assumes that the FD does not change within any time step.

3. Linkmodelling prerequisites

In this section, we discuss the mathematical prerequisites for deriving the (extended) LTM link model,
namely the used traffic flow theory and FD. The LWR traffic flow theory is introduced in Section 3.1.
Our chosen FD shape is introduced in Section 3.2. Finally, Section 3.3 explains the types of shocks and
fans that can occur in the solution when applying the aforementioned LWR theory and FD shape, and
the impact of shocks on solution methods.

3.1. LWR traffic flow theory

As indicated in the introduction,wedevelopourmodel for thepropagationof traffic on a link following
LWR traffic flow theory. LWR theory traditionally is built on conservation of vehicles in the form of a
scalar conservation law

∂k(x, t)
∂t

+ ∂q(x, t)
∂x

= 0, (3)

where x indicates the position along the link, t indicates time, k(x, t) describes the density of traffic and
q(x, t) describes the flow of traffic. From there, LWR theory proceeds by substituting a continuous FD
of traffic flow Q(k), mapping any density k to a corresponding flow q:

∂k(x, t)
∂t

+ dQ(k)

dk
∂k(x, t)

∂x
= 0, q(x, t) = Q(k(x, t)). (4)

Using the Lax (1957) shock admissibility or entropy condition, it has a unique solution that can be
constructed using the method of characteristics. While the FD is constant, each characteristic has a
constant wave speed dx/dt = dQ(k)/dk and carries a constant traffic state (k,Q(k)). We remark it is
sufficient for dQ(k)/dk to exist only almost everywhere, by treating any problem with k → Q(k) with
sharp corners as a limiting case of the problemwith a similar functionwith smooth corners. This results
in an effectively multi-valued dQ(k)/dk at previous jumps.
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Differential Equation (4) can also be reformulated into the Hamilton-Jacobi equation

∂N(x, t)
∂t

− Q
(

−∂N(x, t)
∂x

)
= 0, q(x, t) = ∂N(x, t)

∂t
, k(x, t) = −∂N(x, t)

∂x
, (5)

which preserves both the FD and conservation of vehicles (Newell 1993). Its solution N(x, t) is contin-
uous, but is continuously-differentiable only almost everywhere, matching the solution of (4). Along
each characteristic, we have

∂N = Q(k)∂t − k∂x. (6)

Jumps in q(x, t)or k(x, t) are permitted along contact discontinuities, which have characteristics run
in parallel on both sides, or along shocks, which absorb characteristics from one or both sides as time
t progresses. The solution may contain rarefaction waves, also known as fans, when characteristics
diverge from a point on an initial or boundary condition (Evans 2002).

3.2. Smulders fundamental diagram

To solve the propagation of traffic along a link based on LWR theory, we need a specification of the
FD. As suggested in the introduction, we will restrict ourselves to a specific shape to avoid introduc-
ing numerical errors within the link model itself. We introduce the FD shape here, and explain the
avoidance of numerical errors in Section 4.1.

The FD shape we choose is the Smulders (1990, 117) FD. Its congested branch is linear in the flow-
density plane, while its free-flow branch is linear in the speed-density plane, thus parabolic in the flow-
density plane. It can be uniquely characterised by a free speed uF , a critical speed uC ≤ uF , a capacity
qC and a jam density kJ . An example diagram is shown in Figure 5. Note that setting uC = uF yields the
triangular FD as a special case of the Smulders FD, and hence is also supported.

One special feature we add to this FD is that we extend its congested branch with zero flow past
the jam density:

∀k ≥ kJ : Q(k) = 0. (7)

Althoughdensities exceeding jamdensity cannot occur in the solution if suchdensities are not present
in the initial condition (Daganzo 2005, 192), this may be unavoidable when the FD changes during a
simulation and the current traffic on the link is to be preserved, for examplewhen a lane is closedwhile
the link is congested.

The formulas for speed U(k) and flow Q(k) as functions of density k are

U(k) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

uF − uF − uC
kC

k if k ≤ kC

v′
(
1 − kJ

k

)
if kC ≤ k ≤ kJ

0 if kJ ≤ k

Q(k) = kU(k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
uFk − uF − uC

kC
k2 if k ≤ kC

v′(k − kJ) if kC ≤ k ≤ kJ

0 if kJ ≤ k

, (8)

where kC = qC/uC is the critical density. For free-flow traffic states (k ≤ kC), the wave speed V(k) as a
function of density k is

V(k) = dQ(k)

dk
= uF − 2

uF − uC
kC

k. (9)
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Figure 5. Smulders fundamental diagram (thick solid lines) and corresponding wave speeds (medium solid lines), including the
extension beyond jam density.

After some algebraic transformations of the formulas forQ(k) and V(k) for the free-flow branch, we
find

K(q) = k|k:Q(k)=q∧k<kC =

⎧⎪⎪⎨
⎪⎪⎩

q

uF
if uF = uC

1
2

kC
uF − uC

(
uF −

√
uF2 − 4

uF − uC
kC

q

)
otherwise

V(q) = V(K(q)) =
√
uF2 − 4

uF − uC
kC

q (10)

describing thedensityK(q) andwave speedV(q) as functions of flowq.We abbreviate the criticalwave
speed vC = V(kC) = V(qC) = 2uC − uF . The intersection κ(v) ≤ 0 of a tangent line of wave speed v ∈
[vC , uF] to the free-flow branch in the flow-density plane with the density axis is

κ(v) = K(q) − q

v

∣∣∣
q:V(q)=v

=

⎧⎪⎪⎨
⎪⎪⎩
0 if uF = uC

1
4

kC
uF − uC

(
2uF − u2F

v
− v

)
otherwise.

(11)

3.3. Types of shocks and fans

Beforeproceeding todevelop theLTM linkmodel using theLWR theory andFDshapedescribedabove,
it is helpful to understand what types of shocks and fans may occur in the analytical solutions of links.
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Figure 6. Example Riemann problems showing an acceleration fan (left) and a deceleration shock (right).

This subsection explains the possible types of shocks and fans, as well as the impact of shocks on
solution methods. Each type is illustrated with an example Riemann problem.

In most traffic flow applications, k → Q(k) is concave. With a concave FD in traffic flow, rarefaction
waves occurwhen traffic accelerates (acceleration fans)whereas shocks occurwhen traffic decelerates
(deceleration shocks). This is illustrated in Figure 6 with the solutions (densities) and characteristics
(arrows) of example Riemann problems.

In Hamilton-Jacobi Equation (5), the so-called Hamiltonian ∂N/∂x → −Q(−∂N/∂x) is then convex,
which allows for direct solution of any point N(x, t) from initial and boundary conditions by applying
variational theory (Evans 2002; Daganzo 2005). Whenever there are multiple candidate characteristics
from the initial and boundary conditions passing through point (x, t), variational theory tells us that
the correct solution N(x, t) is theminimum of all values corresponding to those candidate characteris-
tics. This Newell–Luke minimum principle (Luke 1972; Newell 1993) allows us to solve N(x, t) without
explicitly keeping track of any shocks. In this process, the variational theory allows us to include can-
didate characteristics that do not carry the true traffic state at the initial or boundary condition, but
some other traffic state, as such inclusion will not affect the minimum N(x, t).

The FD from the previous subsection is however only concave for k < kJ . The extension of the
congested branch beyond jam density gives rise to additional types of possible shocks and fans.
Specifically, the solution can now also involve deceleration fans with constant traffic state (kJ , 0) and
acceleration shocks with shock speeds slower than the wave speed in congestion v′ = qC/(kC − kJ).
Examples of such acceleration shocks and deceleration fans are illustrated in the Riemann problems of
Figure 7. These possibilities are in addition to the acceleration fans and deceleration shocks that can
normally occur in a solution with a concave FD. The solution may even involve combined shocks and
fans, as illustrated in Figure 8.

The introduction of acceleration shocks has an important consequence for solutionmethods based
on variational theory: we can no longer apply the Newell–Lukeminimumprinciple to resolve any con-
flicts between candidate characteristics. Yet, we still have that all candidate characteristics pose some
sort of constraints onN. Using logical reasoningabout the traffic processesbeneath apair of conflicting
candidate characteristics, we can still deduce whether the candidate characteristic yielding minimum
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Figure 7. Example Riemann problems showing an acceleration shock (left) and a deceleration fan (right).

Figure 8. Example Riemann problems showing a combined acceleration shock and acceleration fan (left) and a combined
deceleration shock and deceleration fan (right).

N wins the conflict or whether the one yielding maximum N wins. Specifically, in case of a potential
deceleration shock, both candidate characteristics form upper bounds on N, so that the minimum N
wins. Likewise, in case of a potential acceleration shock, they form lower bounds onN, so that themax-
imum N wins. Overall, we thus can still construct the solution using variational theory, as long as we
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are aware of the nature of the comparison of candidate characteristics. The link model formulation in
the next section takes advantage of this.

4. Linkmodel formulation

With the LWR theory and FD specification from Section 3, we now develop the link model in this
section. This section is structured as follows. Section 4.1 discusses the shape of the boundary and ini-
tial conditions. Using these shapes, Section 4.2 outlines the general solutionmethod for all link model
components. Then, Section 4.3 derives a procedure for computing the within-link densities, Section
4.4 derives a procedure for computing the receiving flow, and Section 4.5 derives a procedure for
computing the sending flow.

4.1. Shapes of boundary and initial conditions

Since the LTM assumes link inflows and link outflows to be constant for the duration of some chosen
time windows, the upstream and downstream boundary conditions of the link consist of piecewise-
constant flows, with each piece formed by the solution of the nodemodel of the LTM. The cumulative
vehicle number N will thus be piecewise-linear in t. Note that if this does not hold for the alge-
braic network-level solution, the LTM results will be a numerical approximation. This approximation is
imposed by the structure of the LTM and also occurs in other discrete-time traffic simulation models.

The shape of initial conditions is chosen to be restricted for a consistency reason. The initial den-
sity profile of a link must be piecewise-linear in x (that is, along the link), with permitted jumps. Thus,
in combination with the Smulders FD, in general the initial cumulative vehicle number N will be
piecewise-parabolic in x. The pieces need not have equal spatial length. Note that piecewise-constant,
constant and zero density profiles are special cases of the piecewise-linear density profile.

The consistency reason is that the shape of the initial condition corresponds with the possible
shapes of within-link traffic state profiles that can be produced through simulation with the Smul-
ders FD shape and piecewise-constant boundary flows. This consistency is proven in Lemma 4.1.1 and
Theorem 4.1.1, provided that a minimum amount of time has passed since the initial condition. We
use L = xL − x0 to denote link length, i.e. the distance from the upstream end x0 to the downstream
end xL.

Lemma1: Alonga characteristicwithwave speed ∂x/∂t ∈ [vC , uF], it holds that ∂N = −∂xκ(∂x/∂t). This
expression is parabolic in ∂x.

Proof: Rearranging Equation (6), we find

∂N = Q(k)∂t − k∂x =
(
Q(k)

∂t

∂x
− k

)
∂x = −

(
k − Q(k)

∂x/∂t

)
∂x. (12)

To be a characteristic, traffic state (k,Q(k)) must match with wave speed ∂x/∂t. Assuming (k,Q(k)) is
a free-flow traffic state (k ≤ kC) with corresponding wave speed ∂x/∂t ∈ [vC , uF], the factor between
parentheses in Equation (12) equals the definition of κ(∂x/∂t) in Equation (11). After substitution, we
get

∂N = −∂xκ

(
∂x

∂t

)
= 1

4
uF2kC
uF − uC

∂t − 1
2

uFkC
uF − uC

∂x + 1
4

kC
uF − uC

∂x2

∂t
(13)

which is parabolic in ∂x. �

Theorem 1: With N piecewise-parabolic in x at the initial condition, and N piecewise-linear in t at the
upstream and downstream boundary conditions, L/vC or more time later, N is again piecewise-parabolic
in x.
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Figure 9. Density k versus location x at various times for the platoon example from Figure 2.

Proof: All traffic stateswithin the link at the target timemusthavebeencarried thereby characteristics
originating from the initial and boundary conditions. Characteristics emanated from the downstream
boundary condition result inN beingpiecewise-linear in x, sinceN is piecewise-linear in t at the bound-
ary and no rarefaction waves are possible. Characteristics emanated from the initial condition cannot
result in traffic states with k < kC as those characteristics leave the downstream link end within L/vC
time. Because of the shape of the FD for k ≥ kC , rarefaction waves will carry a constant traffic state
of either (kC , qC) or (kJ , 0), resulting in N being linear in x. Other characteristics will simply translate
the initial condition, which has N piecewise-parabolic in x. Finally, characteristics emanated from the
upstream boundary condition will carry constant traffic states that result in N piecewise-linear in x,
unless they are part of rarefaction waves that, based on Lemma 4.4.1, result in N parabolic in x (e.g.
Figure 9 shows k = −∂N/∂x linear in x). Combining all pieces from all characteristics completes the
proof.

�

Theorem 4.1.1 implies we can use the same procedure for applying initial conditions at the start
of a simulation as we can for changing the FD, which involves computing and preserving the current
within-link density profile. Thus, we can and will develop an exact procedure for this computation, so
that no (new) numerical errors are introduced. It implies a minimum time of L/vC between the last
application of an initial condition to the link and the computation of within-link densities. In practice,
this will pose a limit on, e.g. how frequently the FD of a link can be changed during a simulation. If
needed, this limitation can always be circumvented by splitting long links into shorter ones.

The above piecewise descriptions of the boundary and initial conditions are put in the mathe-
matical form in Table 1. Each boundary condition piece AB is specified by a start time tA, an end
time tB, a start cumulative NA, and an end cumulative NB. Each initial condition piece AB is specified
by an upstream location xA, a downstream location xB, an upstream cumulative NA, a downstream
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Table 1. Piecewise descriptions of the boundary and initial conditions.

Downstream
boundary condition Initial condition

Upstream boundary
condition

Space–time illustration

Space–time domain {xL} × [t∗ , t] [x0, xL] × {t∗} {x0} × [t∗ , t]
Piece parameters tA , tB ,NA ,NB xA , xB ,NA ,NB , fAB tA , tB ,NA ,NB

Piece space–time
illustration

Piece space–time
domain

{xL} × [tA , tB] [xA , xB] × {t∗} {x0} × [tA , tB]

Piece cumulative N
N(xL, τ) = NAB(τ )

= (tB−τ)NA+(τ−tA)NB
tB−tA

N(x, t∗) = NAB(x)

= (xB−x)NA+(x−xA)NB
xB−xA

− fAB
(xB−x)(x−xA)

2

N(x0, τ) = NAB(τ )

= (tB−τ)NA+(τ−tA)NB
tB−tA

Piece flow q = ∂N/∂t q(xL , τ) = qAB = NB−NA
tB−tA

q(x, t∗) = Q(k(x, t∗)) q(x0, τ) = qAB = NB−NA
tB−tA

Piece density
k = −∂N/∂x

k(xL , τ)
assumed= kJ + qAB

v′

k(x, t∗) = NA−NB
xB−xA

+ fAB
(xB−x)−(x−xA)

2

kA+ = lim
x↓xA

k(x, t∗)

= NA−NB
xB−xA

+ fAB
xB−xA

2

kB− = lim
x↑xB

k(x, t∗)

= NA−NB
xB−xA

− fAB
xB−xA

2

k(x0, τ)
assumed= K(qAB)

Piece second
spatial derivative
−∂k/∂x =
∂2N/∂x2

− ∂k
∂x (xL , τ) = 0 − ∂k

∂x (x, t
∗) = fAB − ∂k

∂x (x0, τ) = 0

cumulative NB, and a second derivative of the cumulative over space fAB. Because of Theorem 4.1.1,
computed within-link density profiles can be described using the same piecewise formulation as the
initial condition.

4.2. General solutionmethod

Now that the shapes of the boundary and initial conditions and within-link density profiles have all
beendetermined,weproceedwithdevelopingalgorithms for the three linkmodel components. These
components are responsible for the computation of thewithin-link density profile, the computation of
constraints on future link inflow that determine the receiving flow, and the computation of constraints
on future link outflow that determine the sending flow. All three components follow the same general
solution procedure, which can be summarised as follows:
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1. Iterate over the pieces of the boundary and initial conditions in counter-clockwise direction in the
space–time plane in, starting with the downstream boundary.

2. Analyse how candidate characteristics emanated from the current piece or point affect the
solution.

3. Apply the relevant candidate characteristics to the solution, resolving any conflicts with previous
candidate characteristics in a pre-specified way.

If all candidate characteristics relevant to the solution are considered, all relevant real characteristics
must be among the candidates. If the conflicts between candidate characteristics are also resolved cor-
rectly, the eventually resulting candidate characteristics must be real characteristics and our resulting
solution must thus be correct. Because the FD from Section 3.2 is not entirely concave in the flow-
density plane, we explicitly consider the nature of the candidate characteristics we are comparing as
proposed in Section 3.3.

Note that the conflict resolution step looks for conflicts between two sets of candidate character-
istics: the previous candidates and the new candidates. The output is a new, merged set of candidate
characteristics with conflicts resolved. In this resolution process, we not only removemultivaluedness
ofN in the candidate solutionbut alsomaintain continuity ofN in the candidate solutionbyeliminating
crossing candidate characteristics. This is permitted because characteristics cannot cross, and greatly
simplifies the resolution process. Namely, in case of a conflict, the merging of both input sets can only
introduce one new shock in the output set, with candidate characteristics from each one input set on
one side of the new shock. Only if one input set fully dominates the other, the output set equals this
input set and no new shock is introduced.

To ensure all candidate characteristics possibly affecting the link are taken into account, the traffic
states on the downstream boundary are assumed to be on the congested branch of the FD and the
traffic states of the upstream boundary are assumed to be on the free-flow branch of the FD. These
assumptions are indicated in Table 1 and are based on the need for candidate characteristics to enter
the link. The kind of candidate characteristics emanated from a piece of the initial condition depend
on whether the density is lower than the critical density (Free-flow), between the critical density and
jam density (Congested), or exceeding the jam density (Jammed). Wewill treat these cases separately.
Therefore, ensure that all the pieces AB satisfy

∀x ∈ (xA, xB) : k(x, t
∗) ≤ kC︸ ︷︷ ︸

type Free - flow

∨ ∀x ∈ (xA, xB) : kC ≤ k(x, t∗) ≤ kJ︸ ︷︷ ︸
type Congested

∨ ∀x ∈ (xA, xB) : kJ ≤ k(x, t∗)︸ ︷︷ ︸
type Jammed

,

(14)
by splitting unclassifiable pieces into smaller pieces wherever the density passes kC or kJ .

In the following three subsections, each component is discussed individually.

4.3. Computing thewithin-link density profile

We start in this subsection with the computation of within-link densities. Although the proof of
Theorem 4.1.1 already hints at which candidate characteristics to take into account to compute the
within-link densities, it does not yet offer formulas for them nor specifies how to resolve conflicts
between characteristics that result in multi-valued N. We will now develop the method in detail, cal-
culating the within-link density profile at (current) time t, assuming a time difference with the initial
condition of at least L/vC in accordancewith Theorem4.1.1. The output consists of an exact, piecewise
description of N(x, t) on [x0, xL] × {t}, without any discretisation of space within the link, in the same
piecewise format as the initial condition.

All candidate characteristics relevant to the computation of the within-link density profile are
described in Table 2. Each row represents a class of relevant candidate characteristics emanating
from different pieces and points of the boundary and initial conditions. Space–time visualisations of
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Table 2. Candidate characteristics affecting the within-link density profile.

Space–time
illustration

Candidate characteristics
beginnings and endings

Ending cumulative N and
second spatial derivative

−∂k/∂x = ∂2N/∂x2
Conflict
resolution

[1] Piece of downstream boundary condition:
{xL} × [tA , tB] →[

max(x0, xL + (t − tA)v′),
xL + (t − tB)v′

]
× {t}

N(x, t) = N
(
xL , t + xL−x

v′
)+ (xL − x)kJ

− ∂k
∂x (x, t) = 0

N/A

[2] Consecutive pieces of initial condition, type Congested or Jammed upstream of type Free-flow:

{xB} × {t∗} →[
max(x0, xB + (t − t∗)v′),

xL

]
× {t}

N(x, t) = NB + (t − t∗)qC − (x − xB)kC

− ∂k
∂x (x, t) = 0

min

[3] Piece of initial condition, type Congested:

[xA , xB] × {t∗} →[
max(x0, xA + (t − t∗)v′),

xB + (t − t∗)v′

]
× {t}

N(x, t) = N(x − (t − t∗)v′, t∗) + (t − t∗)v′kJ
− ∂k

∂x (x, t) = fAB
N/A

[4] Piece of initial condition, type Jammed:

[xA , xB] × {t∗} →
[xA , xB] × {t}

N(x, t) = N(x, t∗)
− ∂k

∂x (x, t) = fAB
max

[5] Consecutive pieces of initial condition, type Free-flow or Congested upstream of type Jammed:

{xB} × {t∗} →[
max(x0, xB + (t − t∗)v′),

xB

]
× {t}

N(x, t) = NB + (x − xB)kJ

− ∂k
∂x (x, t) = 0

max

[6] Piece of upstream boundary condition:
{x0} × [tA , tB] →[

x0 + (t − tB)V(qAB),

min(x0 + (t − tA)V(qAB), xL)

]
× {t}

N(x, t) = (tB−t)NA+(t−tA)NB
tB−tA

− (x − x0)K(qAB)

− ∂k
∂x (x, t) = 0

min

[7] Consecutive pieces of upstream boundary condition:
{x0} × {tB} →[

x0 + (t − tB)V(qBZ),

min(x0 + (t − tB)V(qAB), xL)

]
× {t}

N(x, t) = NB − (x − x0)κ
(
x−x0
t−tB

)
− ∂k

∂x (x, t) = 1
2

kC
uF−uC

(t − tB)−1
min

how these characteristics emanate from the boundary and initial conditions are provided in the first
column, including the naming of points used later in the row.

The second column gives a mathematical description of the space–time origins of the candidate
characteristics as well as their destinations at time t when the within-link density profile is calculated.
These destination sets are intersected with [x0, xL] × {t} to eliminate candidate characteristics that
have left the link before time t and hence do not affect the within-link densities at that time.

For the remaining candidate characteristics, the third column gives the formulas for the corre-
sponding values of cumulative N at their destinations, obtained by integrating N over the candidate
characteristic. The formula for its second spatial derivative ∂2N/∂x2 = −∂k/∂x is also listed; due to
Theorem4.1.1 its value is constant. Together, the spatial endpoints of the destinations in the sec-
ond column and the formulas in the third column allow construction of a candidate piece of the
piecewise-parabolic solution.
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Finally, the fourth column indicates how any conflicts with previously found candidate pieces
are to be resolved, assuming candidate characteristics are considered in counter-clockwise order as
described in Section 4.2:

• ‘N/A’ means that no conflicts are possible;
• ‘min’ means that the candidate characteristics yielding minimum N should be kept;
• ‘max’ means that the candidate characteristics yielding maximum N should be kept.

If there are conflicts to be resolved, the ‘ ’ symbol indicates that the new candidate characteristics
corresponding to this row of the table must be on the upstream side of a newly created shock. This
specifies the searching direction for the possible shock through the previous candidate pieces. The
location of any shock between the new candidate piece and a previous candidate piece between their
spatial endpoints is to be determined with the quadratic formula. If a shock is found, the previous
piecewise solution is truncated to the shock location before the new (truncated) piece is added to the
solution. Appendix A.1 describes this process in more detail.

We will now describe each row of Table 2:

[1] Each piece of the downstream boundary condition is assumed to be congested and hence gener-
ates candidate characteristics withwave speed v′, representing a constant congested traffic state.
Because all these characteristics run in parallel, no conflict occurs.

[2] Characteristics from pieces of the initial condition of type Free-flow can no longer affect the link
interior at time t because they reach the downstream link end before that time. However, if such
a piece has another piece of type Congested or Jammed upstream of it, the acceleration fan
emanated from between these pieces can affect the solution. This fan carries the capacity state
(kC , qC). Its upstream end is limited by wave speed v′, while its downstream end can always reach
the downstream link end. If the fan conflicts with any previous candidate characteristics, the fan
represents an upper bound on the flow into the congestion (k ≥ kC) represented by the previous
candidate characteristics. A conflict is thus resolved by taking minimum N, possibly resulting in a
deceleration shock.

[3] A piece of the initial condition of type Congested emanates candidate characteristics with wave
speed v′, translating the traffic states from the initial condition and therefore preserving the
second spatial derivative. They run parallel to previous candidate characteristics and hence no
conflicts occur.

[4] A piece of the initial condition of type Jammed emanates candidate characteristics with zero
speed. If these conflict with previous candidate characteristics, the previous candidates repre-
sent the outflow (k ≤ kJ) from this jam. A conflict is thus resolved by taking maximum N, possibly
resulting in an acceleration shock.

[5] If a piece of the initial condition of type Jammed has another piece of type Free-flow or
Congested upstream of it, a deceleration fan is emanated from between the pieces. This
fan carries the jammed state (kJ , 0). Its wave speeds range from v′ to zero. Like the previ-
ous row, a conflict is resolved by taking maximum N, possibly resulting in an acceleration
shock.

[6] Each piece of the upstream boundary condition is assumed to be free-flow and hence gener-
ates candidate characteristics representing a constant free-flow traffic state, with the wave speed
from Equation (10). They form an upper bound on flow into downstream traffic states in case
of conflict, which is thus resolved by taking minimum N, possibly resulting in a deceleration
shock.

[7] Between two consecutive pieces of the upstream boundary condition, an acceleration fan can
be emanated and equation determine the cumulative and second spatial derivative at its desti-
nation. Like the previous row, a conflict is resolved by taking minimum N, possibly resulting in a
deceleration shock.
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4.4. Computing the receiving flow

The receiving flow is the maximum flow that can enter the link at x0. At the start of the simulation,
the downstream boundary condition is unknown, thus it is clearly not possible to determine all link
inflow constraints at once. We shall assume that the downstream boundary condition is only known
up to the current time t, which, by the CFL condition, suffices to compute any constraints on future
cumulative inflow until t − L/v′. Equation (1) converts these cumulative inflow constraints into the
receiving flow.

The main feature of the computation of the receiving flow in this subsection and the sending flow
in the next subsection is that they consider the implications of the initial and boundary conditions for
all future cumulative inflow and outflow simultaneously, instead of looking at only one time step at a
time. This means that the bulk of the work in Algorithm 1 is done in steps 5 and 6 rather than steps
1 and 2, similar to Gentile and Papola (2009b) and Gentile (2010). This increases the computational
efficiency compared to Van der Gun, Pel, and Van Arem (2017) because it avoids the need to iterate
over all possible wave speeds every time step.

Similar to Section 4.3, Table 3 lists all candidate characteristics relevant for future inflow constraints.
The first column provides a space–time visualisation of the characteristics. The second column indi-
cates the space–time origins and destinations of the characteristics. The third column gives formulas
for the destination cumulative N and its second time derivative ∂2N/∂t2 = ∂q/∂t. Because the second
time derivative is always constant, it is possible to compute an exact, piecewise-parabolic description
of the cumulative inflow constraints. However, since the calculation of receiving flows only needs to
know the cumulative inflow constraint at a finite set of times, it ismore convenient to directly calculate
the cumulative inflow constraint at these specific times only. The fourth column indicates whether to
keep theminimumormaximumN in case of conflicts. The ‘ ’ symbol specifies the searching direction
for shocks, indicating that the new candidate characteristics corresponding to this row will be on the
before side of any shock with previous candidate characteristics (see Appendix 3).

We will now describe each row of Table 3:

[1] Assuming the link outflow after current time t would be zero, the assumed future downstream
boundary condition generates candidate characteristics with wave speed v′ carrying traffic state
(kJ , 0). Because of satisfaction of the CFL condition, this assumption does not affect the rele-
vant part of the solution (t + �tx0 ≤ t − L/v′) and applying these candidate characteristics is thus
entirely optional. We do include this row for two reasons. First, it makes it easier to update the
cumulative inflow constraints when new pieces of the downstream boundary condition become
known, without redoing the entire computation. This is discussed further below. Secondly, it
ensures the cumulative inflow constraints always end in constant N (row [1] or row [5]), allowing
the constraints applying to an infinite future to be more easily stored in finite computer memory.

[2] Each piece of the downstream boundary condition produces congested traffic states with wave
speed v′. No conflict occurs.

[3] Characteristics from between pieces of the initial conditions of type Congested or Jammed and
type Free-flow form a fan carrying capacity state (kC , qC), between wave speeds v′ and vC . In
case of conflict with previous candidate characteristics, this fan represents inflow into previous
congestion (k ≥ kC). A conflict is thus resolved by taking minimum N.

[4] Each piece of the initial condition of type Congested produces congested traffic states with wave
speed v′. No conflict occurs.

[5] The upstream end of a piece of the initial condition of type Jammed generates a fan of candidate
characteristics carrying traffic state (kJ , 0), between wave speeds v′ and zero. In case of conflict,
previous characteristics represent the outflow (k ≤ kJ) from this jam fan. A conflict is thus resolved
by taking maximum N.

[6] From the last known upstream point (x0, t), one candidate characteristic carrying capacity state
(kC , qC) restricts future inflow. In case of conflict, this represents inflow into previous congestion
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Table 3. Candidate characteristics affecting future link inflow.

Space–time illustration
Candidate characteristics
beginnings and endings

Ending cumulative N and
second time derivative

∂q/∂t = ∂2N/∂t2
Conflict
resolution

[1] Most recent downstream point:
{xL} × [t,∞) →
{x0} ×

[
t − L

v′ ,∞
) N(x0, τ) = N(xL , t) + LkJ

∂q
∂τ

(x0, τ) = 0
N/A

[2] Piece of downstream boundary condition:
{xL} × [tA , tB] →
{x0} ×

[
tA − L

v′ ,
tB − L

v′

] N(x0, τ) = N
(
xL , τ + L

v′
)

+ LkJ
∂q
∂τ

(x0, τ) = 0
N/A

[3] Consecutive pieces of initial condition, type Congested or Jammed upstream type Free-flow:

{xB} × {t∗} →
{x0} × [t∗ − xB−x0

v′ ,∞) N(x0, τ) = NB + (τ − t∗)qC + (xB − x0)kC
∂q
∂τ

(x0, τ) = 0
min

[4] Piece of initial condition, type Congested:

[xA , xB] × {t∗} →
{x0} ×

[
t∗ − xA−x0

v′ ,
t∗ − xB−x0

v′

] N(x0, τ) = N(x0 − (τ − t∗)v′ , t∗) − (τ − t∗)v′kJ
∂q
∂τ

(x0, τ) = v′2fAB
N/A

[5] Piece of initial condition, type Jammed:

{xA} × {t∗} →
{x0} × [t∗ − xA−x0

v′ ,∞) N(x0, τ) = NA + (xA − x0)kJ
∂q
∂τ

(x0, τ) = 0
max

[6] Most recent upstream point:

{x0} × {t} →
{x0} × [t,∞)

N(x0, τ ) = N(x0, t) + (τ − t)qC
∂q
∂τ

(x0, τ) = 0
min

(k ≥ kC). A conflict is thus resolved by taking minimum N. This row is equivalent to limiting the
receiving flow to qC�tx0 .

We now discuss how the cumulative inflow constraints resulting from this computation can be
updated when new pieces of the downstream and upstream boundary conditions become known
in steps 5 and 6 of Algorithm 1. For a new piece of the upstream boundary condition, this is as simple
as applying row [6] again.

Due to the previous assumption of zero flow in row [1], a new piece of the downstream boundary
condition can only relax the constraints on future inflow. However, the upper bounds posed by rows
[3] and [6] still apply. Based on the mathematical principle

min(a, max(b, c)) = max(min(a, b), min(a, c)), (15)

we can update the previously calculated cumulative inflow constraints by taking themaximumN, pro-
vided that theminimum N operations associated with rows [3] and [6] are first applied to the updated
candidate characteristics from rows [1] and [2]. This does not require iterating over the initial condition
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on every update of the downstream boundary condition: since all constraints based on rows [3] have
identical flow qC , one is themost constraining for every update, requiring only that one to be applied.
The searching direction for the update is ‘ ’.

4.5. Computing the sending flow

The sending flow is the maximum flow that can leave the link at xL. At the start of the simulation, the
upstream boundary condition is unknown, thus it is clearly not possible to determine all link outflow
constraints at once. We shall assume that the upstream boundary condition is only known up to the
current time t, which, by the CFL condition, suffices to compute any constraints on future cumulative
outflow until t + L/uF . Equation (1) converts these cumulative outflow constraints into the sending
flow.

Similar to the last two subsections, Table 4 lists all candidate characteristics relevant for future out-
flow constraints. Unlike Table 3, the third column does not list the second time derivative. The reason
for this is that it is not always constant; a piecewise-parabolic description of the cumulative outflow
constraints thus cannot be constructed. Since the calculation of sending flows only needs to know the
cumulative outflow constraint at a finite set of times, one directly calculates the cumulative outflow
constraint at these specific timesonly. Because the calculationof outflowconstraints only involves can-
didate characteristics associatedwith the concave free-flow branch of the FD, all conflicts are resolved
by taking minimum N. The searching direction for shocks is always ‘ ’, meaning that new candidate
characteristics will be on the after side of a shock with previous candidate characteristics. An example
is provided in Appendix A.2.

We will now describe each row of Table 4:

[1] From the last knowndownstreampoint (xL, t), one candidate characteristic carrying capacity state
(kC , qC) restricts future outflow. This row is equivalent to limiting the sending flow to qC�txL .

[2] A piece of the initial condition of type Free-flowemits candidate characteristics that either diverge
(∂k/∂x < 0), converge (∂k/∂x > 0), or run in parallel (∂k/∂x = 0). Within the fan, the candidate
characteristic ending at (xL, τ) originates from the point (X(τ ), t∗),
where X(τ ) is the solution of xL − X(τ ) = (τ − t∗)V(k(X(τ ), t∗)). If in case of convergence, the
point of convergence is upstream of xL, the link outflow is unaffected.

[3] A fan of candidate characteristics can be emanated from between two pieces of the initial
condition of type Free-flow. If the density upstream of the point does not exceed the density
downstream of the point, no fan occurs and the link outflow is unaffected.

[4] Similarly, a fan of candidate characteristics is emanated from between two pieces of the initial
conditionof typeCongestedor Jammedand typeFree-flow. For the infinitepart of the fan carrying
constant capacity state (kC , qC), only the first point in time needs to be applied: row [1] will then
ensure the capacity state is continued into later sending flows.

[5] A fan of candidate characteristics can be emanated from between a piece of the initial condition
of type Free-flow and an adjacent piece of the upstream boundary condition. If the wave speed
downstream of the point does not exceed the wave speed after the point, no fan occurs.

[6] Each piece of the upstream boundary condition generates candidate characteristic carrying a
constant free-flow traffic state, with corresponding wave speed.

[7] A fan of candidate characteristics can be emanated from between two pieces of the upstream
boundary condition. If the flow after the point does not exceed the flow before the point, no fan
occurs.

When anewpiece of thedownstreamboundary conditionbecomes available in step 5of Algorithm
1, row [1] can simply be applied again to update the cumulative outflow constraints.When a newpiece
of the upstream boundary condition becomes known in step 6 of Algorithm 1, one can update the
constraints by applying either row [5] or [7], followed by row [6] for the new piece.
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Table 4. Candidate characteristics affecting future link outflow.

Space–time illustration
Candidate characteristics
beginnings and endings Ending cumulative N

Conflict
resolution

[1] Most recent downstream point:

{xL} × {t} →
{xL} × [t,∞)

N(xL , τ) = N(xL, t) + (τ − t)qC N/A

[2] Piece of initial condition, type Free-flow:

[xA , xB] × {t∗} →

{xL} ×
⎡
⎣t∗ + xL−xB

V(kB− )
,

t∗ + xL−xA
V(kA+ )

⎤
⎦

N(xL , τ) = N(X(τ ), t∗)

− (xL − X(τ ))κ
(
xL−X(τ )
τ−t∗

)

where X(τ ) =
xL−(τ−t∗)

(
uF+

(
NA−NB
xB−xA

+fAB
xA+xB−2x0

2

)
dV(k)
dk

)

1−(τ−t∗)fAB
dV(k)
dk

with dV(k)
dk = −2 uF−uC

kC

min

[3] Consecutive pieces of initial condition, type Free-flow upstream of type Free-flow:

{xB} × {t∗} →

{xL} ×
⎡
⎣t∗ + xL−xB

V(kB+ )
,

t∗ + xL−xB
V(kB− )

⎤
⎦ N(xL , τ) = NB − (xL − xB)κ

(
xL−xB
τ−t∗

)
min

[4] Consecutive pieces of initial condition, type Congested or Jammed upstream of type Free-flow:

{xB} × {t∗} →
{xL} ×

[
t∗ + xL−xB

V(kB+ )
,∞
) N(xL , τ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

NB − (xL − xB)κ
(
xL−xB
τ−t∗

)
if τ ≤ t∗ + xL−xB

vC

NB + (τ − t∗)qC − (xL − xB)kC

if τ ≥ t∗ + xL−xB
vC

min

[5] Piece of initial condition, type Free-flow, connected with piece of upstream boundary condition:
{x0} × {t∗} →

{xL} ×
[

t∗ + L
V(kA+ )

,

t∗ + L
V(qAZ )

]
N(xL , τ) = NA − Lκ

(
L

τ−t∗
)

min

[6] Piece of upstream boundary condition:
{x0} × [tA , tB] →

{xL} ×
[

tA + L
V(qAB)

,

tB + L
V(qAB)

]
N(xL , τ) = (tB−τ)NA+(τ−tA)NB

tB−tA
− LK

(
NB−NA
tB−tA

)
min

[7] Consecutive pieces of upstream boundary condition:
{x0} × {tB} →

{xL} ×
[

tB + L
V(qAB)

,

tB + L
V(qBZ )

]
N(xL , τ) = NB − Lκ

(
L

τ−tB

)
min

5. Simulation study

As a demonstration of the capabilities of the extended link model, we simulate the Dutch A13 motor-
way corridor from theKleinpolderplein interchangenear Rotterdam to theYpenburg interchangenear
The Hague, with a length of 12 km, having five off-ramps and six on-ramps. Section 5.1 introduces
the simulation setup and scenario, followed by visualisations of the results in Section 5.2 and model
computation times in Section 5.3.

The raw input andoutput data of all simulations in this section are publishedby Vander Gun (2018).
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Figure 10. A13 flow at crash location and applied traffic control.

5.1. Simulation setup and scenario

The link capacities in our simulations are based on the Dutch motorway capacity manual with a 2%
truck percentage (Grontmij 2015), reducedwith 5% to correct for the absence of a capacity drop in our
current model. For uncontrolled links, we assume a free speed of 110 km/h, a critical speed of 90 km/h
and a wave speed in congestion of -20 km/h. The node model is taken from Tampère et al. (2011). In
the simulations, traffic is disaggregated using destination-based commodities (see Appendix 2).

The same corridor was already simulated in Van der Gun, Pel, and Van Arem (2017) for various
evening peaks in September 2012. In this paper, we will focus on the evening peak of 11 September
2012. Around 15:45 that day, a crash occurred between the 10th off-ramp and on-ramp (University),
just before the end of the peak hour lane. Despite the absence of injuries, the incident partly blocked
the road for more than one hour until around 17:00, after which the released traffic triggers the recur-
rent bottleneck downstream of the 9th on-ramp (Delft). The flow and speed as measured on loop
detectors just downstream of the incident location are shown in the top half of Figure 10.

During this evening peak, variable speed limits and dynamic lane management were applied, pri-
marily through variable message signs (VMSs) mounted on gantries. The variable speed limits were
partly set manually by the traffic management centre and partly automatically by the queue tail warn-
ing system (Dutch: filestaartbeveiliging). In both cases, the purpose is to avoid unsafe situations. The
opening and closing of lanes are always manual. Besides lane closures at the incident location, the
entire peak hour lane was closed for the duration of the incident, presumably to keep a clear path for
emergency services. Within the simulated time period therewere also two temporary closures of parts
of the peak hour lane and the closure of the peak hour lane at the end of the peak period. All displayed
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Figure 11. A13 corridor network.

speed limits and lane closures are visualised in the bottomhalf of Figure 10. They give rise to a substan-
tial number of FD changes throughout the simulation, which makes this scenario an interesting test
case for the link model improvements developed in this paper. In this demonstration, we will simply
impose the speed limits as they were displayed in reality rather than making them responsive to the
congestion as it occurs in the simulation, although we emphasise the latter is also possible with our
model, since it does not need to know any FDs ahead of time.

To account for the spatial detail in the traffic control measures of this scenario – each link can only
have one FD at a time – we split links at VMS gantries. For lane drops, the merging area is explicitly
modelled with the capacity contribution of the terminating lane equal to 20% of a normal lane. We
also insert an extra link of 100 m length around the crash location, so that we can separately model
the driving behaviour near the crash location. The resulting network graph consists of 48 links and 49
nodes and is depicted in Figure 11.

For changes in the availability of lanes, we scale the FD of a link in the flow-density plane with
respect to theorigin towards the capacity value corresponding to theopen lanes.Weuse theupstream
gantry to decide whether lanes are open. The variable speed limits yield the following transformation
of the FD in the speed-density plane:

⎛
⎜⎜⎜⎜⎝
kC

kJ

uF

uC

⎞
⎟⎟⎟⎟⎠

VSL(ū)−→

⎛
⎜⎜⎜⎜⎝
max

(
kC ,

kJ
1−ū/v′

)
kJ

ū

min(uC , ū)

⎞
⎟⎟⎟⎟⎠ . (16)

Similar to Hegyi, De Schutter, and Hellendoorn (2005a, 2005b), for each density, this transformation
reduces the possible speeds to adhere to the new speed limit ū, while maintaining the extended
Smulders FD shape. (Because the speed limits are not used for homogenisation purposes, a possi-
ble increase in capacity as suggested by, e.g. Cremer (1979) and Smulders (1990) is less important in
this scenario.) To account for the relatively high non-compliance for VMS-displayed speed limits in
the Netherlands, we add 20 km/h to the displayed speed limit in simulation. The speed limits are also
taken from the upstream gantry, unless there is an on-ramp between the link and that gantry and the
downstream gantry displays a higher speed limit.

During the incident, the crash link uses a triangular FD with a low capacity and a low free speed
set based on measurements. The used parameters are indicated in the top half of Figure 10. Since
the wave speed in congestion is unchanged, the jam density is also low. While the crash site could
alternatively be modelled more simply as a single node with a node flow constraint, similar to e.g. the
ramp metering by Hajiahmadi et al. (2013), we opted for a link to test our extended link model with
relatively extreme FD changes.

Our simulation study also includes non-empty initial conditions at the start of the simulation for
the motorway links. To construct the initial conditions, we take the first flow measurement from each
loop detector, transform those into densities for each link using the free-flow FD branch and linearly
interpolate the densities between the loops.
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Figure 12. A13 measurements and simulation results for the extended LTM, traditional LTM, and extended CTM.

We conduct three separate simulations of this evening peak:

• The first simulation uses the LTM with variable FDs and initial conditions as proposed in this
paper. Time step sizes differ per node based on the CFL conditions of connected links (�t ∈{
1, 12 ,

1
3 ,

1
4 ,

1
6 ,

1
8 ,

1
12 ,

1
16 ,

1
24 ,

1
48

}
min).

• The second simulation uses the LTMwith fixed FDs, i.e. no variable speed limits and an always-open
peak hour lane, and without initial conditions. The capacity restriction at the crash site is modelled
as a simple node flow constraint. Time step sizes again differ per node.

• The third simulation emulates the CTM solution scheme with variable FDs and initial conditions. It
uses an equal time step size �t = 1

41 min for all nodes, based on the most constraining CFL con-
dition. The number of cells is then maximised in each link, as this minimises the numerical error
of the CTM (Van Wageningen-Kessels 2013). The CTM solution scheme is emulated by simplifying
the initial conditions to a constant density per cell, updating these after every time step using CTM
rules, and starting the next time step from the updated initial conditions.

5.2. Visualisations of simulation results

The simulation results are visualised in Figure 12, which shows the flow, speed and density from the
loop detector measurements along with the results from the three simulations. Note that since Dutch
loop detectors only record flow and time mean speed, the space mean speed is only an estimate
and hence the density, computed as k = q/u, may be rather inaccurate for high densities (Knoop,
Hoogendoorn, and Van Zuylen 2009). Because the LTM only computes traffic states at the bound-
aries of space–time rectangles as in Figure 3, the simulation results are further post-processed for the
visualisation.

With the non-empty initial conditions, we see that the LTM no longer needs a warm-up period
before providing realistic results. After the onset of the incident, the closing of the peak hour lane
turns out to be important to reproduce the queue spillback – with fixed FDs, the queue density is too
high and the spillback is too slow. The speed limits from thequeue tail warning result in amore gradual
speed reduction than just one shock, but, in accordancewith Equation (16), do not affect traffic already
driving slower than the new free speed.

The CTM and LTMwith variable FDs and initial conditions yield very similar results, but the CTM has
greater numerical diffusion. This increased diffusion in the CTM is particularly evident in the less crisp
contact discontinuities between traffic states in congestion.
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Figure 13. Congestion onset after the crash in simulation results for the extended LTM, traditional LTM, and extended CTM.

Figure 13 zooms in on the onset of congestion and shows that the extended LTM correctly han-
dles FD changes that result in the jam density being exceeded. The solution contains two acceleration
shocks, one on the crash link starting at 16:00 due to a change in driving behaviour at the crash loca-
tion and one on the link before that starting at 15:58 due to a lane closure, and no negative flows or
speeds occur. At this zoom level, we also clearly see that the numerical diffusion of the CTM is much
greater than that of the LTM.

After the incident is cleared, the re-opening of the closed lanes and removal of the speed limits are
well reproducedby the extendedLTM linkmodel. Thegrowingoscillations in the congestionupstream
of the incident and the stop-and-go waves originating from the recurrent bottleneck are not repro-
duced in the simulation, but these arewell-known limitations of LWR theory towhich the LTMandCTM
calculate solutions. Despite this limitation, the shape of the congestion is reasonably well reproduced.
Oneparticularly interestingdetail is that themost severe stop-and-gowave, reachingKleinpolderplein
around 18:10, does showup in the simulation – albeit with a lower density – due to an earlier lane drop
making existing congestion more severe.

Overall, we conclude that our extended LTM works as expected based on LWR theory and our
FD specifications, and that the simulation result indeed improves by taking the variable FDs and ini-
tial conditions into account. Compared to the CTM, this is achieved with considerably less numerical
diffusion.

5.3. Model computation times

We finally compare the computation time of the simulations. In addition to the three simulations from
the previous subsection, we include three more simulations where the LTMs and CTM use the same
discretisation, i.e. an equal time step size �t = 1

41 min for all nodes and only one CTM cell per link.
This decreases the accuracy and computation time for the CTM, but further increases the accuracy
and computation time for the LTMs.

All six simulations of 4.5 hours simulated time are executed 101 times in randomised order, using
a single thread on a PC with an Intel Xeon E5-1650 3.20 GHz CPU and 32 GB RAM. Table 5 lists the
median execution times per simulation type. The execution times include initialisation of the simula-
tion model but exclude file input/output. The post-processing of results for visualisations like in the
previous subsection is also excluded from this benchmark.

The results show that the (extended) LTM can be a very fast simulation tool. Despite the large num-
ber of FD changes in our simulated scenario, we see that their impact on the computation time of
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Table 5. Computation times of the simulations.

LTM with variable FDs
and initial conditions

LTM with fixed FDs without
initial conditions

CTM with variable FDs
and initial conditions

Optimal discretisation (Section 5.2) 0.073 s 0.064 s 0.296 s
Equal discretisation (equal time
steps, one CTM cell per link)

0.239 s 0.228 s 0.271 s

the LTM remains fairly small. The ability of the LTM to use different time step sizes per node greatly
improves its performance in a network with some short links, while remaining very accurate. Our
extended LTM is about four times as fast as a CTM for a comparable numerical accuracy as in Figure 12.
Conversely, with an equal discretisation and similar computation time, our extended LTM has consid-
erablybetter numerical accuracy than theCTM.Despitebeing important forCTMaccuracy, thenumber
of cells within links only has a minor impact on CTM efficiency because their computations are a lot
simpler than general nodes.

6. Discussion

In our link model formulation, all vehicles simultaneously on a link are assumed to adhere to the same
FD, and thus simultaneously change their driving behaviour when a new FD is specified for the link.
Some researchersmight insteadprefer amodel that uses amulti-class LWR theory (Loggheand Immers
2008), which was applied by Smits, Bliemer, and Van Arem (2011) and Hajiahmadi et al. (2013) in an
LTM context. Suchmulti-class approaches allow e.g. assigning driving behaviour to vehicles upon the
moment they enter the link, which they then retain while driving on the link, which Hajiahmadi et al.
(2013) did for variable speed limits. This may be more realistic in some cases, e.g. when traffic rules
for the link are displayed on gantries at the link entrance like in our case study, as drivers are unable
to see rule changes after they entered the link. However, there are also important disadvantages to
this alternative modelling approach. Firstly, it becomes much more difficult to develop a non-cell-
based solution scheme, particularly when the model simultaneously has to support non-triangular
FDswhose parameters can vary arbitrarily, and first-in-first-out behaviour no longer applies. Secondly,
the assumption of driving behaviour being fixed after entering the link may itself be invalid, as drivers
notice other drivers behaving differently, if drivers adapt to VMSs they see downstream, if information
is provided in-vehicle, or if the FD change reflects a change in environmental conditions such as the
weather.

For readers primarily interested in using ourmodel to start their simulations with a non-empty net-
work,wewould like to remark that this uses as input anexplicit initial distributionof density over space,
and that this is not the only possible way to start an LTM simulation with a non-empty network. For
example, when simulating two scenarios that only diverge after a certain point in time, it can bemore
convenient to simply make a copy of the model’s computer memory at that point in simulation time,
than to compute thewithin-link densities and use those to start the second simulation. Similarly, in our
case study we could alternatively have used loop flowmeasurements from shortly before the studied
time period to warm up the links. This however does rely on the initial data indeed consisting of point
measurements over some prior time period (as opposed to spatial measurements at one moment in
time) during which the FD is known, and if the FD changes during or prior to the simulation, one still
needs to use our extended link model.

Another point of discussion is the chosen Smulders FD shape.While the choice of this specific shape
is a limitation compared to other LTM formulations supporting more general FD shapes, our chosen
free-flow branch shape does support subcritical delays and platoon dispersion. Although the shape of
the congested branch is less sophisticated, we believe it suffices for most use cases, and its simplicity
allows us to compute within-link densities without having to wait for all slow congested waves from
the initial condition to leave the link. The non-negativity of speeds and flows when densities exceed
the jam density enhances the robustness of model applications.
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One previous LTM feature that is neverthelessmissing fromour current FD shape is a capacity drop.
Van der Gun, Pel, and Van Arem (2017) previously formulated such an extension to the LTM, using
an inverted-lambda style FD, which was able to produce stop-and-go waves. As a generalisation of
Algorithm6 in their paper, it is possible todivide thewithin-link space into an areawhereonly free-flow
traffic states and one selected ‘coasting state’ with a density higher than the free-flow critical density,
and a more downstream area where only traffic states with flows lower than the queue discharge
rate can occur. This can be used to algebraically compute within-link densities, also in case of an initial
condition.However,wearenot awareofwhether/howonecan simultaneously satisfy Equation (7). The
adaptation to include a capacity drop alsomakes the derivation and formulation of the extended LTM
considerably different, more complex, and harder to understand from the perspective of traditional
LWR theory. For these reasons, we chose to not include a capacity drop in this paper.We do encourage
future research into this topic because depending on its results, it could be very useful to combine a
capacity drop and support for link-based traffic management in one simulation model.

As an alternative to our chosen Smulders FD in the current paper, we could have adopted an
FD that is piecewise-linear in the flow-density plane in its entirety. Since this results in less smooth
subcritical delay function than Figure 1, we believe this can only be beneficial if combined with an
event-based continuous-time network solution scheme (Raadsen and Bliemer 2018) instead of the
less-complex and more-developed discrete-time scheme we used. An event-based adaptation of our
work can however be an interesting avenue for future research that is likely feasible.

Some readersmaywonderwhether our extended linkmodel can be embedded in the iterative LTM
solution scheme (Himpe, Corthout, and Tampère 2016), allowing larger time steps than Equation (2)
andwarm-starting an optimisation or equilibration procedure (Himpe and Tampère 2016). In this case,
themost recent parts of the link boundary conditions that are needed for the computation of sending
and receiving flows, are not yet known, but an estimate is available, allowing those estimates to be
iteratively updated until sufficient convergence is reached. Hence, it is possible to make it work. First,
at the start of a time step, one takes the discrete-time constraints on future cumulative inflows and
outflows andmakes a back-up copy in computermemory. Then, ‘update’ the link boundary conditions
as estimated, and compute the sending and receiving flows. As long as another iteration of the same
time step is necessary, revert the constraints to their back-up copy and ‘update’ them with the newer
estimates instead. Once converged, continue with the next time step. Because the support for initial
conditions in the sending and receiving flow computations is retained and the computation of within-
link densities is not affected by the larger time steps, thismakes all features of our extended linkmodel
available.

Finally, we emphasise the computational efficiency of our extended link model. Based on our
remarks in Section 4.4 and Appendix A.2, we conclude that the computation of sending and receiv-
ing flows requires the same or fewer iterations than previous discrete-time link model formulations
in literature. Each computation of within-link density profiles and application of initial conditions only
incurs a one-time computational cost per link, so the additional computation time for these new fea-
tures should be limited for most applications, e.g. in case of a limited number of FD changes. The high
numerical accuracy of the LTM is preserved. The high efficiency and accuracy have been validated in
Section 5.

The computer memory requirements are also limited and independent of the duration of the sim-
ulation. For the calculation of within-link densities, only the most recent parts of the downstream
boundary condition (last −L/v′ time) and the upstream boundary condition (last L/vC time) need to
be known. Older traffic states from the boundary conditions cannot affect the current within-link den-
sities anymore and can thus be forgotten, so that longer simulations do not require more computer
memory. Note that the initial conditionmust be remembered, since initial densities exceeding the jam
density may remain present on the link indefinitely. The computations of the receiving and sending
flows additionally need to store cumulative inflow and outflow constraints for a finite number of time
points in the near future. These data can be handled efficiently using a (variable-size) circular buffer
data structure instead of a traditional array.
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7. Conclusions

With a derivation from LWR theory, we extended the link model of the discrete-time LTM with the
capabilities of using non-empty initial conditions and computing within-link density profiles, using
a Smulders FD with no negative flows or speeds beyond the jam density. When combined, they can
be used to fuse data or to instantaneously change the FDs of links within an LTM simulation. These
extra capabilities, which were previously only available using memory-less numerical schemes like
the CTM, introduce no new numerical error to the LTM. Since each invocation of the new capabili-
ties involves only a one-time computational cost penalty, the LTM remains suitable for the efficient
multi-commodity simulation of large general networks, and outperforms the CTM.

We demonstrated the benefit of the abilities to change FDs and use initial conditionswith a numer-
ical example with variable speed limits and dynamic lane management. These and other possible
applications of this robust general-purpose linkmodel extension, e.g. involving traffic control, changes
in environmental conditions and driver behaviour, and real-time forecasts significantly extend the
potential application domain of the LTM and, by extension, efficient large-scale simulations based on
LWR theory. We look forward to future research on such advanced applications.
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Appendices

Appendix 1: Notation

Coordinates

x location
x0 location of upstream link end
xL location of downstream link end
L link length
t time in general or current time
τ time in general
t∗ time of most recent initial condition
�t time step size
�tx0 time step size of upstream node
�txL time step size of downstream node
Link transmission model structure
S(t), Si(t) sending flow (of link i) in time step starting at time t
Sij(t) part of sending flow of link i destined for link j in time step starting at time t

https://doi.org/10.4121/uuid:c7dd3a61-1bed-4858-b294-93acd960a645
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R(t), Rj(t) receiving flow (of link j) in time step starting at time t
Gij(t) transition flow from link i to link j in time step starting at time t
Traffic flow theory
k, k(x, t) density (at space–time point (x, t))
q, q(x, t) flow (at space–time point (x, t))
N, N(x, t) cumulative number of vehicles (at space–time point (x, t))
Nmax(x, t) upper bound on cumulative number of vehicles at space–time point (x, t)
Fundamental diagram
Q(k) flow as function of density k
U(k) speed as function of density k
V(k), V(q) free-flow branch wave speed as function of density k or flow q
K(q) free-flow branch density as function of flow q
κ(v) flow-density plane tangent line density-axis intercept (non-positive) as function of free-flow branch wave speed v

uF free speed
uC critical speed, i.e. speed at capacity
kC critical density, i.e. density at capacity
vC critical wave speed, i.e. maximumwave speed at capacity
v′ wave speed in congestion (negative)
kJ jam density
Piecewise descriptions
xA location of point A
tA time of point A
NA cumulative number of vehicles of point A
fAB second spatial derivative of cumulative number of vehicles on piece AB
NAB(x), NAB(τ ) cumulative number of vehicles on piece AB as function of location x or time τ

qAB flow on piece AB
kA+ density immediately downstream of point A
kA− density immediately upstream of point A

Appendix 2: Multi-commodity support
Since Yperman et al. (2006), the LTM can be used in amulti-commodity fashion, e.g. to disaggregate traffic by destination
for route choice purposes. Yperman et al. (2006) disaggregate traffic (potentially) leaving a link by looking at the traffic
composition when this traffic entered the link. We note that this is problematic when the network is not empty at the
start of the simulation. There are two possible solutions.

The first solution is to construct a virtual link inflow history prior to the start of the simulation, which is then only used
to disaggregate traffic on the link. This is the solution we use for the simulations in Section 5. Multiple virtual past time
steps can be used to denote changes in initial traffic composition along the link.

Alternatively, this problem can be avoided by instead storing the traffic composition per link as an explicit first-in-first-
out (FIFO) queue in computer memory, whose initial state can be provided along with the initial conditions for the traffic
positioning on the link. Here, ‘queue’ refers to the computer data structure, not to the traffic phenomenon. Each entry
in this queue is an unordered collection of pairs of vehicle type and vehicle amount. Each time step, each node partially
or completely consumes entries from the fronts of the queues of incoming links until it cannot accept more flow, and
adds a new entry to the backs of the queues of each outgoing link that receives flow. For partially consumed entries, the
consumption of vehicle types is proportional to their amounts.

A secondary benefit of such an explicit FIFO queue is that it is more efficient, since the computational cost of disag-
gregation no longer depends on the total number of commodities in the link or network, and it avoids storing a separate
cumulative inflowhistory per commodity inmemory. Thenodemodel algorithmcanbemodified toprefer strict FIFOover
strict conservation of turning fractions. (Node model applications usually prefer strict conservation of the specified turn-
ing fractions, that is, when they change the outflow of a link, the composition of this outflow is not updated accordingly.)
We refer to Van der Gun, Pel, and Van Arem (2016, 918) for a further elaboration.

Appendix 3: Conflict resolution examples
In this appendix, we explain the conflict resolution for Section 4 inmore detail, with two examples: computing thewithin-
link density profile in continuous coordinates (Part A.1) and computing link outflow constraints in discrete coordinates
(Part A.2).
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A.1. Conflict resolution in continuous coordinates
Supposeweare calculating thewithin-link density profile, forwhich the intermediate solution so far consists of four pieces
EF, FG,GH, andHI (xE < xF < xG < xH < xI ,NE ≥ NF ≥ NG ≥ NH ≥ NI). Using the second and third columns of Table 2, we
construct some new candidate piece OP (xO < xP , NO ≥ NP). Suppose the conflict resolution method indicated in the
fourth column is ‘ min’. The upward ‘ ’ arrow means we start at low x, i.e. we first decide whether the upstream point
O of the candidate piece should be added to the intermediate solution. This is the case if xO lies in front of the previous
upstream end of the intermediate solution (xO < xE ) or if NE is smaller (because of ‘min’) than the previous intermediate
solution evaluated at x0.

If true, and if xP > xE , we need to find the shock between the new candidate characteristics and those of the previous
intermediate solution. In this example we assume xF ≤ xO < xG . Then, piece EF can be discarded immediately since only
the new candidate piece can be upstream of the shock (because of ‘ ’). The next piece of the previous intermediate
solution is FG. If xG ≤ xP and NOP(xG), the cumulative value of piece OP evaluated at xG, is smaller (because of ‘min’) than
NG, piece FG is also discarded. This is repeated until a next piece, e.g. piece HI, for which this condition no longer holds.
Finally, solving {

NOP(x) − NHI(x) = 0

d
dx (NOP(x) − NHI(x)) > 0

(A1)

for x using the quadratic formula (> because ‘min’) gives the location of the shock, to which both pieces are then
truncated. The new candidate piece is now added to the intermediate solution.

Implementers are advised to be wary of the finite precision of floating-point number representations, to prevent
rounding errors from resulting in extremely short pieces in the calculated solution that do not exist in the true algebraic
solution.

A.2. Conflict resolution in discrete coordinates
Suppose we are calculating the link cumulative outflow constraints with discrete time steps, for which the intermediate
solution so far is ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Nmax(xL, t + �txL ) = N1

Nmax(xL, t + 2�txL ) = N2

Nmax(xL, t + 3�txL ) = N3

Nmax(xL, t + 4�txL ) = N4

Nmax(xL, t + n�txL ) = N5 + (n − 5)qC�txL∀n ∈ {5, 6, 7, . . .}

(A2)

for some N1,N2,N3,N4,N5. Using the second and third columns of Table 4, we construct some new constraints⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N̂max(xL, t + 2�txL ) = N̂2

N̂max(xL, t + 3�txL ) = N̂3

N̂max(xL, t + 4�txL ) = N̂4

N̂max(xL, t + 5�txL ) = N̂5

(A3)

with some N̂2, N̂3, N̂4, N̂5. The conflict resolution method indicated in the fourth column is ‘ min’. The leftward ‘ ’
arrow means we start at a high time, i.e. we first decide whether the constraint at time t + 5�txL must be lowered in
our intermediate solution (because of ‘min’).

If true (N̂5 < N5), we need to find the shock between the new candidate characteristics and those of the previous
intermediate solution. We update the intermediate solution at t + 5�txL , and discard the previous constraints for time
t + 6�txL and later since the shock must be before the new candidate characteristics (because of ‘ ’). We next look at
time t + 4�txL and update it as well if N̂4 < N4. This iteration continues until all new constraints are processed or until
e.g. t + 3�txL if N̂3 ≥ N3. The updated intermediate solution is now⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nmax(xL, t + �txL ) = N1

Nmax(xL, t + 2�txL ) = N2

Nmax(xL, t + 3�txL ) = N3

Nmax(xL, t + 4�txL ) = N̂4

Nmax(xL, t + 5�txL ) = N̂5

(A4)

Note that this searching direction allows terminating the iteration as soon as the shock is found; e.g. the computation
of N̂2 can be skipped. This avoids the need to iterate over the entire new set of candidate characteristics when not all of
them are relevant, increasing computational efficiency compared to Gentile and Papola (2009b) and Gentile (2010).
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