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A B S T R A C T

A model is developed to predict bending vibrations of flood gates with fluid on both sides. The
liquid flow is three-dimensional and the gate is represented as a thin plate. The fluid response is
considered within the linear potential flow theory including the effect of compressibility and the
generation of free surface waves. This way, the hydrodynamic fluid pressure exerted on the gate
is predicted accurately in both low and high-frequency regimes. Both the structural and fluid
responses are expressed in the modal domain as a superposition of modes. A semi-analytical
solution of the fluid-interaction problem is obtained by describing the complete system in terms
of in vacuo gate modes, which is computationally efficient compared to existing numerical
methods. This allows for the accurate prediction of flood gate vibrations for a large number of
simulations, making it possible to perform fatigue calculations and probabilistic evaluations. The
case of a typical flat flood gate subjected to an impulsive wave impact is studied with the de-
veloped model. Results show the capability of the model to efficiently quantify flood gate vi-
brations considering the involved fluid-structure interaction, which can lead to more economical
designs compared to common engineering practice.

1. Introduction

Flood and lock gates are generally subjected to time-varying loads induced by a variety of sources, such as waves, water flow,
earthquakes, wind and tides. Whether these forces lead to significant vibrations, depends on their magnitude and frequency, and the
characteristics of the gate-fluid system. The trend to realise gates of increasing scale, contributes to the relevance of taking their
dynamic behaviour into consideration from early design stages. A key application in which the dynamic behaviour of gates is
relevant, is that of coastal flood gates subjected to wave impacts. These impacts are generally accompanied with high local peak
pressures of short duration [1–3].

The magnitude of the dynamic response of a gate does not only depend on the structural characteristics, but is also affected by the
interaction with the surrounding fluid [4]. Due to the complexity involved in solving fluid-structure interaction problems, it is
common engineering practice to design these gates based on a quasi-static approach in which the effect of the vibrations is accounted
for by applying a dynamic amplification factor. The structure is often simplified to a single degree of freedom (SDOF) system [5,6].
Hattori and Tsujioka [7] have performed a series of experiments on the response of elastic plates to wave impacts, and compared the
measured response to the theoretical response based on a SDOF system. The dynamic properties of the plate in fluid were experi-
mentally determined. The results show a relatively high discrepancy between measurements of the wall deflection and the prediction
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by the single degree-of-freedom model. Although SDOF models yield theoretical insight, they lack the precision to capture the three
dimensional vibration behaviour of a gate-fluid system, which significantly limits their applicability as a design instrument. The
locality of the peak pressures accompanied with wave impacts complicates the problem further. Currently, vertical breakwaters such
as caissons subjected to wave impacts are most commonly designed on the basis of guidelines developed by Goda [8]. Due to their
relatively high mass, the dynamic response of caissons is generally reduced compared to the quasi-static consideration. To the
authors’ knowledge no similar guideline exists for the design of vertical flood gates, such as sluice and sea lock gates. Hence, the
formulas of Goda are also used for hydraulic structures at the moment [9,10].

The dynamic behaviour of submerged plates and the involved fluid-structure interaction have been continuously investigated in
the past century. Advanced methods to study vibrations influenced by fluid-structure interaction can be divided into three main
categories: finite element methods (FEM), boundary element methods (BEM), and (semi)analytical solutions [11]. Lamb [4] was the
first to calculate the change in resonance frequency of a thin flexible circular plate extended by an infinite rigid baffle due the
presence of incompressible fluid. Many analytical solutions, developed later on, depend on the assumption that the structural modes
in the submerged system are approximately the same as the in vacuo modes, which is subscribed to Lamb's work. This will be referred
to as the assumed-modes approach. In this case the effect of the surrounding fluid on the respective natural frequencies can be
determined by applying hydrodynamic coefficients [12] or the nondimensionalized added virtual mass incremental (NAVMI) factors
[13]. Kolkman [14] presents a simple numerical scheme to obtain the added mass coefficient for a given geometry based on in-
compressible fluid and a null potential at the free surface. Westergaard [15] derived an analytical expression for the hydrodynamic
pressures for the situation of a two-dimensional vertical rigid dam adjacent to an infinitely long and wide reservoir with compressible
fluid, which is still used in engineering practice. Fu and Price [16] studied the vibration behaviour of partially and totally immersed
plates, solving the fluid pressure by employing the Green's function. The vibrational mode shapes of the plate in fluid were considered
the same as the in vacuo modes. The effect of the free surface was investigated and shown to have a significant effect on the resonance
frequencies. A similar problem was considered by Ergin and Ugurlu [17] in which the in-vacuo dynamic properties of the plate were
obtained using standard finite-element software. The fluid response was determined by the use of a boundary integral equation
method together with the method of images.

Kwak [18], Amabili and Kwak [19], Amabili et al. [20] compared natural frequencies obtained by the NAVMI factor solution and
the more accurate Rayleigh-Ritz method for rectangular, circular, and annular plates respectively for a situation similar to the Lamb
problem. It was found that the fundamental mode and frequency were well estimated by the assumed-modes approach, while higher
modes were computed with less accuracy. Tubaldi and Amabili [21] investigated the stability of an infinitely long and wide plate
subjected to a pulsating potential flow based on linear dynamics. Tubaldi et al. [22] considered the non-linear dynamic behaviour of
the same problem. The flow-induced vibrations of radial and other shell type gates were studied analytically and experimentally in
Anami et al. [23,24] and Ishii and Knisely [25]. The coupled hydrodynamic mass and damping were considered for two structural
modes, being the streamwise bending of the skin plate and the rotation of the entire gate. Kvalsvold and Faltinsen [26] studied the
vibrations of wave slamming against wetdecks of catamaran-type vessels. The wetdeck is modelled as a simply supported bending
beam, interacting with the fluid in a two-dimensional domain. The fluid response is determined both analytically and numerically by
using the Green's function. The fully coupled gate-fluid problem is subsequently solved by using a fourth order Runge-Kutta in-
tegrator. Korobkin and Khabakhpasheva [27] studied a similar problem into more detail including the wetting process and pene-
tration stage based on a modified method of normal modes.

In Tsouvalas and Metrikine [11,28] a semi-analytical model based on linear dynamics is presented to investigate the vibro-
acoustic behaviour in offshore pile driving. Due to the high frequencies and water depths involved in this application, the effect of
surface waves was omitted. Contrary to many other studies, the fluid problem is solved based on the separation of variables tech-
nique. A coupled modal analysis is performed in which the fluid and soil responses are described in terms of in vacuo structural
modes. The fluid response therewith becomes an implicit part of the model. The interaction problem between structure and fluid is
solved efficiently in this way. Leblond et al. [29] apply a similar approach for the bending of an elastic cylinder, represented as a
beam. Three fluid models are considered, namely potential, viscous and acoustic. The modal time dependent displacement coeffi-
cients are obtained by matrix inversion in the Laplace domain and fast numerical inversion of the Laplace transform.

Finally, most finite element (FE) packages are able to solve fluid-structure interaction problems for complex geometries. Although
developments occur continuously, numerical models including fluid-structure interaction are still computationally expensive and
therefore not applied in common engineering practice to test various design parameters and boundary conditions for three dimen-
sional problems [30].

In the present study a model is developed to predict the bending vibrations of a flood gate immersed in fluid. Both fluid com-
pressibility and free surface waves are considered so that the hydrodynamic fluid pressure exerted on the gate is predicted accurately
in both low- and high-frequency regimes; this is expected to be relevant for typical flood gates subjected to wave impacts. The
approach is similar to Tsouvalas and Metrikine [11] but the effect of free surface waves is added, which is important for the study
under consideration. This is the first novel contribution of the paper. The structural and fluid responses are expressed in the frequency
domain as a superposition of modes. A semi-analytical solution of the fluid-interaction problem is derived by describing the complete
system in terms of in vacuo gate modes. This requires to solve the structure and fluid eigenvalue problems only once for a given
geometry and the information can be stored and used subsequently to calculate the response of the system to various load cases. This
is a fundamental benefit compared to existing numerical methods. The gate-fluid system is three dimensional, allowing one to study
the response to local peak pressures accompanied with wave impacts. In this study, the modal shapes of the gate are based on thin
plate theory. However, the method allows for the use of any set of structural modal shapes, which could be obtained by standard FE
software for more realistic gate designs.
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The obtained model is able to solve the fluid-interaction for flood gate vibrations computationally efficient and accurately, and is
therefore suitable as a preliminary design tool and a large number of simulations. The case study in this paper indicates that this may
lead to more economical gate design. Additionally, the model approach allows one to perform fatigue calculations and probabilistic
evaluations. The latter is especially interesting as it allows one to study the structural response taking into account the uncertainty
associated with wave impacts. This complies to the highly variable nature of wave impacts, as discussed in Hofland et al. [2], in
which waves with very similar characteristics lead to significantly different peak pressures. The failure probability of the gate can be
quantified explicitly by applying a probabilistic approach based on the developed model, which is valuable for flood safety assess-
ments.

The structure of this paper is as follows. The geometry of the model is described in Section 2. The structure and fluid problem are
formulated by linear potential flow and thin plate theory in the time and frequency domains in Section 3. In Section 4, first the
structural and fluid modal decomposition is discussed. Subsequently, the fluid-structure interaction problem is tackled. In Section 5
the developed model is applied to a typical case of an impulsive wave impact on a flood gate. The model is validated by comparison
with a standard software package in Section 6. Finally, results are discussed in Section 7.

2. Model description

The typical situation of a closed flood gate in a discharge sluice is represented by the model geometry shown in Fig. 1. The sluice
has impermeable vertical walls and a horizontal bottom, so that the cross-section of the water body is rectangular. To simplify the
analytical derivations, the sluice is assumed to be infinitely long in y-direction. However, cases in which the sluice is of finite
dimensions can be treated as well with the adopted modelling approach. The water depths hl and hr at the left and right side of the
gate respectively, may vary between zero and up to the height of the gate.

The gate structure is represented by a thin plate, that is considered to be homogeneous and isotropic. It is assumed that the contact
surface between the structure and fluid is a continuous vertical plane on both sides of the gate. The accuracy of the prediction for
more complex gate designs can be improved relatively easily by determining the structural modal shapes with existing FE packages.
The developed approach and solution remain identical, as long as the contact surfaces between the gate and fluid are vertical. The
aim is to improve suitability of this method for more complex gate geometries and structure-fluid interfaces in further studies.

The gate has a width Lx (equal to that of the sluice), height Lz, distributed mass per unit surface s, and uniform bending rigidity
=D Et /(12(1 ))3 2 , in which E is the modulus of elasticity, t is the thickness of the gate, and ν is the Poisson's ratio.
The gate is simply supported at its vertical boundaries ( =x 0, =x Lx) and bottom ( =z 0) while its top edge ( =z Lz) is stress-free.

It is possible to incorporate more complex boundary conditions such as partially clamped in this model as well. In order to keep
derivations in this study clear, these relatively simple boundary conditions are chosen without loss of generality.

The fluid system is assumed stationary at both sides with its free surface at hl and hr . In the present study a measured breaking
wave impact is applied as the excitation force on the gate. The impact pressure is considered to be independent from the gate-fluid
system, i.e. the still standing water level is not changed. This assumption is expected to reasonable for wave impacts, as these are
typically of much shorter duration (10–100ms) than the period of the corresponding free surface wave ( 10 s) [2]. Furthermore,
Cooker and Peregrine [31] developed a mathematical model to predict the wave impact pressure impulse and found it to be only
weakly dependent on the shape of the free surface boundary for a similar model geometry. The validity of this assumption is planned
to be tested further in experiments in ongoing studies.

3. Theoretical formulation

The governing equations describing the motion of the gate structure and fluid, as defined in previous section, are first introduced.
Equations of motions and boundary conditions are presented in the time domain, and subsequently transformed to the frequency
domain.

3.1. Structural problem

The linear bending vibrations of a homogeneous isotropic rectangular thin plate are described by the following equation of
motion [32]:

Fig. 1. Three dimensional overview of the plate model space.
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in which w denotes the displacement of the mid-surface of the plate, s is the distributed mass per unit of area, fe the time signal of the
external force distribution on the plate (e.g. the wave impact), and fl and fr define the fluid pressures at either sides acting on the
surface of the gate. As the plate is considered geometrically thin, shear deformation is neglected in Eq. (1). For the cases considered,
the wavelengths excited in the structure are large compared to the thickness of the plate which further justifies the choice of the low-
order plate theory neglecting high-order effects.

At the simply supported edges the displacement and bending moment in the respective direction are zero. The stress-free top edge
of the plate states zero moment and effective Kelvin-Kirchoff shear force in z-direction [33]. The boundary conditions are therefore as
follows:

= = = = = = = =w x z M x z w x L z M x L z( 0, ) ( 0, ) ( , ) ( , ) 0xx x xx x (2)

= = = = = = = =w x z M x z M x z L V x z L( , 0) ( , 0) ( , ) ( , ) 0zz zz z zy z (3)

in which Mxx and Mzz are the bending moments in x- and z-direction respectively, and Vzy is the net shear force in y-direction.
It is assumed that the spatial distribution of the force does not change in time, i.e. the force is separable in a space-dependent part

f x zˆ ( , )amp and time dependent part f t( )t . Using the Fourier transform pair as stated in Eqs. (4) and (5), transformation to the frequency
domain is possible, i.e.:

=G g t e dt˜ ( ) ( ) ti
(4)

=g t G e d( ) 1
2

˜ ( ) ti
(5)

in which g t( ) is the examined quantity and G̃ ( ) its amplitude in the frequency domain, being in this case the displacement of the
gate or the fluid pressure. Applying Eqs. (4) and (5) in Eq. (1) yields:
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in which w̃ denotes the complex vibration amplitude of the gate in the frequency domain.

3.2. Fluid problem

The fluid domains at both sides of the plate are mirrored in y-direction. For brevity, the fluid pressure equations are elaborated for
a single side of the gate, i.e. >y 0, in this and the following section, and the subscripts l or r are omitted.

The fluid is considered irrotational and inviscid. It is to be expected that viscosity plays a negligible role in the dynamic response
of the fluid for flood gates. In the wave impact case studied in Section 5 the maximum fluid velocity amplitude is approximately 2m/
s. With a hydraulic radius of the sluice channel of about 4m this leads to a Reynolds number in the order of 106, which is well within
the regime where viscous forces are negligible compared to inertial forces.

Based on above consideration the motion of the compressible fluid can be described in terms of the velocity potential ϕ by: The
motion of the compressible fluid is described by:

=x y z t
c

x y z t
t

( , , , ) 1 ( , , , ) 0
p

2
2

2

2 (7)

in which is the Nabla operator, and cp is the sound velocity in water. From the dynamic part of the linearised Bernoulli equation for
unsteady flow follows the fluid pressure relates to the velocity potential as follows:

=p x y z t x y z t
t

( , , , ) ( , , , )
f (8)

The velocity vector of the fluid is given as:

=v x y z t x y z t( , , , ) ( , , , ) (9)

The boundary conditions at the impermeable sluice walls and bottom simply state zero velocity. At the still water level of the fluid
the free surface condition is applied as known from linear wave theory. At the structure-fluid interface velocity compatibility is
inforced. This yields the following set of boundary conditions:

= = =
= = =

x y z t
x

x y z t
x

x y z t
z

( , , , ) ( , , , ) ( , , , ) 0
x x L z0 0x (10)

+ =x y z t
t

g x y z t
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2
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Finally, at y the radiation conditions should be satisfied at all times, which completes the statement of the problem.
After transformation to the frequency domain Eqs. (7)–(12) become:
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2 2 (13)
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y
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with =k c/f p
2 2 2.

4. Solution to the fluid-structure interaction problem

An analytical solution to the system of equations introduced in previous section is derived by performing a coupled modal
analysis. The structural and fluid response are expressed first in terms of modes of vibration. Subsequently, the kinematic condition is
satisfied at the structure-fluid interface and the forced system of equations is solved.

This method is aimed at efficiently solving the interaction between structure and fluid. It however remains possible (and in most
cases favourable) to evaluate the separate structural and fluid modes and corresponding natural frequencies numerically. In this way,
the advantages of existing FE models can be exploited. The fluid equations will be solved completely analytically, since the relatively
simple model geometry and separable fluid equation of motion allows for such a treatment in this case. Secondly, from a structural
design perspective this is favourable, as it makes possible to quickly evaluate the behaviour of a gate in fluid based on an eigenvalue
analysis of the in vacuo gate model in a standard FE package. The modal shapes and natural frequencies of the plate structure are
partially found numerically.

4.1. Structural modal expansion

The plate response can be described as the summation of in vacuo modes multiplied by unknown modal amplification:

=
= =

w x z A W x z˜ ( , ) ( , )
m k

km km
1 1 (19)

in which Akm are the yet unknown modal amplitudes of each structural mode Wkm. The modal shapes and corresponding natural
frequencies km can be found by solving the homogeneous part of Eq. (6) either analytically or numerically. Given the simply-
supported boundary conditions along the x-direction in the examined case, a solution can be searched for by applying the separation
of variables technique, i.e.:

=W x z W x W z( , ) ( ) ( )km x k z m, , (20)

The modal shapes are orthogonal so that the following holds:

=W W km ln0 forkm ln (21)

4.2. Fluid modal expansion

The solution to the equation of motion of the fluid, i.e. Eq. (13), can be searched for by applying the separation of variables
technique assuming a solution in the following form:

=x y z X x Y y Z z˜ ( , , ) ( ) ( ) ( ) (22)

Substitution into the equation of motion yields three ordinary differential equations including unknown wave numbers kx , ky, and
kz for each direction that should fulfill the following condition:
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+ + =k k k k 0x y z f
2 2 2 2 (23)

For the considered boundary conditions the following infinite number of modes is found for the x- and z-directions:

=X x k x( ) cos( )p x p, (24)

=Z z k z( ) cos( )r z r, (25)

with =p 1,2, .., and =r 1,2, .., . The constants are defined by:

=k p
L

( 1)
x p

x
, (26)

= gk k htan( )z r z r
2

, , (27)

with h being the water depth at the considered side of the gate. Eq. (27) is known as the surface wave dispersion equation. Solving
this equation for a given frequency, yields two imaginary eigenvalues for kz r, (one positive and one negative), and an infinite number
of real valued roots.

The solution in y-direction states:

=Y y B e( )p pr
k yi y pr, (28)

in which Bpr are unknown fluid modal coefficients. The separation constants ky pr, are known from Eq. (23):

= ±k k k ky pr f x p z r,
2

,
2

,
2

(29)

For >y 0, a decaying field representing the evanescent waves along the y-direction holds for Im k( ) 0y pr, while the radiation
condition at infinity requires Re k( ) 0y pr, . In the ideal case examined here, in which the damping in the fluid region is completely
neglected, the latter condition for the propagating modes should always be confirmed by verifying that the group velocity of the
waves propagating along the y-direction is positive. This condition is associated with the proper definition of energy propagation
towards the positive y-direction carried by the propagating modes in the medium. It can be shown that for the ideal fluid waveguide it
is indeed sufficient to consider the poles located on the positive real axis (for >y 0). In more complex waveguides, however, i.e.
acousto-elastic layered media, this is not aways the case as discussed in van Dalen et al. [34]. Naturally, the inclusion of a small
amount of damping will shift the poles to the right half of the complex wavenumber plane making the selection of the proper poles
quite straightforward and the need to check the group velocity altogether unnecessary. Thus for the domain >y 0 we impose
Re k( ) 0y pr, and Im k( ) 0y pr, as shown in Fig. 2.

The representation of the response of the fluid domain in the form of a modal sum over an infinite set of eigenfunctions is exact
provided that all poles can be accurately determined in the complex wavenumber plane. Based on complex countour integration and
residue theorem it can be shown that for the considered problem this is indeed the case [35].

Combining the modal expansions for the fluid in each direction yields the following expression for ˜:

= =
= = = =

x y z B k z k x e B x z e˜ ( , , ) cos( ) cos( ) ( , )
p r

pr z p x r
k y

p r
pr pr

k y

1 1
, ,

i

1 1

iy pr y pr, ,

(30)

in which x z( , )pr are the two-dimensional modal fluid shapes in the plane parallel to the surface of the gate. A similar expression
holds for <y 0 in which the roots located in the upper half-plane of Fig. 2 need to be considered.

Fig. 2. Contour integration plot for the domain >y 0 together with the roots of the dispersion relation for a range of arbitrary parameters.
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4.3. Kinematic interface condition between the structure and the fluid

To describe the fluid pressures, excited by the movement of the gate, the solutions for w̃ and ϕ, shown in Eqs. (19) and (30), are
substituted into the interface condition of Eq. (18). This yields the following expression:

= =
= =

=
= = = = = =

B x z d e
dy

A W x z k B x z A W x z( , ) ( ) | i ( , ) i ( , ) i ( , )
p r

pr pr
k y

y
m k

km km
p r

pr pr pr
k m

km mk
1 1

i
0

1 1 1 1 1 1

y pr,

(31)

The orthogonality property of the fluid modes yields the following mathematical result:

= =
= =

x z dx dz( , )
1, if p q and r s
0, if p q or r s

S
pr qs pq rs pr pq rs

w (32)

in which Sw is the surface occupied by the stationary fluid at =y 0, pq and rs are Kronecker deltas and pr is the result of the surface
integration. Eq. (31) is multiplied by another fluid mode qs, and integrated over the water depth and sluice width to obtain:

=
= = = =

k B A W x z x z dx dz( , ) ( , )
p r

pr pr pq rs pr
m k

km
S

mk pr
1 1 1 1 w (33)

The left-hand side of above equation is non-zero only when =p q and =r s. This yields the following expression for Bpr :

=
= =

B
k

A Qpr
pr pr k m

km km pr
1 1

,
(34)

with the variable Qkm pr, introduced for convenience of notation:

=Q W x z x z dx dz( , ) ( , )km pr
S

mk pr,

w (35)

The fluid modal coefficients Bpr are now fully described in terms of the structural modal coefficients in a manner similar to
Tsouvalas and Metrikine [11]. The coefficients are substituted in the solution for ˜ and subsequently in Bernoulli's pressure equation
(14). This way the fluid pressure throughout the sluice has been obtained:

=
= = = =

p x y z A
Q

k
x z e( , , ) i ( , )f f

m k
mk

p r

km pr

y pr pr
pr

k y2

1 1 1 1

,

,

i y pr,

(36)

At the surface of the gate (y= 0) the exponential term drops.
From Eq. (36) it can be seen that the real values of ky pr, correspond to the propagating modes and yield an imaginary value of the

hydrodynamic pressure in the frequency domain, which is equivalent to radiation damping. The imaginary values of ky pr, correspond
to the evanescent modes, i.e. yield real valued hydrodynamic pressures, which either act as a hydrodynamic mass or stiffness de-
pending on the sign. From a physical point of view it is indeed expected that the propagative modes take energy away from the
structure.

4.4. Forced system of equations

The solutions for the fluid pressure and structural deflection are now described uniquely in terms of structural modal coefficients.
First, the solution of w x z˜ ( , , ) is substituted in the forced equation (6). For brevity, the function variables are emitted in the
remainder of this section with the understanding that all quantities depend naturally on (x,z,ω) at =y 0.

+ + + = + +
= =

A W D W x W
x z

W z f f f2 ˜ ˜ ˜
k m

km s km km
km

km l r e
1 1

2 4
4

2 2
4

(37)

The structural modes per definition satisfy the homogeneous structural equation of motion. This property is used to eliminate the
derivative terms from Eq. (37). Furthermore, the expression in Eq. (36) for the fluid pressure is substituted. This yields the following
expression:

= +
= = = = = = +

A W A
Q

k
f( ) i ˜

k m
km s km km f

k m
km

p r

km pr

y pr pr
pr

l r
e

1 1

2 2 2

1 1 1 1

,

,
(38)

in which the subscript +l r denotes the summation of the fluid pressure of left and right side of the gate. Note that, although the
analytical expression is identical for both sides, the magnitude ofQpr , kpr , and pr depends on the water depth, and will be different at
each side. Due to the orthogonality property of the structural modes the following expression is valid:

=W x z W x z dx dz( , ) ( , )
S

km ln kl mn ln
(39)
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in which S denotes the gate surface and ln the solution of the integration. Multiplying Eq. (38) with another structural modeWln and
integrating over the plate surface, yields:

=
= = = = = = +

A A
Q Q

k
f W dx dz( ) i ˜

k m
km s km kl mn ln f

k m
km

p r

km pr ln pr

y pr pr
l r S

e ln
1 1

2 2 2

1 1 1 1

, ,

,
(40)

in which Qln pr, is defined similar to Qkm pr, :

=Q x z W x z dx dz( , ) ( , )ln pr
S

pr ln,

w (41)

4.5. Solution of the gate-fluid motion

An infinite system of analytical equations is now obtained:

+ =
= =

L R A F[ ( ) ]
k m

s km kl mn ln km ln km ln ln ln
1 1

2 2
, ,

(42)

with the fluid pressures given by:

=
= =

=L
Q Q

k
i |km ln f

p r

km pr ln pr

y pr pr
h h,

2

1 1

, ,

,
l

(43)

=
= =

=R
Q Q

k
i |km ln f

p r

km pr ln pr

y pr pr
h h,

2

1 1

, ,

,
r

(44)

and the modal force given by:

=F f x z W x z dx dz˜ ( , , ) ( , )ln
S

e ln
(45)

Due to the presence of damping, the solutions for w̃ and ṽ from equation (42) will be complex valued. The amplitudes are
determined by = +w w w| | Re( ˜ ) Im( ˜)2 2 and = +v v v| | Re(˜) Im(˜)2 2 .

4.6. Stresses in the plate

When the structural deflection field is known, the stress in the isotropic homogeneous plate follows from:

=
Dt

I

1 0
1 0

0 0 (1 )

xx
yy

xy

y
xx
zz
xz (46)

with xx, yy and zz being the curvature of the plate in the respective direction.
As a stress criterion Von Mises could be used, which for general plane stress states:

= + + f3v xx xx yy yy xy y
2 2 2

(47)

with fy being the yield strength of the steel material.

4.7. Numerical evaluation of the solution

For evaluation of the system of equation (42), the infinite summations must be truncated to a finite number of structural and fluid
modes. The necessary number of modes to provide sufficient accuracy, depends on the excitation frequency in relation to the re-
sonance frequencies of system. A displacement convergence criterion was presented in Tsouvalas et al. [36], which was shown to give
a good indication of internal bending moment and shear force convergence as well.

Part of the strength of this semi-analytical method, is that the modal shapes of the structure in vacuo are evaluated only once.
Subsequently these modal shapes can be used to evaluate the response at the different excitation frequencies and force amplitude
shapes. Due to the inclusion of surface waves in the model, the implicit dispersion equation must be solved for each excitation
frequency, which leads to a higher numerical effort compared to the case without surface waves. When evaluating the response for a
large number of force frequencies such as is done after a Fourier transformation, in general only a part of the spectrum will result in
significant contribution of surface waves.

Any spatial distribution of external forcing can be input to the calculations, as long as only the amplitude and not the distribution
is time-dependent. The time-amplitude signal can then be transformed to the frequency domain. An overview of the developed model
is shown in Fig. 3. If the force distribution is in fact time-dependent, measures such as a discretization of the external force become
necessary. The modal force Fln can be numerically evaluated for each structural mode. Since this part is frequency-independent, a
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single evaluation suffices.

5. Quantitative analysis of a wave impact on a flood gate

The developed model is used to determine the dynamic behaviour of a vertical steel flood gate subjected to a typical wave impact.
For this wave impact force full scale pressure measurements are used [2]. The case study is explained in section 5.1 while in section
5.2, the modal expansion of the structure-fluid system is elaborated. Subsequently, in section 5.3 the quasi-static deflection of the gate
is determined, and compared to the dynamic time domain response with and without the effect of the surrounding fluid in section 5.4.

5.1. Case study

The system parameters for the case study considered, are shown in Table 1. The gate is maintaining a water level difference of

Fig. 3. Overview of the semi-analytical method. The result of the derivations in this chapter is the system of equations in Eq. (42).

Table 1
Case parameters and their value.

Structural parameters Symbol Value Unit Fluid parameters Symbol Value Unit

Width Lx 12 m Width Lx 12 m
Height Lz 7.5 m Water level left hl 7 m
Gate thickness t 0.243 m Water level right hr 4 m
Bending stiffness D 2.63 108 Nm2 Fluid density f 1025 kg/m3

Distributed mass s 95 kg/m2 Fluid sound velocity cp 1500 m/s
Modulus of elasticity (steel) E 200 109 Nm2 Gravitational constant g 9.81 m/s2

Moment of inertia I 0.0012 m4

Poisson's ratio (steel) ν 0.3 –
Yield strength (steel) fy 255 106 N/m2

Material damping (steel) η 0.01 –
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3.0m. The wave impact occurs towards the gate in the >y 0 fluid domain, where the lower water level is present. Only the linear
dynamic response of the gate as a consequence of the impulsive wave impact force is considered in this study, which needs to be
superimposed to the static response due to the presence of the hydrostatic loads at either side of the gate.

The applied wave impact [2, measurement s110,2] is of the flip through type, which is characterised by almost no entrapped air at
the time of impact. This type of impact generally involves a large impact force and high peak pressures over short duration, in this
case a vertically-integrated maximum force of 707 kNm−1 and a maximum pressure of 827 kNm−2. The wave pressure, measured at
19 distinct locations over the vertical coordinate, is depicted for several moments in time during impact in Fig. 4. It can be seen the
pressure peak moves upwards during impact. The course of the total impact force per running meter (gate) width in time is shown in
Fig. 5 (top).

As the force distribution changes over time, it cannot be separated into a space and time dependent part directly, as required for a
direct one-dimensional Fourier transform with respect to time. For this reason, the wave force is divided into ten intervals over the
vertical coordinate, which are shown in red in Fig. 4. For every time step, it holds that the vertically-integrated value of the applied
pressure is equal to that of the original signal. Each interval will now have its own amplitude-time signal, as shown in Fig. 5 (bottom).
The total external force is a summation of the signals in each interval:

Fig. 4. Wave pressure over the vertical at four moments during impact. The dashed line denotes the envelope of the extreme pressures per location.
In red the intervals are denoted that are used as input for the dynamic assessment. (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)

Fig. 5. Vertically integrated wave force and the wave pressure amplitudes for each of the 10 intervals over the vertical of the gate as defined in Fig. 4
over time. The maximum of the integrated wave pressure occurs at =t 10.88 ms.
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=
=

+f x z t H z z H z z f t( , , ) [ ( ) ( )] ( )e
n

n n n t
1

10

1 ,
(48)

with fe being the external wave force, zn the vertical coordinates that denote the divisions between the intervals, and f t( )n t, the
amplitude-time signal for each interval. The error resulting from dividing the force into a certain number of intervals depends mainly
on the spatial distribution of the system resonance modes and impact force over the height. For the considered case, the error made
by the division of the force into ten intervals was found to be small.

Each signal is Fourier transformed to the frequency domain, and subsequently the plate response is determined. As the model is
linear, these responses may be summed. The summed response is transformed back to the time domain, which results in the pre-
diction of the gate response.

5.2. Modal expansion

First, the modal expansion of the gate and fluid will be elaborated for the given system. For simplicity, the material damping η is
neglected in the presentation of these results. In Fig. 6 the in vacuo modal shapes of the plate and the corresponding natural
frequencies are shown. These have been validated by comparison with the analytical results by Leissa [33]. Since in the studied case
the wave impact force has a constant magnitude over the width of the gate, and is therewith symmetric, there will be no response of
purely antisymmetric modes to this force. This directly follows from the definition of the modal force in Eq. (45). In the present
analysis, the structural and fluid modal expansion are both truncated to the first one hundred modal shapes. For the considered case
this was proven to be more than sufficient based on the convergence of the deflection and stresses in the plate as discussed further in
Section 5.4.

In Fig. 7 for the fluid domain at <y 0 the first 25 roots of the dispersion equation Eq. (29) are depicted for two excitation
frequencies. Re k( ) 0y pr, and Im k( ) 0y pr, are imposed for the fluid domain at <y 0 to satisfy the radiation conditions as was
discussed in section 4.2. The real valued roots ky pr, correspond to propagative fluid modes resulting in hydrodynamic damping, while
the imaginary valued roots ky pr, correspond to evanescent modes resulting in hydrodynamic mass and stiffness.

The first six shapes of the submerged structure are shown in Fig. 8. The shape of the submerged gate at the first resonance mode is
reasonably similar to the first natural mode of the in vacuo structure as shown in Fig. 6. The vibration shapes at higher resonance
frequencies alter substantially. Secondly, the resonance frequencies reduce significantly compared to those of the in vacuo gate, as
can be seen in Table 2. Surface waves have a negligible effect on the resonance frequencies as the natural frequencies are relatively
high compared to typical frequencies of surface waves at the considered water depths. The effect of surface waves is expected to be
greater in the case of a gate-fluid system with lower natural frequencies. The effect of compressibility increases for higher frequencies.
The error of considering the fluid as incompressible is limited to approximately 5% for the first 10 resonance frequencies as can be
seen from Table 2.

In Fig. 9 the normalised absolute fluid pressure in the fluid domain at >y 0 has been depicted for two of the resonance fre-
quencies of the submerged structure. For the fourth resonance frequency, the vibration shape of the gate is clearly recognised. The
fluid pressure decays quickly in the direction normal to the surface of the gate. The tenth resonance frequency of the gate-fluid system
is close to a natural frequency of the compressible fluid. At the natural fluid frequencies of the fluid, the separation constant ky pr,
tends to zero. From Eq. (36), it can be seen that the fluid pressure will then tend to infinity, as ky pr, . is in the denominator of the
fraction. Secondly, the decay in y-direction tends to diminish as the exponential term e 1ik yy pr, . The shape of the fluid pressure is in
this case almost entirely determined by the sluice geometry. For both frequencies shown in Fig. 9, the effect of surface waves on the
fluid response has diminished, as the pressure at the still water level is approximately zero.

5.3. Quasi-static response

The quasi-static response of the gate to the wave impact is evaluated with the developed model. The maximum occurring total

Fig. 7. The first 25 roots ky pr, of the dispersion relation for the fluid domain at <y 0 ( =h 7l m) at frequencies 0.25 and 0.5 Hz.
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wave impact force during the recorded time interval is applied for this purpose. The wave force is divided into ten intervals with
equal pressure as defined in Fig. 4 to obtain a valid comparison with the dynamic response. The static behaviour to this force is
obtained by setting = 0 in Eq. (42). For the quasi-static consideration, the fluid pressure as a consequence of the movement of the
gate due to the impact load does not play a role as follows from applying a zero frequency in the expressions for the fluid impedance
in Eqs. (43) and (44).

The static response of the gate to the wave impact is depicted in Fig. 10. The maximum deflection of 80.6mm is found at the
middle of the top edge of the gate. This prediction has been validated by a FE model of the plate and results are in good agreement.
Stresses and the structural safety are assessed according to the Von Mises yielding stress criterion as presented in Eq. (47). The
maximum stress at the surface of the gate is 129 N/mm2.

Table 2
First ten resonance frequencies of the gate in vacuo and submerged. The resonance frequencies are shown as well for the cases when surfaces waves
are excluded or the fluid is considered incompressible.

Condition f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

In vacuo [Hz] 26.0 81.2 97.0 159.6 171.5 254.9 257.5 297.8 321.1 384.0
Submerged [Hz] 5.5 18.4 23.9 40.8 42.4 70.9 74.6 95.1 114.5 130.6

- Excluding surface waves 5.5 18.4 23.9 40.8 42.4 70.9 74.6 95.1 114.5 130.6
- Incompressible fluid 5.5 18.5 24.1 41.7 43.2 73.8 76.9 100.5 121.1 125.9

Fig. 9. Normalised absolute fluid pressure throughout the first 40m of the sluice ( >y 0) at two of the resonance frequencies of the submerged gate.
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5.4. Dynamic response

As was mentioned in section 5.1, the dynamic response is determined by Fourier transforming each force interval (over the height
of the gate) from the time domain to the frequency domain. These frequency domain signals are input to the model and the total
deflection is found by the summation of the responses to each of the force intervals. To obtain a stable time signal after application of
the inverse Fourier transform, a small amount of material damping is introduced at this point by applying a complex bending stiffness

= +E i E˜ (1 ) with = 0.01 [26]. This type of damping has a minor effect on the natural frequencies of the gate, which herewith
become complex.

The displacement of several locations of the gate immersed in fluid during and after impact is shown in Fig. 11. These locations
are chosen such that the first three non-asymetric resonance frequencies could be distinguished well. The maximum deflection occurs
at the top middle of the gate, and is 45.7mm. This is significantly lower than the previously determined quasi-static response, which
can be explained by the fact that the peak pressure duration ( 20 ms) is substantially lower than the first resonance period of the
submerged gate ( =T 1/5.5 1821 ms). Considering the first natural frequency, the system is in fact slow so that the response is not
amplified. This is characterised by the deflection of the plate reaching its maximum at =t 60.0 ms, while the wave peak pressure
occurs at =t 10.9 ms. The maximum internal stress is 75.8 N/mm2.

As a comparison the response of the gate excluding the effect of the hydrodynamic response is shown in Fig. 11 as well. Such
analyses have been applied in the design of hydraulic structures before. The maximum deflection would be 80.2mm, which is close to
the maximum static response.

In common engineering practice when a quasi-static modelling approach used, an amplification factor is generally applied to the
force to account for possibly unfavourable dynamic behaviour of the structure. Depending on the characteristics of the structure and
the type of wave impact, the applied factor varies between 1.0 and 1.5. For the considered case, regarding the dynamic behaviour of
the gate immersed in fluid actually lead to a reduction of the maximum stress by almost half of the one obtained with the quasi-static
calculation described in section 5.3.

The maximum deflection and internal stress occur at the same time. It is also possible that the maximum internal stress occurs at a
different moment in time than the maximum deflection, which can amongst others be a consequence of the excitation of higher
structural modes. This is explained by the increase in curvature for higher modal shapes, which leads to larger internal stresses for a
given maximum deflection. In Fig. 11 the excitation of higher natural modes can be distinguished as well by the multi-peaked
vibration. The deflection at the top middle of the gate, where the maximum occurs, is governed by the first two resonance fre-
quencies.

The results show to be sufficiently converged for the hundred plate and hundred fluid modes taken into account to determine the
dynamic response. In Fig. 12 the relative error in the found maximum plate stress is shown in relation to the amount of modes taken
into account. When considering higher excitation frequencies a higher number of modes is required to obtain the same level of
accuracy. However, this dependence is relatively weak.

6. Validation and computational performance

The performance of the developed semi-analytical model is investigated by comparing its results with the software package

Fig. 12. The error in maximum plate stress found as a function of the number of structural and fluid modes taken into account relative to the result
for both four hundred structural and fluid modes.
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COMSOL [37]. The same gate-fluid system as described in previous section is investigated. The gate is represented by shell elements
(3D) in COMSOL. The material of the gate is considered to be isotropic and linear elastic. The fluid is compressible and modelled with
the transient pressure acoustics module of COMSOL. To simplify the COMSOL model surface waves are excluded from the analysis.
Instead, a zero pressure boundary condition is applied at the free surface. It has been shown in previous section that this may be
assumed for the presented case. The infinite sluice length in y-direction is represented by a standard wave radiation condition at a
distance of 100m from the gate in both fluid domains. For a detailed overview of the shell and transient pressure acoustics theory
used in COMSOL is referred to COMSOL Inc [37]. As it is not possible to include material damping in the COMSOL time-domain
model, a distributed viscous damping of =c 10d kNs/m/m2 is introduced, which acts on the entire surface of the plate.

The results of the wave impact case are not directly compared with the FE model as it is difficult to apply a large number of time-
varying force signals at various locations of the gate in the software package COMSOL. Instead, an idealized triangular impact force
with a duration of 10ms is applied on the left upper part of the gate. Such an impact force of short duration is especially suitable for
the purpose of validation, as it ensures a wideband frequency spectrum that excites multiple system modes. The same numerical
routine is used to obtain the results for the validation study as for the wave impact case.

A variable triangular mesh is used for the shell and a variable tetrahedral mesh for the fluid domain. Both have a maximum
element size of 1m. The time-domain results converge for this element size.

The time domain results of both models are shown for multiple locations on the gate in Fig. 13. As can be seen, the results match
closely even though minor differences in predicted frequencies of the response cumulate over time. A comparison of the resonance
frequencies predicted by both models is shown in Table 3. The relatively small differences in the resonance frequencies for the in
vacuo plate are expected to be caused by the omission of shear deformation in the semi-analytical model. As expected, this error
increases for higher modes. The difference between predicted resonance frequencies for the immersed condition is in the same order.
This is expected to partially originate from the COMSOL model as results showed some dependency on mesh size and sluice length for
eigenfrequency analysis, which did not converge within the range that could be investigated with reasonable computation times.

The computation time of the semi-analytical model for the presented time-domain analysis took 12min on a 3.60 GHz quad core
processor, while computation with the COMSOL model lasted approximately 19.5 h. The computational efficiency of the semi-
analytical code has not been fully optimised yet and can still be improved. Furthermore, the response of the same system can be
investigated for a range of loads with relatively little additional computation time.

Fig. 13. The time-domain response of the gate immersed in fluid to a triangular peak load predicted by the semi-analytical model and COMSOL.

Table 3
Comparison of the first five predicted resonance frequency between the semi-analytical and COMSOL model for the in vacuo and immersed system.

Condition Model f1 f2 f3 f4 f5

In vacuo Semi-analytical [Hz] 26.05 81.15 96.97 159.61 171.49
COMSOL [Hz] 25.93 80.43 95.78 156.60 168.69
Relative difference [−] 0.46% 0.90% 1.24% 1.92% 1.66%

Immersed Semi-analytical [Hz] 5.51 18.36 23.89 40.81 42.39
COMSOL [Hz] 5.49 18.14 23.52 40.39 41.50
Relative difference [−] 0.36% 1.21% 1.57% 1.04% 2.14%
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It must be noted that the superposition of modal responses is valid only for a linear system. Any non-linearities are therefore
omitted. For highly non-linear interaction problems, it therefore remains necessary to resort to the more computationally intensive
coupled numerical time domain methods. For many hydraulic engineering cases however, the presented method is expected to
represent the behaviour with sufficient accuracy at least for preliminary design stages. For flood defence structures in the Netherlands
especially the linear elastic behaviour of the material is relevant, as these structures must be designed based on a non-plastic stress
criterion.

7. Conclusion

A semi-analytical model has been developed that allows to study the bending vibrations of a gate immersed in fluid subjected to
any time varying force. The developed method accounts for the three dimensional behaviour of both the structure and fluid, and
solves the involved interaction efficiently. It is important to mention that one needs to solve the structure and fluid eigenvalue
problems only once for a given geometry and water heights. The values can be stored and used to calculate the response to any given
impact load. This is a fundamental difference compared to standard numerical methods. The adopted method does not depend on the
assumed-modes approach. Furthermore, surface waves and compressibility were taken into account so that the hydrodynamic fluid
pressure exerted on the gate is predicted accurately in both low and high frequency regimes. Due to the method's computational
efficiency and accurate representation of the problem, it can be applied efficiently as a preliminary design tool. This is a step forward
from the single or two degree of freedom models used often in present design practice, which give no continuous information on the
deflection and internal stresses along the gate or in the fluid domain. Additionally, the model allows to perform fatigue calculations
and probabilistic assessments. Results of the developed model were compared against the ones obtained with FEM simulations for the
case of an idealized triangular pressure pulse applied on the gate. It is demonstrated that the computational method adopted in the
former is capable of providing results similar to those of a detailed FE model within a fraction of the computation time of the latter.

A measured wave impact signal was applied to a flood gate design as a case study. As expected the prediction of the dynamic
response, including the interaction between the gate and the surrounding fluid system, lead to a significantly different assessment of
the safety than based on the static response only. In the considered problem, the consideration of the dynamic behaviour and the
fluid-structure interaction resulted in a more economical design. This illustrates that considering the dynamic behaviour in gate
design, rather than using a quasi-static approach with a conservative amplification factor (usually a 50% increase of the maximum
force), can have economical advantages as well next to the more accurate determination of the expected dynamic behaviour.

Surface waves did not significantly influence the hydrodynamic response of the gate for the excitation and resonance frequencies
that were involved in the breaking wave impact case study. Compressibility mainly had an effect on the higher resonance frequencies
of the gate-fluid system. For the studied gate, which was considered homogeneous and isotropic, the first two system resonance
frequencies governed its response. Considering more realistic and detailed gate designs consisting of beams and plates, and varying
design impacts for certain parts of these gates, is expected to further increase the importance of taking higher vibration modes into
account.
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