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Error-Free Approximation of Explicit Linear MPC
Through Lattice Piecewise Affine Expression

Jun Xu , Senior Member, IEEE, Yunjiang Lou , Senior Member, IEEE,
Bart De Schutter , Fellow, IEEE, and Zhenhua Xiong , Member, IEEE

Abstract—In this article, the disjunctive and conjunctive
lattice piecewise affine (PWA) approximations of explicit lin-
ear model predictive control (MPC) are proposed. Training
data consisting of states and corresponding affine control
laws are generated in a control invariant set, and redundant
sample points are removed to simplify the construction
of lattice PWA approximations. Resampling is proposed to
guarantee the equivalence of lattice PWA approximations
and optimal MPC control law at the sample points. Under
certain conditions, the disjunctive lattice PWA approxima-
tion constitutes a lower bound, whereas the conjunctive
version formulates an upper bound of the original optimal
control law. The equivalence of the two lattice PWA ap-
proximations then guarantees error-free approximations in
the domain of interest, which is tested through a statistical
guarantee. The performance of the proposed approximation
strategy is tested through two simulation examples, and the
results show that error-free lattice PWA approximations can
be obtained with low offline complexity and small storage
requirements. Besides, the online complexity is less com-
pared with the state-of-the-art method.

Index Terms—Error-free approximation, lattice piecewise
affine (PWA), linear model predictive control (MPC).

I. INTRODUCTION

THE impact of model predictive control (MPC) on the
industry has been recognized widely [1], and the com-

plexity of online optimization restricts the prevalent applica-
tion of MPC [2]. To alleviate this situation, explicit MPC was
proposed [3], in which the linear MPC problem is formulated
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as a multiparametric quadratic programming (mpQP) problem
and solved offline. The optimal control law is proved to be
continuous piecewise affine (PWA) with respect to the state.
The subregions, as well as the corresponding affine functions
defined on them, are recorded. For online implementation,
given the current state, one must only find the subregion in
which the state lies, and the function evaluation of the cor-
responding affine function gives rise to the optimal control
law.

However, the offline construction of such subregions, the
memory required to store them, and the online search for the
right subregion are the main limitations of explicit MPC [4].
Much work has been done to solve these three problems. To
overcome the complex offline geometric computations, com-
binatorial approaches are proposed based on implicitly enu-
merating all possible combinations of active constraints [5],
[6]. To reduce the memory required to store the information
of subregions and control laws, region-free explicit MPC is
proposed [4], [7]. Moreover, the online search complexity can be
reduced by storing additional information [8], [9], introducing an
improved binary search tree (orthogonal truncated binary search
tree) [10], or resorting to the method of convex lifting [11], [12].
The lattice PWA representation has also been used to exactly
express the explicit MPC control law, resulting in a much lower
storage requirement [13], [14]. As the complexity of solving the
explicit MPC problem increases exponentially with size of the
optimization problem, all the above methods can only alleviate
the computational burden to some extent.

Another idea is to formulate the approximate MPC con-
troller [15], [16] or semiexplicit MPC controller [17]. In these
methods, training data containing the values of states and corre-
sponding optimal control laws of the MPC problem are gen-
erated, and the approximated controller is constructed using
these data. In general, the samples are required to be distributed
sufficiently evenly over the domain [18]. Different approaches
have been used to generate the approximation, such as the canon-
ical piecewise linear function [19], radial basis functions [20],
wavelets [21], and so on. In addition, reinforcement learning
has also been used to derive a data-driven MPC control law
in [22]. In the work of [16], [21], and [23], the approximations are
based on particular partitions of the domain of interest, and the
interpolation-based algorithm can be developed [24]. Approxi-
mations by neural networks or basis functions generally require
computationally expensive optimization-based training, and the
interpolation-based algorithm always introduces partitions of
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the domain that are different from the domain partitions in the
explicit linear MPC law.

In our previous work [14], the lattice PWA representation of
the explicit MPC control law was derived, which, however, also
depends on the result of explicit MPC, and scales poorly with
the size of MPC control problem. To resemble explicit MPC
control law to a larger extent and also to handle the issue of
high offline complexity in explicit MPC, this article proposes
an approximation approach in the domain of interest, in which
the explicit MPC control law needs not be obtained in advance.
Specifically, data containing sampled states and corresponding
local affine functions are employed to derive the lattice PWA
approximation, which can be guaranteed to be statistically error
free, i.e., coincide with the explicit MPC control under certain
assumptions. Moreover, the worst-case offline calculation com-
plexity depends mainly on the number of sample points, which
scales well with the state dimension. A preliminary thought
of the disjunctive lattice PWA approximation of explicit linear
MPC was presented in [25], in which the approximated control
law is not guaranteed to be error free. However, in this work,
under certain assumptions, the disjunctive and conjunction lat-
tice PWA approximations constitute the lower and upper bounds
of the optimal MPC control law, and the equivalence of the
two approximations ensures that the two approximations are
identical to the optimal control law in the domain of interest.
The approximation can also be simplified to lower storage
requirements and online computational complexity.

The rest of this article is organized as follows. Section II gives
the preliminaries about the explicit linear MPC problem and the
lattice PWA representation. The offline approximations of the
explicit linear MPC control law through the lattice PWA expres-
sion are given in detail in Section III, in which the construction
of the sample domain, sampling and resampling procedures,
simplifications of the approximations, online evaluation of the
approximations, and the complexity analysis are provided. In
Section IV, the approximation error is analyzed. Section V
provides simulation results. Finally, Section VI concludes this
article.

II. PRELIMINARIES

A. Explicit Linear MPC Problem

In particular, MPC for a discrete-time linear time-invariant
system can be cast as the following optimization problem at
time step t:

min
U

J(U,x(t)) = V (xt+Np|t) +
Np−1∑
k=0

v(xt+k|t,ut+k|t) (1a)

s.t.xt+k+1|t = Axt+k|t +But+k|t, k = 0, . . . , Np − 1
(1b)

xt+k|t ∈ X, k = 0, . . . , Np (1c)

ut+k|t ∈ U , k = 0, . . . , Np − 1 (1d)

xt+Np|t ∈ Xf (1e)

in which the optimized variable is U = [uT
t|t, . . . ,u

T
t+Np−1|t]

T ,
and Np is the prediction horizon. The variable xt|t = x(t) ∈

Rnx , and xt+k|t ∈ Rnx and ut+k|t ∈ Rnu denote the predicted
state and input at time step t+ k, respectively, using (1b). The
terminal penalty is denoted as V , v(·, ·) is the stage cost, and
X,Xf , and U are full-dimensional polyhedral sets of appropriate
dimensions. In this article, we assume a strictly convex cost,
i.e., V (xt+Np|t) = xT

t+Np|tQNp
xt+Np|t, v(xt+k|t,ut+k|t) =

xT
t+k|tQkxt+k|t + uT

t+k|tQuut+k|t, in which Qu � 0, Qk,
QNp

� 0. After solving the optimization problem (1), the

optimal U ∗ = [(u∗
t|t)

T , . . . , (u∗
t+Np−1|t)

T ]T is obtained, and
only u∗

t|t is applied to the system. The optimization problem is
subsequently reformulated and solved at the next time steps by
updating the given state vector x(t).

It has been proved in [3] that the solution U ∗ is a continuous
PWA function of the state x(t), and we use x instead hereafter
in this article. The definition of a continuous PWA function is
presented as follows.

Definition 1 (see [26]): A function f : Ω → Rm, where Ω ⊆
Rnx is convex, is said to be continuous PWA if it is continuous
on the domain Ω and the following conditions are satisfied.

1) The domain space Ω is divided into a finite number of
nonempty convex polyhedra, i.e., Ω = ∪N̂

i=1Ωi, Ωi 	= ∅,
the polyhedra are closed and have nonoverlapping interi-
ors, int(Ωi) ∩ int(Ωj) = ∅ ∀i, j ∈ {1, . . . , N̂}, i 	= j, in
which int(·) denotes the interior of a set. These polyhedra
are also called local regions. The boundaries of the poly-
hedra are nonempty sets in (n− 1)-dimensional space.

2) In each local region Ωi, f equals a local affine function
�loc(i)

f(x) = �loc(i)(x) ∀x ∈ Ωi

in which the subscript loc(i) denotes the index of local
affine function in Ωi.

The local affine function, as well as local regions in the con-
tinuous PWA function U ∗(x), is obtained through the Karush–
Kuhn–Tucker (KKT) conditions of the following mpQP prob-
lem:

min
z

1

2
zTHz (2a)

s.t.Gz ≤ w + Sx (2b)

in which z = U +H−1FTx, and the matrices H,F,G, and S
as well as the vector w are obtained through (1).

For a given state x, solving (2) yields the optimal solution
z∗, which together with x can determine the active and inactive
constraints in (2b). Assuming thatG ∈ Rp×Np·nu ,w ∈ Rp, S ∈
Rp×nx , and Gi, wi, and Si denote the ith row of G,w, and
S, respectively. If the ith constraint is active, we have Giz =
wi + Six; if it is inactive, we have Giz < wi + Six. Then, the
active as well as inactive index sets can be written as

A∗ = {j ∈ {1, . . . , p}|Gjz
∗ = wj + Sjx}

and

N∗ = {j ∈ {1, . . . , p}|Gjz
∗ < wj + Sjx}

respectively. It is apparent that A∗ = {1, . . . , p} \ N∗.
For a particular A∗, assume that GA∗ is full-row rank,

according to the KKT conditions evaluated at x and z∗,
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we have

z∗ = H−1GT
A∗(GA∗H−1GT

A∗)−1(wA∗ + SA∗x). (3)

The local region for which the local affine function (3) is
defined is a polyhedron in the feasible state region, which is
called critical region and can also be constructed through the
KKT conditions, i.e.,

CR(x) =

{
x

∣∣∣∣
[

Gz∗ ≤ W + Sx
(GA∗H−1GT

A∗)−1(wA∗ + SA∗x) ≤ 0

]}
.

(4)
Once the optimal solution z∗ of the optimization problem (2) is
available, we can easily obtain the optimal U ∗ as

U ∗ = z∗ −H−1FTx (5)

which is also affine within the critical region CR(x).
Remark 1: For the case in whichGA∗ is not full-row rank, and

assuming that the rank of GA∗ is r, we can then arbitrarily select
r independent constraints and proceed with the new reduced
active index set [27].

In order to obtain the continuous PWA control law, one must
obtain all the local affine functions and critical regions, i.e., one
must enumerate all possible active index setsA∗, apply the KKT
conditions accordingly [5], [6], [28], and the multiparametric
toolbox 3.0 (MPT3) [29] can be used to fulfill this.

B. Lattice PWA Representation

For the continuous PWA control law obtained through MPT3,
the lattice PWA representation is presented in our previous
work [14] to express this continuous PWA function.

Lemma 1 (see [14]): Letting f be a continuous PWA function
defined in Definition 1, then f can be represented as

f(x) = fL,d(x) = max
i=1,...,N

{
min
j∈I≥,i

{�j(x)}
}

∀x ∈ Γ (6)

or

f(x) = fL,c(x) = min
i=1,...,N

{
max
j∈I≤,i

{�j(x)}
}

∀x ∈ Γ (7)

in which I≥,i = {j|�j(x) ≥ �loc(i)(x), ∀x ∈ Γi}, I≤,i = {j|�j
(x) ≤ �loc(i)(x), ∀x ∈ Γi}, and the expressions minj∈I≥,i

{�j(x)} andmaxj∈I≤,i
{�j(x)} are called terms of fL,d and fL,c,

respectively. The affine function �loc(i)(x) is called a literal,
representing the local affine function in Γi. The region Γi is
a base region with

⋃N
i=1 Γi = Γ and Γi ∩ Γj = ∅∀i 	= j. The

base region is a subset of the local region, and no other affine
functions intersect with �i(x) at some point in the interior of Γi,
i.e.,

{x|�j(x) = �loc(i)(x), j 	= i} ∩ int(Γi) = ∅. (8)

Here, to avoid excessive use of notation, we just use loc(i) to
denote the local affine functions of some region, whether it is a
local region in Definition 1 or base region, which is part of the
local region and additionally satisfying (8).

The expressions (6) and (7) are called full disjunctive and
conjunctive lattice PWA representations, respectively, in which
the names “disjunctive” and “conjunctive” come from the ter-
minology in Boolean algebra.

Fig. 1. Continuous PWA function in Example 1. (a) Subregion.
(b) Function.

Considering a 2-D continuous PWA function (9) with three
affine pieces, Fig. 1 illustrates the base region and corresponding
PWA function.

Example 1: The expression for the 2-D continuous PWA
function with three local affine functions is as follows:

f =

⎧⎨
⎩
�1(x) = 80x1 − 50x2 − 10, ifx ∈ Ω1

�2(x) = −50x1 + 80x2 − 10, ifx ∈ Ω2

�3(x) = 0, ifx ∈ Ω3

(9)

the polyhedral regions and the 2-D functionf are shown in Fig. 1.
This example has also been studied in [30]. For this simple exam-
ple, we have three polyhedral regions, i.e., Ω1, Ω2, and Ω3, with
local affine functions �loc(1) = �1, �loc(2) = �2, and �loc(3) = �3.
The polyhedral regionsΩ1 andΩ2 are base regions andΩ3 is not,
i.e., in int(Ω1) and int(Ω2), no other affine functions intersect
with �1 and �2, respectively, but the intersection of �1, �3 and
�2, �3 are in the interior of Ω3, shown as the green and purple
dashed lines, respectively. Then,Ω3 can be partitioned into three
base regions Ω3,1,Ω3,2, and Ω3,3 by these two dashed lines, and
we have �loc(3,1) = �loc(3,2) = �loc(3,3) = �3.

According to the full disjunctive lattice PWA representation,
we have five index sets I≥,i corresponding to the five base
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regions Ω1,Ω2,Ω3,1,Ω3,2, and Ω3,3, which can be expressed
as follows:

I≥,1 = {1, 2}, I≥,2 = {1, 2}, I≥,3 = {2, 3}
I≥,4 = {3}, I≥,5 = {1, 3}.

And we have the following full disjunctive lattice PWA repre-
sentation:

f(x) = max{min{�1, �2},min{�1, �2},min{�3, �2},
�3,min{�3, �1}}.

After removing redundant terms, we have

fL,d = max{min{�1, �2}, �3}. (10)

Similarly, we can obtain the full conjunctive lattice PWA repre-
sentation as

fL,c = min{max{�1, �3},max{�2, �3},max{�1, �3}
max{�1, �2, �3},max{�2, �3}}

which can be then simplified to

fL,c = min{max{�1, �3},max{�2, �3}}. (11)

According to Lemma 1, we can represent a continuous PWA
control law using a lattice PWA function (either disjunctive or
conjunctive). However, as explained in Section II-A, for prob-
lems with a large number of constraints and a high-dimensional
state, the number of possible combinations of active constraints
increases exponentially, and the derivation of the explicit MPC
solution is extremely computationally expensive. Besides, par-
titioning the critical region into base regions is not possible
for even medium-size problems, i.e., in [14], for a 4-D system,
partitioning 890 critical regions into base regions is prohibitive.

Hence, in this article, we propose an approximated continuous
PWA control law by sampling only a series of states in the
domain of interest, which avoids the usage of MPT3 and the
partitioning of the domain into base regions.

III. LATTICE PWA APPROXIMATION OF EXPLICIT LINEAR

MPC CONTROL LAW

A. Generation of Sample Points

As mentioned before, the explicit linear MPC control law U ∗

is a continuous PWA function with respect to the state x. Then,
the first element of U ∗, which is u∗

0, is also a continuous PWA
function of x, i.e., u∗

0 is affine in the local regions that x lies
in. Denote the domain of x defining u∗

0 as Γ, in this article, we
focus on the approximation of the PWA functionu∗

0 onΓ, and the
affine functions and base regions are recorded accordingly. For
simplicity, we omit the subscript inu∗

0 hereafter in the article and
use u∗ instead, besides, we set nu = 1; however, the proposed
methodology can be easily extended to the case when nu > 1.

1) Domain of Interest: The sample points are generated in
the domain of interest, which is a polyhedron control invariant set
Ω of the linear system (1b). Specifically, we setNr initial sample
points, and for each initial point, we solve the MPC problem (2)

Fig. 2. Sample points, the domain of interest, and the feasible region
for a 2-D example.

at subsequent time instants to generate Nr convergent closed-
loop trajectories. As shown in Section II-A, the optimal control
law is an affine function of the state within the corresponding
critical region; the state points and corresponding affine func-
tions on the trajectories are recorded. Assume that all the points
on the Nr trajectories constitute a set X1 = {x1, . . . ,xNs1

},
in general, Nr � Ns1. For all xi ∈ X1, the affine function
�act(i)(x) is recorded, i.e.,

�act(i)(xi) = ui = u∗(xi) (12)

in which act(i) denotes the index for the affine function corre-
sponding toxi, and the set {�act(i)|i ∈ {1, . . . , Ns1}} constitutes
the set U1. The domain of interest is then set as the convex hull
of all the sample points xi ∈ X1, i.e.,

Ω = conv(X1).

We demonstrate that the set Ω is control invariant. Actually,
for any x ∈ conv(X1), according to the definition of the convex
hull, there is a nonzero λ = [λ1, . . . , λNs1

]T with
∑Ns1

i=1 λi = 1,
such that

x =
∑

xi∈X1

λixi.

For each xi ∈ X1, as it is a point on a specific trajectory, the
succeeding state Axi +Bui is also on the same trajectory, in
which ui is calculated through solving (2), meaning that

Axi +Bui ∈ conv(X1)

then by taking

u =
∑

xi∈X1

λiui

we have

Ax+Bu =
∑

xi∈X1

λi(Axi +Bui) ∈ conv(X1)

i.e., the set Ω = conv(X1) is control invariant.
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Example 2: Fig. 2 shows the domain of interest for a 2-D
system, which is introduced in [31]. The system dynamics can
be written as

xk+1 =

[
1 Ts

0 1

]
xk +

[
T 2
s

Ts

]
uk

where the sampling interval Ts is 0.3. Considering the MPC
problem withQ = diag(1, 0),R = 1, andP is the solution of the
discrete-time algebraic Riccati equation, the prediction horizon
is set to be 10. The system constraints are−1 ≤ uk ≤ 1,−2.8 ≤
xk,1 ≤ 2.8, and −0.8 ≤ xk,2 ≤ 0.8. In total, 289 trajectories
are generated in the region [−2, 2]× [−0.6, 0.6], resulting in
9112 sample points, shown in blue diamond, and the domain of
interest is the convex hull of all the sample points, shown in red.
The feasible region calculated through MPT3 is shown in gray.

Remark 2: The construction of Ω is computationally chal-
lenging for high-dimensional problems. In this article, we re-
strict the initial points of the sampled trajectories within a
user-defined areaΩ0, e.g., a hyperrectangle or some other regular
convex set. The domain of interest Ω is then set as the convex
combination of all convergent trajectories starting from points
in Ω0.

2) Obtaining the Affine Control Laws: According to Sec-
tion II-A, for a feasible state xi, the affine function �act(i)(xi)
can be calculated through solving (2), (3), and (5), i.e.,

U ∗(xi) = z∗(xi)−H−1FTxi (13)

and

�act(i)(xi) =
[
Inu×nu

0 · · · 0
]
U ∗(xi) (14)

in which Inu×nu
is the identity matrix with size nu × nu. It is

noted that (14) holds at the pointxi, asU ∗ and z∗ are continuous
PWA functions and reduce to particular affine functions at the
sample point xi.

Compared with ordinary sampling, in which only the value of
ui is available, here the corresponding affine function �act(i)(xi)
is also recorded. The resulting sample dataset is recorded as
X1 × U1 with data length Ns1, in which U1 is a set of affine
functions �act(i)(x), and in Section III-B, we will explain in detail
how to build a lattice PWA approximation.

B. Lattice PWA Approximation Based on Sample Points

We now derive the disjunctive and conjunctive lattice PWA
approximations based on the sample dataset X1 × U1.

The disjunctive lattice PWA approximation is constructed via
the sample points and can be expressed as follows:

f̂L,d(x) = max
i=1,...,Ns1

{
min
j∈J≥,i

{�j(x)}
}

(15)

in which the index set J≥,i is described as follows:

J≥,i = {j|�j(xi) ≥ �act(i)(xi)} (16)

and �act(i) is defined in (12), representing the affine function at
xi.

Similarly, the conjunctive lattice PWA approximation can be
described as follows:

f̂L,c(x) = min
i=1,...,Ns1

{
max
j∈J≤,i

{�j(x)}
}

(17)

in which the index set J≤,i is defined as

J≤,i = {j|�j(xi) ≤ �act(i)(xi)}. (18)

Compared with the full disjunctive and conjunctive lattice
PWA representations (6) and (7), we can see that the lattice
PWA approximations (15) and (17) only consider the order of
local affine control laws at each sample point xi ∈ X1.

Following we will explain that under certain conditions as
shown in Assumption 1, the lattice PWA approximations (15)
and (17) coincide with the explicit linear MPC control law at the
sample points.

Assumption 1: The terms in disjunctive lattice PWA approx-
imations satisfy

min
j∈J≥,i

{�j(xk)} ≤ �act(k)(xk) ∀i, k ∈ {1, . . . , Ns1} (19)

and the terms in conjunctive lattice PWA approximations satisfy

max
j∈J≤,i

{�j(xk)} ≥ �act(k)(xk) ∀i, k ∈ {1, . . . , Ns1}. (20)

This assumption means that when evaluated at the sample
points, the terms in the disjunctive lattice PWA approximations
are not larger than, while the terms in the conjunctive lattice PWA
approximations are not smaller than the active affine functions.
Assumption 1 is not difficult to check, as it requires only the
information of the sample points, and later in Section III-D, we
will give solutions to guarantee the validity of Assumption 1.
With this assumption, we can show in Theorem 1 the conclusion
about the equivalence of the approximations and optimal MPC
control law.

Theorem 1: Assuming that the disjunctive and conjunctive
lattice PWA approximations are constructed through (15) and
(17), respectively. Supposing that Assumption 1 holds, then we
have

f̂L,d(xk) = �act(xk) = f̂L,c(xk) ∀xk ∈ X1. (21)

Furthermore, if for all i, k ∈ {1, . . . , Ns1}, we have

min
j∈J≥,i

{�j(xk)} < �act(k)(xk), or act(k) ∈ J≥,i (22)

and

max
j∈J≤,i

{�j(xk)} > �act(k)(xk), or act(k) ∈ J≤,i

then for all points xk ∈ X1, the following equalities hold for the
base regions including xk, i.e.,

f̂L,d(x) = u∗(x) = f̂L,c(x) ∀x ∈ Γpnt(k) (23)

in whichΓpnt(k) ⊂ Γ is the base region contains the sample point
xk such that

u∗(x) = �act(k)(x) ∀x ∈ Γpnt(k).

Proof: See the Appendix. �
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According to Theorem 1, the validity of Assumption 1 guar-
antees the equivalence of the lattice PWA approximation and the
optimal control law at the sample points. Besides, if a stricter
condition (22) is imposed, the lattice PWA approximations equal
the original control law not only at the sample points but also in
the base regions containing the sample points, as (23) shows.

In order to better describe the equivalence of f̂L,d(x)

(f̂L,c(x)) and u∗(x) in base regions, we introduce the concept
of covered base regions for terms generated through sample
points xi, i.e., minj∈J≥,i

{�j(x)} and maxj∈J≤,i
{�j(x)}, and

denote them as C(minj∈J≥,i
{�j(x)}) or C(maxj∈J≤,i

{�j(x)}).
This means that

u∗(x) = min
j∈J≥,i

{�j(x)} ∀x ∈ C
(

min
j∈J≥,i

{�j(x)}
)

or

u∗(x) = max
j∈J≤,i

{�j(x)} ∀x ∈ C
(
max
j∈J≤,i

{�j(x)}
)
.

It should be pointed out that the covered base regions
C(minj∈J≥,i

{�j(x)}) and C(maxj∈J≤,i
{�j(x)}) are with re-

spect to the continuous PWA function u∗(x), and are subsets
of Γ. From the proof of Theorem 1, we have

Γpnt(k) ⊂ C
(

min
j∈J≥,k

{�j(x)}
)
,Γpnt(k) ⊂ C

(
max
j∈J≤,k

{�j(x)}
)

which means that the terms generated through sample points
can cover the entire base region the sample points lie in. And
we will show in Section III-D that the terms minj∈J≥,k

{�j(x)}
(maxj∈J≤,k

{�j(x)}) can cover base regions other than Γpnt(k).
Remark 3: It should be noted that the computational complex-

ity for constructing a lattice PWA approximation is much less
than that for constructing a lattice PWA representation, in which
all the base regions as well as all the distinct affine functions
should be derived. In this article, however, the optimal contin-
uous PWA controller information is not needed beforehand to
construct a lattice PWA approximation, i.e., preprocessing by
MPT3 is not needed. All we need to do is to sample points,
record states and corresponding affine functions, and construct
the lattice PWA approximations (15) and (17).

C. Simplification of Lattice PWA Approximation

When the number of sample points is large, say tens of
thousands, the evaluation of (15) and (17) is not easy, and hence
the simplification is considered in this section.

The simplification of a disjunctive lattice PWA function was
addressed in [14], for which the detailed subregions of the PWA
function are known. In this article, the information of the subre-
gions of the PWA function is unknown. It is also challenging to
derive the expression of the subregion polyhedra through lattice
PWA approximation.

Hence, this section simplifies the disjunctive and conjunctive
lattice PWA approximations according to the following rule.
Assuming that the setC denotes the codomain of affine functions
u1, u2, . . ., the operations

∨
and

∧
are defined as follows:

ui

∨
uj = max{ui, uj}, ui

∧
uj = min{ui, uj}.

It has been shown in [32] that the set C, together with the
operations

∨
and

∧
, constitutes a distributive lattice, and the

following property holds for all ui, uj ∈ C:

R1 :
ui

∨
(ui

∧
uj) = ui

ui

∧
(ui

∨
uj) = ui.

(24)

Concerning the covered base regions in disjunctive lattice
PWA approximation, we have the following result, as shown
in Lemma 2. For the conjunctive lattice PWA approximation
f̂L,c, things are similar, and we omit them here for the sake of
conciseness.

Lemma 2: Given two termsminj∈J≥,i
{uj(x)} andminj∈J≥,k

{uj(x)} generated from sample points xi and xk, in which
J≥,k ⊂ J≥,i, supposing that Assumption 1 and (22) hold, we
have

C
(

min
j∈J≥,i

{uj(x)}
)

⊂ C
(

min
j∈J≥,k

{uj(x)}
)
.

Furthermore, if act(i) ∈ J≥,t, t ∈ {1, . . . , Ns1} \ {i}, then xi

can be removed from X1 without affecting the function value of
f̂L,d.

Proof: See the Appendix. �
Lemma 2 means that as long asJ≥,k ⊂ J≥,i and act(i) appears

in other terms, the sample point xi is redundant in constructing
lattice PWA approximations. Actually, multiple base regions
may share the same term J≥,k, besides, the condition J≥,k ⊂
J≥,i is even easier to be satisfied for different base regions.
Hence, one term may cover many base regions, as Example 1 in
Section III-D illustrates, and in general, the number of sample
points needed to construct the lattice PWA approximation is
much less than that of base regions and polyhedral regions, and
simulation results in Section V confirm this.

D. Resampling

In the process of generating sample points, (19) and (20) may
not be valid, and the following gives a resampling method such
that both (19) and (20) hold.

Taking the disjunctive lattice PWA approximation as an ex-
ample, if (19) is violated for some xα,xβ ∈ X1, i.e.,

min
j∈J≥,α

{�j(xβ)} > u∗(xβ) = �act(β)(xβ) (25)

we can add sample points in the line segment

L(xα,xβ) = λxα + (1− λ)xβ , λ ∈ (0, 1) (26)

such that (19) is satisfied for i = α and k = β, which is shown
in Lemma 3.

Lemma 3: Assuming that there are two pointsxα andxβ such
that (25) holds, then there must be some pointsxγ ∈ L(xα,xβ),
which is defined in (26), and the corresponding affine control law
�act(γ), such that the inequality

�act(γ)(xα) ≥ �act(α)(xα), �act(γ)(xβ) ≤ �act(β)(xβ) (27)

holds.
Furthermore, by adding xγ to the sample dataset, we have

act(γ) ∈ J≥,α and

min
j∈J≥,α

{�j(xβ)} ≤ �act(β)(xβ). (28)
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Algorithm 1: Recursive partitioning of line segment
L(xα,xβ) in case that (25) or (29) is violated.

Input:Linear MPC problem, initial sample dataset
X1 × U1, the line segment L(xα,xβ).

Output:Additional sample dataset X2 × U2.
1: Initialize flag = 1, X2 = ∅, U2 = ∅.
2: while flag do
3: Na = 0;
4: for xi ∈ L(xα,xβ) ∩ (X1 ∪ X2) do
5: Select corresponding �act(i)(xi) ∈ U1 ∪ U2.
6: if sign(�act(i)(xi)− �act(i+1)(xi)) =

sign(�act(i)(xi+1)− �act(i+1)(xi+1)) then
7: Na = Na + 1.
8: Add a point xnew = 0.5(xi + xi+1) to X2.
9: Calculate corresponding affine function

u∗(xnew) through (3), (13)-(14), add to U2.
10: end if
11: end for
12: if Na = 0 then
13: flag = 0.
14: end if
15: end while

Proof: See the Appendix. �
For the conjunctive lattice PWA approximation, in case (20)

is violated, i.e., there are two points xα and xβ such that the
following inequality holds:

max
j∈J≤,α

{�j(xβ)} < u∗(xβ) = �act(β)(xβ) (29)

similar results can be obtained, and we omit here due to space
limitation.

When (25) or (29) holds, in order to construct a continuous
PWA function and to ensure the validity of (19) and (20) for
every sample point in the line segment L(xα,xβ), the line
segment is recursively partitioned to generate new sample points,
as Lines 4–11 in Algorithm 1 show, resulting in an additional
sample dataset X2 × U2. In Algorithm 1, xi and xi+1 refer to
sample points in L(xα,xβ) ∩ (X1 ∪ X2), arranged according
to the sample sequence in X1 ∪ X2.

Lemma 4 shows that if we add points according to Algo-
rithm 1, resulting in an additional sample dataset X2 × U2, (19)
and (20) are satisfied for all the sample points in L(xα,xβ).

Lemma 4: Given the line segment L(xα,xβ) such that (19)
or (20) is violated, if we add points according to Algorithm 1,
then we have

min
j∈J≥,i

{uj(xk)} ≤ uk(xk) ∀xi,xk∈L(xα,xβ)∩(X1 ∪ X2)

(30)
and

max
j∈J≤,i

{uj(xk)} ≥ uk(xk) ∀xi,xk∈L(xα,xβ)∩(X1 ∪ X2)

(31)
in whichL(xα,xβ) ∩ (X1 ∪ X2) denotes the sample points that
are within the line segment L(xα,xβ) after resampling.

Proof: See the Appendix. �

Algorithm 1 can be run repeatedly until, for all the sample
points (xi, ui) ∈ (X1 ∪ X2)× (U1 ∪ U2), we have (19) and
(20); thus, Assumption 1 is satisfied and the resulting lattice
PWA approximations equal the original control solution at all
sample points.

The 2-D function in Example 1 illustrates the process of
constructing the disjunctive and conjunctive lattice PWA ap-
proximations and the resampling procedure.

Example 1 (Continued): The disjunction and conjunctive
lattice PWA representations for Example 1 have been derived in
Section II-B. Here, we resort to an approximation strategy, i.e.,
several points are sampled in the function domain (9) to illustrate
the disjunctive and conjunctive lattice PWA approximations.

Given two sample points x1 = (0.6, 0.7)T and x2 =
(0.6, 0.2)T , which are shown in Fig. 1(a), the sampled affine
functions are �act(1) = �1 and �act(2) = �3, respectively. Fig. 1(b)
also shows the position of the points P1 = (x1, �1(x1)) and
P2 = (x2, �3(x2)). The index sets are then expressed as (the
affine function �2 has not been sampled yet)

J≥,1 = {1}, J≥,2 = {1, 3}, J≤,1 = {1, 3}, J≤,2 = {3}.
Apparently Assumption 1 is not satisfied, i.e., (19) is violated

for i = 1, k = 2, and (20) is violated for i = 2, k = 1. According
to Algorithm 1, the point x3 = (0.6, 0.575)T is added to the
sample points set with �2 being identified, i.e., �act(3) = �2,
and at this time, Assumption 1 is satisfied. The disjunctive
and conjunctive lattice PWA approximations can be written and
simplified as

f̂L,d(x) = max{min{�1, �2},min{�1, �2},min{�1, �3}}
= max{min{�1, �2},min{�1, �3}} (32)

and

f̂L,c(x) = min{max{�1, �3},max{�2, �3},max{�2, �3}}
= min{max{�1, �3},max{�2, �3}} (33)

respectively.
Readers can verify that as (22) holds, the lattice PWA ap-

proximations coincide with the function (9) in base regions
containing the sample pointsx1,x2, andx3. For the conjunctive
approximation (33), we have

C(max{�1, �3}) = {Ω1,Ω3,1,Ω3,2}
C(max{�2, �3}) = {Ω2,Ω3,2,Ω3,3}

as C(max{�1, �3}) ∪ C(max{�2, �3}) covers the entire domain,
the conjunctive representation (11) and approximation (33) are
identical. Besides, we can see that the term max{�1, �3}, which
is generated through the sample point x1, covers base regions
Ω3,1 and Ω3,2 other than Ω1, in which x1 lies in. Apart from
Ω2, the term max{�2, �3} also covers base regions Ω3,2 and
Ω3,3. Therefore, in general, in generating sample points to
approximate a continuous PWA function, we need far fewer
sample points than the number of base regions. We will also
show this conclusion in Section V.

For the disjunctive approximation (10), as

C(min{�1, �2}) = {Ω1,Ω2}, C(min{�1, �3}) = {Ω3,3}
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Fig. 3. Deviation between the disjunctive lattice PWA approximation
and function (9) in Example 1.

Algorithm 2: Construction and simplification of lattice
PWA approximations.

Input:Linear MPC problem.
Output:Simplified disjunctive and conjunctive lattice
PWA approximations.

1: Generate sample dataset X1 × U1.
2: Remove unnecessary sample points according to

Lemma 2.
3: Generate additional sample dataset X2 × U2 according

to Algorithm 1. Let X = {X1,X2},U = {U1,U2}.
4: for xi ∈ X do
5: Calculate the index sets J≥,i and J≤,i at the point xi

according to Equation (16) and (18), respectively.
6: end for
7: Construct the disjunctive and conjunctive lattice PWA

approximations according to Equation (15) and (17).
8: Simplify the lattice PWA approximations according to

the rule R1 (24).

there are base regions Ω3,1 and Ω3,2 that have not been covered,
hence the disjunctive approximation and representation are not
identical. The deviation of the disjunctive approximation (32)
and representation is shown in Fig. 3, which is not zero in base
regions Ω3,1 and Ω3,2. Later, we will revisit this example in Sec-
tion IV-A to show the conditions for error-free approximations.

The process of obtaining disjunctive and conjunctive lattice
PWA approximations and simplifying them can be summarized
in Algorithm 2.

E. Online Evaluation of Lattice PWA Approximation

Supposing that we have obtained a simplified lattice PWA
approximation for a linear MPC problem, the online evalua-
tion reduces to affine functions evaluation, comparing affine
functions in each term and comparing terms in a lattice PWA
approximation. The comparison is fulfilled through a so-called
structure matrix [33], which is a binary matrix containing the
elements zero and one, i.e., Si,j = 1 indicates that the literal �j

appears in the ith term, and Si,j = 0 shows otherwise. The size
of the structure matrix is Nt ×M , in which Nt and M are the
number of terms and literals in the lattice PWA approximation
obtained through Algorithm 2.

Hence, for the lattice PWA approximations in Example 1, the
structure matrices for f̂L,d and f̂L,c are

SL,d =

[
1 1 0
1 0 1

]
, SL,c =

[
1 0 1
0 1 1

]

respectively. For the online evaluation of f̂L,d at some statex(t),
one can construct another parameter-structure matrix PL,d, in
which the one elementSi,j = 1 inSL,d is replaced with �j(x(t)).
Then, one can perform a min–max operation on the matrix

PL,d =

[
�1 �2 0
�1 0 �3

]

i.e., minimum of the columns and then maximum of the rows,
to evaluate f̂L,d. The evaluation of f̂L,c is similar, in which
the maximum across the columns is taken first, and then the
minimum is performed among the rows.

F. Complexity Analysis

1) Online Complexity: Assuming that there are Nt terms in
the final approximation, according to Section III-E, take disjunc-
tive lattice PWA approximation for example, the online evalua-
tion of lattice PWA expression involves calculating the value of
�j(x(t))∀j = 1, . . . ,M , minimum among the columns and then
maximum of the rows. To calculate �j(x(t))∀j = 1, . . . ,M ,
(nx + 1) ·M multiplications and nx ·M additions are needed.
For the comparison, the minimum takes at most Nt · (M − 1)
comparisons while the maximum takes at most Nt − 1 compar-
isons. Therefore, the worst-case online complexity can be writ-
ten as O((nx + 1) ·M + nx ·M +Nt(M − 1) +Nt − 1). In
general, nx � Nt, hence the worse-case online complexity can
be roughly approximated as O(Nt ·M). In general, we have
Nt � Ns, so the online evaluation is speedy.

As the comparisons are performed through the matrix PL,d,
they can be accelerated by parallel computing. Hence, the actual
complexity for online evaluation is generally a fraction ofO(Nt ·
M), depending on the number of cores in the processor. The
online complexity is similar for evaluating conjunctive lattice
PWA approximation.

2) Storage Requirements: Take the disjunctive lattice
PWA approximation for example, supposing that it hasNt terms;
we must store (nx + 1) ·M real numbers for affine functions
and

∑Nt

i=1 |J≥,i| binary numbers for the structure matrix SL,d,
in which |J≥,i| is the number of elements in the set J≥,i.

As |J≥,i| ≤ M , in total at most (nx + 1) ·M real numbers
and M ·Nt binary numbers must be stored.

In many cases, we have Nt � Ns, so the storage requirement
for the disjunctive lattice PWA approximation is very small.

For the conjunctive lattice PWA approximation, we achieve
the same result.

3) Offline Complexity: The offline time complexity for de-
riving disjunctive and conjunctive lattice PWA approximations,
i.e., the running time of Algorithm 2, consists of two parts. One
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concerns the training points sampling and resampling to obtain
preliminary lattice PWA approximations, and the other concerns
the complexity of construction and simplification of lattice PWA
approximations through sample points obtained.

Lemma 5: The worst-case complexity of deriving the disjunc-
tive and conjunctive lattice PWA approximations isO(M ·N2

s ),
in which M is the number of distinct affine functions, and Ns is
the number of sample points in X .

Proof: See the Appendix. �
It is noted that O(M ·N2

s ) is the worst-case complexity. In
the simulation results, we can see that the offline calculation is
not time-consuming.

IV. APPROXIMATION ERROR

A. Deviations Between the Disjunctive and Conjunctive
Approximations

After sampling and resampling, as shown in Algorithm 2,
we obtain the sample point set X × U . Assuming that X =
{x1, . . . ,xNs

}, given both the disjunctive and conjunctive lat-
tice PWA approximations, under the following assumption, the
deviation between the approximations and the optimal control
law can be derived.

Assumption 2: We assume that all the distinct affine functions
defining the first input have been sampled in the domain of
interest Ω.

All the distinct affine functions for the first input in a PWA
MPC optimal controller can be obtained by collecting all critical
regions Ωi and corresponding local affine functions �loc(i)(x) as
defined in Definition 1 and selecting the distinct ones.

Assumption 2 can be explained as follows. For example, as
Example 1 shows, there are five regions Ω1,Ω2,Ω3,1,Ω3,2, and
Ω3,3, and the corresponding local affine functions �loc(1)(x)
= �1(x), �loc(2)(x) = �2(x), and �loc(3,1)(x) = �loc(3,2)(x) =
�loc(3,3)(x) = �3(x), then the distinct affine functions are �1(x)
and �2(x), �3(x), and by sampling points in Ω1,Ω2, and Ω3,1,
we have sampled all the distinct affine functions.

Theorem 2 bounds the error between the lattice PWA approx-
imations and the original optimal control law.

Theorem 2: Supposing that

f̂L,d(x) = max
i∈{1,...,Ns}

{
min
j∈J≥,i

{uj(x)}
}

and

f̂L,c(x) = min
i∈{1,...,Ns}

{
max
i∈J≤,i

{ui(x)}
}

are the disjunctive and conjunctive approximations of the op-
timal control law u∗(x) over the domain Ω, assuming that
Assumption 2 holds, and defining

ε = max
x∈Ω

{
f̂L,c(x)− f̂L,d(x)

}
(34)

we then have

−ε ≤ f̂L,d(x)− u∗(x) ≤ 0 (35)

and

0 ≤ f̂L,c(x)− u∗(x) ≤ ε. (36)

Furthermore, if ε = 0, we have

f̂L,d(x) = f̂L,c(x) = u∗(x) ∀x ∈ Ω. (37)

Proof: See the Appendix. �
Theorem 2 provides the sufficient conditions for error-free lat-

tice PWA approximations, and we claim that the two conditions,
i.e., the validity of Assumption 2 and ε = 0, are also necessary.
This is apparent, as if Assumption 2 is violated, the constructed
lattice PWA approximations miss some affine pieces, and if
ε 	= 0, at least one lattice PWA approximation introduces error.

Readers can verify that if an additional point is sampled for
Example 1, see x4 in Fig. 1(a) with �act(4) = �3. Then, we have
J≥.4 = {3}, J≤,4 = {1, 2, 3}, C(�3) = {Ω3,1,Ω3,2,Ω3,3}, and
C(max{�1, �2, �3}) = {Ω3,2}. In this case, the disjunctive and
conjunctive lattice PWA approximations cover the entire domain
and both equal the 2-D continuous PWA function (9).

Remark 4: For Example 1, four sample points are generated
to obtain error-free approximations, and for the base region
Ω3,1, there is no sample point. As a necessary condition for the
validity of (37), i.e., the lattice PWA approximations are error
free, Assumption 2 requires that all the distinct affine functions
have been sampled. It is noted that this is not the same as the
condition that all the base regions should be identified. As the
work in [14] shows, the number of distinct affine functions in
explicit MPC is generally far less than that of critical regions, as
some critical regions can share the same affine function. Besides,
the critical regions should be partitioned to get the base regions
satisfying (8); hence, the number of critical regions is much less
than that of the base regions. Therefore, for an error-free lattice
PWA approximation, the prerequisite is that all the distinct affine
functions have been sampled, and in general, sampling only a
portion of base regions can achieve this.

B. Probabilistic Guarantees of Error-Free
Approximations

In order to check whether (34) is zero, as both the disjunc-
tive approximation f̂L,d and conjunctive approximation f̂L,c
are continuous PWA functions, so whether f̂L,d = f̂L,c can be
checked in each linear subregion of both f̂L,d and f̂L,C. Or we
can check the equivalence of the disjunctive and conjunctive
PWA approximations by solving a continuous piecewise linear
programming problem, i.e., the difference of the two kinds of
approximations is set as the cost, which is continuous PWA as the
difference of two continuous PWA functions is still continuous
PWA. If the minimum of the cost is zero in the whole domain
Ω, the disjunctive and conjunctive lattice PWA approximations
are equivalent.

In general, the continuous piecewise linear programming is
not convex, hence here for simplicity we resort to a statistical
method, i.e., generating Nv independent identically distributed
(i.i.d.) sample points, which constitute a validation dataset
Xvalidate = {xi, i = 1, . . . , Nv}. For each sample point, we
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define an indicator function as

I(xi) :=

{
1 if f̂L,d(xi) = f̂L,c(xi)

0 if f̂L,d(xi) 	= f̂L,c(xi)

and then the random variables I(xi), i = 1, . . . , Nv are also i.i.d.
Denoting the probability for I(xi = 1) as μ, i.e., P [I(xi) =
1] = μ, then according to Hoeffding’s inequality [34], we have

P [|μ− Ī| ≥ ε] ≤ 2 exp(−2Nvε
2)

in which Ī = 1
Nv

∑Nv

k=1 I(xk). Therefore, we have

P [μ ≥ Ī − ε] > 1− 2 exp(−2Nvε
2)

meaning that with confidence 1− 2 exp(−2Nvε
2), the prob-

ability that the lattice PWA approximations f̂L,d and f̂L,c
are identical is larger than Ī − ε. If Ī = 1, then by setting a
small enough threshold ε, we can say that with confidence
1− 2 exp(−2Nvε

2), the lattice PWA approximations f̂L,d and
f̂L,c are almost identical, and thus both equal the optimal control
law. For example, if ε = 10−2, then Nv ≥ 5× 104 can ensure
that the confidence is almost 1.

V. SIMULATION RESULTS

Example 3: Consider a 4-D example taken from [21]

x(t+ 1) = Ax(t) +Bu(t)

where the matrices A and B can be expressed as

A =

⎡
⎢⎢⎣

0.4035 0.3704 0.2935 −0.7258
−0.2114 0.6405 −0.6717 −0.0420
0.8368 0.0175 −0.2806 0.3808
−0.0724 0.6001 0.5552 0.4919

⎤
⎥⎥⎦

B =
[
1.6124 0.4806 −1.4512 −0.6761

]T
.

The constraints for the state and input are ‖x‖T∞ ≤ 5 and
|u| ≤ 0.2, respectively. The prediction horizon is taken to be
Np = 17. The value of matrices in the cost function is Q =
diag{1, 1, 1, 1}, R = 0.2, and P = 0. According to MPT3, the
optimal control solution is a PWA function of the state x, with
28 246 polyhedral regions. As stated in [14], for a 4-D system
with 890 polyhedral regions, the process of partitioning the
polyhedral regions into base regions is prohibitive, and for these
28 246 polyhedral regions, there will be an exponential number
of base regions. Hence, the method in [14] is not applicable to
the examples listed in this article.

To construct the disjunctive and conjunctive lattice PWA
approximations, the domain of interest Ω is created by gener-
ating 2000 feasible trajectories starting in the user-defined re-
gion Ω0 = [−2.5 2.5]× [−0.5 0.5]× [−0.5 0.5]× [−0.5 0.5],
which results in 36 060 sample points and takes 42.29 s. The
2000 initial points are selected uniformly in Ω0, and if some
point is not feasible, it is replaced with a random initial point
that conforms to uniform distribution and is feasible. Among
the 36 060 sample points, there are 103 distinct affine functions,
and according to Lemma 2, only 4575 points are useful in
constructing lattice PWA approximations, i.e., only 4575 base
regions have sample points in it.

TABLE I
PARAMETERS OF LATTICE PWA APPROXIMATIONS ON EXAMPLE 3, IN WHICH
Ns1,Nb, AND Ns ARE THE NUMBER OF SAMPLE POINTS GENERATED ON
TRAJECTORIES, REMAINED AFTER REMOVING REDUNDANT ONES, AFTER

RESAMPLING, RESPECTIVELY, AND Nt ANDM ARE THE NUMBER OF TERMS
AND DISTINCT AFFINE FUNCTIONS

TABLE II
PERFORMANCE OF LATTICE PWA APPROXIMATIONS ON EXAMPLE 3, IN

WHICH tsamp, tL, toff , ton, AND tM,on DENOTE THE COMPUTATION TIME
FOR OFFLINE SAMPLING, OFFLINE CONSTRUCTION OF LATTICE PWA
APPROXIMATIONS, TOTAL OFFLINE, AVERAGE ONLINE CALCULATION,

MAXIMUM ONLINE CALCULATION, RESPECTIVELY

For the 4575 sample points, Algorithm 1 is performed to
sample one additional sample and get an additional distinct affine
function to ensure the satisfaction of Assumption 1.

Then, the disjunctive and conjunctive lattice PWA approxima-
tions are constructed, of which the detailed numbers of param-
eters are given in Table I. Table II lists offline as well as online
complexity of lattice PWA approximations, and the comparisons
with the state-of-the-art online MPC solver qpOASES [35] and
method in [21] are also included. For online MPC and the
method in [21], there are no need to sample, hence the fields
tsamp, tL, and toff are empty. Besides, as the work in [21] only
lists the maximum online calculation complexity, the mean
online calculation complexity for the method in [21] is also
not listed in Table II. The online evaluation time is the mean
of those 30 000 trials, and the worst-case online complexity is
also listed. All the computations in this article are implemented
through MATLAB 2024a (MathWorks, USA) on an Apple M3
Max computer.

It can be seen from Table II that the offline calculation time is
mainly for the sampling on the trajectories, and the construction
of lattice PWA approximation only takes 3.4 s. It is noted that
the online evaluation time in [21] is obtained through computing
the flops of a binary search tree

flopstree = (nx + 1) · 2nx + nx · (3 + lmax − l0)− 1 (38)

where lmax and l0 are the finest and coarsest levels of detail,
respectively, and nx is the dimension. The online calculation
time is calculated by assuming a processor speed of 1 Gflops/s.
Hence, for real applications in more sophisticated computers, the
online evaluation time is shorter than the value 11.9μs, which
outperforms our online speed.

Recall that the worst-case complexity for the online evaluation
of lattice PWA approximation is O(Nt ·M), in which Nt and
M are the number of terms and distinct affine functions, respec-
tively. For this example, take the disjunctive lattice PWA ap-
proximation for instance, we have Nt = 118 and M = 104, and
the worst-case complexity for online evaluation is O(12 272),
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Fig. 4. One exemplary closed-loop simulation of Example 3.

whereas the flops of the binary search tree is 119. However, as
can be seen from (38), the calculation time for binary search
increases exponentially with nx, and if we aim to derive a more
accurate approximation, lmax is also large. Hence, for the next
10-D example, the worst-case online complexity of lattice PWA
approximations is less than that in [21].

Besides, for the method in [21], one has to store the informa-
tion of a series of hypercubic regions, which will result in a large
storage requirement, especially for high-dimensional systems.
In contrast, we have to store at most (nx + 1) ·M real number
and M ·Nt binary numbers, and in this example, we only have
to store 520 real numbers and 118 × 104 binary numbers.

To check whether the lattice PWA approximations are error
free in the domain of interest Ω, as Ω has not been explicitly
expressed due to the complexity of calculating the convex com-
bination of the 36 060 sample points in R4, we then generate
4000 convergent trajectories with initial points in Ω0, resulting
in 75 064 test points. It has been tested through those 75 064 test
data points that the two lattice PWA approximations are identical
in the region Ω. By setting ε = 10−2, it can be concluded that
with confidence 1, the probability that the approximated lattice
PWA control laws equal the optimal control is larger than 0.99.
For the 75 064 points, the optimal explicit linear MPC control
law is also calculated, and it is found that the lattice PWA
approximations are error free in Ω.

Fig. 4 shows one exemplary closed-loop simulation of the
example, and we can see from the figure that the optimal state

TABLE III
PARAMETERS OF LATTICE PWA APPROXIMATIONS ON EXAMPLE 4, IN WHICH

Ns1,Nb, AND Ns ARE THE NUMBER OF SAMPLE POINTS GENERATED,
AFTER REMOVING REDUNDANT ONES, AND AFTER RESAMPLING,

RESPECTIVELY, AND Nt AND M ARE THE NUMBER OF TERMS AND LITERALS

TABLE IV
PERFORMANCE OF LATTICE PWA APPROXIMATIONS ON EXAMPLE 4, IN

WHICH tsamp, tL, toff , tOn, AND tm,on DENOTE THE SAMPLING, LATTICE
PWA APPROXIMATION CONSTRUCTION, TOTAL OFFLINE, AVERAGE ONLINE,

AND MAXIMUM ONLINE COMPUTATION TIME, RESPECTIVELY

trajectory and the trajectory with the lattice PWA approxima-
tions as inputs are identical. Compared with the result in [21],
here we have obtained an error-free solution.

Example 4: Consider an example taken from [6], which is an
mpQP problem constructed from the typical MPC setup with
x ∈ R10, u ∈ R, P = Q = I10, R = 1, X = {x| − 10 ≤ xi ≤
10, i = 1, . . . , nx}, and U = {u| − 1 ≤ u ≤ 1}. The prediction
model is obtained by discretizing the model 1/(s+ 1)10 with
sampling time of 1 s and then converting the discretized model
into a state-space form. The prediction horizon is taken to be
Np = 10. This is a complex problem, as the dimension is much
higher.

Here, to construct the disjunctive and conjunctive lattice PWA
approximations, 3500 feasible trajectories are generated with
initial points in the region Ω0 = [−2, 2]10. The numbers of
parameters in disjunctive and conjunctive lattice PWA approxi-
mations are given in Table III .

The offline and online complexity of lattice PWA approxima-
tions when the prediction horizon N is 10 are given in Table IV
. Comparisons with qpOASES [35] are also listed. Similar to
Table II, the fields tsamp, tL, and toff are empty for online MPC.
Besides, as the method in [6] focused on the traversing of the
critical regions of the optimal control law, the fields tsamp, tL, ton,
and tm,on are left empty.

It can be seen from Tables III and IV that lattice PWA ap-
proximations for Example 4 require small storage requirements
and exhibit low online complexity. According to Section III-F,
here the worst-case online complexity is O(13× 24), which is
O(312). In contrast, the worst-case online flops for the method
in [21] is 11 363 by using (38), hence for this high-dimensional
example, the online speed of lattice PWA approximations will
outperform that in [21]. It is apparent that the lattice PWA ap-
proximations result in a very low online computational burden.

It has been tested through 76 765 test data points that the two
lattice PWA approximations are identical and equal the optimal
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Fig. 5. One exemplary closed-loop simulation of Example 4.

linear MPC control law in the control invariant set formulated by
convergent trajectories starting from points in the region Ω0 =
[−2, 2]10. By setting ε = 10−2, it can be concluded that with
confidence 1, the probability that the approximated lattice PWA
control laws equal the optimal control law is larger than 0.99.

Fig. 5 shows one exemplary closed-loop simulation of the
example (only the first state variable is listed), and we can see
from the figure that the optimal state trajectory and the trajectory
with the lattice PWA approximations as inputs are identical.

As indicated in [6], MPT3 failed to solve the problem. More-
over, the combinatorial approach proposed in [6] successfully
enumerates all optimal active sets and creates all the 573 critical
regions, taking 72.85 s. According to the definition of base
region, the number of base regions for this example is far
more than 573, which is much larger than the number of useful
sample points, i.e., 118 in Table III. It is notable that although
the calculation time for our procedure is longer, we obtain the
final continuous PWA expression of the optimal control law in
a simplified form, which is much easier to implement online.

To demonstrate more clearly the efficacy of the lattice PWA
approximations, the prediction horizon Np is extended to 20,
and the number of parameters and complexity of lattice PWA
approximations are also listed in Tables III and IV, respectively.
WhenNp = 20, Ahmadi-Moshkenani et al. [6] did not provide a
result either, hence corresponding fields in Table II are left blank.
In this case, we generate 75 643 validation points to show that
with confidence 1, the probability that the approximated lattice
PWA control laws equal the optimal control law is larger than
0.99.

VI. CONCLUSION AND FUTURE WORK

This article presents disjunctive and conjunctive lattice PWA
approximations of the explicit linear MPC control law by sam-
pling, and resampling in the state domain. Under certain con-
ditions, the lattice PWA approximated and exact control laws
are identical in base regions that contain the sample points.
Furthermore, assuming that all the affine functions have been
identified in the domain of interest, the disjunctive lattice PWA
approximation is always smaller than the original optimal con-
trol law, whereas the conjunctive lattice PWA approximation
is always larger. Then, the equivalence of the disjunctive and
conjunctive lattice PWA approximations guarantees the equiva-
lence to the optimal control law. The two kinds of lattice PWA
approximations have been simplified to reduce the storage and

online evaluation complexity further. The complexity of the
online and offline approximation and the storage requirements
have been analyzed. Simulation results show that we can obtain
statistically error-free lattice PWA approximations calculated
with relatively small computational costs. Besides, the online
computational complexity is much less than the state-of-the-art
methods for a 10-D system.

It is noted that the error-free lattice PWA approximations
equal the optimal MPC controller only in a part of the feasible
region, i.e., the domain of interest is set as the combination of
sample points in convergent trajectories that originate in a user-
specified region. This applies when the system states are not far
away from the operation points. If the state varies largely, a more
general domain of interest should be considered, which may
result in thousands of distinct affine functions. In this case, it is
not easy to construct error-free approximations, and the approx-
imation error will be considered in the future. Corresponding
feasibility and stability analysis will also be investigated.

APPENDIX A
PROOFS

Proof of Theorem 1.
Proof: Following gives the proof for the disjunctive case,

i.e., the first equality in (21) and (23), and the proof for the
conjunctive case, i.e., the second equality in (21) and (23),
follows similarly.

Substituting xk∀k ∈ {1, . . . , Ns1}, into the right-hand side
of (15) and we get

max
i=1,...,Ns1

{
min
j∈J≥,i

{�j(xk)}
}

which equals �act(k)(xk) as (19) holds. Hence, the equivalence of
disjunctive lattice PWA approximation and the optimal control
law at xk is guaranteed, and the first equality of (21) is proved.

Then, we prove the validity of the first equality in (23) under
a stricter condition (22), other than (19). As (22) holds, we have
∀i, k, either

min
j∈J≥,i

{�j(xk)} = �act(k)(xk), act(k) ∈ J≥,i (39)

or

min
j∈J≥,i

{�j(xk)} < �act(k)(xk). (40)

For these two cases, we will show that the following inequality
holds:

min
j∈J≥,i

{�j(x)} ≤ �act(k)(x) ∀i ∈ {1, . . . , Ns1}, ∀x ∈ Γpnt(k).

(41)
Case 1: (39) is valid for some i, k. Then, as act(k) ∈ J≥,i, we

have (41).
Case 2: (40) holds for some i, k. In this case, we prove by

contradiction. Assuming that (41) does not hold, then there is
some x0 ∈ Γpnt(k) with f̂L,d(x0) = �act(k)(x0), such that

min
j∈J≥,i

{�j(x0)} > �act(k)(x0).
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As both sides of the above inequality are continuous, we can
then find a neighborhood of x0, say B(x0) ∩ int(Γpnt(k)), in
which int(Γpnt(k)) denotes the interior of Γpnt(k), such that ∀x ∈
B(x0) ∩ int(Γpnt(k)), we have

min
j∈J≥,i

{�j(x)} > �act(k)(x).

Randomly choosing a point x̄0 ∈ B(x0) ∩ int(Γpnt(k)), and the
following conclusion follows directly:

�j(x̄0) > �act(k)(x̄0) ∀j ∈ J≥,i. (42)

Considering the line segment

L(xk, x̄0) = λxk + (1− λ)x̄0, λ ∈ [0, 1]

as the base region Γpnt(k) is convex, we have

L(xk, x̄0) ⊂ Γpnt(k).

According to (40), there should be some j0 ∈ J≥,i such that

�j0(xk) < �act(k)(xk).

Combined with (42), there must be some point x̂ ∈ L(x̄0,xk)
such that

�j0(x̂) = �act(k)(x̂). (43)

As x̄0 ∈ int(Γpnt(k)), we have x̂ ∈ int(Γpnt(k)). Then, the va-
lidity of (43) contradicts the definition of the base region (8).
Hence, (41) holds.

As the equality in (41) holds for i = k, i.e.,

min
j∈J≥,k

{uj(x)} = �act(k)(x) ∀k ∈ {1, . . . , Ns1}, ∀x ∈ Γpnt(k)

combining with the disjunctive lattice PWA approximation (15),
we have

f̂L,d(x) = �act(k)(x) ∀k ∈ {1, . . . , Ns1}, ∀x ∈ Γpnt(k). (44)

For a sample point xk, according to the sampling procedure, we
have

u∗(xk) = �act(k)(xk) ∀k ∈ {1, . . . , Ns1}.
As indicated in Section II-A, the equivalence of u∗(x) and
�act(k)(x) holds for all x ∈ CR(xk).

As the work in [3] shows, critical regions are also obtained
through the KKT conditions (4). Different critical regions that
share the same affine function �act(k) are combined such that the
resulting combination is convex, then according to the definition
of base region, Γpnt(k) is a subset of this combination and

u∗(x) = �act(k)(x) ∀x ∈ Γpnt(k).

The above equation together with (44) yields (23).
The conjunctive case can be proved similarly.
Proof of Lemma 2. �
Proof: According to the definition of covered base regions,

we have

min
j∈J≥,i

{uj(x)} = u∗(x) ∀x ∈ C
(

min
j∈J≥,i

{uj(x)}
)
.

Then, for any Γt ⊂ C(minj∈J≥,i
{uj(x)}), we have

min
j∈J≥,i

{uj(x)} = �act(t)(x) ∀x ∈ Γt.

As J≥,k ⊂ J≥,i, we then have

min
j∈J≥,k

{uj(x)} ≥ min
j∈J≥,i

{uj(x)} = �act(t)(x) ∀x ∈ Γt. (45)

According to (22) and the proof of Theorem 1, we have

min
j∈J≥,k

≤ �act(t)(x) ∀x ∈ Γt

which together with (45) yield the following:

min
j∈J≥,k

= �act(t)(x) ∀x ∈ Γt

meaning that

C
(

min
j∈J≥,i

{uj(x)}
)

⊂ C
(

min
j∈J≥,k

{uj(x)}
)
.

Moreover, if there is t ∈ {1, . . . , Ns1} \ {i} such that act(i) ∈
J≥,t, then removing xi will just removing corresponding term
minj∈J≥,i

{�j(x)} without eliminating any affine functions in

other terms, thus the function value of f̂L,d will not change
according to Rule (24), which also means that the covered base
regions do not change.

Proof of Lemma 3. �
Proof: As the optimal control solutionu∗ is continuous PWA,

and the feasible domain is convex, it is still continuous PWA
when restricted to the line segment L(xα,xβ).

Defining an index set aff(xα,xβ) as

aff(xα,xβ) = {j|∃x ∈ L(xα,xβ) such thatu∗(x) = �j(x)}
i.e., the index set aff(xα,xβ) includes all the indices of affine
functions in u∗(x) when restricted to L(xα,xβ). It is noted
that the index set aff(xα,xβ) may contain affine functions that
have not been sampled yet. In the following, the index set
aff(xα,xβ) is used to illustrate the existence ofxγ ∈ L(xα,xβ)
such that (27) holds, and there is no need to identify the details
of aff(xα,xβ).

According to [14], we have

min
j∈S≥,α

{�j(x)} ≤ �act(β)(xβ) ∀x ∈ L(xα,xβ)

in which S≥,α is the index set such that

S≥,α = {j ∈ aff(xα,xβ)|�j(xα) ≥ �act(α)(xα)}.
Clearly, there will be some act(γ) ∈ S≥,α, such that (27) holds.

Therefore, if we add one of these xγ to the sample point set,
as (27) is valid, we have act(γ) ∈ J≥,α, and (28) is valid.

Proof of Lemma 4. �
Proof: The condition sign(�act(i)(xi)− �act(i+1)(xi)) =

sign
(�act(i)(xi+1)− �act(i+1)(xi+1)) is equivalent to the condition

(�act(i)(xi)− �act(i+1)(xi)) · (�act(i)(xi+1)− �act(i+1)(xi+1))

> 0

which indicates either

�act(i)(x) > �act(i+1)(x) ∀x ∈ L(xi,xi+1)

or

�act(i)(x) < �act(i+1)(x) ∀x ∈ L(xi,xi+1).
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Fig. 6. Cases when sign(�act(i)(xi)− �act(i)+1(xi)) = sign(�act(i)
(xi+1)− �act(i+1)(xi+1)). (a) �act(i)(x) ≤ �act(i+1)(x). (b) �act(i)(x) ≥
�act(i+1)(x).

Fig. 7. Two cases satisfying (46). (a) Case 1. (b) Case 2.

Fig. 6 shows these two cases. This means that there will be no
continuous PWA functions constructed to connect the two points
(xi, �act(i)(xi)) and (xi+1, �act(i+1)(xi+1)). Hence, new points
should be added in L(xi,xi+1).

After evaluating Algorithm 1, the condition

(�act(i)(xi)− �act(i+1)(xi)) · (�act(i)(xi+1)− �act(i+1)(xi+1))

≤ 0 (46)

is satisfied for all points xi ∈ L(xα,xβ), which corresponds
to two cases, as shown in Fig. 7. To generalize, here we only
consider the case when �act(i) 	= �act(i+1); for the case �act(i) =
�act(i+1), the affine function �act(i) can connect the two points.
Then, we can construct a continuous PWA function connecting
the two points xi and xi+1, i.e., min{�act(i), �act(i+1)} for case
1 and max{�act(i), �act(i+1)} for case 2. Like the two cases in

Fig. 7, we can construct a continuous PWA function, say f̂1, that
connects all the points (xi, �act(i)(xi)) for all xi ∈ L(xα,xβ).

It is noted that f̂1 may be different from u∗, and f̂1 is just used as
a supplementary continuous PWA function to show the validity
of (30) and (31). For this continuous PWA function f̂1, the affine
pieces are �act(i)(x), xi ∈ L(xα,xβ).

Define the index set

aff1(xα,xβ) = {j|∃x ∈ L(xα,xβ) such that f̂1(x) = �j(x)}
then aff1 = {act(i)|∀xi ∈ L(xα,xβ) ∩ (X1 ∪ X2)}.

According to [14], the continuous PWA function f̂1 can be
represented using a lattice PWA expression, and take disjunctive
lattice PWA representation for example, the conjunctive case
can be proved similarly. For all xi ∈ L(xα,xβ) ∩ (X1 ∪ X2),
let Γ̄pnt(i) is a base region that satisfies

xi ∈ Γ̄pnt(i), Γ̄pnt(i) ⊂ L(xα,xβ).

For the disjunctive lattice PWA representation, the term con-
cerning the base region Γ̄pnt(i) is calculated as

min
j∈Ī≥,pnt(i)

{�j}

in which the index set Ī≥,pnt(i) can be expressed as

Ī≥,pnt(i)={j ∈ aff1(xα,xβ)|�j(x) ≥ �act(i)(x),∀x ∈ Γ̄pnt(i)}.
Asxi ∈ Γ̄pnt(i), we have Ī≥,pnt(i) ⊂ J̄≥,i, in which J̄≥,i is defined
as

J̄≥,i = {j ∈ aff1(xα,xβ)|�j(xi) ≥ �act(i)(xi)}.
As aff1 is a subset of the entire affine function index set, we have

Ī≥,pnt(i) ⊂ J̄≥,i ⊂ J≥,i.

According to [14], the following inequality holds:

min
j∈Ī≥,pnt(i)

{�j(xk)}≤�act(k)(xk) ∀xi,xk∈L(xα,xβ)∩(X1∪X2)

and as Ī≥,pnt(i) ⊂ J≥,i, we have (30).
The validity of (31) can be proved similarly by referring to

the conjunctive lattice PWA representation of f̂1.
Proof of Lemma 5.
Proof: As Algorithm 2 shows, the offline complexity comes

from generating the sample set X1, and resampling to make (19)
and (20) hold, and simplification according to the rule R1 (24).

Assuming that there are Ns1 sample points generated on tra-
jectories, as shown in Section III-A, the complexity of sampling
Ns1 points, i.e., evaluating Line 1 in Algorithm 2, includes
solving Ns1 convex quadratic programming (QP) problems
and corresponding KKT conditions, which are solving linear
equations. The solving ofNs1 convex QP problems withNp · nu

decision variables is approximately O(Ns1 · L2(Np · nu)
4) by

using an interior-point algorithm [36], in which L is the bit
length of the QP problem. The dominant algorithmic operation
in solving the KKT conditions is solving Ns1 matrix inversion
problems, the worst-case complexity of which is O(Ns1|A∗|3)
using the Gauss–Jordan elimination algorithm, in which |A∗| is
the number of active constraints. As |A∗| ≤ p, where p is the
number of constraints in QP (2), the worst-case complexity for
solving the KKT conditions is O(Ns1p

3).
We now discuss the worst-case complexity of evaluating

Algorithm 1, i.e., Line 3 in Algorithm 2. For two points xα and
xβ , if (19) or (20) is violated, the evaluation of Algorithm 1 is a
binary search method for identifying additional affine functions,
which in the worst case requires determining all the omitted
subregions in the line segment L(xα,xβ). The maximum num-
ber of subregions appearing in L(xα,xβ) is dα,β

δM
, where dα,β

is the length of L(xα,xβ) and δM is the minimum measure
of subregions. The binary searching of the subregions yields a
worst-case complexity ofO(log2

dα,β

δM
). Supposing that there are

Na point pairs such that (19) is violated, then the worst-case
complexity is O(Na · log2 dα,β

δM
). The number Na is closely

related to the number of sample points generated previously,
i.e., Ns1. A larger Ns1 will result in a smaller number of Na and
dα,β ; hence, the complexity of Algorithm 1 can be decreased by
increasing Ns1.

After evaluating Lines 1–4, there are Ns sample points. The
simplification procedure requires the comparison of the sets J≥,i

(J≤,i) for i = 1, . . . , Ns, which at most yields (2Ns
) = Ns(Ns−1)

2
times comparisons. For each comparison, at most M literals
need to be compared. Hence, the worst-case complexity for the
simplification is O(M ·N2

s ).
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In general, L,Np, nu, p � Ns1, Na � Ns1, and Ns1 < Ns,
then the total worst-case complexity is O(M ·N2

s ), in which M
is the number of literals, i.e., distinct affine functions and Ns is
the number of sample points.

Proof of Theorem 2.
Proof: Assume that N is the index of all base regions, i.e.,

Ω =
⋃

i∈N Γi, according to the conclusion in [14], we have

u∗(x) = max
i∈N

{
min
j∈I≥,i

{uj(x)}
}

∀x ∈ Ω (47)

u∗(x) = min
i∈N

{
max
j∈I≤,i

{uj(x)}
}

∀x ∈ Ω (48)

in which the index sets I≥,i and I≤,i are defined as

I≥,i = {j|�j(x) ≥ �loc(i)(x), ∀x ∈ Γi}
I≤,i = {j|�j(x) ≤ �loc(i)(x), ∀x ∈ Γi}.

Therefore, for all x ∈ Ω and all i ∈ N , we have

min
j∈I≥,i

{�j(x)} ≤ u∗(x), max
j∈I≤,i

{�j(x)} ≥ u∗(x).

For a sample point xi, the base region containing xi is denoted
as Γpnt(i) and the affine function at xi is �act(i), i.e., u∗(xi) =
�act(i)(xi). According to the definition of base region and (16),
we have {

J≥,i = I≥,pnt(i) xi ∈ int(Γpnt(i))
J≥,i ⊃ I≥,pnt(i) xi ∈ bd(Γpnt(i))

in which bd(·) denotes the boundary of some polyhedron. Then,
the following is valid:

I≥,pnt(i) ⊂ J≥,i.

Similarly, according to (18), we have

I≤,pnt(i) ⊂ J≤,i.

As the sampled base regions are only a subset of all base regions,
i.e.,

{pnt(1), . . . , pnt(Ns)} ⊂ N
we have ∀x ∈ Ω, ∀i ∈ {1, . . . , Ns}

min
j∈J≥,i

{�j(x)} ≤ min
j∈I≥,pnt(i)

{�j(x)} ≤ u∗(x)

and

max
j∈J≤,i

{�j(x)} ≥ max
j∈I≤,pnt(i)

{�j(x)} ≥ u∗(x).

Then, as f̂L,d is the maximum of minj∈J≥,i
�j(x)∀i ∈

{1, . . . , Ns}, and f̂L,c is the minimum of maxj∈J≤,i
�j(x)∀i ∈

{1, . . . , Ns}, the following is valid:

f̂L,d(x) ≤ u∗(x) ≤ f̂L,c(x) ∀x ∈ Ω.

According to (34), we have (35) and (36).
Furthermore, if ε = 0, then both approximations are identical

to the optimal control law in the region Ω, i.e., (37) holds. �
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