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1
Introduction

Our reliance on artificial intelligence for computer vision through deep learning has increased incredibly
in the past decade [10]. From self-driving cars [2], facial recognition to unlock your phone [18], or
medical imagery [22], deep learning models are able to complete a wide variety of complex image
processing tasks. To most of us deep learning technology can feel like a magical black-box that is able
to compete with or outperform the best human beings. But as we are starting to rely on AI more and
more, can we just blindly trust a decisions an AI makes [19]?

In Figure 1.1 are two seemingly identical no-entry signs taken from a large dataset of images of real
world traffic signs [27]. However, a state-of-the-art classification model will make a catastrophic mistake
in this case. It misclassifies a no-entry sign for a highway speed limit sign. How is it possible that such
a mistake can be made?

Prediction:
No entry sign

(100% confidence)

Prediction
120 km/h sign 

(55.25% confidence)

Figure 1.1: Traffic sign misclassification with a seemingly unnoticeable difference between the images.

1.1. Problem Statement
Traditionally computer vision models consisted of human-crafted filters. An example is a basic edge
detector algorithm, which finds regions in an image where the intensity ‘suddenly’ changes [30]. For a
hand-crafted algorithm we define the order and types of mathematical operations ourselves. Take as
an example the stop sign recognition, it is possible to come up with a set of rules in order to classify
the image. E.g. does it contain a red circle of a given size? If so, are there enough white pixels that
span a stretched-out rectangle? If both are true, you have detected a no-entry sign. With a rule based
algorithm it is possible to deduce how a decision is made, but are these rules general enough to detect
a no-entry sign?.

With the adoption of deep learning, computer visionmodels are only given the input image and a ground-
truth output. Engineering these ‘filters’ is no longer the task for a human, but part of the optimization
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1.2. Research Motivation 2

task of the deep learning model. Despite no longer relying on human crafted filters or feature detectors,
deep learning models like Convolutional Neural Networks (CNNs) [20] with
25million parameters can surpass human performance on several benchmarks when trained on enough
data. Modern computer vision architectures, like the Vision Transformer (ViT) [8] scale to billions of pa-
rameters [5]. This trend of scaling model to bilions of parameters has resulted in some of the most
capable computer vision models to date.

Deep neural networks consist of an enormous amount of non-linear mathematical operators and pos-
sibly billions of tuneable parameters. But this non-linearity has a major drawback: as computer vision
models grow larger and become more complex, our human understanding of their internal decision
making starts to fade. This lack of explainability of computer vision models, and deep learning models
in general, has serious ethical consequences. How can we trust or know that a self-driving car will stop
at a red light at a busy intersection? It might do so in a simulated environment or say so for all the test
images in a dataset. But what about a change in viewing angle, a subtle shadow, or heavy snow? Is it
really possible to consider all of these alternative versions of a red traffic light?

Adversarial machine learning is the study of exploiting model vulnerabilities to alter predictions without
being detected. It challenges the trustworthiness of machine learning models and questions their reli-
ability. Interestingly, adversarial examples are ‘poisoned’ images with very small deliberately chosen
pixel changes such that a model will wrongly classify it. The traffic sign recognition in Figure 1.1 is an
example of such an attacked image. However, this is unacceptable, as a self-driving car is operating
is a high-stakes application with serious real-life consequences. It underlines the stark reality of our
current understanding of AI models.

1.2. Research Motivation
Fortunately this is not where the story ends. With the advent of Generative Pre-trained Transformers
(GPT), large language models have led the charge in model scaling into the billions of parameters.
However, training such large models requires enormous amounts of energy and compute time. With
the earliest language models it was the case: if your training data changes, you have to train again.

In an ideal scenario a large language model is able to split its factual knowledge from its model pa-
rameters. By relying on explicit memory storage a large language model can reduce its number of
parameters and we can update its knowledge-base without retraining [21]. Not only that, by retrieving
information from an explicit memory, we can observe what information is retrieved in a human under-
standable format. This makes the retrieval augmentation paradigm an appealing direction in a pursuit
for explainability, not only for large language models, but also for computer vision. More over, there
have been results for retrieval-augmented large language models indicating that they operate under a
lower risk than regular large language models [29, 16].

Motivated by the adversarial vulnerabilities in images and the adoption of the retrieval augmentation
paradigm in the large language model and computer vision domain, we arrive at the core of this thesis.
In this thesis, we combine these ideas together for a novel defense to adversarial vulnerabilities for
computer vision models using retrieval augmentation.

1.3. Research Scope
Based on the robustness properties that retrieval augmentation seem to inhibit, we hypothesize that
these robustness properties from the retrieval-augmentation paradigm also transfer to computer vision
models. With this hypothesis we arrive at the research question for this thesis:

Does image retrieval augmentation improve robustness against perturbations and adversarial attacks
in visual classification tasks?

Additionally we ask the follow sub question: To what types of perturbations and/or adversarial attacks
does image retrieval augmentation improve classification accuracy against?

This research focuses on the task of visual classification by considering a set of well-established bench-
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marking datasets and state-of-the-art image classification models. Adversarial vulnerabilities can be
exposed by two types of adversarial attacks which assume different degrees of knowledge about the
model itself. For both the white-box and black-box cases we select hand-pick adversarial attacks which
are considered standard and/or ‘strong’ as of writing.

1.4. Impact
With this work we underline that existing adversarial vulnerabilities scale to state-of-the-art computer
visions and complex image classification tasks. As retrieval-augmentation is an efficient and scalable
model adaptation, retrieval augmentation as a defense to adversarial risks has the potential to scale to
modern architecture and dataset scales, where so far other defense methods have struggled to.

Adversarial perturbations pose a serious threat to the robustness and trustworthiness of deep learning
model. In this thesis we contribute to our shared understanding of deep learning-based computer
visions models. It is hard to imagine a world without artificial intelligence anymore. Therefore we
hope this work inspires more responsible and ethical use of artificial intelligence in the computer vision
domain and beyond.

1.5. Thesis structure
This thesis consists of two parts:

1. Background: This is supplementary material for a non-expert reader. It consist of two parts pro-
viding background about our two main research motivations: Adversarial AI for computer vision
and retrieval augmentation. In the first part, we give a brief explanation of how adversarial attacks
work internally, how existing defenses try to mitigate these issues and how they are used in the
paper. In the second part we introduce the concept of retrieval augmentation and how it has been
applied in large language models and computer vision.

2. Scientific article: In this paper, we answer the aforementioned research questions. We explore
the retrieval augmentation paradigm as an adversarial defense on a diverse number of datasets
to empirically analyze how our defense scales in terms of the number of classes and dataset size.
On top of that we compare our method to existing defense mechanisms and perform a hyper-
parameter analysis of our retrieval augmentation module. Finally, we experiment with different
model and highlight the potential of leveraging information from a different modality.

Our method and results show that it is possible to adapt an existing deep learning computer vision
with a training-free retrieval augmentation pipeline and make it more robust to adversarial input
without severe loss of standard classification accuracy.



2
Background

This background chapter consists of two parts:

• Adversarial attacks and defenses (Section 2.1)
• Retrieval augmentation for deep learning (Section 2.2)

These core concepts build up to knowledge required for the paper in Chapter 3. In this paper we
propose the idea of retrieval augmentation and analyze how it can play a fundamental role in increasing
model robustness against adversarial attacks.

4



2.1. Adversarial Attacks and Defenses 5

2.1. Adversarial Attacks and Defenses
Consider a point x ∈ Rd that has a class y. The goal of an adversarial attack is to slightly change this
point x to a new point x∗ such that a human eye can barely see the difference. This tiny perturbation is
malicious in nature in such a way that a classification model misclassifies x∗. This phenomenon of an
adversarial examples was first mentioned by Szegedy et al. in 2014 [28] and made explicit by Good-
fellow et al. [11]. In Figure 2.1 we demonstrate such an adversarial example. The existence of such
examples reveals a significant vulnerability in deep models, particularly in safety-critical applications
like autonomous driving, facial recognition, and medical imaging. These attacks not only challenge the
robustness of models but also raise broader concerns about trust, reliability, and security in AI systems.

container ship (99.9%)

+

Clean

book jacket (23.6%)

=

Adversarial noise 
 (Scaled for visualization)

freight car (99.9%)

Combined

church (88.9%)

+

book jacket (30.9%)

=

bubble (99.9%)

Figure 2.1: PGD adversarial attack visualized on sample images from the ImageNet dataset [7].

To attack amodel one needs to knowwhat parts of amodel are accessible in order to craft an adversarial
example. In literature we commonly differentiate between types: white-box attacks and black-box
attacks.

This section introduces essential mathematical definitions for adversarial attacks, notable attack strate-
gies, and adversarial defenses.

1. White-box: White box attacks assume we know everything about a model, from its inputs, model,
architecture, model weights, and outputs. In most cases this means we have access to the
gradient values in the model.

2. Black-box Unlike white-box attacks that require knowledge of the model’s internals, black-box
attacks assume limited or no access to model parameters. These attacks often rely on trans-
ferability. An adversarial examples generated for one model may fool another. A query-based
optimization estimates gradients through model queries to craft adversarial inputs. Black-box
attacks highlight the real-world feasibility of adversarial threats.
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2.1.1. Formal definitions
Before moving to attacks, we need a mathematical framework to define how an attack can operate and
under what constraints. As mentioned earlier our data point x has a class label y ∈ Y and we consider
a classifier f : Rd → R|Y| which predicts for a data point the corresponding class. We give the definition
of an adversarial attack as follows:

Definition 1 Adversarial Attack
Under an adversarial perturbation mapping A : Rd → Rd the original datapoint x is transformed to
x∗ = A(x), such that for our classification model:

f(A(x)) ̸= f(x)

misclassifies x∗

This is a general description of an adversarial mapping. For adversarial perturbations on images we
consider the additive adversarial model. Under an additive transformation we ensure the image remains
an image and the transformation is mathematically more convenient to work with.

Definition 2 Additive Adversarial Attack
Under an additive adversarial attack the original datapoint x is transformed to x∗ = x + δ where
δ ∈ Rd is a perturbation, such that for our classification model:

f(x+ δ) ̸= f(x)

misclassifies x∗

To make sure the perturbation remains small we constrain the magnitude of δ to a specific norm. δ is
bounded by the Lp-norm, which limits the freedom of δ. Using the Lp norm we can formally define a
bound on the perturbation δ. In the context of perturbations for images we often consider the following
bounds:

Definition 3 L2 Norm
For p = 2, the Lp-norm of x is often refered to as the Euclidean norm is defined as:

||x||2 =
√
|x1|2 + |x2|2 + · · ·+ |xn|2

Definition 4 L∞ Norm
For p→∞, the Lp-norm of x is often refered to as the maximum norm is defined as:

||x||∞ = max(|x1|, |x2|, . . . , |xn|)

What do these norms mean in terms of input images? When we consider x to be an image, the Lp-norm
bounds the change in pixel space to some value often refered to as ϵ. For example, under the L2 norm
the square root of the sum of squares of all pixel changes ϵ cannot be exceeded. For L∞ it can be
interpreted as, the maximum change in pixel value for any pixel in the image can not be higher than ϵ.
Formally the bound is defined as:
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Figure 2.2: Visualization of a decision boundary and how an iterative attack like PGD finds an adversarial example without
violating the perturbation bound by projecting it back to the allowed set S, with projection operator ΠS .

Definition 5 Perturbation bound
A pertubation δ ∈ Rd is bounded by an Lp norm such that it does exceed a threshold ϵ ∈ R

||δ||p ≤ ϵ

For an L∞-norm bound ϵ for ||δ||p ≤ ϵ, one typically sees it represented as a fraction: ϵ = 4
255 . A pixel

value in in a color channel or for gray-scale images are represented by an 8-bit value which ranges
from 0 to 255. In this example it means a maximum of pixel value change of four.

2.1.2. White-Box Attacks
The first white-box attack to leverage this gradient information was the Fast Gradient Sign Method
(FGSM) [11]. FGSM generates adversarial examples by performing a one-step gradient update in the
opposite direction of the gradient.

x∗ = x+ ϵ ∗ sign(∇xL(θ, x, y))

Given a gradient ∇x of the loss function of a classification model L(θ, x, y), where θ are the accessible
model weights, x the input and y the output. By stepping in the ‘opposite’ direction, or formally the sign,
the attack tries to maximize the loss of the model in order to fool the model into misclassifying x∗

Basic Iterative Method
A very simple improvement to FGSM was the Basic Iterative Method (BIM) [9]. The key idea is to apply
the FGSM multiple n times with a small step size a and to clip the pixel values to the ϵ bound at each
intermediate step. This clipping operation forces that the maximum perturbation δ does not exceed the
maximum norm ||δ||∞ ≤ ϵ.

x∗
0 = x

x∗
i+1 = clip(x∗

i + a ∗ sign(∇xL(θ, x, y)), x− ϵ, x+ ϵ)

Projected Gradient Descent Attack
Projected Gradient Descent (PGD) [24] is a more rigorous extension to BIM. Instead of a clipping
operation, the PGD uses a projection functionΠS , which maps the perturbed input back to the allowable
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set S, which is constrained by the more general Lp norm. Where BIM initializes x∗
0 to the original image,

PGD starts at a random initialized location inside of the allowed Lp norm.

x∗
i+1 = Π(x∗

i + α ∗ sign(∇xL(θ, x, y)))

In Figure 2.2 we visualize a decision boundary and the maximum allowed perturbation in red. For
simplicity we assume the PGD attack starts at the original point x. With the small step a the perturbation
evolves and in case it violates the ϵ bound it gets projected back inside the allowed set. The resulting
adversarial examples for real images are shown in Figure 2.1.

PGD has established itself as a highly effective and go-to attack. It is theoretically well-grounded and
at the same time easy to implement. Therefore, PGD is used a benchmark for white-box attack for
adversarial examples in computer vision.

Carlini & Wagner Attack
The Carlini & Wagner (C&W) Attack [3] is a powerful white-box attack created in response to a defense
called defensive distillation. With this new attack the authors show that these seemingly defended
models remain vulnerable to the C&W attack.

It sets itself apart from the iterative attacks like PGD, because the optimization objective for C&W is
to find the smallest perturbation δ that causes a misclassification. By minimizing a special objective
function z that encourages misclassification under a box constraint for x+ δ given a hyperparameter c.

minδ||δ||p + c · z(x+ δ)

subject to x+ δ ∈ [0, 1]d

Optimizing under a box constraint is not a supported operation under gradient descent solvers like
Stochastic Gradient Descent (SGD). Through a change of variable the authors make a differentiable
approximation of the constraint by optimizing for w by defining:

x+ δ =
1

2
(tanh(w) + 1)

Since the range of the tanh function is defined for 0 to 1, just like the original constraint x+ δ ∈ [0, 1]d,
it is possible to use an advanced optimizer like Adam.

The C&W attack is defined for L1, L2 and L∞ and shows strong adversarial examples using fewer
pixel perturbations to the input image than e.g. PGD. However, generating such examples comes at a
higher cost. It should also be noted that there is no explicit upper ϵ bound for this attack.
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Test data

Target Black-Box
Classifier

Local classifier

Training dataset

Train
model

Local model
prediction

Build
dataset

Target model
prediction

Query target
model

Figure 2.3: Overview of black-box model extraction. Train a local surrogate model that approximates the target model by
generating data samples and querying the target model.

2.1.3. Black-Box Attacks
Black-box attacks assume internal information about the model is not directly observable. Black-box
attacks simulate a much more realistic scenario for real-world vulnerabilities. A black-box attack can
only get new information from the target model by continuously querying it. On top of a perturbation
bound, usually a black-box is given a query budget. This limits the number of inference runs on the
target model.

Transfer-based attacks
One approach is to try and train a local substitutemodel and use it to generate adversarial examples that
transfer to the target model. In Figure2.3 we show the active learning of a local classifier by continuously
querying a black-box target model with test data. By treating the target model as an oracle, i.e. the
behaviour we want to mimic, the local model approximates the decision boundaries of the target model.

With a local model it is possible to apply white-box attacks. Surprisingly enough these attacks can
transfer to the target model [6] and pose a serious risk. This is even the case if the two models have a
different architecture or are trained on different training sets, so long the task is the same [26].

Score-based attacks
Score-based attacks assume to have access to the models input and the predicted confidence scores.
These types of attacks skip the surrogate model and try to directly estimate the gradient of a target
classifier.

An example of this is the zeroth order optimization (ZOO) [4]. ZOO can efficiently craft adversarial
examples by using stochastic coordinate descent. Basically this method tries to approximate the of a
single pixel at a time by slightly changing that pixel up and down to observe how the confidence of the
model changes. The gradient estimate for a single pixel at index j can be approximated as follows:

∂f(x)

∂xj
≈ f(x+ aej)− f(x− aej)

2a

Here ej is a zero vector except for a one at pixel index j.

By combining the gradients for all pixels ZOO can perform an estimated gradient descent step with a
small step size a. A bunch of optimizations like subsampling the number of pixels, reducing dimensional-
ity of the image, or importance sampling increase the effectiveness and query efficiency of score-based
black-box models.
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Decision-based attacks
Decision-based attacks assume the least amount of information. Where score-based attack can query
to classification probabilities, a decision-based attack only has access to the final decision or prediction.

An efficient black-box decision-based attack example is the Square Attack [1]. It is a trial-and-error
approach where squares are randomly placed across the image. With top-1 class label predictions
it first tries to misclassify. It follows a simple update rule to find a minimal perturbation that fools the
model (Algorithm 1).

Algorithm 1 Square Attack Update Rule (Non-Targeted)
1: Input: Clean image x, true label y, adversarial example x∗

i , perturbation budget ϵ
2: Output: Updated adversarial example x∗

i+1

3: Randomly select a square region R ⊆ image domain
4: Sample a random perturbation δR supported on R
5: Set xcandidate = clip(x∗

i + δR, x− ϵ, x+ ϵ)
6: if model(xcandidate) ̸= y then
7: if ∥δ(x, xcandidate)∥ < ∥δ(x, x∗

i )∥ then
8: x∗

i+1 ← xcandidate ▷ Accept the candidate
9: else

10: x∗
i+1 ← x∗

i ▷ Reject, stay at current
11: end if
12: else
13: x∗

i+1 ← x∗
i ▷ Label not flipped, reject

14: end if
15: return x∗

i+1
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Figure 2.4: Certified smoothing

2.1.4. Adversarial Defenses
In the previous section, we introduced adversarial attacks and how they can fool machine learning
models into making incorrect predictions. To address these vulnerabilities, researchers have developed
several defense strategies aimed at either increasing the robustness of models or detecting adversarial
examples.

Adversarial Training
A common defense is adversarial training. It involves augmenting the training set with adversarial
examples during training. The standard training objective tries to minimize the loss of the classifier with
respect to its parameters θ (Equation 2.1a). In adversarial training the training objective is formulated
as a min-max optimization problem. Maximize the loss under an allowed perturbation δ ∈ ∆, but at the
same time minimize the loss with respect to the model parameters (Equation 2.1b).

Standard Training: min
θ

E(x,y)∼D [L(fθ(x), y)] (2.1a)

Adversarial Training: min
θ

E(x,y)∼D

[
max
δ∈∆
L(fθ(x+ δ), y)

]
(2.1b)

Practically adversarial training is done as follows. Given a training sample x, y ∼ D from the training
set D, craft an adversarial perturbation δ under some bound ϵ that maximizes the loss of the current
model. In practice, PGD is often used due to its cost efficiency.

Certified defenses
Unlike adversarial training, which empirically defends against known attacks like PGD, certified de-
fenses aim for formal guarantees that no adversarial example exists within a region around each input.
Certified defenses give a guarantee that a model’s prediction will remain unchanged under any pertur-
bation within an Lp-norm with bound ϵ.

f(x+ δ) = f(x) for all ||δ||p ≤ ϵ

In Figure 2.4 we show a classification task between two classes. An ordinary model can find a decision
boundary that perfectly separates the two classes (on the left). However, under a certain certification
bound we would like to guarantee that for each point the classification remains the same. But in the
middle plot this is certainly not the case. A certified decision boundary separates the classes with the
aforementioned guarantee (on the right).

An example of a certified defense is randomized smoothing. The key idea is to train a neural network f
with Gaussian data augmentation at variance σ2. A smoothed classifier fsmooth is obtained by returning
the most likely class by f with the input x being corrupted by Gaussian noise with variance σ2. To
estimate the most likely prediction for the smoothed classifier, Monte Carlo sampling is used.
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Interestingly, the smooth classifier fsmooth is provably robust within an L2 norm around the original input
x, implying that for any perturbation δ under the constraint ||δ||2 ≤ ϵ, f(x+ δ) = f(x).

2.1.5. Summary
The exploration of white-box and black-box attacks underscores the critical vulnerabilities inherent in
machine learning models. White-box attacks, such as PGD, and the C&W attack, exploit full access
to model internals to craft precise and effective adversarial examples. These methods highlight the
need for models to be robust against gradient-based manipulations and emphasize the importance
of defensive strategies that can withstand iterative and optimization-based attacks. In contrast, black-
box attacks, including transfer-based, score-based, and decision-based methods, operate under more
realistic constraints where model internals are inaccessible. These attacks demonstrate that even with
limited information, adversaries can successfully generate adversarial examples that transfer across
different models or exploit decision boundaries through clever querying strategies. The effectiveness
of these attacks underscores the necessity for models to be resilient against a variety of query-based
and transfer-based threats.
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2.2. Retrieval Augmentation
Large Language Models (LLMs) have taken the world by storm. Their wide applicability, ability to con-
dense text, explain topics have changed the way we as humans interact with text information. However,
these models are trained on billions of pieces of text and require enormous amounts of power to train
and run inference. Pushing for bigger models with more andmore parameters, it becomes economically
infeasible to retrain a model if part of the training data changes.

To address this problem researchers have tried to decouple the explicit knowledge from the model
parameters in an attempt to reduce model size. The power-house in modern large language models
facilitating this decoupling is called: Retrieval Augmentation.

Figure 2.5: Core idea of retrieval augmentation in large language models

2.2.1. Explicit knowledge storage
Traditional neural networks, despite their success in pattern recognition tasks, have historically strug-
gled with algorithmic problems that require explicit memory manipulation. Recurrent neural networks
(RNNs) and their variants like Long Short-Term Memory networks (LSTMs) [14] were capable of mod-
eling sequences, but their ”memory” was constrained to fixed-size hidden states. This limitation made
it difficult for such models to perform tasks that required dynamic storage and retrieval of arbitrary
amounts of information, such as copying, sorting, or associative recall.

Graves et al. introduced the Neural Turing Machine (NTM). It proposes a hybrid model that augments
a neural network controller with a differentiable external memory matrix [12]. The controller learns to
read from and write to memory via soft attention mechanisms, allowing the system to store explicit
knowledge outside of its internal parameters.

This approach shifted the paradigm: instead of relying solely on internal weight-based memory, models
could dynamically access an expandable memory during inference. NTMs demonstrated that external
memory, when properly integrated, enables neural networks to learn algorithmic tasks and generalize
them to novel inputs. This insight established the foundation for subsequent developments in memory-
augmented models, retrieval-augmented language models, and broader efforts to separate knowledge
storage from reasoning mechanisms in modern machine learning.
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2.2.2. Retrieval Augmentation for Large Language Models
Dense Passage Retrieval
How can a model find similar text passages from a memory given a text query q? In Dense Passage
Retrieval (DPR) [17], both the query and the passages in a memory set are encoded into fixed-size
dense vectors using a bi-encoder architecture, like BERT. The model retrieves passages by calculating
the similarity between the query embedding and the passage embeddings in a high-dimensional space.
This similarity score is typically computed using the cosine similarity between the query and passage
embeddings:

Definition 6 Cosine Similarity
For two vectors a and b of equal dimension d, the cosine similarity is defined as the normalized
dot product between the two vectors.

sim(a, b) =
a · b

||a||2||b||2
=

∑d
i=1 aibi√∑d

i=1 a
2
i

√∑d
i=1 b

2
i

The query q is encoded using a query encoder, producing a query embedding Eq. Similarly, each
passage p (both relevant and irrelevant) is encoded using the passage encoder to produce the passage
embedding Ep. Typically embeddings are already normalized, that is why the normalization step is
usually omitted .

In order for the model to learn what are relevant and irrelevant passages, the goal of training is to
ensure that the embedding for the relevant passage Ep+ is closer to the query embedding Eq than the
embeddings for irrelevant passages Ep− .

This is achieved during training. A query q is paired with:

• Positive Passage p+, which is relevant to the query.
• Negative Passages p−, which are not relevant to the query.

The model is trained using a contrastive loss function that encourages the relevant passage p+ to
have a higher similarity to the query q than the irrelevant passages p−. The loss function is defined as

L = − log
exp(sim(Eq, Ep+))

exp(sim(Eq, Ep+)) +
∑

p− exp(sim(Eq, Ep−))

This binary cross-entropy loss ensures that the relevant passage is ranked higher than the irrelevant
ones. DPR has shown significant improvements over traditional sparse retrieval methods like BM25,
especially when integrated into systems like open-domain question answering, where retrieval of rele-
vant knowledge from a large corpus is critical. The dense retrieval approach allows for more precise
matching of queries to documents by capturing deeper semantic meaning, rather than relying solely on
lexical overlap.

Retrieval-Augmented Generation
With a powerful text-to-text retrieval model like DPR as the retrieval engine, Retrieval-Augmented Gen-
eration (RAG) [21] enhances language generation models by explicitly incorporating this retrieved in-
formation.

In RAG, a retrieval module first fetches a set of relevant documents from a large corpus given an
input query. These retrieved documents are then provided to a generative language model, typically a
sequence-to-sequence model, which conditions its output not only on the input query but also on the
retrieved context.

Formally, given a query q, the model retrieves a set of k documents P = {p1, . . . , pk} from an external
memory M and generates an output y by modeling:

P (y | q) =
∑
p∈P

P (y | q, p)P (p | q)



2.2. Retrieval Augmentation 15

where P (d | q) is the retrieval score (e.g., similarity between query and document), and P (y | q, d) is
the likelihood of generating the output conditioned on both the query and document.

This design decouples factual knowledge from the model’s parameters, enabling the knowledge base
to be updated independently of the language model. It results in better performance on knowledge-
intensive tasks by leveraging up-to-date, retrieved information rather than relying solely on model mem-
orization.

End-to-End Retrieval Augmentation
So far, we have seen how RAG can store knowledge in an external memory. However, the optimization
algorithm of a neural network works under the premise that every operation from input x to output y is
differentiable. Backpropagation is defined as a method for updating model parameters by computing
gradients of the loss with respect to themodel’s parameters. This requires each operation in the forward
pass to be differentiable, so that the gradients can flow backward through the model. The retrieval
process itself is typically not differentiable, as it involves discrete operations (e.g., selecting the top-k
most relevant passages). This poses a challenge: how can we train a model end-to-end if the retrieval
mechanism is not differentiable?

One common approach is to treat the retrieval process as a soft attention mechanism, where the model
learns to attend to a continuous weighted combination of passages rather than selecting a discrete
number of passages. This allows the retrieval step to become differentiable, enabling the gradients to
flow through the entire pipeline during training. In REALM [13, 15], the retriever is trained jointly with
the generator to retrieve passages that are most likely to be helpful for answering a given query, and
the generation model is conditioned on these passages to generate relevant outputs.

Formally, let q represent a query and D represent the corpus of documents. The retriever in REALM
[13] is a function Retriever(q; θR), where θR are the parameters of the retriever. The retriever outputs
a set of passages Pq = {p1, p2, . . . , pk} based on the query q. The generator then uses the retrieved
passages Pq to generate a response y conditioned on both the query q and the passages:

P (y | q, Pq) = Generator(q, Pq; θG)

where θG are the parameters of the generator. During training, the model is optimized using a joint
objective that encourages both the retriever and generator to work together effectively, typically using
a combination of contrastive and generation losses.

The retriever in REALM does not select a discrete top-k set of passages. Instead, it generates a contin-
uous distribution over the entire corpus. The passages Pq retrieved for a given query are represented
as a weighted sum of document embeddings:

Pq =

|D|∑
i=1

αi · pi

where αi represents the soft weight (probability) assigned to each passage pi, and pi is the embedding
of the i-th passage. The weight αi is computed as:

αi =
exp(score(q, pi))∑|D|
j=1 exp(score(q, pj))

where score(q, pi) is a similarity function, typically the dot product between the query embedding q and
passage embeddings pi. This softmax function ensures that the weights sum to 1, and the retriever is
differentiable with respect to αi.

The generator component of REALM then generates a response y conditioned on both the query q and
the retrieved passages Pq. The generator is a neural language model, such as BERT or GPT, which is
conditioned on the retrieved passages:

P (y | q, Pq) = Generator(q, Pq; θG)

where θG are the parameters of the generator.
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2.2.3. Retrieval Augmentation for Computer Vision
In computer vision, retrieval augmentation follows a similar philosophy to that in language models:
external memory is used to complement a model’s internal representation

Image-to-Image Similarity
Analogous to text retrieval in DPR, image retrieval systems aim to find images similar to a query image
in an embedding space. Each image is encoded into a dense vector using a vision backbone (e.g., a
convolutional neural network or vision transformer). Given a query image embedding eq, similarity is
computed against a database of image embeddings {ep}, often using cosine similarity or Euclidean
distance:

sim(eq, ep) =
eq · ep

∥eq∥2∥ep∥2
The closest images according to this metric are retrieved as candidates for downstream tasks such as
classification, captioning, or few-shot learning.

Recent self-supervised learning methods like DINOv2 [25] have demonstrated that vision transformers
(ViTs) can learn highly generalizable visual representations without the need for labeled data. DINOv2
pre-trains a ViT model by maximizing the similarity between different augmented views of the same
image, while minimizing the similarity between different images.

Because DINOv2 produces semantically meaningful embeddings, it naturally serves as a strong back-
bone for retrieval tasks. An image embedding generated by DINOv2 can be compared directly against
a database of embeddings.
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Figure 2.6: Image-to-image retrieval for an image from the ImageNet [7] dataset. Images are weighted based on their cosine
similarity to the query image.

Retrieval Augmentation for Image Classification
An example of a direct application of retrieval augmentation in computer vision is retrieval-augmented
classification (RAC). Given an input image, the system retrieves k similar images from an external
memory bank. These images all have a corresponding image caption which are in turn combined and
fed into a BERT-like text encoder. The logit predictions of the original image classification model are
combined with the logit predictions of the text encoder (Figure 2.7). This demonstrated the first use of
retrieval augmentation for visual classification tasks.
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Figure 2.7: Image taken from the RAC paper [23]. In (a) the retrieval augmentation extension of the base classification model
B. A retrieval module retrieves top-k similar images from a memory set. (b) The associated top-k image labels are combined
and fed into a BERT-like text encoder T . Finally the logits are augmented together to make a final classification prediction.

This retrieval-augmented strategy improves performance especially when training data is limited, when
classes have few examples, or when dealing with open-world or long-tail classification problems. Re-
trieval provides additional text context and examples, allowing the model to better infer the correct label
under different dataset distributions.
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Retrieval Augmentation for Adversarial Robust Visual Classification

Olaf Braakman
Delft University of Technology and TNO Netherlands

Figure 1. Using retrieval augmentation we show how a pretrained embedding model can be adapted to be more robust against white and
black box adversarial attacks.

Abstract

State-of-the-art models are susceptible to adversarial at-
tacks. These attacks can cause catastrophic misclassifica-
tion when robustness is required. With the increasing popu-
larity of the retrieval augmentation paradigm in deep learn-
ing, we adopt it as a fully differential framework for ad-
versarial robustness. We evaluate our method on three vi-
sual classification datasets, including ImageNet and attack
our model with two white box attacks and a black box at-
tack under various L2 and L∞ norms. The results indi-
cate that a robust classifier emerges if the model fully re-
lies on retrieved examples. We find that we can already ob-
tain a PGD robust ImageNet classifier with 80.1% clean
and 64.7% adversarial accuracy, using only one or two
examples per class from the training data in the memory
set. Contrary to other adversarial defense mechanisms, our
method works directly on top of pre-trained models and
remains robust when other defenses start to degrade for
PGD attacks increasing in strength. Code is available at:
https://github.com/OlafBraakman/robust-
retrieval-augmentation

1. Introduction

Adversarial robustness remains a critical challenge for com-
puter vision models. Even the state-of-the-art models are
susceptible to subtle and carefully crafted input perturba-
tions, referred to as adversarial attacks [59]. Although ad-
versarial inputs are almost indistinguishable from the orig-
inal with the human eye, they can cause catastrophic mis-
classifications [1]. From a more general perspective, robust-
ness in deep learning refers to a model’s ability to main-
tain stable performance under varying conditions, includ-
ing noise, environmental changes, and adversarial attacks.
In literature, this has led to a continuous cat-and-mouse
game between attackers and defenders, where attacks con-
tinuously find new vulnerabilities and exploits. The goal
of adversarial defenses is to reduce the adversarial success
rate of these attacks. The most common defense strategy is
adversarial training, during which the model is exposed to
adversarial examples to help it learn more robust representa-
tions. While effective against known attack types, adversar-
ial training is computationally expensive and often reduces
performance on clean, unperturbed inputs.

The problem of adversarial robustness is not unique to
computer vision models [36]. This is also true for large
language models. Interestingly, Retrieval-Augmented Gen-
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eration [40], or RAG for short, has surged in popularity due
to its simplicity and improvements to text generation qual-
ity. Instead of trying to learn all knowledge implicitly in
the model weights, RAG offloads this to an indexable ex-
ternal memory. By relying on explicit knowledge storage,
RAGs are more consistent compared to standard large lan-
guage models. With an eye on adversarial robustness, only
up until recently has retrieval augmentation been shown to
reduce the adversarial success rate in in-context learning for
large language models [65]. On top of that Kang et. al prove
and show that retrieval augmentation achieves a lower gen-
eration risk compared to a standard large language model
[33].

RAG brings a lot of benefits to large language models. In
turn, this begs the question of to what extent these benefits
might transfer to computer vision as well. As pre-trained
image encoders become more sophisticated, with vision
transformer (ViT) models from the DINO family [11, 47]
and CLIP [52], image-to-image search lends itself more to
the retrieval augmentation paradigm. Hence retrieval aug-
mentation is actively being explored in the computer vision
domain [68]. Retrieval augmentation has been used to in-
crease tail-class classification accuracy and overall classifi-
cation accuracy with a memory set that is orders of magni-
tude larger than the training set [30, 31, 42]. Retrieval aug-
mentation in computer vision has been shown to improve
classification accuracy and robustness to data scarcity. Re-
trieval augmentation has been used for a small ResNet-18
model to defend against adversarial attacks under a non-
differentiable retriever [66]. Retrieval-augmented vision
models have not yet been systematically evaluated under ad-
versarial attack settings for large-scale models and datasets
under a full differentiable retrieval pipeline, leaving an im-
portant gap that we aim to address.

In this paper, we take the first steps towards answering
the question: Does image retrieval augmentation improve
robustness against perturbations and adversarial attacks in
visual classification tasks? And additionally, what types
of perturbations and/or adversarial attacks does image re-
trieval augmentation improve against?

We propose an adversarial defense that builds on the re-
trieval augmentation formula that works directly on top of
pre-trained computer vision models. Contrary to existing
adversarial defenses, only the classification head needs to
be trained. We perform adversarial robustness evaluation
on three different visual classification datasets with differ-
ent backbones. The goal of this research is to take the first
steps and demonstrate the potential of retrieval augmenta-
tion as a defense against adversarial attacks in the computer
vision domain. Our main contributions are as follows:
• We propose a fully differentiable retrieval augmentation

layer for pre-trained computer vision models, enhancing
robustness against adversarial perturbations without re-

training the base model and without drastically compro-
mising accuracy.

• We apply the fully differentiable retrieval-augmented
model on three classification tasks and evaluate robust-
ness against white-box and black-box adversarial attacks
and compare our work to existing defenses.

2. Background

2.1. Adversarial Attacks

Adversarial attacks refer to small, carefully designed per-
turbations to input data that cause machine learning mod-
els to produce incorrect outputs. These adversarial samples
were first documented by Szegedy et al. [59]. These per-
turbations are often imperceptible to humans but can sig-
nificantly degrade model performance. They expose criti-
cal weaknesses in model generalization and are particularly
concerning in high-stakes applications where certification is
required. Formally, a model f is considered robust at input
x if for any perturbation δ within a bounded norm-ball, the
model prediction remains unchanged:

f(x+ δ) = f(x), where ||δ||p ≤ ϵ (1)

Here, ϵ > 0 controls the maximal strength of the pertur-
bation and || · ||p denotes the Lp-norm. Where the choice
of the Lp-norm determines the perturbation freedom across
the image. In literature the Lp-norm can be divided into
three categories (Table 1).

Table 1. List of Lp-norm and corresponding interpretation for im-
ages in computer vision

Lp-norm Interpretation

L1

Under the L1 bound the attack is constrained
by the summed absolute difference of all
pixels in the image.

L2

Contrary to the L1-norm, the L2-norm
constraints the attack to the the squared
difference of all pixels.

L∞
The L∞ bound only restricts the
maximum pixel change. In literature it also
known as the max norm.

Most adversarial attacks assume that they have access to
model internals, such as architecture, parameters, and gradi-
ents. This allows the attacker to optimize perturbations via
backpropagation. These attacks are referred to as: White-
box attacks. This includes attacks like: FSGM [22], PGD
[44], C&W [9]. More details about the attacks used in this
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research are in Section 5.3. However, many deployed sys-
tems operate under Black-box settings, where internal infor-
mation of the model is inaccessible. Black-box models op-
erate purely on model outputs. Transfer-based attacks [48]
exploit the transferability of adversarial examples across
models by crafting them on a surrogate model. Score-
based attacks, like ZOO [12], estimate gradients via finite
differences using only confidence scores. Decision-based
attacks, such as Boundary Attack [7], require only the pre-
dicted class label and iteratively refine adversarial examples
by navigating the decision boundary. More recent meth-
ods like Square Attack [2] use randomized search with low
query budgets, making them efficient for high-dimensional
inputs. Most of all the most important reason to use Black-
box models is to reveal gradient obfuscation. This is a phe-
nomenon where defenses rely on masking or distorting gra-
dients rather than improving true robustness. Techniques
like input randomization, non-differentiable preprocessing,
or shattered gradients can deceive gradient-based methods
into failing, giving the illusion of robustness. However,
when attacked using gradient-free methods, such defenses
often collapse, revealing that the model remains vulnerable.
[3, 10, 60].

2.2. Image-to-Image retrieval

Image-to-image retrieval aims to find visually or seman-
tically similar images given an input query image. Early
retrieval systems relied on hand-crafted feature descriptors
such as SIFT [43], SURF [6], and HOG [16]. These de-
scriptors capture low-level features like keypoints and gra-
dients, but do not generalize well. The advent of deep learn-
ing shifted image retrieval towards learned representations.
Convolutional neural networks (CNNs) [39] pretrained for
classification tasks like ImageNet [17] were shown to pro-
duce feature embeddings that were much more suited to im-
age retrieval settings [4]. Self-Supervised Learning (SSL)
further expanded retrieval capabilities without requiring la-
beled datasets. Contrastive loss methods such as SimCLR
[13] and MoCo [24] trained models to produce instance-
discriminative features, improving robustness to data aug-
mentations and distortions. These SSL models demon-
strated that representations learned without labels can per-
form competitively on retrieval tasks. More recently, DINO
[11] and DINOv2 [47] have pushed the frontier of self-
supervised image-to-image retrieval. By using vision trans-
formers (ViTs) trained with self-distillation, these mod-
els learn dense, semantically meaningful embeddings that
are robust to natural image variations. DINOv2 is pre-
trained on a large set of datasets, including ImageNet-A
[29], ImageNet-C [27], ImageNet-R [28]. These datasets
are noisy, perturbed, and distribution shifted versions of Im-
ageNet. In this way DINOv2 achieves strong performance
on a range of retrieval benchmarks without requiring any la-

beled fine-tuning, establishing it as a state-of-the-art model
for robust self-supervised retrieval.

3. Related work
3.1. Adversarial robustness

Not only can attacks fool a model they can be optimized to
target a specific output class as well. Defenses are required
to prevent disastrous misclassifications.
• Adversarial training: The goal of adversarial training is

for a classifier to generalize to adversarial examples as
well as clean examples. Adversarial includes an attacker
in the training loop to generate adversarial training exam-
ples [22, 38]. Madry et al. proposed the multi-iteration
projected gradient descent algorithm (PGD) [44], which
has become the baseline method of adversarial training
[67]. Adversarial training has proven effective against
the attack types used during training but has drawbacks.
Adversarial training is computationally expensive, it of-
ten reduces clean accuracy, and it tends to overfit specific
threat models. Overall this leads to poor generalization to
unseen attacks [5].

• Randomized smoothing: The fundamental idea behind
randomized smoothing is to create a smoothed classi-
fier by applying Gaussian noise to a base classifier [14].
This method provides robust theoretical guarantees, mak-
ing it a popular choice among certified defenses. Cer-
tified defenses aim to provide formal guarantees under
specific threat models, but typically scale poorly to high-
dimensional data and complex tasks. Despite recent
improvements, randomized smoothing methods remain
computationally expensive and worsen existing scalabil-
ity issues.For a robust prediction at inference time it re-
quires multiple noisy passes through the model which is
an additional bottleneck. The curse of dimensionality fur-
ther limits performance, making scalability the main bar-
rier to broader adoption [37].

• Other strategies: Other strategies include input prepro-
cessing [51], ensemble methods [26, 58, 60], feature de-
noising [41, 64], and k-nearest neighbors [50, 55, 61].
Ensemble methods enhance robustness by aggregating
predictions from multiple diverse models or checkpoints,
reducing the likelihood that all models will be simultane-
ously fooled by the same perturbation. Feature denoising
techniques, on the other hand, aim to suppress adversarial
noise in the intermediate representations of the network.

3.2. Retrieval augmentation in computer vision

Recent literature demonstrates that computer vision mod-
els also benefit from retrieval augmentation in a variety of
ways. RAC (Retrieval-Augmented Classification) [42] uses
retrieval augmentation by constructing a parallel retrieval
module. The memory set contains image and text descrip-
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Figure 2. Top-level workflow of the 1) retrieval-augmented model where the memory set is constructed from |M | embedded images. A
weighted temperature softmax using the cosine similarity is used as a differentiable nearest neighbor approximation. The summed weighed
retrieved embeddings ê are combined with the input embedding e and fed through a trainable classification head. 2) At evaluation time we
analyze for different values of α how the adversarial accuracy changes.

tion pairs which can be queried using image-to-image em-
bedding similarity. In the end, k pairs are retrieved and the
associated text labels are embedded using a BERT [18] text
encoder. The input image is fed through the base network
to a vision transformer and resulting logits are combined
with the logit predictions of the text encoder. Using this ap-
proach the authors demonstrate that RAC models can learn
a high accuracy on tail classes. Iscen et al. address the
limitations of RAC by expanding the memory set to over a
billion image-text pairs and perform the augmentation step
at the embedding level [31]. They extend their work by ex-
ploring the application of retrieval augmentation for zero-
shot CLIP-based [52] vision-language models [30]. Fur-
thermore, retrieval augmentation has been used for other
downstream tasks like image captioning [53].

4. Method
We consider a basic visual classification model f consist-
ing of a frozen pre-trained feature extraction model E :
R3×W×H → Rd, projecting an RGB image of width W
and height H to a embedding vector of size d, and a train-
able classification head h : Rd → R|C| predicting the class
logits. We create a retrieved-augmented model fRA, which
is an extension of the original model f , but with access to
an external memory M of unperturbed image embeddings.
We do this by adding a training-free retrieval augmentation
pipeline r : Rd → Rd after the embedding model and be-
fore the classification head.

Suppose an input image x is adversarially attacked x∗ =
x + δ. Then both the image and the perturbation x + δ
undergo a highly non-linear transformation when passed
through the embedding model E(x+δ) = e+δe. The mag-
nitude of δe depends in part on the strength of the adversar-
ial attack and the adversarial robustness of the embedding
model. We assume that if δe is small enough, then qualita-

tive retrieval of similar image embeddings is still meaning-
ful. Based on that assumption, we use the perturbed image
embedding e + δe and a combination of the retrieved un-
perturbed image embeddings ê to construct a more robust
embedding representation. The novelty of our method lies
in the training-free augmentation step, where we are able to
combine the input embedding and retrieved embedding with
a blending parameters α and pass it through a classification
layer to obtain a more adversarial robust prediction.

After training fRA with a choice of α, we want to empir-
ically investigate that the adversarial robustness condition
(Equation 1) holds more often under various adversarial at-
tacks for fRA than for f under different adversarial attacks
and perturbation bounds (Equation 2) given a dataset D.

∑
xi∈D

I{fRA(x
∗
i ) = fRA(xi)} >

∑
xi∈D

I{f(x∗
i ) = f(xi)}

subject to ∥δ∥p ≤ ϵ
(2)

In layman terms, given a test dataset D, we want to know
whether a retrieval-augmented model fRA can be more ro-
bust to some maximum allowed perturbation δ than a model
f without retrieval augmentation for an adversarial input
x∗ = x+ δ.

We formalize this approach in a retrieval-augmented
framework, grounded in three core components: (1) a mem-
ory set, (2) a retriever, and (3) an augmentation function.
We visually present our adoption of the retrieval augmen-
tation paradigm in Figure 2 and go into detail for each of
these components in the next sections.

4.1. Memory set

We define the memory M as a set of image embeddings
sampled from the training set of M ⊆ Dtrain. Ideally, M
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contains representative and clean samples. On top, we as-
sume that every class is equally represented in the mem-
ory set. For each image xi we pre-compute and L2 nor-
malize its embedding ei = ||E(xi)||2 for computational
efficiency. We refer to an embedding ei in the memory
set as key ki. Practically, we implement the memory set
M = {k1, k2, . . . , em} as an |M | × d matrix with the em-
beddings as column vectors and store it in VRAM.

4.2. Retrieval

The retrieval module is responsible for finding similar em-
beddings from the memory module. Given a query embed-
ding ||E(x)||2 = e, we compute the cosine similarity si
between each embedding ki ∈ M in the memory set as
the normalized dot product between two embeddings as fol-
lows:

si = sim(q, ki) =
e · ki

∥e∥2∥ki∥2
(3)

The cosine similarity captures the change in directionality
between two vectors. For identical vectors, the cosine sim-
ilarity is 1, -1 for complete opposite vectors, and 0 for ex-
actly orthogonal vectors. The use of another distance met-
ric is also possible, however, for high dimensions distance
metrics like the Euclidean distance become less meaningful
under the ‘curse of dimensionality’ [49].

Commonly, retrieval systems perform a hard top-k se-
lection to fix the number of relevant documens [31, 40, 66].
However, this operation is non-differentiable. White-box
attacks make use of gradient flow through a model. To sim-
ulate a full retrieval augmentation pipeline attack we ap-
proximate the nearest neighbor algorithm with a differen-
tiable softmax function. To simulate a top-k selection we
add a temperature scaling factor τ > 0. By tuning the
temperature parameter we can control the sharpness of the
weight that is assigned to each memory key. For small τ
only the most similar keys are accounted for as the others
are suppressed towards zero. We compute the weight wi for
each key ki in the memory set as:

wi =
exp(si/τ)∑|M |
j exp(sj/τ)

(4)

Finally we compute the weighted embedding mean ê of all
retrieved keys as follows:

ê =

|M |∑
i=1

wiki (5)

In Figure 3 we visualize an example of weighted embedding
retrieval with their associated images for an query image on
the ImageNet dataset [17]. For visualization purposes we
only show the top-10 most similar images.

Previous applications of retrieval augmentation for vi-
sual classification have paired images with an additional

text modality [30, 31, 52]. In Equation 5 the weighted keys
are returned, however, formally one can substitute ki with
another associated value embedding vi. In the Supplemen-
tary work E we substitute the value embeddings with depth
image embeddings.

4.3. Augmentation

We introduce an interpolation hyperparameter α ∈ [0, 1]
which allows the model to ‘blend’ between the original im-
age embedding e and the weighted mean from the memory
set ê. In this step we rely on the geometric regularities of
the embedding representations [15, 32] to combine embed-
ding vectors together. This modeling decision allows us to
gain insight into how robust and how accurate different lin-
ear combinations of the original input e and memory set
approximation ê are without introducing any trainable pa-
rameters.

g(e, ê) = (1− a)e+ αê (6)

Note that the original model f is identical to fRA when α =
0. For α = 1 we turn the problem into a smooth nearest
neighbor classification problem.

4.4. Threat model

For our retrieval augmentation defense, we assume the ad-
versary’s goal is to cause a non-targeted misclassification of
the model. We assume the case where the attack has white-
box access to all parameters of the model. The adversary is
only able to make small pixel-level adjustments to the input
image within L2 or L∞ distortion norm. Depending on the
dataset we allow up to a maximum perturbation ϵ = 16

255 .
For an overview of attack and dataset hyperparameters see
Appendix A. Targeted attacks are out of the scope of this
research.
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Figure 3. Example of how similar items are retrieved and weighed
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Figure 4. Two-dimensional embedding space example with no a) and full b) retrieval augmentation. c) The effect of different temperatures
τ shows the change in the weights of embeddings in the memory set.

Since we use (a subset of) the training data as the mem-
ory set we assume it is accessible, but we assume the adver-
sary cannot modify any of the memory set’s contents.

4.5. 2D Toy example

The size of the embedding space is too high to visualize.
To understand the robustness consequences of an added re-
trieval augmentation pipeline, we visually analyze a low di-
mensional example. In this example the embedding space
is two-dimensional. Equally for image embeddings, we as-
sume that directionality in this embedding space encodes
semantic information. In Figure 4 we generate four classes
each in one in the positive and negative x and y axis direc-
tion with 0.6 standard deviation. We sample 128 training
points and project all embeddings a unit distance from the
origin. We train two models: 4a) A model without retrieval
augmentation and 4b) A model with retrieval augmentation
α = 1.

We visualize the decision boundary for both models with
the training data used as the memory set. A direct conse-
quence is that the retrieval-augmented model relying fully
on the retrieved embeddings has smoothed decision bound-
aries. On top, the decision boundaries meet in the origin uti-
lizing the directionality as prior information. In the original
model the decision boundary does not utilize the prior. In-
stead, the model learns to overfit towards noisy/mislabeled
samples from a different class. This introduces extra deci-
sion boundaries along our circle increasing the likelihood
for a sample under a small adversarial perturbation to be
misclassified. For α = 1 it turns the classification head into
a soft nearest neighbor classifier. In Figure 14 we show the
evolution of the decision boundary given linear values of α.
Finally, we show in Figure 4c) how the softmax approxi-

mates a hard weighted k-NN for a memory set of size 128.
For smaller values of τ more cosine similar items receive a
higher weight.

5. Experiments

The flexibility of the method allows it to be applied to dif-
ferent types of pre-trained visual backbones and different
datasets.

5.1. Embedding models

To demonstrate how our method works across different
model architectures we select three models with unique
architecture techniques and training approaches. We first
highlight our backbone, dataset and attack choices and then
elaborate the experimental setup.

• DINOv2 [47]: DINO, short for self-DIstillation with NO
labels, is a self-supervised feature extractor based on the
ViT architecture. Compared to supervised vanilla ViTs
and ConvNets, DINOv2 obtains more clear explicit se-
mantic information. On top of that, the features are also
excellent for instance level classification [63]. We use the
distilled ViT-L/14 model pre-trained on ImageNet with
300M parameters which outputs 1024-dimensional fea-
tures.

• ResNet-50 [25]: To test our work on different architec-
tures we select a convolution network from the ResNet
family. We select the ResNet-50 model pre-trained on
ImageNet and strip the last layer to obtain a 2048-
dimensional feature vector.

Importantly, we freeze the backbone parameters to isolate
the effects of our retrieval model.
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Table 2. Overview of the datasets used with the number of classes
at different orders of magnitude.

Dataset #Training #Validation #Classes
ImageNet [17] 1281167 50000 1000
CIFAR100 [35] 50000 10000 100
GTSRB [57] 31367 7842 43
SUN RGBD [56] 4845 4659 19

5.2. Datasets and memory

We evaluate our method on three benchmarking datasets
with high diversity and with class numbers at different or-
ders of scale to see how our method scales (Figure 7). We
use the training and validation split of each dataset to train
our models and use the training split for the memory set
from which the model can retrieve samples. However, due
to the computational complexity of the similarity computa-
tion running at O(n3) we set at maximum memory set size
at 50,000. We make sure to subsample each class equally.
• ImageNet (ILSVRC 2017) [17]: ImageNet is a highly

diverse and large-scale dataset consisting of 1,281,167
training images and 50,000 validation images across
1,000 unique object classes. It has been a key driver in
advancing the field of visual recognition by providing a
robust benchmark for object classification tasks.

• CIFAR-100 [35]: CIFAR-100 is a lightweight image clas-
sification dataset consisting of 50,000 training images and
10,000 test images across 100 fine-grained classes, all at
a low resolution of 32×32 pixels. Due to its compact
size and complexity, it is widely used for benchmarking
lightweight models and evaluating robustness to adversar-
ial attacks.

• GTSRB (German Traffic Sign Recognition Benchmark)
[57]: The GTSRB dataset contains nearly 40,000 images
across 43 unique traffic sign classes. Captured under real-
world driving conditions, the images exhibit variations in
lighting, occlusion, and motion blur, making it a valuable
benchmark for robust traffic sign classification.

5.3. Attacks

We evaluate our model versus a series of adversarial attacks
under different Lp-norms. Evaluating robustness under
both white-box (gradient-based) and black-box (gradient-
free) settings is essential. A robust model must resist di-
verse attack strategies across different norms, without rely-
ing on broken or obscured gradients.
• PGD (Project Gradient Descent) [44]: The PGD attack

is an iterative adversarial white-box attack method that
perturbs inputs within a constrained norm ball, maximiz-
ing the model loss. It builds on the Fast Gradient Sign
Method (FGSM) [22] by applying multiple small changes
which are then projected back into the allowed perturba-

tion range. It is widely regarded as a strong first-order
adversary and serves as a standard benchmark for evalu-
ating model robustness.

• C&W (Carlini and Wagner) [9]: The C&W attack is a
powerful white-box, optimization-based adversarial at-
tack that iteratively searches for adversarial examples
capable of bypassing many defenses that are effective
against other attacks. Unlike norm-constrained attacks
such as FGSM or PGD, the C&W attack does not ex-
plicitly enforce a maximum perturbation bound ϵ, but in-
stead minimizes distortion as part of its objective. This
typically results in high-quality, low-distortion adversar-
ial examples, though at the cost of slower computation.

• Square attack [2]: This is a black-box adversarial attack
that operates without any gradient information. By act-
ing only on a model decision, it randomly and adaptively
samples and modifies image regions with square-shaped
perturbations. Among black-box attacks, it has a high
success rate using relatively few queries.

We show examples of each attack in Figures 10, 11, 12 and
13 in Appendix B

5.4. Experimental setup

The setup consists of two RTX 3080Ti graphics cards that
we use for classification head training and adversarial attack
generation. We freeze the backbone parameters to isolate
the effects of the retrieval augmentation layer. The hyper-
parameters for both model training are listed in Table ??
Appendix A. We use the open-source torchattacks [34] im-
plementations of these adversarial attacks. We report the
clean classification accuracy across the whole test. Gen-
erating adversarial examples across the whole test set for
each dataset is computationally too demanding. We approx-
imate the adversarial accuracy in Equation 2 by randomly
sampling a subset D′ ⊆ D of size n. Depending on the
computational load of generating an adversarial example we
change the size of the subset. Unless reported otherwise, for
the white-box attacks we sample n = 1000 points and for
the black-box attacks n = 250. For iterative white-box at-
tacks we use 50 iterations to ensure convergence and for
black-box attacks set a limit a 5000 queries.

6. Results
For different values of the interpolation parameter α ∈
[0, 1], we evaluate the clean and adversarial classification
of the retrieval-augmented model fRA(·;α). Recall that for
α = 0, the retrieved embeddings are not used, therefore
fRA and f are identical. The main results for the ImageNet
and CIFAR-100 datasets under the PGD L∞, C&W L2, and
Square L2/L∞ attacks are listed in Table 3. We find that
the clean accuracy for ImageNet across the whole test set is
highest for α = 0 at 82.1% and drops linear to 79.0% for
α = 1, similarly for CIFAR-100 the clean accuracy drops
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Table 3. Comparison of the clean and adversarial accuracy of the retrieval augmentation module for different values of α under different
types of adversarial attacks.

ImageNet CIFAR-100

Clean
Acc (%)

Adversarial accuracy (%) Clean
Acc (%)

Adversarial accuracy (%)
Model PGD C&W Square attack PGD C&W Square attack
DINOv2 (ViT-B) L∞ L2 L2 L∞ L∞ L2 L2 L∞
α = 0 (no retrieval) 82.1 0.0 64.0 40.0 3.6 84.2 0.0 6.4 63.6 0.4
α = 0.25 81.8 0.0 59.4 44.4 5.2 84.1 0.0 5.4 66.6 0.4
α = 0.5 80.7 0.0 52.7 45.2 7.2 83.5 0.0 5.4 69.2 0.8
α = 0.75 80.4 0.0 48.6 49.2 10.4 81.4 0.1 5.4 67.2 2.0
α = 0.95 78.9 0.0 68.0 53.2 28.4 80.3 1.6 22.0 70.0 2.8
α = 0.99 78.7 0.0 68.2 54.0 28.0 80.0 2.3 33.8 70.8 2.8
α = 1 (full retrieval) 79.0 64.7 77.4 72.4 59.2 80.1 74.7 79.9 80.4 38.0

from 84.2% to 80.1%. However, in return, we observe that
for α = 1 the adversarial accuracy remains stable across
both the white and black box attacks. Interestingly enough,
for increasing α, we do not see a linear increase in adversar-
ial accuracy. For the PGD attack, adversarial classification
accuracy is almost zero for all values of α, except α = 1.
This suggests that adversarial gradients steps can penetrate
to the adversarial input embedding despite it being scaled
down. Only when fully discarding the adversarial embed-
ding does the model regain classification accuracy. We con-
firm this by plotting the cosine similarity between the em-
beddings of clean images and their adversarial variant for
the same value of α in Figure 5. We expect that for an in-
creasing value of α the cosine similarity between the two
embeddings to decrease, but the results do not suggest such
a trend. Only for α = 1 do we see a strong similarity be-
tween the clean and adversarial embeddings.
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Figure 5. Cosine similarity between the clean embedding eclean and
adversarial embedding eadv obtained by e(1−α)+αê for different
values of α under PGD attack with ϵ = 16

255
for ImageNet.

The adversarial accuracy for C&W attack on ImageNet
follows a noteworthy pattern. From α = 0 to α = 0.75, the
adversarial accuracy decreases instead of increases. Only

with α approaching 1, does the adversarial accuracy in-
crease again. The C&W attack does not constrain the per-
turbation to a fixed ϵ bound, but instead formulates the at-
tack as an optimization problem that balances minimizing
the perturbation size and achieving misclassification. We
show the boxplot of L2 norm for the successful adversar-
ial example generated by C&W for the same values of α in
Figure 6. We observe a similar pattern at α = 0.75 where
the top whisker (third quartile + 1.5 IQR) is lowest and IQR
around the median is tight. This suggests that compared to
other values of α, the α = 0.75 is a unique case where the
model is more susceptible to smaller perturbations. This is
a finding that contradicts our expectation of a linear trend in
adversarial accuracy.
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Figure 6. L2 norm of the perturbation of the adversarial image
found by C&W attack for different values of α for ImageNet.

The black-box square attack does show an monotone in-
crease in adversarial accuracy for ImageNet. Under the L2

bound the retrieval-augmented model outperforms the base-
line model with 20 to 30 percentage points in adversarial
classification accuracy. However, for CIFAR-100 the L∞
attack is very successful even under larger values of α. This
might be due to the fact that under the L∞ bound for 32x32
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images the cost of random trial-and-error search is more ef-
fective. This result highlights that for small images with
a low resolution the retrieval mechanism, even at α = 1,
struggles to remain robust under L∞ square attack.

6.1. Baseline comparison

We compare our best model with α = 1 against the
two most commonly used defense strategies on ImageNet,
namely adversarial training and randomized smoothing.
For the adversarially trained models we select two differ-
ent backbone types: The ViT-B architecture adversarially
trained up to ϵ = 4

255 for 50 epochs and a ConvNext-T
model adversarially trained up to ϵ = 8

255 [54]. The second
baseline is a pre-trained randomized smoothing model with
the ResNet-50 architecture with a Gaussian noise standard
deviation σ = 0.5 [14]. We select σ = 0.5 because it is
a balance between clean accuracy and adversarial accuracy.
To run the PGD attack on the randomized smoothing model
we take the mean of the logits for the number of random-
ized samples. For computational feasibility, we take n = 32
samples per image. In Figure 7 we plot the clean and adver-
sarial accuracy for all the models for increased perturbation
strength ranging from 1

255 to 16
255 . Our retrieval-augmented

model is able to withstand much higher perturbations com-
pared to other defenses without having seen any adversar-
ial examples or changing the input images. The decision
boundary smoothing with α = 1 remains robust against
stronger PGD attacks while the baselines degrade.

6.2. Effects of temperature

The temperature parameter τ defines the sharpness of the
softmax function which approximates the hard k-NN oper-
ation. We show for α = 1 on CIFAR-100 that with a de-
creasing value of τ , the model approaches the original clean
classification accuracy. Interestingly for larger values of τ
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Figure 8. Softmax temperature τ versus clean and adversarial clas-
sification accuracy of the PGD attack on CIFAR-100 for α = 1
with a memory set of 50,000 samples

the adversarial robustness seems to disappear and the adver-
sarial accuracy reaches zero. For a temperature τ → 0+ the
softmax function becomes infinite in sharpness.

We hypothesize that a small τ forces the model to weigh
only the closest memory sample, which approximates a top-
1 nearest neighbor classification which in turn prevents a
perturbation δϵ in embedding space to change the embed-
ding weights. However, it should be noted that a

6.3. Memory set size

For all previous experiments, the training set was used as
the memory, although capped at a maximum of 50,000 sam-
ples. We vary the number of embeddings in the memory set
by randomly sampling a subset of the training data, ensuring
each class is equally represented. We plot the clean and ad-
versarial classification accuracy for increasing sizes of the
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Figure 9. Memory set size variations for CIFAR-100.

memory set for the ImageNet dataset. Notably, the adver-
sarial accuracy does not increase after using more than 2000
training samples in the memory set. This is less than 0.5%
of the training set, or roughly one to two samples per class
for ImageNet.

Increasing the memory does improve the clean classi-
fication accuracy. However, it comes at the cost of in-
creased runtime of O(n3) for a larger growing memory set.
The scaling problem has been well addressed in the liter-
ature, with popular techniques including hierarchical soft-
max [46], noise-contrastive estimation (NCE) [23] and neg-
ative sampling [45]. The retrieval can also be applied to a
hard k-NN selection and implemented with a library like
FAISS [19], but again this would break the gradient flow
through the model.

While increasing the memory set size improves clean
classification accuracy, it significantly increases the runtime
due to the O(n3) complexity, making it impractical for very
large memory sets. Future work could explore the afore-
mentioned approximations or more efficient retrieval meth-
ods to address the runtime complexity while maintaining
the benefits of retrieval augmentation.

6.4. Choice of backbone

We focus on the GTSRB dataset and train two different
backbone architectures: The DINOv2 model (used through-
out the rest of the paper) and a ResNet-50 architecture. For
the two backbones, we report the clean and adversarial clas-
sification accuracy in Table 4 for the same attacks as in Ta-
ble 3. The results show that even for the ResNet-50 archi-
tecture retrieval augmentation provides adversarial robust-
ness. However, the PGD robustness for the DINOv2 model
is almost twice that of the ResNet-50, arguably because the
DINOv2 is a more robust self-supervised feature extractor
trained on a large plethora of data and natural adversarial

Table 4. Comparison between the DINOv2 backbone and the
ResNet-50 backbone clean and adversarial classification accuracy
for white and black box attacks for the GTSRB dataset.

GTSRB

Clean
Acc (%)

Adversarial accuracy (%)
PGD C&W Square att.

Model L∞ L2 L2 L∞
α = 0
DINOv2 89.4 0.0 0.0 1.6 0.0
ResNet-50 79.3 0.0 1.6 1.2 0.4
α = 1
DINOv2 90.7 61.1 83.3 56.8 28.0
ResNet-50 79.5 31.5 71.1 59.6 27.2

examples. This is an interesting finding, which suggests
that with more robust feature extractors a higher adversarial
accuracy can be obtained to global high frequency noise.

7. Conclusion and discussion

We propose and demonstrate the first adaptation of retrieval
augmentation for robust visual classification across a broad
set of datasets, model backbones and pipeline hyperparam-
eters. Compared to other prominent defense mechanisms,
retrieval augmentation as a defense remains robust even un-
der higher perturbation bounds for the PGD attack. Under
full retrieval conditions, the adversarial accuracy is highest
across all datasets. For other hybrid combinations of the
original embedding and the retrieved embeddings, the ad-
versarial accuracy does not necessarily follow a linear pat-
tern for different models and different datasets. In these
hybrid cases, the retrieval model is still susceptible to ad-
versarial gradients inside PGD, bringing the adversarial ac-
curacy towards zero. Under the C&W attack, adversarial
accuracy actually drops when reliance on the retriever in-
creases, before going up again when almost fully relying
on the retriever. On the other hand we do observe around
a steady 20 to 30 percentage point increase in adversarial
accuracy for the black box square attack case.

From an attack perspective, retrieval augmentation as a
defense might introduce new vulnerabilities, especially in
the retrieval module. We encourage future work to try and
attack these specific parts of the pipeline under different
threat models. So far we have only looked at uniformly
sampled memory sets from the training data, however, it
is unclear how different distributions of memory items af-
fect the clean and adversarial classification accuracy. We
showed that retrieval augmentation can be done with dif-
ferent modalities, however, the application and benefits for
adversarial robustness with multi-modal data is still unan-
swered.

It must be stated that the literature on existing adversarial
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attacks is rich and it is possible to extend evaluation with a
plethora of hyperparameters combinations. However, most
importantly, the takeaway of this research is the formation
of a solid foundation for future work in effective adversarial
defenses with differentiable retrieval augmentation. To con-
clude it is still an open question if formal robustness guar-
antees for retrieval-augmented model exist under different
type of attacks and perturbation strengths.
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and Bo Li. C-RAG: Certified generation risks for retrieval-
augmented language models. 2

[34] Hoki Kim. Torchattacks: A pytorch repository for adversar-
ial attacks. 7

[35] Alex Krizhevsky. Learning multiple layers of features from
tiny images. 7

[36] Pranjal Kumar. Adversarial attacks and defenses for large
language models (LLMs): methods, frameworks & chal-
lenges. 13(3):26. 1

[37] Anupriya Kumari, Devansh Bhardwaj, and Sukrit Jindal. Re-
thinking randomized smoothing from the perspective of scal-
ability. 3

[38] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adver-
sarial machine learning at scale. 3
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A. Hyperparameters
Whenever the hyperparameters are not mentioned in the experiments we select the hyperparameters for each attack and
dataset as listed in Table 5. Similarly for model hyperparameters in Table 6.

Table 5. White-box and black-box attack hyperparameters used for each dataset.

Pertubation Lp-norm Parameters
Black/
White box

CIFAR-100 ImageNet GTSRB SUN RGBD

PGD L∞
ϵ = 8

255
α = 2

255

ϵ = 16
255

α = 4
255

ϵ = 16
255

α = 4
255

ϵ = 16
255

α = 4
255

White

C&W L2 c = 1 c = 1 c = 1 n/a White

Square attack L2
ϵ = 0.5
queries = 5000

ϵ = 3.0
queries = 5000

ϵ = 3.0
queries = 5000

n/a Black

L∞
ϵ = 8

255
queries = 5000

ϵ = 16
255

queries = 5000
ϵ = 16

255
queries = 5000

n/a Black

Table 6. Optimizer parameters used to train the classification head for each dataset.

Hyperparameter ImageNet CIFAR100 GTSRB SUN RGBD

Optimizer AdamW AdamW AdamW AdamW AdamW
Learning rate 0.0001 0.0001 0.001 0.01 0.0002
Betas (β1, β2) 0.9, 0.999 0.9, 0.999 0.9, 0.999 0.9, 0.999 0.9, 0.999
Weight decay (λ) 0.01 0.02 0.01 0.01 0.03
Epsilon (ϵ) 1e-8 1e-8 1e-8 1e-8 1e-8
Epochs 6 30 15 25 40

Scheduler
Cosine
Warmup

Cosine
Warmup

Cosine
Warmup

Cosine
Warmup

Cosine
Warmup

Warmup 1 5 2 2 5

Backbone DINOv2 DINOv2 ResNet-50 DINOv2 SUNRGBD
Embedding dim 1024 1024 2048 1024 1024
Hidden dims 1024 512 1024 512 512
Dropout 0.5 0.5 0.5 0.5 0.5
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B. Adversarial examples
We list five adversarial examples for each attack: PGD (Figure 10), C&W (Figure 11), Square attack L2 (Figure 12) and
Square attack L∞ (Figure 13). We use the base DINOv2 model without retrieval-augmentation to generate these adversarial
examples.

B.1. PGD examples

We show the results of the PGD attack for 10 iterations with ϵ = 16
255 and step size a = 4

255 . All clean images are correctly
classified and the adversarial images are misclassified.

Figure 10
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B.2. C&W examples

We show the results of the Carlini and Wagner attack for 50 iterations with c = 1. All clean images are correctly classified
and the adversarial images are misclassified.

Figure 11
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B.3. Square attack L2 examples

We show the results of the Square attack L2 attack with ϵ = 3.0 for the first three and ϵ = 12.0 for the fourth and fifth image.
The black box attack has a budget of 5000 queries. All clean images are correctly classified and the adversarial images are
misclassified.

Figure 12
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B.4. Square attack L∞ examples

We show the results of the Square attack L∞ attack with ϵ = 16
255 and a budget of 5000 queries. All clean images are correctly

classified and the adversarial images are misclassified.

Figure 13

C. Data preparation

To use the SUN RGBD dataset for a classification task we use only the 19 most common scenes following the work of
[8, 20, 21]:

[
’bathroom’, ’bedroom’, ’classroom’, ’computer_room’, ’conference_room’,
’corridor’, ’dining_area’, ’dining_room’, ’discussion_area’,
’furniture_store’, ’home_office’, ’kitchen’, ’lab’, ’lecture_theatre’,
’library’, ’living_room’, ’office’, ’rest_space’, ’study_space’

]

To correctly embed the depth images we follow this implementation: https : / / github . com /
facebookresearch/ImageBind/issues/134
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D. Retrieval-augmentation visualizations
D.1. Toy example decision boundary
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Figure 14. Example of how similar items are retrieved and weighed
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Table 7. Overview of the datasets used with the number of classes
at different orders of magnitude.

Dataset #Training #Validation #Classes
SUN RGBD [56] 4845 4659 19

E. Multimodal retrieval

The flexibility of our approach also allows for multi-modal
adaptations of the retriever and memory set. We hypothe-
size that associated information contains a different signal
which can denoise the perturbed embedding. Based on the
final remark in Section 4.2 we extend the memory to a key-
value pair. The similarity search is still done on the key
embedding, however, we substitute the key with the cou-
pled value in the weighted embedding mean calculation. To
demonstrate the capabilities we use the training split of the
SUN RGBD [56] dataset for our memory set, where the
key is the RGB embedding and the value the correspond-
ing depth embedding. To do this we use the ImageBind
[20] model which is a multi-modal model with a joint em-
bedding space. Note Equation 5 returns the weighted keys,
however, now we substitute ki with another associated value
embedding vi:

ê =

|M |∑
i=1

wivi, where (ki, vi) ∈ M (7)

• SUN RGBD [56]: This dataset contains almost 10,000
images of indoor scenes. Aside from RGB information
it also contains depth information used for other tasks
such as object detection and segmentation. We reduce
the dataset following previous work [8, 20, 21] to the 19
most frequent classes for classification.

• ImageBind [20]: To demonstrate the multi-modal capa-
bilities of our retrieval-augmented approach (Section 4.2),
we select ImageBind. ImageBind is a multi-modal con-
trastive learning model built on top of the vision trans-
former architecture. It extends the CLIP model into mul-
tiple other modalities such as depth, infrared, and video,
but also audio and IMU data. The embedding dimensions
for RGB and depth are 1024-dimensional.

We train three models for each modality (image and
depth) and in Figure 15 and plot the mean adversarial suc-
cess rate and the standard error for both. Although the clean
accuracy of the model with depth is 60.7%± 0.9 compared
to 66.8% ± 1.2 the adversarial success rate of the model
using depth as the returned value is lower.
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Figure 15. Adversarial success rate for different value modalities
on the SUN RGBD dataset for each iteration of the PGD attack.

F. Hard k nearest neighbors
The retrieval pipeline uses a differentiable approximation
of the k nearest neighbors algorithm. In this section we use
a hard k-NN approach to observe changes. We evaluate a
global PGD attack at ϵ = 0.05 and rectangular PGD attack
[62] at ϵ = 1.0.
• ROA (Rectangular Occlusion Attack) [62]: ROA is a

white-box adversarial attack that strategically places rect-
angular occlusions over input images to degrade model
performance. Within each occlusion region, an inner
PGD procedure is applied to maximize the model’s loss
under an L∞ norm constraint, creating localized, high-
impact perturbations. This hybrid approach combines
spatial occlusion with gradient-based optimization, mak-
ing it effective against models that are robust to conven-
tional pixel-wise attacks. ROA is particularly useful for
evaluating spatial robustness and models’ reliance on lo-
calized features.

(a) Clean image (b) Adversarial image at i=30

Figure 16. Rectangular PGD example with a patch size of 30x30
pixels at ϵ = 1.0
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Table 8. Overview of hard k-NN retrieval on the SUN RGBD dataset for the rectangular PGD and global PGD attack

Model Baseline
Accuracy (%)

Rectangular PGD PGD
Iteration i Iteration i

i=5 i=15 i=30 i=1 i=10 i=30
ImageBind 74.4 38.5 7.5 1.5 37.6 0.0 0.0
Ours (α = 0.25) 73.7 47.2 16.1 4.7 43.1 1.2 0.0
Ours (α = 0.5) 73.2 51.3 28.3 14.0 48.3 1.9 0.1
Ours (α = 0.75) 72.7 55.1 39.9 30.7 54.4 10.3 8.0
Ours (α = 1) 72.3 59.2 49.1 45.7 58.3 25.3 18.9

Additionally we implement a trainable memory attention
module [31] as part of the retrieval module. For different
values of α with k = 64 for the PGD attack and the rect-
angular PGD, we report the adversarial accuracy at inter-
mediate iterations in Table 8 for image-to-image retrieval.
Under a hard k-NN which blocks gradient flow through the
retrieval pipeline, the model remains much more robust for
more iterations compared to the differentiable model in Ta-
ble 3.

Again with depth information as the retrieval value, we
show how depth information can remain more adversarial
robust at different iterations of the rectangular PGD attack
in Table 9.

Model

Rectangular PGD
(%)

RGB → RGB RGB → Depth
i=5 i=15 i=30 i=5 i=15 i=30

ImageBind 38.5 7.5 1.5 38.5 7.3 1.5
Ours (α = 0.25) 47.2 16.1 4.7 48.8 16.0 5.9
Ours (α = 0.5) 51.3 28.3 14.0 51.4 30.4 18.5
Ours (α = 0.75) 55.1 39.9 30.7 54.9 44.9 37.7
Ours (α = 1) 59.2 49.1 45.7 60.1 53.5 51.6

Table 9. RGB vs Depth retrieval for stability against adversarial
perturbations
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