
Improving the usability and scalability of FINN,
a DNN compiler for FPGAs

by

U.M. Vimal Kumar

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Monday September 27, 2021 at 1:00 PM.

Student number: 5059941
Project duration: November 1, 2020 – August 31, 2021
Thesis committee: Dr. S. D. Cotofana, TU Delft, supervisor

Dr. ir. J. S. S. M. Wong , TU Delft
Dr. ir. T. G. R. M. van Leuken , TU Delft
Dr. L. Petrica, Xilinx, Daily Supervisor

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

FINN is a framework developed by Xilinx Research Labs that compiles Deep Neural Network software de-
scriptions into fast and scalable dataflow architectures for inference acceleration on FPGAs. The dataflow
architectures are network dependent, sized according to the user-defined throughput requirements, and con-
strained by available resources on the user-specified FPGA board. Synthesising large neural network designs
with a high degree of configurability leads to large build times, spanning from hours to days, to build an entire
network. Thus, the first objective of this thesis is to explore and propose a modified FINN accelerator con-
struction methodology that can substantially reduce the build times. The main idea behind our proposal is to
reduce the granularity of the architecture to reduce the size of synthesis jobs and to enable logic reuse within
and across neural network layers. Using this method, up to 12× speedup in High-Level Synthesis times and
up to 2× speedup in end-to-end build times of accelerator networks are achieved.

The second limitation that this work addresses relates to the performance scalability of FINN generated
architectures. There are two modes of parallelism in FINN that currently provide performance scaling in con-
volution operations. The first factor, which modifies the number of Processing Elements (PEs), parallelises
along the input channels of a convolutional layer and the second factor, that modifies the number of Single In-
struction Multiple Data (SIMD) lanes present in each PE, parallelises along the number of output channels of
the convolution. Computations are currently not parallelisable across the non-depth dimensions of images,
i.e., the side containing pixels of images that faces the viewer. This limitation can restrict the achievable per-
formance for networks that contain layers with large image dimensions and shallow depth dimension. The
second part of this work leverages the fine-grained construction methodology to augment FINN performance
scaling. The proposed approach introduces a generic FINN modification that enables pixel-level parallelism,
i.e., multiple output pixels of a convolutional layer can be processed simultaneously by performing Multiple
Matrix Vector (MMV) multiplications at the same time. Using this generic method, MMV number of pixels
can be processed simultaneously, an MMV times throughput increase can be obtained at the cost of less than
MMV× additional resources.

i

Acknowledgements

This is the final report of a 9-month long project, the longest individual project that I have undertaken. This
thesis started in uncertain times and ran through its course in the midst of a pandemic. It is only with the
help and support of people, online and in-person, that I was able to bring this project to a logical conclusion.
This project was done in collaboration with Xilinx Research Labs.

First, I would like to thank Sorin Cotofana, my supervisor at TU Delft for guiding me towards this research
group after knowing about my interest to work in the field of reconfigurable computing. This project would
not have started without his support in finding a suitable arrangement when Covid threatened this collabo-
ration. At Xilinx, the project was done under the supervision of Lucian Petrica. I would like to express deep
gratitude to Lucian, who has been my primary contact point for this work, and guided me through every step
of this project, right from scoping out the topic to organising the final report. From his words of advice and
criticism, I learnt how to ask the right questions to solve problems and to use the big picture to make deci-
sions on the details. Very importantly, I would like to thank him for being approachable and being only an
e-mail away throughout the course of this project.

I want to thank my parents for their unconditional love, support and encouragement and my sister for
always being a cheerleader. I also thank my friends who were on this journey along with me, for inspiring
with their passion for work, for entertaining me with their company and for always lending a kind ear.

U.M. Vimal Kumar
Delft, August 2021

ii

Contents

List of Figures iv
List of Tables v
1 Introduction 1

1.1 Research Questions and Approach . 4
1.2 Outline . 5

2 Background 6
2.1 Neural Networks . 6
2.2 Convolutional Neural Networks. 7
2.3 Quantized Neural Networks. 9
2.4 High Speed Neural Network Inference . 9
2.5 FPGA Acceleration . 10

2.5.1 FPGA Build Flow . 11
2.6 FINN . 12

2.6.1 End-To-End flow . 12
2.6.2 Important customOps . 14
2.6.3 Limitations. 17

3 Fine-Grained Build Flow for FINN 18
3.1 Profiling FINN Build Times . 18
3.2 MVAU - Details . 19
3.3 Fine-grained methodology . 20
3.4 Fine grain VVAU. 22
3.5 Example Accelerator Designs . 23

3.5.1 BNN-PYNQ Networks . 23
3.5.2 Mobilenet . 24

4 Evaluation of Fine-Grained flow 25
4.1 Profiling Build Times for Standalone Nodes . 25
4.2 Resoure Utilisation - Standalone . 29
4.3 Build Time Analysis on Networks . 30

4.3.1 Effects on HLS Synthesis . 31
4.3.2 Effects on Vivado Synthesis . 32

4.4 Case Study - Network Intrusion Detection System (NIDS). 33

5 Increasing FINN Scalability 34
5.1 Throughput bottleneck . 34
5.2 Single layer MMV . 34
5.3 Multi-layer MMV . 35

5.3.1 Implementation Details of RTL SWU. 37

6 Evaluation of proposed MMV modifications 40
6.1 RTL vs HLS implementations of SWU . 40

6.1.1 Utilisation . 40
6.1.2 Throughput . 40

6.2 MMV Performance and Utilisation . 40

7 Conclusions and Future Work 42
7.1 Conclusions. 42
7.2 Future Work. 43

Bibliography 44

iii

List of Figures

1.1 General Topology of Convolutional Neural Networks [15] . 1
1.2 Overview of FINN framework [3] . 2
1.3 Architectural implementation of relevant layers in FINN [3] . 3

2.1 Basic Structure of a Neural Network . 6
2.2 Convolution Operation . 7
2.3 Depthwise Separable Convolutions . 8
2.4 FPGA NN Architectures . 9
2.5 Basic FPGA Architecture [35] . 11
2.6 FINN End To End Flow . 13
2.7 General MVAU FC Layer . 14
2.8 Modes of parallellism in MVAU . 15
2.9 GEMM Transformation of Convolutiom . 16
2.10 Image and Kernel Transformation for GEMM - Depthwise Convolution 16

3.1 Internal MVAU Structure . 20
3.2 Fine Grained MVAU - Naive Approach . 20
3.3 Fine Grained MVAU - Optimised Approach . 20
3.4 Vivado Stitched Block design . 21
3.5 Internal VVAU Structure . 22
3.6 Fine-Grained Implementation of VVAU . 23
3.7 Topologies of Example FINN Networks . 23

4.1 HLS Synthesis Time vs PE . 26
4.2 Stitching Time vs PE . 26
4.3 Stage 1 Cumulative Times . 27
4.4 Vivado Synthesis Times and Overheads . 27
4.5 Vivado Synthesis Times and Total Implementation Times . 28
4.6 Impact of Fine-Grain on Implementation Steps . 29
4.7 Resource Utilisation . 29

5.1 MMV Initial Solution . 35
5.2 MMV Problem . 35
5.3 MMV Proposed Solution . 35
5.4 Buffer size for RTL and HLS SWU . 37
5.5 SWU Pipeline . 37
5.6 Pipelining in RTL SWU . 38
5.7 Some read and write patterns in SWU . 38

6.1 Block design to test MMV . 41

iv

List of Tables

2.1 Build Times of FINN networks . 17

3.1 Division of Runtime . 18
3.2 Contribution of each custom operation to total HLS synthesis time 19

4.1 Time taken for flow upto RTL Simulation Stage for Different Networks (1 thread) 30
4.2 Time taken for flow upto RTL Simulation Stage for Different Networks (16 threads) 30
4.3 Time taken for flow upto Final Implementation Step for Different Networks (1 thread) 30
4.5 Network Nodes Summary . 31
4.4 Time taken for flow upto Final Implementation Step for Different Networks (16 threads) 31
4.6 Resource Utilization of FINN Networks . 32
4.7 NIDS Build Times . 33
4.8 NIDS Final Utilisation Results . 33

6.1 Utilisation Comparison : RTL vs HLS Sliding Window Unit . 41
6.2 MMV Performance . 41

v

1
Introduction

Neural Networks (NN) have made significant gains in decision making accuracy in the last few decades that
have enabled their use in various applications to classify images or make data predictions [28, 33, 36]. NNs
can model complex relationships between inputs and outputs and use this model to make predictions on new
input data. NNs are able to learn this relationship by observing data and iteratively modifying their model
during a process known as training. A basic neural network can be modelled as a sequence of fully connected
layers, each containing multiple neurons, wherein outputs of all neurons in one layer are connected with
the inputs of all neurons in the subsequent layer. Each interconnection has an associated weight and each
neuron has an activation function. Every neuron multiplies each of its inputs with its associated weight and
accumulates these products. The output of each neuron is obtained by applying its activation function to this
sum. The weights and coefficients of the activation function are the parameters of the neural network. During
training, the neural network iteratively adjusts its parameters based on the training data. After training, the
NN uses the trained parameters to make predictions on data through a process known as inference.

Figure 1.1: General Topology of Convolutional Neural Networks [15]

Convolutional Neural Networks (CNNs) are a type of NNs that are primarily used for image recognition.
They are explained in detail in Section 2.2 and a short summary is provided here. CNNs contain convolutional
and pooling layers in addition to the general fully connected layers. A general arrangement of layers in a CNN
is shown in Figure 1.1. Convolutional layers dominate the total computations. They perform convolution
by sliding a kernel or filter over the input image, also called Input Feature Map (IFMs), and perform a dot
product between the kernel and the part of the image at each position. A single convolution of a filter on one
position of the input image produces one output pixel of the Output Feature Map (OFM). After the kernel
slides over the entire image, all output pixels of the OFM are obtained. The filters typically have small frontal
dimensions, i.e., the side of the cuboid that faces the next cuboid in Figure 1.1, and a depth dimension equal
to the number of channels (depth) in the input IFM. Convolution of a single filter over the entire IFM produces
one channel of the OFM. Hence, the depth of the OFM, which is also the number of channels in the OFM, is
equal to the number of filters that are convolved with the IFM. Pooling layers in CNNs reduce the frontal
dimensions of the image, and serve to reduce the number of computations, and avoid overfitting. State of
the art CNNs typically contain a large number of convolutional layers to identify complex features in images.

1

2

Hence, they are also called Deep Neural Networks (DNNs). As shown in Figure 1.1, feature maps get deeper,
contain more channels as we progress along the CNN, while the number of pixels reduces progressively.

The complex decision making ability of NNs comes with the cost of large number of computations. State-
of-the-art image classification networks require millions of floating point operations to classify a single image
[18][29]. Recently, various computing paradigms such as using fixed-point arithmetic [23] and stochastic
computing [21], have been explored to reduce computational and memory storage complexity [11] of DNNs.
It has been shown that quantization, a method to reduce the precision of parameters and computations from
floating to fixed point can significantly reduce the NN footprint with only a small cost on accuracy [30]. Such
NNs where all computations are quantized are called Quantized Neural Networks (QNNs). Furthermore, time
complexity of inference has also been diminished by computing on parallel hardware that can take advantage
of the inherent parallelism [4].

Parallel hardware devices like GPUs and FPGAs can exploit the parallel nature of the inference process. FP-
GAs are well-suited for NN inference, especially with QNNs. Due to a smaller memory footprint, all network
parameters of some QNNs can now fit entirely onto memory on the FPGA fabric. In addition to removing
the memory bandwidth bottleneck, avoiding off-chip memory accesses also has a positive impact on energy
consumption. Moreover, reduced precision arithmetic can be more specifically optimised and mapped effi-
ciently onto FPGA resources. Efficient resource mapping in turn permits more computation to be allocated
on-chip and pushes performance capabilities. Advances in FPGA technology and recent trends in NN re-
search have made them well-suited for inference. Research has shown that in some applications FPGAs can
offer better performance than GPUs, while being more energy efficient [26].

FINN [19] is a framework developed by Xilinx that generates FPGA-mappable dataflow-style QNN infer-
ence accelerators from software descriptions of QNNs. Users of FINN can provide the software description of
the model, the required throughput and a specific FPGA board, and FINN can generate the FPGA architecture
to meet these requirements. An overview of the end to end flow of the FINN framework is shown in Figure 1.2.

Figure 1.2: Overview of FINN framework [3]

The FINN frontend modifies NN descriptions from frameworks such as Tensorflow or Pytorch into a com-
mon internal representation. In the internal representation, an NN is represented as a directed acyclic graph,
where each node represents a layer and the edges represent the dataflow direction. Initially, the internal rep-
resentation is agnostic to the user-specified FPGA board. After a series of transformations, the internal rep-
resentation contains complete descriptions and details of each layer specific to the particular FPGA model
that the user requires. In the intermediate transformations, FINN updates the acyclic graph representation
with C++ implementations of each node that encompasses their functional description as well as details nec-
essary to get the required performance. The FINN backend first transforms these high-level descriptions to
RTL descriptions through High Level Synthesis. Each node or layer of the neural network is synthesised in-
dependently of the others and the entire network is stitched together in subsequent steps. Then, the RTL
descriptions are synthesised into a netlist and subsequently placed and routed on the FPGA target.

Inference accelerators generated by FINN are scaled to meet user defined performance requirements
and have ultra-low classification latencies. Every layer is always active on the FPGA and the architecture is
pipelined. So, each layer can begin computation as soon as the previous layer starts producing outputs. This
also means that a new input image can be processed even before the previous input has exited the pipeline.
The architecture thus mirrors the streaming nature of NN inference process. Each layer in an NN is individu-
ally sized by FINN to meet the user provided throughput requirements. The number of cycles that each layer
takes to complete data processing for an image depends on the amount of FPGA resources FINN allocates
to that layer for processing. In FINN-generated architectures, the throughput of a layer is improved by al-
locating more processing elements for its implementation. Computations of all layers are rate-balanced to
maximise performance with the available resources. The need for rate-balancing can be illustrated with a
simple example of an NN containing two layers. Consider that the first layer is sized such that it takes 100
cycles to finish computation for a single image and the second layer takes 1000 cycles. The overall network
throughput would still be limited by the layer that has a latency of 1000 cycles. Hence, some of the parallel

3

processing elements allocated for the first layer would be wasted as they do not contribute to extra perfor-
mance of the network, as the second layer would bottleneck the performance. Sizing of each layer in FINN is
also referred to as folding in FINN terminology, and is an important transformational step that is performed
on the internal representation.

In this work, the term FINN is used to represent both the compiler and the architectures generated by the
compiler.

(a) Matrix Vector Activate Unit - performs
matrix multiplication operations

(b) Basic Processing Element - performs the
basic Multiply Accumulate operation

(c) Sliding Window Unit - the structure that is used to lower convolutions to a general matrix multiply operation

Figure 1.3: Architectural implementation of relevant layers in FINN [3]

Architectures of the most common NN layers as implemented by FINN are shown in Figure 1.3. The
Matrix Vector Activate Unit (MVAU) or Matrix Vector Threshold Unit (MVTU) (Figure 1.3a) is the primary
computational unit in FINN. It implements matrix multiplication for both fully connected layers and convo-
lutional layers. It performs multiply-accumulate (MAC) operations and applies the activation function, that
can be implemented as a thresholding operation. To speed up matrix multiplication, the MVAUs have two
methods of performance scaling that can exploit the parallel nature of the multiplication, namely, PE and
SIMD parallelism. Firstly, PE parallelism refers to the number of Processing Elements (PEs) that can simulta-
neously perform MACs. Secondly, SIMD parallelism refers to the number of Single Instruction Multiple Data
(SIMD) lanes that are present in each PE, that can perform SIMD multiplications simultaneously. Figure 1.3b
shows the structure of each processing element. W, A and T refer to the bit-widths of weights, activations and
accumulator outputs respectively. The Sliding Window Unit (SWU) (Figure 1.3c) in FINN is used in represen-
tations of convolutional layers and is used for lowering convolutions, i.e., to convert the input image into a
suitable form, so that convolutions can be implemented as a matrix multiply operation. Hence, in FINN con-
volutions are represented as an SWU followed by an MVAU. In the FINN dataflow model, the IFM arrives pixel
by pixel and is stored in the multi-line buffer of the SWU. The IFM arrives in raster order - first, all channels
of a pixel, followed by all pixels in a row of the image and then subsequent rows. The buffers in the SWU store
the incoming IFM and output the pixels in an order that is suitable for the MVAU. The SWU contains read
and write control logic that provides the address of the buffer which has to be read from or written into. The
MVAU and SWU modules in Figure 1.3 are the focus of this thesis.

Currently, in FINN, NN dataflow accelerators are constructed by assembling appropriately sized and self-
contained compute engines representing each NN layer. Each layer contains its own computational logic
and its parameters. FINN generates the C++ definition of each layer, invokes Vivado HLS to compile this

1.1. Research Questions and Approach 4

description into Verilog, and finally turns to Vivado to synthesise an FPGA bitstream from this description.
The accelerator is thus a coarse-grained pipeline of such logic blocks. Each block is individually sized by
FINN to meet user-specified performance requirements. Such a high degree of configurability translates to
large synthesis and implementation times associated with building the FPGA configuration. FINN build times
need to be diminished in order to speed up the design process and allow for faster architectural design space
exploration.

Another limitation to FINN relates to the limited performance scalability of the DNN architectures it gen-
erates. In FINN, convolutions, which are the primary computation in DNN inference [6], are lowered to ma-
trix multiplications [5]. They constitute the most significant portion of end to end computation cycles in
CNNS. As described previously, convolutions in FINN are modelled as a SWU, that lowers convolutions to
matrix multiplications, followed by an MVAU, that performs the matrix multiplication. Currently, FINN pro-
vides two modes of parallelism to speed up performance - PE parallelism and SIMD. In the context of con-
volution, PE parallelism translates to parallel computation across multiple channels of a single pixel in the
OFM, and SIMD parallelism allows for parallel processing across multiple IFM channels for a single output
pixel. However, there is no provision for parallelising computations of multiple output pixels simultaneously.
Therefore, the achievable speed up is limited by the frontal dimensions of the output, that depend on the
total number of pixels. This can pose a limitation to the performance scalability of initial DNN layers, be-
cause feature maps in initial DNN layers are typically characterised by large frontal dimensions and a shallow
depth dimension, similar to input images. FINN is able to obtain maximum performance with the available
resources by keeping the dataflow rate uniform for each layer. Hence, when the initial layers cannot exploit
parallelisation methods that FINN currently provides due to their shallow channel dimensions, this limitation
can curtail overall performance in some networks.

1.1. Research Questions and Approach
This work is centred around answering the following research questions, which are formulated in view of the
discussion above as:

• How can the construction methodology of FINN architectures be modified to improve their build times?
How large is the resource overhead induced by this approach and how can it be minimised?

• How can FINN-generated dataflow architectures be modified to introduce an additional level of per-
formance scaling?

This thesis consists of two parts: the first part aims at implementing and evaluating a modified FINN
workflow that improves its ease of use. The focus of the second part is to introduce an additional level of
parallelism to FINN, to improve its scalability.

The initial objective of this thesis is to reduce the overall build times of FINN networks by implementing
fine-grained MVAUs. It was observed that MVAU nodes that have smaller degrees of PE parallelism synthesise
faster than MVAU nodes that have larger PE values. Hence, the idea is to replicate the same functionality of the
existing large monolithic MVAU blocks with a fine-grained reconstruction containing smaller and repeatable
PEs that can synthesise faster. Parameter storage is separated from computational logic used to implement
the MVAUs, and computational logic is assembled from smaller processing elements that implement MAC
operations. Fewer simple identical PEs can then be repeated within and across computational layers that
implement the fully connected or convolutional layers. Effectively, this work modifies the part of the FINN
framework that generates C++ code for the MVAUs such that it generates finer processing elements. Such a
fine-grained structure that enables the reuse of identical components reduces the synthesis workload of Vi-
vado HLS and Vivado, running in the FINN backend. Post-synthesis, these units can be assembled along with
data movement infrastructure to reproduce the same functionality as the existing coarse pipeline. Using this
approach, up to 50× speed up was obtained on HLS synthesis times of standalone computational nodes, 1.6×
speed up was obtained on Vivado synthesis times and upto 12× speed up on total build times of standalone
nodes.

The second objective of this thesis is to leverage this fine-grained construction methodology to provide
an additional level of performance scaling in FINN designs, particularly in convolutions. Currently, the two
methods of parallelism are able to speed up a single Matrix Vector multiply operation, which is able to pro-
duce just one output pixel in the current FINN dataflow method. This thesis provides an organisation method
to perform Multiple Matrix Vector (MMV) multiplications and compute multiple output pixels of a feature

1.2. Outline 5

map simultaneously. This work modifies producer and consumer blocks of convolutional layers to be com-
patible with the modified dataflow and introduces a SWU block with new functionality. The value of M MV ,
i.e., the number of output pixels to be calculated parallelly can be used by FINN as an additional parameter
that can be modified to meet throughput requirements when it is not able to meet this requirement with the
existing PE and SIMD parallelism. With this generic approach, it is possible to compute MMV number of
output pixels simultaneously and effectively reduce the number of computation cycles taken to classify an
entire image by a factor of MMV.

The contributions of this thesis are as follows:

• Implement FINN-Finegrained - a generic modified construction methodology that enables reuse of
its core computational components and evaluate the impact of this method on build time in various
design stages and measure related overheads in area.

• Introduce a modification to the FINN dataflow that enables further performance scaling in FINN to
overcome current throughput limitations.

• Introduce a generic RTL implementation of a sliding window unit which adds extra capabilities to han-
dle multiple pixel data simultaneously. Further, it integrates multiple existing HLS implementations
of the unit. It is also more resource efficient than the HLS implementations and can reduce memory
usage by 25%.

• Introduce a resource efficient method of implementing MVAUs that are not time multiplexed and con-
tain sparse weights.

1.2. Outline
The rest of this thesis is structured as follows. In Chapter 2, background about general neural network con-
cepts is provided, need for hardware accelerators is motivated, some common strategies for efficient imple-
mentations of NN inference are described, end-to-end FINN flow is introduced and architectural implemen-
tation of the algorithm is detailed. In Chapter 3, fine-grain construction method is derived from the existing
algorithm of the monolithic structure and modifications to reduce resource overheads from this method are
provided. In Chapter 4, MMV methodology is incrementally derived and the design for a new sliding window
unit that facilitates performance scaling is presented. In Chapter 5, fine-grained implementation is evaluated
on a standalone node and impact on build times and resource utilisations are measured for varying number
of processing elements. Some networks supported by FINN are also implemented and evaluated using the
modified method, and the results are analysed based on the results on standalone nodes. In Chapter 6, the
new SWU implementation is compared with the existing SWU in terms of resource improvements and the
differences in scheduling efficiency are tested on a FINN network and reported. Then, effectiveness of the
proposed MMV modification is evaluated.

2
Background

This chapter provides an introduction to the field of neural networks and describes their common implemen-
tations. It describes the problem associated with real-time implementations of neural networks in hardware
and introduces quantization, a commonly used solution to solve practical problems associated with using
them. Section 2.4 discusses why FPGAs are suitable for implementing neural networks and some common
architectures. Section 2.6 introduces FINN, a framework for fast neural network inference on FPGAs and de-
tails its features and steps of flow. Section 2.5 outlines the backend steps in developing an implementation of
a design on an FPGA. Finally, in Section 2.6.3, the two limitations in FINN that this thesis targets to improve
are defined.

2.1. Neural Networks
Neural Networks (NNs) are a class of decision making algorithms that are structured based on a simplification
of decision making neurons in a brain. NN algorithms are modeled as an interconnection of neurons which
modify incoming signals based on their characteristic properties similar to how electrical signals are prop-
agated in the human brain. Inputs to the network are obtained from datasets or measured in real time and
propagated as signals through the NN architecture. The structure modifies the incoming signals to extract
important properties to obtain the final output.

x2

y1

y2

y3

z2

z1

w11

z3

x1

w12

w13

w21

w22

w23

y1

y1 = f(x1w11 + x2w21 + b11)

w11

w21

bias (b1)

x1

x2

Figure 2.1: Basic Structure of a Neural Network

NNs are generally represented as an acyclic graph structure. Nodes in the graph correspond to neurons
and are arranged in a layered fashion where outputs of one layer are inputs to the subsequent layer. Fig-
ure 2.1 shows a basic structure of a Multi-Layer Perceptron (MLP) NN, and a neuron, which represents the
basic building block in a NN. An MLP is a neural network in which all nodes in a layer are connected to all
nodes in the subsequent layer. A neuron first performs a linear operation that computes the sum of inputs
from the previous layer multiplied with their respective fixed coefficients. Hence, computations are dom-
inated by Multi-Accumulate (MAC) operations. An activation function is applied to the sum to introduce

6

2.2. Convolutional Neural Networks 7

non-linearity into the computation. The result of the activation function serves as the input to the subse-
quent layer. Each NN is characterised by the structural arrangement of its nodes, i.e., the number of nodes
in each layer and the number of layers. Each node is characterised by its coefficients for the multiply accu-
mulate (MAC) operations and the activation function that is applied. For a given NN, the structure is fixed,
the number and type of computations are fixed, and exact coefficients of computation can be adapted for
the specific application. Before the neural network can be used for a specific task, it learns the parameters of
computation using a process called training. Training involves multiple iterations of forward pass and back-
propagation through the structure to learn parameters by optimising a cost function. After training, neural
networks can be used for inference, where it operates on new data to predict outputs with an accuracy defined
by its classification accuracy. This work focusses on the inference process only since the current trend is to
perform training in servers online and then deploy networks in real-time applications where only inference
needs to be performed.

2.2. Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are a variation of the general NN structure (Figure 2.1) in which only
a subset of nodes in a layer is connected to a node in the subsequent layer. They are specifically used in
image processing applications due to their ability to capture features in an image with fewer parameters than
an MLP would require.

0,0

1,0

2,0

3,0

0,1 0,2 0,3

2,0

1,0

0,20,10,0

2,1 2,2

1,21,10,0

1,0

2,0

0,1

1,1

2,1

0,2

1,2

2,2

*
0,0 0,1

1,0 1,1

=

1,1

2,1

3,1

1,2

2,2

3,2

1,3

2,3

3,3

0,0

2,2

1,0

2,0

3,0

0,1

1,1

2,1

3,1

0,2

1,2

3,2

0,3

1,3

2,3

3,3

k_h

IFMHeight

IFMWidth

IFMChannels

OFMHeight

OFMWidthk_w

Figure 2.2: Convolution Operation

CNNs primarily contain convolutional layers which perform convolutions of (k_h×k_w×I F MC hannel s)
sized kernels on input images, also referred to as Input Feature Maps (IFM). A sliding kernel that steps over
stride, S (S_h, S_w), pixels every time is convolved with the input image. Outputs from a single convolution
correspond to one channel of a pixel in the output feature map (OFM). The output from a CNN layer consists
of stacked outputs obtained from convolutions of multiple kernels on the input feature map. Different ker-
nels are specialised to identify specific low level features. Kernel dimensions are typically small, ranging from
1 to 7 in most modern neural networks, so OFMs contain information about localised features of images.
After multiple convolutional layers, the network is able to recognise high level features.

Additionally, CNNs contain Pooling layers to downsize image dimensions by subsampling. They serve
to reduce the number of computations, to suppress noise in the network and to avoid overfitting. CNNs also
contain fully connected layers at the end to aid in the final classification based on high level features returned
by previous layers. Computational time in the forward pass of a CNN is dominated by convolutional layers.
Modern CNNs typically have a large number of convolutional layers and are also referred to as Deep Neural
Networks (DNNs). The number of computations (N) in a single convolutional layer depends on

• OFMWidth, OFMHeight : Horizontal and Vertical dimensions of the output feature map (OFM)

• IFMChannels : Depth of the input feature map

• OFMChannels : Depth of OFM (number of convolution kernels)

• k_h, k_w : Horizontal and Vertical dimensions of the convolution kernel

The OFMWidth and OFMHeight in turn depend on

2.2. Convolutional Neural Networks 8

• IFMWidth, IFMHeight : Horizontal and Vertical dimensions of the input feature map (IFM)

• S_h, S_w : Number of pixels that the kernel strides over in 1 step

• Pad_h, Pad_w : Number of padding pixels applied to IFM before convolution.

The relationship is given by

N = OFMWidth×OFMHeight×k_w×k_h× IFMChannels×OFMChannels (2.1)

OFMWidth = IFMWidth−k_w+Pad_w+S_w

S_w
(2.2)

OFMHeight = IFMHeight−k_h+Pad_h+S_h

S_h
(2.3)

Depthwise Separable Convolutions Depthwise separable convolution is a light-weight convolution method
present in state of the art DNNs such as Mobilenet [12] and QuartzNet [17]. It operates in two stages, depth-
wise convolution followed by pointwise convolutions, which when applied sequentially to an input image
achieve the same effect as a normal convolution, with lesser computations.

2,0

1,0

0,20,10,0

2,1 2,2

1,21,1
*

0,0 0,1

1,0 1,1

=

1,1

2,1

3,1

1,2

2,2

3,2

1,3

2,3

3,30,0

2,2

1,0

2,0

3,0

0,1

1,1

3,1

0,2

1,2

3,2

0,3

1,3

2,3

3,3

2,1

0,0

1,0

2,0

3,0

0,1 0,2 0,3

0,0

1,0

2,0

0,1

1,1

2,1

0,2

1,2

2,2

* 0,0 0,1

1,0 1,1
=

IFMHeight

IFMWidth

k_h

k_w

OFMHeight

OFMWidth

(a) Depthwise Convolution

0,0

0,0

OFMChannels

(b) Pointwise Convolution

Figure 2.3: Depthwise Separable Convolutions

In depthwise convolutions, IFMChannels kernels of dimension (k_h ×k_w ×1) are separately convolved
with each channel of the input feature map. Each kernel is applied over a single channel of the IFM only.
Number of operations in depthwise convolutions of a single image is given in Equation (2.8). This step does
not modify the depth of the image. The subsequent pointwise convolution step has an impact on the number
of output channels. A 1×1 kernel with a depth equal to I F MC hannel s convolves over every pixel of the in-
termediate output to produce a single output channel of the OFM. Convolutions of OF MC hannel s number
of 1×1× I F MC hannel s sized kernels produce the entire output feature map after depthwise separable con-
volution. The number of operations in pointwise convolution is given in Equation (2.9). The total number of
operations is thus greatly reduced with this method while achieving the same effect as normal convolutions.

DepthwiseConvolutionOperations = OFMHeight×OFMWidth×k_h×k_w× IFMChannels (2.4)

2.3. Quantized Neural Networks 9

PointwiseConvolutionOperations = OFMHeight×OFMWidth× OFMChannels

PE
× IFMChannels

PE
(2.5)

Due to large numbers of computations, CNN inference has high time complexity and large energy re-
quirements that are prohibitively large for use in embedded systems that have limited hardware capabilities.
Hence, various implementation methods have been explored to reduce the memory and computational foot-
print of CNNs.

2.3. Quantized Neural Networks
Quantized neural networks (QNNs) are a type of NNs which perform computations on stored parameters
at reduced precisions. The quantized parameters can be obtained either during training itself (Quantization
Aware Training) [13] or by quantizing high-precision values obtained after training. The advantanges of quan-
tized networks are two fold. Firstly, memory requirements drastically decrease when we move from floating
point to few-bit representations. This makes it easier to store network parameters on resource constrained
edge devices. Secondly, computations are greatly simplified for reduced precision networks. The primary
MAC operation can be replaced with easier bitwise operations that significantly reduces complexity of the
forward pass in exchange for a small accuracy reduction. Research has shown that considerable accuracy can
be obtained even with extremely low precision (1-bit) quantised networks (Binarized Neural Networks) [7].

2.4. High Speed Neural Network Inference

Tunable Parameters

PE PE PE

PE PE PE

PE PE PE

CPU

Off-Chip Memory

(a) Systolic Array

Input
Buffer

Weight
Buffer

Output
Buffer

Off-Chip Memory

PE PE PE

CPU

Controller

(b) Generic SIMD Architectures

Layer 3 PEs
Layer 2 PEs

Layer 1 PEsLayer 4
PEs

CPU Off-Chip Memory

(c) Dataflow Architectures

Figure 2.4: FPGA NN Architectures

Deep neural networks require millions of operations to classify a single frame. For real time applications
such as machine vision or cybersecurity, dedicated hardware that can speed up inference is required to meet
the strict timing requirements. NN algorithms exhibhit multiple avenues of parallelism that can be exploited
using high speed parallel processors. The sources of concurrency in the algorithm are [1]:

• batch level parallelism : computation for each image is completely independent of other images

• pipeline parallelism : the feedforward structure of CNNs means that the computations of successive
data dependent layers can be pipelined. Subsequent layers can start processing and producing outputs
immediately when they start receiving inputs from the prevous layer.

• inter-channel parallelism : calculation of each output channel of a feature map is independent of other
output channels.

2.5. FPGA Acceleration 10

• multi-pixel parallelism : each output pixel of an output feature map can be calculated independent of
the other pixels.

• intra-convolution parallelism : multiply operations within a MAC operation can be executed simulta-
neously.

Hence, inference can be greatly sped up using computer architectures that perform multiple computa-
tions simultaneously. Due to the inherently streaming nature of a NN forward pass, inference is suitable for
implementation on FPGAs [26]. QNNs can also be efficiently implemented in FPGAs since processing ele-
ments can be specifically tailored for specific bit-widths. Further, current trends in Deep Neural Networks
such as pruning introduce irregular parallelism in the network. Algorithm level optimisations that can take
advantage of such specific low level features are easier to implement in FPGAs. Moreover, FPGAs offer higher
performance per Watt [27] so they are suitable for such power hungry applications in power constrained em-
bedded environments. Owing to these reasons many FPGA DNN architectures have come up in research
recently [24]. This thesis specifically focusses on FPGA accelerators.

FPGA inference accelerators in literature are summarised as [2]:

• Systolic Arrays : The general design of systolic array architectures is shown in Figure 2.4a. Generally,
it consists of a static collection of processing elements (PEs). The architecture is fixed regardless of
the CNN topology implemented. Weights and intermediate results are transferred to and from off-chip
memory. Since there is no data caching and the CPU controls data transfer through DMAs, memory
bandwidth easily becomes the bottleneck in this type of architectures. The maximum supported kernel
size km is a hyperparameter in the design and can lead to underutilisation of resources when kernel size
k < km [22].

• SIMD Style Accelerators : These architectures try to optimise the PE size by appropriately sizing the
SIMD lines for every DNN. This is done by performing design space exploration of the CNN algorithm,
where the optimal level of unrolling of the various parallelism parameters are identified. Here as well, a
subset of layers is computed at a time, but, intermediate values are stored in buffers on chip rather than
DRAMs. In [37], an efficient way of implementation is proposed by double buffering input and output
buffers to be able to perform computation and communication simultaneously. Various optimisations
such as loop tiling, to fit data onto on-chip buffers [8], are performed to reduce DRAM accesses. Using
the roofline model [34], design space exploration is performed to find the combination of parameters
that offers good performance for a given FPGA board.

• Dataflow Architectures: In this, all computations are data driven, all layers are present on the reconfig-
urabe fabric and the flow mirrors the actual data driven flow of DNNs. It is best described as a (MIMD)
multiple instruction multiple data topology, multiple parts of the network can simulataneously act on
data whenever it becomes available in that point of flow. Hence, this method can theoretically exploit
all levels of parallelism inherent by CNN computations. All computations including Pooling and Batch
Normalisation are optimised and performed in the fabric and each layer can be appropriately sized
to meet throughput requirements. Naturally, the bottleneck is resource utilisation, since all layers are
simultaneously active on the programmable fabric. Hence, by tuning the tradeoff between resource
utilisation and latency, it is possible to obtain ultra-low latency using this approach.

Hence, FPGA NN inference accelerators differ in design about the degree of fine-tuning possible, how
much control is still in CPU, location of network parameters, frequency of data transfer between on chip and
off chip memory, and homogeinity of processing elements in each of the computational layers.

2.5. FPGA Acceleration
An Field Programmable Gate Array (FPGA) is a semiconductor device that is programmable on the field af-
ter manufacturing. It consists of an array of configurable logic blocks (CLBs) that communicate using pro-
grammable interconnect (Figure 2.5. Each logic block contains smaller components, primarily, look-up tables
(LUTs) that implement combinational logic, and flip-flops (FFs), that can store the results from LUTs. Data is
transferred into and out of the FPGA through I/O buffers. FPGAs map computation spatially onto these logic
blocks. They typically contain large number of logic elements and are able to massively parallelise compu-
tation and communication. FPGAs are well suited for streaming applications that require high-speed data
processing.

2.5. FPGA Acceleration 11

Figure 2.5: Basic FPGA Architecture [35]

2.5.1. FPGA Build Flow
Major steps in the FPGA design flow are described in this section. Synthesis and implementation are always
part of the build flow. High level synthesis is a step that is performed before synthesis for parts of the de-
sign which are complex to express directly in Register Transfer Level (RTL) descriptions that are needed for
synthesis and are instead described using a high-level language.

High Level Synthesis:
High-Level Synthesis (HLS) is a process which converts high level programming languages to RTL level hard-
ware descriptions. Using HLS, development times can be significantly reduced as much of the implementa-
tion details are handled by the compilation software. Using HLS, it is easy to make generic code rapidly that
aids in faster design space exploration. It is also possible to automate the pipelining process to obtain the
required frequency of operation. However, there is little control over the type of hardware that is inferred by
HLS, and there is a good possibility of generating inefficient hardware. The development time is saved at the
expense of extra resources.

Synthesis:
In this step, RTL description of the design is transformed into a list of flip-flops, registers and multipliers
which can map directly onto FPGA primitives. This step depends on the particular FPGA part that the design
will be mapped on. Physical constraints that can restrict the placement of cells or pin configurations and
timing constraints that define the expected clock frequency for the design can be applied during this phase.

Implementation:
Implementation process involves a sequence of steps that place the synthesised netlist onto the specific FPGA
board and route them to meet the user-specified resource and timing constraints. The major steps in imple-
mentation are

• Link Design: In this step, components designed using the bottom-up synthesis flow are stitched to-
gether to form the unified total design.

• Opt Design : Now that information about the overall design has been obtained, Vivado is able to opti-
mise the design through a series of steps like constant folding, sweeping all unnecessary components
from the generated hardware design, and remapping logic to simpler components, wherever possible.

• Place Design : During the placement process, components from the netlist are assigned their specific
spots in the targetted FPGA device. At the end of this phase, resource availability on the board for the
design can be checked.

• Route Design : In this step, all components in the placed design are interconnected and the frequency
requirements can be checked.

2.6. FINN 12

Bitstream Generation:
Finally, all the information required for the FPGA to behave as an embedded hardware device for the given
application is packed into a bitfile which will be copied and programmed onto the FPGA device.

2.6. FINN
FINN is a framework that generates high speed dataflow inference accelerators for Quantized Deep Neural
Networks [32]. The framework is able to tailor architectures for each neural network model depending on
latency required by the application and practical resource constraints. Being a dataflow architecture, it has
the potential to exploit all levels of parallelism possible in DNNs including pipeline parallelism. Topologies
of FINN networks reflect the acyclic graph structure representative of CNNs. Each node is implemented
using specific configuration of FPGA resources described by High Level descriptions created by FINN. Hence,
it is possible to customize each layer’s computational resources according to each network’s requirements.
Successive nodes are interconnected using the AXI Stream interface. FINN is beneficial as it helps to cater to
each network specifically; it falls in the far right of the spectrum in Figure 2.4. Therefore, it requires a new
bitfile to be created whenever a parameter changes. The following section describes the flow of a software to
bitstream representation of an NN in FINN. Then, it provides implementation details of how some important
types of computation in FINN.

2.6.1. End-To-End flow
The FINN framework provides a series of transformations that take a description of a QNN as input and
provides a bitfile that can be used for high performance inference on FPGAs. This section briefly introduces
the end to end flow and then presents a more detailed sequence of operations.

• Frontend : The FINN frontend is responsible for converting trained networks from different frame-
works like Tensorflow, Caffe or Pytorch into a common intermediate representation that can be used
for further processing.

• Intermediate Representation : In its intermediate representation, the network is represented as a di-
rected acyclic graph. Each computational layer is represented with generic and custom FINN attributes
encapsulated in a node of the graph. Edges in the graph represent input and output tensors of each
computational layer and contain information about their dimensions and level of quantization. After
multiple transformation passes over the network, the graph contains FINN-specific representations of
each layer that the FINN back-end can process.

• Backend : Vivado HLS, Vivado, and Vitis are part of the FINN backend and are used to transform the
final intermediate descriptions into a bitfile.

The following subsection describes a sequence of operations on a network description.

• tidy up : This transformation infers the dimensions of input and output tensors of each node, performs
constant folding, and gives nodes and tensors descriptive names.

• streamline : Even in QNNs, some operations in the forward pass like batch normalisation, α scaling
may remain in floating point for the sake of accuracy. This increases both computational complex-
ity and memory requirements in their FPGA implementation. The streamlining transformaton is per-
formed to collapse multiple linear floating point operations into a single integer operation, which is
then absorbed into the node of FINN that performs the activation function. [31]

• convert_to_hls : Computational nodes in the network are converted into custom FINN nodes that have
specific functions in the FINN-HLS library 1 for their FPGA representations. The custom FINN nodes
are described in detail in Section 2.6.2

• create_dataflow_partition : In this transformation, the entire dataflow graph is split into partitions that
are composed completely of HLS nodes that can be processed by the FINN back-end and non-HLS
nodes.

1https://github.com/Xilinx/finn-hlslib

2.6. FINN 13

Tidy

Output of FINN frontend

Streamline

Graph with tensor shapes inferred and renamed

Convert to HLS

Graph with no floating point operations, completely folded

Dataflow partition

Graph with mix of custom FINN operators for
modified functions with onnx operators

C++ Code generation

Graph with only custom FINN operators

complete parent
graph

High Level Synthesis

High level code generated using FINN HLS library
for custom operators

Stitching

Graph contains layers with RTL generated from
Vivado HLS

Build

Individual layers interconnected to form single block
design

Bitfile to run on hardware

Folding

Desired folding parameters set

RTL Simulation

Run on hardware

Figure 2.6: FINN End To End Flow

• setFolding : This transformation sets the degree of parallellism for each node based on throughput
requirements set by the user. In other words, this transformation modifies the degree of computation
in time with respect to computation in space in the final architecture.

• Code generation: At this stage all the data required to design each block is obtained. Using this, FINN
generates C++ code in this step (codegen) along with files that store associated parameter data for the
network such as weights and thresholds.

• IP Generation : In this stage, FINN creates multiple parallel threads, each of which is responsible for

2.6. FINN 14

High Level Synthesis (HLS) of a single node. Vivado HLS is used to this end, It can take the C++ descrip-
tion of a node provided by codegen stage and generate the corresponding RTL description.

• CreateStitchedIP: In this step, Vivado IP Integrator stitches together all the nodes to form the end to end
dataflow architecture in Vivado. Currently FINN uses the standard AXI-Stream protocol to interface
between individual blocks. Stitched block design from this stage can be used for RTL Simulation to
verify functional correctness and throughput.

Details of AXI Stream Handshake: The AXI stream protocol contains the ready and valid handshake
signals along with the data to be transferred. Master (source module) asserts valid and places data on
the bus; these must remain stable until the handshake is completed. Slave (destination module) asserts
ready whenever it is ready to receive data (this can be conditional on valid being asserted, but it can
also be independent). When ready and valid are asserted simultaneously, a handshake is completed.
The data needs to be registered on the slave side in that cycle. The master is allowed to change the value
of data in the next cycle.

• Build: In this step, we run synthesis, implementation and generate the bitfile for the overall network.

2.6.2. Important customOps
This section describes the structure and operations of the important architectural design blocks of FINN. It
also introduces various terminologies used in the FINN compiler that are referred in the rest of the report.

Matrix Vector Activate Unit
The Matrix Vector Activate Unit is reponsible for almost all of the multiply-accumulate capabilities in FINN. In
addition to multiply accumulate, it also applies an activation function using successive thresholding. Hence,
this block is responsible for almost all of the computation during inference, has the highest impact on latency
in the forward pass, takes the longest to synthesise, and is responsible for most of the resource utilisation in
the network. It performs computation for fully connected layers in MLPs and CNNs and convolution opera-
tion in CNNs. First, we describe how MVAU performs computation for a fully connected layer with complete
folding, i.e., when all operations are completely time multiplexed.

Synapse
Count (S)

Neuron
Count (N)

MVAU 1

Figure 2.7: General MVAU FC Layer

Consider the MVAU for the highlighted layer in Figure 2.7. The general completely folded structure of the
MVAU is shown in Figure2.8a. FINN provides two levels of parallel processing in the MVAU, PE and SIMD.
Increasing PE translates to unfolding across the neuron dimension and increasing SIMD translates to unfold-
ing across the synapse dimension. Correspondingly, neuron fold refers to how many neurons’ outputs each
PE calculates and synapse fold refers to how many cycles of MAC operations are required by a singe PE to

2.6. FINN 15

X

Adder Tree

Weight
Memory

Block
Input

Block
Output

(a) MVAU : PE = 1, SIMD = 1

X1

Adder Tree

Weight Memory

X2 Xn

SIMD lanesBlock
Input

(b) MVAU : PE = 1, SIMD = N

X

PE - 1 PE - N
Weight Memory XX

PE - 2

Block
Input

(c) MVAU : PE = N, SIMD = 1

Figure 2.8: Modes of parallellism in MVAU

produce the output for a single neuron. Each MVAU has a [N ×S] weight memory associated with it. In FINN,
there are 2 modes in which this [M H ×MW] sized memory can be synthesised :

• const : Weight memory is synthesised inside the MVAU. The resulting block after HLS Synthesis stage
has the weights embedded with the compute unit.

• decoupled : Weight memory is synthesised in a separate memstream block and is streamed into the
computational unit as needed along with inputs from the previous block. Hence, during HLS Synthesis,
the weight memory is not synthesised. Rather, it is synthesised separately from a Verilog description of
a memory streamer.

For a complete iteration for a single image, the MVAU has to perform M H ×MW computations. Hence,
the total number of cycles required for the overall computation is given in equation.2.6

C ycles = MW

SI MD
× MW

PE
(2.6)

For a fully unfolded linear layer, where PE = MH and SIMD = MW, the layer can perform one complete
iteration per cycle. Using the same principles, the MVAU is also used for performing convolutions. For this
purpose, inputs to the convolution need to be reordered accordingly. The sliding window unit is responsible
for this conversion.

Sliding Window Unit
All convolutions in FINN are modelled as a sliding window unit followed by the MVAU. Hence, the SWU is
reponsible for converting the input feature map from the previous layer to a form that is suitable for compu-
tation using the same MVAU principles. This is done by storing incoming data in line buffers and reading in

2.6. FINN 16

a pattern dictated by the attributes of the SWU. Figures 2.9 demonstrate how the convolution operation in
Figure 2.2, , reproduced in

2,2 2,2 0,00,00,10,10,2 0,21,0 1,01,11,11,21,22,0 2,02,12,1

2,2 2,2 0,30,3 0,10,10,2 0,21,3 1,3 1,11,11,21,22,3 2,3 2,12,1

2,2 2,23,03,03,13,13,2 3,2 1,0 1,01,11,11,21,22,0 2,02,12,1

2,2 2,23,33,3 3,13,13,2 3,2 1,3 1,3 1,11,11,21,22,3 2,3 2,12,1

MW = k_h * k_w * IFMChannels

OFMHeight x OFMWidth

(a) Image Transformation for GEMM - Normal Convolution

2,2 2,2 0,00,00,10,10,2 0,21,0 1,01,11,11,21,22,0 2,02,12,1

2,2 2,2 0,00,00,10,10,2 0,21,0 1,01,11,11,21,22,0 2,02,12,1

MW = k_h * k_w * IFMChannels

MH = OFMChannels

(b) Kernel Transformation for GEMM - Normal Convolution

Figure 2.9: GEMM Transformation of Convolutiom

Hence, the total number of cycles for one complete iteration of a convolutional layer is given in equa-
tion.2.7.

Cycles = OFMHeight×OFMWidth×k_h×k_w× IFMChannels

SIMD
× OFMChannels

PE
(2.7)

DepthwiseConvolutionCycles = OFMHeight×OFMWidth×k×k× IFMChannels

PE
(2.8)

PointwiseConvolutionCycles = OFMHeight×OFMWidth× OFMChannels

PE
× IFMChannels

SIMD
(2.9)

0,00,10,21,01,11,22,02,12,2

0,00,10,21,01,11,22,02,12,2

MW = k_h * k_w

0,00,10,21,01,11,22,02,12,2

MW = k_h * k_w

0,00,10,21,01,11,22,02,12,2

0,10,20,31,11,21,32,12,22,3

1,01,11,22,02,12,23,03,13,2

1,11,21,32,12,22,33,13,23,3

0,00,10,21,01,11,22,02,12,20,00,10,21,01,11,22,02,12,2

0,10,20,31,11,21,32,12,22,3

1,01,11,22,02,12,23,03,13,2

1,11,21,32,12,22,33,13,23,3

MH = IFMChannels

OFMHeight x OFMWidth

Intermediate Output Channel 1 Intermediate Output Channel 2

Figure 2.10: Image and Kernel Transformation for GEMM - Depthwise Convolution

The sliding window can also be configured to emit pixels in a form suitable for depthwise separable con-
volutions. In FINN, depthwise convolutions are modelled as a convolution layer which perform depthwise
separable convolutions followed by a fully connected linear layer that performs pointwise convolutions. Fig-
ure 2.10 shows how the depthwise convolution in Figure 2.3 can be transformed into a general matrix mutiply
operation.

In both types of convolution, PE signifies parallellism across the output channel dimension and SIMD
denotes parallellism across the input channel dimension.

The difference between the performance of an MVAU between fully connected and convolutional layer
arises because of the levels of parallellism present in FINN. The maximum throughput in convolutional layers
is limited by the dimensions of the image that the layer operates on. For typical input image sizes, this can
lead to a large number of cycles for a complete iteration of initial layers of DNNs and can bottleneck the
maximum throughput of the entire network.

2.6. FINN 17

2.6.3. Limitations
The FINN framework has found its use in multiple low latency applications and provides an easy and portable
way of customizing NN classifiers for specific applications [9] [16] [10] [14]. To choose an ideal tradeoff be-
tween resource usage and latency, a design space exploration between various parallelisation metrics is re-
quired. Since FINN falls on the right of the spectrum in Figure 2.4, there is high design complexity and the
bitfile has to be changed for every new configuration. Hence, build times for large DNNs are proportionately
large in FINN.

We define two checkpoints in the end to end flow that are useful for users of FINN.

• Stage 1: The RTL Simulation checkpoint where RTL for every sub-component of the block design is ob-
tained after HLS synthesis. At this point it is possible to perform cycle-by-cycle analysis of throughput
and functional verification of new features in FINN. A user may go through multiple iterations of builds
till Stage 1 before proceeding to stage 2.

• Stage 2: Final build checkpoint where the design is implemented, final resource utilisation can be ob-
tained and the design can be verified on an FPGA.

Table 2.1: Build Times of FINN networks

Network Build Time (hours)
CNV-w1-a1 1 h 46 m
CNV-w1-a2 1 h 44 m
CNV-w2-a2 1 h 49 m
TFC-w1-a1 1 h
TFC-w1-a2 48 m
TFC-w2-a2 52 m
Mobilenet 17 h 30 m
Resnet 82 h 18 m

Table 2.1 shows the build times in FINN for some NN architectures. It is evident that FINN needs to
compile faster to be more usable. This thesis first investigates a Fine-grained method of implementation of
the FINN pipeline as a method to reduce build times.

The maximum throughput in FINN-based DNNs is limited by dimensions of the input and output fea-
ture maps. Hence, by adding another level of performance scaling, FINN can overcome the current limits to
parallelism. This thesis also aims to provide a general method to implement Multiple Matrix Vector (MMV)
product calculation capability to FINN that can be used where the existing parallelism methods are not suffi-
cient to meet the throughput requirements of the user.

3
Fine-Grained Build Flow for FINN

This chapter identifies the process that bottlenecks FINN build times and the specific part of the FINN struc-
ture that contributes to the most significant chunk of this process. Naturally, it is expected to reap most ben-
efits by performing architectural modifications to this bottleneck structure. The internal organisation of this
structure was derived from its description and its construction method was modified to reduce its granularity.
Using a fine-grain approach, the architecture is broken into smaller and simpler components that are easier
for synthesis tools to build and replicate, instead of monolithic modules. Resource overheads contributed by
this method are minimized by further simplifications.

3.1. Profiling FINN Build Times
It is important to know the division of total build time that each step of the FINN backend takes to run to
completion to identify scope for timing improvement. Some example DNNs were taken through the FINN
end-to-end flow. A breakup of their build times is given in Table 3.1. Synthesis (HLS + Vivado RTL synthesis)
dominates the runtime for all cases. A general workflow could involve multiple cycles of HLS synthesis before
the final build process as it is possible to assess and obtain performance data points for design space explo-
ration after this stage (Stage 1) itself. Therefore, HLS Synthesis was identified as the focus of the modification,
as in addition to reaching Stage 1 faster, any structural simplifications made to speed up HLS synthesis can
offer advantages in RTL Synthesis times as well.

Table 3.1: Division of Runtime

Network HLS Vivado Synthesis Total Synthesis (HLS + Vivado Synthesis)) Place and Route
CNV-w1-a1 31.25% 45.98% 77.23% 22.77%
CNV-w1-a2 25.10% 51.78% 76.88% 23.12%
CNV-w2-a2 24.33% 49.78% 74.11% 25.89%
TFC-w1-a1 20.60% 45.59% 66.19% 33.81%
TFC-w1-a2 19.63% 37.30% 56.93% 43.07%
TFC-w2-a2 17.30% 39.61% 56.90% 43.10%
Mobilenet 24.73% 36.30% 61.03% 38.97%
Resnet 26.37% 34.16% 60.53% 39.47%

A further breakdown of the contribution of each FINN custom operation to HLS Synthesis times is pre-
sented in Table 3.2. As expected, it is MVAU, the primary computational unit in FINN that is responsible for
54% to 88% of total synthesis times. On that account, the algorithm of MVAU was investigated to identify
sources of complexity that lead to the large build times.

18

3.2. MVAU - Details 19

Table 3.2: Contribution of each custom operation to total HLS synthesis time

Network SWU MVAU MaxPool Thresholding
cnv11 20.09% 63.24% 6.83% 6.43%
cnv21 27.81% 60.89% 11.69% 8.05%
cnv22 24.71% 53.87% 4.29% 7.25%
tfc11 - 59.50% 8.03% 32.47%
tfc21 - 79.35% 9.77% 10.88%
tfc22 - 78.12% 10.25% 11.63%
mobilenet 10.46% 88.40% 0.37% -
resnet 2.79% 82.20% 0.18% 9.98%

3.2. MVAU - Details
Algorithm 2 describes the C++ code that implements this MAC block in FINN.

Algorithm 2 Matrix Vector Activate Unit Pseudocode

nf = 0
sf = 0
Total_Fold = Neuron_Fold×Synapse_Fold
for i in 0 to Tot al_Fol d - 1 do

if nf = 0 then
InputBuffer[sf] = inputport.read()
inElem = inputport.read()

else
inElem = InputBuffer[sf]

end if
W = Datafromweightport
if sf = 0 then

acc = 0
for p in 0 to PE do

act = inElem
wgt = w[p]
acc = mac(acc,wgt,act)

end for
sf = sf+1
for p in 0 to PE do

outElem = apply_activation(acc)
end for
outputport = outElem
sf = 0
nf = nf+1
if nf = NF then

nf = 0
end if

end if
end for

Based on the HLS code, the physical organisation of the MVAU can be visualised as in Figure 3.1. It con-
tains an input buffer component that enables input reuse across time multiplexed operations of the multiply
accumulate block. Since each PE performs computation with the same input for different rows of the weight
matrix, outputs from the buffer are shared with all the PEs. Each PE also receives its corresponding subset
of weights from the weight memory as another input. After computation in the MAC block, the output is
thresholded, which is equivalent to applying an activation function. The entire block inside the highlighted
grey area of Figure 3.1 forms a single MVAU unit and is monolithically synthesised by Vivado HLS. Apart
from the folding factors, each MVAU is uniquely characterised by the thresholding function and parameters

3.3. Fine-grained methodology 20

Input Port

Weight Port

Output Port

SF

MAC Unit

MAC Unit

MAC Unit

PE

Input Buffer

<=

<=

<=

Threshold
Memory

Thresholding

Figure 3.1: Internal MVAU Structure

used for thresholding. Another characteristic of the structure, ’memmode’ defines how the MVAU accesses its
weight memory. It can be either in const mode or decoupled mode (refer to Section 2.6.2).

3.3. Fine-grained methodology
From this structure, it was observed that the design synthesises an array of PEprocessing elements. The initial
solution proposed to reduce the granularity is shown in Figure 3.2. The design can be separated into individ-
ual repetitive components and only a single component can be synthesised. The repeated components can
be copied at the time of creation of the overall structure.

Hence, the same functionality can be replicated by synthesising the MVAU that is one processing element
(PE) long and using Vivado IPI to stitch multiple PEs together with Vivado AXI Stream blocks to direct input,
weight and output streams in the order required. Data movement infrastructure is thus removed from High-
Level Synthesis. This way HLS synthesis will bear the load of synthesising one PE irrespective of the number
of PEs necessary for the amount of parallelism required. Vivado IPI can replicate the synthesised PE by copy-
ing it from the cache. Since we need to be able to reuse the same synthesised PE, the PEs need to be made
completely identical and all unique parameters need to be separated from the MVAU. Hence, the character-
istic weight memory and thresholding unit always need to be separated for the FG implementation. Only the
highlighted area in Figure 3.2 would be need to be synthesised. This method enables logic reuse both within
and across computational layers.

MAC Unit

MAC Unit

MAC Unit

AXI STREAM
BROADCASTER

AXI STREAM
SPLITTER

AXI STREAM
COMBINER

Input Port

Weight Port

Output Port

<=

<=

<=

Threshold
Memory

Thresholding

Input Port

Output Port

Figure 3.2: Fine Grained MVAU - Naive Approach

MAC Unit

MAC Unit

MAC Unit

AXI STREAM
BROADCASTER

AXI STREAM
SPLITTER

AXI STREAM
COMBINER

Input Port

Weight Port

Output Port

Input Buffer <=

<=

<=

Threshold
Memory

Thresholding

Output Port

Figure 3.3: Fine Grained MVAU - Optimised Approach

The proposed methodology was integrated into the FINN build flow and its functional correctness was
verified on the BNN-PYNQ prototypes. Further, the following architectural modifications were made to im-
prove resource efficiency of the design:

3.3. Fine-grained methodology 21

• This structure contains the input buffer repeated across PEs, that would contribute to unnecessary re-
source utilisation. The HLS description of the MVAU was modified to describe only the MAC operation
of the processing element architecture, the input buffer was removed from the design and implemented
separately using Verilog. The modified structure is in Figure 3.3.

• This method is also expected to have utilisation overheads because of externally exposed interfaces,
that are marked in red. In the proposed approach, each input and output of processing elements will
be exposed externally as AXI-Stream interfaces which are also replicated as many times as the number
of PEs, whereas these were present as internal connections in the initial coarse-grained (CG) approach.
All AXI stream infrastructure paths are double registered, at the source and destination side of the in-
terface. Since inputs and outputs to these PEs are also from Vivado AXI infrastructure with registered
interfaces, some of these registers can be removed without affecting the function or attainable fre-
quency of the design. The input stream registers were targeted for removal since the width of the input
stream interface is an additional repetition factor present only in FG. Registers on the weight side were
also removed to keep identical delays to both inputs of the MAC operation.

This method moves the design complexity to the stitching of components of the block design in Vivado.
The differences in the stitched block design between the coarse-grained structure (CG) and fine-grained
structure(FG) produced by Vivado is shown in Figure 3.4. Both structures perform identical functionalities.
In both Figure 3.4a and Figure 3.4b, the highlighted part show the portions that are HLS synthesised.

(a) Coarse-Grained Structure of MVAU

(b) Fine-Grained Structure of MVAU

Figure 3.4: Vivado Stitched Block design

3.4. Fine grain VVAU 22

3.4. Fine grain VVAU
This section describes briefly the structure of the Vector Vector Activate Unit (VVAU), which is used for depth-
wise separable convolutions in FINN. Together, the MVAU and VVAU are responsible for all of the MAC func-
tionality in FINN. From Algorithm 4, a subtle difference in the VVAU structure compared to MVAU was ob-
served. The derived structure is shown in Figure 3.5. The modified fine-grained structure is obtained with
identical core components as the MVAU, and with different data movement infrastructure and is shown in
Figure 3.6. This method thus unifies the primary computational unit for all FINN blocks that perform the
MAC operation. This further increases the possibility of logic reuse among different layers of the DNN imple-
mentation.

Algorithm 4 Vector Vector Activate Unit Pseudocode

nf = 0
sf = 0
Total_Fold = Neuron_Fold×Synapse_Fold
for i in 0 to Tot al_Fol d - 1 do

inElem = InputBuffer[sf]
W = Datafromweightport
if sf = 0 then

acc = 0
for p in 0 to PE do

act = inElem[p]
wgt = w[p]
acc = mac(acc,wgt,act)

end for
sf = sf+1
for p in 0 to PE do

outElem = apply_activation(acc)
end for
outputport = outElem
sf = 0
nf = nf+1
if nf = NF then

nf = 0
end if

end if
end for

Input Port
Output Port

MAC Unit

MAC Unit

MAC Unit

PE

<=

<=

<=

Threshold
Memory

ThresholdingWeight Port

Figure 3.5: Internal VVAU Structure

3.5. Example Accelerator Designs 23

MAC Unit

MAC Unit

MAC UnitAXI STREAM
SPLITTER

AXI STREAM
COMBINER

Input Port

Weight Port

Output Port
AXI STREAM

SPLITTER

Figure 3.6: Fine-Grained Implementation of VVAU

ADVANTAGES AND DISADVANTAGES OF FINE-GRAINED METHODOLOGY
• The advantage of this method is that it can be directly extended and scaled to any network supported

by FINN without any modification.

• Using this method, the computational unit is agnostic to the PE configuration, hence, it enables logic
reuse not just within a layer but also across computational layers, as long as they have identical SIMD
and MW values.

• An improvement is expected not only in HLS Synthesis time but also in RTL synthesis time.

• There may be utilisation overheads that need to be minimised.

• This method needs to always decouple the threshold blocks and the memory streamer. Synthesising
these additional components may lead to build time as well as utilization overheads.

3.5. Example Accelerator Designs
This section will discuss the structures of two example networks supported by FINN that are used in this work
to evaluate the proposed modifications to the FINN framework.

3.5.1. BNN-PYNQ Networks

Fully Connected Convolutional Layer

MaxPool

Fully Connected

Convolutional Layer

MaxPool

Convolutional Layer

Depthwise - Separable
Convolution

MaxPool

Fully Connected

Convolutional Layer

TFC CNV

Mobilenet

Figure 3.7: Topologies of Example FINN Networks

3.5. Example Accelerator Designs 24

This class contains a set of Binarized Neural Networks (BNNs) which are ultra-quantized networks with 1 or
2-bit precision of weights and activations. It consists of TFCs, a set of MLP networks, and CNVs, a set of CNNs.
Each set has the same topology with different combinations of bit widths to represent their parameters and
inputs. TFCs are built for classifying the MNIST dataset, they operate on 28×28 input images and emit a 10×1
one-hot encoded vector to identify the digit. Their topology consists of four fully connected layers as shown
in Figure 3.7. CNVs are designed for classifying both the SVHN and CIFAR-10 datasets, and take 32×32 sized
images as input and output a 10×1 one-hot encoded vector. Their topology contains three repetitions of a
pair of convolution layers and a MaxPool layer followed by three fully connected layers.

3.5.2. Mobilenet
The Mobilenet accelerator operates with four-bit weights and activations. It consists of one convolutional
layer followed by 13 depthwise-separable convolutions, a MaxPool layer and a fully connected layer. It is
used to classify the ImageNet dataset and gives a top-1 accuracy of 68%.

4
Evaluation of Fine-Grained flow

In order to understand effects of the fine-grained approach, and advantages obtainable, an initial analysis is
performed on a standalone MVAU node. The parallelism factor, PE, is varied across experiments and the im-
pact of this method on both build times and resource utilisation is traced. Further, the number of CPUs used
by the build jobs is also varied to note the advantage of parallel processing in synthesis and implementation.
Then, an analysis of speedups is provided and overheads are broken down and explained. Speedups can be
expected in HLS Synthesis as well as Vivado synthesis because the Fine-Grained (FG) flow works on simpler
components than the coarse-grained baseline (CG). FG is expected to have overheads in stitching time due
to the presence of finer interconnections and also in resource utilisation.

Two points of the build flow that produce products that are useful to developers and users are identified
and analysis is done for each stage separately and then cumulatively. First, it is the RTL Simulation stage
where it is possible to completely test, verify and perform cycle-by-cycle analysis of functionality and perfor-
mance. The second checkpoint is the final build stage when implementation is complete and the design can
be used and tested on hardware.

Subsequently, the proposed modifications were implemented and tested on some accelerator networks
supported by FINN and the effect of FG was evaluated. All measurements were made on Vivado HLS 2020.1,
Vivado 2020.1 and Vitis 2020.1 on the xirxlabs servers provided by Xilinx Research Labs.

4.1. Profiling Build Times for Standalone Nodes
A standalone MVAU node with MH = 256 and MW = 1304 was synthesised and implemented with both CG
and FG transformation applied with varying folding levels (PE count) to understand the scope of improve-
ment obtainable using this approach. MH and MW refer to the height and width of the weight matrix, that
stores the parameters for a given layer (refer to Section 2.6.2). The CG implementation can be used with
both internal and external thresholds, and FG can be used only with external thresholds. Hence, the baseline
results are reported for the following congifurations : CG with embedded thresholds CG1, CG with external
thresholds CG2 and FG. In addition to the number of PEs, the number of CPUs that could parallelly per-
form synthesis was also varied. The second parameter is important because FG breaks the process down into
smaller repeated blocks and the improvement can be expected to scale with the number of CPUs running par-
allelly, constrained by Vivado’s memory usage. Synthesis times reported also include times for synthesising
the external thresholding unit to ensure comparison of structures with identical functionalities.

First, benefits in timing to reach the RTL simulation stage are analysed (Figure 4.1 and Figure 4.2). The
flow involves HLS Synthesis followed by stitching of synthesised components to obtain the overall block de-
sign for simulation. For CG, HLS Synthesis time scales with PE while the stitching time remains constant.
This is expected since the size of block to be synthesised increases with PE, but the number of blocks to be
assembled is not dependent on PE. Contrastingly, for FG, HLS Synth time is constant and stitching time scales
with PE. FG synthesises only a 1-PE block irrespective of PE value, and needs to assemble larger numbers of
the 1-PE blocks for higher values of PE.

In Figure 4.1, note that there is an overhead in CG2 compared to CG1 that arises because it synthesises
a separate threshold unit. Despite having identical functionalities, this overhead arises because CG2 exter-
nalises some interconnects. Hence, it needs to synthesise more external ports. Further, the MVAU outputs

25

4.1. Profiling Build Times for Standalone Nodes 26

0 50 100 150 200 250
PE Count

0

2000

4000

6000

8000

10000
HL

S
Sy

nt
he

sis
 T

im
e

(s
)

HLS Synthesis Time vs PE Count (1 Thread)

5 10 15

100

150

200

Coarse Grain with embedded thresholds
Coarse Grain with separate thresholds
Fine Grain

0 50 100 150 200 250
PE Count

0

2000

4000

6000

8000

HL
S

Sy
nt

he
sis

 T
im

e
(s

)

HLS Synthesis Time vs PE Count (16 Threads)

5 10 15
80

100

120

140

160

180

Coarse Grain with embedded thresholds
Coarse Grain with separate thresholds
Fine Grain

Figure 4.1: HLS Synthesis Time vs PE

0 50 100 150 200 250
PE Count

40

60

80

100

120

St
itc

hi
ng

 T
im

e
(s

)

Stitching Time vs PE Count
Coarse Grain
Fine Grain

Figure 4.2: Stitching Time vs PE

would not be thresholded values, which have higher bit widths than thresholded outputs in CG1. So, CG1 has
more number of wider external ports. For FG, which can operate only with separate thresholds, to provide
timing gains, its benefits must be able to compensate for this slowdown. We can see that for smaller values
of PE (in the inset region of Figure 4.1a), there is a slowdown in HLS Synthesis due to FG indicating that FG
does not provide compensatory benefits for these values. However, removing this overhead is as simple as
synthesising the threshold block parallelly on another CPU.

From Figure 4.1.b that performs the same comparison, but on 16 CPUs, it is observed that this overhead
can be alleviated. Benefits of FG scale proportionally with increasing PE values from 11% improvement for PE
= 1 to 95% for PE = 256. This is expected, since the workload of CG increases proportionally with increasing
PEs, while FG always has to synthesise a block of the same size. Though stitching times increase proportion-
ately with PE for FG, FG is able to give improved runtimes cumulatively for a design that can be simulated
(Figure 4.3). This concludes the observations for the first part of the flow.

The following steps have to be performed after HLS Synthesis to get the final implemented design:

• Vivado Synthesis : In this step, all RTL designed components and HLS generated RTL for custom nodes
are synthesised into a netlist. FINN uses bottom-up synthesis flow and a netlist for each component
is obtained separately at the end of this stage. The size of the synthesis job is also different between

4.1. Profiling Build Times for Standalone Nodes 27

1 2 4 8 16 32 64 128
PE Count

102

103

Ti
m

e
(s

)

Total Stage 1 Times
HLS Synthesis Time
Stitching Time

Coarse Grain
Fine Grain

Figure 4.3: Stage 1 Cumulative Times

0 50 100 150 200 250
PE Count

0

2000

4000

6000

8000

Vi
va

do
 S

yn
th

es
is

Ti
m

e
(s

)

Vivado Synthesis Time vs PE Count
CG1
CG2
FG

(a) Standalone Vivado Synthesis Times on 1 CPU

0 20 40 60 80 100
Percentage of actual synthesis time

1

2

4

8

16

32

64

128

256

PE
 C

ou
nt

Actual Synthesis Time / Total Elapsed Time

CG
FG

(b) Ratio of Actual to Elapsed Synthesis Times

Figure 4.4: Vivado Synthesis Times and Overheads

CG and FG. For CG, Vivado needs to synthesise an RTL description of PE-sized MVAU, whereas for FG,
Vivado would synthesise the RTL of a single PE only. For other PEs, it can reuse this synthesised design
from the cache as they would be completely identical.

• Implementation : A routed design for the required FPGA part is obtained from the synthesised netlist.

FG is expected to have an advantage in Vivado synthesis since RTL generated by HLS Synthesis for a 1-
PE MVAU would be less complex than a larger MVAU. Replication of finer components would just involve
retreiving the synthesised design from the cache, rather than synthesising a multi-PE MVAU.

Results of Vivado synthesis performed on 1 CPU are shown in Figure 4.4a. While this does not demon-
strate the speed-up potential of FG, it gives an indication of additional synthesis workload introduced by FG
due to the extracted components (Figure 3.3). Contrary to expectations, a slowdown in synthesis times is ob-
served. The slowdown also increases with increasing PEs. These results are further broken down to identify
sources of overheads:

• PE = 1 : First, the case of PE = 1 is observed. Here, the overhead is only because Vivado needs to syn-

4.1. Profiling Build Times for Standalone Nodes 28

0 50 100 150 200 250
PE Count

100

200

300

400

500

600

700

800
Vi

va
do

 S
yn

th
es

is
Ti

m
e

(s
)

Vivado Synthesis Time vs PE Count (16 Threads)
CG1-actual
CG1-elapsed
CG2-actual
CG2-elapsed
FG-actual
FG-elapsed
FG-ideal

(a) Synthesis Times with parallel synthesis on 16
threads

0 50 100 150 200 250
PE Count

0

2000

4000

6000

8000

10000

To
ta

l T
im

e
(s

)

Total Build Times vs PE Count
Coarse Grain with embedded thresholds
Coarse Grain with separate thresholds
Fine Grain (Actual Synthesis)
Fine Grain (Elapsed Synthesis)

(b) Total Implementation Times with parallel
synthesis on 16 threads

Figure 4.5: Vivado Synthesis Times and Total Implementation Times

thesise an additional thresholding unit and its threshold memory. This problem can also be alleviated
using parallel processing.

• PE > 2 : The overhead is due to 2 factors. Firstly, additional AXI infrastructure blocks need to be syn-
thesised for movement of input, weight and output streams. Secondly, there is an overhead that scales
which is accounted to Vivado’s inefficieny in invoking the cached synthesis jobs (Figure 4.4b). For each
PE, Vivado requires to start new jobs and perform housekeeping tasks such as loading project part and
timing information. This takes up almost 30 seconds even for a single cache retrieval for a replicated
PE. The cache retrieval time is almost equal to synthesis time for a single PE. With increasing PEs, the
number of cache retrievals increases. Hence, by comparing total elapsed synthesis times, it is not possi-
ble to evaluate the impact of hardware modifications introduced by FG, due to bottlenecks introduced
by the software that implements the hardware. However, it is possible to obtain information about the
actual time that Vivado spends on synthesis. Using this, it is possible to isolate the impact of hardware
modifications without the influence of Vivado. Henceforth, all analysis will be done on both the actual
synthesis times reported by Vivado and the total elapsed time.

Next, build times are measured after running synthesis on 16 CPUs. The number of threads was chosen
arbitrarily. In Figure 4.5a, dashed lines refer to the measured total elapsed time and solid lines indicate the
actual synthesis times. Speed-up is obtained in the FG method for all values of PE, though it is not as signifi-
cant as the improvement in HLS Synthesis. The primary reason is that Vivado synthesis times in the baseline
method itself do not scale as much with PEs as HLS Synthesis. Hence, the scope for improvement is limited.
The overhead is also due to a limitation of Vivado AXI infrastructure blocks. They directly support only upto
16 Master or Slave AXIS ports. When the broadcast value is higher than 16, AXI blocks that perform identical
functionalities need to be replicated. Since Vivado does not cache AXI infrastructure blocks and repeats syn-
thesis of even identical blocks, this leads to some overheads. The ideal line in Figure 4.5a shows the speed-up
that can be obtained by creating custom AXI stream infratructure without port limitations.

4.2. Resoure Utilisation - Standalone 29

Implementation:

0 50 100 150 200 250
PE Count

15

20

25

30

35

40

45

50

Lin
k

De
sig

n
Ti

m
e

(s
)

Link Design Time vs PE Count

5 10 15
13

14

15

16

Coarse Grain with embedded thresholds
Coarse Grain with separate thresholds
Fine Grain

0 50 100 150 200 250
PE Count

20

40

60

80

100

120

Op
t D

es
ig

n
Ti

m
e

(s
)

Opt Design Time vs PE Count

5 10 15
18

19

20

21

Coarse Grain with embedded thresholds
Coarse Grain with separate thresholds
Fine Grain

Figure 4.6: Impact of Fine-Grain on Implementation Steps

The impact of FG on the affected sub parts of implementation times (refer Section 2.5.1) is shown in Fig-
ure 4.6. There is an overhead in the opt and link design stage for FG. This is because, for FG, Vivado obtains
complete information about the entire block design only in this phase and makes high level optimisations,
whereas this information is already available during HLS Synthesis for the CG approach. During place and
route phase, the cumulative netlist is already generated, so FG exhibits identical timing as CG.

The overall impact of the finegrain method is shown in Figure 4.5b. Hence, it can be concluded that FG
has a positive impact on build time and the magnitude of improvement is directly related to the value of PE.

4.2. Resoure Utilisation - Standalone

0 20 40 60 80 100 120
PE Count

0

2500

5000

7500

10000

12500

15000

17500

20000

LU
T

Co
un

t

LUT Count vs PE Count

Coarse Grain with embedded thresholds
Coarse Grain with separate thresholds
Fine Grain

0 20 40 60 80 100 120
PE Count

0

5000

10000

15000

20000

25000

30000

35000

FF
 C

ou
nt

FF Count vs PE Count

Coarse Grain with embedded thresholds
Coarse Grain with separate thresholds
Fine Grain

Figure 4.7: Resource Utilisation

In this section, utilisation overheads are measured. FG and CG utilisations for each PE value is shown in
Figure 4.7. It is interesting to note that there is in fact an improvement in utilisation with the FG implemen-
tation for PE values smaller than 64 and a maximum overhead of 10%. This is due to the removal of registers
from the AXI infrastructure of weight stream ports in FG. An overhead that steadily increases with PE count
and compensates for this improvement is because of the presence of wide pre-thresholded output stream AXI
infrastructure of each PE which is repeated in FG.

In the next section, overall impact of FG on end to end networks are measured and explained based on
the above analysis of its effects on a single node.

4.3. Build Time Analysis on Networks 30

4.3. Build Time Analysis on Networks
The fine-grained methodology was implemented and verified on hardware for various networks that FINN
currently supports. The timing results for each stage of the flow are reported for synthesis with both 1 thread
and 16 threads. Contrary to the standalone case, parallelising the synthesis process of networks will be ad-
vantageous to the coarse-grained approach as well, since it will now be able to process multiple monolithic
layers simultaneously.

Table 4.1: Time taken for flow upto RTL Simulation Stage for Different Networks (1 thread)

Network
CG FG

HLS Synthesis
Time

Stitching
Time

Total
Time

HLS Synthesis
Time

Stitching
Time

Total
Time

CNV11 33 m 2 s 59 s 34 m 1 s 29 m 59 s 61 s 31 m 1 s
CNV21 25 m 59 s 63 s 27 m 2 s 30 m 28 s 68 s 31 m 33 s
CNV22 26 m 37 s 63 s 27 m 40 s 30 m 26 s 67 s 31 m 36 s
TFC11 12 m 16 s 39 s 12 m 55 s 9 m 7 s 44 s 9 m 51 s
TFC21 9 m 25 s 42 s 10 m 7 s 9 m 51 s 49 s 10 m 40 s
TFC22 8 m 56 s 39 s 9 m 35 s 9 m 19 s 47 s 10 m 6 s
Mobilenet 259 m 34 s 2 m 261 m 34 s 82 m 35 s 15 m 97 m 35 s

Table 4.2: Time taken for flow upto RTL Simulation Stage for Different Networks (16 threads)

Network
CG FG

HLS Synthesis
Time

Stitching
Time

Total
Time

HLS Synthesis
Time

Stitching
Time

Total
Time

CNV11 8 m 1 s 59 s 9 m 2 s 2 m 38 s 61 s 3 m 39 s
CNV21 3 m 49 s 63 s 4 m 53 s 2 m 38 s 68 s 3 m 46 s
CNV22 3 m 55 s 63 s 4 m 59 s 2 m 34 s 67 s 3 m 42 s
TFC11 3 m 54 s 39 s 4 m 34 s 1 m 2 s 44 s 1 m 47 s
TFC21 4 m 8 s 42 s 4 m 50 s 1 m 11 s 49 s 2 m 0 s
TFC22 3 m 45 s 39 s 4 m 25 s 1 m 6 s 47 s 1 m 54 s
Mobilenet 70 m 15 s 2 m 72 m 15 s 5 m 58 s 15 m 20 m 58 s

Table 4.3: Time taken for flow upto Final Implementation Step for Different Networks (1 thread)

Network
CG FG

HLS
Synthesis

Vivado
Synthesis

Total
Synthesis

HLS
Synthesis

Vivado
Synthesis

Total
Synthesis

CNV11 33 m 48 m 81 m 31 m 89 m 118 m
CNV21 25 m 53 m 79 m 31 m 94 m 124 m
CNV22 26 m 54 m 81 m 31 m 104 m 134 m
TFC11 12 m 27 m 39 m 9 m 33 m 42 m
TFC21 9 m 17 m 27 m 10 m 34 m 43 m
TFC22 8 m 20 m 29 m 10 m 36 m 45 m
Mobilenet 259 m 381 m 640 m 97 m 892 m 975 m

4.3. Build Time Analysis on Networks 31

Table 4.5: Network Nodes Summary

Network Number of FC Layer Nodes PE Values
CNV11 9 [16, 32, 16, 16, 4, 1, 1, 1, 5]
CNV21 & CNV22 9 [8, 16, 8, 8, 4, 1, 1, 2, 5]
TFC 4 [16, 8, 8, 8]

Mobilenet 28
[32, 32, 16, 32, 16, 64, 32, 16, 16, 32, 32, 8, 16, 16, 32,
16, 32, 16, 32, 16, 32, 16, 32, 4, 16, 8, 32, 4]

Table 4.4: Time taken for flow upto Final Implementation Step for Different Networks (16 threads)

Network
CG FG

HLS
Synthesis

Vivado
Synthesis

Total
Synthesis

HLS
Synthesis

Vivado
Synthesis

Total
Synthesis

CNV11 9 m 1 s 4 m 2 s 12 m 3 s 2 m 39 s 6 m 14 s 8 m 52 s
CNV21 3 m 53 s 5 m 6 s 8 m 56 s 2 m 46 s 7 m 57 s 10 m 35 s
CNV22 3 m 59 s 5 m 0 s 8 m 56 s 2 m 42 s 8 m 36 s 11 m 11 s
TFC11 3 m 54 s 3 m 43 s 7 m 38 s 1 m 47 s 2 m 26 s 3 m 29 s
TFC21 4 m 50 s 2 m 58 s 7 m 6 s 1 m 0 s 2 m 31 s 3 m 42 s
TFC22 3 m 25 s 5 m 4 s 8 m 50 s 1 m 54 s 2 m 45 s 3 m 52 s
Mobilenet 70 m 15 s 31 m 33 s 101 m 48 s 5 m 58 s 55 m 32 s 61 m 30 s

4.3.1. Effects on HLS Synthesis
The results of the first step of flow after running on 1 CPU and 16 CPUs are summarised in Table 4.1 and
Table 4.2 respectively. CNVs and TFCs are part of the BNN-PYNQ prototypes. The numbers on their label de-
note the bit-widths of weights and activations. For tfc11, the baseline network is implemented with separate
thresholds to understand improvements with this variation as well. For each network, results for synthesis
with 1 thread is discussed first, followed by synthesis with 16 threads.

The standard configuration of TFC networks have 4 MVAU nodes with PE values shown in Table 4.5. For
TFC11, the baseline design is implemented with separate thresholds. Based on our analysis for standalone
nodes, there is an expected improvement with FG if PE >= 8 and no significant impact for nodes with PE < 8
when CG is also implemented with separate thresholds. Hence, all 4 nodes are expected to individually gain
times with improvements ranging from 8% to 40%. The measured cumulative speed-up in HLS Synthesis for
this network is 26% (Table 4.1). For TFC21 and TFC22, the baseline design is implemented with embedded
thresholds. Hence, a slowdown of 30% is expected for nodes with PE = 8, and a 25% speed-up is expected
for the single node with PE = 16. Cumulatively, HLS Synthesis would have to do more work with FG, hence,
we do not obtain a speed-up in FG for both these networks. This is also corroborated by the collected timing
information in Table 4.1.

Next, we analyze the effect of parallel synthesis of TFC networks. An advantage is obtained here even
for TFC12 and TFC22 because the increase in workload due to synthesis of separate thresholds in fine-grain
is alleviated by distributing the work among multiple threads. Since the number of additional jobs (4) is
lesser than the number of threads (16) allowed for synthesis in this experiment, the additional workload is
completely hidden by parallelisation. All TFC networks are able to show benefits of upto 70% HLS Synthesis
time improvement.

Results obtained in Table 4.5 for the CNV networks are reasoned below: CNV11 has different folding fac-
tors from CNV21 and CNV22 and will be reasoned separately.

• CNV11 contains four nodes with PE > 16 and five nodes with PE < 16. The speed-up obtained by FG
in the larger nodes can be expected to be compensated by the small PE nodes based on analysis of
the standalone node. Therefore, no speed-up is expected for the sequential case, when synthesis is
performed on just one CPU.

With parallelization, an improvement can be expected inspite of the increased workload. Eight new
jobs are introduced by FG in addition to the 19 jobs already present in CG. Since 16 threads are present
for parallelisation, CG already requires two rounds of parallel threads. Since the number of additional
jobs introduced by FG can be scheduled to synthesise within the second group of 16 jobs, the overheads
are hidden and an improvement is observed.

4.3. Build Time Analysis on Networks 32

• Based on their default folding, CNV21 and CNV22 have four nodes with PE > 8 and 5 nodes with PE < 8.
So cumulatively, more work would done by the FG method and again, no speed-up is expected for the
sequential case. With parallel scheduling, there is an improvement in times, however, the improvement
is not as large as CNV11 since the default folding factors, that determine the value of PE are smaller in
these networks.

It was noted that, as expected, FG times were the same for HLS synthesis of all three CNV networks despite
having different folding factors.

The Mobilenet-v1 is much larger than the BNNs. 24 out of 28 of its computational nodes have PE > 16.
Almost 50% of its nodes have PE > 32 as well. So, more benefits can be extracted on this network using FG. We
observe a 3× build time improvement due to the FG approach. With parallel processing, FG is able to provide
11 times faster HLS Synthesis than CG.

4.3.2. Effects on Vivado Synthesis
Stage 2 results involves the synthesis of all structures that were separated to synthesise externally in the fine-
grain method in addition to the components that were HLS synthesised. For each MVAU node, this involves
additional synthesis of the following five components for each MVAU node of the network for FG:

• Input Buffer

• AXI Stream Broadcaster

• AXI Stream Scatter

• AXI Stream Commbiner

• Thresholding Unit

Hence, the number of additional jobs due to FG scales proportionally with the number of modified MVAU
nodes that need to be synthesised. For CNV and TFC networks, the number of additional jobs is approxi-
mately equal to the baseline number of jobs, so, the total number of jobs almost doubles due to FG. Further,
despite the simplicity of the additionally introduced structures, their synthesis times are roughly equal to that
for a single PE which performs actual computation. This indicates that Vivado synthesis itself involves some
housekeeping processes that have fixed time requirements irrespective of the complexity or size of the RTL
and always takes up a certain minimum amount of time. This fixed time also scales linearly with the number
of additional jobs.

Moreover, Vivado Synthesis times of MVAUs also do not scale with PE count as much as HLS Synthesis.
Hence, the benefits provided by FG in RTL Synthesis are small while the overheads are constant and large.
Hence, synthesis times with FG are always greater than CG (Table 4.3). The severity of these overheads are
allayed when using higher number of threads (Table 4.4), but are not compensated.

Thus FG is seen to perform poorly in Vivado Synthesis. The implementation time was not significantly
affected by the fine-grain method and hence, it is not reported. The overall impact is dependent on whether
the improvement in HLS Synthesis times is able to compensate for the disadvantage in Vivado Synthesis
times.

Table 4.6: Resource Utilization of FINN Networks

Primitives TFC11 TFC21 TFC22 CNV11 CNV21 CNV22 Mobilenet
LUTs 8606 11374 16112 19437 25193 32281 368902

Baseline
FFs 13463 15367 20176 26676 32951 37221 265908
LUTs 6413 10615 14081 20807 22817 29741 407114

Fine-grained
FFs 9673 13640 16034 30403 26159 29856 116476

Table 4.6 shows the effect of fine-grained method on the resource utilisation of some FINN networks. It
was observed that FG improves the resourse utilisation in all cases except for Mobilenet, where there is a 10%
increase in resources due to FG.

4.4. Case Study - Network Intrusion Detection System (NIDS) 33

4.4. Case Study - Network Intrusion Detection System (NIDS)
NIDS is a Multi-Layer Perceptron used to detect malicious network packets. It operates on real-time network
data and needs to be able to process millions of packets per second. Hence, this network is an ideal candidate
for acceleration using FINN. This particular network is trained on the UNSW-NB15 dataset [25]. It network
has a similar structure to the TFC networks, four fully connected layers but different number of neurons. To
obtain maximum throughput, all layers are fully unfolded here, i.e., there is no time multiplexing within a
layer and each layer can produce all its outputs every cycle. Hence, a throughput equal to the clock rate can
be obtained since the network has only fully connected layers.

Since all the layers have full unfolding, this network represents an edge case where the most improvement
in FG can be obtained and was investigated more deeply.

Table 4.7: NIDS Build Times

Flow stage Time CG (minutes) Time FG (minutes)
HLS Synthesis 112 4
Vivado Synthesis 13 22
Implementation 15 26

Table 4.8: NIDS Final Utilisation Results

CG FG FG - improved
LUTs FFs LUTs FFs LUTs FFs
14252 12971 38752 32836 21452 20524

The timing improvement and utilisation results are shown in Table 4.7 and Table 4.8. A significant im-
provement (28×) in HLS Synthesis timing was observed as expected due to the large folding factors. However,
it was also observed that the resource utilisation is more than twice the utilisation of CG method. Upon fur-
ther investigation, it was found that the network has sparse weights. The CG method was implemented in
’const’ weight mode, where the weight memory of the MVAU node is embedded into inside the the node it-
self. So, weight parameters are available to computational units during HLS Synthesis process itself. Since the
network is fully unfolded, i.e., there is no time multiplexing, the computational unit is completely aware of
all the coefficients to be used in the MAC operation during HLS Synthesis itself. Most parameter coefficients
were observed to be 0, Vivado HLS is able to optimize away most of the computational logic by reducing it
to just an addition of the inputs that have their respective weight coefficients set. On the other hand, FG can
only be implemented in ’decoupled’ mode, where the weight memory is implemented outside the MVAU,
hence, HLS Synthesis is performed only for computational part of the MVAU. The RTL generated after HLS
Synthesis is unaware of the weights and is designed to handle any generic computation, and subsequently,
generic hardware is synthesised. The hardware becomes aware of the weights only during the opt design
phase of the implementation process, since the weight memory is stitched with the computational node and
the entire design is linked in the link_design phase. Now, Vivado is still able to sweep away some of the extra
hardware during the constant propagation phase, however, it is not able to do it as efficiently as generating
the optimised hardware itself.

Hence, to aid the Vivado tool to make the same optimisations in fully unfolded cases for decoupled mode,
a specific architectural modification is proposed. This involves shuffling the weight memory to have all the
sparsely set weights entirely in either the LSB or MSB. To obtain correct functionality, the inputs need to be
reshuffled as well. Since this is a static shuffling for a given network, it can be done at no resource cost. Using
this method, utilisation dropped by 45%, and FG was able to obtain 28× HLS time improvement and 2.7×
overall build time improvement.

5
Increasing FINN Scalability

This chapter describes the throughput bottleneck in FINN that could prevent network topologies from reach-
ing ultra-low latencies. It aims to develop MMV (Multiple Matrix Vector multiplications), a general solution to
perform computations for multiple output pixels simultaneously, that can be utilised when existing methods
for performance scaling are unable to meet the throughput demand. Section 5.2 describes an initial solution
to implement MMV and its limitations. Section 5.3 provides the modification to the FINN dataflow that can
remove this limitation and introduces additional modules that were developed to facilitate MMV.

5.1. Throughput bottleneck
The number of cycles (N) required by an MVAU in a convolutional layer to complete execution for a single
image is given by

N = OFMWidth×OFMHeight×k_w×k_h× IFMChannels

PE
× OFMChannels

SIMD
(5.1)

Since there is no method of parallelising across the output image dimensions, it can present a bottleneck
to the maximum throughput acheivable. Due to the presence of pooling layers, frontal size of feature maps
progressively decrease along the path of a DNN. Initial DNN layers that operate on feature maps with larger
frontal dimensions and shallow depths are sometimes not able to match throughput of subsequent layers
with deeper channels and smaller image dimensions which can exploit the existing SIMD and PE parallelism
extensively. With a provision to perform Multiple Matrix Vector (MMV) multiplications in a single cycle, it
is possible to obtain corresponding results for multiple output pixels simultaneously. The following section
explores the possibility of adding this third level of parallelism to FINN dataflow.

5.2. Single layer MMV
The existing PE computational units in an MVAU can be replicated MMV number of times to improve paral-
lelism by a factor of MMV. This MMV solution is implemented on top of the fine-grain modification detailed
in Chapter 3. This provides an advantage as only one processing element actually has to be synthesised per
MVAU layer, irrespective of the parallelism needed. Correspondingly, the sliding window unit (SWU) must
also be modified to produce information for MMV pixels simultaneously. The SWU is usually implemented
using BRAM buffers inferred as Simple Dual Port RAMs. Since data can be read from only one address at
a time, the SWU would need MMV repeated buffers. Then, outputs of each matrix vector operation can be
switched in the required order to the next layer using the AXI Stream Switch. In case of FINN, the next layer
accepts pixels only in raster order and all channels of a pixel have to arrive before any new information about
the next pixel is obtained. Additionally, since inputs to the switch arrive at the same time, but have to be
switched out sequentially, FIFOs are required to queue the pixel information data that have to wait for the
previous pixel to be completely switched out. The structure of the proposed solution is shown in Figure 5.1.

For the structure in Figure 5.1, and an MVAU having parameters NF = 4, SF = 9 and MMV = 3, the output
waveform is shown in Figure 5.2. To revisit, SF is the number of cycles needed to complete a single MAC
operation. Output of a single MAC operation corresponds to pixel information for a single output channel.

34

5.3. Multi-layer MMV 35

Threshold SWU MVAU Threshold

MVAU 1

MVAU 2

MVAU 3

A
Buffer 1

Buffer 2

Buffer 3

SWU with
MMV OUT

SWITCH

FIFO 1

FIFO 2

FIFO 3

Figure 5.1: MMV Initial Solution

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Clk

FIFO 1

FIFO 2

FIFO 3

P1 P1 P1 P1

P2

P3

P4

Figure 5.2: MMV Problem

NF is the number of MAC operations to obtain all output channel information for a single pixel. Hence, it
takes a total of N F ×SF cycles for all channel information about a single pixel to be calculated in the MVAU.
From the waveform, it is apparent that the following constraint applies to obtain extra performance using
MMV:

(M MV −1)×N F < SF (5.2)

In fully unfolded networks, where all existing PE and SIMD parallelism has been utilised, SF = 1 and NF =
1. So, it is not possible to scale performance using this approach.

5.3. Multi-layer MMV
For MMV to be useful, subsequent layers must be modified to receive multiple pixels produced by the MVAU
simultaneously. The parallely produced data needs to be sequentialised at the point of dataflow when MMV
mode of parallelism is not required to meet throughput requirements anymore. Further, the process of se-
quentialisation must not slowdown the improvement obtained from MMV. The constraint in Equation (5.2)
exists because subsequent layers require the input pixels to be of a certain order. If we remove the constraint
of raster order of inputs from the subsequent layers, this limitation can be overcome. In this regard, the
structure can modified as shown in Figure 5.3, where some layers like thresholding are easily amenable to a
transformation to process multiple pixels simuultaneously.

SWU with
MMV IN MVAU Threshold

MVAU 1

MVAU 2

MVAU 3

A B
Threshold 1

Threshold 2

Threshold 3

Buffer 1

Buffer 2

Buffer 3

SWU with
MMV OUT

Figure 5.3: MMV Proposed Solution

The SWU of the subsequent convolutional layer is the first block that requires major architectural modi-

5.3. Multi-layer MMV 36

fications and has the capability to sequentialise its output after receiving MMV_IN inputs at the same time.
For this purpose, it needs to be able to take in MMV_IN wide inputs and give out MMV_OUT wide outputs, or
it could be the point of sequentialisation, in which case it outputs data required for just one pixel. Thus, the
existing SWU would need to be modified to a) have input and output ports of different sizes b) have inputs
arrive at a different order than previously and hence to read and write in different data patterns.

The existing implementation of the SWU is investigated more deeply. It operates in two modes (Fig-
ure 5.4a) :

• Phase 1 - Write only phase :

– Write input images into buffer until first k_h input image rows are completely filled.

• Phase 2 - Read and write phase:

– Write new row of input images into the extra row of the input buffer.

– Simultaneously read from the first k_h rows already written into in the required order.

– Wait until the new row is completely filled and until all reads from the first KH rows are complete.

– Switch the write pointer to next wrapped around block (row) of buffer.

– Continue phase 2 until all rows of output image are obtained.

The SWU is implemented using HLS and stores one more row of line buffer than the minimum required
to get an output pixel for the sake of elasticity. This leads to more BRAM utilisation than required. In FINN,
since all network parameters are stored on-chip, BRAMs are a critical resource.

So, the additional functionality of reading wider input words than output words was implemented in RTL,
which can implement the same functionality with BRAMs that are only k_h rows long. This is possible since,
in RTL, it is possible to model simultaneous read and write processes with more precise control than using
HLS. The RTL implementation also unified all read and write variations that are already possible using the
HLS implementation into a single Sliding Window Unit.

The functional and performance requirements of the required SWU are listed below:

• FUNCTIONAL REQUIREMENTS

– Width, Height, Depth of input feature map, number of bits per input word (N), k_h and k_w,
the kernel dimensions, SH and SW, strides in horizontal and vertical direction, MMV_IN, MMV of
previous convolution, MMV_OUT, MMV of current convolution, location of padding (top/bottom,
left/write) and type of padding (pad wth zero or pad with repeat) must be parametrizable

– The implementation should use a Simple Dual Port BRAM at its core, of minimum size given the
parameters.

– AXI stream IN and OUT to interface with rest of FINN using the standard communication proto-
col.

– Reads and writes are independent, except reads do not proceed beyond the previously written
memory locations

– Customizable read scheduling

• PERFORMANCE REQUIREMENTS

– Reading from buffer must be possible as early as possible

– The SWU must avoid stalling of incoming data wherever possible

– One read per cycle must be possible when data is available.

5.3. Multi-layer MMV 37

KERNEL HEIGHT (kh)

Input image width

Buffer Height

(a) HLS SWU

KERNEL HEIGHT (kh) Buffer Height

 A

KW

(b) RTL SWU

Figure 5.4: Buffer size for RTL and HLS SWU

5.3.1. Implementation Details of RTL SWU
An RTL design that satisfies the above requirements was developed. The primary structural difference in this
implementation for the default STRIDE = 1 case is illustrated in Figure 5.4. The highlighted additional row in
Figure 5.4a is used in HLS SWU to store incoming data when the existing data is read from the first three rows.

Read and write control and scheduling in the RTL implementation are more complex than HLS since read
and write pointers have to operate on a tighter area of memory. Also, adding the MMV_IN parameter leads to
a much more irregular pattern of reads that is complex to implement.

Features of the RTL SWU architecture are summarized below:

• A write counter tracks the location of data written into the buffer. Once minimum writes needed for the
first pixel read is complete, reads are already possible. This in contrast to HLS implementation, where
the full new image row has to be written into before we can read from the first position.

• Another counter (pending_read_counter) tracks the positions in buffer that have been read as many
times as required and can be replaced with new incoming data. In Figure 5.4b, position A can be over-
written when the highlighted reads are complete. This number works out to wr i te_counter %(K H ×
K W). In the design, the modulo function is implemented with a combination of wraparound coun-
ters that identify when pending_read_counter can be incremented. The wraparound counters serve 2
functions

– identify when to increment the pending_read_counter

– to calculate the read address

• Wraparound counters are only allowed to increment when an output stream transaction has occured
at the previous read address.

• The SWU is implemented as a 4 stage pipeline, with the sequence of operations described in Figure 5.5.
The reason for a 4 cycle pipeline is explained below: There exists a minimum 3 cycle latency between
a handshake at the output port for data 1, and receiving the next data at the output port: 1 cycle for
the first level wraparound counters to increment after recognising a transaction at the output port, 1
cycle for read address to be calculated based on these pointers and the read address to be registered
on RAM, 1 cycle for data in the read address to arrive at the output of the RAM. With just this design it
is not possible to obtain 1 read per cycle under all conditions (Figure 5.6a). Since the consumer block
is not always ready to accept new data, the two cycle latency to get data at the RAM prohibits one
read per cycle under all conditions. Hence, an additional register is added at the RAM output. With
this, the pipeline is kept completely full at every instant (Figure 5.6b) and 1 read per cycle is obtained
irrespective of the assertion of output READY signal. The register is able to hide the two cycle latency
of getting RAM data.

Data reaches
output port

Data read from
RAM

Calculate new read
position from pointers

Calculate new
pointers

CE

Handshake at output
port

Figure 5.5: SWU Pipeline

5.3. Multi-layer MMV 38

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Clk

Output Ready
signal

Valid Data at
RAM/block
output

Initial pointers
updated

Read address
calculated

(a) 3 cycle pipeline

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Clk

Output Ready
signal

Valid Data at
block output

Valid Data at
RAM output

Read address
calculated

Initial pointers
updated

(b) 4 cycle pipeline

Figure 5.6: Pipelining in RTL SWU

The read pattern from the SWU would vary depending on the padding, stride, SIMD, IFMChannels, MMV_IN
(MMV of previous layer), MMV_OUT (MMV of current layer), type of convolution. Writing always happens
in raster order, but the order of arrival also varies depending on the MMV_IN. Variations in read and write
patterns are shown in Figure 5.7. Each shade represents a different channel of the pixel. Input and output
port widths are the same for all configurations of the SWU, except for MMV_IN > 1. It has to take in MMV_IN
wide inputs and give out a single pixel wide output. The core of such a SWU is instantiated as asymmetric
RAM in hardware.

0,00,0 0,0

1,01,0 1,0

2,02,0 2,0

0,10,1 0,1

1,11,1 1,1

2,12,1 2,1

0,20,2 0,2

1,21,2 1,2

2,22,2 2,2

0,30,3 0,3

1,31,3 1,3

2,32,3 2,3

0,40,4 0,4

1,41,4 1,4

2,42,4 2,4

Write order
(MMV_IN = 1)

0,50,5 0,5

1,51,5 1,5

2,52,5 2,5

(a) Write Order MMV= 1

0,0

1,0

2,0

0,1

1,1

2,1

0,2

1,2

2,2

0,0

1,0

2,0

0,1

1,1

2,1

0,2

1,2

2,2

0,0

1,0

2,0

0,1

1,1

2,1

0,2

1,2

2,2

0,3

1,3

2,3

0,4

1,4

2,4

0,5

1,5

2,5

0,3

1,3

2,3

0,4

1,4

2,4

0,5

1,5

2,5

0,3

1,3

2,3

0,4

1,4

2,4

0,5

1,5

2,5

Write order with MMV_IN = 3

(b) Write Order MMV= 3

2,2 2,2 2,2 0,00,00,00,10,10,10,2 0,20,21,0 1,01,01,11,11,11,21,21,22,0 2,02,02,12,12,1

Read order for normal convolution

(c) Read Order for Normal Convolution
Read order for depthwise separable convolution

0,00,10,21,01,11,22,02,12,20,00,10,21,01,11,22,02,12,2 0,00,10,21,01,11,22,02,12,2

(d) Read Order for Depthwise Separable Convolution

Figure 5.7: Some read and write patterns in SWU

Asymmetric RAMs are blocks of memory that have different widths and depths in the input and output
port. The advantage of using asymmetric RAMs in the MMV-closing SWU is that there is no point of explicit
sequentialisation of the parallel inputs and thus, no added stalling of data. It enables receiving and storing
M MV _I N×InputPr eci si on wide inputs from the previous MMV enabled layer and gives out InputPrecision

5.3. Multi-layer MMV 39

wide data when MMV parallelism is not required from that layer. Even if MMV = MMV_OUT is required from this
layer, data is stored in MMV_OUT asymmetric RAMs before reading InputPrecision wide data from each RAM.

For values of STRIDE > 1, it is not possible to meet the requirement of one output per cycle with the same
buffer size. This can be explained using an example for STRIDE = 2. Generally, the number of reads from a
block of data is around an order of magnitude greater than the number of writes. After the first output image
row is calculated, the next output image row would require two new rows of the input image. However, data
of only one row of the input image can be written into the oldest row of the buffer while we are reading from
the same buffer at the same time. Hence, when all reads from the buffer are complete, the SWU would need
to wait IFMWidth cycles before the next row of the output feature map can be output. To facilitate better
scheduling, the buffer was modified to store an additional STRIDE - 1 rows of input image. The existing HLS
implementation also follows a similar approach.

6
Evaluation of proposed MMV

modifications

The correct functionality of the RTL implementation of the SWU was tested and verified on the BNN CNV
networks in simulation and in hardware (Pynq-Z2). The proposed MMV modification to the dataflow was
also functionally verified on the CNV11 BNN. The BNN contains six SWUs that have different combinations
of variable parameters. The SWU was also verified on the Mobilenet in simulation to account for some other
configurations that were not present in the BNNs. This way mutiple combinations of defining parameters of
the SWU were tested. First, this chapter compares the utilisation and performance of the RTL and HLS SWU.
Then, it applies MMV as an additional parameter on a standalone MVAU node from a FINN BNN network
and measures the throughput increase and the associated increase in resource utilisation.

6.1. RTL vs HLS implementations of SWU
6.1.1. Utilisation
An RTL description is expected to generate more compact hardware than HLS implementations for the same
functions. In this section the two implementations of the sliding window unit are compared with different
configurations. The HLS implementation refers to the existing group of sliding window unit modules from
the FINN hlslib repository 1. The RTL version is the SWU introduced in this thesis.

In RTL, intricate control over the design has to be exercised and the exact position of read and write coun-
ters needs to be tracked, to prevent stalling with only kh rows of data. Contrastingly, in HLS, the algorithm
requires only the row number to be tracked. Also, to meet throughput requirements, the RTL SWU tracks the
exact number of reads performed to calculate the number of new allowed writes. Hence, the control algo-
rithm in RTL is more complex than the HLS SWU. Table 6.1 shows the hardware utilisation for some SWU
configurations found in BNNs and Mobilenet. Despite more complex control, the RTL SWUs control requires
lesser LUTs than the HLS SWUs.

6.1.2. Throughput
Throughput obtained from the SWUs were also compared since they follow different read and write schedul-
ing. In the CNV11 network, HLS SWUs were replaced by RTL SWUs of the same configurations and throughput
of the entire network was compared. A 1.6× throughput improvement was observed with the RTL SWUs. This
is because, the HLS implementation has to wait for an entire input image row to be written into the buffer
before the corresponding output feature map row is read. On the other hand, the RTL implementation tracks
the exact amount of new data obtained and an early start is obtained in the reading phase.

6.2. MMV Performance and Utilisation
To check the impact of the proposed modification to the FINN dataflow, especially the sequentialisation of
data with the MMV_IN wide sliding window unit, an MVAU and its subsequent layers until the modified SWU

1https://github.com/Xilinx/finn-hlslib

40

6.2. MMV Performance and Utilisation 41

Table 6.1: Utilisation Comparison : RTL vs HLS Sliding Window Unit

Total Memory Control
Module Buffer Size Implementation Style

LUTs FFs LUTs LUTs
120 x 32 HLS 501 610 176 325

SWU - 1
90 x 32 RTL 440 244 132 308
112 x 32 HLS 413 608 96 317

SWU - 2
84 x 32 RTL 350 202 88 262
192 x 32 HLS 441 578 176 265

SWU - 3
144 x 32 RTL 418 241 132 286
80 x 32 HLS 378 603 96 319

SWU - 4
60 x 32 RTL 259 158 44 215
96 x 32 HLS 427 602 96 347

SWU - 5
72 x 32 RTL 202 165 88 114
1120 x 24 HLS 1222 641 640 120

SWU - 6
896 x 24 RTL 1028 529 448 580
444 x 128 HLS 2253 1374 1376 877

SWU - 7
333 x 128 RTL 1568 1034 1032 536

Figure 6.1: Block design to test MMV

were also simulated using Vivado. For a single MVAU node, PE was kept constant and MMV was increased.
The simulated block diagram is shown in Figure 6.1. In this figure, StreamingFCLayer_Batch_0 is the target of
MMV parallelism.

Currently, in FINN, the throughput is limited by the slowest layer, that is, the layer that takes the most
number of cycles to perform all computations for a single image. In this section, we verify if MMV can im-
prove this factor for nodes that have already reached their peak performance using SIMD and PE parallelisms.
Results of increasing MMV are tabulated in Table 6.2. The total number of cycles to completely process a sin-
gle image were used as a measure of throughput. It was observed that the throughput obtained matches the
theoretically expected performance increase. The associated utilisation increase is also reported. Note how
the throughput improvement scales linearly with the set value of MMV with respect to the baseline design
where MMV = 1. The resource utilisation also increases with increasing MMV.

Table 6.2: MMV Performance

MMV LUTs FFs BRAMs Total Cycles Improvement
LUT utilisation
increase

FF Utilisation
Increase

1 1801 1593 7.5 1 x 1 x 1 x
2 2976 2656 9 2 x 1.65 x 1.7 x
4 5287 4658 12 4 x 2.93 x 3.0 x

7
Conclusions and Future Work

In this thesis, the objectives of integrating and evaluating a fine-grained flow and utilising the fine-grain ar-
chitecture to provide performance scaling were implemented and verified succesfully in simulation and on
hardware. Chapter 2 introduced the problems associated with implementing NNs in hardware and how par-
allel architectures can be exploited, motivated the use of FPGAs for this purpose, discussed various hardware
architectures currently present and drew focus to FINN, and identified two problems that will be the focus of
this thesis. Chapter 3 motivated the focus of architectural improvement and derived the fine-grain architec-
ture. Chapter 4 evaluated the fine-grained method on a standalone MVAU node, explored the effectiveness
of the approach for different sizes of the node and discussed the advantages obtained. The chapter also ex-
plores the advantage of parallel processing on the fine-grained (FG) methodology. After evaluation on a stan-
dalone node, some FINN supported accelerator networks were also implemented with FG and the results
were discussed and explained based on the results obtained from the standalone node. Chapter 5 explored
and described methods to introduce a general MMV capability to FINN, and proposed a method to modify
the dataflow of the MMV Modified portion of the structure to include this modification. It also highlighted the
characteristics of the architecture of a modified Sliding Window Unit introduced for this purpose. Chapter 6
evaluated the proposed MMV solution on a sample BNN network. The new SWU was verified first, then the
module was integrated with all layers that are modified for MMV and the design was functionally verified.

7.1. Conclusions
How can the construction methodology of FINN architectures be modified to improve their build times?
How large is the resource overhead induced by this approach and how can it be minimised?

The construction methodology of MVAU, the primary computational structure in FINN implemented ar-
chitectures, was modified to follow a fine-grained approach. The fine-grain (FG) approach is generic and can
be directly applied to any network supported by FINN. To get the most advantage from FG, all processing
element architectures are made as identical as possible, so that they can be reused. FG was evaluated first
on a standalone MVAU node, and then on entire accelerator networks. From a standalone analysis of a sin-
gle MVAU node, it was observed that this method can give an improvement for all values of the number of
processing elements (PEs). Benefits offered by fine-grain on entire accelerator networks are dependent on
the number of MVAU nodes in the network, their PE values, and the number of CPUs available to parallelise
the synthesis process. FG always adds extra jobs to the synthesis process when the baseline design is imple-
mented with embedded thresholds. The number of extra jobs scales with MVAU nodes and their effects can
be amortized by running synthesis with more threads. Moreover, to obtain an overall advantage, the benefits
of synthesising a smaller PE in FG must be able to compensate for the cost of synthesising the additional
modules. For a single node, the benefit scales with the PE value of the MVAU and the cost also increases with
PE value. Nevertheless, Vivado, the synthesis software, primarily restricts the benefits possible by FG. Firstly,
it expends a significant amount of time to invoke a cache retrieval, almost matching the time that it takes for
actual synthesis. Second, synthesis of simple data movement infrastructure consumes as much time as the
synthesis of the actual computational unit. This indicates a significant fixed build time cost of a synthesis job
that arises from housekeeping tasks such as loading the project part and launching child processes. By opti-
mizing the software to remove these inefficiencies, full benefits of this method can be extracted. In effect, FG

42

7.2. Future Work 43

removes the bottleneck in the size of synthesis jobs and encounters a bottleneck in the software that invokes
these jobs. From analysis of actual synthesis times on some network accelerators, it was observed that FG can
provide up to 12× speedup in HLS Synthesis times, up to 2× speedup in overall synthesis times with little to
no negative impact on resource utilisation. FG is most beneficial in networks with a smaller number of MVAU
nodes, each with large PE values and synthesis run on large number of threads.

How can FINN-generated dataflow architectures be modified to introduce an additional level of perfor-
mance scaling?

A general method to perform Multiple Matrix Vector (MMV) multiplications and provide parallel compu-
tation of multiple output pixels in a convolutional layer was proposed and implemented. MMV cannot be
implemented by modifying only the layer that requires throughput improvement. A general MMV method to
increase performance capabilities requires a more extensive modification to downstream layers to seamlessly
sequentialise the parallelly produced MMV pixel wide outputs. The part of the dataflow of some networks
which cannot meet throughput requirements with the available modes of parallelism was modified with the
proposed MMV implementations and tested. It was effectively able to complete its execution cycles MMV
times faster at the cost of less than MMV times additional resources. A new SWU that can sequentialise the
parallelly produced MMV-pixel wide outputs was developed using Verilog. This module was necessary to
integrate the MMV-modified part of the dataflow with the downstream layers that do not need MMV paral-
lelism. The RTL implementation of the SWU is able to efficiently unify multiple existing HLS implementa-
tions and introduce functionality needed for MMV. It is more efficient, both in terms of control and memory
resources and scheduling reads and writes.

7.2. Future Work
The backend software, Vivado, needs to be optimised to extract complete benefits from the fine-grained ap-
proach. Further, resource costs as well as timing costs can benefit from using simpler interconnect and the
resulting simpler data movement infrastructure, instead of the AXI Stream interface. Another improvement
could be to reduce the number of additional jobs by keeping the threshold unit embedded for fine-grain ap-
proach and modifying the MVAU to take in additional threshold stream interface from an external threshold
memory instead. This way, synthesis of a separate threshold unit can be avoided. An external threshold unit
is disadvantageous since it leads to synthesis of wider output port for MVAU and input port for the threshold
unit and the interface costs more resources. Thresholded values have much lower datawidth and this cost can
be avoided by embedding the unit. Also, integrating the threshold unit will reduce the number of jobs that
increase proportionally with the number of MVAU nodes and can remove the fixed synthesis time overhead
of new jobs and of synthesising the additional wider ports.

For the MMV method, limitation to the current approach is that Vivado is able to infer asymmetric RAMs,
which are needed for the closing sliding window unit, only for certain ratios of input-output port widths. To
make the method more generic, a wrapper module needs to be created to force Vivado to infer an asymmetric
RAM for all values of MMV. Moreover, read patterns from the SWU are complex to implement. Other trans-
formations like the Winograd transform [20] can be used to simplify the pattern and reduce the number of
computations in a convolution, allowing for efficient resource utilisation when implemented in hardware. In
dataflow architectures like FINN, area is the limiting factor in maximising throughput, so this can also have a
positive impact on overall performance of the network.

Bibliography

[1] Kamel Abdelouahab, Maxime Pelcat, Jocelyn Sérot, and François Berry. Accelerating CNN inference on
fpgas: A survey. CoRR, abs/1806.01683, 2018. URL http://arxiv.org/abs/1806.01683.

[2] Kamel Abdelouahab, Maxime Pelcat, Jocelyn Sérot, and François Berry. Accelerating CNN inference on
fpgas: A survey. CoRR, abs/1806.01683, 2018. URL http://arxiv.org/abs/1806.01683.

[3] Michaela Blott, Thomas B. Preußer, Nicholas J. Fraser, Giulio Gambardella, Kenneth O’Brien, and Yaman
Umuroglu. FINN-R: an end-to-end deep-learning framework for fast exploration of quantized neural
networks. CoRR, abs/1809.04570, 2018. URL http://arxiv.org/abs/1809.04570.

[4] Maurizio Capra, Beatrice Bussolino, Alberto Marchisio, Muhammad Shafique, Guido Masera, and Mau-
rizio Martina. An updated survey of efficient hardware architectures for accelerating deep convolu-
tional neural networks. Future Internet, 12(7), 2020. ISSN 1999-5903. URL https://www.mdpi.com/

1999-5903/12/7/113.

[5] Kumar Chellapilla, Sidd Puri, and Patrice Simard. High performance convolutional neural networks for
document processing. 10 2006.

[6] Jason Cong and Bingjun Xiao. Minimizing computation in convolutional neural networks. In Stefan
Wermter, Cornelius Weber, Włodzisław Duch, Timo Honkela, Petia Koprinkova-Hristova, Sven Magg,
Günther Palm, and Alessandro E. P. Villa, editors, Artificial Neural Networks and Machine Learning –
ICANN 2014, pages 281–290, Cham, 2014. Springer International Publishing. ISBN 978-3-319-11179-7.

[7] Matthieu Courbariaux and Yoshua Bengio. Binarynet: Training deep neural networks with weights and
activations constrained to +1 or -1. CoRR, abs/1602.02830, 2016. URL http://arxiv.org/abs/1602.

02830.

[8] Steven Derrien and Sanjay Rajopadhye. Loop tiling for reconfigurable accelerators. pages 398–408, 08
2001. ISBN 978-3-540-42499-4. doi: 10.1007/3-540-44687-7_41.

[9] Quentin Ducasse, Pascal Cotret, Loïc Lagadec, and Robert Stewart. Benchmarking quantized neural
networks on fpgas with FINN. CoRR, abs/2102.01341, 2021. URL https://arxiv.org/abs/2102.

01341.

[10] Mohammad Ghasemzadeh, Mohammad Samragh, and Farinaz Koushanfar. Resbinnet: Residual binary
neural network. CoRR, abs/1711.01243, 2017. URL http://arxiv.org/abs/1711.01243.

[11] Song Han, Huizi Mao, and William Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. 10 2016.

[12] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for mobile
vision applications, 2017.

[13] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew G. Howard, Hartwig
Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient integer-
arithmetic-only inference. CoRR, abs/1712.05877, 2017. URL http://arxiv.org/abs/1712.05877.

[14] Petar Jokic, Stephane Emery, and Luca Benini. Binaryeye: A 20 kfps streaming camera system on fpga
with real-time on-device image recognition using binary neural networks. In 2018 IEEE 13th Interna-
tional Symposium on Industrial Embedded Systems (SIES), pages 1–7, 2018. doi: 10.1109/SIES.2018.
8442108.

44

http://arxiv.org/abs/1806.01683
http://arxiv.org/abs/1806.01683
http://arxiv.org/abs/1809.04570
https://www.mdpi.com/1999-5903/12/7/113
https://www.mdpi.com/1999-5903/12/7/113
http://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1602.02830
https://arxiv.org/abs/2102.01341
https://arxiv.org/abs/2102.01341
http://arxiv.org/abs/1711.01243
http://arxiv.org/abs/1712.05877

Bibliography 45

[15] Xu Kang, Bin Song, and Fengyao Sun. A deep similarity metric method based on incomplete data for
traffic anomaly detection in iot. Applied Sciences, 9(1), 2019. ISSN 2076-3417. doi: 10.3390/app9010135.
URL https://www.mdpi.com/2076-3417/9/1/135.

[16] Alireza Khodamoradi, Kristof Denolf, and Ryan Kastner. S2n2: A fpga accelerator for streaming spiking
neural networks. In The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Ar-
rays, FPGA ’21, page 194–205, New York, NY, USA, 2021. Association for Computing Machinery. ISBN
9781450382182. doi: 10.1145/3431920.3439283. URL https://doi.org/10.1145/3431920.3439283.

[17] Samuel Kriman, Stanislav Beliaev, Boris Ginsburg, Jocelyn Huang, Oleksii Kuchaiev, Vitaly Lavrukhin,
Ryan Leary, Jason Li, and Yang Zhang. Quartznet: Deep automatic speech recognition with 1d time-
channel separable convolutions, 2019.

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional
neural networks. Commun. ACM, 60(6):84–90, May 2017. ISSN 0001-0782. doi: 10.1145/3065386. URL
https://doi.org/10.1145/3065386.

[19] Xilinx Research Labs. Finn¶, 2020. URL https://finn.readthedocs.io/en/latest/.

[20] Andrew Lavin. Fast algorithms for convolutional neural networks. CoRR, abs/1509.09308, 2015. URL
http://arxiv.org/abs/1509.09308.

[21] Ji Li, Ao Ren, Zhe Li, Caiwen Ding, Bo Yuan, Qinru Qiu, and Yanzhi Wang. Towards acceleration of deep
convolutional neural networks using stochastic computing. In 2017 22nd Asia and South Pacific Design
Automation Conference (ASP-DAC), pages 115–120, 2017. doi: 10.1109/ASPDAC.2017.7858306.

[22] Xin Li, Yujie Cai, Jun Han, and Xiaoyang Zeng. A high utilization fpga-based accelerator for variable-scale
convolutional neural network. In 2017 IEEE 12th International Conference on ASIC (ASICON), pages 944–
947, 2017. doi: 10.1109/ASICON.2017.8252633.

[23] Darryl D. Lin, Sachin S. Talathi, and V. Sreekanth Annapureddy. Fixed point quantization of deep convo-
lutional networks. ICML’16. JMLR.org, 2016.

[24] Janardan Misra and Indranil Saha. Artificial neural networks in hardware: A survey of two
decades of progress. Neurocomputing, 74(1):239–255, 2010. ISSN 0925-2312. doi: https://doi.org/
10.1016/j.neucom.2010.03.021. URL https://www.sciencedirect.com/science/article/pii/

S092523121000216X. Artificial Brains.

[25] Nour Moustafa and Jill Slay. Unsw-nb15: a comprehensive data set for network intrusion detection sys-
tems (unsw-nb15 network data set). In 2015 Military Communications and Information Systems Confer-
ence (MilCIS), pages 1–6, 2015. doi: 10.1109/MilCIS.2015.7348942.

[26] Eriko Nurvitadhi, Ganesh Venkatesh, Jaewoong Sim, Debbie Marr, Randy Huang, Jason Ong Gee Hock,
Yeong Tat Liew, Krishnan Srivatsan, Duncan Moss, Suchit Subhaschandra, and Guy Boudoukh. Can
fpgas beat gpus in accelerating next-generation deep neural networks? In Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA ’17, page 5–14, New
York, NY, USA, 2017. Association for Computing Machinery. ISBN 9781450343541. doi: 10.1145/3020078.
3021740. URL https://doi.org/10.1145/3020078.3021740.

[27] Murad Qasaimeh, Kristof Denolf, Jack Lo, Kees Vissers, Joseph Zambreno, and Phillip Jones. Comparing
energy efficiency of cpu, gpu and fpga implementations for vision kernels. 05 2019. doi: 10.1109/ICESS.
2019.8782524.

[28] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:85–
117, 2015. ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.2014.09.003. URL https://www.

sciencedirect.com/science/article/pii/S0893608014002135.

[29] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recog-
nition. arXiv 1409.1556, 09 2014.

[30] Wonyong Sung, Sungho Shin, and Kyuyeon Hwang. Resiliency of deep neural networks under quantiza-
tion. 11 2015.

https://www.mdpi.com/2076-3417/9/1/135
https://doi.org/10.1145/3431920.3439283
https://doi.org/10.1145/3065386
https://finn.readthedocs.io/en/latest/
http://arxiv.org/abs/1509.09308
https://www.sciencedirect.com/science/article/pii/S092523121000216X
https://www.sciencedirect.com/science/article/pii/S092523121000216X
https://doi.org/10.1145/3020078.3021740
https://www.sciencedirect.com/science/article/pii/S0893608014002135
https://www.sciencedirect.com/science/article/pii/S0893608014002135

Bibliography 46

[31] Yaman Umuroglu and Magnus Jahre. Streamlined deployment for quantized neural networks. CoRR,
abs/1709.04060, 2017. URL http://arxiv.org/abs/1709.04060.

[32] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela Blott, Philip Heng Wai Leong, Mag-
nus Jahre, and Kees A. Vissers. FINN: A framework for fast, scalable binarized neural network inference.
CoRR, abs/1612.07119, 2016. URL http://arxiv.org/abs/1612.07119.

[33] Tobias Weyand, Ilya Kostrikov, and James Philbin. Planet - photo geolocation with convolutional neural
networks. In European Conference on Computer Vision (ECCV), 2016.

[34] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An insightful visual performance
model for floating-point programs and multicore architectures. 02 2009.

[35] Xilinx. Understanding fpga architecture, 2020. URL https://www.xilinx.com/html_docs/

xilinx2017_2/sdaccel_doc/topics/devices/con-fpga-architecture.html.

[36] Rikiya Yamashita, Mizuho Nishio, Richard Do, and Kaori Togashi. Convolutional neural networks:
an overview and application in radiology. Insights into Imaging, 9, 06 2018. doi: 10.1007/
s13244-018-0639-9.

[37] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. Optimizing fpga-based
accelerator design for deep convolutional neural networks. In Proceedings of the 2015 ACM/SIGDA Inter-
national Symposium on Field-Programmable Gate Arrays, FPGA ’15, page 161–170, New York, NY, USA,
2015. Association for Computing Machinery. ISBN 9781450333153. doi: 10.1145/2684746.2689060. URL
https://doi.org/10.1145/2684746.2689060.

http://arxiv.org/abs/1709.04060
http://arxiv.org/abs/1612.07119
https://www.xilinx.com/html_docs/xilinx2017_2/sdaccel_doc/topics/devices/con-fpga-architecture.html
https://www.xilinx.com/html_docs/xilinx2017_2/sdaccel_doc/topics/devices/con-fpga-architecture.html
https://doi.org/10.1145/2684746.2689060

	List of Figures
	List of Tables
	Introduction
	Research Questions and Approach
	Outline

	Background
	Neural Networks
	Convolutional Neural Networks
	Quantized Neural Networks
	High Speed Neural Network Inference
	FPGA Acceleration
	FPGA Build Flow

	FINN
	End-To-End flow
	Important customOps
	Limitations

	Fine-Grained Build Flow for FINN
	Profiling FINN Build Times
	MVAU - Details
	Fine-grained methodology
	Fine grain VVAU
	Example Accelerator Designs
	BNN-PYNQ Networks
	Mobilenet

	Evaluation of Fine-Grained flow
	Profiling Build Times for Standalone Nodes
	Resoure Utilisation - Standalone
	Build Time Analysis on Networks
	Effects on HLS Synthesis
	Effects on Vivado Synthesis

	Case Study - Network Intrusion Detection System (NIDS)

	Increasing FINN Scalability
	Throughput bottleneck
	Single layer MMV
	Multi-layer MMV
	Implementation Details of RTL SWU

	Evaluation of proposed MMV modifications
	RTL vs HLS implementations of SWU
	Utilisation
	Throughput

	MMV Performance and Utilisation

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

