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Preface

What lies here before you is a thesis about spatio-temporal solar power fore-
casts via regression. This project aimed to build a robust framework for scal-
able and accurate intraday solar power forecasts using irradiance observations
and numerical weather predictions. It was written to fulfil the graduation
requirements of the TU Delft’s master of Sustainable Energy Technology.

The motivation for this thesis came from my fascination with energy mar-
kets and the great opportunity for optimization in them. More and more
solar energy is entering the grid, but the dependence on the weather causes
mismatches between supply and demand. To solve this problem, we need bet-
ter forecasts and increased flexibility. This project aims to tackle the former.
Remco and Stephan supplied their knowledge and helped to set the direction
for this project.

This thesis was written for those that seek a way to implement accurate
intraday solar power forecasts in a scalable manner. Through the application
of the framework as described in this thesis, it is possible to beat the average
market player at the time of writing.

If your aim is to quickly grasp the conclusion of this thesis, then I would
like to refer you to the Executive Summary. However, if you aim to implement
the framework – or if you just really enjoy the maths behind it – then I would
recommend you to read the entire thesis.

On to the acknowledgements on the page after next!

Noud Jaspers
August 2022
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Executive summary

Introduction Across the globe, we are facing the challenge of global warm-
ing due to the emissions of greenhouse gases (GHGs). This leads to extreme
weather, sea level rise, biodiversity loss, and higher death rates. Most of the
GHGs come from burning coal or other types of polluting energy sources.
Therefore, we need to make the switch to renewable energy (RE).

Solar energy is an RE and available in abundance. The earth receives about
10,000 times more energy from the sun than the rate at which humankind con-
sumes energy. We are able to harvest that energy as well by using photovoltaic
(PV) cells. However, the switch to renewable energy entails a paradigm shift.

In the energy systems of today, we burn fuel to follow demand. However,
when we are dependent on solar energy, then we have to follow supply instead
of demand – the irradiance from the sun fluctuates heavily during the day
and there is no sun at night. Therefore, we need to be able to forecast supply
and plan demand accordingly. If we do not, then it becomes very difficult to
impossible to maintain a stable energy system.

Within that context, this thesis aims to build a regression framework for
intraday solar power forecasts that uses numerical weather predictions and
observations. To develop this framework, we do a case study of the Nether-
lands. The goal is to develop an approach that can be used around the globe
without the need for new (expensive) measurement infrastructure. It should
be reliable, easy to implement, and give state-of-the-art results. We aim to
answer the research question: How can irradiance observations and numerical
weather predictions be regressed on the spatio-temporal dimension to create
accurate intraday solar power forecasts?

Theory Multiple linear regression is a statistical method that allows us to
relate a set of predictors, X, to a response, y. First, let us assess X. This
matrix has P predictors over the columns and T time steps over the rows.
Each column is a vector, X = {x1,x2, ...,xP }, and each vector has T elements,
xi = {x1, x2, ..., xT }, where i is the index of a predictor.

Second, the response, y, is a vector with T time steps, y = {y1, y2, ..., yT }.
In regression, we aim to predict y with X as ŷ = Xb, where ŷ is the predicted
response and b is the vector of coefficients with P elements. The vector of
coefficients is found by minimizing the squared error,
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x Executive summary

Q =

T∑
t=1

(yt − ŷt)
2.

For solar power forecasts, we want to use numerical irradiance predictions
and irradiance observations as an input to the regression model. Therefore, if
we want to predict y at time step t+ τ , then we can build a predictor matrix
that contains the last known observation, yt, and the numerical irradiance
prediction for time step t + τ , xt+τ . In that case, our X has two columns to
predict each time step: the lagged observation and the numerical irradiance
prediction.

We can expand our regression model if we include more last known obser-
vations – also known as lags. For example, if we have two lags, then we include
yt and yt−1. In addition, we can smooth the numerical irradiance predictions
over the temporal dimension by including xt+τ−1, xt+τ , and xt+τ+1.

If we have two locations that we aim to predict with each their own pre-
dictor matrix, X1 and X2 respectively, which contain that location’s lagged
observations and numerical predictions, then we can concatenate the predic-
tor matrices for both locations, X = [X1,X2], to predict each response. By
doing so, we acknowledge that there are interdependencies between the two
responses. For solar power forecasts, we can imagine that locations in proxim-
ity exhibit this form of interdependency. Therefore, we can apply regression
over the spatio-temporal dimension.

When we concatenate many predictor matrices, then the amount of pre-
dictors for one response becomes very high. To ensure that we only take the
predictors that are important, we apply predictor selection. This is done via
the introduction of a constraint on the coefficient estimation process, such that
the absolute sum of the coefficient vector does not exceed a certain threshold.
This results in some elements in the coefficient vector to take a value of zero,
therefore negating those predictors from the model. We call this process the
least absolute shrinkage and selection operator (LASSO).

To conclude, we can evaluate our regression model’s accuracy by calculat-
ing the root mean square error (RMSE),

ϵRMSE =

√√√√ 1

T

T∑
t=1

(yt − ŷt)2.

In addition, we can calculate its accuracy against a baseline forecast,

ε = 1− ϵRMSEfor

ϵRMSEref

,

where ϵRMSEfor
is the RMSE of our forecast and ϵRMSEref

is the RMSE of the
baseline forecast. We call this metric the skill score (SS), which we denote as
our forecast’s SS against the baseline forecast. When we express accuracy as
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a percentage, then we are referring to the SS.

Experimental setup To do the spatio-temporal regression, we first collected
numerical weather predictions and irradiance observations from the ECMWF
and KNMI respectively. We did so for all the KNMI’s weather stations that
measure irradiance (Figure 3.1), which are 32 locations across the Netherlands.
We extracted 10 weather parameters from the ECMWF and only one – the
global horizontal irradiance (GHI) – from the KNMI. The ECMWF’s data
contained parameters for irradiance, pressure, wind, temperature, cloud cover,
and so forth.

The GHI data from the ECMWF and KNMI was processed to take out its
diurnal pattern so that we are left with the pure stochastic process – we call
the outcome of this process the clear-sky index. From there, the time steps
where there was no sunshine were removed from the datasets. Finally, we
calculated some dummy variables and transformed some parameters to help
increase the fit between the numerical predictions and observations.

We concluded our experimental setup by defining a simple framework for
model training, testing, and validation. That is, we calculate the coefficients,
b, of the model on data that spans the period of 2019-09-01 until 2020-08-
31, which we call the train set. We tune the model’s parameters, such as the
amount of lags to include, by calculating the predicted response using the co-
efficients of the train set on the period of 2020-09-01 until 2020-12-31, which
we call the test set. We use this predicted response to calculate the accuracy
in terms of RMSE, which we try to minimize as much as possible. Once we
have tuned the model’s parameters, we validate the model’s accuracy on the
validation set, which spans the period of 2019-07-01 until 2019-08-31.

Regression framework To develop our regression framework for accurate
intraday solar power forecasts over the spatio-temporal dimension, we first
defined a framework to increase the fit between the numerical irradiance pre-
dictions and the irradiance observations. We used the clear-sky index to do
so, which we also use as an input to the spatio-temporal model. This process
of correction is called model output statistics (MOS).

The MOS correction uses weather parameters from the ECMWF in com-
bination with some dummy and polynomial predictors to predict the observed
clear-sky index in a regression model. We built a separate regression model for
each location. Therefore, we do not consider the spatial component – we only
use parameters that belong to the location under study. We determine the
coefficients per station for the MOS correction on the train set, and we apply
them to the test and validation set to produce MOS corrected predictions.

The spatio-temporal model takes in clear-sky indexes of observations and
MOS corrected predictions. First, for the observations, we choose how many
lags we would like to include, which we denote by p. Second, for the MOS
corrected predictions, we choose how many points we would like to smooth
on two sides, which we denote by q. Finally, we denote the lead time by τ –
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that is, we have observations up to point t and we want to predict for t + τ .
We concatenate the predictor matrices for all stations together to predict each
station, which therefore incorporates the spatio-temporal dimension. We de-
termine the optimal value for p, q, and other model parameters by using the
training, testing, and validation framework.

Results The MOS correction proved to have an SS against to the numerical
irradiance predictions of 8% for the test set and 4% for the validation set.
When we assess the SS per station for the test and validation set, then we find
a weak relation between the two (Figure 5.2). As the test set spans a period of
mostly winter, whereas the validation set a period of mostly summer, we find
the predicted clear-sky index to be lower on average for the test set than the
validation set. Therefore, we find that the MOS correction is more effective
when the predicted clear-sky index is low.

For the spatio-temporal model with a lead time of one hour (τ = 1), we
tested for different values of lag, p, and smoothing, q, the accuracy in terms
of SS against the numerical irradiance predictions. We first ran the model
without the spatial component, which we call the temporal model. This model
had the best accuracy for a lag of one, p = 1, and a smoothing of one, q = 1,
with an SS of around 25% (Figure 5.3). From there, we added the spatial
component, and we found a lag of one and smoothing of one to be most
effective as well with an SS around 30% (Figure 5.4). Therefore, we decided
to set p = 1 and q = 1 in further analyses.

When we assess the spatio-temporal model for different lead times up to
six hours (Figure 5.5), then we find it to be effective up to a lead time of five
hours. Beyond five hours, we find that the MOS corrections are most effective,
as the spatio-temporal model identifies patterns that do not exist. In addition,
we find the weights of the lagged observations to decrease compared to the
MOS corrections as the lead-time increases.

When we analyse the coefficient vector, b, for the spatio-temporal model
with a lead time of one hour, then we find stations close to one-another to share
high predictive importance (Figure 5.7). Thus, there is a relation between a
station’s distance and its importance to predict another station. In addition,
when we analyse the total importance per station as a predictor for others
(Figure 5.8), then we find a pattern where irradiance travels from the south-
west across the rest of the Netherlands.

To conclude, we validated the spatio-temporal model with a lead time of
one hour. First, we calculated the SS against the MOS corrected predictions,
and we find the SS to be 24% for the test and validation set (Figure 5.9(a)).
However, we do not find any relation between the SS per station for the test
and validation set. This could be due to different weather patterns being at
play during the test set – which mostly spans a period of winter – and the
validation set – which mostly spans a period of summer. Second, when we
calculate the SS against the numerical irradiance predictions (Figure 5.9(b)),
then we find the pattern of the MOS corrected predictions coming through
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as it serves as an input to the spatio-temporal model. We start to see a very
weak relation between the SS per station for the test and validation set, and
we observe that the test set outperforms the validation set with an SS of 30%
and 25% respectively.

Discussion To determine the accuracy of the spatio-temporal model under
different cloud conditions, we conducted a case study on a daily basis for a
location in the centre of the Netherlands. We find the spatio-temporal model
to perform well when the MOS corrected predictions are uncertain about the
thickness and/or the variability of the clouds. In addition, the spatio-temporal
model corrects for clear-sky conditions when the MOS corrected predictions
are off due to a misestimation of aerosols and/or clouds. Therefore, we find
the spatio-temporal model to work well in highly dynamic cloud systems.

To test the accuracy of our spatio-temporal model against state-of-the-
art intraday solar power forecast models, we tried to find a case study of the
Netherlands for comparison. We did not find such a case study, which confirms
that we fill a gap by doing one. Nevertheless, we found comparable models
with error metrics that we can validate our spatio-temporal model against.
Through such validation, we believe our model to be accurate.

Conclusion We state our main research question: How can irradiance obser-
vations and numerical weather predictions be regressed on the spatio-temporal
dimension to create accurate intraday solar power forecasts?

As an answer, we propose a five-step approach:

1. collect (numerical) weather predictions and irradiance observations
over the spatial (about 50 kilometres apart) and temporal (15
minute to hourly) dimensions;

2. remove the sun’s pattern from the numerical irradiance predictions
and irradiance observations by calculating the clear-sky index;

3. fit the predictions to the observations via MOS;

4. create a spatio-temporal regression model that takes lagged obser-
vations and that smoothes MOS corrected predictions; and

5. apply LASSO for predictor selection.

The model that comes out has an SS between 25% and 30% against numerical
irradiance predictions for a lead-time of one hour.

The reason for this model to work as well as it does, is that it extracts
the information about the state of the atmosphere from lagged observations,
which it applies to the trend of the smoothed MOS corrected predictions. By
combining these two sources of information, we create accurate intraday solar
power forecasts up to five hours ahead. When we want to go beyond five hours,
the MOS corrected predictions prove to be more accurate.

To conclude, our case study of the Netherlands shows that accurate intra-
day solar power forecasts in highly dynamic cloud systems can be made by
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using lagged observations and smoothed MOS corrections in a spatio-temporal
context.
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KEY TAKEAWAYS
Our current energy system is dependent on the burning of fossil fuels, which
leads to pollution. Therefore, we have to shift to renewable energy – e.g.,
solar energy. However, solar energy is not always available, such as at night.
Therefore, there is a mismatch between supply and demand.

Solar power forecasts are a way of dealing with the mismatch in supply
and demand: by predicting supply, we can plan demand accordingly. However,
considering that solar power is highly variable and dependent on the weather,
we need high quality solar power forecasts during the day (intraday).

By combining numerical weather predictions with observations over the
spatio-temporal dimension, we aim to build a framework for having accurate
intraday solar power forecasts. We conduct a case study of the Netherlands.
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1.1 Background: solar power is clean but unpredictable

Since the mid-20th century we have observed warming of the earth (Masson-
Delmotte et al., 2019). Temperature rise has already resulted in profound
changes to our ecological systems, such as:

• increased droughts, floods, and other types of extreme weather;

• sea level rise;

• biodiversity loss; and

• higher death rates.

The root cause of global warming is the emission of greenhouse gases
(GHGs) due to human activities, which continue to increase, year after year
(IPCC, 2015).

1.1.1 We need to change our energy habits

Consumption of fossil fuels for energy production accounts for 56.6% of all
GHG emissions. Considering that all societies require energy services to meet
basic human needs (e.g., lighting, cooking, space comfort, mobility, communi-
cation) and to drive production processes, energy must be provided with low
GHG emissions to mitigate global warming (IPCC, 2012). However, 85% of
the world’s primary energy supply comes from the combustion of fossil fuels
– consumption has been increasing steadily since the Industrial Revolution1

as Figure 1.1 illustrates.

1The Industrial Revolution marked the introduction of machines for labour from 1760
to sometime between 1820 and 1840.



Introduction 5

1900 1920 1940 1960 1980 2000
Year

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

C
on

su
m

ed
 (T

W
h)

Global fossil fuel consumption
Coal
Oil
Gas

FIGURE 1.1
The trend of fossil fuel consumption since the Industrial Revolution expressed
in TWh per year. Data from BP (2020) and Smil (2016).

To have sustainable economic development, energy must be provided with-
out GHG emissions. Renewable energy (RE) serves this purpose (IPCC, 2012).
Various types of RE can supply electricity, thermal energy and mechanical en-
ergy, as well as produce fuels. RE is any form of energy from solar, geophysical
or biological sources that is replenished by natural processes at a rate that
equals or exceeds its rate of use. Unlike fossil fuels, most forms of RE produce
little to no GHGs.

1.1.2 The abundance of solar energy

In particular, solar energy is the most abundant of all energy resources – the
rate at which solar energy is intercepted by the Earth is about 10,000 times
greater than the rate at which humankind consumes energy (IPCC, 2012).
Solar energy’s potential to mitigate global warming is equally impressive. Ex-
cept for the modest amount of GHG emissions produced in the manufacture
of energy conversion devices, solar energy has the potential to displace large
quantities of non-renewable fuels. It appears in the form of wind, wave, ocean
thermal, hydropower and excess biomass energies.

According to BNEF (2020), EIA (2020), and IEA (2019), renewables are
expected to become the global primary energy source by 2050, displacing
fossil fuels. The transition to such a system poses numerous challenges when
matching supply and demand – the sun only shines during the day but power
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is also needed at night. Our current energy system – where we burn fuel to
sustain our habits – is not designed accordingly.

A history of solar energy

During the late 1800s, solar collectors for heating water and other flu-
ids were invented and put into practical use for domestic water heating
and solar industrial applications, for example, large scale solar desalination
(IPCC, 2012). Later, mirrors were used to boost the available fluid temper-
ature, so that heat engines driven by the sun could develop motive power,
and hence, electrical power. Also, the late 1800s brought the discovery of
a device for converting sunlight directly into electricity – the photovoltaic
(PV) cell, which bypassed the need for a heat engine. The silicon PV cell
that is used today was discovered around the 1940s.

The modern age of solar research began in the 1950s with the estab-
lishment of the International Solar Energy Society (ISES) and increased
research and development (R&D) efforts in solar energy (IPCC, 2012). At
about the same time, national and international networks of solar irradi-
ance measurements were beginning to be established. With the oil crisis of
the 1970s, most countries in the world developed programs for solar energy
R&D, which involved efforts by industry, government labs and universities.
These policy support efforts have borne fruit: solar energy is enjoying a
boom in global production capacity – Figure 1.2 illustrates this fact.
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FIGURE 1.2
Global PV capacity since 1996 in a log-scale as expressed in GWp per year.
Data from BP (2020).
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1.1.3 Solar supply does not follow demand

Solar energy is converted into electrical power via a PV cell. The combination
of many PV cells creates a PV module – one panel that can produce sufficient
power for human needs. Bundling many PV modules and regulating them
together forms a PV system. Such a system relies on sunlight to produce
energy, and therefore has stochastic and intermittent behaviour – seasonal
effects influence the amount of energy that a PV system produces per day.

Variability of solar irradiance on a second to hourly scale is induced by
atmospheric disturbances, most notably clouds, that follow atmospheric move-
ment and affect different locations at different times (Elsinga, 2017). A sudden
decrease in electricity production – due to a shadow of a cloud moving across
a PV module – can disturb the balance between electrical supply and demand
(Notton & Voyant, 2018). To match both, production needs to be forecasted
so that consumption can be scheduled accordingly.

An energy system operates at different timescales. Among those timescales,
the system should be in equilibrium at all times – that is, supply and demand
should be matched. Small deviations can be absorbed by the system via,
e.g., batteries, but large mismatches over longer time periods would cause the
system to shut down. This problem is solved by forecasting a PV system’s
power supply and scheduling demand accordingly:

• At the beginning of each day, an accurate forecast for each hour in that day
can be made – demand is scheduled for each hour accordingly.

• During the day (intraday), the forecast can be refined as the day proceeds for
every hour – flexible demand2 and battery services are scheduled accordingly.

Therefore, the more accurate the forecast, the lower the system’s imbalance
costs.

2Flexible demand refers to any customer load that need not be on or totally served at
all times.
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1.2 Scope: solar power forecasts within a day

In an energy system where demand follows production, a solar forecast has
to be available at the beginning of each day so that consumption can be
scheduled accordingly. As the day proceeds and more information about solar
production becomes available, the forecast needs to be updated so that flexible
demand can be adjusted accordingly. To create the solar forecast within the
day – on an intraday basis – we distinguish between two approaches (Voyant
et al., 2017; Yang & van der Meer, 2021):

• an image based approach,3 which involves:

– satellite images, or

– total sky images;4 and

• a time series based approach,5 which involves:

– numerical weather prediction6 (NWP), or

– point source measurements (observations).

These approaches are effective over different lead times as given in Table 1.1.

TABLE 1.1
Overview of possible intraday forecast inputs and their lead
times (Voyant et al., 2017).

Lead time: < 15 min 15 min - 1 h h - day

Forecast method

Satellite images
Total sky images
NWP
Observations

We focus on a time series based approach to create a solar forecast at the
beginning of each day, which is updated as the day proceeds. We chose this

3Image based techniques relate pixels to clouded/clear parts of the sky. As such, irradi-
ance can be forecasted by tracking the motion of the cloud pixels.

4Total sky images come from a bottom-up approach that uses a wide-angle (fish-eye)
lens or curved mirror to project the full sky hemisphere onto a finite range, using a digital
camera.

5Time series based techniques map past measurements and/or other variables to forecast
solar power via statistics and/or physical relationships.

6Numerical weather prediction uses mathematical equations based on physical relation-
ships of the atmosphere and oceans to predict the weather based on current weather con-
ditions.
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approach due to our interest in inference: we would like to understand how
numerical predictions and observations from different locations contribute over
time to solar power output – we are interested in the spatio-temporal effects
of irradiance forecasting.

Time series analysis is compatible with simple statistical methods that
can easily be interpreted, whereas an image based approach usually requires
complex transformations to first extract data – often in the form of time series
– before inference can be done. The extraction of information from satellite
images and total sky images is not within our interest. Therefore, the focus
of our research is time series analysis for numerical weather predic-
tions and irradiance observations on the spatio-temporal dimension.
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1.3 Gap: regression framework for numerical weather
predictions and irradiance observations

A solar power forecast entails the forecasting of the global horizontal irradiance
(GHI) – the total amount of shortwave radiation received from above by a
surface horizontal to the ground (Sengupta et al., 2021). We aim to forecast
this variable statistically during the day using spatio-temporal irradiance data.

When we aim to forecast one up to a few hours ahead, we mainly find
approaches that use observations. These prove to be effective on the short
term (Bacher et al., 2009; Voyant et al., 2020), but when moving beyond a
couple of hours, NWP becomes more prominent (Sperati et al., 2016; Voyant
et al., 2017). The literature describes that to fit NWP well to observations,
a process called model output statistics (MOS) – a statistical post-processing
technique – is adopted (Glahn & Lowry, 1972; Sperati et al., 2016; Zhang
et al., 2022). Therefore, to make accurate intraday solar power forecasts, we
can use observations to forecast a few hours ahead and use MOS corrected
predictions beyond those few hours.

NWP data is available at an hourly frequency with a spatial resolution
of around 9 kilometres (Yang et al., 2022). In addition, irradiance data as
measured by weather stations is often available at an hourly frequency with
a spatial resolution of 50 kilometres or fewer (López Lorente et al., 2020). We
find that the spatial component can contribute to the accuracy of intraday
solar power forecasts (Dambreville et al., 2014; Liu et al., 2021). Therefore, to
produce accurate intraday solar power forecasts, we can use spatio-temporal
data.

Finally, if we aim to decompose our spatio-temporal forecast model to
understand how it constructs its forecasts considering the inputs, then we can
opt for linear regression due to its interpretability and effectiveness when the
inputs are processed to be linear (Hastie et al., 2016). From there, we can
create a model that is robust, easy to operate, and fully transparent in how
it achieves its results.

Globally, we have to make the switch to a renewable energy system as
explained in Section 1.1. Therefore, we need to implement accurate intraday
solar power forecasts for the stabilization of renewable energy systems across
the globe. If we believe this to be true, then we need to have a scalable frame-
work to produce those forecasts. Such a framework should produce models that
have reliable results, are easy to implement, and scale without the need for
new (expensive) measurement infrastructure. In the current literature, we find
mostly papers that prove the effectiveness of different methods, but we miss
the focus on implementation at scale (David et al., 2018). Therefore, we aim
to develop a regression framework that combines numerical weather
predictions and irradiance observations over the spatio-temporal di-
mension to produce accurate intraday solar power forecasts.
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1.4 Contribution: case study of the Netherlands

To build the regression framework, our research encompasses a case study
of the Netherlands, where we aim to contribute to the field of solar power
forecasts by studying the contribution of spatio-temporal data in a temperate
marine climate with cool summers and mild winters. Due to the Netherlands’
coastal location, the weather can be highly dynamic – which has a large effect
on the presence of clouds and therefore irradiance.

Figure 1.3 shows a plot of numerical predictions of irradiance against ob-
servations at Cabauw, which lies in the centre of the Netherlands. Due to the
variable weather in the Netherlands, we find the numerical predictions to over-
predict medium irradiance conditions. It therefore has difficulty in forecasting
periods where there is a high variability in clouds. We aim to combine irra-
diance observations with numerical weather predictions to create an intraday
solar power forecast model that is able to handle highly stochastic (cloudy)
situations. Therefore, the contribution of this research is two-fold:

1. We aim to provide a framework for incorporating numerical weather
predictions and irradiance observations across the spatio-temporal
dimension for accurate solar power forecasts.

2. We aim to provide a case study of the Netherlands to understand
how irradiance behaves in a spatio-temporal context.
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FIGURE 1.3
Scatter density plot – yellow indicates a high density and black a low density
– of numerically predicted irradiance against observed irradiance for Cabauw.
We find the predictions to overpredict medium irradiance conditions.
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1.5 Research questions

The world has to shift to sustainable energy sources to mitigate global warm-
ing. Solar energy is a clean energy source, but it has its disadvantages – it
does not produce any power at night and fluctuates intensely. To integrate
solar power into our electricity system, we have to make accurate forecasts on
an intraday basis such that demand can be scheduled accordingly. As such,
the stability of the electricity system can be guaranteed.

As we have access to measurements and predictions of solar power over
time at different locations, we state our research question as: How can ir-
radiance observations and numerical weather predictions be regressed on the
spatio-temporal dimension to create accurate intraday solar power forecasts?

The sub-research questions to answer the main question are:

1. What regression techniques for time series are applicable to a spatio-
temporal context?

2. How can regression increase the fit of numerical irradiance predic-
tions to irradiance observations?

3. How can regression combine observations and predictions over the
spatio-temporal dimension?

4. Does the performance of spatio-temporal regression for solar power
forecasts vary spatially and temporally, and if so, why?
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1.6 Outline

This thesis is divided in two parts. Part I focusses on gathering the theory,
creating the experimental setup, and building the regression framework – it
sets the stage for Part II. Part II focusses on the results, its implications, and
it sets the context for further applications. We aim to answer the first three
sub-research questions in Part I and the fourth in Part II.

For most chapters, we wrote an introduction for clarity about the notations
used and for overview of its components. We recommend the reader to return
to those introductions if any notations and/or statements are not understood.
This thesis builds on these introductions as we move forward, therefore we
recommend the reader to read each introduction carefully.

The story of the thesis is as follows. We set out to answer our main research
question. To do so, we first identify the theory of regression for time series
in Chapter 2. In this chapter, we answer sub-research question one. With
the theory defined, we gather the data that we need to apply the theory of
regression to the context of solar power forecasts in Chapter 3.

We conclude Chapter 3 with a general framework for the training, testing,
and validation of regression models. This enables us to develop a framework
for MOS correction in Chapter 4 – we answer sub-research question two. In
addition, we develop a framework for spatio-temporal regression in the second
part of Chapter 4, which enables us to answer sub-research question three.

We apply and test the developed frameworks in Chapter 5. Here, we eval-
uate the accuracy of the MOS correction and the spatio-temporal model. We
assess the performance of both models under different spatial and temporal
circumstances, which enables us to answer sub-research question four. In ad-
dition, in Chapter 6, we conduct a case study on a daily scale for one location
in the centre of the Netherlands as to deepen our understanding of the spatio-
temporal model’s accuracy under different cloud conditions. We conclude by
validating our model’s accuracy through literature.

The goal of this thesis is to answer the main research question, and we
do so in Chapter 7. All the preceding chapters contribute to answering that
question, therefore, we first identify the answers to all sub-research questions.
From there, we formulate a concise answer to the main-research question,
which sets the stage for future research.
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KEY TAKEAWAYS
Statistics is concerned with determining the relation between different vari-
ables. Therefore, we can use statistics to study the relation between numerical
predictions – also known as the predictors – and observations – the response.

If we aim to predict a response considering multiple predictors, then linear
regression is a simple tool that allows us to do so. In addition, linear regression
allows us to study the importance per predictor to predict the response.

If we would like to predict the response with lagged values of the response
itself, then we can use the theory of autoregression (AR). In addition, we
can incorporate spatio-temporal observations by making use of the theory of

15



16 Spatio-temporal solar power forecasts via regression

vector autoregression (VAR). Finally, we can include numerical predictions as
well by simply adding them to the predictor matrix. If we apply smoothing to
the numerical predictions, then we can extract their trend to make the model
more robust for highly stochastic situations.

To conclude, we introduce different error metrics that can be used to eval-
uate the accuracy of a model. These error metrics can be used to tune a
regression model’s parameters so that it performs as expected.
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2.1 Introduction

This chapter is concerned with the mathematics behind our regression models.
Here, we lay the foundation for all the next chapters.

For the reader to have a clear overview of the different symbols and their
equations, Table 2.1 provides an overview.

TABLE 2.1
All symbols used in equations and their definition.

Symbol Description

µ The mean (Equation 2.1)
σ2 The variance (Equation 2.2)
r The correlation coefficient (Equation 2.3, 2.9)
Q The least squares criterion (Equation 2.6, 2.14)
t Index of time step
i Index of predictor
j Index of response
T Total number of time steps
P Total number of predictors
R Total number of responses
x A predictor
y A response
ŷ A predicted response (Equation 2.4, 2.10, 2.18, 2.19)
b A coefficient (Equation 2.7, 2.8, 2.13)
ê A prediction error (Equation 2.5)
τ A time step offset (Equation 2.16, 2.17)
λ The LASSO coefficient (as used in Equation 2.14)
p Number of lags for autoregression (as used

in Equation 2.18, 2.19, 2.24)
q Number of points at two sides for smoothing

(as used in Equation 2.22, 2.23, 2.24)
ϵ An error metric (Equation 2.26, 2.28, 2.29)
ε Skill score (Equation 2.27)

In this chapter, we use matrix notation. Considering Table 2.1, we let xt,i

denote the i-th predictor for time step t, where t = 1, 2, ..., T ∧ i = 1, 2, ..., P .
We let X denote a T × P matrix whose (t, i)-th element is xt,i. That is,

X =


x1,1 x1,2 . . . x1,P

x2,1 x2,2 . . . x2,P

...
...

. . .
...

xT,1 xT,2 . . . xT,P

 .

When we are interested in a column of X, then we write X = {x1,x2, ...,xP },
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where each column is a vector of length T . Finally, we transpose1 a matrix
with ′, that is, X′ = {x1,x2, ...,xT }.

This chapter was written by consulting the following books:

• Witte and Witte (2017) for the part about statistics in general (Section 2.2);

• Hastie et al. (2016) for the part about linear regression (Section 2.3);

• Hamilton (1994) for the part about autoregression (Section 2.4); and

• Brockwell and Davis (2009) and Chatfield (2003) for the part about data
processing (Section 2.5) and error metrics (Section 2.6).

1In linear algebra, the transpose of a matrix is an operator which flips a matrix over its
diagonal.
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2.2 Statistical concepts

To understand what statistical methods exists to convert spatio-temporal
weather data to irradiance forecasts, we start by applying the most basic
statistical concepts to our case. Those concepts start by first determining the
goal of our statistical analysis, which is that we would like to test whether
there is a presence or absence of a relationship between two (or more) vari-
ables. We conduct an observational study – we focus on detecting relationships
between variables that we cannot manipulate nor control.

To find whether there are relationships between variables, we first need
to describe these variables and their relationships using mathematical state-
ments. Therefore, we will define those first.

2.2.1 Average

First, we have the average: a number that attempts to describe the middle or
central tendency of a set of data. We define the mode, the median and the
mean as different kinds of averages. The mode reflects the value of the most
frequently occurring one, the median reflects the middle value when ordered
from least to most, and the mean, which is the most common, is defined as
the sum of all data points divided by the number of data points.

Thus, if we have a process such as solar irradiance that we measure at
different time steps, then we can denote any observation by xt such that we
have a set of timely ordered data points as in x = {x1, x2, ..., xT } – also known
as a time-series. When we have these time series, we can calculate its mean as

µx =

∑T
t=1 xt

T
, (2.1)

where xt is a predictor at time step t, and T is the total number of time steps
in the time series. Here, we define the mean as the balance point for the time
series: the sum of all data points expressed as their distance from the mean
always equals zero.

2.2.2 Variability

In addition to the average, for us to describe a time series, we are interested
in its variability, that is, the amount by which the data points are dispersed
in value. We define different measures of variability: the range, which is the
difference between the smallest and largest value in the time series; the vari-
ance, which is the squared distance of each data point from the mean summed
and divided by the number of data points; and the standard deviation, which
is the root of the variance.
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To calculate the variance for the time series process of x = {x1, x2, ..., xT },
we can apply

σ2
x =

∑T
t=1 (xt − µx)

2

T
, (2.2)

where xt is a predictor at time step t, µx is the mean of the time series x, and
T is the total number of time steps in the time series. From the variance, we
can simply define the standard deviation as

√
σ2
x = σx.

2.2.3 Correlation

For us to understand whether two variables have any relationship with one-
another, we first must examine their relationship graphically. For example,
we can examine the relationship between the time series process of predicted
irradiance at Cabauw as x = {x1, x2, ..., xT } and the observed irradiance at
Cabauw as y = {y1, y2, ..., yT } in a scatter plot as given in Figure 1.3.

We find that there is a linear relationship as given in the graph. The
variables are positively related when they have similar relative positions (highs
with highs and lows with lows) and they are negatively related when they have
dissimilar relative positions (highs with lows and vice-versa). We can define
this relationship in a coefficient as in

r =

∑T
t=1 (xt − µx)(yt − µy)√∑T

t=1 (xt − µx)
2 ∑T

t=1 (yt − µy)2
, (2.3)

where xt is a predictor at time step t, yt is a response at time step t, µx is the
mean of the time series x, µy is the mean of the time series y, and T is the
total number of time steps in the time series.

The denominator is always positive, and therefore the numerator tells us
whether two variables – or time series processes – are either positively or
negatively correlated. If they are positively correlated, then the value of r
is positive. If they are negatively correlated, then the value of r is negative.
Finally, the value of r is always between -1 and 1, indicating whether the
correlation is strong (close to -1 or 1) or weak (close to 0).
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2.3 Linear regression

Linear regression provides the framework for us to build a simple model that
can relate multiple input variables to one output variable. We explore the
concept of linear regression in this section.

2.3.1 Simple linear regression

Simple linear regression is a statistical method that allows us to describe the
relationships between two variables:

• x, also known as the predictor, explanatory, or independent variable; and

• y, also known as the response, outcome or dependent variable.

We call this method of regression simple as its only concerned with one
predictor variable. In contrast, multiple linear regression is concerned with
multiple – two or more – predictor variables.

Linear regression is not concerned with deterministic (or functional) rela-
tionships. A deterministic relationship is one wherein you can exactly calculate
the value of y if you have x via a predetermined equation.2 We are concerned
with statistical relationships, wherein the relationship between two variables
is not perfect – Figure 1.3 is a good example of this.

Let us introduce the following notation to distinguish between our vari-
ables:

• xt is the predictor for time step t;

• yt is the (observed) response for time step t; and

• ŷt is the predicted response for time step t.

In that case, ŷt is defined as

ŷt = b0 + b1xt, (2.4)

where xt is the predictor at time step t, ŷt is the predicted response at time
step t, b0 is the constant, and b1 is the coefficient of the predictor xt.

When we use Equation 2.4 to make a prediction about the response, then
we define the prediction error as

êt = yt − ŷt, (2.5)

2An example of such a relationship is the conversion of degrees Celsius to degrees Fahren-
heit.
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where yt is the response at time step t, and ŷt is the predicted response at
time step t.

The line that fits best reduces the error to be as small as possible for all
data points. One way of achieving this goal is by applying the least squares
criterion, that is to minimize the sum of squares of the errors as in

Q =

T∑
t=1

ê2t , (2.6)

where êt is the prediction error at time step t, and T is the total number of
time steps in the time series.

We sum the squares of the prediction error for each time step in order to
ensure that positive and negative errors do not cancel one-another out and
therefore yield 0.

We minimize Equation 2.6 by taking the derivative with respect to b0 and
b1, set to 0, and solve for b0 and b1 – we obtain the least square estimates. We
find

b0 = µy − b1µx, and (2.7)

b1 =

∑T
t=1 (xt − µx)(yt − µy)∑T

t=1 (xt − µx)
2

, (2.8)

where xt is the predictor at time step t, yt is the response at time step t, µx

is the mean of the time series x, µy is the mean of the time series y, and T is
the total number of time steps in the time series.

We find that b1 is equal to the definition of correlation if x and y have
equal variance as defined in Equation 2.2 – as in

r =

∑T
t=1 (xt − µx)

2∑T
t=1 (yt − µy)

2
× b1, (2.9)

where xt is a predictor at time step t, yt is a response at time step t, µx is
the mean of the time series x, µy is the mean of the time series y, b1 is the
coefficient of the predictor xt, and T is the total number of time steps in the
time series.

2.3.2 Multiple linear regression

When we aim to have multiple predictors, we expand our simple linear re-
gression model to multiple linear regression. In formula form, when we have
P predictors, it is defined as

ŷt = b0 +

P∑
i=1

bixt,i, (2.10)
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where xt,i is the i-th predictor at time step t, ŷt is the predicted response at
time step t, b0 is the constant, bi is the coefficient of the predictor xt,i, and P
is the total number of predictors.

Because of the potentially large number of predictors, we can write multiple
linear regression more efficient in matrix form, which results in

ŷ1
ŷ2
...
ŷT

 =


1 x1,1 x1,2 . . . x1,P

1 x2,1 x2,2 . . . x2,P

...
...

...
. . .

...
1 xT,1 xT,2 . . . xT,P

×


b0
b1
...
bP

 , (2.11)

where xt,i is the i-th predictor at time step t, ŷt is the predicted response at
time step t, b0 is the constant, and bi is the coefficient of the predictor xt,i.

Let us introduce the following notation to distinguish between our matrices
and vectors:

• X is the matrix with the predictors X = {x1,x2, ...,xP };

• y is the vector with the observed responses y = {y1, y2, ..., yT };

• ŷ is the vector with the predicted responses ŷ = {ŷ1, ŷ2, ..., ŷT }; and

• b is the vector with the estimated coefficients b = {b1, b2, ..., bP }.

Thus, we can rewrite the multiple linear regression as

ŷ = Xb, (2.12)

and solve for b by minimizing the least squares as in Equation 2.6. We then
find

b = (X′X)−1X′y, (2.13)

where X′ is the transpose of X, and (X′X)−1 is the inverse of X′X.3 Note
that when we take the transpose of X, then X′ = {x1,x2, ...,xT }.

When we want to predict multiple responses with the same predictors,
we can make use of matrix notation. That is, when we want to predict R
responses, we write:

• Y is the matrix with the observed responses Y = {y1,y2, ...,yR} =
{y1,y2, ...,yT }′;

• Ŷ is the matrix with the predicted responses Ŷ = {ŷ1, ŷ2, ..., ŷR}; and

• B is the matrix with the estimated coefficients B = {b1,b2, ...,bR}.

3For the full mathematical derivation, we refer to Kong et al. (2020).
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2.3.3 LASSO

When we try to estimate the coefficients for a model with many predictors that
are heavily correlated, then the estimation of the coefficients might become
unstable as the variables embed the same information – this phenomenon is
called collinearity. In that case, predictor selection can help to reduce overfit-
ting. The Least Absolute Shrinkage and Selection Operator (LASSO) serves
this purpose.

LASSO involves the introduction of a constraint on coefficient estimation
(Equation 2.13) so that the coefficients cannot take extreme values. It does so
via the minimization of

Q =

T∑
t=1

(yt − xtb)
2 + λ

P∑
i=1

|bi|, (2.14)

where yt is the response at time step t, xt is the vector of predictors at time
step t, b is the vector of coefficients, λ is the LASSO parameter, bi is the
coefficient of the predictor xt,i, T is the total number of time steps in the time
series, and P is the total number of predictors.

The LASSO also induces predictor selection by shrinking some coefficients
to zero. The parameter λ determines the strength of the shrinkage and should
therefore be tuned to decrease the error of the model as much as possible. In
our study, the LASSO implementation of Friedman et al. (2010) was used as
implemented in Statsmodels (2019).

2.3.4 Standardization

When we apply the LASSO, then we put a penalty on the absolute sum of
the coefficients (Equation 2.13). However, the magnitude of the coefficients is
dependent on the magnitude of the predictor. Therefore, we have to ensure
that all our predictors have the same magnitude. In addition, if all our predic-
tors have the same magnitude, then the weights of the coefficients also give an
indication of each predictor’s importance to predict the response. Therefore,
we standardize all our predictors so that they have a mean, µ (Equation 2.1),
of zero and a standard deviation, σ (Section 2.2.2), of one as

xt =
xt − µx

σx
. (2.15)

Due to the application of standardization, we can drop the constant, b0
(Equation 2.7), from our coefficient matrix and the column of ones in the
predictors as found in Equation 2.11, as all variables have a mean of zero. We
then predict the response, and we apply the inverse of the standardization –
that is, we apply the original mean, µ, and standard deviation, σ, from the
response back to the predicted response.
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2.4 Autoregressive models

Autoregressive models use lagged response variables as predictors in a linear
regression model to predict the response. This section explores the use of
lagged spatio-temporal observations with numerical predictions in regression
to create a statistical forecast.

2.4.1 Autoregression

Consider a time series denoted by y = {y1, y2, ..., yT }. The goal is to forecast
yt+τ . To do so, we find a function fτ (xt) that maps the vector xt onto yt+τ ,

ŷt+τ = fτ (xt), (2.16)

where fτ (.) is the function to predict a response at time step t+ τ , and xt is
the vector of predictors at time step t.

For time series that exhibit autocorrelation,4 it is reasonable for the vector
xt to consist of the recent history of yt+τ as

ŷt+τ = fτ ({yt, yt−1, ...}), (2.17)

where fτ (.) is the function to predict a response at time step t+ τ , and yt is
the response at time step t. Therefore, the function fτ (.) takes the form of a
weighted sum of p past values plus a constant as

ŷt+τ = b0 +

p−1∑
i=0

biyt−i, (2.18)

where yt−i+1 is the response at time step t− i+ 1, b0 is the constant, bi is the
coefficient of the predictor yt−i+1, and p is the total number of predictors in
the time series. Equation 2.18 is essentially equal to Equation 2.10, however,
the predictors are acknowledged to be lagged values of the response.

To conclude, the AR model is multiple linear regression with its predictors
being lagged values of the response. From there, we can solve for b to calculate
ŷ.

2.4.2 Vector autoregression

The AR model can be expanded to take into account lags from other time
series as well to predict a response. This can be used for the spatial aspect of
our forecasts. We do so by extending Equation 2.18 to vector form as

4Autocorrelation, also known as serial correlation, is the correlation of a signal with a
delayed copy of itself as a function of delay.
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ŷt+τ = b0 +

p−1∑
i=0

R∑
j=1

bRi+jYt−i,j , (2.19)

where Yt−i,j is the j-th response at time step t− i, b0 is the constant, bRi+j

is the coefficient of the predictor Yt−i,j , R is the total number of responses
to predict, and p is the total number of lagged responses as predictors.

Equation 2.19 is a vector autoregressive (VAR) model, which can capture
the interdependencies of multiple time series at once. In our case, the spatially
dispersed time series can be incorporated into one forecast model via this
approach. We acknowledge that this is essentially multiple linear regression
with lagged and spatially dispersed predictors.
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2.5 Data processing for autoregression

To do autoregression on a set of data, first the data needs to be pre-processed
to remove any patterns – we want to model the stochastic process. In addition,
autoregression can be combined with numerical predictions to create a model
that is able to deal with highly stochastic processes.

2.5.1 Stationarity

Consider that we are occupied with a time series that is defined by an equation
that relates the value of yt+1 to a constant, b0, in addition to its value in the
previous period, yt, multiplied with a coefficient, b1, as in

yt+1 = b0 + b1yt. (2.20)

Equation 2.20 is a linear first-order difference equation.5 A difference equa-
tion relates a variable yt to its value(s) in a previous period. Equation 2.20 is
equal to Equation 2.18 with p = 1 ∧ τ = 1 ∧ ŷt+τ = yt+τ . Consider that we
would like to calculate the value of yt+2 with τ = 2, then

yt+2 = b0 + b1(b0 + b1yt), (2.21)

which can be continued for any value of τ .
We find that different values of b1 produce different responses of yt+τ to

yt. If |b1| < 1, the effect of yt on yt+τ decays geometrically to zero. However,
if |b1| > 1, its effect increases exponentially over time. Therefore, the system
is stable when |b1| < 1 as the consequence of any change in yt eventually dies
out. This concept is called stationarity, which indicates that there is no trend
and/or (a) seasonal component(s) in the time series. A time series is stationary
if |

∑p
i=1 bp| < 1. Thus, to forecast any time series by its past value(s), it must

first be detrended and relieved from its patterns – it must be made stationary.

2.5.2 Smoothing of numerical predictions

Time series can be made stationary by first removing any patterns – we only
want to be left with the high frequency fluctuations. We do so by removing
the low frequencies, which can be done by smoothing.

We can find an approximation for the low frequency signal in a time series
by making the assumption that data points nearby in time are likely to be
close in value. In that case, taking an average of points around one data point
should provide a reasonable estimate of that point’s trend.

5As it only uses one lag, it is of the first order.
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Let q be a non-negative number integer and consider the two-sided6 moving
average,

ŷt =
1

2q + 1

q∑
i=−q

xt+i, (2.22)

where xt+i is a predictor at time step t+ i, and q is the number of points to
smooth on two sides of xt. Here, we use the trend from xt as a prediction for
yt.

In Equation 2.22, the weights are equal for each point in the time series.
However, we might want to optimize the weights on prediction of yt via mul-
tiple linear regression (Equation 2.10) as in

ŷt = b0 +

q∑
i=−q

bq+i+1xt+i, (2.23)

where xt+i is a predictor at time step t + i, b0 is the constant, bq+i+1 is the
coefficient of the predictor xt+i, and q is the number of points to smooth
on two sides of xt. By using weighted averages, the resulting trend becomes
much smoother as data points enter and leave the average gradually. In fact,
the weighted moving average acts as a low-pass filter – it filters out the high
frequencies.

When we try to predict irradiance by its lagged values, then we can include
numerical predictions for the time step that we try to predict as well. If we
smooth those numerical predictions, then we can extract the trend from those
predictions and correct the lagged observations with that trend. By doing so,
we essentially take the high frequencies from the lagged data and the low
frequencies from the numerical predictions. Therefore, we create a model that
is robust against highly stochastic situations.

If we state thatX∗ contains numerical predictions that correspond withY,
then we can combine the VAR model of Equation 2.19 and include smoothing
for numerical predictions as

ŷt+τ = b0 +

p−1∑
i=0

R∑
j=1

bRi+jYt−i,j +

q∑
i=−q

R∑
j=1

bR(p+q+i)+jX
∗
t+τ+i,j , (2.24)

where Yt−i,j is the j-th response at time step t − i, X∗
t+τ+i,j is the j-th

prediction at time step t+ τ + i, b0 is the constant, bRi+j is the coefficient of
the predictor Yt−i,j , bR(p+q+i)+j is the coefficient of the predictor X∗

t+τ+i,j ,
R is the total number of responses to predict, p is the total number of lagged
responses as predictors, and q is the number of points to smooth on two sides
of X∗

t+τ,j .

6Two-sided for approaching a value from its preceding and succeeding data points in a
time series.
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To conclude, we essentially create a new predictor matrix, X, that consists
of lagged observations of the response matrix, Y, and smoothed predictors
from the old predictor matrix, X∗.
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2.6 Error metrics

We define a regression model’s error as

ê = y − ŷ, (2.25)

which is the vector that includes all errors – Equation 2.5 – over t such that
ê = {ê1, ê2, ..., êT }. This error can be processed in multiple ways to define
useful metrics to evaluate a regression model.

2.6.1 Root mean square error

First, we define the root mean square error (RMSE) as

ϵRMSE =

√√√√ 1

T

T∑
t=1

ê2t , (2.26)

which is the rooted mean of the squared errors over a time series with a length
of T . When we calculate the coefficients using the least squared criterion as in
Equation 2.6, we actually optimize on this error metric. Due to the squared
term, the RMSE penalizes large errors more than small ones. Therefore, it
provides an insight into the variance of the error.

2.6.2 Skill score

To evaluate how our regression model’s forecasts compares with that of a
baseline model, we define the skill score (SS) as

ε = 1− ϵRMSEfor

ϵRMSEref

, (2.27)

where ϵRMSEfor
is the RMSE of our forecast and ϵRMSEref

is the RMSE of the
baseline forecast over the same period. Thus, the SS is the reduction in RMSE
as a percentage.

2.6.3 Other error metrics

For a regression model, it is important that its predicted responses have con-
sistent statistical properties among them. Therefore, we define two additional
metrics to evaluate a regression model. These are used to ensure model sta-
bility.

2.6.3.1 Mean bias error

We introduce the mean bias error (MBE) as
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ϵMBE =
1

T

T∑
t=1

êt, (2.28)

which is the mean of the errors over a time series with a length of T . This
metric provides an insight into the structural bias of a regression model.

2.6.3.2 Mean absolute error

Finally, we define the mean absolute error (MAE) as

ϵMAE =
1

T

T∑
t=1

|êt|, (2.29)

which is the mean of the absolute errors over a time series with a length of
T . The MAE provides an insight into the overall error, which should have
approximately a linear relationship with the RMSE if there are no strong
outliers.
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KEY TAKEAWAYS
As the basis for our spatio-temporal analysis, we took the weather stations
from the KNMI, which are spread across the Netherlands. For each location,
we extracted numerical weather predictions from the ECMWF and irradiance
observations from the KNMI, after which we removed diurnal patterns from
the KNMI’s and ECMWF’s irradiance data so that we are left with the pure
stochastic process.

From there, we removed the time steps from the dataset where the sun is
not above the horizon, and we created some additional predictors to increase
the fit between the predictions and the observations.

To conclude, we define a simple process to train, test, and validate our
models. First, we create a train set that contains the dates between 2019-09-
01 and 2020-08-31 – a full year. Second, a test set that contains the dates
between 2020-09-01 and 2020-12-31 – mostly a winter – for tuning the model.
Finally, a validation set that contains the dates between 2019-07-01 and 2019-
08-31 – mostly a summer – to validate the model’s accuracy.
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3.1 Introduction

This chapter is concerned with the application of the theory of Chapter 2.
Here, we actually gather and process the data to build the predictors, X, and
define the responses, Y.

To refer to different parameters that were used in our research, we refer
to them by this font. In addition, we use bracket notation to refer to specific
locations concerning that parameter, e.g., ssrc[9] means the clear sky net
surface solar radiation downwards from Table 3.1 for the 9th station of Figure
3.1.

For the reader to have a clear overview of all parameters and their sources,
we provide a shortlist here:

• The NWP parameters from the ECMWF are given in Table 3.1

• The observations’ parameter from the KNMI is given in Table 3.2

• The clear-sky indexes are given in Table 3.3

• The dummy variables and the polynomials of the clear-sky index are given
in Table 3.4
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3.2 Sources of data

To do the spatio-temporal analysis, first NWP and observed irradiance data
had to be collected. Considering that we wanted to analyse the spatio-temporal
effects of irradiance, a case-study was conducted for the Netherlands. Data was
collected for the locations of the weather stations of the Royal Netherlands
Meteorological Institute (KNMI).

The KNMI is a Dutch government institute that specializes in meteorology,
climate science and seismology. It hosts a number of weather stations that
measure irradiance on an hourly basis across the Netherlands as depicted
in Figure 3.1. Therefore, these locations were chosen for the spatio-temporal
analysis.
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FIGURE 3.1
KNMI stations that measure irradiance across the Netherlands. The numbers
are ordered on distance from Maastricht.

In addition to the observed irradiance data from the KNMI, NWP data for
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those locations was extracted from the European Centre for Medium-Range
Weather Forecasts (ECMWF).

3.2.1 Numerical weather predictions from ECMWF

The NWP data was collected from the European Centre for Medium-Range
Weather Forecasts (ECMWF), which is an independent intergovernmental
organization supported by most of the nations in Europe. It operates one of the
largest supercomputer complexes in Europe and has the world’s largest archive
of NWP data. One of its hourly forecasts has the highest spatial resolutions,
uses the best description of the model physics, and its initial state is the most
accurate of the current atmosphere’s conditions. This is the High-Resolution1

(HRES) forecast by the ECMWF.
As we are concerned with intraday forecasts at the beginning of the day,

we took HRES data that becomes available each day before 07:00 UTC. The
parameters as in Table 3.1 were extracted by Whiffle for each hour.

TABLE 3.1
The weather parameters from the ECMWF extracted for each
station.

Name Description

cdir Clear sky direct solar radiation at surface
coszenith Cosine of solar zenith
fdir Total sky direct solar radiation at surface
Ms 10m wind speed
phis 10m wind direction
sp Surface pressure
ssrc Clear sky net surface solar radiation downwards
ssrd Surface solar radiation downwards (GHI)
tcc Total cloud cover
ts 2m temperature

3.2.2 Observations from KNMI

The KNMI houses a meteorological network in the Netherlands to collect
weather data for its forecasts. The meteorological network of the Netherlands
consists of 51 automatic weather stations at typical spacing of 50 kilometres,
including platforms in the North Sea – 32 of those weather stations collect
irradiance data.

The observed surface solar radiation downwards was collected, which is
essentially the irradiance that we want to forecast. Therefore, all weather
stations that measured surface solar radiation downwards were selected as

1The HRES has a resolution of 9 kilometres.
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given in Figure 3.1. The parameter as in Table 3.2 was extracted via a self-
written Python script from the KNMI’s website.

TABLE 3.2
The irradiance from the KNMI extracted for each
station.

Name Description

Q Surface solar radiation downwards (GHI)
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3.3 Data processing

Before we were able to use the GHI data2 in autoregression (Section 2.4), we
first had to ensure that the data was stationary as explained in Section 2.5.1.
Our aim was to remove patterns from the GHI data so that we can model its
stochastic behaviour.

3.3.1 Calculation of clear-sky index

We can imagine that GHI data, which follows the pattern of the sun as in
Figure 3.2, can be processed to take out its diurnal pattern, which is described
by ssrc.
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FIGURE 3.2
The ssrd, ssrc, and Q for station number 9 of Figure 3.1 plotted against time
for a summer day. We find that there is a parabolic diurnal pattern, which
should be removed before time series analysis can be applied as explained in
Section 2.5.1.

The ECMWF provides clear-sky data,3 which it produces as an addition
to its irradiance profiles (Hogan & Bozzo, 2018). The clear-sky model calcu-
lates what the irradiance would have been if there had been no clouds in the

2Global horizontal irradiance data is ssrd from Table 3.1 and Q from Table 3.2.
3Those are the ssrc and fdir in Table 3.1.
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atmosphere. In our research, ssrd and Q was made stationary with ssrc. The
result is the clear-sky index.

The clear-sky index (k) is simply calculated by dividing irradiance (I) by
its clear-sky irradiance (Ic) as in

k =
I

Ic
. (3.1)

As such, the variables as in Table 3.3 were defined.

TABLE 3.3
The clear-sky index as calculated
for each station.

Name Description

csi_predicted = ssrd
ssrc

csi_observed = Q
ssrc

3.3.2 Selection on solar zenith angle

To calculate the clear-sky index, Equation 3.1 indicates that

• the clear-sky irradiance cannot be zero; and

• the clear-sky irradiance should not approximate zero, as it can take on ex-
treme values when I ≫ Ic.

Therefore, we want to select a subset of the data to ensure that these two con-
ditions are met. The clear-sky irradiance is not equal to zero when the sun is
above the horizon. In addition, the clear-sky irradiance does not approximate
zero when the sun is at least a few degrees above the horizon.

The height of the sun compared to the horizon can be expressed by the
solar zenith angle (θ), which is the angle between the sun’s rays and the vertical
direction. Therefore, when it is below 90 degrees, then the sun is above the
horizon. In our case, to ensure that the clear-sky values do not approximate
zero, we took only those measurements wherein half of the time4 the solar
zenith angle was below 80 degrees5 as in

X′ ∧ y = {xt ∈ X′ ∧ yt ∈ y | θt < 80}.

We calculated the solar zenith angle via Holmgren et al. (2018).

4To ensure that the solar zenith angle is below a threshold for half of the time, the solar
zenith angle is taken at half of each step.

5The 80 degrees threshold was set based on eliminating outliers in k.
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3.3.3 Dummy variables and polynomials

Additional variables were created by using dummy encoding and polynomials.
First, dummies help to encode a categorical variable into the regression model.
For any hour of the day, h, it takes the form

xt,h =

{
1 if hour of the day at t equals h

0 if hour of the day at t does not equal h.
(3.2)

The dummy variables were created for each hour of the day in UTC. As the
data was filtered on the solar zenith angle, the dummies were created for the
hours from 5 until 19.

Second, for the clear-sky index that was predicted by the ECMWF, the
squared and cubic was calculated as there appeared a non-linear relation-
ship with the observed clear-sky index as found in Figure 3.3. These proved
valuable during the correction of the numerical predictions to better fit the
observations. As such, the additional variables as in Table 3.4 were defined.
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FIGURE 3.3
Predicted clear-sky index against observed clear-sky index for a sample set
that spans 2020-09-01 until the end of 2020. We see a non-linear pattern and
some bias.
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TABLE 3.4
The cubed and squared clear-sky index for each station and
additional dummy variables.

Name Description

dummy_hour_5 Set to 1 if the hour equals 5 else 0
dummy_hour_6 Set to 1 if the hour equals 6 else 0

...
...

dummy_hour_18 Set to 1 if the hour equals 18 else 0
csi_predicted_squared = csi_predicted2

csi_predicted_cubed = csi_predicted3
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3.4 Model training, testing, and validation

To test whether a regression model was actually fitted well, we drew conclu-
sions by calculating the coefficients (b in Equation 2.13) via a train set and
applying those to a test set. The predicted responses for the test set were
evaluated by the error metrics of Section 2.6. From there, we used the error
metrics to tune the model’s hyperparameters,6 e.g., λ of Equation 2.14. Once
an equilibrium for a regression model’s hyperparameters was reached, we eval-
uated if the model actually performed as well as tested by using a validation
set. Thus, we have a

• train set to train the model (as we calculate the coefficients of Equation
2.13),

• test set to evaluate increments of the model, and

• validation set to evaluate the model’s accuracy.

We define each set to include

Φt =


2019-09-01 ≤ t ≤ 2020-08-31 if train set

2020-09-01 ≤ t ≤ 2020-12-31 if test set

2019-07-01 ≤ t ≤ 2019-08-31 if validation set,

and we define the sets as

X′
train ∧ ytrain = {xt ∈ X′ ∧ yt ∈ y | Φt} if train set

X′
test ∧ ytest = {xt ∈ X′ ∧ yt ∈ y | Φt} if test set

X′
val ∧ yval = {xt ∈ X′ ∧ yt ∈ y | Φt} if validation set.

Thus, the sets Xtrain and ytrain only contain the rows between 2019-09-01
and 2020-08-31, the sets Xtest and ytest only contain the rows between 2020-
09-01 and 2020-12-31, and the validation sets those between 2019-07-01 and
2019-08-31. The number of elements per set are given in Table 3.5.

TABLE 3.5
The number of elements in the train,
test, and validation set.

Set Number of elements

Train 3,369
Test 803
Validation 783

6A hyperparameter is a parameter whose value is used to control the coefficient estima-
tion process.
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To conclude, we would like to introduce the notation of btrain if the coef-
ficient vector was calculated with Xtrain ∧ ytrain, btest if the coefficient vector
was calculated with Xtest ∧ ytest, and so forth.
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KEY TAKEAWAYS
We defined MOS correction as a regression model that uses weather parame-
ters from NWP in combination with some dummy and polynomial predictors
to predict the observed clear-sky index. By doing so, and by having a predictor
matrix with many variables, the regression model relates those predictors to
the clear-sky index while optimizing for accuracy. To execute on this strategy,
we first created a dataset for each station, after which we trained, tested, and
validated the MOS correction model.

From there, we defined the spatio-temporal model to use lagged observa-
tions and to smooth the MOS corrected predictions on two sides. To develop
this model, we first created the set of predictors and responses, after which
we trained, tested, and validated the spatio-temporal model as we did for
the MOS correction model. Note that each station uses the exact same set of
predictors in contrast to the MOS correction.
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4.1 Introduction

This chapter is concerned with the regression framework for the MOS correc-
tion and the spatio-temporal model using the experimental setup of Chapter
3. Here, we actually built the predictors, X, and define the responses, Y.

We use flowcharts to communicate algorithms. Figure 4.1(a) is an example
of such a flowchart, which uses the following symbols to communicate events:

• Square is a process

• Circle is a start or an end

• Parallelogram is an input or output of data

• Diamond (or rhombus) is a decision

In addition, we extend our bracket notation from Chapter 3 to matrices.
That is, we use bracket notation to sub-select from a matrix the variables that
belong to a specific location, e.g., X[9] means the columns from X for the 9th
station of Figure 3.1 as depicted in Figure 4.1(b).

For the reader to have a clear overview of the regression models’ outputs,
we provide a shortlist here:

• The outputs from the MOS correction are given in Table 4.1

• The outputs from the spatio-temporal model are given in Table 4.2
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4.2 MOS correction

To ensure that the numerical irradiance predictions, csi_predicted, fit well
to the observations, csi_observed, we first used a statistical process on the
numerical predictions called model output statistics (MOS). To do so, we used
regression, and we first created a set of predictors and response per station of
Figure 3.1. From there, regression was applied to each station’s set and each
model was tested using the RMSE (Equation 2.26).

4.2.1 Data processing

For the MOS correction, we applied regression to each station separately as
depicted in the workflow of Figure 4.1(a). Therefore, we first constructed a
separate set of predictors and response for each station. We looped over each
station of Figure 3.1, which is the range of integers from 1 until 32. In the loop,
we assigned a to be the iterator. We created for each station, a, a separate
set of predictors and response, which we defined as Xa = X[a] and ya = Y[a]
respectively.

Here, for each station, a, the response ya contains the variable
csi_observed[a] and the predictors contain the variables as given in Fig-
ure 4.1(b).



48 Spatio-temporal solar power forecasts via regression

Start

 

End

Legend
 = number of stations = 32

(a)

2019-07-01 05:00

2019-07-01 06:00

2019-07-01 07:00

2020-12-31 10:00

2020-12-31 11:00

2020-12-31 12:00

c
s
i
_
p
r
e
d
i
c
t
e
d
[
]

c
s
i
_
p
r
e
d
i
c
t
e
d
_
s
q
u
a
r
e
d
[
]

c
s
i
_
p
r
e
d
i
c
t
e
d
_
c
u
b
e
d
[
]

c
d
i
r
[
]

c
o
s
z
e
n
i
t
h
[
]

M
s
[
]

s
s
r
c
[
]

s
p
[
]

t
c
c
[
]

d
u
m
m
y
_
h
o
u
r
_
5
[
]

d
u
m
m
y
_
h
o
u
r
_
6
[
]

d
u
m
m
y
_
h
o
u
r
_
1
8
[
]

.
.
.

...

(b)

FIGURE 4.1
Figure 4.1(a) depicts the workflow for the construction of the predictors and
response for the MOS correction. We loop over each station to select for each
parameter the variables that belong to that station’s location. Figure 4.1(b)
shows the predictors that were used for each station.
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4.2.2 Training, testing, and validation

As a follow-up to the workflow of Figure 4.1, we used the generated sets for
each station to build a regression model as depicted in the workflow of Figure
4.2. First, we looped over each station in Figure 3.1, which is the range of
integers from 1 until 32. In the loop, we assigned a to be the iterator. We
retrieved the predictors, X = Xa, and response, y = ya, for each station.
We used these datasets to generate btrain (Section 3.4), which is the vector
of coefficients (Equation 2.13). Furthermore, we did so by applying LASSO
(Equation 2.14), and we started with λ = 0. From there, we applied btrain

to X to generate a set of predicted responses, ŷ (Equation 2.12). To evaluate
the accuracy of the coefficients, we first converted the predicted response, ŷ,
which is a clear-sky index (Equation 3.1), to irradiance using the clear-sky
irradiance, ssrc. To conclude, we used the MOS corrected irradiance, ŷ∗, and
the observed irradiance, y∗, to calculate the RMSE (Equation 2.26) over the
test set, ŷ∗

test ∧ y∗
test (Section 3.4).

We applied iterations to this process wherein we increased the λ value from
the LASSO to find an optimum in terms of RMSE. Therefore, we continued in
a loop until the RMSE increased instead of decreased, which was quantified
by the SS, ε (Equation 3.4). In that case, the model had converged to its
most optimal point, and the predicted response was saved to csi_MOS[a] and
ssrd_MOS[a] as clear-sky index and irradiance respectively. After this was
done for all stations, we ended up with two new parameters, csi_MOS and
ssrd_MOS, which are MOS corrected predictions as given in Table 4.1.

TABLE 4.1
The MOS corrected predictions as calculated
for each station.

Name Description

csi_MOS MOS corrected csi_predicted
ssrd_MOS MOS corrected ssrd
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FIGURE 4.2
The workflow for the MOS correction’s regression model. The steps that are
undertaken within this flowchart are well-described in Section 4.2.2.

4.2.3 Example of application

We apply the framework of Figure 4.1 and Figure 4.2 to an example for the
reader to gain a better understanding. We assess a simplified case. First, we
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do the data processing as described in the workflow of Figure 4.1. Second, we
conclude with the model testing, training, and validation of Figure 4.2.

4.2.3.1 Data processing

Say that we have three parameters: sp, csi_predicted, and csi_observed.
We have three stations: station 1, 2, and 3. Thus, we have the dataset as given
in Figure 4.3. Here, the columns on the top level denote the parameter and
on the bottom level the station. The rows denote the timestamps.

2019-07-01 05:00

2019-07-01 06:00

2019-07-01 07:00

2020-12-31 10:00

2020-12-31 11:00

2020-12-31 12:00

...

sp csi_predicted csi_observed

1 2 3 1 2 3 1 2 3

FIGURE 4.3
An example dataset for MOS correction. We have three parameters for three
stations.

From there, we distil the predictors and response for station 1 as depicted
in Figure 4.4. In addition, we apply standardization (Section 2.3.4), therefore
we do not have a column of constants in X of Figure 4.4(a).
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FIGURE 4.4
Figure 4.4(a) depicts the predictors for MOS correction as distilled from Figure
4.3. We fit these predictors to the response of Figure 4.4(b).
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4.2.3.2 Training, testing, and validation

To calculate the coefficient vector, btrain (Equation 2.13), for station 1, we
select the rows 784 until 4152, which is the train set. Now that we have
the coefficient vector for station 1 as given in Figure 4.5(a),1 we can simply
multiply btrain with X1 to predict the response, ŷ (Equation 2.12), which are
MOS corrected predictions as given in Figure 4.5(b).

sp
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1
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FIGURE 4.5
Figure 4.5(a) shows the vector of coefficients for station 1. We use this vector
to predict the response as given in Figure 4.5(b), which is the MOS correction.

To tune the LASSO parameter, λ (Equation 2.14), we can test the MOS
correction by taking from the predicted responses the rows 4153 until 4955,
which is the test set, and calculating the RMSE (Equation 2.26). From there,
we can tune the LASSO parameter over and over again until we reach the
lowest RMSE. If, say, the LASSO calculates that b1 = 0 and b2 = 1, then we
can simply remove sp from our predictor matrix, X1, as it has no predictive
value.

To conclude, we apply this process as well to station 2 and 3 to end up with

1The coefficient vector does not have a constant, b0 (Equation 2.7), as we apply stan-
dardization (Section 2.3.4).
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a new parameter, csi_MOS. We can then validate our model by calculating the
RMSE and other error metrics over the rows 1 until 783, which is the validation
set.
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4.3 Spatio-temporal regression

We used csi_MOS as an input to the spatio-temporal model in combination
with csi_observed – we regressively smoothed MOS corrected predictions
and lagged observations at the same time over the spatio-temporal dimension
(Equation 2.24). Our aim was to decrease the RMSE (Equation 2.26) as much
as possible.

4.3.1 Data processing

For the spatio-temporal analysis, we used the same set of predictors for each
station of Figure 3.1. Therefore, we created one set of predictors and one set
of responses instead of doing so separately for each station as was done for the
MOS correction. This is depicted in the workflow of Figure 4.6, where we first
loop over the amount of lags, p, with the iterator, i = 0, to lag csi_observed

for each i+ τ (Equation 2.24). From there, we loop over the amount of points
to smooth on two sides, q, with the iterator, i = 0, to include csi_MOS for
each step in the range of [t+ τ − q, t+ τ + q]. Due to the inclusion of lagged
observations as predictors, we drop the steps where there are no lags available,
which are the first p steps of each day. The same holds for the case where no
numerical predictions are available, which are the first and last q steps of each
day. We end up with one predictor matrix, X, and one response matrix, Y.

Here, the response consists of the parameter csi_observed and the pre-
dictors are those of Equation 2.24.
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FIGURE 4.6
The workflow for the construction of the predictors and responses for the
spatio-temporal regression. The lead time (τ), number of lags (p), and the
smoothing parameter (q) can all be played with to develop different versions
of the spatio-temporal model.
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4.3.2 Training, testing, and validation

As a follow-up to the workflow of Figure 4.6, we used the generated sets to
build a regression model as depicted in the workflow of Figure 4.7. As this
workflow is almost equal to that of the MOS correction in Section 4.2.2, we
only discuss its deviations here.

We retrieved the predictors, X, and response, y = Y[a], per station. Thus,
we use the sameX to predict each station’s response. Again, we used iterations
to determine the optimal λ (Equation 2.14) for the LASSO per station. When
the model had converged to its most optimal point in terms of RMSE, the
predicted response was saved to csi_SP[a] and ssrd_SP[a] as clear-sky index
and irradiance respectively. After this was done for all stations, we would end
up with two new parameters, csi_SP and ssrd_SP, which contain spatio-
temporal solar forecasts as given in Table 4.2.

TABLE 4.2
The spatio-temporal solar forecast as calculated for each
station.

Name Description

csi_SP Spatio-temporal solar forecast as clear-sky index
ssrd_SP Spatio-temporal solar forecast as irradiance
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FIGURE 4.7
The workflow for the spatio-temporal regression model. The steps that are
undertaken within this flowchart are well-described in Section 4.3.2.
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4.3.3 Example of application

We apply the framework of Figure 4.6 and Figure 4.7 to an example for the
reader to gain a better understanding. We assess a simplified case. First, we
do the data processing as described in the workflow of Figure 4.6. Second, we
conclude with the model testing, training, and validation of Figure 4.7.

4.3.3.1 Data processing

Say that we have observations and numerical predictions: csi_observed and
csi_MOS. We have three stations: station 1, 2, and 3. Thus, we have the dataset
as given in Figure 4.8. Here, the columns on the top level denote the parameter
and on the bottom level the station. The rows denote the timestamps.

2019-07-01 05:00

2019-07-01 06:00

2019-07-01 07:00

2020-12-31 10:00

2020-12-31 11:00

2020-12-31 12:00

...

csi_MOScsi_observed

1 2 3 1 2 3

FIGURE 4.8
An example dataset for the spatio-temporal regression. We have two param-
eters – observations and MOS corrected predictions – for three stations.

From there, we create the predictors and response for station 1 with two
lags, p = 2, a smoothing parameter of one, q = 1, and a lead time of one
hour, τ = 1, as depicted in Figure 4.9. Here, for X, the columns on the top
level denote the parameter, the middle level the station, and the bottom level
its time step. We aim to predict for time step t+ 1, therefore we include the
observations of time step t and t − 1 and the MOS corrected predictions of
time step t, t + 1 and t + 2. In addition, we apply standardization (Section
2.3.4), therefore we do not have a column of constants in X of Figure 4.9(a).

We find that there are gaps in our X for the first p rows of each day and
the last q rows of each day. These gaps come from the fact that we do not
have any observations and/or predictions for those times. Therefore, we drop
those rows from the predictor and response set when we apply regression.
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FIGURE 4.9
Figure 4.9(a) depicts the predictors for the spatio-temporal model with two
lags, p = 2, a smoothing parameter of one, q = 1, and a lead time of one hour,
τ = 1, as distilled from Figure 4.8. We fit those predictors to the responses of
Figure 4.9(b)

4.3.3.2 Training, testing, and validation

For the model selection, we apply the same logic as done in Section 4.2.3.2.
We select from the responses, Y, the response for station 1, y = Y[1], and we
find the coefficient vector, btrain, as given in Figure 4.10(a),2 and we multiply
this vector with X. We end up with the predicted response, ŷ (Equation 2.12),
for station 1 as given in Figure 4.10(b). The predicted response only includes
the rows for which X had no gaps. We have left the last three rows of Figure
4.10(b) as an exercise for the reader.

2The coefficient vector does not have a constant, b0 (Equation 2.7), as we apply stan-
dardization (Section 2.3.4).
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FIGURE 4.10
Figure 4.10(a) shows the vector of coefficients for station 1. We use this vector
to predict the response as given in Figure 4.10(b), which is the spatio-temporal
model.

To conclude, we tune the LASSO parameter as done in Section 4.2.3.2,
we apply this process to stations 2 and 3 to end up with a new parameter,
csi_SP, and we validate our model on the validation set.
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KEY TAKEAWAYS
The MOS correction improved the accuracy of the numerical irradiance pre-
dictions by 8% on the test set. When we compare this to the validation set,
we find an improvement of 4%. This is due to the test set spanning a period
of winter, whereas the validation set spans a period of summer. The clear-sky
index for the test set is lower on average, which is where the MOS correction
proves to be most effective.

For the spatio-temporal regression, we find the model with a lag of one and
a smoothing parameter of one to perform best. This entails that the model
only uses one lagged observation – the one at t – and includes MOS corrected
predictions for t+ τ −1, t+ τ , and t+ τ +1 to predict t+ τ . For a lead time of
one hour, the spatio-temporal model increases the accuracy of the numerical
irradiance predictions by 30% for the test set and 25% for the validation set.
When set out against the MOS correction, we find the spatio-temporal model
to be as accurate for the validation set as for the test set.

By analysing the weights of the stations as a predictor for another station,
we find that stations in proximity have higher weights – there is a relationship
between distance and weight. When we assess the overall importance per
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station as a predictor for other stations, then we find that stations in the
south-west of the Netherlands have most predictive value.
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5.1 Introduction

This chapter is concerned with the results that come from the application of
Part I. Here, we actually study the accuracy of the solar power forecasts that
come from the regression framework as defined in Chapter 4.

We use scatter density plots to summarize large datasets in compact plots.
Figure 5.1(a) is such a plot, where the colour-bar on the right indicates the
density of the scatters. We chose to use these plots as they show us what hap-
pens at the places where the scatters are so dense that it becomes impossible
to draw conclusions.

We express accuracy for our models in the form of SS (Equation 2.27).
When we calculate the SS, we use ssrd as the reference forecast unless ex-
plicitly stated otherwise. For example, when we would use ssrd_MOS as the
reference forecast, then we would state that we calculated the SS against
ssrd_MOS.
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5.2 MOS correction

The MOS correction was carried out as described by Figure 4.1 and Figure
4.2. By using the LASSO (Equation 2.14), we selected only the predictors
that contributed to a lower RMSE (Equation 2.26). From there, the result,
ssrd_MOS, was evaluated and compared against ssrd over the test set. To
conclude, the MOS correction was evaluated over the validation set as well
and compared to the test set.

5.2.1 Predictor selection

For the MOS correction, the following predictors proved to be useful to de-
crease the RMSE:

• cdir

• coszenith

• csi_predicted

• csi_predicted_squared

• csi_predicted_cubed

• dummy_hour_5 until dummy_hour_18

• sp

When evaluating the coefficients, we find that cdir, coszenith,
and the dummy variables all act as a general correction on the pre-
dicted clear-sky index. The csi_predicted, csi_predicted_squared, and
csi_predicted_cubed are used to distil the non-linear relationship between
csi_predicted and csi_observed. Finally, sp contains valuable information
to increase prediction accuracy. The addition of other predictors increased the
RMSE – they did not seem to have any valuable information in them.

5.2.2 Accuracy

The ssrd and ssrd_MOS were evaluated in Figure 5.1(a) and Figure 5.1(b)
respectively. When we compare the two for accuracy, we find an SS of 8% –
that is, the RMSE decreases by 8% via the MOS correction. When we assess
the scatter density plots of Figure 5.1 more thoroughly, we find that ssrd_MOS
has less bias and less variance. To conclude, the MOS correction has helped
to increase the fit between ssrd and Q.
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FIGURE 5.1
Figure 5.1(a) shows ssrd plotted against Q for all stations in the test set.
Figure 5.1(b) shows the applied MOS correction against Q in the test set. We
find that the MOS correction indeed reduces the overall bias and variance of
the forecast.
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5.2.3 Validation

When we assess the SS of ssrd_MOS against ssrd for the test and validation
set in Figure 5.2, we find that overall, the validation set performs worse with
an SS of around 4% compared to 8% for the test set. In addition, there seems
to be a weak relation (r = 0.42 of Equation 2.3) for the SS per station between
the test and validation.

An explanation for the MOS correction’s underperformance on the valida-
tion set is that the validation set spans a period of summer (in 2019), whereas
the test set spans a period of winter (in 2020). It could be that MOS correc-
tion with the chosen predictors is less effective in the summer than the winter.
This might be due to the fact that in the winter the predicted clear-sky in-
dex, csi_predicted, is on average lower than in the summer, which might be
where the MOS correction is most effective.

It is also of interest to note that the MOS correction model was trained on
a set that mostly spans 2020, where there was unusual weather (van Heerwaar-
den et al., 2021). The train set had an 18.9% increase in surface irradiance
with respect to the 2010 until 2019 mean, which is explained by a low median
aerosol optical depth, several exceptionally dry days, and a very low cloud
fraction overall. However, as we are using the clear-sky index to make our
forecasts, this should be accounted for.
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FIGURE 5.2
SS of the MOS correction per station of Figure 3.1 on the test and validation
set. The MOS correction is less effective on the validation set than the test
set.
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5.3 Spatio-temporal model

For the spatio-temporal analysis, we first optimized for a lead time of one
hour the lag, p, and smoothing, q, of Equation 2.24 as described in Figure 4.6
and Figure 4.7. Once we found an optimal value for p and q in terms of SS
(Equation 2.27), we tested the spatio-temporal model for lead times up to 6
hours. To conclude, we conducted a spatial analysis, which entails the study
of the coefficients (Equation 2.13) of the spatio-temporal model.

5.3.1 Selection of lag and smoothing

To test the effectiveness of the spatial component on the lag, p, and smoothing,
q, we first ran the model without the spatial component by selecting for each
station only the predictors that belonged to that station, X = X[a] (Section
4.1). We call this approach temporal regression, or an AR model as described
in Equation 2.24 with R = 1. From there, we used the entire X as the pre-
dictors for each station, which includes the spatial component as originally
described in Figure 4.7. We call this spatio-temporal regression, which is a
VAR model as described in Equation 2.24 with R = 32.

5.3.1.1 Temporal regression

To test if the spatial component improves the model’s accuracy, we first test
an AR model – that is, we only use predictors that belong to the station
that we aim to predict – for different values of lag, p, and smoothing, q, as
in Equation 2.24 with R = 1. As this reduces the amount of predictors to
p+ 2q + 1, we do not apply LASSO (λ = 0 in Equation 2.14), as collinearity
becomes less of an issue. Figure 5.3 provides our findings.
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FIGURE 5.3
SS of the temporal model against lag and smoothing for a lead time of one
hour. We find that the optimum lies at p = 1 and q = 1.

The model performs best when there is a lag of p = 1 and when the
smoothing parameter is set to q = 1. When we increase p and/or q from there,
we find the regression model to overfit – it misidentifies random occurrences
as patterns.

5.3.1.2 Spatio-temporal regression

We now include the spatial component – that is, we use the predictors from all
stations to predict each station – for different values of lag, p, and smoothing,
q as in Equation 2.14 with R = 32. Figure 5.4 provides our findings.
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SS of the spatio-temporal model against lag and smoothing for a lead time of
one hour. We find that the optimum lies at p = 1 and q = 1.

The model performs best when there is a lag of p = 1 and when the
smoothing parameter is set to q = 1. When we increase p and/or q from
there, then the amount of predictors becomes larger. As the amount of rows
in the train set does not increase, the optimization of the coefficients (Equation
2.13) becomes less accurate due to the decrease in the degrees of freedom.1

This is visible in Figure 5.4 – when p and/or q increase beyond its optimal
point, then the SS decreases.

5.3.2 Performance for different lead times

The conclusion drawn from Figure 5.3 and Figure 5.4 – that p = 1 and q = 1
has the best SS – holds for all tested lead times (τ in Equation 2.24) up
to six hours. Figure 5.5 shows the lead time of the temporal model, spatio-
temporal model, and the MOS correction against the SS for p = 1 and q = 1.
As the lead time increases, the SS decreases, up to a point that the MOS
correction outperforms the spatio-temporal model – beyond five hours, the
spatio-temporal model is ineffective due to the large number of predictors (as
explained in Section 5.3.1.2). In contrast, the temporal model outperforms
the other models at five hours and beyond due to the smoothing of the MOS
corrections over the temporal dimension.

1Degrees of freedom encompasses the notion that the amount of independent information
you have limits the number of parameters that you can estimate. Typically, the degrees of
freedom equals your set size minus the number of parameters you need to calculate.
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FIGURE 5.5
SS of the the temporal model, spatio-temporal model, and the MOS correction
against lead time. We find that the spatio-temporal model is effective up to
a lead time of five hours. From there, the temporal model becomes most
effective.

Figure 5.6 shows four different scatter plots for the model where p = 1
and q = 1 with the lead times varying from one hour to four hours. When
compared to Figure 5.1, we see that as the lead times increases, the MOS
correction becomes more prominent. When we analyse the coefficients, we
find that the relative weight of the MOS correction increases compared to the
lagged observations as the lead time increases. This indicates that as the lead
time increases, the lagged observations have less predictive value.
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FIGURE 5.6
Scatter density plots of the spatio-temporal forecast against observations for
a lead time of one to four hours. We find that the lagged observations are
overtaken by the MOS correction as the lead time increases.

5.3.3 Spatial analysis

For the spatial analysis, the coefficients (Equation 2.13) of the spatio-temporal
model with a lead time of one hour were analysed. The absolute values of the
model’s coefficients were used as a measure of predictive importance – e.g., if
station 1 has a high weight in the coefficient matrix of station 2, then station 1
has high predictive importance for station 2. These coefficients were analysed
in a heatmap and in a spatial map for the stations of Figure 3.1.
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5.3.3.1 Weights of coefficients per station

Figure 5.7 gives a heatmap of each station’s weights as a predictor for an-
other station. Here, we made the distinction between the lagged observations,
csi_observed, and the predictions to smooth, csi_MOS. For the lagged ob-
servations, we identify the pattern that stations close to one-another generally
share predictive importance. For the predictions, we find that there exists a
small pattern related to distance, but it appears to be scattered out more.
Thus, the relation between predictive importance and distance is stronger for
lagged observations than for MOS corrected predictions.
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FIGURE 5.7
Figure 5.7(a) shows a heatmap for the weights of the lagged observations per
station of Figure 3.1. We observe a pattern where stations close to one-another
have increased predictive importance. Figure 5.7(b) shows a heatmap for the
weights of the MOS corrected predictions, where the proximity pattern is less
prominent.
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5.3.3.2 Predictive importance per station

Figure 5.8 gives the sum over the y-axis of Figure 5.7 – it tells us how impor-
tant each station is as a predictor for others. We find a clear pattern for the
lagged observations, where irradiance travels from the south-west across the
rest of the Netherlands. For the MOS corrected predictions, there is less of
a pattern: stations that have more stations in proximity seem to have higher
predictive importance. Thus, the lagged observations seem to indicate a spa-
tial pattern of the weather whereas the MOS corrected predictions simply
indicate a spatial average.
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FIGURE 5.8
Figure 5.8(a) shows a spatial map of each numbered station’s importance as a
predictor using the lagged observations. The south-west is highlighted. Figure
5.8(b) shows such a map using the MOS corrected predictions – there is less
of a pattern.

5.3.4 Validation

To test the accuracy of the spatio-temporal model with a lead time of one
hour, we calculate its SS (Equation 2.27) for the test and validation set. Figure
5.9(a) gives the SS against ssrd_MOS and Figure 5.9(b) against ssrd. When
we analyse Figure 5.9(a), we find that the spatio-temporal model works as well
on the test set as the validation set. However, when we analyse Figure 5.9(b),
we find that test set outperforms the validation set, which comes from the
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MOS correction (Figure 5.2) that serves as an input to the spatio-temporal
model (Figure 4.6).

In Figure 5.9(a), there seems to be no relation (r = 0.06 of Equation 2.3)
between the SS of the test set and the validation set. Thus, the relation that
is present in Figure 5.9(b), where r = 0.24, comes from the MOS correction
as given in Figure 5.2. The reason for not finding a pattern in SS per station
for the spatio-temporal model is most likely due to a difference in weather
patterns between the test and validation set (van Heerwaarden et al., 2021).
Furthermore, the test set spans a period of winter while the validation set a
period of summer. Nevertheless, as the MBE in Figure 5.9(a) is zero, we can
rely on the spatio-temporal model to have on average an SS against ssrd_MOS
of around 24%.

15% 20% 25% 30% 35%
SS of test (%)

15%

18%

20%

22%

25%

28%

30%

32%

35%

SS
 o

f v
al

id
at

io
n 

(%
)

SS of validation set vs SS of test set
(ssrd_SP against ssrd_MOS)

Station

4

24

9
11

27

8

28

3
2

6

21

7 17
25

31

12

32

29

20

123

30

14

1826

19

15

5

16

10

2213

r = 0.06
RMSE = 0.05

MAE = 0.04
MBE = 0.00

(a)

20% 25% 30% 35% 40%
SS of test (%)

18%

20%

22%

24%

26%

28%

30%

32%

34%

36%
SS

 o
f v

al
id

at
io

n 
(%

)

SS of validation set vs SS of test set
(ssrd_SP against ssrd)

Station

4

24 911

27

8
28

3
26

21

7

17

25

31

12

32

29

20

123

30

14 18
26

19

15

5

16
10

22

13

r = 0.24
RMSE = 0.06

MAE = 0.04
MBE = 0.03

(b)

FIGURE 5.9
Figure 5.9(a) shows the SS of the spatio-temporal model against the MOS
correction per station of Figure 3.1 on the test and validation set. The spatio-
temporal model has an average accuracy of around 24%. Figure 5.9(b) shows
the SS of the spatio-temporal model against ssrd. We see the pattern of Figure
5.2 – where the test set outperforms the validation set – coming through.
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KEY TAKEAWAYS
We test the accuracy of the spatio-temporal model for different cloud condi-
tions by doing a case study on a daily basis for a location in the centre of
the Netherlands. We find the model to perform well in situations where the
MOS corrected predictions are off about the cloud conditions, thereby greatly
increasing the accuracy of the predictions.

To ensure that our results are valid, we compare them against state-of-the-
art intraday solar power forecasts. For comparison, we cannot find a case study
of the Netherlands in literature, which indicates that we fill a gap by doing
one. Nevertheless, we are able to find comparable models with metrics that
we can use to validate our model’s accuracy against. Through such validation,
we believe our model to be accurate.
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6.1 Accuracy for different cloud conditions

To determine the accuracy of the spatio-temporal model with a lead time of
one hour for different cloud conditions, we did a case study of the most central
station of Figure 3.1 – station number 9. We calculated the SS against the
MOS correction at a daily scale, and we took the four top performers from
the validation set, which has many summer days with long daytime. We used
satellite imagery1 to assess the cloud conditions per day.

Overall, we conclude that the spatio-temporal model performs well for
different cloud conditions. It corrects where the MOS corrected predictions
are off about the cloud conditions, thereby greatly increasing the accuracy of
the predictions.

6.1.1 Thick cloud deck

For the first case, we assess the day in the validation set for which the spatio-
temporal model has the highest SS against the MOS correction – 78%. Figure
6.1(a) gives the hourly irradiance and Figure 6.1(b) a satellite photo, which
was made at 12:45 UTC.

The MOS corrected prediction overpredicts the irradiance quite heavily.
The spatio-temporal model corrects for this by taking into account the lagged
observations and smoothed MOS corrections over the spatio-temporal dimen-
sion. By doing so, it is able to correct the MOS corrected prediction’s inability
to foresee the thickness of the cloud deck.

1We acknowledge the use of imagery from NASA’s Worldview application
(https://worldview.earthdata.nasa.gov), part of NASA’s Earth Observing System Data and
Information System (EOSDIS).
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FIGURE 6.1
Figure 6.1(a) depicts the ssrd_MOS, ssrd_SP, and Q for station number 9 of
Figure 3.1 plotted against time for 2019-07-28. Figure 6.1(b) shows a satellite
photo for that day made at 12:45 UTC. We find a thick cloud deck, which the
MOS corrected prediction underestimates.
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6.1.2 Clear-sky

For the second case, we calculated an SS for the day against the MOS cor-
rection of 67%. Figure 6.2(a) gives the hourly irradiance and Figure 6.2(b) a
satellite photo, which was made at 11:35 UTC.

This day is close to a clear-sky day. We find the MOS corrected prediction
to be off as it overestimates the effect of aerosols and/or clouds. The spatio-
temporal model corrects for this as it follows the observations smoothly. When
we look at the satellite photo, we see some negligible clouds around the centre
of the Netherlands where station number 9 is located, which could have been
overestimated by the MOS corrected prediction.
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FIGURE 6.2
Figure 6.2(a) depicts the ssrd_MOS, ssrd_SP, and Q for station number 9 of
Figure 3.1 plotted against time for 2019-07-28. Figure 6.2(b) shows a satellite
photo for that day made at 11:35 UTC. We find a clear-sky day, whereas the
MOS corrected prediction underestimates the irradiance.
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6.1.3 High cloud variability

We assess a day when there was a high cloud variability. The spatio-temporal
model performs with a daily SS of 56% against the MOS correction. Figure
6.3(a) gives the hourly irradiance and Figure 6.3(a) a satellite photo, which
was made at 12:20 UTC.

Due to the high cloud variability, we find the MOS corrected prediction
to overpredict the irradiance, whereas the spatio-temporal model is able to
follow the trend quite nicely till midday. From midday forward, the accuracy
between the MOS correction and the spatio-temporal model starts to match.
When we look at the satellite picture, which was taken around midday, we
see a boundary between two types of clouds for the centre of the Netherlands,
which is where station number 9 is located. This might explain why the MOS
corrected prediction is off, as it is not able to predict that boundary very
precisely.
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FIGURE 6.3
Figure 6.3(a) depicts the ssrd_MOS, ssrd_SP, and Q for station number 9 of
Figure 3.1 plotted against time for 2019-07-16. Figure 6.3(b) shows a satellite
photo for that day made at 12:20 UTC. We find high cloud variability, which
the MOS corrected prediction underestimates.
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6.1.4 Low cloud variability

To finalize our case analysis, we assess a day when there was low cloud vari-
ability. On this day, the spatio-temporal model has an SS of 55% against the
MOS correction. Figure 6.4(a) gives the hourly irradiance and Figure 6.4(a)
a satellite photo, which was made at 11:55 UTC.

We find the MOS corrected prediction to predict some clouds after mid-
day. However, as we see from the observations, these clouds never occurred.
Although we see the effect of these clouds in the spatio-temporal model, we
find it to be dampened and shifted. This is what the spatio-temporal model
does: it uses lagged observations and smoothed MOS corrections over the
spatio-temporal dimension to determine the likelihood of the occurrence of
clouds. When we look at the satellite photo, we do find that there were lots of
small clouds, which creates the rationale for the MOS correction’s predicted
clouds after midday.
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FIGURE 6.4
Figure 6.4(a) depicts the ssrd_MOS, ssrd_SP, and Q for station number 9 of
Figure 3.1 plotted against time for 2019-08-21. Figure 6.4(b) shows a satellite
photo for that day made at 11:55 UTC. We find low cloud variability, whereas
the MOS corrected prediction estimates a higher one.
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6.2 Comparison to state-of-the-art

To conclude our discussion, we compare our spatio-temporal model with state-
of-the-art intraday solar power forecast models. To do so, we compare against
David et al. (2018), which gives a detailed summary of papers that have
developed methods for intraday solar power forecasts. It describes and tests
state-of-the-art point and probabilistic models to forecast solar power for one
hour ahead. Among others, it uses a neural network2 (NN) for point forecasts.
For us to compare our results, the paper expresses the RMSE (Equation 2.26)
and the MAE (Equation 2.29) as a percentage of the response’s mean, µy

(Equation 2.1), which we call the %rRMSE and %rMAE respectively.
The paper concludes that forecasting of the clear sky index is the most

effective method when compared to alternatives. It uses one year of data to
train the models as we did in our research as well. The difference lies in the
fact that their models do not use exogenous variables – that is, numerical
weather predictions. Therefore, we only focus on the forecast with a lead time
of one hour as the lagged observations are most important in that context.

For point forecasts, the paper finds for the NN with a lead time of one hour
an %rRMSE of 22% and an %rMAE of 16%. For our spatio-temporal model
with a lead time of one hour, we find an %rRMSE of 23% and an %rMAE
of 16%. We cannot compare these results one-on-one, as these models were
tested for different locations and different years. However, we can conclude
that we have results that are probable.

In Aguiar et al. (2016), which uses an NN with lagged observations, nu-
merical predictions from the ECMWF, and satellite-derived data, we find an
%rRMSE of 24% for a lead time of one hour. Again, we cannot compare
these results directly to ours, however, we can conclude that our results are
probable.

When we try to find papers for direct comparison that conduct a case
study of the Netherlands for intraday solar power forecast models, then we
cannot find any. Therefore, we conclude that we fill a research gap by doing
one.

2Neural networks are a set of non-linear algorithms.
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KEY TAKEAWAYS
Time series forecasts of solar power can be made by taking lagged observations
and smoothing numerical predictions. To improve the fit of the numerical
predictions to the observations, the predictions can be pre-processed via a
MOS correction – a statistical process that aims to remove systematic errors.
We find that the regression of lagged observations in combination with the
smoothing of MOS corrected predictions works well to create accurate intraday
solar power forecasts as the lagged observations provide the state and the
smoothed numerical predictions the trend. The accuracy of the numerical
irradiance predictions is improved between 4% and 8% by the MOS correction
and between 25% and 30% by the spatio-temporal model.

Our research aimed to make two contributions: to provide a framework
for the spatio-temporal regression of observations and numerical weather pre-
dictions; and to provide a case study of the Netherlands to understand the
behaviour of irradiance over the spatio-temporal dimension. These contribu-
tions prove to be useful as a stepping stone for further research.

Topics for further research are:

• the application of spatio-temporal weather forecasting to other contexts;

• the incorporation of other numerical weather models besides the ECMWF;

• the application of non-linear models besides regression; and
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• the application of our accurate solar power forecasts to energy trading.
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7.1 Answers to the research questions

Solar power forecasts that use regression to combine numerical weather pre-
dictions and observations can increase the accuracy of numerical irradiance
predictions by around 30% for a lead time of one hour. Hence, we conclude
that our regression framework creates accurate intraday solar power forecasts
across the Netherlands. The design and implementation of this framework is
the focus of this thesis, and therefore the main research question is formu-
lated as: How can irradiance observations and numerical weather predictions
be regressed on the spatio-temporal dimension to create accurate intraday solar
power forecasts?

7.1.1 Sub-research questions

To answer that question, we first address our sub-research questions.

1. What regression techniques for time series are applicable
to a spatio-temporal context?

Time series forecasting can be done by using lagged observations. This is
due to the fact that those type of observations exhibit a form of correlation.
However, time series cannot be used as is – they first need to be stationary,
which means that they need to be relieved from any predictable patterns.
In the case of solar power, there is a diurnal pattern, which follows the solar
zenith angle and can be modelled by the clear-sky irradiance. When we remove
this pattern, we are left with the clear-sky index. In addition to using lagged
observations, numerical irradiance predictions can be converted to a clear-sky
index and smoothed over the temporal dimension as well.

For the spatial dimension, geographically dispersed observations carry
value as weather situations move over space and time. For numerical pre-
dictions, smoothing can not only be done over the temporal dimension but
over the spatial as well. Therefore, in the context of solar power forecasts,
regression that includes the spatial dimension for observations and numerical
predictions is more accurate than those that do not.

Finally, when the set of spatio-temporal predictors are largely correlated,
then predictor selection is required. This can be done by applying the LASSO
technique, which enforces a penalty on the coefficients so that some shrink to
zero, effectively negating them from the model.

2. How can regression increase the fit of numerical irradiance
predictions to irradiance observations?

Model Output Statistics (MOS) serves this purpose. We applied MOS via
a multiple linear regression model, where weather parameters from NWP in
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combination with some dummy and polynomial predictors were used to predict
the response of the observed clear-sky index. We used the clear-sky index as
we wanted MOS to purely focus on systematic errors in the stochastic process.

To determine what predictors are useful for MOS, we applied a LASSO
for predictor selection. We used a set of error metrics to tune the LASSO as
to have it perform as accurate as possible.

We applied MOS to each location – the stations of Figure 3.1 – sepa-
rately, where we used only predictors for that location. Furthermore, we found
LASSO to roughly select the same parameters for each location. The predicted
responses of the MOS correction were used as an input to the spatio-temporal
model, where they were smoothed over the spatio-temporal dimension.

3. How can regression combine observations and predictions
over the spatio-temporal dimension?

To combine the observations and the MOS corrected predictions, we used
their clear-sky indexes. First, the future state of the clear-sky index at a
location can be approximated by taking a weighted average of that location’s
observed clear-sky index and others in proximity. In that case, each weight
can be interpreted as the probability that the observed clear-sky index will
travel to that location. As we sum the clear-sky indexes according to their
probabilities, we are able to approximate the future clear-sky index for the
location under study.

Second, the MOS corrected predictions are combined over the spatio-
temporal dimension by smoothing them over space and time to extract the
trend of the clear-sky index. By doing so, we account for spatial and temporal
errors in the MOS corrected predictions.

When we combine these processes in one model, then they can synergize as
they cancel out each other’s errors. The observations tell us something about
the state, while the MOS corrected predictions tell us something about the
trend. Therefore, by combining both processes in one model, we can improve
the accuracy of our forecasts.

4. Does the performance of spatio-temporal regression for
solar power forecasts vary spatially and temporally, and
if so, why?

We can evaluate the performance of the models over two dimensions: spa-
tially as per station, and temporally as per the test set and validation set.

The MOS correction increases the accuracy of the numerical irradiance
predictions by 8% on the test set and 4% on the validation set – also known
as its SS. There does seem to be a relation between each station’s SS on the
test set and validation set, although it is weak. As the test set spans a period
of mostly winter and the validation set one of mostly summer, we find that
the MOS correction performs best on the test set. This is due to the correction



Conclusion 95

of a systematic error that occurs when the predicted clear-sky index is low,
which occurs more often in the winter than in the summer.

For the spatio-temporal model with a lead-time of one hour, we find that
we can increase on accuracy compared to the numerical irradiance predictions
by 30% for the test set and 25% for the validation set. The difference in
accuracy between the test and validation set is explained as we use the MOS
corrections as an input to the spatio-temporal model.

When we compare the spatio-temporal model’s accuracy against the MOS
correction, then we find it to be as accurate on the test as on the validation
set. In that case, there is zero relation between each station’s SS on the two
sets. We hypothesize that this could be due to different weather patterns over
the winter and summer.

When we assess the spatio-temporal model on a daily scale against the
MOS corrected predictions, then we find the spatio-temporal model to perform
well on days when the MOS corrected predictions are uncertain about the
cloud conditions. Therefore, we find the spatio-temporal model to be accurate
in highly dynamic cloud systems.

7.1.2 Main research questions

As the sub-questions are answered, we turn to the main question:

How can irradiance observations and numerical weather pre-
dictions be regressed on the spatio-temporal dimension to cre-
ate accurate intraday solar power forecasts?

We propose a five-step approach:

1. collect (numerical) weather predictions and irradiance observations
over the spatial (about 50 kilometres apart) and temporal (15
minute to hourly) dimensions;

2. remove the sun’s pattern from the numerical irradiance predictions
and irradiance observations by calculating the clear-sky index;

3. fit the predictions to the observations via MOS;

4. create a spatio-temporal regression model that takes lagged obser-
vations and that smoothes MOS corrected predictions; and

5. apply LASSO for predictor selection.

The model that comes out has an SS between 25% and 30% against numerical
irradiance predictions for a lead-time of one hour.

The reason for this model to work as well as it does, is that it extracts
the information about the state of the atmosphere from lagged observations,
which it applies to the trend of the smoothed MOS corrected predictions. By
combining these two sources of information, we create accurate intraday solar
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power forecasts up to five hours ahead. When we want to go beyond five hours,
the MOS corrected predictions prove to be more accurate.

To conclude, our case study of the Netherlands shows that accurate intra-
day solar power forecasts in highly dynamic cloud systems can be made by
using lagged observations and smoothed MOS corrections in a spatio-temporal
context.
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7.2 Contribution of research

In Chapter 1, we identify two contributions of our research:

1. We aim to provide a framework for incorporating numerical weather
predictions and irradiance observations across the spatio-temporal
dimension for accurate solar power forecasts.

2. We aim to provide a case study of the Netherlands to understand
how irradiance behaves in a spatio-temporal context.

Here, we delve deeper in what these contributions exactly entail.

7.2.1 Regression framework

First, we developed a framework that uses numerical weather predictions and
observations to create accurate intraday solar power forecasts. The framework
is unique as it focusses on the synergies between the smoothing of predictions
and lagged observations over the spatio-temporal dimension. By doing both
in one regression model, it is able to produce better results than doing either
apart.

Second, due to the standardization of the predictors (Section 2.3.4) and
the application of LASSO (Equation 2.14), the framework is able to provide
insights about the irradiance patterns for any geographic location over time.
Therefore, we provide an opportunity to map those patterns and to better
understand the forces that underlie the predictability of solar power.

Finally, by describing in detail the steps necessary to prepare predictions
and observations for such a regression, it becomes easy to scale the framework
to other locations besides the Netherlands. Our research provides a simple
approach that makes use of data that is often already available. By doing so,
we provide a solid base for innovation as described in Section 7.3.

7.2.2 Case study of the Netherlands

First, the case study of the Netherlands provides an insight into how irradiance
travels across the Netherlands. We are able to define a pattern, where it travels
from the south-west across the rest of the Netherlands.

Second, it provides results in terms of an intraday solar power forecast
model’s accuracy in the Netherlands with a lead time between one and six
hours. From there, it can be used as a benchmark to develop new models that
might be more accurate.

Third, we provide an analysis for different cloud conditions, which tells us
something about the accuracy of the model compared to the MOS corrected
predictions. From there, it becomes easier to understand when our framework
can add much value and when other solutions might be more appropriate.
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7.3 Future research

When we reflect back on the contribution that we aimed to make with our
research, then we have succeeded to develop a framework for incorporating
numerical predictions and observations over a spatio-temporal context for in-
traday solar power forecasts. We have tested this framework within the context
of the Netherlands, where it proved to be useful to draw conclusions about
the behaviour of irradiance in a spatio-temporal context. Nevertheless, as we
aim to improve on what we have done within the boundaries of our research,
we provide some topics that could be of interest for future research.

7.3.1 Application of our framework to other contexts

As part of our research, we applied our framework to the Netherlands. The
Dutch climate has a highly dynamic cloud system, where NWP from the
ECMWF seems to struggle to capture those dynamics in irradiance predictions
(Figure 1.3). We solved this problem by designing a compatible framework
accordingly.

When applying the framework to a different context, we might think of
questions such as:

• Could this framework also be applied to other climates, such as in Africa?

• Would such a framework even be useful in those countries when having the
goal to stabilize their energy system?

• What type of weather phenomena are difficult to predict via numerical pre-
diction but could be tackled with statistics?

These are questions that address the scalability of our framework, which are
therefore suitable for follow-up research.

7.3.2 Incorporation of other numerical methods

The justification for our research is that NWP from the ECMWF overpredicts
medium irradiance conditions. However, we could possibly also tackle this
problem by using other numerical weather models, such as the Global Forecast
System. These models might synergize with one-another, therefore improving
on the results that we already have.

Possible questions that come to mind are:

• How can different numerical weather prediction models be combined to cre-
ate accurate solar power forecasts?

• Do numerical weather prediction models differ in their predictions, and if
so, why?



Conclusion 99

These questions aim to further enhance our framework within the context of
the Netherlands via the acquisition of additional data.

7.3.3 Application of other models besides regression

In our research, we used regression as the means to combine irradiance data.
To do so, the data was first relieved from its seasonality, after which a linear
model could be applied. However, another approach is to leave the data as
is while using non-linear models. We might use tree-based methods, support
vector machines, or deep learning models.

Considering that a regression based approach can be considered old-
fashioned, we might want to address the following questions:

• What type of non-linear models are able to create accurate solar power
forecasts from numerical predictions and observations?

• Do non-linear models improve solar power forecasts compared to linear mod-
els, and if so, why?

These questions aim to increase the accuracy of the solar power forecasts by
model improvement.

7.3.4 The effect of our framework on energy trading

We have developed accurate solar power forecasts to make predictions about
the production of PV assets. As these solar power forecasts are more accurate
in terms of error metrics, such as RMSE and MAE, we have no idea if these
solar power forecasts also comply with a financial incentive – that is, whether
it is possible to generate additional profits when deploying these models on
energy markets.

To find out whether our accurate solar power forecasts also increase market
revenue from PV assets, we might want to answer the following questions:

• What type of solar power forecast maximizes revenue on energy markets for
PV assets?

• How can financial risk on the energy market for PV assets be minimized via
solar power forecasts?

These questions are useful to understand if the optimization on accuracy for
solar power forecasts is valuable in a market context.
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