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Chapter 1

Introduction

1.1 Scales in physics

Physics is about the understanding of fundamental forces and how the world
that we observe can be explained with a minimal number of fundamental laws.
This is in turn strongly related to the basic symmetries of nature and how these
symmetries are manifested in conservation laws and Lagrangian actions. Physics
has to deal with an enormous range of scales, from the “smallest” Planck scale
1.616255× 10−35m, towards the atomic scale 10−10m, towards the scale of large
molecules, towards the scale of “daily objects” all the way until the scale of the
universe 8.8 × 1026m. The discovery of new phenomena in physics is often a
consequence of the experimental accessibility of “new scales”. E.g., in the 20th
century, thanks to the discovery of radioactive phenomena, we became able to
explore the atomic scale and its associated theoretical framework of quantum
mechanics. The old laws (classical mechanics) can be understood as “emerging”
from the new laws in a scaling limit (in this case the so-called classical limit
where Planck’s constant is scaled to zero). Similarly, precise measurements of
the precession of the perihelion of Mercury, as well as of the bending of light
by the gravitational field of the sun, pointed to the necessity of a new theory
describing gravity at the scale of the universe. Once more, the old laws (classical
Newtonian gravity) emerge as scaling limits (velocities much smaller than the
speed of light and small mass densities). Finally, in the second half of the
20th century, thanks to heavy collider experiments, we discovered a wealth of
new elementary particles and we understood that nucleons are constituted of
quarks. This led to the “standard model”, a quantum field theory by which
we can describe weak, strong and electromagnetic interaction. The “old laws”
of electromagnetism (Maxwell’s equations) arise from this relativistic quantum
field theory as a classical limit.

1
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1.2 Statistical physics

1.2.1 Equilibrium

Statistical physics is the branch of physics where we want to understand macro-
scopic phenomena starting from the microscopic dynamics of individual agents
or entities. These systems of agents not only represent systems of particles, but
also spin systems or systems where energy is exchanged. Statistical physics is
divided into two subareas: equilibrium statistical physics and non-equilibrium
statistical physics. Let us first talk about the first.

In equilibrium statistical physics, we try to understand the laws of equilib-
rium thermodynamics -macroscopic laws- from the underlying micro-world. In
particular, we aim to understand the phenomenon of phase transitions: how the
same laws on the micro-scale can result in a variety of different behaviors on the
macro-scale. Important examples are the liquid-gas, liquid-solid transitions, and
phase transitions in magnetic systems, i.e., the phenomenon of ferromagnetism.
In equilibrium, it is well understood how to describe the micro to macro transi-
tion, namely via the Boltzmann-Gibbs distribution, later in more mathematical
terms formulated in the so-called DLR (Dobrushin-Lanford-Ruelle) formalism.
In that sense, the study of equilibrium statistical mechanics reduces to the study
of Gibbs measures as a function of parameters such as temperature and mag-
netic field. A milestone in our understanding of phase transitions in magnetic
systems is the exact solution of the two-dimensional Ising model by Onsager
in 1944. Further significant achievements in the mathematical theory of Gibbs
measures are the universal properties of high-temperature Gibbs states, in the
works of Dobrushin and Shlosman [31], the rigorous formulation of the cluster
expansion by Minlos (and many others), building on earlier work of Mayer, and
a general theory of contours and low-temperature states by Pirogov and Sinai
[82], building on earlier work by Peierls. The mathematical theory of equilibrium
statistical mechanics, i.e., of Gibbs measures is a well-established field, where the
paradigms are well-defined. Even if in this field there are still important open
problems (e.g., the liquid-solid transition), the mathematical paradigm is trans-
parent, well-defined, and problems are defined within this paradigm. The field
of Gibbs measures also has major interactions with and applications in other
fields of mathematics such as ergodic theory and dynamical systems (works of
Sinai, Ruelle, Bowen [11]), Markov process theory (works of Holley, Stroock, Ze-
garlinski [86]), and even in number theory (works of Knauf [59, 60], Newman).

1.2.2 Non-equilibirum

The situation of non-equilibrium statistical physics is very different. In non-
equilibrium, we aim to understand macroscopic transport phenomena such as
entropy production, heat conduction, particle transport, and phenomena in hy-
drodynamics or material science, starting from the motion of individual parti-
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cles. The macroscopic laws for heat transport (Fourier law) or particle transport
(Fick’s law) were well-established long before statistical mechanics. However,
the way they were derived was entirely phenomenological, based on intuitively
plausible principles, such as the fact that the heat current is proportional to
the temperature difference (Fourier law). In contrast with the setting of equi-
librium statistical physics, there is no well-defined paradigm to define probabil-
ity measures that are the analogs of Gibbs measures out of equilibrium. E.g.,
for a system in contact with two different temperatures, there is no “formula”
which links the Hamiltonian of the microsystem to the probability measure (the
so-called non-equilibrium steady-state) from which one can describe macro phe-
nomena such as the emergence of heat current. The number of microscopic
degrees of freedom (the position of individual particles) is so enormous that it is
a hopeless and useless task to describe exactly the motion of particles. Indeed,
even if one could do so, then there would still be the formidable task of deriving
the macro-laws from this extremely complex high-dimensional motion.

In non-equilibrium we want to understand so-called “transient non-equilibrium”,
i.e., the phenomenon of relaxation to equilibrium, as well as “stationary non-
equilibrium”, i.e., the long-term behavior of systems in contact with non-equilibrium
driving forces such as reservoirs at different temperatures (or chemical poten-
tials), and/or bulk driving such an external field. The fundamental difference
between “stationary equilibrium” and “stationary non-equilibrium” is that in the
latter, we have breaking of time-reversal symmetry manifested by the presence
of currents (which have a preferred direction). In that sense, we can roughly say
that equilibrium is characterized by time-reversal symmetry, or detailed balance,
whereas non-equilibrium implies the breaking of detailed balance.

1.3 Interacting particle systems

In the context of non-equlibrium statistical mechanics Interacting particle sys-
tems (IPS) are simple models describing basic rules of interaction among parti-
cles. In the seminal work [84] Frank Spitzer introduced several classes of these
models on configuration space. The key property of this type of models is the fact
that we assume that at the microscopic level particles follow some predescribed
stochastic Markovian dynamics; we make a choice to simplify the microscopic
motion of the particles. Instead of Hamiltonian mechanics (Newton’s law), we
describe particle motion by stochastic rules, i.e., the particles perform random
walks and interact with each other, e.g., by exclusion (forbidden to be at the
same place), or other repulsive or attractive interactions. The noise introduced in
the microdynamics makes more accessible the task to derive the macro laws rig-
orously: the noise provides a natural source of relaxation to a “local equilibrium”
state, and the macroscopic equations describe how the parameters governing the
local equilibrium are evolving as a function of (macroscopic) space and time. In
deterministic mechanical systems, we can argue that the source of noise is the



4 CHAPTER 1. INTRODUCTION

ignorance of the initial conditions (we only know the initial macrostates of the
system) combined with the chaotic motion of the microscopic degrees of free-
dom. This intuition can be made rigorous in “toy-deterministic systems” such
as coupled chaotic maps ([72]). The advantage of working with IPS (which are
“toy”-systems, or in the words of Dobrushin “caricatures of hydrodynamics”) is
that we can rigorously define what it means to pass from the micro to the macro
scale (the so-called hydrodynamic limit) and we can study much more than the
emergence of the macro-equation.

Indeed, in IPS, the emergence of a macro equation (also called hydrodynamic
equation) such as the heat equation can be understood as an infinite-dimensional
law of large numbers. In analogy with the ordinary law of large numbers, we
can ask for central limit behavior (equilibrium and non-equilibrium fluctuations
around the hydrodynamic limit) and for large deviations (probabilities of devi-
ations from the macro equation). Finally, we can study systems driven away
from equilibrium by boundary reservoirs (boundary driven), bulk driven, or a
combination of both. The field of hydrodynamic limits was developed in the
1980-1990’s. Probabilistic approaches based on duality, coupling were developed
by de Masi, Presutti, and many others, see [28] and [27] for overviews. In the
early 90’s Varadhan solved the problem of the large deviations from the hydro-
dynamic limit and developed a robust method for gradient systems (the so-called
GPV or entropy method). Starting from these developments, many refinements
and extensions of the entropy method were formulated, and a general theory
of macroscopic non-equilibrium fluctuations was developed by Bertini, da Sole,
Gabrielli, Landim [9]. In parallel, for a class of systems including the (symmetric
as well as asymmetric) exclusion process coupled to boundaries, exact solutions
with the so-called matrix product ansatz were developed by Derrida [30] and
coworkers. This later developed into a research area, at present known under
the name “integrable probability”.

1.4 Duality

Stochastic duality emerged as a fundamental tool in the study of IPS, from the
very early stage of development of the field, see e.g. the foundational works
of Spitzer [84] and Liggett [70]. This notion is analogous to that of integrable
systems in the sense that those IPS that enjoy the property of duality are systems
for which the BBGKY hierarchy closes, and as a consequence of this, the k-
particle correlation functions obey closed-form equations (not involving higher
correlations). Having correlation functions in a closed-form has proved itself
useful in the derivation of many results [16], [18], [44], [45] to mention just a
few examples. It is also precisely this property which is the common core of the
IPS we study in this thesis. We will focus on three types of IPS; independent
random walkers, exclusion processes (a model of exclusive interaction introduced
by Spitzer in [84]), and inclusion processes (a process introduced in [44] and [45],
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which can be seen as the attractive counterpart of the exclusion process). In
order to be able to use duality, we will work on the symmetric versions of them,
and we will assume that the particles take positions in the infinite lattice Zd.

1.5 Macroscopic laws

1.5.1 Hydrodynamics

The first example of macroscopic behavior that we can deduce from the type of
microscopic dynamics modeled by IPS is the so-called hydrodynamic limit. This
is performed with the aim of rigorously deriving, starting from a microscopic IPS,
a partial differential equation that describes the evolution of some macroscopic
observables. We refer the reader to [28], [27] and [58] for a complete survey on the
subject. For the concrete systems that we study in this thesis, the only conserved
quantity is the total number of particles. Therefore, it is natural to expect that
the desired PDE will describe the evolution of particles’ density over time. This
equation can be derived by suitably defining, at the microscopic level, a local
density and looking at the way it changes as a rescaling parameter n (see Section
3.1.1 for more details) tends to infinity. This parameter intuitively represents the
ratio between the macroscopic and the microscopic length scale (in some cases
n is also related to the time scale and the total number of particles). Rigorously
speaking, the hydrodynamic result is given in probabilistic terms; in particular,
it corresponds to a type of law of large numbers.

1.5.2 Fluctuations from the hydrodynamic limit

Based on the idea that hydrodynamic limits correspond to a law of large number
type of results, fluctuation limits are then the CLT counterpart to the hydro-
dynamic limit theorems. For this type of results, the quantity of interest at the
microscopic level is a centered and suitably rescaled ( by

√
n ) version of the den-

sity field. The convergence is again given in probabilistic terms, but the limiting
object is no longer the solution of a PDE but rather a generalized stochastic pro-
cess, which is the solution to an SPDE. Of course, in the deterministic setting,
this type of results are much harder to obtain [71]. Nevertheless, they should
correspond to a qualitative picture of the chaotic behavior given by the sensitiv-
ity of Newton’s equations to initial conditions. The first rigorous derivation of
this type of limit theorems was given in [73] for a system of independent particles
on Rd. For results concerning IPS on the lattice Zd we refer the reader to [27]
and [85].
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1.5.3 The role of conserved quantities: the Boltzmann-
Gibbs principle

For the particle systems we study in this thesis, the only conserved quantity is
the number of particles. As a consequence there exists a one-parameter family of
homogeneous, reversible, and ergodic product measures; indexed by the particle
density. This family of measures becomes a key ingredient in the study of equi-
librium fluctuations from the hydrodynamic limit of such particle systems. A
further consequence of the conservation of particles is the so-called Boltzmann-
Gibbs principle. This principle states that the density fluctuation field is the
slowest varying field, and other fluctuation fields can be replaced by their pro-
jections (with respect to the Hilbert space related to the one-parameter family
of reversible measures) on the density field. Brox and Rost in [12] proved the
validity of the principle for attractive zero-range processes. This principle was
extended in our context, for a variant of the exclusion process, by De Masi, Pre-
sutti, Spohn and Wick in [26]. Later on, new proofs and generalizations came to
light; see for example [68], [20], [81], among others. Most relevant to this thesis
is the further generalization originally introduced in [46] in which a second-order
version of this principle was established. This version allows us to replace local
functionals of a conservative, one-dimensional stochastic process by a possibly
nonlinear function of the conserved quantity.

1.6 Condensation

For IPS without restrictions on the number of particles per site, and for suit-
able attractive particle interactions, the systems can exhibit a condensation phe-
nomenon. In simple words, condensation consists of a macroscopically significant
portion of particles being concentrated at a single site or region. In more precise
terms, this phenomenon consists of the existence of a critical density above which
the system phase separates into a condensate and a homogeneous phase [24]. Of
course, condensation phenomena have manifestations outside of physics; wealth
condensation in macroeconomics [13], gelation in networks [64], traffic jamming
[35], and coalescence in granular systems [32] are other examples just to mention
a few.

Generally speaking, there are basically two tasks in the study of condensing
particle systems:

Existence: The first step in this type of study is to show that indeed the systems
condense, i.e., that a large proportion of particles is located at only one
site with dominating probability.

Mestastability: The next step is to investigate the dynamical properties of the
condensate.
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In principle, this basic program can be applied to finite and infinite systems and
for reversible and non-reversible versions of those systems. Nevertheless, the
prototypical examples to study these questions are the ZRP and related mod-
els. In the ZRP, when initialized from a homogeneous distribution of particles,
the condensate emerges from a coarsening process described in [34]. Despite
its non-triviality, this coarsening process is understood heuristically. Despite its
simplicity, the zero-range process is rich enough to exhibit a type of conden-
sation analogous to the Bose-Einstein condensation of quantum physics. More
precisely, when the rates of mass transfer in the ZRP depend on each site (het-
erogeneous systems), the condensation of particles is expected to occur in the
site with the lowest rate [36]. In this case, condensation is analogous to Bose-
Einstein condensation where the slowest site plays the role of the ground state.

Due to its attractive interaction, the SIP lives in the IPS realm that, under a
particular regime, which we call the condensation regime, is expected to exhibit
condensation phenomena. Nevertheless, for this system, the complete under-
standing of the coarsening process is still an open problem in the infinite-volume
case with partial results in terms of Fourier-Laplace transforms given in [18]. It
is precisely in [18] that the appearance of sticky Brownian motion as a relevant
limiting object was first observed, hidden behind the Fourier-Laplace transform
of some limiting variance. It was conjectured in the same paper that the emer-
gence of sticky Brownian is a generic characteristic for systems with condensa-
tion and that it goes beyond the type of particle systems included in this thesis
(i.e., beyond IPS with duality). In this thesis, with the help of self-duality and
Dirichlet-form techniques, we obtain a precise scaling behaviour of the variance
of the density field under the condensation regime giving a step forward in the
understanding of the coarsening process.

1.7 Scope of this thesis

The work developed in this thesis lies in the intersection of fluctuation theory
and applications of duality for IPS. It can be divided into two main parts. The
first one consists of generalizations, in the context of duality, of two essential
tools to derive fluctuation results, while the second part concerns the study of
condensation phenomena from the point of view of fluctuation theory.

To be more precise, the first part contains two chapters. In Chapter 4, with the
help of orthogonal duality polynomials, we obtain a quantitative generalization
of the Boltzmann-Gibbs principle, both in equilibrium and local equilibrium,
in the context of independent random walkers. In Chapter 5, with the help of
orthogonal polynomial duality, we introduce a notion of higher-order fluctua-
tion fields and characterize their scaling limits in terms of a recursive martingale
problem, which formally corresponds to a notion of powers of generalized pro-
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cesses. This is done all at once for the three systems under consideration in this
thesis.

In the second part, and for the particular case of the symmetric inclusion process,
in Chapter 6, we obtain new relevant information about the dynamics of the
coarsening process on the one-dimensional infinite lattice. Namely, employing
Mosco convergence of Dirichlet forms and duality, we obtain an explicit scaling
for the variance of the density field in the condensation regime



Outline

Chapter 4: Quantitative Boltzmann–Gibbs Prin-
ciples via Orthogonal Polynomial Duality

In this chapter, we study fluctuation fields of orthogonal polynomials in the con-
text of particle systems with duality. We thereby obtain a systematic orthogonal
decomposition of the fluctuation fields of local functions, where the order of ev-
ery term can be quantified. This implies a quantitative generalization of the
Boltzmann–Gibbs principle. In the context of independent random walkers, we
complete this program, including also fluctuation fields in a non-stationary con-
text (local equilibrium). Similar results can be obtained for other interacting
particle systems with duality, such as the symmetric exclusion process, under
precise conditions on the n-particle dynamics.

Chapter 5: Higher-order fluctuation fields and or-
thogonal duality polynomials

In this chapter, inspired by the works in [5] and [47], we introduce what we
call k-th-order fluctuation fields and study their scaling limits. This construc-
tion is done simultaneously for independent walkers, symmetric exclusion and
inclusion processes in the d-dimensional Euclidean lattice. The explicit form of
these higher-order fields resembles the one already introduced in [7] in the sense
that both types of fields are based on an orthogonal decomposition of fluctuation
fields of local functions that can be expressed in terms of orthogonal self-duality
polynomials.

Thanks to the structure given by the orthogonal self-duality, we can mimic um-
bral calculus techniques and pretend that indices are exponents. This type of
interpretation provides us with a setting in which we are able to understand
these fields as some type of discrete analogues of powers of the well-known den-
sity fluctuation field. Later on, we make rigorous this idea by showing that
indeed the weak limit of the k-th order fluctuation field satisfies a recursive

9
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martingale problem that formally corresponds to the SPDE associated with the
k-th-power of a generalized Ornstein-Uhlenbeck process.

Chapter 6: Condensation of SIP particles and
sticky Brownian motion

In this chapter, we study the symmetric inclusion process (SIP) in the conden-
sation regime. We obtain an explicit scaling limit for the variance of the density
field in this regime when initially started from a homogeneous product measure.
This provides relevant new information on the coarsening dynamics of condens-
ing interacting particle systems on the infinite lattice.

One of the novelties of this chapter is that our main result is obtained as an
application of Mosco convergence of Dirichlet forms. Thanks to self-duality, the
variance of the density field can be written in terms of the difference of the po-
sitions of two SIP particles. The process given by this difference is then showed
to converge, in the sense of Mosco convergence of Dirichlet forms, to a two-sided
sticky Brownian motion. This approach implies the convergence of the proba-
bilities of the two SIP particles to be together at time t. This, combined with
self-duality, allows us to obtain the explicit scaling for the variance of the fluc-
tuation field.

The explicit scaling limit of the variance of the fluctuation field that we obtain
can be expressed in terms of the two-sided sticky Brownian motion transition
function. From this fact, we can clarify the qualitative picture of the coarsening
process when started from a homogeneous product measure in the infinite lattice.
Our results suggest the formation of large piles of particles that move together as
ordinary Brownian motions and interact with each other as a consistent family
of Brownian motions as introduced in [53].

Chapter 7: Perspectives

Chapter 7 is dedicated to a brief overview of some of the natural questions that
may arise and that are still open problems. In this chapter, we present conjec-
tures, ideas, and sketches of proofs of the results that we propose to explore as
a follow up to the main results presented in this thesis.

In Section 7.1, related to the work Higher-order fluctuation fields and orthogonal
duality polynomials, we generalize the context given in [5] and [47] to the higher-
order fields case. By specifying this more general setting, we draw a future line
of research in which discrete analogues of white-noise spaces are used to sketch
the road towards the derivation of results concerning convergence to generalized
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wick renormalized powers of distributions.

Finally, in Section 7.2, as part of the perspectives on the work Condensation
of SIP particles and sticky Brownian motion, we propose as a future line of
research, the convergence of a system of k condensively rescaled SIP particles
to a consistent family of Brownian motions. As an example of this conjecture,
we show the convergence (in the Mosco sense) of the Dirichlet form associated
with two SIP particles to a Dirichlet form expected to correspond to a pair of γ
coupled Brownian motions.





Chapter 2

Mathematical preliminaries

2.1 The processes

In this section, we give a precise mathematical description of the interacting
particle systems we consider in this thesis. As stated in the introduction, we
will work with stochastic processes of the type of independent random walkers,
inclusion, and exclusion processes:

Independent Random walkers: This is the simplest model for motion of par-
ticles. In this model, interaction of particles is neglected and particles jump
according to mutually independent exponentially distributed clocks at rate
α ∈ (0,∞)

Symmetric Exclusion Processes (SEP(α)): This particle system models the
most elementary type of interaction. Namely, in this model, particles jump
according to mutually independent Poisson jump processes, while the value
of the parameter α ∈ N determines the maximum number of particles al-
lowed per site x ∈ Zd. In particular the case α = 1 corresponds to the
canonical exclusion process originally introduced by Spitzer in [84].

Symmetric Inclusion Processes (SIP(α)): This process also describes strong
interaction but opposite to that of the exclusion process in the sense that
particles attract each other. In this model, particles are equipped with two
exponential clocks: one of rate α that represents the random walk jumps,
and the other representing the inclusion dynamics has in principle rate 1
which is multiplied by the number of particles sitting in the arrival site.
Contrary to the exclusion process, this time, the number of particles is
unbounded,

Of the three types of processes we consider, without a doubt, the most studied
is the exclusion process. The dynamics of this particle system is rich enough

13



14 CHAPTER 2. MATHEMATICAL PRELIMINARIES

to describe strong interaction but of a nature simple enough to allow, in many
cases, for uniform estimates that facilitate many proofs. Much less ubiquitous
in the literature is the inclusion process. In this process the number of parti-
cles is unbounded, and therefore a priori several uniform estimates fail. Finally,
the system of independent walkers, although this system neglects interaction, it
serves well as a prototype to develop further theory.

In the rest of this chapter, we will introduce these systems of interacting particles
in configuration space. In this perspective we treat particles as indistinguishable
from each other, and we only keep track of the number of particles that are in
each position x ∈ Zd. We will then introduce the notion of duality in Section
2.2.3 together with some applications.

2.1.1 The infinite configuration process

We now want to consider the dynamics of an infinite number of particles ran-
domly hopping on the lattice Zd according to any of the rules given by the
Markov processes described above. Let us denote by {η(t) : t ≥ 0} the Markov

process, in configuration notation, with state space Ω of the type Ω = ΛZd where
Λ = N or Λ = {0, 1, . . . , α}. I.e., for a configuration η = (ηi : i ∈ Zd), ηi denotes
the number of particles at site i ∈ Zd.

The parameters (σ, α) ∈ {0, 1}× (0,∞)∪ {−1}×N determine the type of inter-
action among particles as follows:

Exclusion Process

The choice σ = −1 results in exclusion interaction. For this process the param-
eter α takes values in the set of natural numbers, α ∈ [k] ⊂ N, as it determines
the maximum number of particles allowed per site.

Independent Random Walkers

This particle system corresponds to the choice σ = 0 and the intensity parameter
α ∈ R regulates the rate at which the particles move independently from each
other.

Inclusion Process

The choice σ = 1 gives rise to an interaction of inclusion-type consisting of par-
ticles attracting each other at rate p(r). Moreover particles move independently
from each other at rate αp(r) with α ∈ (0,∞).
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REMARK 2.1.1. The definition of the state space Ω is different in each case,
depending on whether there are restrictions or not on the total number of particles
allowed per site. This is finite for the exclusion process, thus, for SEP(α), we

have Ω = {0, 1, . . . , α}Zd . The situation is different in the IRW and SIP cases,
for which, in principle, there are no restrictions on the maximum number of
particles. Nevertheless, one has to avoid explosions of the number of particles in
a given site. For this reason, the characterization of Ω in these cases (i.e., for
σ ≥ 0) is a more subtle problem. For the moment, we will restrict to implicitly

define Ω as the set of configurations in NZd whose evolution η(t) is well-defined
and belonging to Ω for all subsequent times t ≥ 0. We refer the reader to [2]
and [28] for examples on conditions sufficient to guarantee the well-definedness.
A possible such subset is the set of tempered configurations. This is the set of
configurations η such that there exist C, β ∈ R that satisfy |η(x)| ≤ C|x|β for all
x ∈ R.

In this notation, we can analytically describe the evolution of our systems via
the following operator working on local functions f : Ω→ R as

L f(η) =
∑
i∈Zd

∑
r∈Zd

p(r)ηi(α+ σηi+r)(f(ηi,i+r)− f(η)) (2.1)

where ηi,i+r denotes the configuration obtained from η by removing a particle
from position i ∈ Zd and moving it to position i+ r, i.e.,

ηi,i+r = η − δi + δi+r

In the rest of this thesis, unless stated otherwise, we will always assume that
p(r) is a symmetric, finite-range, irreducible Markov transition function on Zd:

1. Symmetry. The function p : Rd → [0,∞) is of the form:

p(r1, . . . , rd) = p(|r1|, . . . , |rd|) (2.2)

and such that p(rσ(1), . . . , rσ(d)) = p(r1, . . . , rd) for all σ ∈ P(d), the set
of permutations of {1, . . . , d}.

2. Finite-range. There exists a finite subset of integer numbers R ⊂ Zd of

the form R = [−R,R]d ∩ Zd, for some R ∈ N, R > 1, such that p(r) = 0
for all r /∈ R.

3. Irreducibility. For all pair of points x, y ∈ Zd there exists a sequence of
points i1 = x, . . . , in = y such that

n−1∏
k=1

p(ik − ik+1) > 0.
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We will also assume, without loss of generality, that p(0) = 0, and that∑
r∈R

p(r) = 1

and denote by χ the second moment:

χ :=
∑
r∈R

r2
` · p(r), for all ` ∈ {1, . . . , d}. (2.3)

The finite-range assumption is only there for technical reasons since the results
in this thesis can be easily extended to the infinite-range case, as long as the
transition function is such that the infinitesimal generator is well-defined.

Notice that when restricted to only one particle, all the above systems coincide
with a random walker moving on Zd at rate α · p(r). i.e. with infinitesimal
generator

L(1)f(i) := α
∑
r∈Zd

p(r)(f(i+ r)− f(i)) (2.4)

for functions f : Zd → R.

This observation is simple but worthy to mention since it is commonly used
in the context of interacting particle systems with duality for which, computa-
tions involving, in principle, an infinite number of particles can be reduced to
computations involving only one independent walker.

2.1.1.1 Reversibility

A reversible measure for the generator (2.1) is a measure µ, which is non-identical
zero, and such that the following detailed balance relation is satisfied:

µ(η)c(η, ηi,i+r) = µ(ηi,i+r)c(ηi,i+r, η) (2.5)

for every r ∈ R and where

c(η, ηi,i+r) = p(r) ηi (α+ σηi+r) (2.6)

The particles systems considered in this thesis have a one-parameter family
of homogeneous (w.r.t. translations) reversible and ergodic product measures
νρ, ρ > 0, indexed by the particle density, i.e.,∫

η0 dνρ = ρ. (2.7)

The nature of the underlying dynamics and the type of reversible measure we
obtain is regulated by the parameter σ ∈ Z as follows.
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Exclusion Process

This system is well known to have reversible measures νρ, ρ ∈ (0, α), that are
products of Binomial distributions: νρ = ⊗i∈ZdBinom

(
α, ρα

)
whose marginals

are given by

Pνρ(ηi = n) =
1

Zα,ρ
·
(
α

n

)
·
(

ρ

α− ρ

)n
, ∀ i ∈ Zd,

with normalizing constant

Zα,ρ =

(
α

α− ρ

)α
. (2.8)

Independent Random Walkers

The reversible measures νρ, ρ > 0 are products of Poisson distributions with
parameter ρ, νρ = ⊗i∈ZdPois(ρ), i.e. the marginals are given by

Pνρ(ηi = n) =
1

Zρ
· ρ

n

n!
, Zρ = eρ, ∀ i ∈ Zd.

Inclusion Process

The SIP is known to have products of Negative-Binomial distributions as re-

versible measures, i.e. νρ, ρ > 0 with νρ = ⊗i∈ZdNeg-Binom
(
α, ρ

ρ+α

)
with

marginals

Pνρ(ηi = n) =
1

Zα,ρ
·
(
n+ α− 1

n

)
·
(

ρ

α+ ρ

)n
, ∀ i ∈ Zd,

with normalizing constant

Zα,ρ =

(
α+ ρ

α

)α
. (2.9)

2.2 Duality

Generally speaking, we can consider duality as a tool that provides us with two
different perspectives of the same object. The notion of duality, has in general
many manifestations across mathematics. In particular, Interacting Particle
Systems is among those areas that enjoy the applicability of this concept. In
this area, many times, a nontrivial duality relation is used to prove properties of
processes. The idea is that we have one Markov process {Xt}t≥0 that we would

like to analyze, and another process {X̂t}t≥0 for which we already have sufficient
information or that is easier to analyze. Then the duality relation allows us to
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transfer information from {X̂t}t≥0 to {Xt}t≥0, and vice-versa. More precisely,
we have the following definition:

DEFINITION 2.2.1. Let {Xt}t≥0 and {X̂t}t≥0 be two Markov Processes with

state spaces E and Ê. Let also D : Ê × E → R be a measurable function. The
processes {Xt}t≥0 and {X̂t}t≥0 are said to be dual with respect to D if for all

x ∈ E , x̂ ∈ Ê and t ≥ 0 we have

ExD(x̂, Xt) = Êx̂D(X̂t, x), (2.10)

where Ex and Ex̂ denote expectation with respect to Xt and X̂t when starting
from x and x̂ respectively, and both RHS and LHS are assumed to be finite.
Moreover, the measurable structure on Ê × E is given by the product of their
Borel σ-algebras.

REMARK 2.2.1. Notice that in (2.10) we have implicitly assumed that the du-
ality functions are integrable.

Relation (2.10) can be also written in terms of semigroups:

(StD(x̂, ·))(x) = (ŜtD(·, x))(x̂) (2.11)

where St and Ŝt denote the semigroups associated to Xt and X̂t respectively.

For the processes considered in this thesis, this relation is also equivalent to the
corresponding relation at the level of generators. Namely,

LD(x̂, ·)(x) = L̂D(·, x)(x̂) for all x ∈ E, x̂ ∈ Ê. (2.12)

REMARK 2.2.2. In order to have duality at the level of generators, we have
to take care that the corresponding duality functions are in the domain of the
corresponding generators. This is not always the case. For example, we have the
duality between Brownian motion with reflection at zero ( denoted by Bref

t ), and
Brownian motion with absorption at zero (denoted by Babs

t ). If we denote by

L ref and L abs the generators of Bref
t and Babs

t respectively, we have that their
domains are given by:

D(L ref) = {f ∈ C0(R+) ∩ C2(R+) : f ′, f ′′ ∈ C0(R+), f ′(0+) = 0}

and

D(L abs) = {f ∈ C0(R+)∩C2(R+) : f ′, f ′′ ∈ C0(R+), f(0) = 0, f ′′(0+) = 0}.

In this case, the duality function is

D(x, y) = I(x ≤ y)

which, because of differentiability issues, is not in the domain of the generators
of the two processes. We refer the reader to section A.1.4 in the appendix for
the definition of those generators.
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2.2.1 Self-Duality

The particular case in which the two processes involved in the duality relation
are copies of each other is called self-duality. Let us make this type of self-duality
more transparent by specializing it to the type of interacting particle systems
relevant to this thesis and, instead of the lattice Zd, restricting to the case of a
finite lattice V (only for this section). For a configuration ξ ∈ Ω, let us denote
by ‖ξ‖ the number of particles it contains, i.e.,

‖ξ‖ =
∑
x

ξx (2.13)

Let us denote by Ωk the subset of Ω whose elements have exactly k particles.
Additionally, we denote by Ωf the set of configurations with a finite number of
particles

Ωf =
⋃
k∈N

Ωk (2.14)

REMARK 2.2.3. Notice that in the case of a finite lattice V , the sets Ω and Ωf
are almost surely equal. This is because avoiding explosions ( infinitely many
particles coexisting on one site) implies that the number of particles at a given
position are finite almost surely. Then, from the finiteness of the lattice, any
valid configuration is almost surely finite. The notation Ωf and Ω is used to be
consistent with the rest of this thesis, where we extensively work with the infinite
lattice case.

A self-duality function will then be a function D : Ωf × Ω→ R such that:

Eη
[
D(ξ, ηt)

]
= Eξ

[
D(ξt, η)

]
(2.15)

for all ξ ∈ Ωf , η ∈ Ω. Or, equivalently,

LD(ξ, ·)(η) = L (k)D(·, η)(ξ) (2.16)

again for all ξ ∈ Ωf , η ∈ Ω, and where L (k) denotes the generator (2.1) restricted
to configurations containing exactly k particles.

2.2.1.1 Triangular self-duality

For reversible particle systems there is a “cheap” duality function that is easy
to find. Namely, let us denote by µ a reversible measure for the generator (2.1).
I.e., a measure satisfying the detailed balance condition (2.5). Then the cheap
duality function

Dcheap(ξ, η) =
∏
i∈V

1l{ηi=ξi}
1

µ(ηi)
(2.17)
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indeed satisfies (2.16).

Despite its simplicity, finding a “cheap” self-duality function is a good first step
to build more useful self-duality functions. More precisely, from the “cheap”
one, we can construct new self-duality functions by acting with symmetries of
the generator L . A symmetry S of L is an operator satisfying the relation:

[L , S] = 0

where [·, ·] denotes the Lie bracket or commutator, i.e.,

[L , S] = L S − SL

The new duality function is then given by:

Dnew(ξ, η) = SDcheap(ξ, η)

In [17], using a Lie algebraic approach it is proven that the generator L defined
in (2.1) admits a set of factorized symmetries that are constructed starting from
suitable creation and annihilation operators. The existence of these symmetries,
combined with the cheap duality function obtained by the reversible measures of
Section 2.1.1.1, allow to compute a non-trivial factorized duality function that
has a characteristic ”triangular” form.

In all three cases, the self-duality functions are factorized polynomials. This
particular form will be the case for all duality functions used in this thesis.
More precisely,

D(ξ, η) =
∏
i∈Zd

P (ξi, ηi) (2.18)

where P (0, n) = 1, and P (m, ·) is a polynomial of degree m.

REMARK 2.2.4. Notice that from the fact that the configuration ξ has a finite
number of particles, we have that the product in the RHS of (2.18) only has a
finite number of factors different from 1, and hence the product is well-defined.

We then have the following triangular self-duality relations:

Independent Random Walkers

In this case the self-duality function is a product of polynomials in the variable
η. More precisely

D(ξ, η) =
∏
i∈Zd

d(ξi, ηi). (2.19)

The single-site duality polynomials are given by

d(m,n) = 1l{m≤n}
n!

(m− n)!
. (2.20)
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Symmetric Exclusion Process

For SEP the single-site duality functions are

d(m,n) = 1l{m≤n}

(
n

α

)
(α−m)!. (2.21)

Symmetric Inclusion Process

For SIP we have

d(m,n) = 1l{m≤n}
n!

(n−m)!

Γ(α)

Γ(α+m)
. (2.22)

2.2.1.2 k-point correlation functions

As we will see in the sections to come, the knowledge of k-point correlation func-
tions is useful for many applications related to scaling limits of IPS. Immediate
examples are Section 2.2.2 and Section 3.1 of this thesis, which make use of the
one-point (expectations) and two-point correlations in the context of hydrody-
namic limits.

As we mentioned earlier in Section 1.4, thanks to self-duality we can explicitly
compute k-point correlation functions. This is due to the polynomial form of the
triangular self-duality functions. For example, for the one-point and two-point
correlations we have the following identities:

ηx = C1(α, σ) ·D(δx, η) (2.23)

ηx · ηy = 1lx=y ·
[
C2(α, σ) ·D(2δx, η) + C3(α, σ) ·D(δx, η)

]
+ 1lx 6=y · C4(α, σ) ·D(δx + δy, η) (2.24)

From (2.23) and (2.24), together with self-duality we indeed obtained the one
and two-point correlation functions. Namely, we have

Eη
[
ηx(t)

]
= C1 · Eη

[
D(δx, η(t))

]
= C1 · Ex

[
D(δX(t), η)

]
(2.25)

and

Eη
[
ηx(t) · ηy(t)

]
= 1lx=y ·

[
C2 · Eη

[
D(2δx, η(t))

]
+ C3 · Eη

[
D(δx, η(t))

]]
+ 1lx 6=y · C4 · Eη

[
D(δx + δy, η(t))

]
= 1lx=y ·

[
C2 · Ex,y

[
D(δX(t) + δY (t), η)

]
+ C3 · Ex

[
D(δX(t), η)

]]
+ 1lx 6=y · C4 · Ex,y

[
D(δX(t) + δY (t), η)

]
(2.26)
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where for notational convenience we removed the dependence of the constants
Ci, for i ∈ {1, . . . , 4}, on the parameters α and σ.

REMARK 2.2.5. Notice that the RHS of (2.25) and (2.26) is much simpler.
Thanks to self-duality we have simplified computations involving in principle an
infinite number of particles to expectations involving only one and two particles
respectively.

The knowledge of k-point correlation functions has many applications and we
mention just a few of them:

Scaling limits: Generally speaking, the scaling properties of a single dual parti-
cle determine the hydrodynamic equation. More precisely, the expectation
of the density field converges to the solution of the hydrodynamic equa-
tion, which in our context is the linear heat equation. The variance of
the density field is related to the behavior of two dual particles. From
the scaling properties of their joint dynamics, one can understand both
the stationary and non-stationary behavior of the variance of the density
fluctuation field. In particular, quantities such as the effect of deviation
from local equilibrium become accessible.

Correlation inequalities: Information about the k-point correlations can be
obtained by controlling the dynamics of k dual particles. This has allowed
for example to obtain correlation inequalities. An example of this is the
work [45] that uses duality to find correlation inequalities for the SIP, the
so-called Brownian momentum process, and the Brownian energy process.

Ergodic properties: By ergodic properties, we understand the characteriza-
tion of the extreme points of the set of invariant measures and the char-
acterization of which measures, over time, converge to a given extremal
invariant measure. By duality, the characterization of invariant measures
boils down to the understanding of bounded harmonic functions of the
dual-process, which in our context is always a system of finitely many
particles, i.e., simpler than the original system we started from (which in
principle has infinitely many particles). In [70] Chapter 8, the ergodic prop-
erties of SEP (1) are completely studied using duality and a comparison
inequality between exclusion particles and independent random walkers.
In [65] using a similar approach this problem is solved for SIP.

Well-posedness of martingale problems: Duality has already been used,
see e.g. [33], to show the uniqueness of solutions to martingale prob-
lems. More recently, in [29], duality has been used to show the existence
of solutions as well.
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Non-equilibrium systems Duality allows to analyze systems out of equilib-
rium. For example, in [16], a class of boundary driven systems is consid-
ered. These systems are placed in contact with proper reservoirs, working
at different particle densities or different temperatures. Theese particle sys-
tems are showed to be dual to systems with absorbing boundaries (which
are much simpler to analyse).

For the case of the type of duality we consider, the reader can find in [17] a
method and worked examples to find dualities for certain types of interacting
particle systems via operators commuting with the infinitesimal generator. Ad-
ditionally, the work [79] exhausts the types of duality relations of factorized form
possible for a class of particle systems that include the ones described by the
infinitesimal generator (2.1). The approach is based on a relation between fac-
torized duality functions and stationary product measures and an intertwining
relation provided by generating functions. Additionally, from the perspective of
population genetics, the works [75] and [74] have revealed strong connections of
duality with the notions of symmetry and conserved quantities.

2.2.2 Applications of triangular self-duality: discrete heat
equation

An application of self-duality related to Hydrodynamic limits is related to the
so-called Kolmogorov equation. To make things transparent, consider the one-
dimensional nearest neighbor symmetric inclusion process in Z. In particular for
x ∈ Z consider the function f(η) = ηx, we then have

L ηx = LC1 ·D(δx, η) = C1 ·LD(δx, η)

= C1 · L(1)D(δx, η) = L(1)C1 ·D(δx, η)

=
α

2

(
ηx+1 + ηx−1 − 2ηx

)
(2.27)

where in the third line we used self-duality.

Then if we define the function

Ψ(x, t) = Eη[ηx(t)], (2.28)

by the Hille-Yoshida Theorem A.1.1 we have

∂

∂t
Ψ(x, t) =

α

2

(
Ψ(x+ 1, t) + Ψ(x− 1, t)− 2Ψ(x, t)

)
(2.29)

Using the notation ∆ for the discrete Laplacian in 2.29, we obtain the Cauchy
problem

∂

∂t
Ψ(x, t) = α∆Ψ(x, t) (2.30)



24 CHAPTER 2. MATHEMATICAL PRELIMINARIES

with initial condition

Ψ(x, 0) = Eη[ηx(0)] (2.31)

Using Fourier analysis, and with single-particle dynamics we can express the
solution as:

Ψ(x, t) = Eη[ηx(t)] = Ex[ηX(t)]

=
∑
y

pt(x, y)ηx(0)

=
1

2π

∑
y

η0(y)

∫ π

−π
e−t(2−2cosK)e−ik(x−y)dk (2.32)

where in the third equality, in order to compute ηx(t), we also needed the initial
configuration {η0(x), x ∈ Z} and the transition kernel of a simple random walk.

For us, the fact that Ψ satisfies the Cauchy problem (2.30) motivates the idea
that, given the right time-scaling (one that guarantees convergence of the discrete
Laplacian), a function defined in the same way satisfies a Cauchy problem as
well. In Section 3.1, we will deal with this idea again.

2.2.3 Orthogonal polynomial self-duality

We have a further special case of duality to be discussed. We are now interested
in a type of self-duality that enjoys orthogonal properties with respect to the
reversible measures νρ. More precisely, the type of duality function will then be
a function D : Ωf × Ω→ R such that the following properties hold:

1. Self-duality.
Eη
[
D(ξ, ηt)

]
= Eξ

[
D(ξt, η)

]
(2.33)

for all ξ ∈ Ωf , η ∈ Ω (where we remind that η ∈ Ω is always chosen such
that the process {η(t) : t ≥ 0} is well-defined when starting from η).

2. Factorized polynomials.

D(ξ, η) =
∏
i∈Zd

P (ξi, ηi) (2.34)

where P (0, n) = 1, and P (m, ·) is a polynomial of degree m.

3. Orthogonality: for ξ, ξ′ ∈ Ωf∫
D(ξ, η)D(ξ′, η)dνρ(η) = δξ,ξ′aρ(ξ) (2.35)

where aρ(ξ) = ‖D(ξ, ·)‖2L2(νρ)
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Notice that this time these functions will depend on the parameter ρ, but from
now and on we suppress this dependence in the notation in order to simplify it.

IRW: Charlier polynomials

The orthogonal self-duality functions, for Independent Random Walkers are
products of Charlier polynomials. These polynomials can be expressed in terms
of hypergeometric functions as follows:

C(m,n) = 2F0

[
−m − n
−

;−1

ρ

]
REMARK 2.2.6. To avoid minor confusions please notice that in [41] a relation
between ”classical” and new orthogonal duality polynomials is given. By classical
polynomials we mean

d(m,n) =
n!

(n−m)!
(2.36)

and the way in which they relate these types of duality polynomials is given by:

D(ξ, η) =
∏
x∈Zd

ξx∑
j=0

(
ξx
j

)
(−ρ)ξx−j

ηx!

(ηx − j)!
. (2.37)

Notice that expression (2.37) differs by a factor −ρ|ξ| from the traditional form
of the Charlier polynomials found in the literature:

D̃(ξ, η) =
∏
x∈Zd

ξx∑
j=0

(
ξx
j

)
(−ρ)−j

ηx!

(ηx − j)!
. (2.38)

The factor −ρ||ξ|| is however invariant under the dynamics of our process that
conserves the total number of particles ||ξ(t)||, and hence its addition preserves
the duality property.

SEP(α): Krawtchouk polynomials.

Strictly speaking these polynomials do not satisfy a self-duality relation. How-
ever, under a proper normalization we can find a duality function in terms of
them. The single-site duality polynomials are hence given by

d(m,n) =
m!(α−m)!

α!
K(m,n)

where K(m,n) denotes the mth-order Krawtchouk polynomial.

These polynomials can be written in terms of hypergeometric functions as

K(m,n) = 2F1

[
−m − n
−α

;
1

ρ

]
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SIP(α): Meixner polynomials

As in the case of the SEP process, the polynomials that satisfy the single-site
self-duality relation are given by the following normalization of the Meixner
polynomials

d(m,n) =
Γ(α)

Γ(α+m)
M(m,n)

where M(m,n) has hypergeometric form

M(m,n) = 2F1

[
−m − n
−α

; 1− 1

ρ

]
For more details on orthogonal duality and a proof of self-duality with respect
to this function we refer to [41] and [78]. In those papers a more complete study
is provided, which includes the case of other processes such as exclusion and
inclusion, among others.

REMARK 2.2.7. Notice that relations (2.25) and (2.26) can also be written in
terms of orthogonal self-duality polynomials. With the advantage that in this
case, thanks to orthogonality, the expressions become simpler.

2.2.4 Application of orthogonal self-duality: time-covariances

Let ξ, ξ′ ∈ Ωf , we denote by pt(ξ, ξ
′) the transition probability to go from the

configuration ξ to ξ′ in time t. The following is an elementary consequence of
duality with orthogonal duality functions.

LEMMA 2.2.1. Let ξ, ξ′ ∈ Ωf , then, for all processes considered we have∫
Eη
[
D(ξ, ηt)

]
D(ξ′, η)dνρ(η) = pt(ξ, ξ

′)a(ξ′) (2.39)

PROOF. We use self-duality to compute∫
Eη
[
D(ξ, ηt)

]
D(ξ′, η)dνρ(η) =

∫
Eξ
[
D(ξt, η)

]
D(ξ′, η)dνρ(η)

=
∑
ζ

pt(ξ, ζ)

∫
D(ζ, η)D(ξ′, η)dνρ(η)

= pt(ξ, ξ
′)a(ξ′)

which proves the result.
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REMARK 2.2.8. Notice that (2.39) in particular implies that if η0 is initially
distributed according to νρ, we first have

Eνρ
[
D(ξ, ηt)

]
= 0 (2.40)

and then
Covνρ

(
D(ξ, ηt)D(ξ′, η)

)
≥ 0 (2.41)

i.e. duality orthogonal polynomials are positively correlated.

Lemma 2.2.1 provides a big simplification since it allows to transfer most of the
uncertainty of our process {ξ(t), t ≥ 0} to the transition kernel pt(ξ, ξ

′) of two
configurations in Ωf . Recall that here {ξ(t), t ≥ 0} is a much simpler process,
conserving only ‖ξ(t)‖ over time, and thus easier to treat. In the Appendix, for
the case of IRW, we provide an estimate of this kernel utilizing the local limit
theorem.





Chapter 3

Equilibrium fluctuations in
the context of duality

This thesis deals with the fluctuation theory for a class of interacting particle
systems that enjoy the property of duality. In Section 2.2.3 we have already
introduced the notion of duality and some of its basic applications. It is now
time to present the precise mathematical context in which fluctuation theory is
developed and in which our results are established.

Fluctuation theory concerns the study of scaling limits of the type of functional
central limit theorems. As such, it is then convenient to spend one section talking
about hydrodynamic limits. These types of scaling limits are the analogous
results in the direction of the law of large numbers. Because of this analogy, we
usually refer to fluctuation results just as fluctuations around the hydrodynamic
limit.

3.1 Hydrodynamic limits

The raison d’être of the study of hydrodynamic limits is the rigorous derivation,
starting from a microscopic particle system, of a partial differential equation
that describes the evolution of some quantity. For the concrete systems that we
study in this thesis, the only conserved quantity is the total number of particles.
Therefore it is natural to expect that the desired PDE will describe the evolution
of the density of particles over time. At the micro-level, i.e., at the particle
systems level, the quantity corresponding to the particle density is the so-called
empirical density field:

πn(η) =
1

nd

∑
x∈Zd

δx/nηx (3.1)

29
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where δx denotes the Dirac mass at zero and n is a scaling parameter.

The empirical density field is a measure that assigns mass n−d to each point
x/n ∈ Rd for each particle that sits at position x ∈ Zd.

REMARK 3.1.1. Notice that, when we let η evolve in time, the empirical density
field becomes a measure-valued random trajectory.

Loosely speaking, a hydrodynamic result concerns the weak convergence in path
space of this object (the empirical density field) to a deterministic trajectory that
concentrates on the solution of a certain PDE. In particular, in the simplest of
the versions of the systems considered in this thesis, the corresponding PDE is
the heat equation.

3.1.1 From micro to macro: diffusive scaling

The rigorous derivation of the macroscopic equation requires rescaling in space
and time. The idea is to go from the microscopic dynamics of the system in Zd
to the dynamics at the macroscopic scale in Rd in a way in which the lattice
mesh goes to zero. The distance among points is controlled by a scaling factor
of n (sometimes N). That is, a macroscopic point x ∈ Rd will correspond to the
microscopic point bnxc. Given this shrinking of space, and to see a non-trivial
evolution, we also need to rescale time. From the observation that, in a time t,
a single particle typically moves a distance

√
t/n, we can deduce that, in order

to see a non-trivial evolution, we should rescale time by a factor n2, i.e., macro
time t will correspond to micro time n2t. From now and on, we will call this
type of rescaling diffusive scaling.

REMARK 3.1.2. In more generality, choosing a diffusive space-time scaling is
not the only possibility. Nevertheless, anticipating the heat equation as the hy-
drodynamic equation (which has first-order time and second-order space deriva-
tives), the diffusive rescaling becomes a sensible choice. There are many other
possibilities to rescale in order to study scaling limits in general. As an example,
we refer to Section 6.1.4.1 in which, in the context of the SIP, a different type
of rescaling is introduced.

3.1.2 Density Field

The standard approach to show the weak convergence result in hydrodynamic
limits is to use martingale techniques. To optimally exploit these techniques, we
usually consider the empirical measure (3.1) rescaled diffusively and integrated
against an adequate set of test functions ϕ, i.e.,

Y n
t (ϕ, η) :=

1

nd

∑
x∈Zd

ϕ( xn )ηx(n2t) (3.2)
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The hydrodynamic result is then stated as follows

THEOREM 3.1.1. For each of the processes considered in this thesis, started
from a product measure ν of slowing varying density profile ρ0 : Rd → R, for
every T > 0, every t ∈ [0, T ], every ϕ ∈ C∞c (Rd), and ε > 0 we have

lim
n→∞

P
[
| Y n

t (ϕ, η)−
∫
Rd
ϕ(x)ρ(t, x) dx |> ε

]
= 0 (3.3)

where ρ(t, x) is a weak solution of the heat equation:{
∂tρ = χα

2 ∆ρ

ρ(0, ·) = ρ0(·)
(3.4)

REMARK 3.1.3. To simplify the presentation of this type of results, we inten-
tionally avoided giving details about the notions and necessary assumptions on
the initial distribution of particles. We refer to [58], Chapter I and IV, for details
on those matters.

In order to prove results like Theorem 3.1.1, we have at our disposal martingale
techniques that arise naturally in the context of Markov processes, see [28] for
a complete survey on this and other approaches. Additionally, for the IPS that
we consider in this thesis, we have the simplifying self-duality property. This
property implies that already on the micro-level, we have the gradient condition
and even more, a discrete heat equation for the mathematical expectation of
the density (see Section 2.2.2). Moreover, self-duality allows us to control the
relevant martingales to establish tightness and show vanishing variances. We
refer to the author’s master thesis [6] for a simple sketch on how to use self-
duality to derive hydrodynamic results in the context of SIP.

3.2 Fluctuation theory

In this section, we consider the IPS with generator (2.1) started in equilibrium
from one of the reversible measures νρ defined in Section 2.1.1.1; for clearness
of exposition, these systems are taken to be stationary in time, reversible and
invariant under spatial shifts.

3.2.1 Density Fluctuation field

Recall that fluctuation theorems are the CLT counterparts of hydrodynamic
limits. This means that the natural object to study fluctuations is the following:

X n
t (ϕ, η) := nd/2

(
Y n
t (ϕ, η)− EY n

t (ϕ, η)
)

(3.5)
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We call this object the density fluctuation field. We can think of this field as a
distribution-valued process acting on test functions ϕ ∈ S(Rd), where:

S(Rd) = {f ∈ C∞(Rd) : sup
x∈Rd

| xβDθf |<∞,∀β, θ ∈ N} (3.6)

The path-space becomes then D([0, T ];S′(Rd)), the set of paths that are right
continuous with left limits. Fluctuation theory aims to show the convergence of
the density fluctuation field (3.5) to a distribution-valued process that we will
denote by Xt.

3.2.2 Generalized Ornstein-Uhlenbeck process

Since the density fluctuation field inherits the Markov property from the process
{ηt}t≥0, we expect the conservation of the Markov property in the limit n→∞.
Moreover, we are deriving an analogue to CLT type of results; hence, Gaussian-
ity is also a desirable property of our limiting object Xt. If on top of that, we
restrict ourselves to the case of stationarity, the limiting field Xt should be then
stationary as well. Taken together, the above restrictions limit the possibilities
for Xt. This is because the only distribution-valued stationary Gaussian Markov
processes are generalized Ornstein-Uhlenbeck processes. To properly define this
family of distribution-valued processes, we give Theorem 3.2.1 below. This the-
orem, which we state as in [58], deals with existence and uniqueness for the
generalized Ornstein-Uhlenbeck process. Its proof can be found in [58] and in
its original version in the work [52].

Let us consider the non-negative operator U acting on functions ϕ as follows:

U ϕ =
χα

2
∆ϕ (3.7)

with domain D(U ) ⊆ L2(Rd) and with χ, σ, ρ, and α as in Section 2.1.1. Let us
also consider the operator

V ϕ = χρ(α+ σρ)∇ϕ (3.8)

with corresponding domainD(V ) ⊆ L2(Rd). The generalized Ornstein-Uhlenbeck
process is then determined by the following martingale problem:

THEOREM 3.2.1. Let Q be a probability measure on C([0, T ];S(Rd)). Assume
that for every ϕ ∈ S(Rd), and every t ≥ 0

Mt(ϕ) = Xt(ϕ)−X0(ϕ)−
∫ t

0

Xs(U (ϕ))ds (3.9)

and (
Mt(ϕ)

)2 −∥∥V (ϕ)
∥∥2
t (3.10)



3.2. FLUCTUATION THEORY 33

are L1(Q) Ft-martingales. Then for every 0 ≤ s ≤ t, and every subset A of Rd

Q
(
Xt(ϕ) ∈ A | Fs

)
=

∫
A

1√
2π
∫ t−s

0
‖V Srϕ‖22 dr

exp

(
−(y−Xs(St−sϕ))2∫ t−s

0
‖V Srϕ‖22dr

)
dy

(3.11)
where St is the semigroup associated to U . In particular the knowledge of Q
restricted to F0 uniquely determines Q in the whole C([0, T ];S(Rd)).

Formally speaking, the solution of the above martingale problem is also a solution
of the SPDE:

dXt = χα
2 ∆Xt dt+

√
χρ(α+ σρ)∇dWt (3.12)

where Wt(x) is a space-time white noise with covariance

cov[Wt(x),Ws(y)] = min(t, s)δ(x− y)

REMARK 3.2.1. Notice that the formal SPDE (3.12) is another option to justify
the idea that fluctuation results concern small deviations from the typical behavior
described by the hydrodynamic equation.

3.2.3 Rigorous statement

The precise statement we can make is the following

THEOREM 3.2.2. The sequence of processes {X n
t : t ∈ [0, T ]}n≥1, given by

(3.5), converges, as n → ∞, in distribution with respect to the J1-topology of
D([0, T ];S′(Rd)) to the process {Xt : t ∈ [0, T ]} being the unique solution of the
martingale problem specified in Theorem 3.2.1.

The usual strategy to show Theorem 3.2.2 consists in proving three things:

1. That the sequence of probability measures Qn is tight.

2. The Gaussianity of all limiting points Q restricted to F0.

3. That the limit points solve the martingale problem given in Theorem 3.2.1.

We now sketch how we can prove the third point given above with the help
of duality. For the Gaussianity of the limiting field, we refer to Chapter 11 of
[58]. In [58], we can find a proof of the Gaussianity in the context of zero-range
processes. This proof is adaptable to our case. For tightness, despite the fact of
being approachable with duality techniques, we refer to Chapter 5 of this thesis
for a proof in a more general context.

Let us start by observing that the density fluctuation field can be written in
terms of orthogonal self-duality polynomials, defined in Section 2.2.3, as follows:

X n
t (ϕ, η) =

C(ρ, α, σ)

nd/2

∑
x∈Zd

ϕ(x/n)D(δx, η(n2t)) (3.13)
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where C(ρ, α, σ) is a constant that depends on each of the three particle systems
we consider.

REMARK 3.2.2. The observation that it is possible to re-write the density field
in terms of duality polynomials opens the possibility of defining more fields based
on these polynomials and studying their scaling limits. We will indeed do this
in Chapter 5, where we study the convergence of a bigger class of fields based on
orthogonal self-dualities.

3.2.4 The martingale problem

Let us move to the third point of the list. In order to show that the limiting
Q indeed satisfies the martingale problem (3.9)-(3.10), we make use of the well
known Dynking martingales. This means that, already at the micro-level, we
have the following martingales:

Mn
t (ϕ) = X n

t (ϕ, η)−X n
0 (ϕ, η)− n2

∫ t

0

L X n
s (ϕ, η)ds (3.14)

and (
Mn
t (ϕ, η)

)2 − n2

∫ t

0

ΓX n
s (ϕ, η)ds (3.15)

where the operator Γ is the so-called carré -du-champ defined in Appendix A.2.1
of this thesis.

To show that indeed in the limit equations (3.9)-(3.10) are satisfied, the first
step is to write the action of the generator and the carré -du-champ in terms of
the density fluctuation field. More precisely, we need to show that

L X n
s (ϕ, η) = X n

s (U ϕ, η) +O(1/n) (3.16)

and
ΓX n

s (ϕ, η) = V ϕ+O(1/n), (3.17)

where O(1/n) converges to zero as n→∞ in the appropriate sense.

3.2.4.1 The drift

Let us start with (3.16). By linearity of the generator we have

L X n
s (ϕ, η) = n2C(ρ, α, σ)

nd/2

∑
x∈Zd

ϕ(x/n)LD(δx, η(s))

= n2C(ρ, α, σ)

nd/2

∑
x∈Zd

ϕ(x/n)L (1)D(δx, η(s)) (3.18)
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where in the second line we used the self-duality property with one particle.

Moreover, by compatibility and reversibility we have

L X n
s (ϕ, η) = n2C(ρ, α, σ)

nd/2

∑
x∈Zd

ϕ(x/n)L(1)D(g(x), η(s))

= n2C(ρ, α, σ)

nd/2

∑
x∈Zd

L(1)(ϕ(x/n)) ·D(g(x), η(s))

where g is a mapping that translates particle dynamics at the level of coordinates
to dynamics at the level of configurations. We refer to [19] for more details on
this mapping.

For simplicity let us restrict our exposition to the case d = 1. By Taylor’s
Theorem we have

n2L(1)ϕ(x/n) = α
∑
r∈R

p(r)
(
ϕ(x+ r/n)− ϕ(x/n)

)
= α

∑
r∈R+

p(r)
(
ϕ(x+ r/n) + ϕ(x− r/n)− 2ϕ(x/n)

)
=

χα

2
∆ϕ(x/n) +

α

3!

∑
r∈R

p(r)
r3

n
ϕ(3)(z(x, r)/n) (3.19)

where for each r we have that z(x, r) is a point in the open interval

(min{x/n, x+ r/n},max{x/n, x+ r/n})

We then have

L X n
s (ϕ, η) = X n

s (U ϕ, η)+
K

n3/2

∑
x∈Z

∑
r∈R

p(r)r3ϕ(z(x, r)/n)D(δx, η(s)) (3.20)

where K is a constant that incorporates any other constant in our computation.

Let us denote the second term in the RHS of (3.20) by E (ϕ, ηs), i.e.,

E (ϕ, ηs) :=
K

n3/2

∑
x∈Z

∑
r∈R

p(r)r3ϕ(z(x, r)/n)D(δx, η(s)) (3.21)

The following proposition makes explicit the sense in which E (ϕ, ηs) converges
to zero.

PROPOSITION 3.2.1. For any ϕ ∈ S(R) and any t ∈ [0, T ] we have

lim
n→∞

En

(∫ t

0

E (ϕ, ηs)ds

)2
 = 0, (3.22)
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where En denotes the expectation on D([0, T ],Ω) induced by the configuration
process {η(n2t) : t ≥ 0}.

The proof of this result shows the convenience of orthogonal self-duality in par-
ticular.

PROOF. By stationarity we have

En

(∫ t

0

E (ϕ, ηs)ds

)2


= 2

∫ t

0

∫ s

0

∫
Eη
[
E (ϕ, η(s−u))

]
E (ϕ, η)νρ(dη) du ds

(3.23)

where we remind the reader that νρ is one of the reversible measures from Sec-
tion 2.1.1.1.

Let us denote by V (ϕ, η) the integrand inside the two time integrals in the RHS
of (3.23). The we can estimate it as follows

V (ϕ, η(s− u))

=

∫
Eη
[
E (ϕ, η(s−u))

]
E (ϕ, η)νρ(dη)

=
K2

n3

∑
x,y∈Z

∑
r,r′∈R

p(r)p(r′)r3r′3ϕ(z(x, r)/n)ϕ(z(y, r′)/n)

×
∫

Eη
[
D(δx, η(s− u))

]
D(δy, η)νρ(dη)

=
K2

n3

∑
x,y∈Z

∑
r,r′∈R

p(r)p(r′)r3r′3ϕ(z(x, r)/n)ϕ(z(y, r′)/n)

×pn2(s−u)(δx; δy)a(δy) (3.24)

where in the last line we used Lemma 2.2.1. By the extra factor 1
n in front of

the double summation, these last computations make clear that (3.23) vanishes
as n→∞.

REMARK 3.2.3. For other particle systems like, for example, some zero-range
processes, it is not possible to directly close the expression L X n

s (ϕ, η). i.e., to
rewrite it in terms of the field itself eventually applied to a different test function.
For such particle systems, H. Rost introduced in [80] a technical tool called the
Boltzmann-Gibbs Principle (BGP). This tool allows to make a replacement in
order to close the equation. As we have seen in the computations of this section,
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for particle systems that enjoy the property of self-duality, this result is not nec-
essary. Nevertheless, it is interesting to explore the consequences of self-duality
in the context of the Boltzmann-Gibbs principle. This is precisely the content of
Chapter 4, where, via orthogonal self-duality, we provide quantitative versions of
the BGP.

3.2.4.2 Carré-du-champ

Now for the Carré-du-champ, i.e., for (3.17), we make use of the simpler formula
(A.27) in Appendix A.2.1.

ΓX n
s (ϕ, η) = n2

∑
i∈Zd

∑
r∈Zd

p(r)ηi(α+ σηi+r)
(
X n
s (ϕ, ηi,i+r)−X n

s (ϕ, η)
)2

(3.25)
Let us evaluate separately the term inside the square:

X n
s (ϕ, ηi,i+r)−X n

s (ϕ, η)

=
C(ρ, α, σ)

nd/2

∑
x∈Zd

ϕ(x/n)
[
D(δx, η(s))−D(δx, η(s)− δi + δi+r)

]
=
C(ρ, α, σ)

nd/2
(
ϕ(i+ r/n)− ϕ(i/n)

)
(3.26)

This gives already a discrete gradient, which, in combination with the n2 in
(3.25) gives the following:

ΓX n
s (ϕ, η) =

C2

nd

∑
i∈Zd

∑
r∈Zd

p(r)ηi(α+ σηi+r)
[
n
(
ϕ(i+ r/n)− ϕ(i/n)

)]2
(3.27)

To conclude, we simply argue by stationarity and the ergodic theorem applied
to the initial measure νρ, that indeed the RHS of (3.27) converges to:

‖V ϕ‖22

in the L2(Pn) sense, where Pn is the probability on D([0, T ],Ω) induced by the
process {η(n2t) : t ≥ 0}.

Given that we have tightness and Gaussianity, at this point to conclude that in-
deed the martingale problem (3.9)-(3.10) is satisfied, it is enough to show uniform
integrability of the sequence {Mn

t }n≥1. For the proof of uniform integrability,
we also refer to Chapter 5 of this thesis.
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Fluctuation fields and
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Chapter 4

Quantitative
Boltzmann–Gibbs
Principles via Orthogonal
Polynomial Duality

The Boltzmann-Gibbs principle is an important ingredient in the study of fluc-
tuation fields of interacting particle systems [58]. It basically states that on the
central limit scale, the fluctuation field of local functions can be replaced by a
constant times the density fluctuation field, or in other words, it can be replaced
by its projection on the one-dimensional space generated by the density fluctua-
tion field (where projection has to be understood in an appropriate Hilbert space
of macroscopic quantities [12]). The aim of the present chapter is to refine and
quantify the Boltzmann-Gibbs principle in the context of particle systems with
duality, using fluctuation fields of orthogonal polynomials. Indeed, it turns out
that replacing the fluctuation field of a local function by its projection on the
density field corresponds to the projection on the fluctuation fields of orthogo-
nal polynomials of order one. Therefore, the Boltzmann Gibbs principle easily
follows from an estimation of the covariance of fluctuation fields of orthogonal
polynomials of order two and higher. In this chapter, for independent random
walkers we quantify the precise order of these covariances of fluctuation fields
of orthogonal (Charlier) polynomials of order k for all k ∈ N, and therefore we
are able to give an orthogonal decomposition of the fluctuation field of any local
function, which is a generalization of the Boltzmann Gibbs principle. Next, still
in the context of independent random walkers, we are able to extend this result
in a non-equilibrium setting, using the fact that products of Poisson measures
are preserved under this dynamics, i.e., a strong form of propagation of local

40
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equilibrium holds in that context.
One of the basic ingredients of our approach is stochastic duality, a property

shared by a certain class of interacting particle systems such as independent ran-
dom walkers [15], exclusion process, inclusion process, Brownian energy process,
etc. (see [16] for a review on the subject). Thanks to duality the k-body cor-
relation functions obey closed equations, not involving higher correlations. This
has many implications, such as the possibility to study the decay properties of
correlation functions [37] and to study small perturbations of the original process
[25].

In this chapter we exploit a duality property with orthogonal polynomials
(see e.g.[78] ) combined with precise estimates (of local limit type) of the k-
particle dynamics. Therefore, the results immediately apply in the context of the
stationary symmetric exclusion process, and more generally for particle systems
where these precise estimates (of local limit type) of the k-particle dynamics can
be obtained (e.g. via the log-Sobolev inequality [67]).

The rest of this chapter is organized as follows: In section 4.1 we formally
introduce our system of random walkers, and the basic concepts and properties
needed for the development of this paper. In section 4.2, in the context of sta-
tionarity, we start by introducing our results for the simplest non-trivial example
of second order and move to a generalization first to higher orders and in a next
stage to more general functions. We present in section 4.3 an extension of these
last results to a non-equilibrium setting. Finally in section 4.4, we show how
under additional assumptions our results can be extended to other interacting
particle systems.

4.1 Basic notions

4.1.1 Independent Random Walkers

In this chapter we consider the generator (2.1) for the special case σ = 0 and
α = 1. This means that we consider a system of Independent Random Walkers
at rate 1. Recall that this is an interacting particle system where particles
randomly hop on the lattice Zd without interaction and with no restrictions on
the number of particles per site. Configurations are denoted by η, ξ, ζ and are

elements of Ω = NZd (where N denotes the natural numbers including zero).
We denote by ηi the number of particles at i in the configuration η ∈ Ω. The
generator (2.1), working on local functions f : Ω→ R, takes the form

L f(η) =
∑
i,j

p(i, j)ηi(f(ηij)− f(η)) (4.1)

where ηij denotes the configuration obtained from η by removing a particle
from i and putting it at j. Additionally, we assume that p(i, j) is a translation
invariant, symmetric, irreducible Markov transition function on Zd, i.e.,
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1. p(i, j) = p(j, i) = p(0, j − i).

2.
∑
j∈Zd p(i, j) = 1

3. There exists R > 0 such that p(i, j) = 0 for |i− j| > R.

4. For all x, y ∈ Zd there exist i1 = x, . . . , im = y such that

m∏
l=1

p(il, il+1) > 0

Recall from Chapter 2 that for the associated Markov process on Ω, we use the
notation {η(t) : t ≥ 0}, i.e., ηx(t) denotes the number of particles at time t
at location x ∈ Zd. We also know from Chapter 2 that this particle system
has a one-parameter family of homogeneous (w.r.t. translations), reversible and
ergodic product measures νρ̄, ρ > 0 with Poisson marginals

νρ(m) =
ρm

m!
e−ρ

This family is indexed by the density of particles, i.e.,∫
η0 dνρ̄ = ρ

REMARK 4.1.1. Recall that for IRW the initial configuration has to be chosen
in a subset of configurations such that the process {η(t) : t ≥ 0} is well-defined.
A possible such subset is the set of tempered configurations. This is the set of
configurations η such that there exist C, β ∈ R that satisfy |η(x)| ≤ C(|x|β + 1)
for all x ∈ Rd. We denote this set (with slight abuse of notation) still by Ω,
because we will always start the process from such configurations, and this set
has νρ̄ measure 1 for all ρ. Since we will be working mostly in L2(νρ̄) spaces,
this is not a restriction.

4.1.2 Fluctuation fields

Let S(Rd) be the set of Schwartz functions on Rd, and denote by S′(Rd) the
corresponding distributions space (strong topological dual). Moreover we denote
by τx the spatial shift, i.e., τx(η)y = ηy+x,. Fix ϕ ∈ S(Rd) and let f : Ω→ R be
a local function, we define its fluctuation field on scale n as

Xn(f, η;ϕ) := an(f)
∑
x∈Zd

ϕ( xn )(τxf(η)− ψf (ρ)) (4.2)

where

ψf (ρ) :=

∫
fdνρ̄, τxf(η) := f(τxη) (4.3)
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and an(·) is a suitable normalization constant depending on f . The field Xn(f, η; ·)
is a Schwartz-distribution, i.e., an element of S′(Rd), associated to the configu-
ration η. An important case is the density fluctuation field (3.5), where we have
to make the choice f(η) = η0, an(f) = n−d/2.

The time-dependent fluctuation field at scale n is then defined as

Xn(f, t;ϕ) = Xn(f, η(n2t);ϕ) (4.4)

The diffusive rescaling anticipates the natural macroscopic time-scale in this
symmetric process, which has the linear heat equation as hydrodynamic limit.
{Xn(f, t; ·), t ≥ 0} is then a Schwartz-distribution-valued stochastic process.

4.1.3 Boltzmann-Gibbs principle

The Boltzmann-Gibbs principle makes rigorous the idea that the density fluc-
tuation field is the fundamental fluctuation field, because the density is the
only (non-trivial) conserved quantity in the process under consideration. This
means that one can replace, in first approximation, the fluctuation field of a
function f by its “projection on the density field”. For a local function f this
projection is the fluctuation field of the function P1(f) := ψ′f (ρ)(η0 − ρ), where

ψf (ρ) =
∫
fdνρ̄.

The standard statement of the Boltzmann Gibbs principle is given in the follow-
ing theorem.

THEOREM 4.1.1. For all f local, and ϕ ∈ S(Rd) and for all T > 0

lim
n→∞

Eνρ̄

( 1

nd/2

∫ T

0

(
Xn(f, t;ϕ)− Xn(P1(f), t;ϕ)

)
dt

)2
 = 0 (4.5)

We refer to [58] for the proof of Theorem 4.1.1 and for a comprehensive discussion
of the result that is valid in a more general context and not only for the process
considered in the present paper.

4.1.4 Fluctuation fields of orthogonal polynomials

For k ∈ N we denote by Hk the (real) Hilbert spaces generated by the polynomi-
als D(ξ, ·) with degree at most k, i.e. ||ξ|| ≤ k. We have of course the inclusion
H0 = R ⊂ H1 ⊂ H2 ⊂ . . . and the union of the spaces Hk is dense in L2(νρ).
Moreover, for every f ∈ L2(νρ) its projection on Hk is given by

fk =
∑

ξ∈Ωf :‖ξ‖≤k

〈f,D(ξ, ·)〉D(ξ, ·)
a(ξ)

(4.6)



44 CHAPTER 4. QUANTITATIVE BGP

where 〈·, ·〉 denotes the L2(νρ̄) inner product, and D(ξ, η) the self-duality or-
thogonal polynomials of Section 2.2.3.

The aim of what follows is to show that the Boltzmann-Gibbs principle is an
instance of a more general statement concerning the fluctuation behavior of
functions which are orthogonal to Hk for some k ∈ N. This is (in some sense to
be explained below) the case for the function f − P1(f).

For ξ ∈ Ωf , with ||ξ|| = k, ϕ ∈ S(Rd) we define the k-th order polynomial
fluctuation field as

Xn(ξ, η, ϕ) :=
∑
x∈Zd

ϕ
(
x
n

)
D(ξ, τxη)

=
∑
x∈Zd

ϕ
(
x
n

)
D(τxξ, η) (4.7)

4.2 Stationary case

4.2.1 Second-order polynomial field

We start with the simplest non-trivial example for independent random walkers
started from a product measure with homogeneous Poisson marginals. To illus-
trate our point let us start with a simple computation, which contains all the
important ingredients of the more general Theorem 4.2.1 below. Consider the
field

X(2)
n (η;ϕ) := Xn(2δ0, η, ϕ) =

∑
x∈Zd

ϕ
(
x
n

)
D(2δx, η) (4.8)

The notation X
(2)
n suggests that this is in some sense the ”second order” polyno-

mial field. In the orthogonal polynomial language, this is the field of the second
order Charlier polynomial

D(2δx, η) = ηx(ηx − 1)− 2ρ(ηx − ρ)− ρ2 (4.9)

Recall from Section 2.2.3 that

a(2δ0) =

∫
(D(2δx, η))2dνρ(η)

then we have the following.

PROPOSITION 4.2.1. The second-order polynomial field X
(2)
n (η;ϕ) is such that
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1. For t > 0 we have

Eνρ̄
[
X(2)
n (η(t);ϕ)X(2)

n (η(0);ϕ)
]

= a(2δ0)
∑

x,y∈Zd
ϕ( xn )ϕ( yn )(pt(x, y))2

(4.10)

2. As a consequence, for t > 0 we have

lim
n→∞

Eνρ̄
[
X(2)
n (η(n2t);ϕ)X(2)

n (η(0);ϕ)
]

=
d · a(2δ0)

(2πt)d

∫
R2d

e−
d|x−y|2

t ϕ(x)ϕ(y)dxdy (4.11)

PROOF. The first statement follows from self-duality and Lemma 2.2.1. For
the second statement we use that ϕ has compact support, call this support S,
and define

M := max{d(x, y) : x, y ∈ S} (4.12)

it follows from Theorem C.1.2 that there exists c = c(M) such that

sup
x:|x|≤Mn

√
t

pRWn2t (x) ≤ p̄n2t(x)

(
1 +

c

n
√
t

)
with p̄t(·) as defined in (C.2). Then from (4.33) it follows that

Eνρ̄
[
X(2)
n (η(t);ϕ)X

(2)
N (η(0);ϕ)

]
= a(2δ0)

∑
x,y∈S

ϕ( xn )ϕ( yn ) p̄n2t(x)p̄n2t(y)

(
1 +

c

n
√
t

)2

= a(2δ0) · d

(2πt)d
· 1

n2d

∑
x,y∈S

ϕ( xn )ϕ( yn )e−
d(z−y)2

tn2

(
1 +

c

n
√
t

)2

and letting n→∞ we obtain the r.h.s. of (4.11).

In the current context the Boltzmann-Gibbs principle for the fluctuation field of
the function f = η0(η0− 1) is a consequence of Proposition 4.2.1. We make this
statement more transparent with the following corollary

COROLLARY 4.2.1. The field X
(2)
n (η(n2t);ϕ) is such that, for all T > 0, there

exist C1(T ), C2(T ) and C3(T, d), such that for all n big enough

Eνρ̄

( 1

nd/2

∫ T

0

X(2)
n (η(n2t);ϕ) dt

)2
 ≤


C1(T )n−1 if d = 1

C2(T ) log(n)
n2 if d = 2

C3(T, d)n−2 if d ≥ 3

(4.13)
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More precisely, (4.11) gives a better estimate, than the one of Theorem 4.1.1,
for the order of the covariance of the fluctuation field on the diffusive time-scale
as n→∞.

PROOF. Given the fact that the RHS of (4.11) has an indetermination at t = 0,
we derive the following estimate for the integrand in (4.13)

1

nd
Eνρ̄

[
X(2)
n (η(n2t);ϕ)X(2)

n (η(n2s);ϕ)
]

= Kρ
1

nd

∑
x∈Zd

ϕ( xn )pn2(t−s)(x, y)
∑
y∈Zd

ϕ( yn )pn2(t−s)(x, y)

≤ Kρpn2(t−s)(0, 0)‖ϕ‖1Exϕ(Xtn )

≤ Kρpn2(t−s)(0, 0)‖ϕ‖1‖ϕ‖∞
Plugging this into the LHS of (4.13) and after the substitution r = t − s we
obtain:

Eνρ̄

( 1

nd/2

∫ T

0

X(2)
n (η(n2t);ϕ) dt

)2
 ≤ Cρ,ϕ ∫ T

0

∫ t

0

pn2r(0, 0) dr dt (4.14)

where
Cρ,ϕ = 2Kρ‖ϕ‖1‖ϕ‖∞

By the LCLT we have the following estimate

pn2r(0, 0) ≤ d

(2πn2r)d/2
(4.15)

Let us now divide by cases according to the dimension d.

Case d = 1

In this case the LCLT gives the bound

pn2r(0, 0) ≤ 1

n
√
r

(4.16)

which then gives ∫ T

0

∫ t

0

pn2r(0, 0) dr ≤ 4

3
T 3/2 n−1

(4.17)

substituting this bound in the RHS of (4.14) gives

Eνρ̄

( 1

nd/2

∫ T

0

X(2)
n (η(n2t);ϕ) dt

)2
 ≤ 4

3
T 3/2Cρ,ϕ n

−1 (4.18)
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Case d = 2

Now we have the bound

pn2r(0, 0) ≤ 2

n2r
(4.19)

This time, because of integrability issues, we cannot just substitute this bound
in the RHS of (4.14). Instead, we distinguish the cases |r| ≥ εn and |r| < εn,
where εn is to be optimized.

pn2r(0, 0) ≤

{
2
n2r , if |r| ≥ εn
1 if |r| < εn

(4.20)

then, for n large enough (i.e., at least n ≥ T ), we have∫ t

0

pn2r(0, 0) dr ≤ εn +
2

n2

(
log(t)− log(εn)

)
≤ εn +

2

n2

(
log(n)− log(εn)

)
(4.21)

Assuming εn is of the form n−α, we obtain∫ t

0

pn2r(0, 0) dr ≤ n−α +
2(α+ 1)

n2
log(n)

(4.22)

We conclude by taking for example α = 3, in this case substituting this bound
in the RHS of (4.14) gives

Eνρ̄

( 1

nd/2

∫ T

0

X(2)
n (η(n2t);ϕ) dt

)2
 ≤ 9TCρ,ϕ

log(n)

n2
(4.23)

Case d ≥ 3

In this case we move again from the approach of the first two cases. We will
instead exploit the transience of the random walk in dimension d ≥ 3.

Let us then start with a change of variables:∫ t

0

pn2r(0, 0) dr =
1

n2

∫ n2t

0

ps(0, 0) ds (4.24)

We now claim that the time integral in the RHS of (4.24) is of order O(1). In
order to see that this is the case, let us introduce the local time at zero of a
single walker, i.e.,

l
(0)
t =

∫ t

0

1l{Xs=0} ds (4.25)
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with this new notation we can express the time integral as follows∫ n2t

0

ps(0, 0) = E1,d
0

[
l
(0)
n2t

]
(4.26)

where E1,d
0 , denotes expectation with respect to a single d-dimensional random

walker started at 0.

Furthermore, we have the bound∫ n2t

0

ps(0, 0) ≤ E1,d
0

[
l(0)
∞

]
(4.27)

where
E1,d

0

[
l(0)
∞

]
:= lim

t→∞
E1,d

0

[
l
(0)
t

]
(4.28)

From the transience of the random walker in dimension d ≥ 3, see for example
[83], we have that indeed the expectation in the RHS of (4.27) is of order O(1).

Hence we obtain:

Eνρ̄

( 1

nd/2

∫ T

0

X(2)
n (η(n2t);ϕ) dt

)2
 ≤ C3(T, d)n−2 (4.29)

where
C3(T, d) = T Cρ,ϕ E1,d

0

[
l(0)
∞

]
(4.30)

Back to the second-order polynomial fluctuation fields, and for the sake of trans-
parency, we make explicit the dependence on the “coordinate points” x1, x2 and
redefine the fields in terms of the orthogonal duality polynomials as follows:

X(2)
n (x1, x2, η;ϕ) :=

∑
x∈Zd

ϕ( xn )D(δx1+x + δx2+x, η) (4.31)

Notice then, that in Proposition 4.2.1 we treated for x1 = x2 = 0. It is necessary
then to verify that Proposition 4.2.1 is not only the result of this particular
choice we made, consider then for x1 6= x2 the field

X(2),6=
n (x1, x2, η, ϕ) =

∑
x∈Zd

ϕ( xn )(ηx+x1 − ρ)(ηx+x2 − ρ) (4.32)

where the upper index 6= refers to the fact that x1 6= x2. We then have the
following analogues of Proposition 4.2.1.
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PROPOSITION 4.2.2. The second-order fluctuation field X
(2),6=
n (x1, x2, η;ϕ) is

such that

1. For t > 0 we have

Eνρ̄(X(2),6=
n (x1, x2, η(t);ϕ)X(2),6=

n (x1, x2, η(0);ϕ))

= a(δx1
+ δx2

)
∑

x,y∈Zd
ϕ( xn )ϕ( yn )pt(x+ x1, x+ x2; y + x1, y + x2)

+ a(δx1
+ δx2

)
∑

x,y∈Zd
ϕ( xn )ϕ( yn )pt(x+ x1, x+ x2; y + x2, y + x1)

(4.33)

2. As a consequence, for t > 0 we have

lim
n→∞

Eνρ̄(X(2),6=
n (x1, x2, η(n2t);ϕ)X(2),6=

n (x1, x2, η(0);ϕ))

=
2a(δx1 + δx2)d

(2πt)d

∫
R2d

e−
d|x−y|2

t ϕ(x)ϕ(y)dxdy (4.34)

PROOF. The argument for the first statement is similar to the one in the proof
of Proposition 4.2.1, the difference is that now

D(δx+x1
+ δx+x2

, η) = (ηx+x1
− ρ)(ηx+x2

− ρ)

is the product of two first-order Charlier polynomials, which by the assump-
tion of factorized polynomials allows us to proceed in the same way as before.
Furthermore, in this case we have

pt(δx+x1 + δx+x2 , δy+x1 + δy+x2)

= pt(x+ x1, x+ x2; y + x1, y + x2) + pt(x+ x1, x+ x2; y + x2, y + x1)

(4.35)

which is the source of the second term in (4.33). In the second statement is
necessary to verify that x1 and x2 do not play a role in the leading order

Eνρ̄(X(2),6=
n (x1, x2, η(n2t);ϕ)X(2),6=

n (x1, x2, η(0);ϕ))

= a(δx1
+ δx2

)
∑

x,y∈Zd
ϕ( xn )ϕ( yn )pn2t(x+ x1, x+ x2; y + x1, y + x2)

+ a(δx1
+ δx2

)
∑

x,y∈Zd
ϕ( xn )ϕ( yn )pn2t(x+ x1, x+ x2; y + x2, y + x1)

(4.36)

The first term in the RHS of (4.36) can be treated in the same way as before.
For the second term, we just have to notice

|x+ x1 − y − x2|2 + |x+ x2 − y − x1|2 = 2|x− y|2 + 2|x1 − x2|2
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and proceed in the same way.

Now we show how to generalize this result and discuss the case of higher-order
fields.

4.2.2 Higher-order fields

Let k ∈ N and denote by x ∈ Zkd the coordinate vector x := (x1, . . . , xk), with
xi ∈ Zd, i = 1, . . . , k. We denote by ξ(x) the configuration associated to x, i.e.

ξx(x) =
∑k
i=1 1x=xi . We define ||x|| := ||ξ(x)|| = k. Here xi is the position of

the i-th particle, where particles are labeled in such a way that the dynamics is
symmetric. For a more extensive explanation of the labeled dynamics we refer
the reader to [28]. We denote by τ̂z, z ∈ Zd, the shift operator acting on the
coordinate representation:

τ̂zx = (z + x1, . . . , z + xk), and then τzξ = ξ(τ̂zx) (4.37)

Because of the translation invariance of the dynamics we have that

pt(ξ(τ̂yx), ξ(τ̂zx)) = pt(ξ(x), ξ(τ̂z−yx)) (4.38)

With an abuse of notation, we keep denoting by pt(x,y) the transition proba-
bility of the labeled particles in the coordinate representation.

REMARK 4.2.1. The relation between the transition probabilities in the coordi-
nate and in the configuration representations is given by

pt(ξ(x), ξ(y)) =
∑

x′:ξ(x′)=ξ(y)

pt(x,x
′) (4.39)

Notice that it is precisely from relation (4.39) that a factor of 2 appears in
Proposition 4.2.2 and not in Proposition 4.2.1. We can expect that in this gen-
eral setting the difference among cases will become more cumbersome. To avoid
any further notational difficulties we introduce the following:

Let Pk be the set of permutations of {1, . . . , k}, for σ, σ′ ∈Pk we define the
following equivalence relation:

σ ∼ σ′ mod x iff xσ(i) = xσ′(i) ∀i ∈ {1, . . . , k} (4.40)

and define Pk(x) := Pk/ ∼x. Then we have

|Pk(x)| = k!∏
i∈Zd ξi(x)!

(4.41)

For each σ ∈Pk(x) we define the new coordinate vector x(σ) such that

x
(σ)
i = xσ(i) (4.42)
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thus we can write

pt(ξ(x), ξ(τ̂zx)) =
∑

x′:ξ(x′)=ξ(τ̂zx)

pt(x,x
′) =

∑
σ∈Pk(x)

pt(x, τ̂zx
(σ)) (4.43)

With a slight abuse of notation we denote by

Xn(x, η, ϕ) :=
∑
z∈Zd

ϕ

(
z

n

)
D(τ̂zx, η), (4.44)

the k-th-order fluctuation field associated to the k-particles configuration x.
Then we have

THEOREM 4.2.1. Let k := ||x||, then the k-th-order fluctuation field Xn(x, η, ϕ)
is such that

1. For all t > 0

Eνρ̄
[
Xn(x, η(t), ϕ)Xn(x, η(0), ϕ)

]
= a(ξ(x))

∑
σ∈Pk(x)

∑
y,z∈Zd

ϕ( yn )ϕ( zn )pt(x, τ̂z−yx
(σ))

(4.45)

2. As a consequence, for t > 0

lim
n→∞

nd(k−2)Eνρ̄
[
Xn(x, η(n2t), ϕ)Xn(x, η(0), ϕ)

]
= |Pk(x)|a(ξ(x))

dk/2

(2πt)dk/2

∫
R2d

e−kd|z−y|
2/2tϕ(z)ϕ(y)dzdy

(4.46)

PROOF. The first statement of the theorem is a direct application of Lemma
2.2.1 and the fact that the function a(·) is translation invariant, i.e. a(ξ(τ̂zx)) =
a(ξ(x)), for all z ∈ Zd.

Eνρ̄
[
Xn(x, η(t), ϕ)Xn(x, η(0), ϕ)

]
= a(ξ(x))

∑
y,z∈Zd

ϕ( yn )ϕ( zn ) pt(ξ(τ̂yx), ξ(τ̂zx)) (4.47)

Then, from (4.38) and (4.47) it follows that

Eνρ̄
[
Xn(x, η(t), ϕ)Xn(x, η(0), ϕ)

]
= a(ξ(x))

∑
σ∈Pk(x)

∑
y,z∈Zd

ϕ( yn )ϕ( zn ) pt(x, τ̂z−yx
(σ)) (4.48)
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For the second statement observe that from translation invariance we have

pIRW
n2t (x, τ̂z−yx) =

(
pRWn2t (z − y)

)k
(4.49)

Define BM,n := {x ∈ Zd : |x| ≤ nM}, then, since ϕ has a finite support, we have
that there exists M ≥ 0 such that∑

y,z∈Zd
ϕ( yn )ϕ( zn ) pIRW

n2t (x, τ̂z−yx)

=
∑

y,z∈BM,n

ϕ( yn )ϕ( zn )
(
pRWn2t (z − y)

)k

=

( √
d

(2πt)d/2

)k (
1 +

c

n
√
t

)k
1

nkd

∑
y,z∈BM,n

ϕ( yn )ϕ( zn ) e−
kd| z

n
− y
n
|2

2t

for a suitable c = c(M), the last equality coming from Theorem C.1.2. We have

lim
n→∞

1
n2d

∑
y,z∈Zd

ϕ( yn )ϕ( zn ) e−
kd| z

n
− y
n
|2

2t =

∫
R2d

ϕ (y)ϕ (z) e−
kd|z−y|2

2t dxdz

4.2.2.1 Quantitative Boltzmann-Gibbs principle

In the same spirit as Corollary 4.2.1, we can now state a refined quantitative
version of the Boltzmann-Gibbs principle for higher-order fields.

THEOREM 4.2.2. Let k ≥ 3, and x with ||x|| = k, then the k-th-order fluctuation
field Xn(x, η, ϕ) is such that for all T > 0, there exist C1(T ) and C2(T, k, d) such
that, for all n big enough

Eνρ̄

( 1

nd/2

∫ T

0

Xn(x, η(n2t), ϕ) dt

)2
 ≤ {C1(T ) log(n)

n2 if k = 3 and d = 1

C2(T, k, d)n−2 else

(4.50)

PROOF. Analogously to the case of two particles ( see the proof of Corollary
4.2.1), and using observation (4.49) we first obtain the following estimate

1

nd
Eνρ̄

[
Xn(x, η(n2t), ϕ)Xn(x, η(n2s), ϕ)

]
≤
(
pRWn2(t−s)(0)

)k−1

|Pk(x)|a(ξ(x))‖ϕ‖1‖ϕ‖∞
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Similar to the case of two particles, with a change of variables in the integration
by time, we obtain

Eνρ̄

( 1

nd/2

∫ T

0

Xn(x, η(n2t), ϕ) dt

)2
 ≤ Cρ,ϕ ∫ T

0

∫ t

0

(pRWn2r (0, 0))k−1 dr dt

(4.51)
where

Cρ,ϕ = 2|Pk(x)|a(ξ(x))‖ϕ‖1‖ϕ‖∞

By the LCLT

(
pRWn2r (0)

)k−1

≤

{
d

n(k−1)dr(k−1)d/2 , if |r| ≥ εn
1, otherwise

where again the idea is to optimize εn.

We now have two cases:

Case I: k = 3 and d = 1

In this case we have the bound

(
pRWn2r (0)

)2

≤

{
1
n2r , if |r| ≥ εn
1, otherwise

Analogously to the case k = 2 and d = 2 we have that, for n large enough∫ t

0

(pRWn2r (0, 0))k−1 dr ≤ εn +
1

n2

(
log(n)− log(εn)

)
Assume εn is of the form n−α then we obtain∫ t

0

(pRWn2r (0, 0))k−1 dr ≤ n−α +
(α+ 1)

n2
log(n)

(4.52)

We conclude by taking for example α = 3, in this case substituting this bound
in the RHS of (4.51) gives

Eνρ̄

( 1

nd/2

∫ T

0

Xn(x, η(n2t), ϕ) dt

)2
 ≤ 5TCρ,ϕ

log(n)

n2
(4.53)
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Case II: (k − 1)d ≥ 2

This case is completely analogous to the case of two particles and d ≥ 3. Here
we have ∫ t

0

(pRWn2r (0, 0))k−1 dr ≤ 1

n2
E1,(k−1)d

0

[
l
(0)
n2t

]
≤ 1

n2
E1,(k−1)d

0

[
l(0)
∞

]
(4.54)

where the expectation in the RHS of (4.54) can, by independence of the k − 1
walkers, be interpreted as the expected local time at the origin of a (k − 1)d-
dimensional random walker.

Recall that in this case the random walker is transient by the condition (k−1)d ≥
3 and hence the expectation of the local time is of order O(1).

Finally, substituting (4.54) in the RHS of (4.51) gives

Eνρ̄

( 1

nd/2

∫ T

0

Xn(x, η(n2t), ϕ) dt

)2
 ≤ C2(T, k, d)n−2 (4.55)

where
C2(T, k, d) = T Cρ,ϕ E1,(k−1)d

0

[
l(0)
∞

]
(4.56)

4.2.3 Fluctuation Fields of projections on Hk

We can further generalize part (2) of Theorem 4.2.1 to a wider class of functions
f . In this section we make such a generalization for a particular subset of L2(νρ).
For f ∈ L2(νρ) we can use the fact that the union of the spaces Hl is dense in
L2(νρ) to express f as follows

f(η) =
∑
l≥0

ξ∈Ωf :‖ξ‖=l

Cl,ξD(ξ, η) (4.57)

For the rest of this section we restrict ourselves to the set of functions f ∈ L2(νρ)
satisfying the following condition∑

ξ,ξ′∈Ωf :‖ξ‖=‖ξ′‖

|Cl,ξCl,ξ′ |a(ξ′) <∞ (4.58)

In particular all linear combinations of orthogonal duality polynomials satisfy
(4.58).
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THEOREM 4.2.3. Let f be a function such that the condition (4.58) is satisfied,
and as before let fk−1 denote the projection of f on Hk−1, then the field

Xn(f, k − 1, η;ϕ) =
∑
x∈Zd

(τxf(η)− τxfk−1(η))ϕ( xn )

satisfies

Eνρ̄
[
Xn(f, k − 1, η;ϕ)Xn(f, k − 1, η(n2t);ϕ)

]
= O(n−d(k−2))

PROOF. After some simplifications due to orthogonality the field reads

Xn(f, k − 1, η;ϕ) =
∑
x∈Zd

ϕ( xn )
∑
l≥k

ξ∈Ωf :‖ξ‖=l

Cl,ξτxD(ξ, η)

We then compute

Eνρ̄
[
Xn(f, k − 1, η;ϕ)Xn(f, k − 1, η(n2t);ϕ)

]
=

∑
x,y

ϕ( xn )ϕ( yn )
∑
j,l≥k

ξ∈Ωf :‖ξ‖=j
ξ′∈Ωf :‖ξ′‖=l

Cj,ξCl,ξ′ I (x, y, ξ, ξ′)

where

I (x, y, ξ, ξ′) =

∫
τxD(ξ, η)Eη

[
τyD(ξ′, η(n2t))

]
dνρ̄(η)

Then by Lemma 2.2.1 we have:

Eνρ̄
[
Xn(f, k − 1, η;ϕ)Xn(f, k − 1, η(n2t);ϕ)

]
=

∑
x,y

ϕ( xn )ϕ( yn )
∑
j≥k

ξ∈Ωf :‖ξ‖=j
ξ′∈Ωf :‖ξ′‖=j

Cj,ξ Cj,ξ′ a(ξ′) pn2t(τyξ
′, τxξ)

From the LCLT we can also obtain that

pn2t(τyξ, τxξ
′) = O(n−d‖ξ‖)
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This, allows us to bound our expression of interest

nd(k−2)Eνρ̄
[
Xn(f, k − 1, η;ϕ)Xn(f, k − 1, η(n2t);ϕ)

]
≤ nd(k−2)

∑
x,y

ϕ( xn )ϕ( yn )
∑
j≥k

ξ∈Ωf :‖ξ‖=j
ξ′∈Ωf :‖ξ′‖=j

M

ndj
|Cj,ξCj,ξ′ |a(ξ′)

=

 1

n2d

∑
x,y

ϕ( xn )ϕ( yn )

 ∑
j≥k

ξ∈Ωf :‖ξ‖=j
ξ′∈Ωf :‖ξ′‖=j

M

nd(j−k)
|Cj,ξCj,ξ′ |a(ξ′)

(4.59)

At this point we need to show that the last summation does not play a role in the
leading order. But this comes from the fact that f satisfies condition (4.58).

Analogously to Theorem 4.2.2 we provide a quantitative version of the Boltzmann-
Gibbs principle for the current setting.

THEOREM 4.2.4. The field Xn(f, k − 1, η;ϕ) is such that, for all T > 0, there
exist C1(T ), C2(T ), C3(T ) and C4(T, k, d) such that

Eνρ̄

( 1

nd/2

∫ T

0

Xn(f, k − 1, η(n2t);ϕ) dt

)2
 ≤


C1(T )n−1 if k = 2 and d = 1

C2(T ) log(n)
n2 if k = 2 and d = 2

C3(T ) log(n)
n2 if k = 3 and d = 1

C4(T, k, d)n−2 else

(4.60)
for all n big enough.

PROOF. The proof is an exact replica of the arguments given in the proofs of
Theorem 4.2.2 and Corollary 4.2.1.

4.3 Non-stationary fluctuation fields

4.3.1 Second-order fields

Let us now start independent walkers from a product measure of non-homogeneous
Poisson, with weakly varying density profile i.e., from the measure νρ̄ = ⊗x∈Zdνρ(x)

where ρ̄ ∈ RZd and ρ(x) is given by the relation ρ̄ = (ρ(x))x∈Zd . We denote by
Dρ̄ the orthogonal polynomials, i.e.,

Dρ̄(ξ, η) =
∏
i∈Zd

Dρ(i)(ξi, ηi)
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where Dρ(i) denote the orthogonal polynomials w.r.t. Poisson with parameter
ρ(i).
We also denote by ρ̄t = (ρ(x))x∈Zd , where ρt(x) = Ex

[
ρ(Xt)

]
and Xt denotes

the continuous-time random walk. We now are interested in the fields

Xn(ξ, ρ̄, ϕ, t) :=
∑
x∈Zd

ϕ( xn )Dρ̄tn2 (ξ, η(n2t)) (4.61)

then the second-order field is

X(2)
n (ρ̄, ϕ, t) := Xn(2δ0, ρ̄, ϕ, t) =

∑
x

ϕ( xn )Dρ̄tn2 (2δx, η(n2t)) (4.62)

Compared to previous notation, please notice the additional dependence on the
parameter ρ̄ and on time t.

We want to prove that the covariance of X
(2)
n (ρ̄, ϕ, t) and X

(2)
n (ρ̄, ϕ, s) is of

order 1, as N →∞, exactly as in the stationary case. For this we start with the
following result:

LEMMA 4.3.1. Let νρ̄ := ⊗x∈Zdνρ(x) be a product of non-homogeneous Poisson
measures, then we have∫

Eη
[
Dρ̄t(x)(2δx, η(t))

]
Dρ(y)(2δy, η) dνρ̄(η) = k2(y) pt(x, y)2 (4.63)

where

k2(y) =

∫ (
Dρ(y)(2δy, η)

)2

dνρ̄(η)

PROOF. Note that

Dρt(x)(2δx, ηt) = ηx(t)(ηx(t)− 1)− 2ρt(x)(ηx(t)− ρt(x))− ρt(x)2

hence

Eη
[
Dρ̄t(x)(2δx, ηt)

]
= Eη

[
ηx(t)(ηx(t)− 1)

]
− 2ρt(x)Eη

[
ηx(t)− ρt(x)

]
− ρt(x)2 (4.64)

We now state the following:
Claim 1: ∫

Eη
[
ηx(t)− ρt(x)

]
Dρ(y)(2δy, η) dνρ̄(η) = 0

Indeed, by duality, Eη
[
ηx(t)− ρt(x)

]
=
∑
z pt(x, z)(ηz − ρ(z)) and the poly-

nomial (ηz − ρ(z)) is in L2(νρ̄(η)) always orthogonal to Dρ(y)(2δy, η) because
for z 6= y both (ηz − ρ(z)) and Dρ(y)(2δy, η) have expectation zero, and when
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z = y because it is the inner product of the first order and second-order orthog-
onal polynomials, which is zero. So we only have to work out the expectation
Eη
[
ηx(t)(ηx(t)− 1)

]
which by duality equals∑

u

pt(x, u)2ηu(ηu − 1) + 2
∑
u6=v

pt(x, u)pt(x, v)ηuηv

Claim 2:
For all u ∫

ηuDρ(y)(2δy, η)dνρ̄(η) = 0

Indeed, for u 6= y this is true because of the product character of the measure
and the fact that Dρ(y)(2δy, η) has zero expectation, and for u = y, ηy = ηy −
ρ(y) + ρ(y) which is the sum of the first orthogonal polynomial and a constant,
which is in L2(νρ̄(η)) orthogonal to Dρ(y)(2δy, η).

Finally, we remark that for all u 6= y∫
ηu(ηu − 1)Dρ(y)(2δy, η)dνρ̄(η) = 0

because of the product character of the measure and the fact that the polynomial
Dρ(y)(2δy, η) has zero expectation. Finally,∫

ηy(ηy − 1)Dρ(y)(2δy, η)dνρ̄(η) =

∫
(Dρ(y)(2δy, η))2dνρ̄(η)

because adding first order terms in ηy does not change the inner product with
Dρ(y)(2δy, η).

As a consequence of Lemma 4.3.1 and using that a product of Poisson mea-
sures is reproduced at later times, we compute

lim
n→∞

Eνρ̄
[
X(2)
n (ρ̄, ϕ, t)X(2)

n (ρ̄, ϕ, s)
]

= lim
n→∞

Eνρ̄
sn2

[
X(2)
n (ρ̄, ϕ, t− s)X(2)

n (ρ̄, ϕ, 0)
]

=

∫
e−

(x−y)2

t−s

2π(t− s)d/2
ϕ(x)ϕ(y)κ2(y)dxdy (4.65)

where

κ2(y) = lim
n→∞

k2(ny)

which exists because the initial Poisson measure has a slowly varying density
profile.
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4.3.2 Higher-order fields: Non-stationary case

The aim of this section is to extend the results of the previous example to higher-
order fields:

Xn(x, ρ̄, ϕ, t) =
∑
x∈Zd

ϕ( xn )Dρ̄tn2 (τ̂xξ, η(n2t)) (4.66)

We start then with a generalization of Lemma 4.3.1 to higher orders. As we
already stated in Remark 2.2.6 in the case of independent random walkers, the
orthogonal duality polynomials are related to the classical duality polynomials
in the following way:

Dρ̄(ξ, η) =
∏
x∈Zd

ξx∑
j=0

(
ξx
j

)
(−ρ(x))ξx−jd(j, ηx) (4.67)

where d(k, n) are the classical single-site duality polynomials.

REMARK 4.3.1. Notice that due to the non-homogeneity of the product measure,
the duality property cannot be any longer guaranteed.

Despite the previous remark, the special form of the Charlier polynomials
allows us to reach the same conclusions as in the stationary case. Let us first
make a simple observation:
Define A(ξ, η, ρ̄) as the difference between the Charlier and classical polynomials
of order ‖ξ‖, i.e.

A(ξ, η, ρ̄) := Dρ̄(ξ, η)−
∏
x∈Zd

d(ξx, ηx)

and notice that A(ξ, η, ρ̄) is a polynomial of degree strictly less than ‖ξ‖ and
as a consequence it has an expansion, in terms of orthogonal polynomials, con-
sisting only of polynomials of order strictly smaller than ‖ξ‖. Therefore, by
orthogonality we have∫

Eη
[
A(ξ, η, ρ)

]
Dρ0(ξ′, η)dνρ̄0(η) = 0

for any configuration ξ′ such that ‖ξ‖ ≤ ‖ξ′‖. With this observation we are
ready to state the following Lemma:

LEMMA 4.3.2. Let νρ̄ := ⊗x∈Zdνρ(x) be a product of non-homogeneous Poisson

measures, and let ρt(x) = Ex
[
ρ(Xt)

]
, where Xt denotes continuous-time random

walk. Then we have∫
Eη
[
Dρ̄t(ξ, η(t))

]
Dρ̄(ξ

′, η)dνρ̄(η) = pt(ξ, ξ
′)a0(ξ′) (4.68)

where at(ξ) = ‖Dρ̄t(ξ, ·)‖2L2(νρ̄)
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PROOF. We simply compute

∫
Eη
[
Dρ̄t(ξ, η(t))

]
Dρ̄(ξ

′, η)dνρ̄(η)

=

∫
Eη

∏
x

ξx∑
j=0

(
ξx
j

)
(−ρt)ξx−jd(j, η(x, t))

Dρ̄(ξ
′, η)dνρ̄(η)

=

∫
Eη

[∏
x

d(ξx, η(x, t))

]
Dρ̄(ξ

′, η)dνρ̄(η)

+

∫
Eη
[
A(ξ, η, ρ̄)

]
Dρ̄(ξ

′, η)dνρ̄(η)

=

∫
Eξ

[∏
x

d(ξ(x, t), ηx)

]
Dρ̄(ξ

′, η)dνρ̄(η)

=

∫ ∑
ζ

pt(ξ, ζ)

(∏
x

d(ζx, ηx) +A(ζ, η, ρ̄)

)
Dρ̄(ξ

′, η)dνρ̄(η)

=

∫ ∑
ζ

pt(ξ, ζ)

∏
x

ζx∑
j=0

(
ζx
j

)
(−ρ(x))ζx−jd(j, ηx)

Dρ̄(ξ
′, η)dνρ̄(η)

=

∫ ∑
ζ

pt(ξ, ζ)Dρ̄(ζ, η)Dρ̄(ξ
′, η)dνρ̄(η)

= pt(ξ, ξ
′)a0(ξ′) (4.69)

where in the fourth and fifth line we subtracted and added zero respectively by
using the orthogonality of Dρ̄(ξ

′, η) to lower-order polynomials in the expansion.

We now state the non-stationary version of Theorem 4.2.1

THEOREM 4.3.1. Let νρ̄ := ⊗x∈Zdνρ(x) and ρt(x) be as before, and let k := ||x||,
then

1. For all t > 0

Eνρ̄
[
Xn(x, ρ̄, ϕ, t)Xn(x, ρ̄, ϕ, 0)

]
= a0

 k∑
i=1

δxi

∑
x,y

ϕ( xn )ϕ( yn )pt

 k∑
i=1

δx+xi ;

k∑
i=1

δy+xi


(4.70)
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2. As a consequence, for t > s > 0

lim
n→∞

Nd(k−2)Eνρ̄
[
Xn(x, ρ̄, ϕ, t)Xn(x, ρ̄, ϕ, s)

]
= K (x; ρ)

dk/2

(2π(t− s))dk/2

∫
R2

e−kd(x−y)2/2(t−s)ϕ(x)ϕ(y)dxdy

with ξ =
∑k
i=1 δxi and K (x; ρ) defined as in the stationary case.

PROOF. Is a consequence of Lemma 4.3.2 together with the fact that a product
of Poisson measure is reproduced at later times. We refer to Section 3 in Chapter
I of [58] for a proof of the fact that local equilibrium is conserved by the time
evolution in the case of IRW.

With this last theorem, we have now the ingredients to obtain a quantitative
Boltzmann-Gibbs principle

COROLLARY 4.3.1. For all T > 0, there exist C1(T ), C2(T ), C3(T ) and C4(T, k, d)
such that for all n big enough

Eνρ̄

( 1

nd/2

∫ T

0

Xn(x, ρ̄, ϕ, t) dt

)2
 ≤


C1(T )n−1 if k = 2 and d = 1

C2(T ) log(n)
n2 if k = 2 and d = 2

C3(T ) log(n)
n2 if k = 3 and d = 1

C4(T, k, d)n−2 else

(4.71)

PROOF. The proof is essentialy the same than in all the previous cases.

4.4 QBGP beyond independent random walkers

In the context of stationarity, the results of this Chapter are not exclusive for
Independent Random Walkers. Hence in this section, we extend our results to
a wider class of IPS. i.e., to those particle systems that enjoy the existence of
orthogonal self-duality with respect to a stationary measure νρ and that satisfy
an additional condition in the transition kernel. Let then {ηt}t≥0 be an IPS for
which there exists an orthogonal self-duality function D : Ωf ×Ω→ R satisfying
all the properties stated in section 2.2.3. As in the same section, we denote by
pt(ξ, ξ

′) the transition probability to go from configuration ξ to ξ′ in time t.
Then this is enough to guarantee the validity of Lemma 2.2.1. Namely,

LEMMA 4.4.1. Let ξ, ξ′ ∈ Ωf , then∫
Eη(D(ξ, ηt))D(ξ′, η)dνρ(η) = pt(ξ, ξ

′)a(ξ′) (4.72)

for all ξ, ξ′ ∈ Ωf .
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Furthermore, let us assume the following:

Assumption 1. For all ξ, ξ′ ∈ Ωf , the transition kernel satisfies the following
estimate

pt(ξ, ξ
′) ≤ C

(1 + t)‖ξ‖d/2
(4.73)

This assumption is reasonable since in [67] estimates of this kind were already
found for a wide class of interacting particle systems that, for example, includes
generalized exclusion processes. The results of [67] are applicable as long as the
process satisfies a logarithmic Sobolev inequality for the symmetric part of the
generator. As before, for a fixed x ∈ Zdk we define the polynomial fluctuation
field

Xn(x, η, ϕ) :=
∑
z∈Zd

ϕ

(
z

n

)
D(τ̂zx, η), (4.74)

Then, from assumption (4.73) we can also conclude the following theorem

THEOREM 4.4.1. For all T > 0 there exist C1(T ), C2(T ), C3(T ) and C4(T, x, d)
such that, for all n big enough

Eνρ

( 1

nd/2

∫
[0,T ]2

Xn(x, η(n2t), ϕ) dt

)2
 ≤


C1(T )n−1 if k = 2 and d = 1

C2(T ) log(n)
n2 if k = 2 and d = 2

C3(T ) log(n)
n2 if k = 3 and d = 1

C4(T, k, d)n−2 else

(4.75)
for all x ∈ Zdk.

4.4.1 BGP via local times and Green functions

If we want to show results of the BGP type for systems away from LCLT’s or
heat kernel estimates, we can still say something, but in this case, we lose the
quantitative nature of the results.

Let again {ηt}t≥0 be an IPS for which there exists an orthogonal self-duality
function D : Ωf ×Ω→ R satisfying all the properties stated in Section 2.2.3. In
the language of Section 4.2.2 we let

Xn(x, η, ϕ) :=
∑
z∈Zd

ϕ

(
z

n

)
D(τzx, η), (4.76)

define the k-th-order fluctuation field associated to the k-particles configuration
given by x ∈ Zdk. We then have the following Boltzmann-Gibbs principle
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THEOREM 4.4.2. For all T > 0 we have

lim
n→∞

Eνρ

( 1

nd/2

∫
[0,T ]

Xn(x, η(n2t), ϕ) ds

)2
 = 0 (4.77)

for all x ∈ Zdk.

Sketch of the proof

By an application of Lemma 4.4.1 and the fact that the function a(·) is transla-
tion invariant, i.e. a(ξ(τ̂zx)) = a(ξ(x)), for all z ∈ Zd, we have:

Eνρ

( 1

nd/2

∫
[0,T ]

Xn(x, η(n2t), ϕ) ds

)2


=
2

nd

∫ T

0

∫ t

0

a(ξ(x))
∑

σ∈Pk(x)

∑
y,z∈Zd

ϕ( yn )ϕ( zn ) pn2(t−s)(τyx, τzx
(σ)) ds dt

≤ 2

nd

∫ T

0

∫ T

0

a(ξ(x))
∑

σ∈Pk(x)

∑
y,z∈Zd

∣∣∣ϕ ( yn)∣∣∣∣∣∣ϕ ( zn)∣∣∣ pn2r(τyx, τzx
(σ)) dr dt

≤ 2T

nd

∫ T

0

a(ξ(x))
∑

σ∈Pk(x)

∑
y,z∈Zd

∣∣∣ϕ ( yn)∣∣∣∣∣∣ϕ ( zn)∣∣∣ pn2r(τyx, τzx
(σ)) dr

(4.78)

where pt(x, τz−yx
(σ)) and Pk(x) are given in terms of the notation introduced

at the beginning of Section 4.2.2.

Let us simplify the previous expression and introduce the following constant:

C = C(x, T, ρ) = 2 · T · aρ(ξ(x)) (4.79)

Taking the sup-norm of ϕ over z ∈ Zd we obtain:

Eνρ̄

( 1

nd/2

∫
[0,T ]

Xn(x, η(n2t), ϕ) ds

)2


≤
C ·‖ϕ‖∞

nd

∫ T

0

∑
σ∈Pk(x)

∑
y∈Zd

∣∣∣ϕ ( yn)∣∣∣
∑
z∈Zd

pn2r(τyx− x(σ), τz0)

 dr

(4.80)
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We now rewrite the term inside brackets in the RHS of (4.80) as follows:∑
z∈Zd

pn2r(τyx− x(σ), τz0) =
∑

z∈Zkd
pn2r(τyx− x(σ), z) 1l{z1=...=zk}

= Eτyx
[
1l{X1(n2r)−xσ(1)=...=Xk(n2r)−xσ(k)}

]
(4.81)

where Eτ̂zx denotes the expectation of k particles in coordinate notation, each
of them originally starting at position (τzx)i ∈ Zd.

Substitution of (4.81) in (4.80) gives:

Eνρ

( 1

nd/2

∫
[0,T ]

Xn(x, η(n2t), ϕ) ds

)2


≤
C ·‖ϕ‖∞

nd

∑
σ∈Pk(x)

∫ T

0

∑
y∈Zd

∣∣∣ϕ ( yn)∣∣∣Eτyx [1l{X1(n2r)−xσ(1)=...=Xk(n2r)−xσ(k)}

]
dr

(4.82)

By the compact support of ϕ we can further estimate as follows:

Eνρ

( 1

nd/2

∫
[0,T ]

Xn(x, η(n2t), ϕ) ds

)2


≤ C2 ·‖ϕ‖2∞
∑

σ∈Pk(x)

∫ T

0

Eτyx
[
1l{X1(n2r)−xσ(1)=...=Xk(n2r)−xσ(k)}

]
dr

(4.83)

where the constant C2 depends on the previous constant C and the size of the
box containing the support of ϕ.

At this point, we have two ways to show that the RHS of (4.83) indeed vanishes.
We will briefly discuss them in the following un-numbered sections.

Local times

This possibility comes from the observation that, to conclude (4.77), it is enough
to show that, for all y:

lim
n→∞

1

n2

∫ n2T

0

Eτyx
[
1l{Xi(s)−Xj(s)=Xσ(i)(0)−Xσ(j)(0) ∀i,j}

]
ds = 0 (4.84)
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By consistency the behaviour of the previous limit reduces to any random pair
of particles. Therefore (4.84) in turn, can be achieved by showing that, for all y:

lim
n→∞

1

n2

∫ n2t

0

Eτyx
[
1lX1(s)−X2(s)=0

]
ds = 0 (4.85)

where the same expression is satisfied by substituting the point zero in the indi-
cator function by any other point in space.

The experienced reader can identify the emergence of the local time at the origin
of the difference of the positions of two particles in the LHS of (4.85). Therefore,
condition (4.85) is easily accessible for the particle systems of interest in this
thesis. This is due to the convergence of a system of two particles diffusively
rescaled to two-dimensional Brownian motions.

Green functions

For the case (k − 1)d ≥ 3, there is a second possibility which comes from the
observation that the RHS (without the limit) of (4.82) can be further estimated
as follows:

1

n2

∫ n2T

0

Eτyx
[
1l{X1(n2r)−xσ(1)=...=Xk(n2r)−xσ(k)}

]
ds

≤ 1

n2

∫ ∞
0

Eτyx
[
1l{X1(n2r)−xσ(1)=...=Xk(n2r)−xσ(k)}

]
ds

=:
1

n2
G(d, k,x) (4.86)

for any permutation σ ∈Pk(x).

The function G(d, k,x) that we just introduced should be thought of as a diago-
nal analogue of the Green’s function for independent random walkers. Therefore,
possessing information about this Green function for a given particle system
(with orthogonal self-duality) should be enough to conclude or discard the limit
(4.77).

As an example of what we claimed in the previous paragraph, let us consider
the case of independent random walkers, for which the system is transient if
(k − 1)d ≥ 3. This condition translates into G(d, k,x) satisfying:

G(d, k,x) <∞ (4.87)

for every x ∈ Zkd.





Chapter 5

Higher-order fluctuation
fields and orthogonal
duality polynomials

In the context of interacting particle systems with a conserved quantity (such
as the number of particles) in [27, 58] one studies the time-dependent density
fluctuation field

X (n)(ϕ, η(n2t)) =
1

nd/2

∑
x∈Zd

ϕ(x/n)(ηx(n2t)− ρ).

Here ϕ denotes a test-function, and ηx the number of particles at site x ∈ Zd.
The quantity X (n)(ϕ, η(n2t)) is then considered as a random time-dependent
(Schwartz) distribution. In a variety of models with particle number conserva-
tion (such as zero-range processes, simple exclusion processes, etc.), this time-
dependent field is proved to converge, at equilibrium, to a stationary infinite-
dimensional Ornstein-Uhlenbeck process. This scaling limit behavior of the den-
sity fluctuation field can be thought of as a generalized central limit theorem,
and, as such, as a correction or refinement of the hydrodynamic limit (or the
ergodic theorem for the invariant measure, as it is the case of this paper), which
can be thought of as a law of large numbers.

The usual strategy of proof (see e.g. Chapter 11 of [58]) is to start from
the Dynkin martingale associated to the density field and prove convergence of
the drift term via the Boltzmann-Gibbs principle (the drift term becomes in the
scaling limit a function of the density field), and convergence of the noise term
via a characterization of its quadratic variation (which becomes deterministic in

67
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the scaling limit). This then eventually leads to the informally written SPDE

dXt = D∆Xt + σ(ρ)∇dWt

where ρ is the parameter of the invariant measure associated to the density, ∆
denotes the Laplacian, and where σ(ρ)∇dWt is an informal notation for Gaussian
white noise with variance σ2(ρ)

∫
(∇ϕ)2dx.

In interacting particle systems with (self-)duality, the drift term in the equa-
tion for the density field is already microscopically (i.e., without rescaling) a
(linear) function of the density field. As a consequence, closing the equation and
proving convergence to the limiting Ornstein-Uhlenbeck process, is, for self-dual
systems, particularly simple and does not require the use of a Boltzmann-Gibbs
principle. This simplification suggests that, in that context, we can obtain more
detailed results about fluctuation fields of more general observables. Orthog-
onal polynomial duality is a useful tool in the study of fluctuation fields, and
associated Boltzmann-Gibbs principles, as we have seen in Chapter 4.

The density fluctuation field can be viewed as the lowest (i.e., first) order of a
sequence of fields associated to orthogonal polynomials. Indeed, in all the models
with orthogonal polynomial self-duality, the function (ηx − ρ) is the first-order
orthogonal polynomial up to a multiplicative constant. Orthogonal polynomials
are indexed by finite-particle configurations, i.e., the dual configurations. If
we denote by D(x1, . . . xk; η) the orthogonal polynomial associated to the dual
configuration

∑n
i=1 δxi , then a natural field generalizing the density fluctuation

field is

X (n,k)(Φ, η) = n−kd/2
∑
xi∈Zd

D(x1, . . . , xk; η) · Φ
(
x1

n , . . . ,
xk
n

)
.

In the context of exclusion processes the case k = 2 (orthogonal polynomial of
order 2) has been studied in [47], where this field, called the quadratic fluctuation
field, is shown to converge, in the limit n → ∞, to the solution of a martingale
problem. The quadratic variation of this 2nd-order field is proven to be a function
of the 1st-order field (the density field). From the result on the quadratic (k=2)
field one can conjecture the existence of a more general structure where the kth-
order orthogonal polynomials field satisfies, in the scaling limit, a martingale
problem with quadratic variation depending on the k − 1-order field.

In this chapter we show exactly the emergence of a scenario of this type:
within a general class of models with orthogonal polynomial self-duality we con-
sider the fluctuation fields associated to orthogonal polynomials and prove that
they converge, in the scaling limit, to the solution of a recursive system of mar-
tingale problems. We believe that this can also be a first step in the direction
of defining non-linear fields, such as the square of the density field, via approxi-
mation of the identity, i.e., via a singular linear observable (cf. [47]) of the field
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constructed in our paper.

The rest of this chapter is organized as follows. In Section 5.1 we define the
basic models, and introduce orthogonal polynomial duality. In Section 5.2 we
define the fluctuation fields, in Section 5.3 we introduce a coordinate version of
the dual process, a technical tool that will prove to be useful later on. In Section
5.4 we state the main result, Theorem 5.4.1 below, and outline a strategy of
its inductive proof. Finally, the rest of the sections are devoted to the proof of
Theorem 5.4.1.

5.1 The models

5.1.1 The infinite configuration process

We consider an interacting particle system where an infinite number of particles
randomly hop on the lattice Zd. Configurations are denoted by η, ξ, ζ and are

elements of Ω ⊆ NZd (where N denotes the natural numbers including zero). We
denote by ηx the number of particles at x in the configuration η ∈ Ω. We have
in mind symmetric processes of the type independent random walkers, inclusion
or exclusion. We fix two parameters (σ, α) ∈ {0, 1} × [0,∞) ∪ {−1} × N and we
define the generator working on local functions f : Ω→ R as

L f(η) =
∑
i∈Zd

∑
r∈Zd

p(r)ηi(α+ σηi+r)(f(ηi,i+r)− f(η)) (5.1)

where ηi,i+r denotes the configuration obtained from η by removing a particle
from i and putting it at i+ r. The state space Ω has to be defined and its form
depends on the choice of the parameters α and σ. We assume that p(r) is a
symmetric, finite-range, irreducible Markov transition function on Zd:

1. Symmetry. The function p : Rd → [0,∞) is of the form:

p(r1, . . . , rd) = p(|r1|, . . . , |rd|) (5.2)

and such that p(rσ) := p(rσ(1), . . . , rσ(d)) = p(r1, . . . , rd) for all σ ∈P(d),
the set of permutations of {1, . . . , d}.

2. Finite-range. There exists a finite subset R ⊂ Zd of the form R =

[−R,R]d ∩ Zd, for some R ∈ N, R > 1, such that p(r) = 0 for all r /∈ R.

3. Irreducibility. For all x, y ∈ Zd there exists a sequence i1 = x, . . . , in = y
such that

n−1∏
k=1

p(ik − ik+1) > 0.
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We will also assume, without loss of generality, that p(0) = 0, and denote by χ
the second moment:

χ :=
∑
r∈R

r2
` · p(r), for all ` ∈ {1, . . . , d}. (5.3)

REMARK 5.1.1. The symmetry assumption (5.2) is crucial in order to be able
to have and apply orthogonal self-duality.

For the associated Markov processes on Ω, we use the notation {η(t) : t ≥ 0},
ηx(t) denoting the number of particles at time t at location x ∈ Zd. These par-
ticle systems have a one-parameter family of homogeneous (w.r.t. translations)
reversible and ergodic product measures νρ, ρ > 0, indexed by the density of
particles, i.e., ∫

η0dνρ = ρ. (5.4)

The nature of the underlying dynamics and the type of reversible measure we
obtain is regulated by the parameter σ ∈ Z as follows.

Independent random walkers (IRW): This particle system corresponds to
the choice σ = 0 and the intensity parameter α ∈ R regulates the rate at
which the walkers move. The reversible measures νρ, ρ > 0 are products
of Poisson distributions with parameter ρ, νρ = ⊗i∈ZdPois(ρ), i.e. the
marginals are given by

Pνρ(ηi = n) =
1

Zρ
· ρ

n

n!
, Zρ = e−ρ, ∀ i ∈ Zd.

Symmetric exclusion process (SEP(α)): The choice σ = −1 results in ex-
clusion interaction. For this process the parameter α takes values in the
set of natural numbers, α ∈ N, as it determines the maximum num-
ber of particles allowed per site. This system is well known to have re-
versible measures νρ, ρ ∈ (0, α), that are products of Binomial distribu-
tions: νρ = ⊗i∈ZdBinom

(
α, ρα

)
whose marginals are given by

Pνρ(ηi = n) =
1

Zα,ρ
·
(
α

n

)
·
(

ρ

α− ρ

)n
, ∀ i ∈ Zd.

with normalizing constant

Zα,ρ =

(
α

α− ρ

)α
(5.5)

Symmetric inclusion process (SIP(α)): The choice σ = 1 gives rise to an
interaction of inclusion-type consisting of particles attracting each other.



5.1. THE MODELS 71

The SIP is known to have products of Negative-Binomial distributions as

reversible measures, i.e. νρ, ρ > 0 with νρ = ⊗i∈ZdNeg-Binom
(
α, ρ

ρ+α

)
with marginals

Pνρ(ηi = n) =
1

Zα,ρ
· Γ(α+ n)

Γ(α) · n!

(
ρ

α+ ρ

)n
, ∀ i ∈ Zd.

with normalizing constant

Zα,ρ =

(
α+ ρ

α

)α
(5.6)

REMARK 5.1.2. Notice that for the three processes we have that all moments
are finite.

The definition of the state space Ω is different in each case, depending on whether
there are restrictions or not on the total number of particles allowed per site. This

is finite for the exclusion process, thus, for SEP(α), we have Ω = {0, 1, . . . , α}Zd .
The situation is different in the cases of IRW and SIP, for which, in principle,
there are no restrictions. Nevertheless, one has to avoid explosions of the number
of particles in a given site. For this reason the characterization of Ω in these
cases (i.e. for σ ≥ 0) is a more subtle problem whose treatment is beyond the
scope of this thesis. Here we will restrict ourselves by implicitly defining Ω as the

set of configurations in NZd whose evolution η(t) is well-defined and belonging to
Ω for all subsequent times t ≥ 0. A possible such subset is the set of tempered
configurations. This is the set of configurations η such that there exist C, β ∈ R
that satisfy |η(x)| ≤ C(|x|β + 1) for all x ∈ Rd. We denote this set (with slight
abuse of notation) still by Ω, because we will always start the process from such
configurations, and this set has νρ̄ measure 1 for all ρ.

5.1.2 The finite configuration processes

The process introduced in Section 5.1.1 can also be realized with a fixed finite
number of particles. For a process with k ∈ N particles we denote by Ωk its state
space, more precisely:

Ωk =
{
ξ ∈ Ω : ‖ξ‖ :=

∑
x∈Zd

ξx = k
}
. (5.7)

We will then denote by {ξ(t) : t ≥ 0} the Ωk-valued Markov process, with
infinitesimal generator given by

L (k)f(ξ) =
∑
i∈Zd

∑
r∈R

p(r)ξi(α+ σξi+r)(f(ξi,i+r)− f(ξ)) (5.8)
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working on functions f : Ωk → R.

We now define the measure Λ(·), which is a product measure not depending on
k:

Λ(ξ) =
∏
i∈Zd

λ(ξi) (5.9)

with

λ(m) =



1
m! , m ∈ N for σ = 0 IRW

α!
m!(α−m)! , m ∈ {0, . . . , α} for σ = −1 SEP(α)

Γ(α+m)
m!Γ(α) , m ∈ N for σ = 1 SIP(α)

(5.10)

Notice that by detailed balance we can verify that the measure Λ(·) is reversible.
As a consequence of this reversibility we can infer that the k-particles generator
L (k) is self-adjoint with respect to the inner product 〈·, ·〉Λ, i.e. for all f, g ∈
L2(Ωk,Λ) we have

〈f,L (k)g〉Λ = 〈L (k)f, g〉Λ (5.11)

where the inner product is given by

〈f, g〉Λ =
∑
ξ∈Ωk

f(ξ)g(ξ)Λ(ξ). (5.12)

5.1.3 Orthogonal polynomial self-duality

The processes defined in Section 5.1.1 share a self-duality property that will be
crucial in our analysis. Define the set

Ωf =
⋃
k∈N

Ωk (5.13)

of configurations with a finite number of particles, the self-duality functions that
we consider in this paper are functions Dρ : Ωf × Ω → R parametrized by the
density ρ > 0 satisfying the following properties.

1. Self-duality:

Eη
[
Dρ(ξ, η(t))

]
= Eξ

[
Dρ(ξ(t), η)

]
for all ξ ∈ Ωf , η ∈ Ω (5.14)

or, equivalently,

[LDρ(ξ, ·)](η) = [L (k)Dρ(·, η)](ξ) for all ξ ∈ Ωf , η ∈ Ω. (5.15)
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2. Factorized polynomials:

Dρ(ξ, η) =
∏
i∈Zd

dρ(ξi, ηi)

where dρ(0, n) = 1, and dρ(k, ·) is a polynomial of degree k.

3. Orthogonality: ∫
Dρ(ξ, η)Dρ(ξ

′, η) dνρ(η) = δξ,ξ′ ·
1

µρ(ξ)
(5.16)

where

µρ(ξ) :=

(∫
Dρ(ξ, η)2 dνρ(η)

)−1

. (5.17)

REMARK 5.1.3. Notice that, as a consequence of the orthogonality property
(5.16), we have that∫

Eη
[
Dρ(ξ, η(t))

]
·Dρ(ξ

′, η) dνρ(η) = pt(ξ, ξ
′) · 1

µρ(ξ′)
(5.18)

where pt(·, ·) is the transition probability function of the dual process {ξ(t) : t ≥
0}. Moreover, if we use the reversibility of the measure νρ on the LHS of (5.18)
we obtain

pt(ξ, ξ
′) · 1

µρ(ξ′)
=

∫
Eη
[
Dρ(ξ, η(t))

]
·Dρ(ξ

′, η) dνρ(η)

=

∫
Dρ(ξ, η) · Eη

[
Dρ(ξ

′, η(t))
]
dνρ(η)

= pt(ξ
′, ξ) · 1

µρ(ξ)
(5.19)

which, by detailed balance, implies the reversibility of the measure µρ(ξ). This
in turn implies that there exists a constant c(k, ρ) such that

Λ(ξ) = c(k, ρ) · µρ(ξ) for all ξ ∈ Ωk. (5.20)

REMARK 5.1.4. Notice that by Remark 5.1.2 we have that µρ(ξ) <∞ for every
ξ ∈ Ωf . Moreover, the measure µρ is not a probability measure.

From now on we will often suppress the dependence on the parameter ρ, of the
duality functions D(·, ·) = Dρ(·, ·), in order not to overload the notation. The
same omission will be done for the single site duality-polynomials d(·, ·), and any
other orthogonal polynomial introduced below.

For each of the processes we are considering, the orthogonal duality polynomials
are given as follows.
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IRW: Charlier polynomials. The duality polynomials are given by

d(m,n) = C(m,n)

where C (m, ·) is the Charlier polynomial of degree m that we characterize
by means of the following generating function:

∞∑
m=0

C(m,n) · t
m

m!
= e−t

(
ρ+ t

ρ

)n
. (5.21)

We can differentiate the RHS of (5.21) with respect to t, and evaluate at
t = 0, to obtain that the first three Charlier (and self-duality) polynomials
are:

d(0, n) = C(0, n) = 1,

d(1, n) = C(1, n) =
1

ρ
(n− ρ) ,

d(2, n) = C(2, n) =
1

ρ2

(
n(n− 1)− 2ρn+ ρ2

)
. (5.22)

SEP(α): Krawtchouk polynomials. For the SEP the duality polynomials
are given by

d(m,n) =
m!(α−m)!

α!
·K(m,n)

where K(m, ·) is the Krawtchouk polynomial of degree m whose generating
function is

∞∑
m=0

K(m,n) · tm = (1− t)α
1 + (α−ρρ )t

1− t

n

. (5.23)

With analogous computations to the IRW case, the first Krawtchouk poly-
nomials are:

K(0, n) = 1,

K(1, n) =
α

ρ
(n− ρ) ,

K(2, n) =

(
α

ρ

)2

n(n− 1)− 2

(
α

ρ

)
(α− 1)n+ α(α− 1), (5.24)

with corresponding single-site duality polynomials:

d(0, n) = 1,

d(1, n) =
1

ρ
(n− ρ) , (5.25)

d(2, n) =
2α

ρ2(α− 1)

(
n(n− 1)− 2ρ(α− 1)

α
n+

ρ2(α− 1)

α

)
.
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REMARK 5.1.5. Notice that these polynomials are only defined for the
case m,n ≤ α.

SIP(α): Meixner polynomials. In this case the polynomials satisfying the
self-duality relation are given by the following normalization of the Meixner
polynomials

d(m,n) =
Γ(α)

Γ(α+m)
·M(m,n) (5.26)

where M(m, ·) is the Meixner polynomial of degree m with generating
function

∞∑
m=0

M(m,n) · t
m

m!
= (1− t)−α

1− (α+ρ)t
ρ

1− t

n

. (5.27)

The first Meixner polynomials are:

M(0, n) = 1,

M(1, n) = −α
ρ

(n− ρ) ,

M(2, n) =

(
α

ρ

)2

n(n− 1)− 2

(
α

ρ

)
(α+ 1)n+ α(α+ 1). (5.28)

with corresponding single-site duality polynomials are:

d(0, n) = 1,

d(1, n) = −1

ρ
(n− ρ) ,

d(2, n) =
α

ρ2(α+ 1)

(
n(n− 1)− 2ρ(α+ 1)

α
n+

ρ2(α+ 1)

α

)
.(5.29)

We refer the reader to [61] and [23] for more details on these polynomials and
their generating functions. For proofs of self-duality with these orthogonal poly-
nomials we refer to [41] and [79].

5.2 Fluctuation fields

The density fluctuation field X is the stochastic object usually defined to study
fluctuations of density around its expected limit. This field corresponds to a
central limit type of rescaling of the density field, i.e.

X
(n)
t (ϕ, η) := n−d/2

∑
x∈Zd

ϕ(x/n)(ηx(n2t)− ρ). (5.30)
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where ϕ is an element of the Schwartz space S(Rd), i.e., the space of all smooth
functions whose derivatives are rapidly decreasing:

S(Rd) = {ϕ ∈ C∞(Rd) : sup
x∈Rd
|xβDθϕ| <∞,∀β, θ ∈ N} (5.31)

where C∞(Rd) is the space of smooth functions.

Fields of this type have been intensively studied in the literature. For different

models, see for example [58] for the case of the ZRP, the sequence X
(n)
t is proven

to converge to a limiting field Xt that is identified as the distribution-valued
random variable satisfying the following martingale problem: for any ϕ ∈ S(Rd)
the process

Mt(ϕ) = Xt(ϕ)−X0(ϕ)− χα

2

∫ t

0

Xs(∆ϕ)ds (5.32)

is a square integrable continuous martingale of quadratic variation given by the
expression:

χρ(α+ σρ)
∥∥∇ϕ(x)

∥∥2 · t. (5.33)

Following a procedure analogous to the one given in Chapter 11, pages 290-291,
of [58], the martingale problem (5.32)-(5.33) can be rewritten as:

Xt(ϕ) = X0(ϕ) +
χα

2

∫ t

0

Xs(∆ϕ)ds+
√
χρ(α+ σρ)

∥∥∇ϕ(x)
∥∥Wt(ϕ) (5.34)

where Wt is a generalized Brownian motion with covariance

cov
[
Wt(ϕ),Ws(ψ)

]
= min(t, s)

∫
R

∇ϕ(x)∥∥∇ϕ(x)
∥∥ ∇ψ(x)∥∥∇ψ(x)

∥∥ dx. (5.35)

Formally speaking, (5.34) is equivalent to say that the limiting field Xt satisfies
the Ornstein-Uhlenbeck equation

dXt = χα
2 ∆Xt dt+

√
χρ(α+ σρ)∇dWt, (5.36)

where ∇dWt is to be interpreted as saying that the integral∫ t

0

∇dWs(ϕ) (5.37)

is a continuous martingale of quadratic variation:

t ·
∥∥∇ϕ(x)

∥∥ . (5.38)

We refer the reader to [27] for a precise statement on the convergence for the
case of the exclusion process, corresponding, in our setting, to the case α = 1
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and σ = −1.

The density field (5.30) can be written, in our context, in terms of our orthog-
onal polynomial dualities Dρ(ξ, η) by choosing ξ ∈ Ω1. Indeed, in all models
considered we have that there exists a constant cσ,α,ρ such that

Dρ(δx, η) = cσ,α,ρ (ηx − ρ) (5.39)

where

cσ,α,ρ =

 1/ρ if σ = 0
−1/ρ if σ = 1
1/ρ if σ = −1

. (5.40)

Later on, in order not to overload notation we will suppress the dependence on
ρ and α and just write cσ. From (5.39) we observe that the field (5.30) can be
rewritten (modulo a multiplicative constant) as

X
(n,1)
t (ϕ) = n−d/2

∑
x∈Zd

ϕ
(
x
n

)
Dρ(δx, η(n2t)) (5.41)

where the superindex (n, 1) suggests that, in some sense, this is the first-order
density field. Using (5.39) and (5.36) the formal limiting SPDE for Xt is

dXt =
χα

2
∆Xtdt+ cσ

√
χρ(α+ σρ)∇dWt (5.42)

The observation that the field (5.30) can be expressed in terms of duality polyno-
mials opens the possibility of defining higher-order fields and study their scaling
limits. For k ∈ N, k ≥ 1 we define the k-th order field as

X (n,k)(ϕ(k), η) := Y (n,k)(Φ, η) := n−kd/2
∑
ξ∈Ωk

∏
x∈Zd

ϕ
(
x
n

)ξxΛ(ξ) ·Dρ(ξ, η)

= n−kd/2
∑
ξ∈Ωk

∏
x∈Zd

ϕ
(
x
n

)ξx · λ(ξx) · dρ(ξx, ηx)


(5.43)

where ϕ ∈ S(Rd) is a test function, Λ is as in (5.9), and

ϕ(k) :=

k⊗
i=1

ϕ (5.44)

Φ(ξ) =
∏
x∈Zd

ϕ(x)ξx , Φn(ξ) =
∏
x∈Zd

ϕ
(
x
n

)ξx
(5.45)
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In the rest of this work, we will refer to test functions of the type ϕ(k) as symmet-
ric elements of the Schwartz space S(Rkd). Likewise, the functions Φ : Ωk → R,
given by (5.45), will be considered as elements of the Schwartz space of test
functions over configuration space.

Notice that there is no difference between X (n,k)(ϕ(k), η) and Y (n,k)(Φ, η) be-
sides that the latter works on test functions over configuration space, i.e., Φ ∈
S(Ωk), while the former works on test functions ϕ(k) ∈ S(Rkd). Then, using the
notation

Dρ(ξ, η) := Λ(ξ) ·Dρ(ξ, η), dρ(m,n) = λ(m) · dρ(m,n) (5.46)

Dρ(ξ, η) =
∏
i∈Zd

dρ(ξi, ηi), (5.47)

we can rewrite the k-th order field (5.43) as

Y (n,k)(Φ, η) := n−kd/2
∑
ξ∈Ωk

Φn(ξ) ·Dρ(ξ, η) (5.48)

and define:
Y

(n,k)
t (Φ) := Y (n,k)(Φ, η(n2t)). (5.49)

The choice of multiplying the duality function by the measure Λ(·) in (5.46)
is dictated simply by computational convenience that, even if obscure at the
moment, will be made clearer in the course of this work.

First example: second-order fluctuation fields for the SEP(1)

Let us specialize these fields to the case of the one-dimensional symmetric ex-
clusion process for k = 2. This means that we are taking:

d = 1, α = 1, and σ = −1. (5.50)

In this case we have:

X (n,2)(ϕ(2), η) =
1

n

∑
ξ∈Ω2

∏
x∈Z

ϕ
(
x
n

)ξxΛ(ξ) ·Dρ(ξ, η)

=
1

2n

∑
x,y∈Z
x 6=y

ϕ
(
x
n

)
ϕ
(
y
n

)
Λ(δx + δy)Dρ(δx + δy, η)

=
1

2ρ2

 1

n

∑
x,y∈Z
x 6=y

ϕ
(
x
n

)
ϕ
(
y
n

)
(ηx − ρ)

(
ηy − ρ

)
 (5.51)
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where in the second line, in order to get rid of the sum at the diagonal, we used
the fact that for SEP(1) we have Dρ(2δx, η) = 0. Notice that in the last line we
used (5.9) and (5.25).

REMARK 5.2.1. Notice that the previous field corresponds, modulo a multiplica-
tive factor, to the quadratic field introduced earlier in [47]. Also notice that the
previous field is not the same as the quadratic field introduced in [5].

Second example: second-order fluctuation fields for IRW(1)

Let us now look at the case of one-dimensional independent random walkers.
This means that we are taking:

d = 1, α = 1, and σ = 0. (5.52)

Analogous to the case of SEP(1), in this case we have:

X (n,2)(ϕ(2), η) =
1

n

∑
ξ∈Ω2

∏
x∈Z

ϕ
(
x
n

)ξxΛ(ξ) ·Dρ(ξ, η)

=
1

2n

∑
x,y∈Z
x 6=y

ϕ
(
x
n

)
ϕ
(
y
n

)
Λ(δx + δy)Dρ(δx + δy, η)

+
1

n

∑
x∈Z

ϕ
(
x
n

)2
Λ(2δx)Dρ(2δx, η)

=
1

2nρ2

∑
x,y∈Z
x6=y

ϕ
(
x
n

)
ϕ
(
y
n

)
(ηx − ρ)

(
ηy − ρ

)

+
1

2nρ2

∑
x∈Z

ϕ
(
x
n

)2 (
ηx(ηx − 1)− 2ρ ηx + ρ2

)
(5.53)

REMARK 5.2.2. Notice that different to the case of SEP(1), in this case we have
that the second-order duality polynomials do not vanish and as a consequence we
have a contribution coming from the diagonal (i.e., the second summation in the
RHS of (5.53)).

5.3 The coordinate process

Thinking of k ∈ N as the number of particles in our process, we want to intro-
duce a family of permutation-invariant coordinate processes {X(k)(t) : t ≥ 0}
compatible with the finite configuration processes {ξ(t) : t ≥ 0} on Ωk. Here the
coordinate process is a Markov process on Zdk with

X(k)(t) = (X1(t), . . . , Xk(t)), Xi(t) ∈ Zd, ∀i = 1, . . . , k (5.54)
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Xi(t) being the position of the i-th particle at time t ≥ 0. For a further expla-
nation of the notion of compatibility we refer the reader to [19].
Denote by x ∈ Zkd the coordinate vector x := (x1, . . . , xk), with xi ∈ Zd, for
i = 1, . . . , k. The coordinate process {X(k)(t) : t ≥ 0} is defined by means of its
infinitesimal generator:

L(k)f(x) =

k∑
i=1

∑
r∈R

p(r)

(
α+ σ

k∑
j=1
j 6=i

1xj=xi+r

)(
f(xi,i+r)− f(x)

)
(5.55)

where xi,i+r denotes x after moving the particle in position xi to position xi+r ∈
Zd. Notice that for x ∈ Zkd the compatible configuration ξ(x) ∈ Ωk is given by

ξ(x) =
(
ξi(x), i ∈ Zd

)
with ξi(x) =

k∑
j=1

1xj=i. (5.56)

5.3.1 Product σ-finite reversible measures

It is possible to verify, by means of detailed balance, that the coordinate-process
{X(k)(t) : t ≥ 0} admits a reversible σ-finite measure that is given by

Π(x) =
Λ(ξ(x))

N(ξ(x))
=
∏
i∈Zd

ξi(x)! · λ(ξi(x)) for x ∈ Zkd (5.57)

where λ is given as in (5.9), and with

N(ξ) := |{x ∈ Zkd : ξ(x) = ξ}| = k!∏
i∈Zd ξi!

(5.58)

Then we can rewrite Π in the product form:

Π(x) =
∏
i∈Zd

π(ξi(x)), x = (x1, . . . , xk) ∈ Zkd (5.59)

with π given as follows:

π(m) = m! · λ(m) =



1, m ∈ N for σ = 0 IRW

α!
(α−m)! , m ∈ {0, . . . , α} for σ = −1 SEP(α)

Γ(α+m)
Γ(α) , m ∈ N for σ = 1 SIP(α)

.

(5.60)
Given the measures Π, we now consider the spaces of permutation-invariant
functions:

L̂2(Zkd,Π) :=
{
f ∈ L2(Zkd,Π) : f(x) = f(xσ), ∀σ ∈P(k)

}
(5.61)
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with P(k) denoting the set of all possible permutations of elements of the set
{1, 2, 3, . . . k}. We endowed the space L̂2(Zkd,Π) with the inner product given
by:

〈f, g〉Π =
∑

x∈Zkd
f(x)g(x)Π(x). (5.62)

REMARK 5.3.1. Notice that any function f ∈ L̂2(Zkd,Π) can be interpreted also
as a function on the configuration space. In this work we will extensively use this
fact by changing between interpretations sometimes from one line to another in
the same derivation.

REMARK 5.3.2. As a consequence of reversibility of the measures Π, we can
infer that the k-particles generator L(k) is self-adjoint with respect to the inner
product 〈·, ·〉Π, i.e.

〈f, L(k)g〉Π = 〈L(k)f, g〉Π (5.63)

for all f, g ∈ L̂2(Zkd,Π).

5.3.2 The fluctuation fields in coordinate notation

It is possible to rewrite the fluctuation field (5.43) in the coordinate variables.
Notice that in this context the test function Φ defined in (5.45) becomes a tensor
function:

Φ(ξ(x)) =

k∏
i=1

ϕ(xi) (5.64)

i.e. it is the homogeneous k-tensor test function ϕ⊗k ∈ S(Rkd) of the form

Φ ◦ ξ = ϕ⊗k :=

k⊗
i=1

ϕ (5.65)

then, after a change of variable in the sum we can rewrite the k-th field as follows

X (n,k)(ϕ(k), η) = Y (n,k)(Φ, η) = n−kd/2
∑

x∈Zkd
ϕ(k)

(
x
n

)
·Π(x)·D(ξ(x), η). (5.66)

Notice that we can also let the field X act on a general f ∈ S(Rkd) as expected,
i.e.,

X (n,k)(f, η) = n−kd/2
∑

x∈Zkd
f
(
x
n

)
·Π(x) ·D(ξ(x), η). (5.67)

REMARK 5.3.3. Because we deal with unlabeled particle systems it is natural to
define the higher-order fluctuation fields acting on symmetric test functions Φ
i.e. on elements of the Schwartz space S(Rkd) that are permutation-invariant:
Φ(xσ(1), . . . , xσ(k)) = Φ(x1, . . . , xk) for all σ ∈P(k), the set of permutations of
{1, . . . , k}.
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REMARK 5.3.4. The set of test functions of the form ϕ⊗k is dense in the space
of symmetric Schwartz test functions. This can be seen in two steps. First, linear
combination of tensors are dense in S(Rkd). Second, restricting to symmetric
linear combinations of elements in S(Rkd), we have that by polarization linear
combinations of powers of the form ϕ⊗k are dense in this restriction (see for
example Remark 2.5 in [39]).

5.4 Main result

5.4.1 Heuristics: macroscopic dynamics

The goal of this section is to provide some intuitions on the type of limiting
field that we should expect for fields of order greater than one. We will start by
considering the cases k = 1, 2 and, inspired by the results obtained in [47], we will
propose a heuristic interpretation of the two SPDEs obtained as scaling limits
and their relation. Based on this interpretation we will conjecture a possible
generalization to the kth-order case. In Section 5.4.2 we will give the rigorous
result confirming the validity of the conjecture.

Here we will informally use the notation Y
(k)
t and X

(k)
t for the distributional

limits of Y (n,k) and X (n,k) respectively.

Recall that from (5.42) we know that formally the distribution valued first-

order field X
(1)
t (x) is a solution to the Ornstein-Uhlenbeck equation

dX
(1)
t (x) =

χα

2
∆X

(1)
t (x) dt+ cσ

√
χρ(α+ σρ)∇dWt(x) (5.68)

where for x ∈ Rd, Wt(x) is a space-time white noise and ∇dWt(x) should be
interpreted as in (5.37)-(5.38). Additionally, from the martingale problem given

in [47], we can deduce that the distribution-valued second-order field X
(2)
t (x, y)

is a solution to the SPDE

dX
(2)
t (x, y) =

χα

2
∆(2)X

(2)
t (x, y)dt+ cσ

√
χρ(α+ σρ) X

(1)
t (x)∇dWt(y)

+ cσ
√
χρ(α+ σρ) X

(1)
t (y)∇dWt(x) (5.69)

where Wt(x) is the same white noise as in (5.68) and ∆(2) denotes the usual
2d-dimensional Laplacian, which is the sum of the Laplacian in the x variable
plus the Laplacian in the y variable.

The key idea to extrapolate these relations to higher orders is to interpret the
non-linearity on the RHS of (5.69) as some product of fields, that we denote by �,
that satisfies the Leibniz rule of differentiation. This interpretation suggests that
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the second-order field X
(2)
t (x, y) is, in turn, a second power of the first-order

field X
(1)
t (x). More precisely conjecturing

X
(2)
t (x, y) = X

(1)
t (x) �X

(1)
t (y),

since the product � follows the Leibniz rule we would have that

dX
(2)
t (x, y) = d

(
X

(1)
t (x) �X

(1)
t (y)

)
= dX

(1)
t (x) �X

(1)
t (y) + X

(1)
t (x) � dX (1)

t (y)

=

(
χα

2
∆X

(1)
t (x)dt+ cσ

√
χρ(α+ σρ)∇dWt(x)

)
�X

(1)
t (y)

+ X
(1)
t (x) �

(
χα

2
∆X

(1)
t (y)dt+ cσ

√
χρ(α+ σρ)∇dWt(y)

)
=

χα

2
∆(2)X

(2)
t (x, y)dt+ cσ

√
χρ(α+ σρ) X

(1)
t (x) � ∇dWt(y)

+ cσ
√
χρ(α+ σρ) X

(1)
t (y) � ∇dWt(x) (5.70)

which indeed agress with (5.69).

REMARK 5.4.1. This section is created with the intention to develop some intu-
ition on the type of martingale problem we should expect for higher-order fields.
The precise product to be used in this section is not relevant since after all our
derivations are just made at a formal level. What is important is that the product
should satisfy the Leibniz rule.

After the discussion above, it seems natural to expect that the kth-order field is
a kth �-power of the first-order one. More precisely we conjecture that a relation
of the type

X
(k)
t (x1, x2, . . . , xk) = X

(1)
t (x1) �X

(1)
t (x2) � · · · �X

(1)
t (xk).

is satisfied. If this holds true, computations analogous to (5.70) would imply the
formal SPDE

dX
(k)
t (x) =

χα

2
∆(k)X

(k)
t (x)dt+ cσ

√
χρ(α+ σρ)

k∑
j=1

X
(k−1)
t (x−j) � ∇dWt(xj)

(5.71)

where ∆(k) is the kd-dimensional Laplacian, defined as the sum of the Laplacians
at each coordinate and x−j is the (k − 1)d-dimensional vector obtained from x
by removing its coordinate xj .

In the following section we formulate rigorously the meaning of the heuristic
equation, via a martingale problem.
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5.4.2 Main theorem

Let us spend one paragraph to introduce the probability notions which are rel-
evant for our main result. As we already mentioned, the kth-order fluctuation
field can be considered as taking values in S′(Rk), the space of tempered distri-
butions which is dual to S(Rk). Our original process ηn2t has state space Ω(n)

corresponding to the rescaled lattice 1
nZ. We then denote by Pn, respectively

En, the probability measure, respectively expectation, induced by the measure
νρ and the diffusively rescaled process ηn2t on D([0, T ]; Ω(n)). We also denote by

Q
(k)
n the probability measure on D([0, T ];S′(Rkd)) induced by the density fluc-

tuation field X
(n,k)
t over Pn. Finally, for t ≥ 0, we denote by Ft the σ-algebra

in D([0, T ];S′(Rkd)) generated by the limiting first-order field X
(1)
s (ϕ) for s ≤ t

and ϕ ∈ S(Rd).

THEOREM 5.4.1. The process {X (n,k)
t : t ∈ [0, T ]} converges in distribution,

with respect to the J1-topology of D([0, T ];S′(Rkd)), as n → ∞, to the process

{X (k)
t : t ∈ [0, T ]} which is the unique solution of the following recursive mar-

tingale problem.

Recursive martingale problem: for any symmetric ϕ(k) ∈ S(Rkd) the process

M
(k)
t (ϕ(k)) = X

(k)
t (ϕ(k))−X

(k)
0 (ϕ(k))− χα

2

∫ t

0

X (k)
s (∆(k)ϕ(k))ds (5.72)

is a continuous square integrable Ft-martingale of quadratic variation

c2σχρ(α+ σρ)

∫ t

0

∫
Rd

∥∥∇ϕ(x)
∥∥2
(
X (k−1)
s (ϕ(k−1))

)2

dx ds (5.73)

with initial condition X
(1)
t given by the solution of (5.68).

REMARK 5.4.2. This recursive martingale problem is the rigorous counterpart
of the formal SPDE (5.71) that we heuristically obtained.

5.4.3 Strategy of the proof

We will prove Theorem 5.4.1 by using induction on k. In the proof we will
take advantage of the fact that the base case, k = 1, is already proved in the
literature. On the other hand, the inductive step will be proven by means of an
approach based on the natural Dynkin martingales:

M
(n,k)
t (Φ) = Y

(n,k)
t (Φ)− Y

(n,k)
0 (Φ)− n2

∫ t

0

L Y (n,k)
s (Φ)ds (5.74)

and

N
(n,k)
t (Φ) = (M

(n,k)
t (Φ))2 − n2

∫ t

0

ΓY (n,k)
s (Φ)ds (5.75)
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where Γ is the so-called carré-du-champ operator given by:

Γ(f) = L (f2)− 2fL (f). (5.76)

Notice that the Dynkin martingales can also be expressed in terms of the fields

X
(n,k)
t .

Roughly our approach consists of the following steps:

1. we express the integrand term of equation (5.74) in terms of the kth-order
fluctuation field Y (n,k) using duality (Section 5.5.1);

2. we close the equation (5.75) by expressing the integrand in the RHS in
terms of the (k − 1)th-order fluctuation field Y (n,k−1) (Section 5.5.2);

3. we show tightness for the sequence of probability measures Q
(k)
n (Section

5.5.3);

4. finally we characterize the limiting field by showing uniqueness of the so-
lution of the martingale problem (Sections 5.5.4-5.5.5).

5.4.4 Inductive argument

The proof is done by induction on the order of the field k. The base case
k = 1, corresponding to the density fluctuation field (5.30), is assumed to be
true. Indeed, as mentioned in Section 5.2, a proof of Theorem 5.4.1 for exclusion
dynamics and zero-range processes (of which independent random walkers are a
particular case) is given in [27] and [58] respectively. By similar arguments the
result can be extended to the case of the inclusion process.

To implement the inductive argument we formalize the following inductive hy-
pothesis that will be referred to several times in the course of the proof of The-
orem 5.4.1.

INDUCTIVE HYPOTHESIS 5.4.1. For any k0 ∈ {1, 2, . . . , k − 1} the sequence

{X (n,k0)
t : t ∈ [0, T ]} converges in distribution, with respect to the J1-topology

of D([0, T ];S′(Rk0d)), as n → ∞ to the process {X (k0)
t : t ∈ [0, T ]} being the

unique solution of the following martingale problem.

Martingale problem: for any symmetric ϕ(k0) ∈ S(Rk0d) the process

M
(k0)
t (ϕ(k0)) = X

(k0)
t (ϕ(k0))−X

(k0)
0 (ϕ(k0))− χα

2

∫ t

0

X (k0)
s (∆(k0)ϕ(k0))ds

(5.77)
is a continuous square-integrable Ft-martingale of quadratic variation

c2σχρ(α+ σρ)

∫ t

0

∫
Rd

∥∥∇ϕ(x)
∥∥2
(
X (k0−1)
s (ϕ(k0−1))

)2

dx ds. (5.78)



86 CHAPTER 5. HIGHER-ORDER FLUCTUATION FIELDS

5.5 Proof of Theorem 5.4.1

5.5.1 Closing the equation for the drift term: k ≥ 2

In order to close the equation (5.74) for the drift term (i.e., the integral term),
thanks to Remark 5.3.2 we can just proceed as follows

n2L Y (n,k)(Φ, η) = n−kd/2
∑
ξ∈Ωk

n2Φn(ξ) · [LD(ξ, ·)](η)

= n−kd/2
∑
ξ∈Ωk

n2Φn(ξ) · Λ(ξ) · [LD(ξ, ·)](η)

= n−kd/2
∑
ξ∈Ωk

n2Φn(ξ) · Λ(ξ) · [L (k)D(·, η)](ξ)

= n−kd/2
∑
ξ∈Ωk

n2[L (k)Φn](ξ) · Λ(ξ) ·D(ξ, η)

= n−kd/2
∑
ξ∈Ωk

n2[L (k)Φn](ξ) ·D(ξ, η).

We proceed evaluating the action of the k-particles generator on Φn. We then
have

n2[L (k)Φn](ξ) =
∑
x∈Zd

∑
r∈R

p(r) · ξx(α+ σξx+r) · n2(Φn(ξx,x+r)− Φn(ξ))

=
∑
x∈Zd

Φn(ξ − δx)
∑
r∈R

p(r) · ξx(α+ σξx+r) ·∆r
nϕ(x)

= α
∑
x∈Zd

Φn(ξ − δx) · ξx
∑
r∈R

p(r) ·∆r
nϕ(x)

+ σ
∑
x∈Zd

Φn(ξ − δx)
∑
r∈R

p(r) · ξxξx+r ·∆r
nϕ(x). (5.79)

where
∆r
nϕ(x) = n2

(
ϕ
(
x+r
n

)
− ϕ

(
x
n

))
(5.80)

REMARK 5.5.1. Notice that the contribution coming from the second term in
the RHS of (5.79) does not appear in the case k = 1.

First of all we prove that∑
r∈R

p(r)∆r
nϕ(x) = χ

2 ·∆ϕ
(
x
n

)
+ 1

nψn
(
x
n

)
(5.81)

for a suitable ψn ∈ S(R) such that

sup
n

1

nd

∑
x∈Zd

ψn
(
x
n

)
<∞. (5.82)
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To prove this we use the Taylor expansion:

ϕ
(
x+r
n

)
− ϕ

(
x
n

)
=

1

n

d∑
j=1

rj ·
∂ϕ

∂xj

(
x
n

)
+

1

2n2

d∑
j,`=1

rjr`
∂2ϕ

∂xj∂x`

(
x
n

)
+ . . .

(5.83)

and then

n2
∑
r∈R

p(r)
(
ϕ
(
x+r
n

)
− ϕ

(
x
n

))

= n

d∑
j=1

∑
r∈R

rjp(r)

 · ∂ϕ
∂xj

(
x
n

)

+
1

2

d∑
j,`=1

∑
r∈R

rjr`p(r)

 ∂2ϕ

∂xj∂x`

(
x
n

)
+ . . .

for some ψn satisfying (5.82). From the assumption (5.2), it follows that:

R∑
rj=−R

rjp(r) = 0 (5.84)

thus, from the fact that R = [−R,R]d ∩ Zd we have∑
r∈R

rjp(r) = 0 and
∑
r∈R

rjr`p(r) = 0 for j 6= ` (5.85)

as a consequence,

∑
r∈R

p(r)∆r
nϕ(x) =

1

2

d∑
`=1

∑
r∈R

r2
`p(r)

 ∂2ϕ

∂x2
`

(
x
n

)
+ 1

nψn
(
x
n

)
= χ

2 ·
d∑
`=1

∂2ϕ

∂x2
`

(
x
n

)
+ 1

nψn
(
x
n

)
from which (5.81) follows.

Now we have

n2[L (k)Φn](ξ) = α
∑
x∈Zd

Φn(ξ − δx) · ξx ·
(
χ
2 ·∆ϕ

(
x
n

)
+ 1

nψn
(
x
n

))
+ En(ϕ, ξ)
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with

En(ϕ, ξ) := σ
∑
x∈Zd

Φn(ξ − δx)
∑
r∈R

p(r) · ξxξx+r · n2
(
ϕ
(
x+r
n

)
− ϕ

(
x
n

))
(5.86)

Then we have

L Y (n,k)(Φ, η)− 1

nkd/2

∑
ξ∈Ωk

En(ϕ, ξ) ·D(ξ, η)

=
α

nkd/2

∑
ξ∈Ωk

D(ξ, η)
∑
x∈Zd

Φn(ξ − δx) · ξx ·
(
χ
2 ·∆ϕ

(
x
n

)
+ 1

nψn
(
x
n

))
.

It is now convenient to pass to the coordinate notation to treat sums of the type:∑
ξ∈Ωk

D(ξ, η)
∑
x∈Zd

Φn(ξ − δx) · ξx · ψ( xn )

for some ψ ∈ S(Rd). First of all we notice that summing over ξ ∈ Ωk is the same
as summing over x ∈ Zkd:∑

ξ∈Ωk

D(ξ, η)
∑
x∈Zd

Φn(ξ − δx) · ξx · ψ( xn )

=
∑

x∈Zkd

1

N(ξ(x))
·D(ξ(x), η)

k∑
i=1

Φn(ξ(x)− δxi) · ψ(xin )

=
∑

x∈Zkd

Λ(ξ(x))

N(ξ(x))
·D(ξ(x), η)

k∑
i=1

ψ(xin )

k∏
`=1
` 6=i

ϕ(x`n )

= k
∑

x∈Zkd
Π(x) ·D(ξ(x), η)

k−1∏
`=1

ϕ(x`n ) · ψ(xkn )

= knkd/2 X (n,k)(ϕ(k−1) ⊗ ψ, η)

where the last identity follows using the expression of the field acting on more
general (i.e., non-symmetric) test functions (5.67). Then, substituting in (6.56)
we get

L Y (n,k)(Φ, η)− 1

nkd/2

∑
ξ∈Ωk

En(ϕ, ξ) ·D(ξ, η)

= αkX (n,k)
(
ϕ(k−1) ⊗ (χ2 ∆ϕ+ 1

nψn), η
)

where we used the fact that ϕ is uniformly bounded on Z. From this we can
see that it is possible to close the equation for the second-order fluctuation field,
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modulo an error term that we define as follows

E (n,k)(ϕ, η) := L Y (n,k)(Φ, η)− αk · χ2 ·X
(n,k)(ϕ(k−1) ⊗∆ϕ, η) (5.87)

Then we have

E (n,k)(ϕ, η) = E
(n,k)
1 (ϕ, η) + E

(n,k)
2 (ϕ, η) (5.88)

with

E
(n,k)
1 (ϕ, η) :=

αk

n
X (n,k)

(
ϕ(k−1) ⊗ ψn, η

)

and

E
(n,k)
2 (ϕ, η) :=

1

nkd/2

∑
ξ∈Ωk

En(ϕ, ξ)D(ξ, η) (5.89)

that has to be estimated. Analogously to the previous computation we have

En(ϕ, ξ(x)) = σn2
k∑
i=1

( k∏
`=1
` 6=i

ϕ(x`n )
)
·
∑
r∈R

p(r)

 k∑
j=1

1xj=xi+r


×

(
ϕ(xi+rn )− ϕ(xin )

)
= σn2

k∑
i=1

( k∏
`=1
` 6=i

ϕ(x`n )
)
·
k∑
j=1

p(xj − xi)
(
ϕ(

xj
n )− ϕ(xin )

)

= σn2
k∑

i,j=1

( k∏
`=1
` 6=i,j

ϕ(x`n )
)
· p(xj − xi)ϕ(

xj
n )
(
ϕ(

xj
n )− ϕ(xin )

)

= σ
∑
{i,j}

1≤i,j≤k

( k∏
`=1
` 6=i,j

ϕ(x`n )
)
· p(xj − xi)n2

(
ϕ(

xj
n )− ϕ(xin )

)2
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where in the last step we used the symmetry of p(·). Then

E
(n,k)
2 (ϕ, η) =

=
1

nkd/2

∑
x∈Zkd

Π(x) ·D(ξ(x), η) · En(ϕ, ξ(x))

=
σ

nkd/2

∑
x∈Zkd

Π(x) ·D(ξ(x), η) ·
∑
{i,j}

1≤i,j≤k

( k∏
`=1
` 6=i,j

ϕ(x`n )
)
· p(xj − xi)

× n2
(
ϕ(

xj
n )− ϕ(xin )

)2
=
k(k − 1)σ

2nkd/2

∑
x∈Zkd

Π(x) ·D(ξ(x), η) ·
( k−2∏
`=1

ϕ(x`n )
)
· p(xk − xk−1)

× n2
(
ϕ(xk−1

n )− ϕ(xkn )
)2
.

Hence we have

E (n,k)(ϕ, η) =
k

nkd/2

∑
x∈Zkd

Π(x) ·D(ξ(x), η) ·Ψn(x) (5.90)

with

Ψn(x) := ϕ(k−2)(x1, . . . , xk−2)⊗
(
α
n ϕ(xk−1) · ψn(xkn )

+ σ(k−1)
2 p(xk − xk−1)n2

(
ϕ(xk−1

n )− ϕ(xkn )
)2)

. (5.91)

It remains to show that the L2(Pn) norm of E (n,k)(ϕ, η(n2t)) vanishes in the
limit as n goes to infinity. This is done in the following lemma:

LEMMA 5.5.1. Let E (n,k)(ϕ, η) be given by (5.87), then, for every test function
ϕ ∈ Ŝ(Rd) there exists C > 0 such that, for all t ≥ 0 and n ∈ N,

En

(∫ t

0

E (n,k)(ϕ, η(n2s))ds

)2
 ≤ C · t2

n
. (5.92)

PROOF. Using the fact that ϕ is bounded and that p(·) has finite range we can
conclude that there exists an M > 0 such that

sup
n

sup
x∈Zkd

|Ψn(x)| ≤M. (5.93)

We recall here that the duality function is parametrized by the density parameter
ρ, i.e. D(·, ·) = Dρ(·, ·) and that {Dρ(ξ, ·), ξ ∈ Ω} is a family of products
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of polynomials that are orthogonal with respect to the reversible measure νρ.
From the stationarity of νρ we have

En

(∫ t

0

E (n,k)(ϕ, η(n2s))ds

)2


=

∫ t

0

∫ t

0

En
[
E (n,k)(ϕ, ηn2s)E

(n,k)(ϕ, ηn2u)
]
du ds

= 2

∫ t

0

∫ s

0

∫
Eη
[
E (n,k)(ϕ, ηn2(s−u))

]
E (n,k)(ϕ, η)νρ(dη)du ds.

(5.94)

The fact that we can exchange expectations and integral is a consequence of
Proposition 5.5.1 in Section 5.5.2.2, which does not use any results of the cur-
rent section.

Let us denote by Vn(ϕ) the integrand in (5.94), then, using (5.18), we have

Vn(ϕ) =
1

nkd

∑
x,y∈Zkd

Ψn(x)Ψn(y) ·Π(x)Π(y)

×
∫

Eη
[
Dρ(ξ(x), ηn2(s−u))

]
Dρ(ξ(y), η)νρ(dη)

=
1

nkd

∑
x,y∈Zkd

Ψn(x)Ψn(y) ·Π(x)Π(y)

× 1

µρ(ξ(y))
· pn2(s−u)(ξ(x), ξ(y))

=
c

nkd

∑
x∈Zkd

Ψn(x) ·Π(x)

×
∑

y∈Zkd

1

N(ξ(y))
·Ψn(y) · pn2(s−u)(ξ(x), ξ(y))

≤ cM

nkd

∑
x∈Zkd

| Ψn(x) | ·Π(x)
∑

y∈Zkd

1

N(ξ(y))
· pn2(s−u)(ξ(x), ξ(y))

=
cM

nkd

∑
x∈Zkd

| Ψn(x) | ·Π(x)
∑
ξ′∈Ωk

·pn2(s−u)(ξ(x), ξ′)

≤ c′M

nkd

∑
x∈Zkd

| Ψn(x) | (5.95)

where we used (5.18) in the second identity, (5.57) and (5.20) in the third identity
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(with c = c(k, ρ)) and (5.93) in the fourth line. From (5.91) we have

1

nkd

∑
x∈Zkd

| Ψn(x) |

≤ α

nkd+1

∑
x∈Zkd

| ψn |
(
xk
n

)
·
k−1∏
`=1

| ϕ(x`n ) | (5.96)

+
σ(k − 1)

2nkd

∑
x∈Zkd

k∏
`=3

| ϕ(x`n ) | ·p(x2 − x1)n2
(
ϕ(x2

n )− ϕ(x1

n )
)2
.

Using (5.82), we have that the first term in the r.h.s. of (5.96) is bounded by a
constant times n−1. For what concerns the second term, we have:

σ(k − 1)

2n(k−2)d

 k∏
`=3

∑
x`∈Zd

ϕ(x`n )


× 1

n2d

∑
x1,x2∈Zd

p(x2 − x1)n2
(
ϕ
(
x2

n

)
− ϕ

(
x1

n

))2

≤ c

n2d

∑
x1,x2∈Zd

p(x2 − x1)n2
(
ϕ
(
x2

n

)
− ϕ

(
x1

n

))2

Now, from the Taylor expansion (5.83) we know that there exists a sequence of
functions where, using the fact that the range of p(·) is R = [−R,R]d, and the

Taylor expansion (5.83) we have that there exists a smooth function ψ̃ ∈ S(Rd)
such that, for all x ∈ Zd,

sup
r∈R
{n2

(
ϕ
(
x+r
n

)
− ϕ

(
x
n

))2

} ≤ ψ̃
(
x
n

)
(5.97)

as a consequence we obtain the upper bound

1

n2d

∑
x1,x2∈Zd

p(x2 − x1)n2
(
ϕ(x2

n )− ϕ(x1

n )
)2

=
1

n2d

∑
x∈Zd

∑
r∈R

p(r)n2
(
ϕ
(
x+r
n

)
− ϕ

(
x
n

))2

≤ 1

n2d

∑
r∈R

∑
x∈Zd

p(r) · ψ̃
(
x
n

)
≤ c

n2d

∑
x∈Zd

ψ̃
(
x
n

)
≤ c′

nd
(5.98)

where the inequality holds for a suitable c′ > 0. In conclusion we have that there
exists a constant C > 0 such that

Vn(ϕ) ≤ C

n
(5.99)
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from which the statement follows.

As a consequence of Lemma 5.5.1 we can close the drift term, i.e.

L Y (n,k)(Φ, η) = αk · χ2 ·X
(n,k)(ϕ(k−1) ⊗∆ϕ, η) + E (n,k)(ϕ, η)

= αk · χ2 ·X
(n,k)(ϕ(k−1) ⊗∆ϕ, η) +O(n−1)

(5.100)

5.5.2 Closing the equation for the carré-du-champ

In this section we will show that the integrand in the RHS of equation (5.75)
can be expressed in terms of the (k − 1)th-order fluctuation field Y (n,k−1). To
achieve this we consider the expression for the carré-du-champ given by (A.27)
in the Appendix. For the case of our kth-order fluctuation field this becomes

n2ΓY (n,k)(Φ, η) =
1

nd

∑
x∈Zd

∑
r∈R

p(r)ηx(α+ σηx+r)

×
[
nd/2+1

(
Y (n,k)(Φ, ηx,x+r)− Y (n,k)(Φ, η)

)]2

(5.101)

Notice that here we multiplied by a factor nd/2+1 the term which is squared in
order to cancel the n2 in front of the carré-du-champ and get a general factor
n−d in front of the sum.

In the next section we find some recursion relations for duality polynomials. The
main application of these relations consists in allowing us to rewrite any polyno-
mial depending on ηx,x+r in terms of polynomials depending on the unmodified
η.

5.5.2.1 Recursion relation for duality polynomials

In this section we obtain a recurrence relation for the single-site orthogonal poly-
nomials. Before giving the result it is convenient to summarize the expression
for the self-duality generating function by defining the function

fσ(t, n) :=

∞∑
m=0

d(m,n) · tm (5.102)

then fσ can be written in the form

fσ(t, n) = eσ(t)·hσ(t)n, hσ(t) =
1 + cσbσt

1− σ2t
, eσ(t) =

{
e−t if σ = 0
(1− t)−σα if σ = ±1

(5.103)
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with cσ given by (5.40), and bσ is given as follows:

bσ =

 1 if σ = 0
α+ ρ if σ = 1
α− ρ if σ = −1

. (5.104)

Then we define the functions gσ, g̃σ : N→ R given by

gσ(m) :=
1

m!

dm

dtm
hσ(t)

∣∣∣∣
t=0

and g̃σ(m) :=
1

m!

dm

dtm
1

hσ(t)

∣∣∣∣
t=0

for m ≥ 1

and gσ(0) = g̃σ(0) := 1 (5.105)

that are exactly computable:

gσ(m) =



1
ρ · 1m=1 σ = 0

−αρ σ = +1

α
ρ σ = −1

g̃σ(m) =



(
1
ρ

)m
σ = 0

(
− 1
ρ

)m−1

· (α+ ρ)
m−1

(
−αρ
)

σ = +1

(
1
ρ

)m−1

· (α− ρ)
m−1

(
α
ρ

)
σ = −1

for m ≥ 1, that can be rewritten as

g̃σ(1) = cσ = gσ(1), (5.106)

and

gσ(m) =
(
cσbσ + σ2

)
· σ2m−2 , g̃σ(m) = cm−1

σ bm−1
σ

(
cσbσ + σ2

)
for m ≥ 2.

(5.107)

We have the following result.

THEOREM 5.5.1. For any m,n ∈ N we have

d(m,n+ 1) =

m∑
j=0

g(m− j) · d(j, n) (5.108)

and

d(m,n− 1) =

m∑
j=0

g̃(m− j) · d(j, n) (5.109)

with g, g̃ : N→ R as in (5.105)-(5.107).
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PROOF. From (5.103) we have that

f(t, n+ 1) = f(t, n)h(t) (5.110)

then, from the generating function definition (5.102), we deduce that

d(m,n) =
1

m!
· d

m

dtm
f(t, n)

∣∣∣∣
t=0

(5.111)

hence, the recurrence relation (5.110) and an application of Leibniz product rule
for differentiation in the RHS above give

d(m,n+ 1) =
1

m!
·
m∑
j=0

(
m

j

)
dj

dtj
f(t, n)

∣∣∣∣∣
t=0

· d
m−j

dtm−j
h(t)

∣∣∣∣∣
t=0

=
1

m!
·
m∑
j=0

(
m

j

)
j! · d(j, n) · d

m−j

dtm−j
h(t)

∣∣∣∣∣
t=0

=

m∑
j=0

1

(m− j)!
· d

m−j

dtm−j
h(t)

∣∣∣∣
t=0

· d(j, n)

=

m∑
j=0

g(m− j) · d(j, n)

where in the second equality we used (5.111). This concludes the proof of (5.108).
Equation (5.109) can be proved from the same reasoning, with the difference that
we now have the inverse relation

f(t, n− 1) = f(t, n) · 1

h(t)
. (5.112)

This change results, after the application of Leibniz rule, in the relation

d(m,n− 1) =
1

m!
·
m∑
j=0

(
m

j

)
j! · d(j, n) · d

m−j

dtm−j
1

h(t)

∣∣∣∣∣
t=0

=

m∑
j=0

g̃(m− j) · d(j, n)

that concludes the proof.

5.5.2.2 Controlling the moments of the fields

The objective of this section is to take advantage of the ergodic properties of our
process to introduce a result that will allow us to make multiple replacements,
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in the appropriate sense, inside the expression of the carré-du-champ given in
(5.101). Let us start first with a uniform estimate for moments of the fields
Y (n,l)(Φ, η).

PROPOSITION 5.5.1. Let l,m ∈ N, then we have

sup
n∈N

Eνρ
[
Y (n,l)(Φ, η)m

]
≤ C(ρ, ϕ) (5.113)

PROOF. As claimed in the statement of the proposition, this result holds for
any finite natural number m. Nevertheless for simplicity we will only show how
to obtain the estimates for m ∈ {2, 4} (which indeed are the only two uses that
we make of this result). Let us start with the simplest non-trivial case, m = 2,
for which the result comes directly from orthogonality

Eνρ
[
Y (n,l)(Φ, η)2

]
= n−ld

∑
ξ,ξ′∈Ωl

Φn(ξ)Φn(ξ′)Λ(ξ)Λ(ξ′)Eνρ
[
D(ξ, η)D(ξ′, η)

]
(5.114)

= n−ld
∑
ξ∈Ωl

Φn(ξ)2Λ(ξ)2 1

µρ(ξ)
(5.115)

≤ K · n−ld
∑
ξ∈Ωl

Φn(ξ)2 <∞ (5.116)

where in the second line we used (5.16) and K is given by

K = sup
ξ∈Ωk

Λ(ξ)2

µρ(ξ)
.

Notice that the previous estimate was possible due the fact that orthogonality,
in the form of expression (5.16), allowed us to reduce the summation in the RHS
of (5.114) from a 2ld-dimensional sum to an ld-dimensional sum in (5.115).

For the case m = 4 we have

Eνρ
[
Y (n,l)(Φ, η)4

]
= n−2ld

∑
ξ(j)∈Ωl

4∏
j=1

Φn(ξ(j)) · Λ(ξ(j)) ·

Eνρ
[
D(ξ(1), η)D(ξ(2), η)D(ξ(3), η)D(ξ(4), η)

]
(5.117)

For this case the sum in the RHS of (5.117) is 4ld-dimensional. Given the factor
n−2ld in front of the RHS, in order to obtain a uniform estimate, we would like
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this summation to be 2ld-dimensional instead. In order to see that this is indeed
the case, we analyze the non-zero contribution coming from

Eνρ
[
D(ξ(1), η)D(ξ(2), η)D(ξ(3), η)D(ξ(4), η)

]
By the product nature of the measure νρ and the duality polynomials we have

Eνρ
[
D(ξ(1), η)D(ξ(2), η)D(ξ(3), η)D(ξ(4), η)

]
=
∏
x∈Zd

Eνρ
[
d(ξ(1)

x , η)d(ξ(2)
x , η)d(ξ(3)

x , η)d(ξ(4)
x , η)

]
(5.118)

Notice that for every x for which ξ
(j)
x = 0 for all j ∈ {1, 2, 3, 4}, the corresponding

contribution in the RHS of (5.118) is equal to 1 and therefore negligible. This
is precisely the reason why the summation in the RHS of (5.117) is at most 4ld-
dimensional. We have indeed that the maximum number of x ∈ Zd contributing
to the product in the RHS of (5.118) is at most 4l, i.e. one for each of the 4l
particles that all the ξ(j) have in total. In reality we can see that there are less
x’s giving a non-zero contribution. In order to see this, consider an x ∈ Zd such

that there exists a unique j ∈ {1, 2, 3, 4} for which ξ
(j)
x 6= 0. In this case, because

of the zero mean of the single-site duality function we have

Eνρ
[
d(ξ(1)

x , η)d(ξ(2)
x , η)d(ξ(3)

x , η)d(ξ(4)
x , η)

]
= 0 (5.119)

this means that whenever x ∈ Zd is such that there exists a j ∈ {1, 2, 3, 4} for

which ξ
(j)
x 6= 0, there must be another j′ ∈ {1, 2, 3, 4} for which ξ

(j′)
x 6= 0. In

other words we only have a possibility of 2l particles to distribute freely, and
hence the summation in the RHS of (5.117) is at most 2ld-dimensional.

PROPOSITION 5.5.2. Let f : Rd → R be a test function, and let {Mn : Ω×R→
R : n ∈ N} be a sequence of uniformly bounded cylindrical functions of the form

Mn(η, x) = f(x/n)
∏
j∈N

d(bj , ηx) (5.120)

where only a finite number of bj are different from zero. Let also {an : n ∈ N}
be a sequence of real numbers converging to 0, we then have

lim
n→∞

En


∫ t

0

an
nd

∑
x∈Zd

c(η(n2s), x) · Y (n,l)(Φ, η(n2s))m ds

2
 = 0 (5.121)

for all l ∈ {1, 2, . . . , k − 1}, m ∈ N, and where

c(η, x) =
∑
r∈R

p(r)ηx(α+ σηx+r)Mn(η, x) (5.122)
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PROOF. By Cauchy-Schwarz we have

En


∫ t

0

an
nd

∑
x∈Zd

c(η(n2s), x) · Y (n,l)(Φ, η(n2s))m ds

2


≤ a2
nt

n2d

∫ t

0

En

Y (n,l)(Φ, η(n2s))2m ·

∑
x∈Zd

c(η(n2s), x)

2
 ds

=
a2
nt

2

n2d
En

Y (n,l)(Φ, η)2m ·

∑
x∈Zd

∑
r∈R

p(r)ηx(α+ σηx+r) ·Mn(ηx)·

2


=
a2
nt

2

n2d

∑
x,y∈Zd

∑
r1,r2∈R

p(r1) · p(r2)

× En
[
Mn(ηx) ·Mn(ηy) · Y (n,l)(Φ, η)2m

]
≤ a2

nt
2

n2d

∑
x,y∈Zd

∑
r1,r2∈R

p(r1) · p(r2)

×
√
En
[
Mn(ηx)2 ·Mn(ηy)2

]
·
√
En
[
·Y (n,l)(Φ, η)4m

]
≤ Kt2a2

n (5.123)

where in the last line we used Proposition 5.5.1, the boundedness of the single-
site duality polynomials d(bj , ηx) and the smoothness of f in the representation
(5.120). The result then follows from the convergence an → 0.

5.5.2.3 The gradient of the fluctuation fields

Our goal for this section is to rewrite the square inside the RHS of (5.101) in
terms of lower-order fluctuation fields. We will see that this can be expressed,
in agreement with (5.73) , only in terms of the field of order k − 1. Let us then
denote by ∇i,i+rd the d-dimensional gradient

∇i,i+rd Y (n,k)(Φ, η) = nd/2+1
(
Y (n,k)(Φ, ηi,i+r)− Y (n,k)(Φ, η)

)
. (5.124)

Notice that, by linearity of the k-th-order field, we have

∇i,jY (n,k)(Φ, η) := n−
(k−1)d

2 +1
∑
ξ∈Ωk

Φn(ξ)
[
D(ξ, ηi,j)−D(ξ, η)

]
(5.125)
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with D(·, ·) as in (5.47). We define now, for i, j ∈ Zd, ` ≤ k, the auxiliary field

Z
(n,k,`)
i,j (Φ, η) := n−kd/2

∑
ξ∈Ωk

1ξi+ξj=` · Φn(ξ)D(ξ, η) (5.126)

then we have the following formula for the gradient of the fluctuation field.

PROPOSITION 5.5.3. We have the following relation

∇i,jY (n,k)(Φ, η)

=

k∑
s=1

n−
(s−1)d

2 ·
s∑

m=1

n
(
ϕ( jn )m − ϕ( in )m

)
· g(m) ·Z (n,k−m,s−m)

i,j (ϕ, η − δi)

PROOF. Using the product nature of the polynomials D(·, η) and of Φn(·) we
get

∇i,jY (n,k)(Φ, η) = n

k∑
s=1

n−
(s−1)d

2 ·Z (n,k−s,0)
i,j (ϕ, η) ·

s∑
a=0

Y
(n,a,s−a)
i,j (ϕ, η)

(5.127)

and

Y
(n,a,b)
i,j (ϕ, η)

:= ϕ( in )aϕ( jn )b
{
d(a, ηi − 1)d(b, ηj + 1)− d(a, ηi)d(b, ηj)

}
= ϕ( in )aϕ( jn )b

{
d(a, ηi − 1)

[
d(b, ηj + 1)− d(b, ηj)

]
+ d(b, ηj)

[
d(a, ηi − 1)− d(a, ηi)

]}
hence, using (5.108) we get

s∑
a=0

Y
(n,a,s−a)
i,j (ϕ, η)

=

s−1∑
a=0

ϕ( in )aϕ( jn )s−ad(a, ηi − 1)
[
d(s− a, ηj + 1)− d(s− a, ηj)

]
−

s−1∑
b=0

ϕ( in )s−bϕ( jn )bd(b, ηj)
[
d(s− b, ηi)− d(s− b, ηi − 1)

]
=

s−1∑
a=0

s−a−1∑
κ=0

ϕ( in )aϕ( jn )s−a · g(s− a− κ) · d(a, ηi − 1)d(κ, ηj)

−
s−1∑
b=0

s−b−1∑
m=0

ϕ( in )s−bϕ( jn )b · g(s− b−m) · d(m, ηi − 1)d(b, ηj)
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Now, calling b = κ and m = a, we get

s−1∑
a=0

s−a−1∑
κ=0

ϕ( in )aϕ( jn )s−a · g(s− a− κ) · d(a, ηi − 1)d(κ, ηj)

−
s−1∑
κ=0

s−κ−1∑
a=0

ϕ( in )s−κϕ( jn )κ · g(s− a− κ) · d(a, ηi − 1)d(κ, ηj)

=

s−1∑
a=0

s−1∑
`=a

(
ϕ( in )aϕ( jn )s−a − ϕ( in )s+a−`ϕ( jn )`−a

)
· g(s− `)

×d(a, ηi − 1)d(`− a, ηj)

=

s−1∑
a=0

s−1∑
`=a

(
ϕ( jn )s−` − ϕ( in )s−`

)
ϕ( in )aϕ( jn )`−a · g(s− `)

×d(a, ηi − 1)d(`− a, ηj)

=

s−1∑
`=0

(
ϕ( jn )s−` − ϕ( in )s−`

)
· g(s− `)

∑̀
a=0

ϕ( in )aϕ( jn )`−a

×d(a, ηi − 1)d(`− a, ηj)

where the first identity follows from the change of variable ` = κ+ a. Then

Z
(n,k−s)
i,j (Φ, η) ·

s∑
a=0

Y
(n,a,s−a)
i,j (ϕ, η)

=

s−1∑
`=0

(
ϕ( jn )s−` − ϕ( in )s−`

)
· g(s− `) ·Z (n,k−s,0)

i,j (Φ, η)

×
∑̀
a=0

ϕ( in )aϕ( jn )`−a · d(a, ηi − 1)d(`− a, ηj)

=

s−1∑
`=0

(
ϕ( jn )s−` − ϕ( in )s−`

)
· g(s− `) ·Z (n,k−(s−`),`)

i,j (Φ, η − δi)

(5.128)

Then

∇i,jY (n,k)(Φ, η) = n

k∑
s=1

n−
(s−1)d

2 ·
s−1∑
`=0

(
ϕ( jn )s−` − ϕ( in )s−`

)
· g(s− `)

× Z
(n,k−(s−`),`)
i,j (Φ, η − δi)

=

k∑
s=1

n−
(s−1)d

2 ·
s∑

m=1

n
(
ϕ( jn )m − ϕ( in )m

)
· g(m)

× Z
(n,k−m,s−m)
i,j (Φ, η − δi).
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This concludes the proof.

The advantage that Proposition 5.5.3 gives us is that we now have an expression
in terms of the auxiliary field (5.126):

∇i,jY (n,k)(Φ, η) =

k∑
s=1

n−
(s−1)d

2 ·
s∑

m=1

n
(
ϕ( jn )m − ϕ( in )m

)
· g(m)

× Z
(n,k−m,s−m)
i,j (Φ, η − δi)

= n
(
ϕ( jn )− ϕ( in )

)
· g(1) ·Z (n,k−1,0)

i,j (Φ, η − δi)

+

k∑
s=2

n−
(s−1)d

2 ·
s∑

m=1

n
(
ϕ( jn )m − ϕ( in )m

)
· g(m)

× Z
(n,k−m,s−m)
i,j (Φ, η − δi). (5.129)

Recall that we claimed that we are able to close the carré-du-champ by using an
expression depending only on the field of order k− 1. In order to achieve this it
remains to:

1. replace the first term in the RHS of (5.129) by some expressions depending
on the field of order k − 1;

2. show that the second term in the RHS of (5.129) vanishes as n→∞.

We will achieve this in several steps, the first one being the proof of the following
proposition.

PROPOSITION 5.5.4. For all k ∈ N we have

lim
n→∞

En


∫ t

0

1

nd

∑
x∈Zd

∑
r∈R

p(r)ηx(n2s)(α+ σηx+r(n
2s))

·
(
Z

(n,k,0)
x,x+r (Φ, η(n2s))− Y (n,k)(Φ, η(n2s))

)2

ds

)2
]

= 0. (5.130)

PROOF. Notice that for any fixed x we have

Y (n,k)(Φ, η(n2s)) =

k∑
l=0

Z
(n,k,l)
x,x+r (Φ, η(n2s)) (5.131)



102 CHAPTER 5. HIGHER-ORDER FLUCTUATION FIELDS

which implies (
Z

(n,k,0)
x,x+r (Φ, η(n2s))− Y (n,k)(Φ, η(n2s))

)2

=

 k∑
l=1

Z
(n,k,l)
x,x+r (Φ, η(n2s))

2

≤ k
k∑
l=1

Z
(n,k,l)
x,x+r (Φ, η(n2s))2.

Moreover, we can also estimate each Z
(n,k,l)
x,x+r (Φ, η(n2s)) in terms of the coordi-

nates field X (n,k−l) given by (5.66) as follows:

Z
(n,k,l)
x,x+r (Φ, η)2 ≤ n−ld/2Mn(η, l) ·X (n,k−l)(ϕ(k−l), η)2 (5.132)

where Mn is made of terms of the form (5.120), i.e.

Mn(η, l) =

l∑
ξx=0

Φ(ξxδx + (l − ξx)δx+r) · d(ξx, ηx) · d(l − ξx, ηx+r). (5.133)

Thanks to Proposition 5.5.2 we conclude the proof.

For what concerns the second step, let us denote by Ĝ
(n,k)
i,j (Φ, η) the second term

in the RHS of (5.129), i.e.

Ĝ
(n,k)
i,j (Φ, η)

:=

k∑
s=2

n−
(s−1)d

2 ·
s∑

m=1

n
(
ϕ( jn )m − ϕ( in )m

)
· g(m) ·Z (n,k−m,s−m)

i,j (Φ, η − δi)

We have the following result supporting our claim:

PROPOSITION 5.5.5. Under the inductive hypothesis 5.4.1 we have

lim
n→∞

En

∫ t

0

 1

nd

∑
x∈Zd

∑
r∈R

p(r)ηx(α+ σηx+r) · Ĝ(n,k)
x,x+r(ϕ, η(n2s))2 ds

2
 = 0.

(5.134)

PROOF. After expanding Ĝ
(n,k)
x,x+r(ϕ, η(n2s))2, the statement follows from ap-

plying multiple times Propositions 5.5.4 and 5.5.2.
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PROPOSITION 5.5.6. Let

G
(n,k)
i,j (ϕ, η) := ∇i,jY (n,k)(Φ, η) + cσ 〈j − i,∇ϕ( in )〉 · Y (n,k−1)(Φ, η)

then, under the inductive hypothesis 5.4.1, we have

lim
n→∞

En

∫ t

0

 1

nd

∑
x∈Zd

∑
r∈R

p(r)ηx(α+ σηx+r) ·G(n,k)
x,x+r(ϕ, η(n2s))2 ds

2
 = 0.

(5.135)

PROOF. Due to the fact that

Z
(n,k−1,0)
i,j (Φ, η − δi) = Z

(n,k−1,0)
i,j (Φ, η) (5.136)

if we isolate the term s = 1 in (5.127) we obtain

∇i,jY (n,k)(Φ, η) = −cσn
(
ϕ( jn )− ϕ( in )

)
·Z (n,k−1,0)

i,j (Φ, η) + Ĝ
(n,k)
i,j (Φ, η)

(5.137)

then the statement follows from Proposition 5.5.4 and Proposition 5.5.5.

5.5.2.4 Conclusion

From (5.101) and (5.135) we have

n2ΓY (n,k)(Φ, η)

=
1

nd

∑
x∈Zd

∑
r∈R

p(r)ηx(α+ σηx+r)

·
(
cσ 〈r,∇ϕ( xn )〉 · Y (n,k−1)(Φ, η)−G(n,k)

x,x+r(ϕ, η)
)2

=
c2σ
nd

(
Y (n,k−1)(Φ, η)

)2

·
∑
x∈Zd

∑
r∈R

|〈r,∇ϕ( xn )〉|2 p(r)ηx(α+ σηx+r)

+G
(n,k)
1 (Φ, η)

with

G
(n,k)
1 (Φ, η) :=

1

nd

∑
x∈Zd

∑
r∈R

p(r)ηx(α+ σηx+r) ·G(n,k)
x,x+r(ϕ, η)

·
(
G

(n,k)
x,x+r(ϕ, η)− 2cσ〈r,∇ϕ( xn )〉Y (n,k−1)(Φ, η)

)



104 CHAPTER 5. HIGHER-ORDER FLUCTUATION FIELDS

Then we can write

n2ΓY (n,k)(Φ, η) (5.138)

= ρ(α+ σρ)
c2σ
nd

(
Y (n,k−1)(Φ, η)

)2

·
∑
x∈Zd

∑
r∈R

|〈r,∇ϕ( xn )〉|2 p(r)

+G
(n,k)
1 (Φ, η) + G

(n,k)
2 (ϕ, η)

with

G
(n,k)
2 (ϕ, η) (5.139)

:=
c2σ
nd

(
Y (n,k−1)(Φ, η)

)2

·
∑
x∈Zd

∑
r∈R

|〈r,∇ϕ( xn )〉|2 p(r)

·
{
α(ηx − ρ) + σ(ηxηx+r − ρ2)

}
.

We first estimate the term due to the error G
(n,k)
1 (Φ, η).

PROPOSITION 5.5.7. For every t > 0 and every test function ϕ ∈ S(R) there
exists C > 0 such that, for all n ∈ N,

lim
n→∞

En

(∫ t

0

G
(n,k)
1 (Φ, η(n2s))ds

)2
 = 0 (5.140)

PROOF. It follows from Proposition 5.5.5 and the convergence, by the inductive
hypothesis, of Y (n,k−1)(ϕ, η).

The two following propositions allow us to estimate the error G
(n,k)
2 and then to

perform the replacement in (5.146).

LEMMA 5.5.2. For every t > 0 and every test function ϕ ∈ S(R) there exists
C > 0 such that, for all n ∈ N,

lim
n→∞

En


∫ t

0

1

nd

∑
x∈Zd

∑
r∈R

|〈r,∇ϕ( xn )〉|2 p(r)(ηx(n2s)− ρ)ds

2
 = 0.

(5.141)

PROOF. From (5.39) we can write the integrand in (5.141) as

1

nd/2
Y (n,1)
s (Ψ), with Ψ(ξ) :=

∏
x∈Zd

ψ(x)ξx (5.142)

and

ψ(x) :=
∑
r∈R

|〈r,∇ϕ(x)〉|2 p(r) (5.143)
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Then the statement follows from the convergence of Y
(n,1)
s (Ψ) and the extra

factor 1
nd/2 .

Similarly, another replacement is necessary on the second term of the RHS of
(5.139).

LEMMA 5.5.3. For every t > 0 and every test function ϕ we have

lim
n→∞

En


∫ t

0

1

nd

∑
x∈Zd

∑
r∈R

|〈r,∇ϕ( xn )〉|2 p(r)
(
ηx(n2s)− ρ

)(
ηx+r(n

2s)− ρ
)
ds

2
 = 0.

(5.144)

PROOF. The proof of this lemma is done in the same spirit as Proposition
5.5.2.

PROPOSITION 5.5.8. For every t > 0 and every test function ϕ ∈ S(R) there
exists C > 0 such that, for all n ∈ N,

lim
n→∞

En

(∫ t

0

G
(n,k)
2 (Φ, η(n2s))ds

)2
 = 0. (5.145)

PROOF. It follows from Lemma 5.5.2, Lemma 5.5.3 and the convergence, by
the inductive hypothesis, of Y (n,k−1)(ϕ, η).

From Propositions 5.5.7 and 5.5.8 we can write

n2ΓY (n,k)(Φ, η) = (5.146)

= ρ(α+ σρ)
c2σ
nd

(
Y (n,k−1)(Φ, η)

)2

·
∑
x∈Zd

∑
r∈R

|〈r,∇ϕ( xn )〉|2 p(r)

+G (n,k)(Φ, η)

where the term G (n,k)(Φ, η) is a vanishing error:

lim
n→∞

En

(∫ t

0

G (n,k)(Φ, η(n2s))ds

)2
 = 0.

Therefore we conclude that the proposed (remember that at this point we do
not know if the limiting object is indeed a martingale) predictable quadratic
variation of our limiting martingale is given by

c2σχρ(α+ σρ)t
(
X (k−1)
s (ϕ(k−1))

)2
∫
Rd

∥∥∇ϕ(x)
∥∥2
dx. (5.147)
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Arrived at this point we can conclude that if {M (n,k)
t (Φ) : t ∈ [0, T ]} has a limit

as n → ∞, and if the limit is a square-integrable martingale then its quadratic
variation is given by (5.147). In what follows we will show tightness and uni-

form integrability, i.e. we will prove that {M (n,k)
t (Φ) : t ∈ [0, T ]} converges to

{M (k)
t (Φ) : t ∈ [0, T ]} and that {M (k)

t (Φ) : t ∈ [0, T ]} is indeed a martingale.

5.5.3 Tightness

In this section we prove tightness for the family of laws {Q(k)
n }n∈N, induced by

{X (n,k)(·, t)}t≥0 on D([0,∞), S′(Rk)). From the Dynkin formula we know that

M ′n(t, ϕ
(k)) = X

(n,k)
t (ϕ(k))− n2

∫ t

0

L X (n,k)
s (ϕ(k))ds (5.148)

and

N ′n(t, ϕ
(k)) = M ′n(t, ϕ

(k))2 − n2

∫ t

0

ΓX (n,k)
s (ϕ(k))ds (5.149)

are martingales. Theorem 2.3 in [38], which we include in Appendix A.3, allows

us to reduce the proof the tightness of {Q(k)
n }n∈N to the verification of condi-

tions (A.30)-(A.32). We verify these conditions in Proposition 5.5.9, Proposition
5.5.10 and Proposition 5.5.11 below.

5.5.3.1 The γ1 term

The following Proposition shows that conditions (A.30) and (A.31) hold true.

PROPOSITION 5.5.9. For any ϕ(k) ∈ S(Rkd) and t0 ≥ 0 we have:

sup
n∈N

sup
0≤t≤t0

En
[(

X
(n,k)
t (ϕ(k))

)2
]
<∞ (5.150)

and

sup
n∈N

sup
0≤t≤t0

En
[(
n2L X

(n,k)
t (ϕ(k))

)2
]
<∞. (5.151)

PROOF. We start with the proof (5.151) which is more involved. Thanks to
stationarity, the expectation does not depend on time, and then we can ignore
the supremum over time in (5.151). From (5.100) we already have an expression
for the integrand of (5.151):

n2L X (n,k)(ϕ(k), η) = αk · χ2 ·X
(n,k)(ϕ(k−1) ⊗∆ϕ, η) +O(n−1) (5.152)

recall that here again we are using the fact that the field X (n,k) can be also
thought as acting on general ( not necessarily symmetric ) test functions. Be-
cause of stationarity it is enough to estimate

Eνρ
[(

X (n,k)(ϕ(k−1) ⊗∆ϕ, η)
)2
]
. (5.153)
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Then the desired bound is obtained by applying Proposition 5.5.1. In the same
spirit we can use Proposition 5.5.1 to bound (5.150).

5.5.3.2 The γ2 term

Similarly to the previous section, here we prove the following proposition in order
to verify the condition (A.31) for γ2.

PROPOSITION 5.5.10. For any ϕ(k) ∈ S(Rkd) and t0 ≥ 0 we have:

sup
n∈N

sup
0≤t≤t0

En
[(
n2ΓX

(n,k)
t (ϕ(k))

)2
]
<∞. (5.154)

PROOF. Thanks to stationarity we can neglect the supremum over time. Recall
that in (5.146) we have obtained an expression for the integrand on (5.154)

n2ΓX (n,k)(ϕ(k), η)

= ρ(α+ σρ)
k2c2σ
nd

(
Y (n,k−1)(Φ, η)

)2

·
∑
x∈Zd

∑
r∈R

|〈r,∇ϕ( xn )〉|2 p(r)

+O(n−1)

taking the square of which we obtain

Eνρ
[
(n2ΓX (n,k)(ϕ(k), η))2

]
= ρ2(α+ σρ)2 k

4c4σ
n2d

·
∑

x,y∈Zd

∑
r1,r2∈R

|〈r1,∇ϕ( xn )〉|2 · |〈r2,∇ϕ( yn )〉|2

× p(r1) · p(r2) · Eνρ
[(

Y (n,k−1)(Φ, η)
)4
]
. (5.155)

Notice that the first factor on the RHS of (5.155) can be controlled by using the
compact support of ϕ and the factor 1

n2d . It is then sufficient to estimate

sup
n∈N

Eνρ
[(

Y (n,k−1)(Φ, η)
)4
]

(5.156)

then Proposition 5.5.1 finishes the proof.

5.5.3.3 Modulus of continuity

In this section we show that condition (2.5) of Theorem 2.3 in [38] is satisfied.
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PROPOSITION 5.5.11. For every ϕ(k) ∈ S(Rkd) there exists a sequence δ(t, ϕ, n)
converging to zero as n→ 0 such that:

lim
n→∞

Pn( sup
0≤t≤T

|X (n,k)
t (ϕ(k), η)−X

(n,k)
t− (ϕ(k), η)| ≥ δ(t, ϕ, n)) = 0. (5.157)

PROOF. We know that the jumps of the process {η(t) : t ≥ 0} are determined
by exponential clocks. This implies that for any ε > 0 the probability of having
more than one jump in the interval (t, t+ ε] is of the order o(ε). Hence for C, a
positive constant that depends on the model parameters, we have

sup
0≤t≤T

|X (n,k)
t (ϕ(k))−X

(n,k)
t− (ϕ(k))| ≤ C

‖ϕ‖∞
nkd/2

(5.158)

with probability 1− o(ε).

Taking the sequence {δ(t, ϕ, n)}n≥1 given by

δ(t, ϕ, n) = C
‖ϕ‖∞ + 1

n1/2
(5.159)

finishes the proof.

REMARK 5.5.2. Notice that Proposition 5.5.11 implies, in particular, that the

law induced by Y
(n,k)
t is concentrated on continuous paths.

5.5.4 Characterization of limit points

At this point we can only say that the sequence {M (n,k)
t (·) : t ∈ [0, T ]} converges

weakly to the process {M (k)
t (·) : t ∈ [0, T ]} satisfying expressions (5.72) and

(5.73). Nevertheless, we would like to support the claim, given in Theorem

5.4.1, that the limiting process {M (k)
t (·) : t ∈ [0, T ]} is indeed a martingale with

the proposed predictable quadratic variation given by (5.147). At this aim we
prove the following result.

PROPOSITION 5.5.12. The sequence {M (n,k)
t (·) : t ∈ [0, T ]} is uniformly inte-

grable.

PROOF. By standard arguments it is enough to provide a uniform Lp(Pn)
bound for p > 1. Notice that, thanks to the martingale decomposition (5.74),
and the same type of arguments used in the proofs of Propositions 5.5.9 and
5.5.10, we can indeed find the desired bounds for p = 2.

The same type of reasoning used in Proposition 5.5.12 gives us the following
result.
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PROPOSITION 5.5.13. The sequence {N (n,k)
t (·) : t ∈ [0, T ]} is uniformly inte-

grable.

Combining Propositions 5.5.12 and 5.5.13 we show that any limit point of the

sequence {M (n,k)
t (·) : t ∈ [0, T ]} satisfies the recursive martingale problem (5.72)-

(5.73).

5.5.5 Uniqueness

It remains to show uniqueness of the solution of the martingale problem (5.72)-
(5.73). First notice that by the Duhamel formula, from (5.72), we can deduce

X
(k)
t (ϕ(k)) = X

(k)
0 (S

(k)
t ϕ(k)) +

∫ t

0

dM (k)
s (S

(k)
t−sϕ

(k)) (5.160)

where S
(k)
t is the semigroup associated to the kd-dimensional Laplacian (or to

the kd-dimensional Brownian motion).

REMARK 5.5.3. Notice that there is not ambiguity in using (5.72)-(5.73) with

test functions of the form S
(k)
t ϕ(k). From the fact that the d-dimensional Brow-

nian semigroup leaves invariant the space S(Rd), we can deduce that the kd-
dimensional Brownian semigroup keeps both the symmetry and the Schwartz
space nature of the test function ϕ(k). More precisely:

S
(k)
t ϕ(k) = (S

(1)
t ϕ)(k) (5.161)

where S
(1)
t denotes the semigroup of a d-dimensional Brwonian motion.

REMARK 5.5.4. In the RHS of equation (5.160), the integral term∫ t

0

dM (k)
s (S

(k)
t−sϕ

(k)) (5.162)

should be interpreted as a martingale with quadratic variation∫ t

0

∫
Rd

∥∥∥∇S(1)
t−sϕ(x)

∥∥∥2

X (k−1)
s (S

(k−1)
t−s ϕ(k−1)) ds. (5.163)

Given the distribution of X
(k)

0 and the well-definedness of M
(k)
t , the RHS of

(5.160) uniquely determines the finite-dimensional distributions of X
(k)
t . Then,

by the continuity of X
(k)
t , we conclude the uniqueness of limiting point. We

refer to [47] for more details on how to proceed for the case k = 2.
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Chapter 6

Condensation of SIP
particles and sticky
Brownian motion

The symmetric inclusion process (SIP) is an interacting particle system where
a single particle performs symmetric continuous-time random walks on the lat-
tice Z, with rates αp(i, j) = αp(j, i) (α > 0) and where particles interact by
attracting each other (see below for the precise definition) at rate p(i, j)ηiηj ,
where ηi is the number of particles at site i. The parameter α regulates the
relative strength of diffusion w.r.t. attraction between particles. The symmetric
inclusion process is self-dual, and many results on its macroscopic behavior can
be obtained via this property. Self-duality implies that the expectation of the
number of particles can be understood from one dual particle. In particular,
because one dual particle scales to Brownian motion in the diffusive scaling, the
hydrodynamic limit of SIP is the heat equation. The next step is to understand
the variance of the density field, which requires two dual particles.

It is well-known that in the regime α → 0 the SIP manifests condensation
(the attractive interaction dominates), and via the self-duality of SIP more in-
formation can be obtained about this condensation process than for a generic
process (such as zero-range processes). Two of my coauthors of the joint paper,
on which this chapter is based have obtained an explicit formula for the Fourier-
Laplace transform of two particle transition probabilities for interacting particle
systems such as the simple symmetric exclusion and the simple symmetric in-
clusion process, where simple refers to nearest neighbor in dimension 1. From
this formula, the authors were able to extract information about the variance of
the time-dependent density field starting from a homogeneous product measure.
With the help of duality this reduces to the study of the scaling behavior of
two dual particles. In particular, for the inclusion process in the condensation
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regime, from the study of the scaling behavior of the time-dependent variance of
the density field, one can extract information about the coarsening process. It
turned out that the scaling limit of two particles is in that case a pair of sticky
Brownian motions. From this one can infer the qualitative picture that in the
condensation regime, when started from a homogeneous product measure, large
piles of particles are formed which move as Brownian motion, and interact with
each other as sticky Brownian motions.

The whole analysis in [18] is based on the exact formula for the Fourier-
Laplace transform of the transition probabilities of two SIP particles as men-
tioned above. This exact computation is based on the fact that the underlying
random walk is nearest neighbor, and therefore the results are restricted to that
case. However, we expect that for the SIP in the condensation regime, sticky
Brownian motion appears as a scaling limit in much larger generality in dimen-
sion 1. The exact formula in [18] yields convergence of semigroups, and therefore
convergence of finite-dimensional distributions. However, because of the rescal-
ing in the condensation regime, one cannot expect convergence of generators,
but rather a convergence result in the spirit of slow-fast systems, i.e., of the type
gamma convergence. Moreover, the difference of two SIP-particles is not simply
a random walk slowed down when it is the origin as in e.g. [1]. Instead, it is
a random walk which is pulled towards the origin when it is close to it, which
only in the scaling limit leads to a slow-down at the origin, i.e., sticky Brownian
motion.

In this chapter, we obtain a precise scaling behavior of the variance of the
density field in the condensation regime. We find the explicit scaling form for
this variance in real time (as opposed to the Laplace transformed result in [18]),
thus giving more insight in the coarsening process when initially started from
a homogeneous product measure of density ρ. This is the first rigorous result
on coarsening dynamics in interacting particle systems directly on infinite lat-
tices, for a general class of underlying random walks. There exist important
results on condensation either heuristically on the infinite lattice or rigorous but
constrained to finite lattices. For example [14] heuristically discusses on infi-
nite lattices the effective motion of clusters in the coarsening process for the
TASIP; or the work [21] which based on heuristic mean-field arguments studies
the coarsening regime for the explosive condensation model. On the other hand,
on finite lattices via martingale techniques [8] studies the evolution of a con-
densing zero-range process. In the context of the SIP, the authors of [49], on a
finite lattice, showed the emergence of condensates as the parameter α→ 0 and
rigorously characterize their dynamics. We also mention the recent work [55]
where the structure of the condensed phase in SIP is analyzed in stationarity, in
the thermodynamic limit. More recently in [57], condensation was proven for a
large class of inclusion processes for which there is no explicit form of the invari-
ant measures. The work in [57] also derived rigorous results on the metastable
behavior of non-reversible inclusion processes.
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Our main result is obtained by proving that the difference of two SIP par-
ticles converges to a two-sided sticky Brownian motion in the sense of Mosco
convergence of Dirichlet forms, originally introduced in [76] and extended to the
case of varying state spaces in [66]. Because this notion of convergence implies
convergence of semigroups in the L2-space of the reversible measure, which is
dx + γδ0 for the sticky Brownian motion with stickiness parameter γ > 0, the
convergence of semigroups also implies that of transition probabilities of the form
pt(x, 0). This, together with self-duality, helps to explicitly obtain the limiting
variance of the fluctuation field. Technically speaking, the main difficulty in our
approach is that we have to define carefully how to transform functions defined
on the discretized rescaled lattices into functions on the continuous limit space
in order to obtain convergence of the relevant Hilbert spaces, and at the same
time obtain the second condition of Mosco convergence. Mosco convergence is a
weak form of convergence which is not frequently used in the probabilistic con-
text. In our context it is however exactly the form of convergence which we need
to study the variance of the density field. As already mentioned before, as it is
strongly related to gamma-convergence, it is also a natural form of convergence
in a setting reminiscent of slow-fast systems.

The rest of this chapter is organized as follows. In Section 6.1 we deal with
some preliminary notions; we introduce both the inclusion and the difference pro-
cess in terms of their infinitesimal generators. In this section we also introduce
the concept of duality and describe the appropriate regime in which condensa-
tion manifests itself. Our main result is stated in Section 6.2, were we present
some non-trivial information about the variance of the time-dependent density
field in the condensation regime and provide some heuristics for the dynamics
described by this result. In Section 6.3, we present the proof of our main result
and also show that the finite-range difference process converges in the sense of
Mosco convergence of Dirichlet forms to the two-sided sticky Brownian motion.

As supplementary material in Appendix B, we refer for basic notions on
Dirichlet forms and the construction via stochastic time changes of Dirichlet
forms the two-sided sticky Brownian motion at zero. We also refer to Appendix
C.2, where we deal with the convergence of independent random walkers to
standard Brownian motion. This last result, despite being basic becomes a
cornerstone for our results of Section 6.2.

6.1 Preliminaries

6.1.1 The Model: inclusion process

The Symmetric Inclusion Process (SIP) is an interacting particle system where
particles randomly hop on the lattice Z with attractive interaction and no re-
strictions on the number of particles per site. Configurations are denoted by
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η and are elements of Ω = NZ (where N denotes the set of natural numbers
including zero). We denote by ηx the number of particles at position x ∈ Z in
the configuration η ∈ Ω. The generator working on local functions f : Ω→ R is
of the type

L f(η) =
∑
i,j∈Z

p(j − i)ηi(α+ ηj)(f(ηij)− f(η)) (6.1)

where ηij denotes the configuration obtained from η by removing a particle from
i and putting it at j. For the associated Markov process on Ω, we use the
notation {η(t) : t ≥ 0}, i.e., ηx(t) denotes the number of particles at time t
at location x ∈ Z. Additionally, we assume that the function p : R → [0,∞)
satisfies the following properties

1. Symmetry: p(r) = p(−r) for all r ∈ R

2. Finite-range: there exists R > 0 such that: p(r) = 0 for all |r| > R.

3. Irreducibility: for all pair of points x, y ∈ Z there exists m ∈ N and points

x = i1, i2, . . . , im−1, im = y, such that
m−1∏
j=1

p(ij+1 − ij) > 0.

It is known that these particle systems have a one-parameter family of homoge-
neous (w.r.t. translations), reversible and ergodic product measures µρ, ρ > 0
with marginals

µρ(ηi = m) =
ααρm

(α+ ρ)α+m

Γ(α+m)

Γ(m+ 1)Γ(α)

This family of measures is indexed by the density of particles, i.e.,∫
η0dµρ = ρ

REMARK 6.1.1. Notice that for these systems the initial configuration has to be
chosen in a subset of configurations such that the process {η(t) : t ≥ 0} is well-
defined. A possible such subset is the set of tempered configurations. This is the
set of configurations η such that there exist C, β ∈ R that satisfy |η(x)| ≤ C|x|β
for all x ∈ R. We denote this set (with slight abuse of notation) still by Ω,
because we will always start the process from such configurations, and this set
has µρ̄ measure 1 for all ρ. Since we are working mostly in L2(µρ̄) spaces, this
is not a restriction.

6.1.2 Self-duality

Let us denote by Ωf ⊆ Ω the set of configurations with a finite number of
particles. We then have the following definition:
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DEFINITION 6.1.1. We say that the process {ηt : t ≥ 0} is self-dual with self-
duality function D : Ωf × Ω→ R if

Eη
[
D(ξ, ηt)

]
= Eξ

[
D(ξt, η)

]
(6.2)

for all t ≥ 0 and ξ ∈ Ωf , η ∈ Ω.

In the definition above Eη and Eξ denote expectation when the processes {ηt :
t ≥ 0} and {ξt : t ≥ 0} are initialized from the configuration η and ξ respectively
. Additionally we require the duality functions to be of factorized form, i.e.,

D(ξ, η) =
∏
i∈Z

d(ξi, ηi) (6.3)

where the single-site duality function d(k, ·) is a polynomial of degree k, more
precisely

d(k,m) =
m!Γ(α)

(m− k)!Γ(α+ k)
1l{k≤m} (6.4)

One important consequence of the fact that a process enjoys the self-duality
property is that the dynamics of k particles provides relevant information about
the time-dependent correlation functions of degree k. As an example we now
state the following proposition, Proposition 5.1 in [18], which provides evidence
for the case of two particles

PROPOSITION 6.1.1. Let {η(t) : t ≥ 0} be a process with generator (6.1), then∫
Eη
(
ηt(x)− ρ

) (
ηt(y)− ρ

)
ν(dη) (6.5)

=

(
1 +

1

α
1l{x=y}

)(
ασ

α+ 1
− ρ2

)
Ex,y

[
1l{Xt=Yt}

]
+ 1l{x=y}

(
ρ2

α
+ ρ

)
where ν is assumed to be a homogeneous product measure with ρ and σ given by

ρ :=

∫
ηxν(dη) and σ :=

∫
ηx(ηx − 1)ν(dη) (6.6)

and Xt and Yt denote the positions at time t > 0 of two dual particles started at
x and y respectively and Ex,y the corresponding expectation.

PROOF. We refer to [18] for the proof.

REMARK 6.1.2. Notice that Proposition 6.1.1 shows that the two-point corre-
lation functions depend on the two-particle dynamics via the indicator function
1l{Xt=Yt}. More precisely, these correlations can be expressed in terms of the
difference of the positions of two dual particles and the model parameters.

Motivated by Remark 6.1.2, and for reasons that will become clear later, we
will study in the next section the stochastic process obtained from the generator
(6.1) by following the evolution in time of the difference of the positions of two
dual particles.
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6.1.3 The difference process

We are interested in a process obtained from the dynamics of the process {η(t) :
t ≥ 0} with generator (6.1) initialized originally with two labeled particles. More
precisely, if we denoted by (x1(t), x2(t)) the particle positions at time t ≥ 0, from
the generator (6.1) we can deduce the generator for the evolution of these two
particles; this is, for f : Z2 → R and x ∈ Z2 we have

Lf(x) =

2∑
i=1

∑
r

p(r)

(
α+

2∑
j=1

1lxi+r=xj

)(
f(xi,r)− f(x)

)
where xi,r results from changing the position of particle i from the site xi to the
site xi + r.

Given this dynamics, we are interested in the process given by the difference

w(t) := x2(t)− x1(t), t ≥ 0. (6.7)

Notice that the labels of the particles are fixed at time zero and do not vary
thereafter. This process was studied for the first time in [77] and later on [18],
but in contrast to [18], we do not restrict ourselves to the nearest-neighbor case,
hence any time a particle moves the value of w(t) can change by r units, with
r ∈ A := [−R,R] ∩ Z \ {0}.

Using the symmetry and translation invariance properties of the transition func-
tion we obtain the following operator as generator for the difference process

(Lf)(w) =
∑
r∈A

2p(r) (α+ 1lr=−w)
[
f(w + r)− f(w)

]
(6.8)

where we used that p(0) = 0 and p(−r) = p(r).

Let µ denote the discrete counting measure and δ0 the Dirac measure at the
origin, then we have the following result:

PROPOSITION 6.1.2. The difference process is reversible with respect to the
measure να given by

να := µ+
δ0
α
, i.e. να(w) =

{
1 + 1

α if w = 0

1 if w 6= 0
(6.9)

PROOF. By detailed balance, see for example Proposition 4.3 in [58], we obtain
that any reversible measure should satisfy the following:

να(w) =
(α+ 1lw=0)

(α+ 1lr=−w)
να(w + r) (6.10)
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where, due to the symmetry of the transition function, we have cancelled the

factor p(−r)
p(r) . In order to verify that να satisfies (6.10) we have to consider three

possible cases: Firstly w /∈ {0,−r}, secondly w = 0 and finally w = −r. For
w /∈ {0,−r}, (6.10) reads να(w) = να(w + r) which is clearly satisfied by (6.9).
For w = 0 and for w = −r, (6.10) reads να(0) = (1 + 1

α )να(r) which is also
satisfied by (6.9).

REMARK 6.1.3. Notice that in the case of a symmetric transition function the
reversible measures να are independent of the range of the transition function.

6.1.4 Condensation and Coarsening

6.1.4.1 The sticky regime

It has been shown in [48] that the inclusion process with generator (6.1) can
exhibit a condensation transition in the limit of a vanishing diffusion parameter
α. The parameter α controls the rate at which particles perform random walks,
hence in the limit α → 0 the interaction due to inclusion becomes dominant
which leads to condensation. The type of condensation in the SIP is different
from other particle systems such as zero-range processes, see [50] and [34] for
example, because in the SIP the critical density is zero.

Figure 6.1: Condensate in ZRP

O(n)

O(n)

Figure 6.2: Condensate in SIP

Moreover, as depicted in Figures 6.1 and 6.2 the dynamics of the condensates
in the SIP and ZRP are different. In the case of the ZRP (Figure 6.1) the con-
densate moves by first detaching some particles from it, later these free particles
start to wander around to finally form a new condensate possibly at a distance
much further than the size of the original condensate. On the other hand, for
the SIP (Figure 6.2) the size of a typical condensate is of order (O(n)) and all
the particles in this condensate move together a distance of the order the size of
the condensate (again O(n)).

In the symmetric inclusion process we can achieve the condensation regime by
rescaling the parameter α, i.e. making it of order 1/n. If on top of that rescaling
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we also rescale space by 1/n and accelerate time with a factor of order n3 then
we enter the sticky regime introduced in [18]. More precisely, for γ > 0, we speed
up time by a factor n3γ/

√
2, scale space by 1/n and rescale the parameter α by

1√
2γn

; in this case the generator (6.1) becomes

Lnf(η) =
n3γ√

2

∑
i,j∈ 1

nZ

p(j − i)ηi( 1√
2γn

+ ηj)(f(ηij)− f(η)) (6.11)

Notice that by splitting the generator (6.11) as follows:

Lnf(η) = L IRW
n f(η) + L SIP

n f(η)

where

L IRW
n f(η) =

n2

2

∑
i,j∈ 1

nZ

p(j − i)ηi(f(ηij)− f(η)) (6.12)

and

L SIP
n f(η) =

n3γ√
2

∑
i,j∈ 1

nZ

p(j − i)ηiηj(f(ηij)− f(η)) (6.13)

We can indeed see two forces competing with each other. On the one hand, with

a multiplicative factor of n2

2 we see the diffusive action of the generator (6.12).

While on the other hand, at a much larger factor n3γ√
2

we see the action of the

infinitesimal operator (6.13) making particles condense. Therefore the sum of
the two generators has the flavor of a slow-fast system. This gives us the hint
that, for the associated process, we cannot expect convergence of the generators.
Instead, as it will become clear later, we will work with Dirichlet forms.

6.1.4.2 Coarsening and the density fluctuation field

It was found in [48] that in the condensation regime (when started from a homo-
geneous product measure with density ρ > 0) sites are either empty with very
high probability, or contain a large number of particles to match the fixed ex-
pected value of the density. We also know that in this regime the variance of the
particle number is of order n and hence a rigorous hydrodynamical description of
the coarsening process, by means of standard techniques, becomes inaccessible.
Nevertheless, as it was already hinted in [18] at the level of the Fourier-Laplace
transform, a rigorous description at the level of fluctuations might be possible.
Therefore we introduce the fluctuation field in the the condensive time scaling:

Yn(η, ϕ, t) =
1

n

∑
x∈Z

ϕ(x/n)
(
ηs(n,t)(x)− ρ

)
with s(n, t) := γn3t√

2
(6.14)
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defined for any ϕ in the space of Schwartz functions:

S (R) = {ϕ ∈ C∞(R) : sup
x∈R
|xαDβϕ| <∞,∀α, β ∈ N}. (6.15)

REMARK 6.1.4. Notice that the scaling in (6.14) differs from the standard set-
ting of fluctuation fields, given for example in Chapter 11 of [58]. In our setting,
due to the exploding variances it is necessary to re-scale the fields by an additional
factor of 1√

n
.

6.2 Main result: time dependent variances of
the density field

Let us initialize the nearest-neighbor SIP configuration process from a spatially
homogeneous product measure ν parametrized by its mean ρ and such that

Eν [η(x)2] <∞. (6.16)

We have the following result concerning the time-dependent variances of the
density field (6.14):

THEOREM 6.2.1. Let {ηα(N,t) : t ≥ 0} be the time-rescaled inclusion process,
with infinistesimal generator (6.11), in configuration space. Consider the fluctu-
ation field Yn(η, ϕ, t) given by (6.14). Let νρ be an initial homogeneous product
measure parametrized by its mean ρ and satisfying (6.16) holds. Then the limit-
ing time dependent variance of the density field is given by:

lim
n→∞

Eν
[
Yn(η, ϕ, t)2

]
= −
√

2γ2ρ2 e4γ2t

∫
R2

ϕ(x)ϕ(y) e2
√

2γ|x−y| erf(2γ
√
t+ |x−y|√

2t
) dx dy

+
√

2γρ2
(

1− e4γ2t erf(2γ
√
t)
)∫

R
ϕ(x)2 dx (6.17)

where the error function is:

erf(x) :=
2√
π

∫ ∞
x

e−y
2

dy.

Heuristics of the coarsening process

In this section we give some intuition about the limiting behavior of the density
field, as found in Theorem 6.2.1. More concretely, we show that Theorem 6.2.1
is consistent with the following “coarsening picture”. Under the condensation
regime, and started from an initial homogeneous product measure ν with density
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ρ, over time large piles are created which are typically at distances of order n
and of size ρn. The location of these piles evolves on the appropriate time scale
according to a diffusion process. If we focus on two piles, this diffusion pro-
cess is of the form (X(t), Y (t)) where X(t) − Y (t) is a sticky Brownian motion
Bsbm(t), and where the sum X(t) + Y (t) is an independent Brownian motion
B(t), time-changed via the local time inverse at the origin τ(t) of the sticky
Brownian motion Bsbm(t) via X(t) + Y (t) = B(2t− τ(t)).

In the following we denote by psbm
t (x, dy) the transition kernel of a Sticky Brow-

nian motion with stickiness parameter
√

2γ. This kernel consists of a first term
that is absolutely continuous w.r.t. the Lebesgue measure and a second term
that is a Dirac-delta at the origin times the probability mass function at zero.
With a slight abuse of notation we will denote by

psbm
t (x, dy) = psbm

t (x, y) dy + psbm
t (x, 0) · δ0(dy) (6.18)

where psbm
t (x, y) for y 6= 0 denotes a probability density to arrive at y at time

t when started from x , and for y = 0 the probability to arrive at zero when
started at x. See equation (2.15) in [54] for an explicit formula for (6.18).

Let us now make this heuristics more precise. Define the non-centered field

Zn(η, ϕ, t) =
1

n

∑
x∈Z

ϕ( xn )ηs(n,t)(x) (6.19)

then one has, using that at every time t > 0, and x ∈ Zd, Eν(ηt(x)) = ρ:

lim
n→∞

Eν
[
Zn(η, ϕ, t)

]
= ρ

∫
R
ϕ(x) dx (6.20)

and

lim
n→∞

(
Eν
[
Zn(η, ϕ, t)2

]
− Eν

[
Yn(η, ϕ, t)2

])
= ρ2

∫
R

∫
R
ϕ(x)ϕ(y) dx dy.

As we will see later in the proof of our main theorem, the RHS of (6.17) can be
written as

−ρ
2

2

∫
R2

ϕ(u+v
2 )ϕ(u−v2 )psbm

t (v, 0) dv du−
(√

2γρ2psbm
t (0, 0)−

√
2γρ2

)∫
R
ϕ(u)2 du,
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and hence, we have that

lim
n→∞

Eν
[
Zn(η, ϕ, t)2

]
= ρ2

∫
R

∫
R
ϕ(x)ϕ(y) dx dy +

√
2γρ2

∫
R
ϕ(u)2 du

−ρ
2

2

∫
R2

ϕ(u+v
2 )ϕ(u−v2 )psbm

t (v, 0) dv du−
√

2γρ2psbm
t (0, 0)

∫
R
ϕ(u)2 du

=
ρ2

2

∫
R

∫
R
ϕ
(
u+v

2

)
ϕ
(
u−v

2

)
(1− psbm

t (v, 0)) (dv +
√

2γδ0(dv)) du

=
ρ2

2

∫
R

(∫
R
Esbm
v

(
ϕ(u+vt

2 )ϕ(u−vt2 )
)

(1− 1l{0}(v))
(
dv +

√
2γδ0(dv)

))
du

=
ρ2

2

∫
R

∫
R
Esbm
v

(
ϕ(u+vt

2 )ϕ(u−vt2 )
)
dv du

=
ρ2

2

∫
R

∫
R

∫
R
ϕ(u+z

2 )ϕ(u−z2 ) psbm
t (v, dz) dv du

= ρ2

∫
R
dv

∫
R

∫
R
ϕ(x)ϕ(y) · p̄sbm

t (v; dx, dy) (6.21)

where

p̄sbm
t (v; dx, dy) := psbm

t (v, x− y) dx dy + psbm
t (v, 0) dx δx(dy). (6.22)

In the second line we used the change of variables x = u+v
2 , y = u−v

2 .

We now want to describe a “macroscopic” time-dependent random field Z (ϕ, t)
that is consistent with the limiting expectation and second moment computed
in (6.20) and (6.21). This macroscopic field describes intuitively the positions of
the piles formed from the initial homogeneous background.

For any fixed k ∈ N we define the family of Rk-valued diffusion processes
{Xx(t), t ≥ 0}x∈Rk together on a common probability space Ω. Here x =
(x1, . . . , xk) is the vector of initial positions: Xx(0) = x. Then we will denote
by Xx

i (t), i = 1, . . . , k, the i-th component of Xx(t) = (Xx
1 (t), . . . , Xx

k (t)) that is
defined as the trajectory started from xi, i.e. the i-th component of x. Then for
any fixed ω ∈ Ω, we define the define the macroscopic field Z (k)(·, t)(ω) working
on test functions ϕ : R→ R as follows:

Z (k)(ϕ, t)(ω) =
ρ

k

k∑
i=1

∫
R
ϕ(Xx

i (t)(ω))dxi. (6.23)

We want to find the conditions on the probability law of the trajectories {Xx
i (t), t ≥

0} and on their couplings that make the macroscopic field Z (ϕ, t) compatible
with the limiting expectation (6.20) and second moment (6.21) of the microscopic
field. We will see that, in order to achieve this it is sufficient to define the law of
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the one-component {Xx
i (t), t ≥ 0} and two-components {(Xx

i (t), Xx
i (t)), t ≥ 0}

marginals.

We assume that the family of processes {Xx(t), t ≥ 0}x∈Rk is such that, for all
x = (x1, . . . , xk),

a) for all i = 1, . . . , k, the marginal Xx
i (t) is a Brownian motion with diffusion

constant χ/2 started from xi.

b) for all i, j = 1, . . . , k, the pair {(Xx
i (t), Xx

j (t)), t ≥ 0} is a couple of sticky
Brownian motions starting from (xi, xj), i.e. at any fixed time t ≥ 0 it is
distributed in such a way that the difference-sum process is given by

(Xx
i (t)−Xx

j (t)), Xx
i (t) +Xx

j (t)) = (Bsbm,xi−xj (t), B̄xi+xj (2t− τ(t))).
(6.24)

Here Bsbm,xi−xj (t) is a sticky Brownian motion with stickiness at 0, stick-
iness parameter

√
2γ, and diffusion constant χ, started from xi − xj and

where τ(t) is the corresponding local time-change defined in (B.12), and
B̄xi+xj (2t − τ(t)) is another Brownian motion and diffusion constant χ,
independent from Bsbm(t) started from xi + xj .

REMARK 6.2.1. For an example of a coupling satisfying requirements a) and
b) above, we refer the reader to the family of processes introduced in [53].

We will see that, for any fixed k, the field Z (k)(ϕ, t) reproduces correctly the
first and second moments of (6.20) and (6.21).

For the expectation we have, using item a) above

E[Z (k)(ϕ, t)] =
ρ

k

k∑
i=1

∫
R
E[ϕ(Xx(t))]dxi

= ρ

∫
R
ϕ(x)

∫
R
pbm
t (xi, x) dxi dx = ρ

∫
R
ϕ(x) dx (6.25)

where the last identity follows from the symmetry: pbm
t (xi, x) = pbm

t (x, xi). No-
tice that indeed the RHS of (6.25) coincides with (6.20).

On the other hand, for the second moment, using item b) above

E[Z (k)(ϕ, t)2] =
ρ2

k2

k∑
i,j=1

∫
R

∫
R
E[ϕ(Xx

i (t))ϕ(Xy
j (t))]dxidyj . (6.26)

Then, from our assumptions,

E[ϕ(Xx
i (t))ϕ(Xy

j (t))] =

∫
R

∫
R
ϕ(x)ϕ(y)pt(xi, yj ; dx, dy).
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Here pt(xi, yj ; dx, dy) is the transition probability kernel of the pair (Xx
i (t), Xy

j (t)).
Denoting now by p̃t(v0, u0; dv, du) the transition probability kernel of the pair
(Xx

i (t)−Xy
j (t), Xx

i (t) +Xy
j (t)), and by πt the probability measure of the time

change τ(t), at time t, we have

p̃t(v0, u0; dv, du) =

∫
R
p̃t(v0, u0; dv, du |s)πt(ds)

=

∫
R
p̃

(1)
t (v0, dv |s) p̃(2)

t (u0, du |s)πt(ds)

(where p̃
(i)
t (·, ·|s) for i = 1, 2, are resp. the transition probability density func-

tions of the Brownian motions B(t) and B̄(t) conditioned on s) as, from (6.24),
the difference and sum processes are independent conditioned on the realization
of s = τ(t). Now we have that∫
R
p̃

(1)
t (v0, dv |s)πt(ds) = psbm

t (v0, dv) and p̃
(2)
t (u0, du |s) = pbm

2t−s(u0, du)

hence ∫
R

∫
R
p̃t(v0, u0; dv, du) dv0 du0

=

∫
R

(∫
R
p̃

(1)
t (v0, dv |s) dv0

)
·
(∫

R
pbm

2t−s(u0, du) du0

)
πt(ds)

=

∫
R

∫
R
p̃

(1)
t (v0, dv |s)πt(ds) dv0 =

∫
R
psbm
t (v0, dv) dv0 (6.27)

where the second identity follows from the symmetry of pbm(·, ·). Then, from
the change of variables v0 := xi − yj , u0 = xi + yj , and v = x − y, u = x + y,
and since dv0 du0 = 2dxi dyj , it follows that∫

R

∫
R
pt(xi, yj ; dx, dy) dxi dyj =

∫
R
p̄sbm
t (v0; dx, dy) dv0. (6.28)

As a consequence

E[(Z (k)(ϕ, t))2] = ρ2

∫
R

∫
R
ϕ(x)ϕ(y)

∫
R
p̄sbm
t (v; dx, dy)dv,

which is exactly the same expression as (6.21).

REMARK 6.2.2. In order to match the first two moments of the limiting density
field, it suffices to take in (6.23) any k ≥ 2. We believe that in order to match
all moments up to order m we need k ≥ m, and so the limiting field would
correspond to taking the limit k →∞. However, because in the current paper we
can only deal with two particles, we cannot say more about higher moments.
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6.3 Proof of main result

Our main theorem, Theorem 6.2.1, is a consequence of self-duality and Theorem
6.3.1 below concerning the convergence in the Mosco sense of the sequence of
Dirichlet forms associated to the difference process to the Dirichlet form corre-
sponding to the so-called two-sided sticky Brownian motion (see the Appendix
for details on this process). Before stating Theorem 6.3.1 let us introduce the
relevant setting for this convergence:

The convergence of the difference process to sticky Brownian motion takes place
in the sticky regime introduced earlier in Section 6.1.4.1. In this regime the
corresponding scaled difference process is given by:

wn(t) :=
1

n
w

(
n3γ√

2
t

)
with inclusion-parameter αn :=

1√
2γn

with infinitesimal generator

(Lnf)(w) =
n3γ√

2

∑
r∈An

2pn(r)

(
1√
2nγ

+ 1lr=−w

)[
f(w + r)− f(w)

]
(6.29)

for w ∈ 1
nZ, with

pn(r) := p(nr) and An :=
1

n
{−R,−R+ 1, . . . , R− 1, R} \ {0}. (6.30)

Notice that by Proposition 6.1.2 the difference processes are reversible with re-
spect to the measures νγ,n given by

νγ,n = µn +
√

2γδ0 (6.31)

and by (B.1) the corresponding sequence of Dirichlet forms is given by

En(f) = −
∑
w∈ 1

nZ

f(w)
∑
r∈An

2pn(r)
(
n2

2 + n3γ√
2

1lr=−w

)
(f(w + r)− f(w)) νγ,n(w).(6.32)

REMARK 6.3.1. The choice of the reversible measures νγ,n determines the se-
quence of approximating Hilbert spaces given by Hsip

n := L2( 1
nZ, νγ,n), n ∈ N.

Here for f, g ∈ Hsip
n their inner product is given by

〈f, g〉Hsip
n

=
∑
w∈ 1

nZ

f(w)g(w) νγ,n(w) = 〈f, g〉Hrw
n

+
√

2γf(0)g(0) (6.33)

where

〈f, g〉Hrw
n

=
1

n

∑
w∈ 1

nZ

f(w)g(w)

is the inner product of Section C.2.
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On the other hand, the two sided sticky Brownian motion with sticky parameter
γ > 0 can be described in terms of the Dirichlet form

(
Esbm, D(Esbm)

)
given by

Esbm(f) =
χ

2

∫
R

1l{x 6=0}(x)f ′(x)2dx, χ =

R∑
r=1

r2 p(r) (6.34)

whose domain is

D(Esbm) = H1(R) ∩ L2(R, ν̄) with ν̄ = dx+
√

2γδ0. (6.35)

Convergence of Hilbert spaces

As we already mentioned in Remark 6.3.1, by choosing the reversible measures
νγ,N we have determined the convergent sequence of Hilbert spaces and, as a
consequence, we have also set the limiting Hilbert space Hsbm to be L2(R, ν̄)
with ν̄ as in (6.35). Notice that from the regularity of this measure, by Theorem
13.21 in [51] and standard arguments, we know that the set C∞k (R) of smooth
compactly supported test functions is dense in L2(R, ν̄). Moreover the set

C0(R \ {0}) := {f + λ1l{0} : f ∈ C∞k (R), λ ∈ R}, (6.36)

denoting the set of all continuous functions on R \ {0} with finite value at 0, is
also dense in L2(R, ν̄).

Before stating our convergence result, we have to define the right ”embedding”
operators {Φn}n≥1, cf. Definition B.4.1 , to not only guarantee convergence
of Hilbert spaces Hn → H , but Mosco convergence as well. We define these
operators as follows:

{Φn : C0(R \ {0})→ Hsip
n }n defined by Φnf = f | 1

nZ
. (6.37)

PROPOSITION 6.3.1. The sequence of spaces Hsip
N = L2( 1

nZ, νγ,n), n ∈ N,
converges, in the sense of Definition B.4.1, to the space Hsbm = L2(R, ν̄).

PROOF. The statement follows from the definition of {Φn}n≥1.

Mosco convergence of the difference process

In the context described above, we have the following theorem:

THEOREM 6.3.1. The sequence of Dirichlet forms {En, D(En)}n≥1 given by
(6.32) converges in the Mosco sense to the form

(
Esbm, D(Esbm)

)
given by (6.34)

and (6.35). As a consequence, if we denote by Tn(t) and Tt the semigroups
associated to the difference process wn(t) and the sticky Brownian motion Bsbm

t ,
we have that Tn(t)→ Tt strongly in the sense of Definition B.4.4.

In the following section we will show how to use this result to prove Theorem
6.2.1. The proof of Theorem 6.3.1 will be postpone to Section 6.3.2.
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6.3.1 Proof of main theorem: Theorem 6.2.1

We denote by Tn(t) and Tt the semigroups associated to the difference process
wn(t) and the sticky Brownian motion Bsbm

t . Because of our result on Mosco con-
vergence and thanks to Theorem B.4.1 we know that the sequence of semigroups
{Tn(t)}n≥1 converges strongly to Tt in the Hsip

n Hilbert convergence sense. We
will see that this implies the convergence of the probability mass function at 0.

PROPOSITION 6.3.2. For all t > 0 denote by pnt (w, 0) the transition function
that the difference process starting from w ∈ 1

nZ finishes at 0 at time t. Then
the sequence pnt (·, 0) converges strongly to psbmt (·, 0) with respect to Hsip

n Hilbert
convergence.

PROOF. From the fact that {Tn(t)}n≥1 converges strongly to Tt, we have that
for all fn strongly converging to f , the sequence {Tn(t)fn}n≥1 ∈ Hsip

n converges
strongly to Ttf . In particular, for fn = 1l{0} we have that the sequence

Tn(t)fn(w) = Enw1l{0}(wt) = pnt (w, 0), (6.38)

converges strongly to

Ttf(w) = E sbm
w 1l{0}(wt) = psbm

t (w, 0) (6.39)

where Esbm
w denotes expectation with respect to the sticky Brownian motion

started at w.

REMARK 6.3.2. Despite the fact that Proposition 6.3.2 is not a point-wise state-
ment, we can still say something more relevant when we start our process at the
point zero:

lim
n→∞

pnt (0, 0) = psbmt (0, 0). (6.40)

The reason is that we can see pnt (w, 0) as a weakly converging sequence and used
again the fact that fn = 1l{0} converges strongly.

PROOF. Theorem 6.2.1
Let ρ and σ be given by (6.6), then we can write

Eν
[
Yn(η, ϕ, t)2

]
=

1

n2

∑
x,y∈Z

ϕ( xn )ϕ( yn )

∫
Eη
(
ηs(n,t)(x)− ρ

)(
ηs(n,t)(y)− ρ

)
ν(dη)

where, from Proposition 5.1 in [18], using self-duality, we can simplify the integral



128 CHAPTER 6. CONDENSATION OF SIP PARTICLES

above as ∫
Eη
(
ηs(n,t)(x)− ρ

)(
ηs(n,t)(y)− ρ

)
ν(dη)

=

(
1 +

1

αn
1l{x=y}

)(
αnσ

αn + 1
− ρ2

)
Ex,y1l{Xs(n,t)=Ys(n,t)}

+1l{x=y}

(
ρ2

αn
+ ρ

)
. (6.41)

Notice that the expectation in the RHS of (6.41) can be re-written in terms of
our difference process as follows:

Ex,y
[
1l{Xs(n,t)=Ys(n,t)}

]
= ps(n,t)(x− y, 0) (6.42)

where ps(n,t) is the transition function pnt under the space-time rescaling defined
in (6.14), since under the condensation regime we have, as in Section 6.1.4.1,
αn = 1√

2γn
. We then obtain:

Eν
[
Yn(η, ϕ, t)2

]
=

1

n2

∑
x,y∈Z

ϕ( xn )ϕ( yn )
(

1 +
√

2γn1l{x=y}

)( σ

1 +
√

2γn
− ρ2

)
ps(n,t)(x− y, 0)

+
1

n2

∑
x∈Z

ϕ( xn )ϕ( xn )
(√

2γnρ2 + ρ
)
. (6.43)

At this point we have 3 non-vanishing contributions:

C(1)
n :=

ρ2

n2

∑
x,y∈Z

ϕ( xn )ϕ( yn )ps(n,t)(x− y, 0),

C(2)
n :=

√
2γρ2

n

∑
x∈Z

(
ϕ( xn )

)2
ps(n,t)(0, 0)

C(3)
n :=

√
2γρ2

n

∑
x∈Z

(
ϕ( xn )

)2
where we already know:

lim
n→∞

C(3)
n =

√
2γρ2

∫
R
ϕ(v)2dv (6.44)

and, by Remark 6.3.2,

lim
n→∞

C(2)
n =

√
2γρ2psbm

t (0, 0)

∫
R
ϕ(v)2dv. (6.45)
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To analyze the first contribution we use the change of variables u = x + y,
v = x− y from which we obtain:

C(1)
n =

ρ2

n2

∑
u,v∈ 1

nZ
u≡v mod 2

ϕ(u+v
2 )ϕ(u−v2 ) ps(n,t)(v, 0). (6.46)

Hence by (6.33), C
(1)
n can be re-written as

C(1)
n =

〈
Fn(·), ps(n,t)(·, 0)

〉
Hsip
n

− γρ2

√
2n

∑
u∈ 1

nZ

ϕ(u2 )ϕ(u2 ) ps(n,t)(0, 0) (6.47)

with Fn given by

Fn(v) =
ρ2

n

∑
u∈ 1

nZ
u≡v mod 2

ϕ(u+v
2 )ϕ(u−v2 ), for all v ∈ 1

nZ. (6.48)

We then have the following proposition:

PROPOSITION 6.3.3. The sequence of functions {Fn}n≥1 ∈ Hsip
n , given by

(6.48), converges strongly to F ∈ Hsbm given by

F (x) :=
ρ2

2

∫
R
ϕ(y+x

2 )ϕ(y−x2 ) dy. (6.49)

PROOF. For simplicity let us deal with the case ϕ ∈ C∞k (R). The case where
ϕ ∈ S (R) \ C∞k (R) can be done by standard approximations using a combina-
tion of truncation and convolution with a kernel (see for example the proof of
Proposition C.2.1 in the Appendix).

In the language of Definition B.4.2, we set the following sequence of reference
functions:

F̃m(x) :=
ρ2

2m

∑
y∈Z

ϕ( y
2m + x

2 )ϕ( y
2m −

x
2 ) (6.50)

for all x ∈ R.
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Then we have:

lim
m→∞

‖F̃m − F‖2Hsbm

= lim
m→∞

ρ4

4

∫
R

 1

m

∑
y1∈Z

ϕ( y1

2m + x
2 )ϕ( y1

2m −
x
2 )−

∫
R
ϕ(y2+x

2 )ϕ(y2−x
2 ) dy2

2

νγ(dx)

=
ρ4

4

∫
R

 lim
m→∞

1

m2

∑
y1,y2∈Z

ϕ( y1

2m + x
2 )ϕ( y1

2m −
x
2 )ϕ( y2

2m + x
2 )ϕ( y2

2m −
x
2 )

 dx
+

ρ4

4

∫
R

[∫
R
ϕ(y1+x

2 )ϕ(y1−x
2 ) dy1

∫
R
ϕ(y2+x

2 )ϕ(y2−x
2 ) dy2

]
dx

− ρ4

2

∫
R

 lim
m→∞

1

m

∑
y1∈Z

ϕ( y1

2m + x
2 )ϕ( y1

2m −
x
2 )

∫
R
ϕ(y2+x

2 )ϕ(y2−x
2 ) dy2

 dx
+

√
2γρ4

4

 lim
m→∞

1

m2

∑
y1,y2∈Z

ϕ( y1

2m )2ϕ( y2

2m )2


+

√
2γρ4

4

[∫
R
ϕ(y1

2 )2 dy1

∫
R
ϕ(y2

2 )2 dy2

]

−
√

2γρ4

2

 lim
m→∞

1

m

∑
y1∈Z

ϕ( y1

2m )2

∫
R
ϕ(y2+x

2 )2 dy2


= 0 (6.51)

where in the last line we used the convergence

lim
m→∞

1

2m

∑
y∈Z

ϕ( y
2m + x

2 )ϕ( y
2m −

x
2 ) =

1

2

∫
R
ϕ(y+x

2 )ϕ(y−x2 ) dy. (6.52)

Moreover, a similar expansion (substituting integrals by sums) gives:
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‖ΦnF̃m − Fn‖2Hsip
n

=
ρ4

n

∑
x∈ 1

nZ

 1

4m2

∑
y1,y2∈

1
mZ

ϕ(y1+x
2 )ϕ(y1−x

2 )ϕ(y2+x
2 )ϕ(y2−x

2 )



− 2ρ4

n

∑
x∈ 1

nZ

 1

2mn

∑
y∈ 1

mZ

∑
u∈ 1

nZ
u≡x mod 2

ϕ(y+x
2 )ϕ(y−x2 )ϕ(u+x

2 )ϕ(u−x2 )



+
ρ4

n

∑
x∈ 1

nZ

 1

n2

∑
u1,u2∈

1
nZ

ui≡x mod 2

ϕ(u1+x
2 )ϕ(u1−x

2 )ϕ(u2+x
2 )ϕ(u2−x

2 )



+
√

2γρ4

 1

4m2

∑
y1,y2∈

1
mZ

ϕ(y1

2 )2ϕ(y2

2 )2



− 2
√

2γρ4

 1

2mn

∑
y∈ 1

mZ

∑
u∈ 1

nZ
u≡0 mod 2

ϕ(y2 )2ϕ(u2 )2



+
√

2γρ4

 1

n2

∑
u1,u2∈

1
nZ

ui≡0 mod 2

ϕ(u1

2 )2ϕ(u2

2 )2

 (6.53)

where to conclude

lim
m→∞

lim sup
n→∞

‖ΦnF̃m − Fn‖2Hsip
n

= 0

we can use (6.52) and the convergence:

lim
n→∞

1

n

∑
u∈ 1

nZ
u≡v mod 2

ϕ(u+v
2 )ϕ(u−v2 ) =

1

2

∫
R
ϕ(y+v

2 )ϕ(y−v2 ) dy. (6.54)
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From the strong convergence Fn → F , Proposition 6.3.2, and Remark 6.3.2 we
conclude

lim
n→∞

C(1)
n =

ρ2

2

∫
R2

ϕ(u+v
2 )ϕ(u−v2 )psbm

t (v, 0) du dv. (6.55)

Substituting the limits of the contributions we obtain

lim
n→∞

Eν
[
Yn(η, ϕ, t)2

]
= −ρ

2

2

∫
R2

ϕ(u+v
2 )ϕ(u−v2 )psbm

t (v, 0) dv du−
(√

2γρ2psbm
t (0, 0)−

√
2γρ2

)∫
R
ϕ(u)2 du

= −ρ
2

2

∫
R

∫
R
ϕ(u+v

2 )ϕ(u−v2 )Esbm
v

[
1l{0}(vt)

] (
dv +

√
2γδ0(dv)

)
du+

√
2γρ2

∫
R
ϕ(u)2 du

= −ρ
2

2

∫
R

∫
R
Esbm
v

[
ϕ(u+vt

2 )ϕ(u−vt2 )
]

1l{0}(v)
(
dv +

√
2γδ0(dv)

)
du+

√
2γρ2

∫
R
ϕ(u)2 du

=

√
2γρ2

2

∫
R

{
ϕ(u2 )2 − Esbm

0

[
ϕ(u+vt

2 )ϕ(u−vt2 )
]}

du

=

√
2γρ2

2

∫
R

{
ϕ(u2 )2 −

∫
R
psbm
t (0, dv)ϕ(u+v

2 )ϕ(u−v2 )

}
du (6.56)

where in the third equality we used the reversibility of SBM with respect to
the measure ν̂(dv) = dv +

√
2γδ0(dv). Then, (6.17) follows, after a change of

variable, using the expression (2.15) given in [54] for the transition probability
measure psbm

t (0, dv) of the Sticky Brownian motion (with θ =
√

2γ), namely

psbm
t (0, dv) =

√
2γe2

√
2γ|v|+4γ2t erf

(
2γ
√
t+

|v|√
2t

)
dv + δ0(dv)e4γ2t erf

(
2γ
√
t
)
.(6.57)

This concludes the proof.

REMARK 6.3.3. Using the expression of the Laplace transform of psbmt (0, dv)
given in Section 2.4 of [54], it is possible to verify that the Laplace transform of
(6.17) (using (6.56)) coincides with the expression in Theorem 2.18 of [18].

6.3.2 Proof of Theorem 6.3.1: Mosco convergence for in-
clusion dynamics

In this section we prove Theorem 6.3.1; the Mosco convergence of the Dirichlet
forms associated to the difference process {wn(t), t ≥ 0} to the Dirichlet form
corresponding to the two-sided sticky Brownian motion {Bsbm

t , t ≥ 0} given by
(6.34) and (6.35).

By Proposition 6.3.1 we have already determined the relevant notions of weak
and strong convergence of vectors living in the approximating sequence of Hilbert
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spaces (the spaces Hsip
n ). We can then, move directly to the verification of

conditions Mosco I and Mosco II in the definition of Mosco convergence. We do
this in Section 6.3.2.1 and Section 6.3.2.2 respectively.

6.3.2.1 Mosco I

We will divide our task in two steps. First, we will compare the inclusion Dirich-
let form with a random walk Dirichlet form and show that the first one dominates
the second one. We will later use this bound and the fact that the random walk
Dirichlet form satisfies Mosco I, to prove that Mosco I also holds for the case of
inclusion particles.

We consider a random walk on Z with jump range A = [−R,R]∩Z/{0}. We call
again {v(t), t ≥ 0} this process, as in the case of nearest-neighbor RW (which is
a special case of this process corresponding to the choice R = 1). More generally,
in this section we will use the same notation that has been used in Section C.2
for the case R = 1, thus we denote by Lrw the infinitesimal generator:

(Lrwf)(v) =
∑
r∈A

p(r)
[
f(v + r)− f(v)

]
, v ∈ Z (6.58)

Hence, in the diffusive scaling, the n-infinitesimal generator is given by:

∆ng(v) = n2
∑
r∈A+

n

pn(r)
[
g(v + r)− 2g(v) + g(v − r)

]
, v ∈ Z

n (6.59)

where A+
n := {|r|: r ∈ An} i.e. the generator of the process vn(t) := 1

nv(n2t),
t ≥ 0, and denote by (Rn, D(Rn)) the associated Dirichlet form.

Comparing RW and SIP Dirichlet forms

The key idea to prove Mosco I is to transfer the difficulties of the SIP nature to
independent random walkers. This is done by means of the following observation:

PROPOSITION 6.3.4. For any fn ∈ Hsip
n we have

En(fn) ≥ Rn(fn) (6.60)

PROOF. Rearranging (6.32) and using the symmetry of p(·) allows us to write:

En(fn)−Rn(fn) =
n2

√
2
γ
∑
r∈An

2pn(r)(fn(r)− fn(0))2 (6.61)

and the result follows from the fact that the RHS of this identity is nonnegative.
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Strong and weak convergence in Hrw
n and Hsip

n compared

PROPOSITION 6.3.5. The sequence {hn = 1l{0}}n≥1, with hn ∈ Hrw
n , converges

strongly to h = 0 ∈ Hbm with respect to Hrw
n -Hilbert convergence.

PROOF. In the language of Definition B.4.2 we set h̃m ≡ 0. With this choice
we immediately have

‖ĥm − h‖Hbm = 0 and ‖Φnĥm − hn‖2Hrw
n

= 1
n (6.62)

which concludes the proof.

PROPOSITION 6.3.6. The sequence {hn = 1l{0}}n≥1, with hn ∈ Hsip
n , converges

strongly to h = 1l{0} ∈ Hsbm with respect to Hsip
n -Hilbert convergence.

PROOF. In the language of Definition B.4.2 we set h̃m ≡ 1l{0}. With this choice
we immediately have

‖ĥm − h‖Hsbm = 0 and ‖Φnĥm − hn‖Hsip
n

= 0 (6.63)

which concludes the proof.

A consequence of Proposition 6.3.6 is that any sequence which is weakly conver-
gent, with respect to Hsip

n -Hilbert convergence, converges also at zero.

PROPOSITION 6.3.7. Let {fn}n≥1 in {Hsip
n }n≥1 be a sequence converging weakly

to f ∈ Hsbm with respect to Hsip
n -Hilbert convergence, then limn→∞ fn(0) = f(0).

PROOF. By Proposition 6.3.6 we know that {hn = 1l{0}}n≥1 converges strongly
to h = 1l{0} with respect to Hsip

n -Hilbert convergence. This, together with the
fact that {fn}n≥1 converges weakly, implies:

lim
n→∞

〈fn, hn〉Hsip
n

= 〈f, h〉Hsbm =
√

2γf(0) (6.64)

but by (6.33)

〈fn, hn〉Hsip
n

= ( 1
n +
√

2γ)fn(0) (6.65)

which, together with (6.64), implies the statement.

To further contrast the two notions of convergence, Proposition 6.3.5 has a
weaker implication

PROPOSITION 6.3.8. Let {gn}n≥1 in {Hrw
n }n≥1 be a sequence converging weakly

to g ∈ Hbm with respect to Hrw
n -Hilbert convergence, then limn→∞

1
ngn(0) = 0.
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PROOF. By Proposition 6.3.5 we know that {hn = 1l{0}}n≥1 converges strongly
to h = 0 with respect to Hrw

n -Hilbert convergence. This, together with the fact
that {gn}n≥1 converges weakly, implies:

lim
n→∞

〈gn, hn〉Hrw
n

= 0 (6.66)

but we know

〈gn, hn〉Hrw
n

=
1

n
gn(0) (6.67)

which together with (6.66) concludes the proof.

From Hrw
n strong convergence to Hsip

n strong convergence

PROPOSITION 6.3.9. Let {gn}n≥1 in {Hrw
n }n≥1 be a sequence converging strongly

to g ∈ Hbm with respect to Hrw
n -Hilbert convergence. For all n ≥ 1 define the

sequence
ĝn = gn − gn(0)1l{0} (6.68)

Then {ĝn}n≥0 also converges strongly with respect to Hsip
n -Hilbert convergence

to ĝ given by:
ĝ = g − g(0)1l{0} (6.69)

PROOF. From the strong convergence in the Hrw
n -Hilbert convergence sense,

we know that there exists a sequence g̃m ∈ C∞k (R) such that

lim
m→∞

‖g̃m − g‖Hbm = 0 (6.70)

and
lim
m→∞

lim sup
n→∞

‖Φng̃m − gn‖Hrw
n

= 0 (6.71)

for each m we define the function ĝm given by

ĝm = g̃m − g̃m(0)1l{0}

Notice that:
‖ĝm‖2Hsbm = ‖g̃m‖2Hbm <∞ (6.72)

and hence we have ĝm belongs to both C0(R \ {0}) and Hsbm.

As before, we have the relation:

‖ĝm − ĝ‖2Hsbm = ‖ĝm − ĝ‖2Hbm +
√

2γ(ĝm(0)− ĝ(0))2 = ‖g̃m − g‖2Hbm (6.73)

which shows that indeed we have

lim
m→∞

‖ĝm − ĝ‖2Hsbm = 0 (6.74)
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For the second requirement of strong convergence we can estimate as follows

‖Φnĝm − ĝn‖2Hsip
n

=
1

n

∑
x∈ 1

nZ
x 6=0

(Φng̃m(x)− gn(x))2

relation (6.71) allows us to see that the RHS of the equality above vanishes.
This, together with (6.74), concludes the proof of the Proposition.

From Hsip
n weak convergence to Hrw

n weak convergence

The following proposition says that with respect to weak convergence the impli-
cation comes in the opposite direction

PROPOSITION 6.3.10. Let {fn}n≥1 in {Hsip
n }n≥1 be a sequence converging

weakly to f ∈ Hsbm with respect to Hsip
n -Hilbert convergence. Then it also con-

verges weakly with respect to Hrw
n -Hilbert convergence.

PROOF. Let {fn}n≥0 in {Hsip
n }n≥0 be as in the Proposition. In order to show

that it also converges weakly with respect to Hrw
n -Hilbert convergence, we need

to show that for any sequence {gn}n≥0 in {Hrw
n }n≥0 converging strongly to some

g ∈ Hbm we have

lim
n→∞

〈fn, gn〉Hrw
n

= 〈f, g〉Hbm (6.75)

Consider such a sequence {gn}n≥0, by Proposition 6.3.9 we know that the se-
quence {ĝn}n≥1 also converges strongly with respect to Hsip

n -Hilbert convergence
to ĝ defined as in (6.69). Then we have:

lim
n→∞

〈fn, ĝn〉Hsip
n

= 〈f, ĝ〉Hsbm = 〈f, g〉Hbm (6.76)

which can be re-written as:

lim
n→∞

〈fn, gn〉Hrw
n
− 1

n
fn(0)gn(0) = 〈f, g〉Hbm (6.77)

and together with Propositions 6.3.7 and 6.3.8 implies that:

lim
n→∞

〈fn, gn〉Hrw
n

= 〈f, g〉Hbm (6.78)

and the proof is done.
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Conclusion of proof of Mosco I

In order to see that condition Mosco I is satisfied, we combine Proposition 6.3.4,
Proposition 6.3.10 and the Mosco convergence of Random Walkers to Brownian
motion to obtain that for all f ∈ Hsbm, and all fN ∈ Hsip

n converging weakly to
f , we have

lim inf
n→∞

En(fn) ≥ lim inf
n→∞

Rn(fn) ≥ χ

2

∫
R
f ′(x)2 dx

=
χ

2

∫
R

1l{x 6=0}(x)f ′(x)2 dx = Esbm(f)

where the last equality comes from equation (B.16) and Remark B.3.3 in the
Appendix.

6.3.2.2 Mosco II

We are going to prove that Assumption 2 (in particular (B.39)) is satisfied.
We use the set of compactly supported smooth functions C∞k (R), which by the
regularity of the measure dx+ δ0 is dense in H = L2(dx+ δ0).

The recovering sequence

For every f ∈ C∞k (R), we need to find a sequence fN strongly-converging to f
and such that

lim
n→∞

En(fn) = E (f). (6.79)

The obvious choice fn = Φnf does not work in this case, the reason of this is the
emergence in the limit of a non-vanishing term containing f ′(0). Nevertheless
our candidate is the sequence {Ψnf}n≥1 given by

(Ψnf)(i) =

{
f(i) i ∈ 1

nZ \An
f(0) otherwise

for any f ∈ C∞k (R), (6.80)

where An is as in (6.30).

REMARK 6.3.4. The sequence {Ψnf}n≥1 is chosen in such a way that the SIP
part of the Dirichlet form, i.e. the right hand side of (6.61), vanishes at Ψnf
for all n. See below for the details.

Our goal is to show that the sequence {Ψnf}n≥1 indeed satisfies (6.79). First of
all we need to show that Ψnf → f strongly.

PROPOSITION 6.3.11. For all f ∈ C∞k (R) ⊂ L2(dx+δ0), the sequence {Ψnf}n≥1

in Hsip
n strongly-converges to f w.r.t. the Hsip

n -Hilbert space convergence given.
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PROOF. In the language of Definition B.4.2 we set f̃m ≡ f . Hence the first
condition is trivially satisfied:

lim
m→∞

‖f̃m − f‖Hsbm = 0. (6.81)

Moreover

lim
m→∞

lim sup
n→∞

‖Φnf̃m −Ψnf‖2Hsip
n

= lim sup
n→∞

‖Φnf −Ψnf‖2Hsip
n

= lim sup
n→∞

∑
i∈ 1

nZ

(Φnf(i)−Ψnf(i))2νγ,n(i) = lim sup
n→∞

1

n

∑
i∈An

(f(i)− f(0))2 = 0

where we used the boundedness of f and the fact that the cardinality of the set
An is finite and does not depend on n.

Preliminary simplifications

To continue the proof of (6.79), the first thing to notice is that the Dirichlet
form En evaluated in Ψnf can be substantially simplified:

En(Ψnf)

= −
∑
i∈ 1

nZ

Ψnf(i)
∑
r∈An

2pn(r)
(
n2

2 + n3γ√
2

1lr=−i

)
(Ψnf(i+ r)−Ψnf(i))νγ,n(i)

= −
∑
i∈ 1

nZ

Ψnf(i)
∑
r∈An

pn(r)n2(Ψnf(i+ r)−Ψnf(i))νγ,n(i) (6.82)

−
∑
i∈ 1

nZ

Ψnf(i)
∑
r∈An

2pn(r)
(
n3γ√

2
1lr=−i

)
(Ψnf(i+ r)−Ψnf(i))νγ,n(i)

where, from the observation that for i = −r and r ∈ An, via (6.80) we get

(Ψnf(i+ r)−Ψnf(i)) = 0, (6.83)

and the whole second sum in (6.82) vanishes. Then by (6.31), we are left with

En(Ψnf) = −n
∑
r∈An

pn(r)
∑
i∈ 1

nZ

Ψnf(i)(Ψnf(i+ r)−Ψnf(i))

−
√

2γn2
∑
r∈An

pn(r)Ψnf(0)(Ψnf(r)−Ψnf(0)). (6.84)

We have again that (Ψnf(r)−Ψnf(0)) = 0 for r ∈ An, then our Dirichlet form
becomes

En(Ψnf) = −n
∑
r∈An

pn(r)
∑
i∈ 1

nZ

Ψnf(i)(Ψnf(i+ r)−Ψnf(i))
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that we split again as follows

En(Ψnf) = −n
∑
r∈An

pn(r)
∑

i∈ 1
nZ\An

Ψnf(i)(Ψnf(i+ r)−Ψnf(i))− Sn

with Sn = n
∑
r∈An

pn(r)
∑
i∈An

Ψnf(i)(Ψnf(i+ r)−Ψnf(i)). (6.85)

The correct limit

First we show that Sn vanishes as n→∞. For i ∈ 1
nZ, we define the sets

Ain := An − i and A+
n = {|r|: r ∈ An}. (6.86)

Notice that for r ∈ Ain we have (Ψnf(i+ r)−Ψnf(0)) = 0 and hence

Sn = n
∑
i∈An

∑
r∈An\Ain

pn(r)f(0)(f(i+ r)− f(0))

= n
∑
i∈A+

n

∑
r∈An\Ain

pn(r)f(0)(f(i+ r)− 2f(0) + f(−i− r))

where we used the symmetry of p(·) and the fact that r ∈ An \ Ain if and only
if −r ∈ An \ A−in . We conclude that Sn vanishes by recalling that by a Taylor
expansion the factor (f(i+ r)− 2f(0) + f(−i− r)) is of order n−2.

For what concerns the remaining term in (6.85), we notice that, exploiting the
symmetry of the transition function p(·), we can re-arrange it into

En(Ψnf)+Sn = −n
∑
r∈A+

n

pn(r)
∑

i∈ 1
nZ\An

Ψnf(i)(Ψnf(i+ r)− 2Ψnf(i) + Ψnf(i− r)).

Let us define the following set Bn = 1
n{−2R,−2R+ 1, . . . , 2R− 1, 2R} and split

the sum above as follows

En(Ψnf)+Sn = −n
∑
r∈A+

n

pn(r)
∑

i∈ 1
nZ\Bn

Ψnf(i)(Ψnf(i+ r)− 2Ψnf(i) + Ψnf(i− r))

−n
∑
r∈A+

n

pn(r)
∑

i∈Bn\An

Ψnf(i)(Ψnf(i+ r)− 2Ψnf(i) + Ψnf(i− r)).(6.87)

The above splitting allows to isolate the first term for which we have no issues of
the kind Ψnf(i+ r) = f(0) and hence no complications when Taylor expanding
around the points i ∈ 1

nZ.

We now show that the second term in the RHS of (6.87) vanishes as n goes to
infinity:

Take a positive i ∈ Bn \An, then for r ∈ Ain, Ψnf(i+ r) = f(0).
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REMARK 6.3.5. Notice that, for −i ∈ Bn \An, the set Ain = −A−in is such that

Ψnf(−i− r) = f(0) for all r ∈ Ain. (6.88)

REMARK 6.3.6. We will omit the analysis for r /∈ Ain because for those terms
we can Taylor expand f around the point i and show that the factors containing
the discrete Laplacian are of order n−2.

We now consider the contribution that each pair (i,−i) gives to the second sum
in the RHS of (6.87). Let i ∈ (Bn \An)+, then

Cn(i) :=
n

2

∑
r∈Ain

pn(r)Ψnf(i)
[
Ψnf(i+ r)− 2Ψnf(i) + Ψnf(i− r)

]
=
n

2

∑
r∈Ain

pn(r)f(i)
[
f(0)− 2f(i) + f(i− r)

]
. (6.89)

Taylor expanding around zero the terms inside the square brackets in the RHS
of (6.89) gives

Cn(i) =
n

2

∑
r∈Ain

pn(r)f(i)f ′(0) [−r − i] +O(1/n).

Analogously, for the contribution Cn(−i) we obtain

Cn(−i) =
n

2

∑
r∈Ain

pn(r)f(−i)f ′(0) [i+ r] +O(1/n).

Summing both contributions over all i > 0 we obtain∑
i∈(Bn\An)+

Cn(i) + Cn(−i) (6.90)

=
n

2

∑
i∈(Bn\An)+

∑
r∈Ain

pn(r)f ′(0) (r + i)
[
f(−i)− f(i)

]
+O(1/n) = O(1/n)

where we used that the cardinality of the sets Ain and (Bn \ An)+ does not
depend on n. Then we can write

En(Ψnf)

= − 1

n

∑
r∈A+

n

pn(r)
∑

i∈ 1
nZ\Bn

n2f(i)(f(i+ r)− 2f(i) + f(i− r)) +O(1/n),

which indeed by a Taylor expansion gives the limit

lim
n→∞

En(Ψnf) = −χ
2

∫ 0

−∞
f(x)f ′′(x) dx− χ

2

∫ ∞
0

f(x)f ′′(x) dx

=
χ

2

∫
R

1l{x6=0}(x)f ′(x)2 dx, (6.91)
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with χ =
∑R
r=1 p(r)r

2.

This concludes the proof of Mosco II.

REMARK 6.3.7. Notice that in the second line of (6.91) we are using the fact
that f ∈ C∞(R), and hence f ′(0−) = f ′(0+).
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Chapter 7

Perspectives

7.1 Higher-order fluctuation fields

Concerning chapter 5, we will sketch a direction of future research, to make sense
of powers of these fields and relate them to powers of the generalized Ornstein-
Uhlenbeck process. The ideas presented here are inspired by the works [4], [5],
[46], and [47].

7.1.1 Properties of the quadratic fluctuation field at the
diagonal

As an example of what can be done with the limiting fields {X(k)
t (·) : t ≥ 0},

we will specialize to the case of two particles, i.e., to the case k = 2. In the
context of two particles, the authors of [47] used a martingale characterization
(an analogue of our Theorem 5.4.1) of their second-order limiting field Qt(·) to
show Theorem 7.1.1 and Theorem 7.1.2 below.

Let us then denote by {Qt(·) : t ≥ 0} the weak limit of the following quadratic
fluctuation field introduced in [47]:

Q
(n)
t (ψ, η) =

1

n

∑
x,y∈T
x 6=y

ψ(x/n, y/n)D(δx + δy, η(n2t)) (7.1)

defined for all ψ ∈ S(T2).

We now introduce some notation needed to make sense of Theorem 7.1.1 and
Theorem 7.1.2. For any test function ϕ ∈ S(R) we denote by ϕ⊗ δ the distribu-
tion in R2 given by:

〈ϕ⊗ δ, h〉 :=

∫
R
f(x)h(x, x) dx (7.2)

144
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for every h : R2 → R.

We now introduce the notion of approximation to the identity. Fix an arbitrary
non-negative test function i ∈ S(R) with support in [−1, 1] and such that∫

R
i(x) dx = 1 (7.3)

We say that the function iε is an approximation to the identity if:

iε(x) =
1

ε
i(xε ) (7.4)

and

g(x) = lim
ε→0

∫
R
iε(x− y) g(y) dy (7.5)

for all g : R→ R.

REMARK 7.1.1. Notice that the convolution (ϕ⊗ δ) ∗ iε ∈ S(R2), and that both
notions (7.5) and (7.2), can be extended to higher dimensions.

We then have the following result:

THEOREM 7.1.1. Let iε denote a two-dimensional approximation of the identity.
Let {Aεt : t ∈ [0, T ]} be the distribution-valued process defined by:

Aεt(ϕ) =

∫ t

0

Qs((ϕ⊗ δ) ∗ iε) ds (7.6)

for any test function ϕ ∈ S(T).

Then {Aεt : t ∈ [0, T ]} converges weakly in path-space, with respect to the uniform
topology, as ε→ 0, to a well-defined distribution-valued process {At : t ∈ [0, T ]}.

Furthermore, in the same paper [47] the authors were able to obtain short-time
properties of the limiting object {At : t ∈ [0, T ]}. More precisely, they showed
the following:

THEOREM 7.1.2. As ε→ 0, the process:

{ε3/4Aεt : t ≥ 0} (7.7)

converges in distribution, with respect to the uniform topology, to a stationary
Gaussian process {Bt(ϕ); t ≥ 0} with covariance given by:

E
[
Bt(ϕ)Bs(ϕ)

]
=

4

3π

(
−1 +

√
2
)
{t3/2 + s3/2 −|t− s|3/2}

∫
T
ϕ(x)(−∆ϕ(x)) dx

(7.8)
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It is important to mention that one part of the results of [47] is the following
formal relation:

Qt(x, y) = Xt(x) ·Xt(y) (7.9)

where {Xt(·) : t ≥ 0} is a distribution-valued process being the weak-limit of
the ordinary first-order density fluctuation field. I.e., a generalized Ornstein-
Uhlenbeck process.

The way that Theorem 7.1.1 relates to the study of products of distributions is
that it gives rigorous meaning to the expression (7.9) evaluated at the diagonal.
In other words, the limiting object {At : t ≥ 0} from Theorem 7.1.1 can be
intuitively understood as the time-integrated second power of the generalized
Ornstein-Uhlenbeck process {Xt(·) : t ≥ 0}.

Conjecture

Modulo a substitution of the space T by R, we believe that Theorem 7.1.1 can be
extended to the case of k particles. This belief is based on the following result:

PROPOSITION 7.1.1. For all T > 0 we have

lim
n→∞

Eνρ

(∫ T

0

X (n,2)
s (ϕ(2), η)− π(δ0)2Q(n,2)

s (ϕ(2), η) ds

)2
 = 0 (7.10)

for every ϕ ∈ S(Rd), where the field X
(n,2)
s (·, η) is given in (5.43), and Q

(n,2)
s (·, η)

is defined as:

Q
(n,2)
t (ψ, η) =

1

n

∑
x,y∈Z
x6=y

ψ(x/n, y/n)D(δx + δy, η(n2t)) (7.11)

for any ψ ∈ S(R2).

REMARK 7.1.2. Notice that the field Q
(n,2)
s (·, η) is the natural analogue on R2

of the field Q
(n)
t (ψ, η) originally defined on T2

PROOF. This proposition is a consequence of the second-order Boltzmann-
Gibbs principles of Chapter 4 and the following relation:

X
(n,2)
t (ϕ(2), η) = π(δ0)2Q

(n,2)
t (ϕ(2), η) +

1

n

∑
x∈Z

ϕ( xn )2D(2δx, ηn2t)π(2x) (7.12)

We conclude this section, with the following conjecture which concerns our lim-
iting k-th-order fields of Chapter 5 and what we have described in the previous
paragraphs:



7.1. PERSPECTIVES: HOF 147

CONJECTURE 7.1.1. Let iε denote a k-dimensional approximation of the iden-

tity. Let {A(k,ε)
t : t ∈ [0, T ]} be the distribution-valued process defined as:

A
(k,ε)
t (ϕ) =

∫ t

0

X (k)
s ((ϕ⊗ δ) ∗ iε) ds (7.13)

for any test function ϕ ∈ S(R), where the field X
(k)
s (·) is the weak limit of the

field X
(n,k)
s (·, η) given in (5.43), and where (ϕ ⊗ δ) ∗ iε is given by the k-th

dimensional version of (7.5) and (7.2) .

Then {A(k,ε)
t : t ∈ [0, T ]} converges in distribution with respect to the uniform

topology, as ε→ 0, to a well defined distribution-valued process {A(k)
t : t ∈ [0, T ]}.

REMARK 7.1.3. Analogous to the quadratic case, the field X
(k)
t (·) can be for-

mally understood as:

X
(k)
t (x1, . . . , xk) =

k∏
i=1

Xt(xi). (7.14)

Therefore, by plugging in appropriate test functions, Conjecture 7.1.1 opens the
possibility to make sense of products, of distribution-valued processes, of the form:

k∏
j=1

Xt(·)mj (7.15)

where mj ∈ N and
k∑
j=1

mj = k (7.16)
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7.2 Condensation of SIP particles and SBM

In this section, we talk about two possible future lines of research concerning
Chapter 6. For the first direction, we mention in words what needs to be done
and one possible way to do it, while for the second one, we already have enough
work to immerse ourselves into technical details.

Fluctuations under the condensation regime

The main result of Chapter 6 finds an explicit form for the time-dependent lim-
iting variances of the density fluctuation field in the condensation regime. It is
then a natural line of future research to completely characterize the weak limit,
if possible, of the fluctuation field in this regime. The first obstacle in this path
is then to obtain a suitable characterization of the sticky version of the gener-
alized Ornstein-Uhlenbeck process. This characterization can be obtained, for
example, first formally using an SPDE of the same flavor as [63] and later more
rigorously by transforming it into the language of martingale problems.

In principle, if successful in the first step, showing the weak convergence of the
density fluctuation field should be possible with the help of self-duality and the
approach described, for example, in [58].

Mosco convergence of k particles

The second possible direction of this work is the extension of our results to more
particles. More precisely, it should be possible to show the convergence, in the
sense of Mosco, of the position of k condensively rescaled SIP particles to a lim-
iting process which, by our previous results should correspond to a consistent
family of Brownian motions as introduced in [53].

Some things remain to be done to complete this line of research (besides what we
include in the following sections). The most important is to show that, indeed, to
the limiting Dirichlet form obtained at the end of this section, we can associate
a consistent family of Brownian motions as described in [53]. More precisely, we
should be able to show that the Dirichlet form is regular and that the associated
Markov process has a generator solving the corresponding Martingale problem
given in [53].

We now introduce the setting in which this convergence should occur and later
sketch how to proceed for the particular case of two particles. Notice that in
this case, the positions should converge to a pair of γ-coupled Brownian motions
as also introduced in [53].
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7.2.1 The k-particles process

Let then xit be the position at time t of the particle with label i. We are interested
in the process xt = (x1

t , x
2
t , . . . x

k
t ) in Zk whose generator is given by:

Lf(x) =

k∑
i=1

∑
r

p(r)

α+

k∑
j=1
j 6=i

1lxi+r=xj

(f(xi,i+r)− f(x)
)

(7.17)

where xi,i+r results from changing the position of particle i from the site xi to
the site xi + r.

Notice that, if we denote by {ηt}t≥0 the configuration process, for w ∈ Z the
way to recover from the positions process the configuration process is given by:

ηt(w) =

k∑
i=1

1lxit=w (7.18)

This relation becomes very useful for us since, thanks to it, we are able to find
reversible measures at the level of the coordinate process {xt}t≥0.

PROPOSITION 7.2.1. The process {xt}t≥0 is reversible with respect to the prob-
ability measure:

µ(x) =
∏
j∈Z

Γ(α+
∑k
i=1 1lxi=j)

Γ(α)
(7.19)

PROOF. By detailed balance it is enough to verify that µ satisfies the relation:

µ(x)

α+

k∑
j=1
j 6=i

1lxi+r=xj

 = µ(xi,i+r)

α+

k∑
j=1
j 6=i

1lxi=xj

 (7.20)

Please notice that for all w /∈ {i, i+ r} we have

ηi,i+r(w) = η(w)

and recall the basic property of the Gamma function

Γ(z + 1) = zΓ(z)
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with this in mind, we are ready to proceed:

µ(xi,i+r) =
∏
j∈Z

Γ(α+ ηi,i+r(j))

Γ(α)

=
Γ(α+ ηi,i+r(xi))

Γ(α)

Γ(α+ ηi,i+r(xi + r))

Γ(α)

×
∏
j∈Z

j 6=xi,xi+r

Γ(α+ ηi,i+r(j))

Γ(α)

=
Γ(α+ η(xi)− 1)

Γ(α)

Γ(α+ η(xi + r) + 1)

Γ(α)

×
∏
j∈Z

j 6=xi,xi+r

Γ(α+ η(j))

Γ(α)

=

(
α+ η(xi + r)

)(
α+ η(xi)− 1

) Γ(α+ η(xi))

Γ(α)

Γ(α+ η(xi + r))

Γ(α)

×
∏
j∈Z

j 6=xi,xi+r

Γ(α+ η(j))

Γ(α)

=

(
α+ η(xi + r)

)(
α+ η(xi)− 1

) ∏
j∈Z

Γ(α+ η(j))

Γ(α)

=

α+
k∑
j=1
j 6=i

1lxi+r=xj


α+

k∑
j=1
j 6=i

1lxi=xj


µ(x)

which concludes the proof.

From the observation that (7.18) implicitly appears in the measure µ, we have
the following:

PROPOSITION 7.2.2. The measures µ are configuration invariant, i.e.,

µ(x) = µ(y) (7.21)

for all x,y ∈ Zm that generate the same configuration η.
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PROOF. The proof is straightforward and it comes from the following:

µ(x) =
∏
j∈Z

Γ(α+ ηj)

Γ(α)

= µ(y) (7.22)

REMARK 7.2.1. Notice that, from the fact that if one vector is a permutation
of the other one they generate the same configuration, we can conclude that the
measures are permutation invariant as well.

7.2.2 Dirichlet form for the k = 2 SIP in coordinate nota-
tion

In this section we introduce the Dirichlet form associated to the SIP with 2
particles in coordinate notation. We make use of relation (B.18) to find the
Dirichlet form associated to the C-SIP:

E 2
n (f, g)

= −n3γ
∑

x∈ 1
nZ2

µn(x)f(x)

2∑
i=1

∑
r∈An

pn(r)

 1

nγ
+

2∑
j=1
j 6=i

1lxi+r=xj

∇i,i+rg(x)

(7.23)

where
∇i,i+rg(x) = g(xi,i+r)− g(x) (7.24)

and

pn(r) := p(nr) , An := 1
n{−R,−R+ 1, . . . , R− 1, R}/{0} (7.25)

From now and on we are interested in the functional:

E 2
n (f) = E 2

n (f, f) (7.26)

Notice that, due to reversibility of the measure, the Dirichlet form in (7.26) can
be written as:

E 2
n (f)

= n3γ
∑

x∈ 1
nZ2

µn(x)

2∑
i=1

∑
r∈An

p(r)

 1

nγ
+

2∑
j=1
j 6=i

1lxi+r=xj

(∇i,i+rf(x)
)2

(7.27)

We are now ready to state the main expected result for the case of two particles.
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7.3 Mosco convergence of Dirichlet forms

We claim the following theorem that provides us with the limiting Dirichlet
form to the 2-particle process. It is important to mention that at this point, we
do not know whether this Dirichlet form is regular or not, i.e., if there exists
an associated Markov process to it. Nevertheless, we expect that this form
corresponds to a pair of γ-coupled Brownian motions.

THEOREM 7.3.1. The sequence of Dirichlet forms {E 2
n , D(E 2

n )}n≥1 given by
(7.27) converges in the Mosco sense to the form {EB1,2 , D(EB1,2)} given by

EB1,2(f, f) =
χ

2

∫
R2

1lx 6=y∇f(x, y) · ∇f(x, y) dx dy, χ :=

R∑
r=1

r2p(r) (7.28)

whose domain is

D(EB1,2) = D(EB) ∩ L2(R2, dx + γδ1,2) (7.29)

where δ1,2 is the lower-dimensional Lebesgue measure concentrated on the hyper-
plane x = y.

Similar computations can be done for the m-particle case, and a corresponding
statement is expected. Once again, this new statement should come with a warn-
ing concerning the Dirichlet form’s regularity and the existence of the associated
Markov process. We stress that for the m-particle case, the candidate process is
a consistent family of Brownian motions.

We will sketch the proof of this theorem in three sections; the first one is ded-
icated to developing all the ingredients corresponding to the convergence of
Hilbert spaces, and each of the last two will deal with conditions Mosco I and II
of the definition of Mosco convergence.

7.3.1 Convergence of Hilbert Spaces

In this section, we will prove the convergence of the relevant Hilbert spaces re-
lated to Theorem 6.3.1. We will also present some results connecting the notions
of weak and strong convergence related to inclusion dynamics and the underlying
random walkers. These last results will prove themselves to be useful to show
condition (B.34) in Section 7.3.2.

Let us then start by defining the relevant Hilbert spaces. First, for the case of
SIP particles we have the approximating sequence of Hilbert spaces given by:

Hsip
n = L2( 1

nZ
2, µn) (7.30)
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where the reference measure is given by:

µn(x) = γ2
∏
j∈ 1
nZ

Γ( 1
nγ + 1lx1=j + 1lx2=j)

Γ( 1
nγ )

(7.31)

REMARK 7.3.1. The factor γ2 in front of (7.31) is there to make the underlying
random walk free of any γ scaling. Notice that this factor does not affect the
reversibility of the measures.

REMARK 7.3.2. Notice that these reversible measures contain all the relevant
information with respect to the Hilbert convergence. Indeed, by studying how
these measures behave at the diagonal we can predict the limiting Hilbert space.

Consider then the set T 1,2
n given by

T 1,2
n = {x ∈ 1

nZ
2 : x1 = x2} (7.32)

As we already mentioned in Proposition 7.2.2, the measures µn are invariant on
these sets, more precisely:

µn(x) = γ( 1
n ) + ( 1

n )2 (7.33)

for all x ∈ T 1,2.

Even more, from the fact that T 1,2
n are (2− 1)-dimensional subspaces of 1

nZ
2 we

have the following:

lim
n→∞

∑
x∈T 1,2

n

f(x)µn(x) = γ

∫
R2

f(x)δ1,2dx (7.34)

Based on this observation we have the following Proposition:

PROPOSITION 7.3.1. The sequence of spaces Hsip
n = L2( 1

nZ
2, µn), n ∈ N,

converges, in the sense of convergence of Hilbert spaces, to the limiting space
Hsbm = L2(R2, dx + γδ1,2).

PROOF. We first define the linear operator Φn : C∞c (R2) → Hn that will
witness the convergence:

Φnf = f | 1
nZ2

(7.35)

We then take f ∈ C∞c (R2) and by the previous observation we obtain

lim
n→∞

‖Φnf‖2Hn = lim
n→∞

∑
x∈ 1

nZ2

f(x)2µn(x)

= lim
n→∞

∑
x/∈T

f(x)2µn(T ) +
∑
x∈T

f(x)2µn(T )

=‖f‖2H (7.36)



7.3. MOSCO CONVERGENCE OF DIRICHLET FORMS 155

which finishes the proof.

We now proceed to introduce the Hilbert spaces related to the underlying ran-
dom walk dynamics. As we may expect, the corresponding Hilbert spaces are:

Hrw
n = L2( 1

nZ
2, νn), Hbm = L2(R2, dx) (7.37)

where νn is the counting measure properly rescaled to guarantee convergence in
the sense of Hilbert spaces with the same operator Φn given by (7.35).

REMARK 7.3.3. Notice that, similar to the case of the difference process, the
notions of weak and strong convergence corresponding to each case of convergence
of Hilbert spaces do not have to correspond to each other. For example, if a
sequence of functions converges strongly (resp. weakly ) with respect to SIP
Hilbert convergence, it does not necessarily converge strongly (resp. weakly )
w.r.t RW Hilbert convergence.

Despite of Remark 7.3.3, Proposition 6.3.9, and Proposition 6.3.10, have some-
thing to say in this regard:

PROPOSITION 7.3.2. Let {gn}n≥0 in {Hrw
n }n≥0 be a sequence converging strongly

to g ∈ Hsbm ∩Hbm with respect to Hrw
n -Hilbert convergence. Then it also con-

verges strongly with respect to Hsip
n -Hilbert convergence.

The following proposition says that, with respect to weak convergence, the im-
plication comes in the opposite direction:

PROPOSITION 7.3.3. Let {fn}n≥0 in {Hsip
n }n≥0 be a sequence converging weakly

to f ∈ Hsbm ∩ Hbm with respect to Hsip
n -Hilbert convergence. Then it also

converges weakly with respect to Hrw
n -Hilbert convergence.

We skipped the proofs of Proposition 7.3.2 and Proposition 7.3.3 since they are
essentially the same as their respective analogues for the case of the difference
process.

7.3.2 Mosco I

Proposition 7.3.3 is the key ingredient on our proof of condition Mosco I (i.e.,
B.34). We then introduce the form R2

n corresponding to the underlying random
walk dynamics:

R2
n(f) = n2

∑
x∈ 1

nZ2

(
1

n

)2 2∑
i=1

∑
r∈An

pn(r)
(
∇i,i+rf(x)

)2

(7.38)

REMARK 7.3.4. Notice that even though the coordinate SIP process is conden-
sively rescaled, the underlying random walkers turn out to be diffusively scaled.
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It is well known that this rescaled process converges weakly to the corresponding
Brownian diffusion in R2, in particular by Theorem B.4.1 it also converges in
the Mosco sense related to Hrw

n -Hilbert convergence.

In order to exploit the convergence of the randon walkers we have the following
proposition that relates the two Dirichlet forms:

PROPOSITION 7.3.4. For any fn ∈ Hn we have

E 2
n (fn) ≥ R2

n(fn) (7.39)

PROOF. It is a consequence of splitting the form 7.27 according to the two non-
negative terms in the transition rates, and by appliying the following inequality:

µn(x) ≥
(

1

n

)2

(7.40)

At this point it is enough to realize that the limiting Dirichlet pairs {E (f), D(E )}
and {Ebm(f), D(Ebm)} satisfy the following relation:

E (f) = Ebm(f) ∀f ∈ D(E ) ⊂ D(Ebm) (7.41)

or, in the language of Dirichlet forms, {E (f), D(E )} is a subspace of {Ebm(f), D(Ebm)}.

7.3.3 Mosco II

In this section we prove that the second condition of Mosco (i.e., B.35 ) conver-
gence is satisfied. For f ∈ D(EBs) we consider the strongly convergent sequence
Φnf ∈ Hn and compute:

lim
n→∞

E 2
n (fn)

= lim
n→∞

∑
x∈ 1

nZ2

µn(x)

2∑
i=1

∑
r∈An

pn(r)n2
(
∇i,i+rf(x)

)2

+ lim
n→∞

n3γ
∑

x∈ 1
nZ2

µn(x)

2∑
i=1

∑
r∈An

pn(r)

2∑
j=1
j 6=i

1lxi+r=xj
(
∇i,i+rf(x)

)2

(7.42)

Notice that Taylor expanding around x we obtain the following estimate

n2
(
∇i,i+rf(x)

)2

= (nr)2

(
∂

∂xi
f(x)

)2

+O(n−3) (7.43)
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Recall that χ is given by:

χ =
∑
r∈An

pn(r)(nr)2 (7.44)

hence we obtain:

lim
n→∞

E 2
n (fn)

= lim
n→∞

χ
∑

x∈ 1
nZ2

µn(x)

2∑
i=1

(
∂

∂xi
f(x)

)2

+ lim
n→∞

γn
∑

x∈ 1
nZ2

µnx)

2∑
i=1

2∑
j=1
j 6=i

∑
r∈An

pn(r)(nr)21lxi+r=xj

(
∂

∂xi
f(x)

)2

(7.45)

where we were allowed to ignore the terms of order O(n−3) thanks to the in-
equality (7.40).

Notice that we also have that:

lim
n→∞

γn
∑

x∈ 1
nZ2

µn(x)

2∑
i=1

2∑
j=1
j 6=i

∑
r∈An

pn(r)(nr)21lxi+r=xj

(
∂

∂xi
f(x)

)2

= lim
n→∞

γ
1

n

∑
x∈Z2\T 1,2

2∑
i=1

2∑
j=1
j 6=i

∑
r∈A

p(r)(r)21l
xi+

r
n=xj

(
∂

∂xi
f(x

n )

)2

= 0 (7.46)

which allows us to forget about the second term in (7.45). Hence we have

lim
n→∞

E 2
n (fn) = lim

n→∞
χ
∑

x∈ 1
nZ2

µn(x)

2∑
i=1

(
∂

∂xi
f(x)

)2

(7.47)

= lim
n→∞

χ
1

n2

∑
x∈ 1

nZ2

2∑
i=1

(
∂

∂xi
f(x)

)2

+ lim
n→∞

χ
γ

n

∑
x∈ 1

nZ2∩T 1,2

2∑
i=1

(
∂

∂xi
f(x)

)2
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and with the boundary condition:∫
R2

(
∂

∂xi
f(x)

)2

δi,j(dx) = 0 (7.48)

we are able to conclude that indeed we have the correct limit.
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Appendix A

Essentials of Markov
Processes

In this section, we recall some of the basic concepts for the study of continuous-
time Markov processes. If it is true that it is impossible to cover all the funda-
mentals in only one section of our work, we have decided to include the basic
concepts and results that play an essential role in the context of this thesis.

A.1 Markov Process

A stochastic process {Xt}t≥0 is said to have the Markov property if the con-
ditional probability distribution of future states of the process, given its past,
depends only on its present value. In a more formal setting, we have the following
definition:

DEFINITION A.1.1. Let Ft = σ(Xr : r ≤ t) be the σ-algebra generated by the
random variables Xr with r ≤ t. Then the process {Xt}t≥0 is said to have the
Markov property if for 0 ≤ s ≤ t and all bounded measurable f : Ω→ R, P-a.s.,
it holds

E[f(Xt) | Fs] = E[f(Xt) | Xs] (A.1)

The processes that have this property are also called Markov Processes. The
reader that is not familiar with measure theory can think of a σ-algebra Ft as
the set containing all the information of our process up to time t. Therefore,
this more formal definition corresponds to the intuitive idea that the future state
of the Markov process does not depend on the whole past Fs, but only in its
current state Xs. I.e., given the current state, the distribution of future states
does not depend on how this current state was reached.
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A.1.1 Markov Semigroup

In this section for simplicity we restrict ourselves to Ω being a compact metric
space with measurable structure given by the σ-algebra of Borel sets. We also
let C(Ω,R) denote the set of continuous functions equipped with the sup norm:

‖f‖∞ = sup
x∈Ω

∣∣f(x)
∣∣ (A.2)

For a Markov process we can define a family of linear operators St : C(Ω,R)→
C(Ω,R), that act on continuous functions f : Ω→ R, in the following way:

Stf(x) := E[f(Xt) | X0 = x] =: Exf(Xt). (A.3)

In the foreground of explaining what a semigroup is, the following proposition
provides us with some of its properties:

PROPOSITION A.1.1. The semigroup St satisfies the following properties:

a) S0 = I , i.e. S0f(x) = f(x) for all x

b) The map t→ St is right continuous.

c) For all t, s > 0 it holds

St+sf = St(Ssf) = Ss(Stf) (A.4)

d) Positivity:

Stf ≥ 0

for all f ≥ 0.

e) Normalization:

St1 = 1

f) Contraction:

‖Stf‖∞ ≤‖f‖∞
where ‖f‖∞ is given by (A.2).

REMARK A.1.1. In general, the notion of semigroup is given in terms of
bounded measurable functions endowed with the topology of point-wise bounded
convergence. However, it is quite difficult to deal with the poor properties of this
space of functions. Hence, we have restricted ourselves to the set of continuous
functions C(Ω,R) and consider only Feller processes. We call a Markov process
with metric space Ω, a Feller if for all f ∈ C(Ω,R) the time evolved process
Stf(x) is continuous as a function of x.
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We can interpret the semigroups St as a family of operators that determines the
expected value at time t for any continuous function f on Ω. Because providing
a specification of all these expected values fully describes the process {Xt}t≥0. It
is common practice that depending on our goal in mind; we can refer to a Markov
process in terms of the random variables Xt or its semigroup St. Even more,
one of the most interesting and useful properties of the semigroups relies on the
fact that each semigroup corresponds to a unique! Markov process. Therefore,
instead of proving properties about a Markov process, it is sufficient to show that
its semigroup holds these properties. An example of such a property is existence.
For instance, given a transition semigroup, we can define a transition probability
function using indicator functions, and from the transition probability function,
we can construct a Markov process using the Kolmogorov extension theorem.

A.1.2 Generators

The generator of a Markov process is an operator L that acts on functions f of
the state space. In simple english, if we look at a function of a Markov process
and we let the process evolve in an instant of time, the generator will tell us how
that function has changed in expectation. Let us now introduce the domain in
which this operator will be defined.

D(L) =

{
f ∈ C(Ω) : lim

t→0

Stf − f
t

exists

}
(A.5)

We can now formally define the generator:

DEFINITION A.1.2. Let St be a Markov semigroup and f ∈ D(L), then its
infinitesimal generator is defined by the relation

Lf := lim
t→0

Stf − f
t

(A.6)

In the case of Ω being finite, an immediate consequence of it is that the semigroup
St and the generator L can be thought of as matrices. In this case property b)
in propostition A.1.1 implies the existence of a matrix K such that:

St = etK =

∞∑
n=0

tn

n!
Kn (A.7)

The generator L is then nothing but this matrix K. This simple relation gives us
a hint about the existence of a sort of correspondence between Markov generators
and semigroups, namely St = etL, with the problem that in general etL cannot
be defined in the sense of the Taylor series, and hence more sophisticated versions
of the exponential are needed. This is precisely what the Hille-Yosida theorem
is about. In the following section we present the Hille-Yosida theorem which
generalises this idea to the case of an infinite state space.
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A.1.3 Hille-Yosida

Having in mind the need to extend property A.7 to the general case, the Hille-
Yosida theorem comes in hand. This theorem states that there is a one to one
correspondence between Markov generators and Markov semigroups.

THEOREM A.1.1. There is a one-to-one correspondence between Markov gen-
erators and Markov semigroups. This correspondence is given by:

a) The domain of the generator is given by

D(L) = {f ∈ C(Ω) : lim
t→0

Stf−f
t exists}

and for f ∈ D(L) we have

Lf = lim
t→0

Stf − f
t

b) For f ∈ C(Ω) and t ≥ 0

Stf = lim
n→∞

(I − t

n
L)−nf

c) If f ∈ D(L), it follows that Stf ∈ D(L), and for all t > 0,

d

dt
Stf = LStf = StLf

d) for g continuos and λ ≥ 0, the solution to f − λLf = g is given by:

f =

∫ ∞
o

e−tSλtgdt

PROOF. Can be found in [70].
In a sort of extension of what we mentioned in section A.1.1, we have an ad-
ditional object that represents a Markov process. The reason is because of
Theorem A.1.1 we have a one to one correspondence between generators and
semigroups, which are also related one to one to Markov processes. This rela-
tion is particularly useful since sometimes we want to construct a process with
a given dynamics, and the generator is the easiest way to describe it in those
terms. Expression A.7 and parts b) and c) of theorem A.1.1 coin the correct
concept of exponential, relating the generator and semigroup.
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A.1.4 Examples

We now present some examples, in the context of Brownian motion, of some well
known Markov processes and their infinitesimal generators. We recommend the
reader to pay attention on how the behaviour of the underlying Markov process
strongly depends not only on the operator itself but also on its domain. We
illustrate this with some examples and refer the reader to [10] for more details
on the following processes.

One dimensional Brownian motion

The infinitesimal generator is given by

Lf(x) =
1

2

d2

dx2
f(x) (A.8)

with domain

D(L) = {f ∈ C0(R) ∩ C2(R) : f ′, f ′′ ∈ C0(R)} (A.9)

where C0(R), and C2(R), denote the set of vanishing at infinity, and twice dif-
ferentiable, continuous functions f : R→ R.

Brownian motion on [0,∞) absorbed at zero

The infinitesimal generator is given by

Lf(x) =

{
1
2f
′′(x) x > 0

1
2f
′′(0+) x = 0

(A.10)

with domain

D(L) = {f ∈ C0(R+) ∩ C2(R+) : f ′, f ′′ ∈ C0(R+), f(0) = 0, f ′′(0+) = 0}
(A.11)

Brownian motion on [0,∞) reflected at zero

The infinitesimal generator is given by

Lf(x) =

{
1
2f
′′(x) x > 0

1
2f
′′(0+) x = 0

(A.12)

with domain

D(L) = {f ∈ C0(R+) ∩ C2(R+) : f ′, f ′′ ∈ C0(R+), f ′(0+) = 0} (A.13)
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Brownian motion on [a, b] reflected at a and b

The infinitesimal generator is given by

Lf(x) =


1
2f
′′(x) a < x > b

1
2f
′′(a+) x = a

1
2f
′′(0−) x = b

(A.14)

with domain

D(L) = {f ∈ C0([a, b]) ∩ C2([a, b]) : f ′′ ∈ C0([a, b]), f ′(a+) = f ′(b−) = 0}
(A.15)

Brownian motion on R sticky at zero

The infinitesimal generator is given by

Lf(x) =

{
1
2f
′′(x) x 6= 0

1
2f
′′(0+) = 1

2f
′′(0−) x = 0

(A.16)

with domain given by:

D(L) = {f ∈ C0(R)∩C2(R) : f ′′ ∈ C0(R), γf ′′(0+) = f ′(0+)−f ′(0−)} (A.17)

where γ > 0, is known as the stickiness parameter.

A.2 The Dynkin Martingale

This section contains two results that are useful in the derivation of hydrody-
namic limits. The first result gives a way of characterising Markov processes by
a martingale with respect to its natural filtration Ft. Second, it turns out that
the martingale has a simple form for its quadratic variation.

THEOREM A.2.1. Let Xt be a Markov process with generator L. For any f ∈
D(L), then

Mt = f(Xt)− f(X0)−
∫ t

0

Lf(Xs)ds (A.18)

is an Ft-martingale.

PROOF. Ft-adaptivity comes from the fact that Xt is a Markov Process. Now
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for 0 ≤ s ≤ t we have

E[Mt −Ms | Fs] = E[f(Xt)− f(Xs)−
∫ t

s

Lf(Xu)du | Fs]

= E[f(Xt)− f(Xs)−
∫ t

s

Lf(Xu)du | Xs]

= E[f(Xt) | Xs]− f(Xs)−
∫ t

s

E[Lf(Xu) | Xs]du

= Stf(Xs)− f(Xs)−
∫ t

s

SuLf(Xs)du

= 0

where the last part comes from integrating from 0 to s part c) of Hille-Yoside.

Now in the case that L is such that f ∈ D(L) implies f2 ∈ D(L) we have an
expression for the quadratic variation of the Martingale Mt.

LEMMA A.2.1. Let L be such that if f ∈ D(L), then f2 ∈ D(L). Then the
predictable quadratic variation of the Dynkin martingale previously defined is
given by

〈Mt〉 =

∫ t

0

[Lf2(Xs)− 2f(Xs)Lf(Xs)]ds (A.19)

PROOF. The idea is to prove that M2
t −

∫ t
0
[Lf2(Xs) − 2f(Xs)Lf(Xs)]ds is

an Ft-martingale. Without compromising the results, here we work with the
simpler martingale:

Mt = f(Xt)−
∫ t

0

Lf(Xs)ds (A.20)

which has the same quadratic variation than A.18. Then let us compute:

M2
t = f2(Xt)− 2f(Xt)

∫ t

0

Lf(Xs)ds+ (

∫ t

0

Lf(Xs)ds)
2

= f2(Xt)− 2Mt(Xt)

∫ t

0

Lf(Xs)ds− (

∫ t

0

Lf(Xs)ds)
2 (A.21)
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Let us then also differentiate

d[2Mt(Xt)

∫ t

0

Lf(Xs)ds+ (

∫ t

0

Lf(Xs)ds)
2]

= 2

∫ t

0

Lf(Xs)dsdMt(Xt)

+2Lf(Xt)dtMt(Xt) + 2Lf(Xt)dt

∫ t

0

Lf(Xs)ds

= 2

∫ t

0

Lf(Xs)dsdMt(Xt) + 2f(Xt)Lf(Xt)dt

−2Lf(Xt)dt

∫ t

0

Lf(Xs)ds+ 2Lf(Xt)dt

∫ t

0

Lf(Xs)ds

= 2

∫ t

0

Lf(Xs)dsdMt(Xt) + 2f(Xt)Lf(Xt)dt (A.22)

Integration of A.22 and substitution in A.21 gives:

M2
t = f2(Xt)− 2f(Xt)

∫ t

0

Lf(Xs)ds+ (

∫ t

0

Lf(Xs)ds)
2

= f2(Xt)− 2

∫ t

0

∫ s

0

Lf(Xu)dudMs(Xs)−
∫ t

0

2f(Xs)Lf(Xs)ds

= f2(Xt)−
∫ t

0

Lf2(Xs)ds− 2

∫ t

0

∫ s

0

Lf(Xu)dudMs(Xs)

+

∫ t

0

Lf2(Xs)− 2f(Xs)Lf(Xs)ds. (A.23)

By Ito’s formula, we know that
∫ t

0

∫ s
0
Lf(Xu)dudMs(Xs) is a martingale , and

since f2 ∈ D(L) the sum of the first two terms of A.23 is a martingale as well.
Which proves that

M2
t −

∫ t

0

(
Lf2(Xs)− 2f(Xs)Lf(Xs)

)
ds (A.24)

is a martingale as well. Which completes the proof.

A.2.1 Carré-du-champ

The term inside the time integral for the quadratic variation of the Dynkin
martingale is known in the literature as the Carré-du-champ. This is an operator
Γ acting on local functions as follows

Γf(X) = Lf2(X)− 2f(X)Lf(X) (A.25)
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The following proposition gives an additional expression for the Carré-du-champ
for the type of interacting particle systems we consider in this thesis.

PROPOSITION A.2.1. Consider a Markov process {Xt : t ≥ 0} with generator

Lf(X) =
∑
X′

c(X,X ′)
(
f(X ′)− f(X)

)
(A.26)

the following is an alternative formulation for its carré-du-champ

Γ(f)(X) =
∑
X′

c(X,X ′)
(
f(X ′)− f(X)

)2
. (A.27)

PROOF. By definition we have

Γ(f)(X) =
∑
X′

c(X,X ′)
(
f(X ′)2 − f(X)2

)
− 2f(X)

∑
X′

c(X,X ′)
(
f(X ′)− f(X)

)
=

∑
X′

c(X,X ′)
(
f(X ′)2 − f(X)2

)
−

∑
X′

c(X,X ′)
(

2f(X)f(X ′)− 2f(X)2
)

=
∑
X′

c(X,X ′)
(
f(X ′)2 − f(X)2 − 2f(X)f(X ′) + 2f(X)2

)
=

∑
X′

c(X,X ′)
(
f(X ′)2 − 2f(X)f(X ′) + f(X)2

)
=

∑
X′

c(X,X ′)
(
f(X ′)− f(X)

)2
that concludes the proof.

A.3 Tightness criterium

In this section we state a well known criterion for tightness of distribution valued
processes. This criterion can be originally found in [38] for the one dimensional
case. In what follows S(Rk) denotes the space of rapidly decreasing test func-
tions, and S′(Rk) its dual, i.e., the space of Schwartz distributions. Additionally
C([0,∞), S′(Rk)) and D([0,∞), S′(Rk)) denote the spaces of continuous, and
right continuous with left limits, paths with values in S′(Rk).

THEOREM A.3.1. Let (Ω,F ) be a measurable space with right-continuous fil-
trations {Fn

t }t≥0 and probability measures Pn(·), n ∈ N. Let {Y n
t }t≥0 be an
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Fn
t -adapted process with paths in D([0,∞), S′(Rk)) and let us also suppose that

there exists, for each ϕ ∈ S(Rk), Fn
t -predictable processes γn1 (·, ϕ), γn2 (·, ϕ) such

that:

Mn
t (ϕ) := Y n

t (ϕ)−
∫ t

0

γn1 (s, ϕ)ds (A.28)

and

Mn
t (ϕ)2 −

∫ t

0

γn2 (s, ϕ)ds (A.29)

are martingales. Assume further that it holds:

CI: for t0 ≥ 0 and ϕ ∈ S(Rk):

sup
n∈N

sup
0≤t≤t0

En(Y n
t (ϕ)2) <∞ (A.30)

and for i ∈ {1, 2}:

sup
n∈N

sup
0≤t≤t0

En(γni (t, ϕ)2) <∞; (A.31)

CII: for every ϕ ∈ S(Rk) there exists a sequence δ(t, ϕ, n) converging to zero as
n→ 0 such that:

lim
n→∞

Pn( sup
0≤s≤t

|Y n
s (ϕ)− Y n

s−(ϕ)| ≥ δ(t, ϕ, n)) = 0 (A.32)

then the family of laws {Qn}n∈N, induced by {Y n
t }t≥0 on D([0,∞), S′(Rk)) un-

der Pn, is a tight family and any weak limit point is supported by C([0,∞), S′(Rk)).



Appendix B

Dirichlet forms

In this chapter we will present some of the basic concepts on the theory of
Dirichlet forms. Our intention is to convince the reader that is not so familiar
of this theory, of the beauty and advantages that it may bring when applied to
IPS.

B.1 Dirichlet forms

A Dirichlet form on a Hilbert space is defined as a symmetric form which is closed
and Markovian. The importance of Dirichlet forms in the theory of Markov pro-
cesses is that the Markovian nature of the first corresponds to the Markovian
properties of the associated semigroups and resolvents on the same space. Re-
lated to the present work, probably one of the best examples of this connection is
the work of Umberto Mosco. In [76] Mosco introduced a type of convergence of
quadratic forms, Mosco convergence, which is equivalent to strong convergence
of the corresponding semigroups. Before defining this notion of convergence, we
recall the precise definition of a Dirichlet form.

DEFINITION B.1.1 (Dirichlet forms). Let H be a Hilbert space of the form
L2(E;m) for some σ-finite measure space (E,B(E),m). Let H be endowed with
an inner product 〈·, ·〉H . A Dirichlet form E (f, g), or (E , D(E )), on H is a
symmetric bilinear form such that the following conditions hold

1. The domian D(E ) is a dense linear subspace of H.

2. The form is closed, i.e. the domain D(E ) is complete with respect to the
metric determined by

E1(f, g) = E (f, g) + 〈f, g〉H .

3. The unit contraction operates on E , i.e. for f ∈ D(E ), if we set g :=
(0 ∨ f) ∧ 1 then we have that g ∈ D(E ) and E (g, g) ≤ E (f, f).

170
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When the third condition is satisfied we say that the form E is Markovian.
We refer the reader to [42] for a comprehensible introduction to the subject of
Dirichlet forms. For the purposes of this work, the key property of Dirichlet
forms is that there exists a natural correspondence between the set of Dirichlet
forms and the set of Markov generators. In other words, to a symmetric Markov
process we can always associate a Dirichlet form that is given by:

E (f, g) = −〈f, Lg〉H with D(E ) = D(
√
−L) (B.1)

where the operator L is the corresponding infinitesimal generator of a symmetric
Markov process. As an example of this relation, consider the Brownian motion in
R. We know that the associated infinitesimal generator is given by the Laplacian.
Hence its Dirichlet form is

Ebm(f, g) =
1

2

∫ ∞
−∞

f ′(x)g′(x)dx with domain D(Ebm) = H1(R) (B.2)

namely the Sobolev space of order 1.

From now on we will mostly deal with the quadratic form E (f, f) that we can
view as a functional defined on the entire Hilbert space H by defining

E (f) =

{
E (f, f), f ∈ D(E )

∞, f /∈ D(E ),
f ∈ H (B.3)

which is lower-semicontious if and only if the form (E , D(E )) is closed.

B.2 Time changes of Dirichlet forms

In this section we present some basic notions in the context time changes of
Markov processes and their Dirichlet forms. First, in Section B.2, we introduce
the basic notions related to time changes of Markov processes and their Dirichlet
forms. Then, in Section B.3, we use the machinery from Section B.2 to compute
the Dirichlet form of the two-sided sticky Brownian motion at zero. The content
of this section follows [22]. In particular we refer the reader to Chapter 5 and
the Appendix of [22] for more details and necessary background.

Let M = (Ω,M ,Mt, ζ,P) a right continuous Markov process, on a Lusin space
(E,B(E)), where the relevant probability space is given by the triple (Ω,M ,P),
and where for every ω ∈ Ω the random variable ζ(ω) denotes the lifetime of the
sample path of ω.i.e.,

ζ(ω) = inf{t ≥ 0 : Mt(ω) = ∂} (B.4)
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for ∂ the cemetery point.

Furthermore, we assume that for each t ≥ 0 there exists a map θt : Ω→ Ω such
that

Ms ◦ θt = Ms+t

for every s ≥ 0. Moreover, we have θ0ω = ω, and θ∞ω = [∂], where [∂] denotes
a specific element of Ω such that Mt([∂]) = ∂.

In addition, we denote by {Ft}t≥0 the filtration generated by the Markov process
Mt, i.e., for t <∞:

Ft = σ{Ms : s ≤ t}.

For convenience we extend the parameter t of the filtration to [0,∞] by setting:

F∞ = σ{Ft : t ≥ 0}

DEFINITION B.2.1 (PCAF). A function At(ω) of two variables t ≥ 0 and ω ∈ Ω
is called an additive functional of Mt if there exists Λ ∈ F∞ and a µ-inessential
set N ⊂ E with

Px(Λ) = 1 for x ∈ E \N and θtΛ ⊂ Λ for t ≥ 0 (B.5)

if the following conditions are satisfied:

(i) For each t ≥ 0, At |Λ is Ft-measurable.

(ii) For any ω ∈ Λ, A·(ω) is right continuous on [0,∞) has left limits on
(0, ζ(ω)), A0(ω) = 0, |At(ω)| <∞ for t < ζ(ω), and At(ω) = Aζ(ω)(ω) for
all t ≥ ζ(ω).

(iii) The additivity property is satisfied, i.e.,

At+s(ω) = At(ω) +As(ω) for all t, s ≥ 0. (B.6)

If we denote by A +
c the set of all PCAF, it turns out that there exists a one to

one correspondence between the set A +
c and a special subset of the set of the

Borel measures on E. Which we now introduce:

DEFINITION B.2.2 (Smooth measures). Let ν be a positive measure on (E,B(E)),
ν is said to be smooth if

1. It does not charge any EM -polar set.

2. There exists a nest {Fk}k≥1 such that ν(Fk) <∞ for all k ≥ 1.

REMARK B.2.1. Notice that all the Dirichlet forms related concepts ( EM -
capacity for example ) are in terms of the Dirichlet space (EM , D(EM )), which
corresponds to the symmetric Markov process Mt.
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We denote by S(E) the set of all smooth measures on E. The correspondence
we mentioned above is between A +

c and S(E). Formally, this correspondence is
given by the following result:

THEOREM B.2.1 (PCAF and Smooth measures). For A ∈ A +
c we denote by

νA the measure that is in Revuz correspondence with A, i.e. the measure that
for any f ∈ B+(E) satisfies:∫

E

f(x)νA(dx) = lim
t↓0

1

t
Eµ[

∫ t

0

f(Ms)dAs] (B.7)

where the expectation Eµ on the right hand side of (B.7) is taken over both the
position of the starting point of the process Ms, which is selected according to
the invariant measure µ, and over the trajectory of the process Ms.

Then we have the following:

(i) For any A ∈ A +
c , νA ∈ S(E).

(ii) For any ν ∈ S(E), there exists A ∈ A +
c satisfying νA = ν uniquely up to

µ-equivalence.

PROOF. This is part of Theorem 4.1.1 in [22] where the proof is included.

It is known that there exists a one to one correspondence between Markov process
and Dirichlet forms [43]. The idea is that given a PCAF At we can define a
stochastic time-changed process given by the generalized inverse of At in terms
of its corresponding Dirichlet form. More precisely:

THEOREM B.2.2. Let Mt be a symmetric Markov process with corresponding
Dirichlet space given by (EM , D(EM )). Let also At be a PCAF whose Revuz
measure νA has full quasi support. Denote by M̃t the time-changed process given
by the generalized inverse of At. Then we have that its corresponding Dirichlet
space (EM̃ , D(EM̃ )) is given by

EM̃ (f, g) = EM (f, g) and D(EM̃ ) = D(EM ) ∩ L2(E, νA). (B.8)

PROOF. This theorem is just a specialization of Theorem 5.2.2 in [22]. Where
the time-changed form is given by

EM̃ (f, g) = EM (HF f,HF g). (B.9)

The specialization consists in the fact that the Revuz measure νA has full quasi
support, i.e.,

HFh(x) = Ex[h(MσF );σF <∞] = h(x) (B.10)

where F ⊂ E is the support of νA and σF is its hitting time. We refer the reader
to page 176 of the same reference if more details are needed.
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B.3 Sticky Brownian Motion and its Dirichlet
form

In this Appendix we provide some background material on the two-sided sticky
Brownian motion in the context of Dirichlet forms. Namely, by means of an
example we apply the machinery of Dirichlet forms to the theory of stochastic
time changes for Markov processes. The example that we will build at the end
of this section plays the role of the limiting process for the difference process. In
this appendix we will mostly follow the approach presented in Chapter 5 of [22].

B.3.1 Two-sided sticky Brownian motion

The traditional approach to construct sticky Brownian motion (SBM) on the
real line is by means of local times and time changes related to them. Let us
say that we are in the one dimensional case and we want to build Brownian
motion sticky at zero. We consider then standard Brownian motion {Bt}t≥0

taking values on R and define its local time at zero by

L0
t = lim

ε→0

1

2ε

∫ t

0

1l[−ε,ε](Bs)ds.

Given this local time and for γ > 0 we consider the functional

Tt = t+ γL0
t (B.11)

and denote by τ its generalized inverse, i.e.,

τ(t) = inf{s > 0 : Ts > t}, (B.12)

then the process given by the time change

Bsbm
t = Bτ(t), (B.13)

is what is known in the literature by two-sided sticky Brownian motion.

REMARK B.3.1. The idea in defining (B.11) is that we add some “extra time”
at zero and by taking the inverse (B.12) via the time change we slow down the
new process whenever it is at 0. Notice that the parameter γ controls the factor
by which we slow down time.

As expected, in the context of Dirichlet forms, we can also perfom this kind of
stochastic time changes. Our goal for this section is to describe the Dirichlet
forms approach to perfom the kind of time changes we are interested in. There
are basically two ingredients that we need:

1. A symmetric Markov process Mt with reversible measure µ with support
in the state space E.
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2. A Positive Continous Additive Functional (PCAF) that, in a sense to be
seen later, plays the role of the local time.

REMARK B.3.2. In the same way that the local time L0
t implicitly defined the

point {0} as the “sticky region”, the PCAF of the second ingredient above will
determine a “sticky region” for our new process.

Under this setting, it becomes then easier to characterize the time-change of
Brownian motion given by the inverse of the functional Tt defined in (B.11).
The idea is that under the setting given by one dimensional Brownian motion
on the reals. We know that the process {Bt}t≥0 is reversible with respect to the
Lebesgue measure dx. On the first hand, the Lebesgue measure dx is in Revuz
correspondence with the trivial PCAF A1

t = t. On the other hand the following
computation shows the Revuz correspondence between the PCAF L0

t and the
Dirac measure at zero δ0:

lim
t↓0

1

t
Edx[

∫ t

0

f(Bs)dL
0
s] = lim

t↓0

1

t
Edx[

∫ t

0

f(Bs) lim
ε↓0

1

2ε
1l[−ε,ε](Bs) ds]

= lim
t↓0

lim
ε↓0

1

t

1

2ε

∫ t

0

∫
R
EB0 [f(Bs + x)1l[−ε,ε](Bs + x)] dxds

= lim
t↓0

lim
ε↓0

1

t

1

2ε

∫ t

0

∫
R2

f(y + x)1l[−ε,ε](y + x)
e
−y2

2s
√
2πs

dydxds

= lim
t↓0

lim
ε↓0

1

t

1

2ε

∫ t

0

∫
R

∫ ε

−ε
f(z)

e
−(z−x)2

2s
√
2πs

dzdxds

= lim
ε↓0

1

2ε

∫ ε

−ε
f(z) dz

= f(0) =

∫
f(x)δ0(dx). (B.14)

Then the measure ν = dx + γδ0 is in Revuz correspondence with the PCAF
Tt and hence by Theorem B.2.2 the Dirichlet form for one dimensional Sticky
Brownian motion {Bsbm

t }t≥0 is given by:

EBsbm(f, g) = EB(f, g) and D(EBsbm) = D(EB) ∩ L2(R, dx+ γδ0) (B.15)

where (EB , D(EB)) are given as in (B.2).

In particular for the quadratic functional EBsbm(f), given by (B.3), we have:

EBsbm(f) =

∫
R

1l{x 6=0}(x)f ′(x)2 dx (B.16)
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for f ∈ H1(R, dx) ∩ L2(R, dx+ γδ0).

REMARK B.3.3. Notice that with an abuse of notation, and taking advantage
of the fact that the Lebesgue measure assigns zero mass to the point zero, we can
write the equality

EBsbm(f) = EB(f) (B.17)

for any f ∈ D(EBsbm).

B.3.2 Domain of the infinitesimal generator

In this section we will make use of the correspondence between Dirichlet forms
and Markov generators to obtain a description of the generator of sticky Brow-
nian motion with parameter γ. Let us then expand a bit on what we mentioned
before equation (B.1); this is how the two directions of the correspondence are
actually given:

(a) From forms E to generators L: The correspondence is defined by

D(L) ⊂ D(E ), E (f, g) = − < Lf, g > ∀f ∈ D(L), g ∈ D(E ). (B.18)

(b) From generators L to forms E : In this case the correspondence is given
by

D(E ) = D(
√
−L), E (f, g) =<

√
−Lf,

√
−Lg > ∀f, g ∈ D(E ).(B.19)

We can think of these relations as the first and second representation theorems
for Dirichlet forms in the spirit of Kato [56] for sesquilinear forms. For the par-
ticular case of Dirichlet forms, more details and the connection to semigroups
and resolvents, can be found on the Appendix of [22].

REMARK B.3.4. Please notice that the time-changed process behaves like Brow-
nian motion on the set R \ {0} and differently (sticky behavior) when it visits 0.
Therefore we expect the new generator LBsbm to be the same Laplace operator in
the region R \ {0} i.e.

LBsbmf(x) = f ′′(x) ∀x ∈ R (B.20)

and some additional restrictions at the point zero.

The idea is to assume that the generator LBsbm is just the Laplacian at all points,
and by using the properties of the time-changed process determine additional
constrains at zero.
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For f ∈ D(EBsbm), thanks to (B.19) we can re-write (B.15) in terms of LBsbm in
the following way:

EBsbm(f, g) =

∫
R

1l{x 6=0}g
′(x)f ′(x)dx (B.21)

for all g ∈ D(EBsbm).

On the other hand, for f ∈ D(LBsbm) we have:

EBsbm(f, g) = −
∫
R
g(x)LBsbmf(x)

(
dx+ γδ0(dx)

)
= −

∫
R
g(x)f ′′(x)dx− γg(0)f ′′(0)

= −
∫
R\{0}

g(x)f ′′(x)dx− γg(0)f ′′(0) (B.22)

where in the first line we used (B.18), and in the third line we used the fact the
the Lebesgue measure assigns zero mass to the singleton {0}.

Let us split the first therm on the r.h.s. of (B.22) in two regions:∫
R\{0}

g(x)f ′′(x)dx =

∫
x>0

g(x)f ′′(x)dx+

∫
x<0

g(x)f ′′(x)dx. (B.23)

Integrating by parts in the first integral of the r.h.s. of (B.23) we obtain:∫
x>0

g(x)f ′′(x)dx = −g(0)f ′(0+)−
∫
x>0

g′(x) f ′(x)dx (B.24)

where

f ′(0+) = lim
h↓0

f(h)− f(0)

h
. (B.25)

Similarly we obtain:∫
x<0

g(x)f ′′(x)dx = g(0)f ′(0−)−
∫
x<0

g′(x) f ′(x)dx (B.26)

therefore, for every g ∈ D(EBs) we obtain:

g(0)
(
γ∆f(0)− f ′(0+) + f ′(0−)

)
= 0 (B.27)

which gives
γf ′′(0) = f ′(0+)− f ′(0−) (B.28)

for every f ∈ D(LBsbm).
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We then indeed have, from (B.28), that for every f ∈ D(LBsbm):

EBsbm(f) =

∫
R
f(x)

(
−LBsbmf(x)

) (
dx+ γδ0(dx)

)
dx

=

∫
R

1l{x 6=0}(x)f ′(x)2 dx. (B.29)

REMARK B.3.5. Notice that condition (B.28) coindices with what we would
expect from the conditions given for two-sided sticky Brownian motion. See for
instance Appendix 1 in [10].

B.4 Mosco convergence

We now introduce the framework to properly define the mode of convergence we
are interested in. The idea is that we want to approximate a Dirichlet form on
the continuum by a sequence of Dirichlet forms indexed by a scaling parameter
N . In this context, the problem with the convergence introduced in [76] is that
the approximating sequence of Dirichlet forms does not necessarily live on the
same Hilbert space. However, the work in [66] deals with this issue. We also
refer to [62] for a more complete understanding and a further generalization to
infinite dimensional spaces. In order to introduce this mode of convergence, we
first define the concept of convergence of Hilbert spaces.

B.4.1 Convergence of Hilbert spaces

We start with the definition of the notion of convergence of spaces:

DEFINITION B.4.1 (Convergence of Hilbert spaces). A sequence of Hilbert
spaces {Hn}n≥0, converges to a Hilbert space H if there exist a dense subset
C ⊆ H and a family of linear maps {Φn : C → Hn}n such that:

lim
n→∞

‖Φnf‖Hn = ‖f‖H , for all f ∈ C (B.30)

It is also necessary to introduce the concepts of strong and weak convergence of
vectors living on a convergent sequence of Hilbert spaces. Hence in Definitions
B.4.2, B.4.3 and B.4.5 we assume that the spaces {Hn}n≥1 converge to the space
H, in the sense we just defined, with the dense set C ⊂ H and the sequence of
operators {Φn : C → Hn}n witnessing the convergence.

DEFINITION B.4.2 (Strong convergence on Hilbert spaces). A sequence of vec-
tors {fn} with fn in Hn, is said to strongly-converge to a vector f ∈ H, if there
exists a sequence {f̃m} ∈ C such that:

lim
m→∞

‖f̃m − f‖H = 0 (B.31)
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and
lim
m→∞

lim sup
n→∞

‖Φnf̃m − fn‖Hn = 0 (B.32)

DEFINITION B.4.3 (Weak convergence on Hilbert spaces). A sequence of vectors
{fn} with fn ∈ Hn, is said to converge weakly to a vector f in a Hilbert space
H if

lim
n→∞

〈fn, gn〉Hn = 〈f, g〉H (B.33)

for every sequence {gn} strongly convergent to g ∈ H.

REMARK B.4.1. Notice that, as expected, strong convergence implies weak con-
vergence, and, for any f ∈ C, the sequence Φnf strongly-converges to f .

Given these notions of convergence, we can also introduce related notions of
convergence for operators. More precisely, if we denote by L(H) the set of all
bounded linear operators in H, we have the following definition

DEFINITION B.4.4 (Convergence of bounded operators on Hilbert spaces). A
sequence of bounded operators {Tn} with Tn ∈ L(Hn), is said to strongly (resp.
weakly ) converge to an operator T in L(H) if for every strongly (resp. weakly)
convergent sequence {fn}, fn ∈ Hn to f ∈ H we have that the sequence {Tnfn}
strongly (resp. weakly ) converges to Tf .

We are now ready to introduce Mosco convergence.

B.4.2 Definition of Mosco convergence

In this section we assume the Hilbert convergence of a sequence of Hilbert spaces
{Hn}n to a space H.

DEFINITION B.4.5 (Mosco convergence). A sequence of Dirichlet forms {(En, D(En))}n
on Hilbert spaces Hn, Mosco-converges to a Dirichlet form (E , D(E )) in some
Hilbert space H if:

Mosco I. For every sequence of fn ∈ Hn weakly-converging to f in H

E (f) ≤ lim inf
n→∞

En(fn) (B.34)

Mosco II. For every f ∈ H, there exists a sequence fn ∈ Hn strongly-converging
to f in H, such that

E (f) = lim
n→∞

En(fn) (B.35)

As we mentioned before, the Markovian properties of the Dirichlet form cor-
respond to the properties of the associated semigroups and resolvents. The
following theorem from [66], which relates Mosco convergence with convergence
of semigroups and resolvents, is a powerful application of this correspondence
and one of the main ingredients of our work:
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THEOREM B.4.1. Let {(En, D(En))}n be a sequence of Dirichlet forms on Hilbert
spaces Hn and let (E , D(E )) be a Dirichlet form in some Hilbert space H. The
following statements are equivalent:

1. {(En, D(En))}n Mosco-converges to {(E , D(E ))}.

2. The associated sequence of semigroups {Tn(t)}n strongly-converges to the
semigroup T (t) for every t > 0.

B.4.3 Mosco convergence and dual forms

The difficulty in proving condition Mosco I lies in the fact that (B.34) has to
hold for all weakly convergent sequences, i.e., we cannot choose a particular class
of sequences.

In this section we will show how one can avoid this difficulty by passing to the
dual form. We prove indeed that Mosco I for the original form is implied by a
condition similar to Mosco II for the dual form (Assumption 1).

B.4.3.1 Mosco I

Consider a sequence of Dirichlet forms (En, D(En))n on Hilbert spaces Hn, and
an additional quadratic form (E , D(E )) on a Hilbert space H. We assume con-
vergence of Hilbert spaces, i.e. that there exists a dense set C ⊂ H and a
sequence of maps Φn : C → Hn such that limn→∞ ‖Φnf‖Hn = ‖f‖H . The dual
quadratic form is defined via

E ∗(f) = sup
g∈H

(
〈f, g〉 − E (g)

)
Notice that from the convexity of the form we can conclude that it is involutive,
i.e., (E ∗)∗ = E . We now assume that the following holds

Assumption 1. For all g ∈ H, there exists a sequence gn ∈ Hn strongly-
converging to g such that

lim
n→∞

E ∗n (gn) = E ∗(g) (B.36)

We show now that, under Assumption 1, the first condition of Mosco convergence
is satisfied.

PROPOSITION B.4.1. Assumption 1 implies Mosco I, i.e.

lim inf
n→∞

En(fn) ≥ E (f) (B.37)

for all fn ∈ Hn weakly-converging to f ∈ H.
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PROOF. Let fn → f weakly then, by Assumption 1, for any g ∈ H there exists
a sequence gn ∈ Hn such that gn → g strongly, and (B.36) is satisfied. Fromt
the involutive nature of the form, and by Fenchel’s inequality, we obtain:

En(fn) = sup
h∈Hn

(
〈fn, h〉Hn − E ∗n (h)

)
≥ 〈fn, gn〉Hn − E ∗n (gn)

by the fact that fn → f weakly, gn → g strongly, and (B.36) we obtain

lim inf
n→∞

En(fn) ≥ lim inf
n→∞

(
〈fn, gn〉Hn − E ∗n (gn)

)
≥ 〈f, g〉H − E ∗(g)

Since this holds for all g ∈ H we can take the supremum over H,

lim inf
n→∞

En(fn) ≥ sup
g∈H

(
〈f, g〉H − E ∗(g)

)
= E (f) (B.38)

This concludes the proof.

In other words, in order to prove condition Mosco I all we have to show is that
Assumption 1 is satisfied.

B.4.3.2 Mosco II

For the second condition, we recall a result from [3] in which a weaker notion
of Mosco convergence is proposed. In this new notion, condition Mosco I is
unchanged whereas condition Mosco II is relaxed to functions living in a core of
the limiting Dirichlet form. Let us first introduce the concept of core:

DEFINITION B.4.6. Let (E , D(E )) and H be as in Definition B.1.1. A set
K ⊂ D(E ) ∩ Cc(E) is said to be a core of (E , D(E )) if it is dense both in
(D(E ),‖·‖E1

) and (Cc(E),‖·‖∞). Where Cc(E) denotes the set of continuous
functions with compact support.

We now state the weaker notion from [3]:

Assumption 2. There exists a core K ⊂ D(E ) of E such that, for every f ∈ K,
there exists a sequence {fn} strongly-converging to f , such that

E (f) = lim
n→∞

En(fn). (B.39)

Despite of being weaker, the authors were able to prove that this relaxed notion
also implies strong convergence of semi-groups. We refer the reader to Section
3 of [3] for details on the proof.



Appendix C

Some results for a system of
independent walkers

C.1 Local limit theorems

In this section we state and prove a local central limit theorem for Independent
Random Walkers in continuous time. The motivation of this section comes from
the fact that, despite it being common knowledge, we were not able to find a
reference that includes the proof of such a result. However we do have access
to many versions of the discrete case. We state now the version included in
[69], since we consider is the most suitable to then jump to the continuous-time
case. Theorem C.1.1 below is a direct consequence of Theorem 2.1.1 in the same
reference [69].

THEOREM C.1.1 (LCLT for Discrete-Time Random Walk). Let x ∈ Zd and
pDRW
n (·) be the probability distribution of a discrete-time random walk in Zd,

then, for any fixed M ≥ 0 there exists c = c(M) such that

sup
|x|≤M

√
n

∣∣∣∣pDRW
n (x)

p̄n(x)
− 1

∣∣∣∣ ≤ c

n
(C.1)

where

p̄t(x) :=

√
d

(2πt)d/2
e−

d|x|2
2t (C.2)

The way we generalize this theorem is by means of the following

THEOREM C.1.2 (LCLT for Continuous-Time Random Walk). Let x ∈ Zd and
pRWt (·) be the probability distribution of a continuous-time random walk in Zd,

182
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then, for any fixed M ≥ 0, there exists c = c(M) > 0 s.t.

sup
|x|≤M

√
t

∣∣∣∣pRWt (x)

p̄t(x)
− 1

∣∣∣∣ ≤ c√
t

(C.3)

PROOF. We can always decompose

pRW
t (x) =

∞∑
n=0

P (Nt = n) pDRW
n (x) (C.4)

with Nt a Poisson process of rate 1. First by Proposition 2.5.5 in [69] we have

P (Nt = n) =
1√
2πt

e−
(n−t)2

2t exp

O

(
1√
t

+
|n− t|3

t2

) (C.5)

Now for ε > 0, we assume that

|n− t|
t
≤ ε

After some manipulation we obtain the following relations

1

n
=

1

t

(
1 + O

(
|n− t|
t

))
,

1

nα
=

1

tα

(
1 + O

(
|n− t|
t

))
(C.6)

Combining (C.6) with Theorem C.1.1 we have

pDRW
n (x) =

√
d

(2πn)d/2
e−

d|x|2
2n

(
1 + O

(
1

n

))

=

√
d

(2πt)d/2
e−

d|x|2
2n exp

O

(
|x|2|n− t|

t2

)
(

1 + O

(
1

t

))

×

(
1 + O

(
|n− t|
t

))
(C.7)
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Finally, substitution of (C.5) and (C.7) in (C.4) and further manipulations gives

∞∑
n=0

P (Nt = n)pDRW
n (x)

=

∞∑
n=0

1√
2πt

e−
(n−t)2

2t exp

O

(
1√
t

+
|n− t|3

t2

)
×
√
d

(2πt)d/2
e−

d|x|2
2t exp

O

(
|x|2|n− t|

t2

)
(

1 + O

(
1

t

))

×

(
1 + O

(
|n− t|
t

))
(C.8)

Assuming |x| ≤M
√
t and using (C.6), we get the following,

exp

O

(
|x|2|n− t|

t2

) = exp
{
O (ε)

}
(C.9)

Hence, more applications of (C.6) give

∞∑
n=0

P (Nt = n)pDRW
n (x)

=

(
1 + O

(
1

t

)) √
d

(2πt)d/2
e−

d|x|2
2t exp

{
O (ε)

} (
1 + O (ε)

)
× exp

{
O

(
1√
t

)} ∞∑
n=0

1√
2πt

e−
(n−t)2

2t exp

O

(
|n− t|3

t2

)
= p̄t(x)

(
1 + O

(
1√
t

))
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C.2 Mosco convergence for the Random Walk

In this section, we consider the difference process for the position-coordinates
of two particles performing nearest-neighbor symmetric independent random
walks. This process, that we denote by {v(t), t ≥ 0}, is itself a random walk
in Z for which convergence to the standard Brownian motion in the diffusive
time-scales is well-known. By convergence we mean convergence of generators.
In this section we will prove Mosco convergence of Dirichlet forms of v(t).

As we can see in Section 6.3.2, the proof of Mosco-convergence for inclusion
walkers strongly relies on the result for independent walkers (in particular for the
proof of Mosco I). The choice of considering the independent dynamics case has
the purpose to exemplifying the use of the Dirichlet-form approach in a setting
simpler than the one of inclusion dynamics.

The generator of {v(t), t ≥ 0} is given by the discrete Laplacian ∆1:

Lrwf(v) = ∆1f(v) = f(v + 1)− 2f(v) + f(v − 1), v ∈ Z. (C.10)

that is simply the generator of a random walk in Z. Speeding up time by a factor
N2 and scaling the mesh between the lattice sites by a factor 1

N we obtain that
the generator of this scaled process is

Lrw
n f(v) = ∆nf(v) = n2

(
f(v + 1

n )− 2f(v) + f(v − 1
n )
)
, v ∈ 1

nZ (C.11)

We denote by (Rn, D(Rn)) the Dirichlet form associated to the generator (C.11),
that is given by

Rn(f) = −
∑
i∈Z/n

f(i)∆nf(i)µn(i) (C.12)

where µn is the discrete counting measure on 1
nZ, this is

µn(i) = 1
n , for all i ∈ 1

nZ (C.13)

which is reversible for the dynamics. We are going to prove the Mosco con-
vergence of the sequence of Dirichlet forms {(Rn, D(Rn))}n to the Dirichlet
form (Ebm, D(Ebm)), i.e. the Dirichlet form associated to the standard Brownian
motion in R

Ebm(f) =
1

2

∫
R
f ′(x)2dx. (C.14)

Proof of Mosco convergence for RW

Convergence of Hilbert spaces

For the sequence of Hilbert spaces

Hrw
n := L2( 1

nZ, µN ) (C.15)
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where µn is as in (C.13). It is easy to see that we can guarantee the convergence
of {Hrw

n }n≥1 to the Hilbert space

Hbm := L2(R, dx) (C.16)

i.e. the space of Lebesgue square-integrable functions in R, by means of the
restriction operators

{Φn : C∞k (R) ⊂ Hbm → Hrw
n }n defined by Φnf = f |Z/n . (C.17)

REMARK C.2.1. The choice of the space of all compactly supported smooth func-
tions C := C∞k (R) as dense set for our Hilbert space turns out to be particularly
convenient since it is a core of the Dirichlet form associated to the Brownian
motion. As a consequence, we can make use of the same set also for proving
that (B.39) is satisfied.

RW: Mosco I

In order to prove that Assumption 1 is satisfied, it is convenient to split the
proof in two cases depending whether f belongs or not to the effective domain
of (−∆)−1/2. It is then sufficient to prove Propositions C.2.1 and C.2.2 below:

PROPOSITION C.2.1. For any f ∈ D((−∆)−1/2), there exists a sequence fn ∈
Hsip
n strongly-converging to f , such that:

lim
n→∞

R∗n(fn) = E ∗bm(f).

PROOF. Let us proceed by cases:

Case I: f ∈ C∞k (R)

In this case the approximate sequence fn is simply given by: where fn is given
as follows:

fn = Φnf (C.18)

which converges strongly to f .

Let G(x) be the Green’s function of the Laplacian in R, i.e. the fundamental
solution to the problem ∆G = δ0 that is given by G(x) = −|x|. We refer the
reader to [40] for more details on Green’s functions. Let f be as in the statement,
then, by standard variational arguments we know that

E ∗bm(f) = sup
g∈D((−∆)1/2)

(
〈g, f〉 − 1

2

∥∥∥(−∆)1/2g
∥∥∥2

L2(R)

)
=

1

4

∥∥∥(−∆)−1/2f
∥∥∥2

L2(R)

= −1

4
〈f,G ∗ f〉L2(R) =

1

4

∫
R

∫
R
f(x)f(y)|x− y|dxdy.
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Analogously, for the discrete case, we can write

R∗n(Φnf) = −1

4
〈Φnf,∆−1

n Φnf〉Hrw
n

= − 1

4n

∑
i,j∈ 1

nZ

Φnf(i) · Φnf(j) ·Gn(i− j)

= − 1

4n

∑
i,j∈Z

Φnf( in ) · Φnf( jn ) ·Gn( i−jn )

where Gn(·) is the Green’s function of the discrete Laplacian ∆n in 1
nZ, i.e. the

solution of the discrete problem:

∆nGn = δ0 in 1
nZ (C.19)

we refer to Chapter 5 in [69] for more details on discrete Green’s functions.
Notice that

1
n2 G1(i) = Gn( in ) ∀i ∈ Z

where G1(·) is the solution of (C.19) for n = 1. Then we can re-write

R∗n(Φnf) = − 1

4n3

∑
i,j∈Z

Φnf( in ) · Φnf( jn ) ·G1(i− j). (C.20)

By Theorem 4.4.8 in [69] we have that, for i 6= j, there exists C, β > 0 such that

G1(i− j) = −|i− j|+ C +O(e−β|i−j|).

Incorporating the above expression in (C.20) we obtain

R∗n(Φnf) = 1
4n3

∑
i,j∈Z
i 6=j

Φnf( in )Φnf( jn )
(
|i− j|+ C +O(e−β|i−j|)

)

− 1
4n3

∑
i∈Z

(
Φnf( in )

)2

G1(0).

Notice that the sum on the diagonal (the second term in the RHS of (C.21))
vanishes as N → ∞. Even more, thanks to the factor n−3 in front of the two
dimensional sum, we have that

lim
n→∞

1

4n3

∑
i,j∈Z
i 6=j

Φnf( in )Φnf( jn )
(
C +O(e−β|i−j|)

)
= 0.

where we used the smoothness of f and the extra factor 1
n in front of the sum-

mation.
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Then we have

lim
n→∞

R∗n(Φnf) = lim
n→∞

1

4n3

∑
i,j∈Z
i 6=j

Φnf( in ) · Φnf( jn ) · |i− j| (C.21)

= lim
n→∞

1

4n2

∑
i,j∈Z
i 6=j

Φnf( in ) · Φnf( jn ) · | i−jn |

=
1

4

∫
R

∫
R
f(x)f(y)|x− y| dx dy

= E ∗bm(f).

Which completes the proof of the first case.

Case II: f ∈ D((−∆)−1/2) \ C∞k (R)

In this case the sequence fn is given by: where fn is given as follows:

fn = Φn

(
(f · 1l{[−na,na]}) ∗ kn

)
(C.22)

for Kn the following sequence of kernels:

Kn(x) = nb√
2π
e−
|nbx|2

2 (C.23)

with a, b positive real numbers such that a+ b < 1.

Let us first verify that {fn = Φn

(
(f · 1l{[−na,na]}) ∗ kn

)
}n≥1 converges strongly

to f . In the language of Definition B.4.2, we first let f̃m to be equal to:

f̃m = (f · 1l{[−ma,ma]}) ∗ km (C.24)

Since Km is an approximation to the identity, given by the Gaussian Kernel, by
standard results we have:

lim
m→∞

∥∥∥f̃m − f∥∥∥2

Hbm
= 0.
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We also have:∥∥∥Φnf̃m − fn
∥∥∥2

Hrw
n

=
1

n

∑
i∈Z

(∫
R
f( in − x)

(
1l{[−ma,ma]}(

i
n − x)Km(x)− 1l{[−na,na]}(

i
n − x)Kn(x)

)
dx

)2

≤ 1

n

∑
i∈Z

∫
R
f( in − x)2 dx

∫
R

(
1l{[−ma,ma]}(

i
n − x)Km(x)− 1l{[−na,na]}(

i
n − x)Kn(x)

)2

dx

≤ Cf
n

∑
i∈Z

∫
R

(
1l{[−ma,ma]}(

i
n − x)Km(x)− 1l{[−na,na]}(

i
n − x)Kn(x)

)2

dx

≤ 2Cf
n

∑
i∈Z

∫
R

1l{[−ma,ma]}(
i
n − x)Km(x)2 dx+

2Cf
n

∑
i∈Z

∫
R

1l{[−na,na]}(
i
n − x)Kn(x)2 dx

(C.25)

where the constant Cf is equal to the L2-norm of f .

Let us deal with the second term in the RHS of (C.25), since the first term is
done in a similar way:

2Cf
n

∑
i∈Z

∫
R

1l{[−na,na]}(
i
n − x)Kn(x)2 dx

≤ C ′na

n

∫
R
Kn(x)2 dx =

4C ′na+b

2
√
πn

∫
R
Kn(y) dy

≤ Cna+b

n
(C.26)

where in the first inequality we used the finite support of the indicator function,
in the equality we used the explicit expression for Kn(·) and the change of vari-
ables y =

√
2x. Notice that the constant C ′ changes values from line to line and

incorporates all factors independent from n.

In an analogous way, the first term in the RHS of (C.25) can be bounded as
follows:

2Cf
n

∑
i∈Z

∫
R

1l{[−ma,ma]}(
i
n − x)Km(x)2 dx ≤ Cmanb

n
(C.27)

Recall that in Definition B.4.2 we first take the limit in n and then in m. Hence,
strong convergence is then obtained since the RHS of (C.26) vanishes as n→∞,
because a+ b < 1.

Now we need to verify that indeed we have:

lim
n→∞

R∗n(fn) = E ∗bm(f).
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Similar to the case where f ∈ C∞k (R), we have an analogous of expression (C.21),
namely:

R∗n(fn) =
1

4n2

∑
i,j∈Z

Φn

(
(f · 1l{[−na,na]}) ∗ kn

)
( in ) · Φn

(
(f · 1l{[−na,na]}) ∗ kn

)
( jn ) · | i−jn |

=
1

4n2

∑
i,j∈Z
| i−jn |

∫ na

−na
f(x) kn( in − x) dx

∫ na

−na
f(y) kn( jn − y) dy. (C.28)

We then want to control the following:

|R∗n(fn)− I(f)|

where

I(f) =
1

4

∫
R

∫
R
f(z)f(w)|z − w| dz dw.

In an attempt to use an epsilon over two argument, we then introduce the fol-
lowing

In(f) =
1

4

∫
R

∫
R
|z − w|

∫ na

−na
f(x) kn(w − x) dx

∫ na

−na
f(y) kn(z − y) dy dz dw.

(C.29)
Hence we have:

|R∗n(fn)− I(f)| ≤ |R∗n(fn)− In(f)|+ |In(f)− I(f)| (C.30)

where the second term in the RHS of (C.30) can be controlled by the conver-
gence fn → f , the fact that f ∈ D((−∆)−1/2) and dominated convergence.

It is then enough to estimate the following:

|R∗n(fn)− In(f)|

≤ 1
4 |

1

n2

∑
i,j∈Z
| i−jn |

∫ na

−na
f(x) kn( in − x) dx

∫ na

−na
f(y) kn( jn − y) dy

−
∫
R2

|z − w|
∫ na

−na
f(x) kn(w − x) dx

∫ na

−na
f(y) kn(z − y) dy dz dw|

≤ 1
4

∫
R2

|f(x)f(y)Ĝn(x, y)| dx dy (C.31)

where Ĝn is given by:

Ĝn(x, y)

=
1

n2

∑
i,j∈Z
| i−jn | kn( in − x) kn( jn − y)−

∫
R2

|z − w| kn(w − x) kn(z − y) dz dw

(C.32)



C.2. MOSCO CONVERGENCE FOR THE RANDOM WALK 191

which is controllable since by the smoothness of the kernelsKn the RHS of (C.32)
converges to zero, togehter with a combination of Dominated convergence and
the fact that f ∈ D((−∆)−1/2). This concludes the second case.

In order to conclude Assumption 1 it remains to consider f such that it does not
belong to the domain of D((−∆)−1/2), this is f such that E ∗bm(f) =∞.

PROPOSITION C.2.2. For any f ∈ Hbm \D((−∆)−1/2) we have

lim
n→∞

R∗n(fn) =∞.

where fn is given as follows:

fn = Φn

(
(f · 1l{[−na,na]}) ∗ kn

)
(C.33)

for Kn given in terms of the Gaussian Kernel as follows:

Kn(x) = nb√
2π
e−
|nbx|2

2 (C.34)

with a, b positive real numbers such that a+ b < 1.

PROOF. First, notice that by the same arguments as in the proof of Proposition
C.2.1, fn converges strongly to f .

Let then f be as in the statement, on the one hand we know because f /∈
D((−∆)−1/2):

E ∗bm(f) =
1

8π

∫
R

(f̂(q))2

q2
dq =∞ (C.35)

where f̂ denotes the Fourier transform of f .

For the discrete setting we have:

R∗n(fn) =
1

4
〈fn,∆−1

n fn〉Hrw
n

=
1

4n3

∑
x∈Z

fn( xn ) ·∆−1
1 fn( xn ). (C.36)

Let us denote by {Xt : t ≥ 0} the continuous time random walk on Z started at
x. Then we have that ∆−1

1 fN ( xn ) is given by

∆−1
1 fn( xn ) =

1

2π

∫ π

−π

f̂n(k)e−ikx

2− 2 cos k
dk (C.37)

where

f̂n(k) =
∑
x∈Z

fn( xn )eikx
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Substitution of (C.37) in (C.36) gives:

R∗n(Φnf) =
1

8πn3

∫ π

−π

f̂n(k)

2− 2 cos k

∑
x∈Z

fn( xn )e−ikx dk

=
1

8πn3

∫ π

−π

f̂n(k)f̂n(−k)

2− 2 cos k
dk =

1

8π

∫ πn

−πn

( 1
n f̂n( qn ))( 1

n f̂n(−qn ))

n2(2− 2 cos q
n )

dq.

At this point, in order to get convergence to the limiting dual we have on the
one hand the limit:

lim
n→∞

n2(2− 2 cos q
n ) = q2.

On the other hand, by definition of the Fourier transform for a generic f ∈
L2(R, dx), and arguments analogous to the ones in the proof of Proposition
C.2.1 we have:

lim
n→∞

1
n f̂n( qn ) = f̂(q).

By Fatou’s Lemma we indeed obtain:

lim
n→∞

R∗n(fn) =
1

8π

∫
R

(f̂(q))2

q2
dq =∞,

which finishes the proof.

RW: Mosco II

For what concerns the second condition of Mosco convergence, we choose K :=
C∞k (R) that is a core of Ebm. In this way, for all f ∈ C∞k (R), we can consider
the restrictions Φnf (strongly-convergent to f) and Taylor expand them to prove
that:

lim
n→∞

Rn(Φnf) = − 1

n
lim
n→∞

∑
i∈ 1
nZ

Φnf(i)∆nΦnf(i)

= − lim
n→∞

1

n

∑
i∈ 1
nZ

f(i)∆nf(i)

= − lim
n→∞

1

2n

∑
i∈Z

f( in )f ′′( in ) +O(
1

n
)

= −1

2

∫
R
f(x)f ′′(x)dx

=
1

2

∫
R
f ′(x)2dx = Ebm(f) (C.38)

which concludes the proof of Assumption 2.
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REMARK C.2.2. Notice that Theorem 4.48 in [69] also applies for the finite-
range case and hence the results concerning Mosco convergence to the corre-
sponding Brownian motion can be extended to the finite-range setting modulus a
multiplicative constant depending on the second moment of the transition p.
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onal polynomials. arXiv preprint arXiv:1701.09115, 2017.

[42] Masatoshi Fukushima. Dirichlet forms and Markov processes. North-
Holland Publishing Company, 1980.

[43] Masatoshi Fukushima, Yoichi Oshima, and Masayoshi Takeda. Dirichlet
forms and symmetric Markov processes, volume 19. Walter de Gruyter,
2011.

[44] Cristian Giardina, Jorge Kurchan, and Frank Redig. Duality and exact cor-
relations for a model of heat conduction. Journal of mathematical physics,
48(3):033301, 2007.

[45] Cristian Giardina, Frank Redig, and Kiamars Vafayi. Correlation inequal-
ities for interacting particle systems with duality. Journal of Statistical
Physics, 141(2):242–263, 2010.
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Summary

This thesis is concerned with fluctuations of interacting particle systems that
enjoy the property of duality. The main contributions of this work are divided
in two main parts. In the first part we study some of the advantages of looking
at the density fluctuation field through the lenses of orthogonal self-dualities. In
the second part, we made use of self-duality and Mosco convergence of Dirichlet
forms to understand the coarsening behaviour of the symmetric inclusion process
when the process undergoes a phase transition known as condensation.

In Chapter 4, in the context of independent random walkers, we introduce a
quantitative generalization of the Boltzmann-Gibbs principle. This generaliza-
tion is a consequence of a systematic orthogonal decomposition, in terms of
self-duality polynomials, of the fluctuation fields of local functions, where the
order of every term can be quantified. Later, still in the context of independent
random walkers, we are able to extend the quantitative Boltzmann-Gibbs princi-
ples in a non-equilibrium setting. This extension was achieved by using the fact
that products of Poisson measures with a slowly varying parameter are preserved
under the time evolution of this dynamics, i.e., a strong form of propagation of
local equilibrium holds in this non-equilibrium context. Finally, for other in-
teracting particle systems with duality such as the symmetric exclusion process,
similar results are obtained, under precise conditions on the n particle dynamics.

In Chapter 5, we settle the basis to further develop the theory of fluctuations by
introducing the notion of higher-order fields in the setting of IPS that enjoy the
property of orthogonal self-duality. Namely, independent random walkers, sym-
metric exclusion and inclusion processes. These higher-order fields were derived
from the observation that the quantity of interest in the derivation of fluctu-
ation theorems, i.e. the density fluctuation field, can be written in terms of
orthogonal self-duality polynomials. In this new hierarchy of fields, the ordi-
nary density fluctuation field corresponds to the field of first order. By means
of martingale techniques, we then study the scaling limits of the k-order fields.
The limiting k-order field was then characterized in terms of a recursive mar-
tingale problem, whose initial solution corresponds to a generalized Ornstein-
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Uhlenbeck process. As a consequence of the recursive martingale problem, we
can heuristically identified the limiting k-order fields as a tensor product of the
generalized Ornstein-Uhlenbeck process.

Finally, in Chapter 6, we first showed the convergence to sticky Brownian motion
for the difference of positions of two SIP particles in the sense of Mosco conver-
gence of Dirichlet forms. Because this notion of convergence implies convergence
of semigroups in the L2-space of the reversible measure, which is dx + γδ0 for
the sticky Brownian motion with stickiness parameter γ > 0, the convergence
of semigroups also implies that of transition probabilities of the form pt(x, 0).
This, together with self-duality, helps to explicitly obtain the limiting variance
of the fluctuation field. This result provides a way to view the stacks of particles
formed during the coarsening process as delta masses in the stochastic flow of
kernels that defines a sticky Brownian motion.





Samenvatting

Dit proefschrift gaat over fluctuaties in interacterende deeltjessystemen (IPS)
die de dualiteitseigenschap bezitten. De belangrijkste bijdragen van dit werk
zijn verdeeld in twee delen. In het eerste deel bestuderen we enkele voordelen
van het kijken naar het dichtheidsfluctuatieveld door de lenzen van orthogonale
self-dualiteiten. In het tweede deel maken we gebruik van zelfdualiteit en Mosco-
convergentie in Dirichlet-vorm om het verruwing gedrag van de symmetrische
inclusieproces tijdens condensatie.

In hoofdstuk 4 introduceren we in de context van toevalsbewegingen een kwan-
titatieve generalisatie van het Boltzmann-Gibbs principe. Deze generalisatie is
een gevolg van systematische orthogonale decomposities, in termen van zelf-duale
polynomen, van het fluctuatie veld van lokale functies, waar de orde van iedere
term gekwantificeerd wordt. Verder, ook in de context van toevalsbewegingen,
zijn we in staat om de kwantitatieve Boltzman-Gibbs principes uit te breiden
naar een niet-evenwichts omgeving. Deze uitbreiding is mogelijk door gebruik te
maken van het feit dat producten van Poisson maten met een traag variërende
parameter behouden blijven onder de verandering in de dynamica over de tijd,
dat wil zeggen dat een sterke vorm van voortzetting van het lokale evenwicht be-
houden is in de non-evenwichts context. Tot slot, voor andere IPS, zijn vergelijk-
bare resultaten behaald onder precieze randvoorwaarden op de deeltjesdynamica.

In hoofdstuk 5, leggen we de basis om de theorie van fluctaties verder te ontwikke-
len, door de notie van hogere-orde velden in de context van IPS die de orthogo-
nale (zelf-)dualiteit eigenschap bezitten. Namelijk, onafhankelijke toevalsbeweg-
ingen, symmetrische exclusie en inclusie processen. Deze hogere-orde velden zijn
afgeleid van de observatie dat de hoeveelheid van belang in de afleiding van de
fluctuatie theorema, dat wil zeggen dat de dichtheid fluctuatie veld geschreven
kan worden in termen van orthogonale zelf-duale polynomen. In deze nieuwe
hierarchie van velden, komen de gewone dichtheid fluctuatie veldne overeen met
de eerste orde velden. Door middel van martingaaltechnieken bestuderen we
vervolgens de schalende limieten van de k-orde velden. De limiterende k-orde
veld wordt gekarakteriseerd door een recursief martingaal probleem, waarbij de
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initiele oplossing overeenkomt met een gegeneraliseerd Ornstein-Uhlenbeck pro-
ces.

Ten slotte, in hoofdstuk 6, hebben we de convergetnie van een ’sticky’ Brow-
nian beweging laten zien voor het verschil in posities van twee SIP-deeltjes in
de zin van Mosco-convergentie van Dirichlet vormen. Omdat deze notie van
convergentie impliceert convergentie van semigroepen in de L2-ruimte van re-
versibele maten, dat is dx + γδ0 voor de ’sticky’ Brownse beweging met stick-
ynessparameter y > 0. De convergentie van semigroepen impliceert ook dat
de overgangskansen van de vorm pt(x, 0). Dit, samen met de zelf-dualiteit,
draagt bij aan het expliciet verkrijgen van de begrensde variantie van de fluc-
tuatievelden. Dit resultaat biedt een manier van kijken naar stapels deeltjes
gevormd gedurende het verruwing proces, zodra deltamassas in de stochastische
stroom van ’kernels’ die de ’sticky’ Brownian beweging definieren.
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Rafael, gracias por tus sonrisas y perdóname por todo este tiempo que no estuve
a tu lado. Alma, gracias por todo, por aguantar tantas cosas en mi ausencia,
por ser no solo madre de Rafael, sino también suplir mis obligaciones muchas
otras veces atendiendo a mis padres. Te amo con todas mis fuerzas.





Curriculum Vitae

Mario Ayala was born in Tecoman, Colima México. His interest for mathematics
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