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Correspondence 

The Prediction Error of Autoregressive Small 
Sample Models 

PlET M .  T. BROERSEN 

Abstract-A fundamental problem in order selection is that one sin- 
gle realization of a stochastic process is used twice, for the estimation 
of parameters for different model orders and for the selection of the 
best model order. Parameters are estimated by the minimization of the 
residual variance; higher model orders with more estimated parame- 
ters will always give a smaller residual variance. The purpose of order 
selection is to find the model order that gives the best fit to other re- 
alizations of the same stochastic process. This fit is expressed by the 
squared prediction error and it will increase if too many parameters 
are used. The weak parameter criterion (WPC) is an estimate for the 
squared prediction error, with as special feature that it is computed 
from the same observations that are used for the estimation of the pa- 
rameters. 

I. INTRODUCTION 
The model order in autoregressive estimation is often selected 

with Akaike’s FPE [ I ]  or AIC criterion [2]. This gives satisfactory 
results in many areas of application, especially if a sufficient num- 
ber of observations is available. Both criteria are based on the 
asymptotic properties of estimation. The  FPE uses the asymptotic 
equivalence [3] between ordinary least squares regression and au- 
toregression. However, Jones [4] has shown that the small sample 
behavior of autoregressive estimates depends on the method of es- 
timation, in contrast with the asymptotic performance. This depen- 
dence influences the relation between the residual variance and the 
squared prediction error. Therefore, order selection should be 
adapted to the method of parameter estimation. T o  achieve this, 
Broersen [5]-[7] introduced the weak parameter criterion (WPC). 
Berryman [8] evaded the order selection problem by the choice of 
a model order that depends only on the number of observations. 
Fougere, who advocates the use of reflection coefficients for stable 
models [9], used a variance ratio as threshold [ 101 that was derived 
with asymptotically based x’ distributions. Unlike WPC,  that ratio 
is not adapted to the estimation method. 

This paper presents a new justification for the principle of the 
WPC. In a simulation run, it is possible to compute the squared 
prediction error from an extra second realization of the stochastic 
process. This can be compared with the residual variance and the 
WPC that are obtained from the single realization that would be 
available in practice. It shows the correspondence between WPC 
and the squared prediction error; both have the same average over 
many repeated simulation runs. So, looking for a model order with 
a small WPC is equivalent to the minimization of the best available 
estimate for the squared prediction error, as  was the original inten- 
tion of Akaike [ I ] .  Calibration formulae are presented that describe 
the averages over many simulation runs of WPC,  the squared pre- 
diction error and the residual variance, all as a function of the order 
of the estimation model. 
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11. RESIDUAL V A R I A N C E  

The residual variance Si, for a model of order M is defined for 
Yule-Walker and for Burg estimation as: 

where k ,  is an estimated reflection coefficient and R ( 0 )  is the sum 
of squares of N observations. For least squares methods, S i  is de- 
fined as the sum of all squared residuals divided by the their num- 
ber. Two different least squares methods exist: the covariance 
method LSF with only forward or only backward residuals and the 
modified covariance method LSFB where both forward and back- 
ward residuals are minimized simultaneously. The methods are de- 
scribed by Marple [ I  l ] .  LSF has N - M residuals; LSFB has twice 
as many residuals, so S b  becomes the sum of all squared residuals 
divided by ( N  - M )  and 2 ( N  - M), respectively. 

The behavior of the residual variance as a function of the order 
of the estimation model will depend on the true parameters of the 
autoregressive process. On theoretical grounds, however, the sta- 
tistical properties of estimated reflection coefficients are indepen- 
dent of the true process for model orders higher than the order of 
the true process that generates the observations [ 12, p. 6-51, In other 
words, all estimated models of orders higher than the true order 
will have some common properties. The simplest process that can 
be studied is white noise with true order zero and this will be typ- 
ical for all other processes above their true order. Therefore, the 
white noise process is discussed first. Section IV gives a simple 
correction term for the description of the experimental results for 
nonwhite processes. The average value of the residual variance as 
a function of the model order follows from ( I )  as: 

if M coefficients are estimated from a white noise process with var- 
iance U : .  The - sign denotes an empirical approximation that may 
serve as  a calibration value; its accuracy can be determined in sim- 
ulations where everything about the true process is known. The 
WPC coefficients U, in (2) depend on the method of parameter es- 
timation. They have been defined originally as empirical approx- 
imations for the average of the squared reflection coefficients for 
Burg and Yule-Walker estimates. They have been determined for 
increasing model orders i in white noise simulations (51 and are 
given by: 

v, ,B = I / ( N  + 1 - i )  ( 3 )  

Least squares methods estimate all parameters simultaneously. The 
variance of estimated parameters from white noise can be approx- 
imated [7] with: 

z/, ,LSFB = l / ( N  + 2 - 1.5i) ( 5 )  

z ~ , , ~ ~ ~  = I / ( N  + 2 - 2i). ( 6 )  

The lower drawn lines in Figs. 1-4 represent the empirical relation 

(2). for U :  = 1. The crosses are measured averages Sh, obtained 
- 
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Fig. I .  Residual 
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measures for LSFB in white noise with U :  = I .  N = 20. 
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Fig. 3. Residual measures for Burg in white noise with U,? = I ,  N = 20. 

in Monte Carlo simulations by averaging the residual variance as 
a function of the model order for SO0 realizations of 20 white noise 
observations each. The figures show that the residual variance de- 
pends on the method of estimation. However, by using the different 
WPC coefficients for each method, all measured averages are ac- 
curately described by the same formula ( 2 ) .  
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Fig. 4. Residual measures for Yule-Walker in white noise with U :  = I .  
N = 20. 

111. WPC A N D  SQUARED PREDICTION ERROR 
The WPC has been defined [SI as: 

WPC(M)  = s; I1 ( 1  - 2P,) ( 7 )  / ,",, 
with t i , ,  = 0. The WPC ( M )  is calculated for each order from zero 
to a prefixed maximum order L.  In order selection, that order M is 
selected for which W P C ( M )  attains a minimum. In this paper we 
calibrate the behavior of the average of W P C ( M )  as a function of 
the order of the fitted model, M = 0, j .  . . . , 15. without any 
selection. An empirical formula for W P C ( M )  in white noise fol- 
lows with ( 2 )  and (7) as: 

WPC(M)  = U ;  ;; ( I  - / " ) /  ;; ( I  - 2l1,). ( 8 )  
, = I 1  r = O  

The squared prediction error P E ( M )  for order M is defined as 

where the estimates ci,, computed from one realization x,,, are sub- 
stituted into a different realization y,, of the same stochastic pro- 
cess. The right-hand side of the same formula (9) denotes the LSF 
residual variance S', if the d i  are obtained from the same realization 
XU' 

The upper d r a w d n c s  in F i g L l - 4  represent the formula for 
W P C ( M ) .  Also W P C ( M )  and P E ( M )  are indicated; these are 
measured averages over 500 simulation runs. evaluated for M = 
0 ,  I ,  * . . , IS. It turns out that W P C ( M )  is a good estimate for 
P E (  M ) ,  for the calculation of which two independe_nt realizations 
are required in each simulation run. Mdreover. W X M )  of (8)  
gives an accurate calibration formula for both W P C ( M )  and 
P E ( M ) .  The extension of these results to general autoregressive 
processes is given in the next section. 

- 

- 

IV. AUTOREGRESSIVE PROCESSES 
Suppose that an autoregressive process is characterized by K re- 

flection coefficients with true values K , ,  i = I .  . . . , K .  Although 
a one-to-one correspondence exists between reflection coefficients 
and parameters, the parametrization with reflection coefficients has 
an advantage here, because the variance of the observations is given 
by: 

for an autoregressive process with K reflection coefficients driven 
by a white noise sequence E , ,  with variance U : .  An empirical ap- 
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Fig. 5. Residual measures for LSFB in AR process generated with U: = 
I ,  N = 20. K ,  = K~ = -0.5, K ?  = K~ = 0.5. 

proximation for S i  can be found by making use of the fact that, 
for model order M less than the true order K, the fraction of the 
variance ( I O )  with index between M and K cannot be explained. 
Using that fraction as  a correction for (2) and (8) gives: 

W F C ( M )  = U: r"T ( 1  - q 
r = O  

with the final product replaced by 1 for M 2 K. Both U:, K and K ,  

are known exactly in our simulations. The empirical approxima- 
tions (1  I )  and (12) are a mixture of asymptotic values for K;  and 
small sample values for 21 , .  Fig. 5 shows simulation results for an 
LSFB example of true order K = 4. For model orders M 2 4, the 
drawn lines are equal to those of the white noise process in Fig. 1, 
as follows from (6) and (1 I ) ,  (8) and (12). The measured averages 

S t ,  E ( M )  and E ( M )  are very close to the empirical approx- 
imations. This gives two conclusions. First, (1  1) is a good c h o k e  
for a calibration formula for the average of S a  and (12) for 
WPC ( M )  and PE (M) .  Second, the white noise behavior given in 
Fig. 1 is representative for the behavior of other models above the 
true process order. Of course, numerous other simulations with dif- 
ferent N, other parameters and other estimation methods support 
these conclusions; see also [ 131. 

The difference between the small sample behavior of the WPC 
on the one hand and asymptotically based selection criteria on the 
other hand is indicated in Fig. 5 by the measured average of the 
final prediction error: F P E ( M )  = S h ( N  + M ) / ( N  - M) of Akaike 
[ I ] .  This final prediction error doesn't give an accurate approxi- 
mation of the squared prediction error in small samples. More 
over, a selected FPE order will depend heavily on the maximum 
order that is considered for selection [ 131. 

For M > K, (2) and (1  1) become identical, and (2) can be used 
to compute an estimate for uf from a measured value for S;. A 
comparison of the quality of selected models shows [ 131 that order 
selection with WPC yields models with a significantly lower pre- 
diction error than with other selection methods over a wide range 
of circumstances. The reason is the close correspondence between 
WPC and PE in small samples. 

- 

V .  CONCI.USION 
Simulations have shown that the average WPC is about equal to 

the average squared prediction error PE. In other words: WPC. that 
can be computed froin one single realization of a stochastic pro- 
cess. is an estimate for the important squared prediction error, that 
can only be found if two realizations are available. Empirical cal- 
ibration formulae are given for the WPC and PE and for the resid- 
ual variance. They arc adapted to the various estimation methods 
by using different WPC coefficients ( 3 , .  All given formulae are mul- 
tiplicative with l - iv, o r  l - 21:: i n  this sense. the small sample 
behavior of autoregressive processes is multiplicative. The pre- 
sented formulae describe the numerous simulation results and hence 
may be considered ab a useful tool in modeling practice. 
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Optimal Hydrophone Placements Under Random 
Perturbations 

NILANJAN CHANDRA A h D  CHARLES KNAPP 

Abstract-Hydrophone location uncertainty can deteriorate the per- 
formance of an array in the estimation of the location of an acoustic 
source. An approach is proposed for hydrophone placement which 
minimizes a conventional bearing or range variance bound averaged 
over the random deviation of sensor positions. That is, we use hounds 
on localization error covariances called Cramer-Rao lower hounds 
(CRLB's) to distribute the sensors in an effective manner for line and 
towed arrays. 
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