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Abstract

Proper maintenance and inspection of aircraft and
their engines is important for society. These en-
gine inspections are performed using borescopes of
which the footage is manually analysed. Having the
opportunity to reconstruct a 3D model of the rotors
would ease the inspection and introduce the possi-
bility to automate the process. Monocular SLAM
systems are capable of reconstructing such models
in real-time using a video of the rotors. However,
SLAM is not tested in environments similar to the
aircraft turbine. This study, therefore, assesses the
performance of different SLAM approaches in this
specific setting. The results show that 3D recon-
struction of aircraft engines using direct SLAM has
potential for damage assessment. Further research
into damage assessment using SLAM is therefore
viable.

1 Introduction
Inspections of aircraft turbines can both be sped up and sim-
plified by automating part of the process, which is likely to
positively affect the safety of aeroplanes. These inspections
are performed using a borescope, a monocular camera on a
semi-rigid body, that is used to reach and film narrow spaces.
In a turbine, this would be the space between one of the ap-
proximately 40 blade sets, where the camera is manoeuvred
to assess the blades on damage, see Figure 1. Using the
footage of the camera to reconstruct a 3D model of such a
blade set, opens the possibility to partially automate the mea-
surement of damage on the blades. Video-based reconstruc-
tion could be done using Visual Simultaneous Localization
and Mapping (VSLAM), which is an industry standard for
modelling a scene and keeping track of the camera’s position
within that scene. It estimates the depth of the scene using rel-
ative motion between the object and the camera based on the
parallax effect. The parallax effect states that objects close
to the observer move more than distant ones when the per-
spective changes. These depth estimations are made for every
frame and are processed to improve existing or add new parts
to the reconstruction. Said process is hindered by the lack
of texture and shininess of the metallic blades. Using SLAM

instead of for example Structure from Motion, which can re-
construct denser models, allows reconstructing the blades in
real-time. Therefore in addition to damage assessment, the
real-time constructed model could be used by the inspector
to firstly localize the borescope in the complex internals of
the engine and secondly keep track of how many blades have
been assessed. Aiir1, a company specialising in automating
processes in the aviation industry, has expressed interest in
this study and therefore assists by providing borescope in-
spection videos.

Figure 1: GE9x Commercial Aircraft engine (i.e. Boeing 777)
Source: https://geaviation.com

Many different algorithms like [1, 2] introduce VSLAM
methods and show the feasibility of running VSLAM on gen-
eral scenes. These algorithms are evaluated using datasets
like [3] where scenes are not comparable to borescope inspec-
tions as they are generally not shiny and textured. Therefore,
the performance analysis of VSLAM on data with these prop-
erties, which characterises borescope inspection videos, is an
unvisited topic. Hence this study will try to answer:

• How well does monocular SLAM work on borescope in-
spection videos of aircraft turbines?

The main contribution of this paper is a performance anal-
ysis of different SLAM methods on borescope inspections of
aircraft turbines. In addition, the traditional feature matcher
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https://aiir.nl/
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in a popular SLAM system is replaced by more recent neural-
network-based approaches that are more fit to find matches in
scenes with a lack of texture. This adapted system is tested
and shown to outperform the original implementation. But
in turn, is outperformed by methods that do not use feature
matching.

The overall structure of this study takes the form of seven
chapters, including this Introduction. Chapter 2 highlights
relevant related work, followed by the method in Chapter 3
in which a general outline of the analysis approach is given.
In Chapter 4 the specific experiments are described in detail
and their results are displayed. Then, Chapter 5 reflects on
the reproducibility of the study. The results are used in Chap-
ter 6 for analysis and future recommendations. The paper is
concluded in Chapter 7.

2 Related work
Within VSLAM there are several approach divisions. The
first split is the approach for geometric estimation of the sur-
roundings, the alternatives are indirect and direct SLAM. In-
direct SLAM first extracts a set of features, interest points
such as corners, from the image to then estimate the cam-
era position and scene geometry based on said features. The
downside of this is that only points in the image that conform
to the feature type will be used [1]. In contrast, direct meth-
ods compare pixel intensities in successive frames to estimate
geometry directly, using the brightness consistency constraint
[4]. This results in higher accuracy and robustness in envi-
ronments with few features [1]. It is however not illumina-
tion invariant, which could prove to be an issue for the shiny
metallic surfaces.

The second split in VSLAM methods is introduced by the
high computational complexity of using all landmarks from
every frame for geometry mapping and camera localization.
Unlike offline Structure from Motion, this is not possible for
SLAM which operates in real-time. This can be solved by
using either a filter- or keyframe-based approach. In filter-
based methods localization and mapping takes place every
frame using all detected landmarks. Consequently the num-
ber of landmarks processed per frame decreases. While in
keyframe-based (KF) methods localization and mapping are
separated. Localization is done every frame using a subset
of the landmarks and mapping happens on a subset of the
frames using all landmarks. This use of subsets enables more
landmarks to be detected and maintained per frame. In [5]
Strasdat et al. showed that using keyframes for visual SLAM
generally yields higher accuracy than filtering. This claim
is based on the observation that it is more profitable to in-
crease the number of features than the number of processed
frames. For this reason, combined with the trend of recent
publications focusing on KF approaches, this study will con-
sider only VSLAM approaches using keyframes. Strasdat’s
conclusion might however not be valid for environments with
a lack of distinct landmarks, studying this could be worth-
while in another research.

2.1 Indirect VSLAM
ORB SLAM is considered to be the most promising indirect
SLAM method with a public implementation for this study.

It is based on and improves upon most components of PTAM
by Klein and Murray [6], which is the first system to sepa-
rate localization and mapping. One of the extensions is the
use of the BRIEF visual descriptor with the FAST corner de-
tector already used in PTAM. This combination of detector
and descriptor was first introduced by Rublee et al. in [7]
as Oriented FAST and Rotated BRIEF (ORB). Said change
in descriptor makes the system more invariant to changes in
viewpoint and illumination. Especially the illumination in-
variance is an important improvement for this study, consid-
ering the shiny material of the blades. Furthermore, when
tracking is lost PTAM tries to match the current frame with
low-resolution thumbnails of previous keyframes, using the
sum-square-difference between the images. This introduces
a problem for the borescope videos as two frames showing
different blades are likely to be matched as they look similar,
but are not the same. ORB slam solves this problem by re-
localizing based on the BRIEF descriptors. Combined with
the findings in [8, 2] which show that ORB slam is more ro-
bust and accurate in versatile environments, this argues to use
ORB slam for borescope inspection videos.

2.2 Direct VSLAM
In contrast to indirect methods, there are multiple recent
publications on direct VSLAM that introduce approaches
differing on crucial parts in their implementation and there-
fore differing in their output. Firstly, Large Scale Direct
SLAM (LSD) that produces semi-dense 3D reconstructions
and is shown to be a robust and versatile industry standard.
It does however only use pixels in high gradient areas like
edges for direct matching. This is not beneficial for turbine
reconstruction, as the blades are essentially a smooth surface
with 3 main edges [1]. Secondly, Direct Sparse Odometry
(DSO) which contrary to its name produces semi-dense
maps comparable to LSD. However, unlike LSD the pixels
used for matching are distributed over the frame. This is
achieved by splitting the frame into blocks, from which
the most interesting pixel patches are used. As stated in
[9] it can sample pixels from all image sections including
”smooth intensity variations on essentially featureless walls”,
which could prove useful for matching the blades. Lastly,
Semi-Direct Visual Odometry (SVO) which outputs a sparse
reconstruction and unlike the latter two does use feature
detection. Said detection using FAST is used to determine
interesting areas of the frame for direct matching and is
therefore classified as a hybrid, taking a step towards indirect
approaches. This design choice makes SVO run at framerates
over 300 Hz resulting in good performance under fast and
variable motion, especially the former applies to our use case
[10]. LSD, DSO, and SVO are interesting approaches to
assess in this study, as all three have interesting components.

Apart from the difference in video scenes used in this study,
it also differs from all papers listed above in the evaluation of
reconstruction and mapping. As most studies quantitatively
evaluate their systems using a ground truth of the camera
path. The path computed by the systems on datasets like [11,
3] is then scored using a metric like the Root Mean Square
Error, compared to the corresponding ground truth provided



by the dataset. Since we will evaluate the performance of
VSLAM systems on borescope inspection videos that are not
part of such dataset, ground truth is missing. Besides, as the
camera does not move in our use case but the scene does, con-
structing such ground truth is not trivial. Therefore a different
method of evaluation needs to be formulated for this study.

3 Methodology
The performance of each direct and indirect system will be
evaluated on borescope inspection videos provided by Aiir.
In the following sections, the evaluation method will be de-
scribed.

3.1 Borescope inspection test data
Aiir provided us with a dataset of ten different borescope
inspections of aeroplane turbines, out of these two were se-
lected and trimmed to 15 seconds in duration. Since recon-
structing models using SLAM on borescope videos is ex-
pected to be difficult, the videos from which the 3D structure
was most clear for humans were selected, see Figure 2. To
ensure coverage of more borescope videos, the two samples
are selected to be different on key aspects. Such as the angle
at which the videos were taken as well as the amount of tex-
ture and shape of the blades. Ideally, videos within the subset
should only differ on one aspect (e.g. same blades and texture
but different angle), this is however not feasible in this study
due to time and data limitations.

(a) Example frame from video
A, less texture and the camera
perpendicular to the blades.

(b) Example frame from video
B, more texture and the camera
parallel to the blades.

Figure 2: Example frame from the test videos, showcasing the dif-
ferences.

All discussed SLAM systems can process videos when
structured like [3, 11] which are public data sets, we, there-
fore, convert the videos to the RGB-D TUM format [3].
Apart from formatting the video, the intrinsic parameters of
the camera are also required to undistort the frames. Using
a chessboard-based method to calculate these parameters is
standard, this is however not possible as the cameras used for
data collection are not available. Other proposed methods like
[12, 13] need consecutive frames with a pure translation of
the camera and use feature matchers, both of these properties
will not work well in our use case. Even manual distortion
removal in the frames will be speculative, as the geometry of
the blades is unknown [14]. We therefore, have opted to set
the distortion parameters for the cameras to zero in this study,
treating the videos as undistorted.

3.2 Indirect VSLAM
ORB SLAM22 will be installed and used with the default set-
tings to generate results for evaluation. In [15] it is shown
that ORB performs relatively well on a car, a shiny and non-
textured surface, and outperforms SIFT which is a standard
for matching in many 3D reconstruction approaches. Still,
the pitfall of indirect approaches remains a lack of features,
hence it is interesting to analyse the performance when the
matching algorithm is replaced with:

• recent approaches utilizing neural networks to match in-
terest points between frames. Using SuperGlue [16] and
LoFTR [17], which are found to perform significantly
better in our use case compared to e.g. SIFT and ORB
as discussed by Huizer in [18].

• a ground truth constructed using the method of Lieuw A
Soe discussed in [19].

3.3 Direct VSLAM
All direct approaches, LSD3, DSO4 and SVO5, can be in-
stalled from their respective repositories and used without
modifications. As these methods are expected to handle
the lack of features on the blades much better than indirect
VSLAM, modifications to the matching are not implemented.
Besides, changing the direct matching is less trivial than in-
direct matching.

3.4 Evaluation
As mentioned, the standard in evaluating the performance of
SLAM systems is calculating the error in the reconstructed
camera trajectory compared with ground truth. This suffices
as the accuracy of localization is directly correlated with the
quality of the model [20]. However, this approach is not pos-
sible for this study as such ground truth of camera positions
does not exist and is non-trivial to generate. Even qualitative
evaluation as proposed in [21] cannot be used as it is targeted
for the evaluation of SLAM in rooms. Since all algorithms
generate different results, e.g. dense or sparse, a metric has
to be established that is not influenced by these differences.
As a result, a new qualitative evaluation method is proposed.
This evaluation is based on the observation that an optimal
performing SLAM system will only initialise a model once
and then track and extend this model for the entire duration of
the video. However, when running SLAM on the borescope
videos it becomes apparent that the model is frequently lost,
after which the system resets the reconstruction or needs to
be manually reset. Since it is likely that a model needs to be
initialised multiple times in one video and will be tracked for
a shorter duration than the video, the following measures are
proposed:

1. Ability to initialise a model in which a blade can be rec-
ognized. Quantified by the number of times the system
can do this after a reset.

2https://github.com/raulmur/ORB SLAM2
3https://github.com/tum-vision/lsd slam
4https://github.com/JakobEngel/dso
5https://github.com/uzh-rpg/rpg svo
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2. The maximum and average duration that a model can be
extended with new features and the camera movement is
tracked correctly. The camera movement is defined to
be correctly tracked while the reconstructed path moves
alongside the blades.

3. The constructed model can be used for: damage assess-
ment, localization/counting of blades or nothing. Where
the first is the best performance and the last the worst.

As mentioned, the ideal tracking duration is the entire
length of the test video. However, when this is not the case,
an increasing amount of initialisations would show that the
system is capable to construct a new model after losing the
previous one, which indicates robustness.

4 Experimental Setup and Results
Each of the experiments on both direct and indirect SLAM
systems performed in this study will be described, and their
results will be presented in the following sections.

4.1 Indirect VSLAM
The indirect VSLAM system used for evaluation is ORB
SLAM2. The advised image resolution for this system is
640x360 pixels. Since the test data has a higher resolution
each frame has been rescaled. Because there is no camera cal-
ibration available the frames are treated as undistorted. The
calibration file can be found in Appendix A. In the next sec-
tion, the replacement of ORB with SuperGlue, LoFTR and
ground truth is discussed. The sections after that discuss the
performed experiments and present their results.

Replacement of ORB matcher
To understand the replacement of the original ORB matcher
in the ORB SLAM2 system, it is required to first be aware
of what the matcher does. The matcher first detects the key
points in the frame and then calculates a corresponding de-
scriptor. Said descriptor is used to match the same key point
in another frame and is represented as a 32x1 vector of 8-bit
unsigned integers. Both this detection of features and conver-
sion to descriptors needs to be replaced when removing the
ORB matcher. Instead of implementing the three replacement
matchers separately in the SLAM system, we have opted to
introduce a method where matches can be read in from a text
file. This text file can be generated by running either of the re-
placement matchers and storing the outcome. For each of the
frames in the video, a list of present features is stored along
with their position and match-ID. The ID is unique for a spe-
cific feature and is consistent throughout the frames. It can
therefore be used as a descriptor to match features. Convert-
ing the ID, which is a non-negative integer, to a descriptor is
done using base-10 to base-256 conversion, as the descriptor
can be seen as a vector of 32x1 with 8-bit digits. Following
this text file approach does not result in a SLAM system that
can be run directly on a video, since the matcher has to com-
pute its output on the full video before the SLAM system can
run. This is not a problem for this study, as the goal is to
analyse the performance and not to deliver a proper SLAM
system.

Both the SuperGlue and LoFTR neural network (NN)
matchers output matches between consecutive frames instead
of descriptors of key points, so there is no descriptor available
to use as match ID. However, when the same keypoint X is
present in frame 1, 2 and 3 with the NN matcher matching X
between both 1-2 and 2-3, we can link X in all three frames
by observing that the location of X on frame 2 is the same in
match 1-2 and 2-3. Using this technique we can track a fea-
ture in subsequent frames until it is not detected in the next
frame anymore, the feature will then get a unique match ID
and is stored in the text file.

Both SuperGlue6 and LoFTR7 were run using their default
settings for indoor environments on resolution 640x360 and
640x480 pixels respectively. These settings were proposed
by Huizer in [18]. The ground truth method generating the
matches-file is described in [19], and is based on running Su-
perGlue and filtering matches.

Experiment 1: ORB matcher on normal videos
The original system is not able to initialise a reconstruction
when run on the test videos. On video B, between 1500
and 1700 key points are detected in each frame. Out of
these less than 80 points are matched of which less than 35
points are correct matches, while the system needs at least
100 matches by design. This low number of correct matches,
a large amount of noisy matches and the short duration a cor-
rect match lasts makes the original system incapable of ini-
tialising any point cloud. Similar results were obtained when
testing with video A. Since the indirect system using the ORB
matcher does not perform well, further experiments with the
indirect system will be performed using SuperGlue, LoFTR
and ground truth as matchers.

Experiment 2: Replaced matchers on normal videos
In this experiment, the indirect SLAM approach is tested us-
ing SuperGlue, LoFTR and ground truth (GT) as a replace-
ment for the original ORB feature matcher. As the new
matchers significantly outperform ORB it is expected that
these systems are capable of initialising and tracking a model
of the blades. The results are shown in Table 1.

Vid. Matcher # Inits Max.
duration (s)

Avg.
duration (s) Use for

A
SuperGlue 0 - - -

LoFTR 15 1.4 1.0 Count/loc
GT 2 1.5 0.90 Count/loc

B
SuperGlue 2 1.3 1.3 Count/loc

LoFTR 5 0.40 0.20 -
GT 13 1.6 0.80 Count/loc

Table 1: Qualitative evaluation on the results of running indirect
SLAM system ORB SLAM2 where ORB is replaced with another
matcher on video A & B.

The results show that SuperGlue is not able to initialise a
model on video A, on video B it manages to do so 2 times.
Although only twice, both times the system managed to track

6https://github.com/tzvikif/SuperGlue
7https://github.com/zju3dv/LoFTR
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the blades correctly for 1.3 seconds yielding the highest aver-
age tracking time. The reconstruction and tracking are shown
in Figure 3a. LoFTR on video A can initialise 15 times with
an average duration of 1 second. The total tracking time is
therefore 15 seconds, which is almost the duration of the
video. So the system is always able to initialise a model,
but can only track and extend it for approximately 1 second,
which is the duration a blade is in view. When ran on video
B, the LoFTR system can initialise a correct model occasion-
ally but only for a short amount of time. Furthermore, the
constructed models are not useful as only a small part of one
blade is modelled, as seen in Figure 3b. Then the ground
truth, which is not able to initialise frequently on video A.
However when initialised, it does manage to track and extend
well. On video B, with 13 initialisations and an average du-
ration of 0.8 seconds, the total tracking time is approaching
the duration of the video, the reconstruction is shown in Fig-
ure 3c. These results show that each of the matching methods
can initialise a model. However, they are not able to track
and extend that model after all blades that were in view ini-
tially left the frame, which is after 1 second. This observation
introduces the follow-up experiment, which looks into how
long the systems can track and extend a model when the same
blades are kept in the frame.

(a) Indirect reconstruction using SuperGlue matcher; a sparse model
with long tracking duration and non-robust initialisation.

(b) Indirect reconstruction using LoFTR matcher; useless model
with short tracking duration and non-robust initialisation.

(c) Indirect reconstruction using groundtruth matcher; a semi-dense
model with long tracking duration and robust initialisation.

Figure 3: Reconstructions from video B using different matchers
with indirect SLAM. Red dots - points in the model; blue squares -
previous camera positions; green square - current camera position;
green dots - features tracked in the frame.

Experiment 3: Replaced matchers on looped video
In this experiment the videos were edited to be played and
then reversed, which combined is repeated three times such
that at least one blade is in the frame for the full edited video.
The hypothesis in this experiment is that after a model is ini-
tialised the system under test cannot extend the model with
more blades, because the original key points move out of
frame. If the hypothesis is correct, the well-performing sys-
tems from the tests on the normal videos should be able to
track the models longer. Therefore increasing the duration of
tracking which in turn decreases the number of initialisations.
The results are shown in Table 2.

Vid. Matcher # Inits Max.
duration (s)

Avg.
duration (s) Use for

A
loop

SuperGlue 3 0 0 -
LoFTR 2 7.5 5.7 Count/loc

GT 3 1.1 0.7 Count/loc

B
loop

SuperGlue 4 2.4 1.5 Count/loc
LoFTR 6 0.10 0.10 -

GT 4 9.2 2.9 Count/loc

Table 2: Qualitative evaluation on the results of running indirect
SLAM system ORB SLAM2 on the looped videos where ORB is
replaced with another matcher on video B.

The well-performing systems from Experiment 2, LoFTR
on video A, and SuperGlue as well as ground truth on video
B, do confirm the hypothesis. Since the other systems were
not able to initialise a model in the previous experiment, it
was not expected that their performance would change, which
is also confirmed. Although less than previously, the systems
still lose track of their models occasionally since all systems
have more than one initialisation. It has to be mentioned that
both LoFTR on video A and the ground truth on video B were
cut off during their longest tracking attempt due to the video
ending. Apart from these results, the quality of the models
did not improve nor did the model become denser. Therefore
all models that were correctly initialised are still only useful
for counting blades and localization.

4.2 Direct VSLAM
The direct VSLAM systems used for evaluation are LSD,
SVO and DSO. The advised image resolution for the first two
systems is 640x360 and for the latter 640x480 pixels. The
frames have been rescaled respectively and the calibration file
shown in Appendix A is used. The following sections discuss
the performed experiments and present their results.

Experiment 4: Direct SLAM on normal videos
In this experiment both videos are tested on the direct SLAM
systems. It is expected that the reconstruction of the blades is
more consistent and denser. This hypothesis is based on the
claim that direct methods are more robust on featureless sur-
faces compared to indirect methods [1]. If the hypothesis is
correct, the systems will always be able to initialise a model.
Although, said model might be lost when the modelled blade
moves out of frame. There are no expectations with regards



Vid. Matcher # Inits Max.
duration (s)

Avg.
duration (s) Use for

A
LSD 9 2.0 1.5 Count/loc
DSO 5 3.6 2.7 Count/loc
SVO 0 - - -

B
LSD 7 1.9 1.8 Damage
DSO 4 5.1 3.0 Damage
SVO 0 - - -

Table 3: Qualitative evaluation on the results of running direct
SLAM systems: LSD, DSO & SVO on videos A and B without
modification.

to the ability of the systems to connect separate blades. The
results are shown in Table 3.

Like ORB SLAM in the indirect approaches, SVO was not
able to initialise a reconstruction on either test video and is
therefore not tested in further experiments. However, the hy-
pothesis can be accepted since both LSD and DSO were al-
ways able to initialise a model, even though it could only be
tracked and extended for a few seconds. Apart from this, the
ability of DSO to extend the model and track the camera sig-
nificantly longer than LSD on both videos stands out in the ta-
ble. Using video A the models of both systems can be used to
count blades and localize the camera, whereas on video B the
models can be used for damage assessment. The quality of
the models is similar as can be seen in Figure 4. LS, however,
introduces less noise and the full shape of the blades is more
visible. Compared to the indirect systems tested in Experi-
ment 2, both direct systems reconstruct significantly denser
models, can track said model longer and are more robust in
their initialisation.

(a) Direct reconstruction using
LSD, a dense reconstruction
with short tracking duration and
robust initialisation. Useful for
damage assessment.

(b) Direct reconstruction using
DSO, a noisy dense reconstruc-
tion with long tracking duration
and robust initialisation. Useful
for damage assessment.

Figure 4: Comparing reconstructed models by LSD and DSO SLAM
on video B in Experiment 4.

Experiments 5-7: Direct SLAM follow-up
Based on the results of Experiment 4, several follow-up ex-
periments were performed in which one aspect of the Exper-
iment 4 was changed to test its influence on the performance.
The results of Experiments 5-7 were either similar to Exper-
iment 4 or decreased performance significantly, it, therefore,
suffices to describe their results.

5: Running SLAM near real-time is an option for both
LSD and DSO, which allows the systems to take longer in
processing the videos. In near real-time, the system takes
about 3 times longer than in normal real-time, with the nor-
mal variant processing 30 frames per second. The hypothe-
sis for this experiment was that performance would improve
since every frame could be fully processed without time re-
strictions as discussed in [1]. The results, however, were the
same as for Experiment 4. Running the systems with fewer
time restrictions, therefore, does not improve performance.

6: Looping the blade, like in Experiment 3, will test if the
systems can track and improve the initialised model when the
corresponding blade stays in the frame. Experiments showed
that both LSD and DSO were able to initialise and track a
model for the full duration of both looped videos. Therefore
all tests had only one initialisation, that was tracked for 15
seconds. Apart from that, no increase in the quality of the
model was registered.

7: Removing static pixels from the frame, to test how
much these parts that are not part of the blades influence the
performance of the systems. To hide most of the static pix-
els we use two different approaches, A: adding a mask like
Figure 5a, and B: cropping the frames to the size of the blue
square like in Figure 5b which eliminates most of the static
parts. For both approaches LSD did not act differently when
compared to Experiment 4, apart from some of the noise dis-
appearing. DSO on the other hand consistently failed to ei-
ther initialise a proper model or track the model after initial-
isation. When running DSO it was observed that the system
was trying to match the masked parts of the image, instead
of ignoring them which was the intent of the mask. Remov-
ing the static pixels using a mask or by cropping the images
does therefore not have a positive effect on the performance
of LSD and DSO.

(a) Frame from video B. Black
mask denotes how the frames
are masked for experiment 7A.

(b) Frame from video B. Blue
square denotes the cropped ver-
sion for experiment 7B.

Figure 5: Frame from video B showing the changes made for Exper-
iment 7 to remove static pixels by either masking or cropping. Both
approaches do not have a positive effect on the performance of LSD
nor DSO.

Experiment 8: The influence of camera calibration
Unlike indirect SLAM the performance of direct methods
suffers from geometric distortion in the frame [9]. This dis-
tortion can be removed by calibrating the camera. However,
this calibration is not available for the borescope videos as
discussed in Section 3.1. To overcome this, a borescope sim-
ilar to the one used for video A was calibrated. Video C was



then shot using the borescope where the turbine was replaced
by a computer fan, a frame from C can be seen in Figure 6c.

LSD and DSO were tested both calibrated and not cali-
brated on video C. For LSD there was no notable difference
in performance when the camera was calibrated and in both
tests, the system did not manage to extend the model after the
modelled blades left the frame. On the other hand, DSO man-
aged to initialise and extend the model for the full duration of
the video and reveals the influence of calibrating the camera.
This difference can be seen by comparing Figure 6b, which
is calibrated, with Figure 6a, which is not. The calibrated
version is superior in linking the blades together.

(a) Direct reconstruction using
uncalibrated DSO, the blades
are not linked together properly.

(b) Direct reconstruction using
calibrated DSO, the blades are
linked together properly.

(c) Example frame from video C.

Figure 6: Video C and its reconstruction showing the difference
when calibrating DSO. Red line - past camera position; red square
- current camera position; grey dots - points in the model

5 Responsible Research
The two main ethical aspects of this study are the possible
replacement of a human inspector by an automated system
and the responsible use of the system to assist the inspector
in damage assessment. Starting with the replacement issue
which is a well-known topic in the field of robotics and AI.
Like many similar cases, this system would assist a human
operator instead of replacing it. The system can therefore be
seen as an extra tool to make the inspection easier and more
thorough. Which introduces the second aspect concerning
the responsible use of this tool. Since the system would be
designed to be used as a tool rather than a stand-alone sys-
tem, the inspector should also use it as such. To ensure safe
use of the system a clear explanation of what the system can
do but equally important what the system cannot do is re-
quired. This scenario is in line with the principle of mean-
ingful human control, described in [22], stating that humans
should remain in control and therefore be morally responsible
for relevant decisions made by intelligent systems. No moral
competencies are required for the system and the human oper-
ator is the moral decision-maker, as the system would not be
designed to make decisions. Designing the system to be more

autonomous requires the system to have an understanding of
moral, the implications of this are discussed in [23].

Regarding the reproducibility of the study, three aspects
require further discussion. Firstly, the test data used in this
study is not publicly available as it is owned by Aiir. How-
ever, there are several available example videos8 that are sim-
ilar to the data used in this study. Secondly, the SLAM sys-
tems used for evaluation are all publicly available and are run
with the settings described in Chapter 4. The adapted ORB
SLAM implementation can be shared upon request. Thirdly,
the qualitative evaluation is somewhat subjective and there-
fore makes reproducing the exact results difficult. However,
when following the described method similar results will be
produced. It can therefore be concluded that the method and
results are sufficiently reproducible.

6 Discussion
The results of this study show that both direct and indirect
VSLAM approaches are capable of reconstructing an initial
model of the turbine blades, although they tend to lose track
after the modelled blades leave the frame. When compared,
it is apparent that the direct methods outperform the indirect
ones in every aspect; the density of the model, robustness of
initialisation and the duration of tracking. The next section
will discuss the results of the performed experiments and how
they help in answering the main question of this study, after
which the limitations and future work will be discussed.

6.1 Results analysis and explanation
For the indirect methods in Experiment 1 and 2, it was shown
that the original ORB SLAM system was not capable of re-
constructing the blades due to a lack of features. Replac-
ing the ORB matcher with neural networks LoFTR and Su-
perGlue demonstrated that indirect approaches are capable
of initialising and tracking the blades. In exceptionally low
feature environments such as video A, LoFTR seems more
robust in initialisation than SuperGlue. Due to the higher
amount of matches LoFTR registers, it also results in denser
models. However, when SuperGlue does manage to initialise
a model it displays the ability to track and extend the model
longer than LoFTR. One unanticipated finding was the infe-
rior performance of LoFTR on video B. This can be explained
by the nature of LoFTR, which needs a feature to move at
least 8 pixels between frames to detect a useful match [18]. In
video B the movement of the blades in the back of the frame
is lower than this threshold, resulting in a lack of matches on
the more distant blades. Summarizing, it depends on the sce-
nario if LoFTR or SuperGlue performs better. LoFTR is bet-
ter suited for low feature environments but needs the camera
to be perpendicular to the movement of the blades, whereas
SuperGlue is more invariant to the positioning of the camera
but works better if some texture is present.

The direct methods in Experiment 4 show that direct ap-
proaches are capable of reconstructing the blades properly.
As stated, this study confirms that direct approaches are more
robust in featureless environments than indirect systems as
claimed previously in [1, 9]. Comparing the direct methods

8https://www.rvi-ltd.com/borescope.html
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between themselves shows that LSD reconstructs a model
with less noise than DSO, but is inferior to DSO when it
comes to tracking the blades after they move out of the frame.
However, even DSO is not capable of tracking its models in-
definitely. Which in turn is likely to improve significantly
when a calibrated camera is used, as shown in Experiment 8
and stated previously in [9]. This tracking of the model and
linking blades together is however not required for the dam-
age assessment mentioned as one of the aims, since one could
model all blades separately and perform damage on the indi-
vidual blades. In addition, it can be argued that the quality of
the models reconstructed by these direct approaches is good
enough to identify cracks and holes on the blade. Especially
when taking into account that damages create features that
will be picked up by the systems and will therefore show up
as anomalies in the model of the blade. LSD and DSO can
be used for this modelling of one blade, although LSD would
reconstruct models with less noise. However, if it is required
to model all blades together, DSO will outperform all other
options.

Then testing the systems on their ability to track the model
when the blade stays in the frame in Experiment 3 & 6, show-
ing that the blade moving out of the frame also hinders per-
formance. This finding supports the theory that the lack of
features is not the only limitation to be researched to increase
the performance of VSLAM systems on aircraft turbines.

Overall it can be observed that the SLAM systems per-
form better on video B than video A. Which can partly be
attributed to the higher amount of features on the blades of
video B. However, as discussed in [9], the bigger the differ-
ence in depth within the frame, the better the depth estima-
tion. Since the blades in video B move towards the camera
instead of past the camera like in video A, the difference in
depth in video B is larger compared to A. This larger differ-
ence in depth is likely to contribute to the better performance
on video B.

6.2 Limitations and future work
The results of this study should be interpreted with caution
as each of the main experiments in this study is limited to
some extent. For the experiments in which the ORB matcher
is replaced with neural networks, it has to be noted that
these matchers were not run in real-time. The frequency at
which they can process frames and return matches is around
5 Hz compared to the standard ORB matcher which is imple-
mented to reach over 30 Hz. However, the current implemen-
tation of the neural networks in the indirect SLAM system is
far from optimal and meant to test the quality of the models,
not the computational time of the system. When properly im-
plemented and optimized, the indirect system will likely be
able to run in real-time. Besides, the real-time direct match-
ers outperform the indirect system even when the indirect ap-
proach runs near real-time.

The calibration of the camera is missing in the experiments
where the direct systems were tested. With previous studies
as well as this study showing the importance of this calibra-
tion, testing the systems without calibration might be labelled
stubborn. However, this study can be interpreted as a prelim-
inary study trying to get results with as few resources as pos-

sible. Now that the concept is shown to work to some extent,
a more in-depth study with more resources can be considered
to be worthwhile. Apart from this, it would increase the us-
ability of the VSLAM method if no calibration of the camera
is required to get proper results. The study into uncalibrated
direct VSLAM is therefore not perfect but still interesting.

The last main limitation of this study is the material of the
blades used in Experiment 8 to test the influence of calibra-
tion. In this experiment, a plastic computer fan with more
texture than the metal blades of the aircraft turbine was used.
Although ideally the texture of the test object should have had
less texture, it is clear that the other aspects of the test video
were similar to the actual borescope inspection videos. Be-
sides, the calibrated and uncalibrated results of Experiment 8
were only compared between themselves and not with exper-
iments on other videos.

These last two limitations introduce the need for future re-
search into direct VSLAM similar to how it is performed in
Experiment 4, but with a calibrated camera. To further im-
prove the performance of the SLAM systems, we advise look-
ing into how the noise that is likely introduced by the static
parts of the scene can be removed. This study tried to solve
this issue in Experiment 7 but did not succeed. The final sug-
gested improvement is looking into the possibilities of keep-
ing the blades in the frame for a longer period of time and
introducing more depth into the scene. This could be done by
taking videos, similar to video B, in which the blades move
towards the camera.

7 Conclusions
3D modelling the blades visible in borescope videos of air-
craft turbines opens up the possibility to automate the manda-
tory rotor inspection. The need to perform these inspections
quickly urges for a 3D reconstruction method that runs in
real-time such as SLAM. Since SLAM is designed for gen-
eral scenes such as offices, it has not been thoroughly tested
in environments similar to the inspection videos. Therefore,
this study has tried to determine how well different SLAM
approaches perform on this niche task. To achieve this, both
direct and indirect systems have been tested. The results show
that existing indirect approaches fail, due to the lack of fea-
tures on the blades. Yet, when the traditional feature matcher
is replaced by more recent neural networks, the system does
succeed at reconstructing a few blades. Still, the direct ap-
proaches perform significantly better as they are more robust,
create denser models, and can track the model longer. Re-
sults can be improved by making use of a calibrated camera.
Therefore this study shows that it is possible to reconstruct
the blades from an aircraft turbine using SLAM, although
modelling more than a few consecutive blades is not shown
yet. Even modelling the blades separately allows to automate
damage assessment and therefore potentially simplifies and
speeds up inspections of aircraft turbines.
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“LSD-SLAM: Large-Scale Direct Monocular SLAM”.
In: Computer Vision – ECCV 2014. Ed. by David Fleet



et al. Cham: Springer International Publishing, 2014,
pp. 834–849. ISBN: 978-3-319-10605-2.

[2] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós.
“ORB-SLAM: A Versatile and Accurate Monocular
SLAM System”. In: IEEE Transactions on Robotics
31.5 (2015), pp. 1147–1163. DOI: 10.1109/TRO.2015.
2463671.

[3] Jürgen Sturm et al. “A benchmark for the evaluation
of RGB-D SLAM systems”. In: 2012 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Sys-
tems. 2012, pp. 573–580. DOI: 10.1109/IROS.2012.
6385773.

[4] Georges Younes et al. “Keyframe-based monocular
SLAM: design, survey, and future directions”. In:
Robotics and Autonomous Systems 98 (Dec. 2017),
pp. 67–88. ISSN: 0921-8890. DOI: 10 .1016 / j . robot .
2017.09.010. URL: http://dx.doi.org/10.1016/j.robot.
2017.09.010.

[5] Hauke Strasdat, J.M.M. Montiel, and Andrew J. Davi-
son. “Editors Choice Article”. English. In: Image and
Vision Computing 30.2 (2012), pp. 65–77. DOI: 10 .
1016/j.imavis.2012.02.009.

[6] Georg Klein and David Murray. “Parallel Tracking and
Mapping for Small AR Workspaces”. In: 2007 6th
IEEE and ACM International Symposium on Mixed
and Augmented Reality. 2007, pp. 225–234. DOI: 10.
1109/ISMAR.2007.4538852.

[7] E. Rublee et al. “ORB: An efficient alternative to SIFT
or SURF”. In: 2011 International Conference on Com-
puter Vision. 2011, pp. 2564–2571. DOI: 10 . 1109 /
ICCV.2011.6126544.

[8] Maksim Filipenko and Ilya Afanasyev. “Comparison
of Various SLAM Systems for Mobile Robot in an In-
door Environment”. In: 2018 International Conference
on Intelligent Systems (IS). 2018, pp. 400–407. DOI:
10.1109/IS.2018.8710464.

[9] Jakob Engel, Vladlen Koltun, and Daniel Cremers.
“Direct Sparse Odometry”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 40.3
(2018), pp. 611–625. DOI: 10 . 1109 / TPAMI . 2017 .
2658577.

[10] Christian Forster, Matia Pizzoli, and Davide Scara-
muzza. “SVO: Fast semi-direct monocular visual
odometry”. In: 2014 IEEE International Conference
on Robotics and Automation (ICRA). 2014, pp. 15–22.
DOI: 10.1109/ICRA.2014.6906584.

[11] A Geiger et al. “Vision meets robotics: The KITTI
dataset”. In: The International Journal of Robotics Re-
search 32.11 (2013), pp. 1231–1237. DOI: 10 . 1177 /
0278364913491297. eprint: https://doi.org/10.1177/
0278364913491297. URL: https : / /doi .org /10 .1177 /
0278364913491297.

[12] Zuzana Kukelova and Tomas Pajdla. “A minimal so-
lution to the autocalibration of radial distortion”. In:
2007 IEEE Conference on Computer Vision and Pat-
tern Recognition. 2007, pp. 1–7. DOI: 10.1109/CVPR.
2007.383063.

[13] Carsten Steger. “Estimating the fundamental matrix
under pure translation and radial distortion”. In: IS-
PRS Journal of Photogrammetry and Remote Sensing
74 (2012), pp. 202–217. ISSN: 0924-2716. DOI: https:
/ / doi . org / 10 . 1016 / j . isprsjprs . 2012 . 09 . 012. URL:
https : / /www.sciencedirect . com/science /article /pii /
S0924271612001815.

[14] G. Stein. “Internal Camera Calibration using Rota-
tion and Geometric Shapes”. Unpublished MSc Thesis
MIT. 1993.

[15] H. Sperker and A. Henrich. “Feature-based object
recognition — A case study for car model detection”.
In: 2013 11th International Workshop on Content-
Based Multimedia Indexing (CBMI). 2013, pp. 127–
130. DOI: 10.1109/CBMI.2013.6576568.

[16] Paul-Edouard Sarlin et al. “SuperGlue: Learning Fea-
ture Matching with Graph Neural Networks”. In:
CVPR. 2020. URL: https://arxiv.org/abs/1911.11763.

[17] Jiaming Sun et al. “LoFTR: Detector-Free Local Fea-
ture Matching with Transformers”. In: CVPR (2021).

[18] Rick Huizer. “A performance analysis of interest point
detection/matching on shiny and non-textured surfaces
- A case study on aircraft engine borescope inspection
videos”. Unpublished BSc thesis TU Delft. 2021.

[19] Devin Lieuw A Soe. “Ground Truth for Evaluating 3D
Reconstruction of Jet Engines”. Unpublished BSc the-
sis TU Delft. 2021.

[20] Felix Caesar. “A Novel SLAM Quality Evaluation
Method”. Unpublished MSc thesis KTH Royal Insti-
tute of Technology. 2019.

[21] Anton Filatov et al. “2D SLAM Quality Evaluation
Methods”. In: CoRR abs/1708.02354 (2017). arXiv:
1708.02354. URL: http://arxiv.org/abs/1708.02354.

[22] Filippo Santoni de Sio and Jeroen van den hoven.
“Meaningful Human Control over Autonomous Sys-
tems: A Philosophical Account”. In: Frontiers in
Robotics and AI 5 (Feb. 2018), p. 15. DOI: 10.3389/
frobt.2018.00015.

[23] Jasper van der Waa et al. “Allocation of Moral
Decision-Making in Human-Agent Teams: A Pattern
Approach”. In: Engineering Psychology and Cognitive
Ergonomics. Cognition and Design. Ed. by Don Harris
and Wen-Chin Li. Cham: Springer International Pub-
lishing, 2020, pp. 203–220. ISBN: 978-3-030-49183-3.

A Appendix: Calibration files
The following lines show the text file following the format
described in [3] used to undistort the images for all systems
but LSD.
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The following lines show the text file following the format
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