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SUMMARY

Neuromodulation of the vagus nerve is used as a treatment for all kinds of ailments and
even as a means of improving the wearer’s physiology, however, this form of treatment
is not popular due to its invasive nature, high chance of side effects, and short period
between reimplementation surgery, as such an alternative is sought in the form of neu-
romodulation using ultrasound. In this thesis, 2 designs for wearable ultrasound neuro-
modulators for the vagus nerve are suggested, based on these designs a solution is made,
solving the problem of detecting vagus nerve within a wearable environment. To detect
the vagus nerve two methods are proposed: neural networks and template matching.
Based on these methods and these proposed designs 5 unique works have been created,
Vivo las vagus (VLV) an object detector using a neural network, a mobile implementa-
tion of both VLV as well as template matching, an FPGA implementation of template
matching, and 2 FPGA implementations of VLV in which one uses a streaming dataflow
architecture and the other a systolic array architecture.

The best results are achieved with the streaming dataflow architecture implementation
of VLV within an FPGA, resulting in an accuracy of 87.5 percent on the test set with the
10.88 FPS/watt, and inference of 0.174 seconds. This was achieved by using FINN, a
community project for converting software neural networks into HDL representation
for the FPGA. Combined with to the best of the author’s knowledge, first-ever created
loss function to automatically decrease the bit width of a quantized neural network layer
without impacting the accuracy during training creating the first-ever fully automated
end to end flow for creating a software neural network object detector and converting
it towards an HDL representation, allowing biomedical engineers without knowledge of
digital electronics or Neural networks to simply load in data and run the python files. To
assess the accuracy an accuracy calculation function was created together with a dataset
and test set with images taken from [1]. As the dataset has shown to be lacking severely in
variety the accuracy assessment of all of the implementations can be considered moot.
The VLV FINN implementation was compared to other FPGA implementations based on
energy efficiency, showing that the work created within this thesis is one of the best in
terms of power efficiency and the smallest in terms of resource usage footprint.
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1
INTRODUCTION

1.1. INTRODUCTION

T HIS thesis will cover the implementation of object detection of the vagus nerve within
the environment of a wearable ultrasound neuromodulator, the neuromodulator in

question will be used to stimulate the left vagus nerve. A neuromodulator artificially
stimulates a neuron in order to induce an action potential, this artificial stimulation
is referred to as neuromodulation. Neuromodulation of the vagus nerve is used as a
treatment for all kinds of ailments such as depression [17], Rheumatoid Arthritis [18],
and even as a means of improving the wearer’s physiology [19–21], however, this form of
treatment is not popular due to its invasive nature, high chance of side effects, and short
period between reimplementation surgery [22–25], as such an alternative is sought in the
form of neuromodulation using ultrasound, as in theory this would negate all these neg-
atives brought caused by traditional lead based neurmodulation. The following criteria
must be met for the neuromodulator to be considered wearable:

1. The neuromodulator needs to be able to stimulate the nerve chosen by the wielder.

2. The neuromodulator needs to be able to make an ultrasound image of the nerve
and surrounding tissue.

3. The neuromodulator should be able to freely sweep the target area by forming a
beam of ultrasound using a phased ultrasound transducer array.

4. The neuromodulator should be able to perform its tasks autonomously.

5. The user should not experience any discomfort from wearing the neuromodulator
or be perceived as cumbersome.

6. The neuromodulator should be able to find the nerve with high accuracy and within
a small time frame.

1
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As the criteria are too large and varied for a single masters thesis a focus is laid on
finding the vagus nerve inside of a wearable ultrasound neuromodulator. After all, a
neuromodulator cant stimulate a nerve if it does not where it is positioned. As there are
not yet fully wearable ultrasound neuromodulators 2 hypothetical designs are proposed
with 2 different methods of implementing wearable object detection of the vagus are
proposed within the literature review of this thesis, one using an FPGA and one using
an Android phone, both using computer vision techniques to identify the vagus nerve
inside a B-mode ultrasound image. Based on these hypothetical designs unique imple-
mentations for wearable object detection of the vagus nerve are implemented.

1.1.1. OVERVIEW VAGUS NERVE

The vagus nerve is known as the 10th cranial nerve ([26], [27]) and stretches throughout
the body connecting to organs and muscles, making it the most extensively connected
distributed cranial nerve in the body. Two main branches can be found for the vagus
nerve, the left vagus nerve, and the right vagus nerve. Both branches run symmetrically
to one another from the carotid sheath down to the chest after which they branch down
asymmetrically down the gut. As seen in Figure 1.1 the vagus nerve runs parallel to the
common carotid artery (CCA) and the Jugular Vein (JV).

Figure 1.1: A drawing depicting some of the organs present in the neck.

The Vagus nerve physiological functionality can be summed up with three main objec-
tives: Providing signals to skeletal muscles, controlling the parasympathetic nervous sys-
tem, and acting as an information highway between the brain and the enteric nervous



1.1. INTRODUCTION

1

3

system. The amount of skeletal muscles controlled by the vagus nerve is quite limited,
mainly the soft pallet of the tongue and the Larynx.
The sympathetic nervous system is mainly controlled by the nerves of the spinal cord
providing the ‘fight or flight ’ response, in contrast, the parasympathetic nervous system
provides the ‘rest and digest ‘response of your body making it the antagonist of the sym-
pathetic nervous system. The rest and digest response translate itself functionally into
an increase of blood vessel dilation around the organs of the digestive tract allowing for
easier uptake of nutrients, a decrease in heart rate, and a constriction of the blood ves-
sels surrounding many skeletal muscles. Sexuality arousal in both men and women is
the last major component that is regulated via the parasympathetic nervous system as it
controls muscles within the genitals needed for erection, lubrication, and ejaculation.
The last major physiological functionality provided by the vagus nerve is its usage as
a connection between the brain and the enteric nervous system giving it the synonym
of the brain-gut axis. The enteric nervous system can be seen as a huge amount of
receptor- and effector-cells working independently from the brain or the spinal cord.
Many of these receptors are lined across the gastrointestinal tract. These receptor cells
can for example influence the control of food intake and regulation of satiety, gastric
emptying, and energy balance by transmitting information toward the solitary tract in
the brain. Another example of receptor functionality is how intestinal receptor is influ-
enced by microbiota, these influences as recent studies have shown might cause anxiety
and depressive-like behaviors.

1.1.2. STIMULATION OF THE VAGUS NERVE

Stimulation of the vagus nerve is a medical procedure that has been practiced in west-
ern medicine for thousands of years. First mentioned by Hippocrates it is suggested
that stimulating the Vagus nerve through massaging has relaxing effects and causes deep
sleep in the patient. ([28])
In the 21st-century, vagus nerve stimulation has become more elegant not requiring any-
more rough massaging, instead, the usage of an electro stimulator implant has become
the defacto neuromodulation method. First introduced in 1988 the implant consists of
a waveform generator sending electrical impulses down a lead wire which ends up in
leads coiled around the left vagus nerve, this entire device is implanted under the skin of
the patient. The reason that the left vagus nerve branch is chosen compared to the right
branch is that the electric stimulation in the right branch can cause unwanted heart rate
decreases as a side effect. [29]
The surgery required to surgically implant this device is therefore classified as a ‘risky
surgery’ [22] reducing the eligible patients by a large factor. For those who are eligible
for the implementation surgery around 70% percent experience side-effects from the
implant ranging from Voice alteration to infection [23], [24]. This problem combined
with a high re-implementation rate of 47 percent causes the usage of a vagus nerve neu-
romodulator implant to be seen as a last resort therapy [25].

For all its drawbacks vagus nerve stimulation has shown to alleviate symptoms of- and
even combat diseases and disorders plaguing the patient. For example, vagus nerve im-
plementation has been shown to combat the following diseases:
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Figure 1.2: Drawing depicting typical implementation of traditional lead based vagus nerve stimulator.

• Vagus nerve stimulation is now an accepted treatment for epilepsy, and it is shown
that after a period of 18 to 24 months period the improvements are made in the
quality of life for patients suffering from epilepsy. [17]

• There are promising results that show how vagus nerve stimulation over 12 months
decreases the severity of depression [30]

• Vagus nerve stimulation in patients suffering from multiple scoliosis has been shown
to improve dysphagia and head postural cerebellar tremors resulting in improve-
ments in swallowing of fluids and ‘piecemeal’ deglutition. [31]

• Vagus nerve stimulation at patients suffering from Chrohn’s disease over 6 months
has been shown that in a significant percentage of test subjects there are major
improvements in the quality of life. [32]

• Rheumatoid Arthritis and perhaps even more autoimmune and autoinflammatory
diseases have a decrease in severity due to the vagus nerve stimulation causing a
decrease in tumor necrosis factor production. [18]

Vagus nerve stimulation is also shown to produce improvements in the physiology of
an unafflicted human being. For example, the following improvements in the physiology
of test subjects have been recorded.

• It is shown that vagus nerve stimulation enhances recognition memory. ([19])

• Vagus nerve stimulation is shown to boost the drive to work for rewards. ([20])

• The immune system response has been shown to improve under vagus nerve stim-
ulation, which could with elevation against diseases such as COVID 19 ([21])
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1.1.3. ALTERNATIVES TO IMPLANTS
Vagus nerve implants, while producing promising results in combatting diseases and
improving human physiology cause severe side-effects which limit the number of users
to a large degree. For positives of stimulation to be used without any of the negatives
associated with the implementation of the implants an alternative procedure for stimu-
lation needs to be used.

One of these alternatives is ultrasound neuromodulation which provides the follow-
ing improvements compared to traditional stimulation using implants as the stimulation
medium: [1, 3, 33]

• Non-invasive: the implementation of an ultrasound neuromodulator does not re-
quire any surgery and can be easily applied and removed from the human body.

• Easily replaceable: Due to the non-invasive nature of an ultrasound neuromodu-
lator device, the ability to replace a device (due to breaking for example) can be
done easily.

• No electrode-based side-effects: Thanks to the usage of ultrasound there is no
need to connect electrodes to the nerves, ergo there are no electrode-based side-
effects such as infection.

• High depth of penetration: Modern ultrasound transducers can reach high depths
in soft human tissue allowing them to reach nerves deeper inside the human body.

• High precision: Ultrasound transducer can reach high resolutions up to microm-
eters allowing stimulation of specific nerves and negating unwanted activation of
surrounding nerve tissue.

As the usage of ultrasound negates the negatives from traditional implants while having
its unique positives the question that arises is “How is a wearable ultrasound vagus nerve
stimulator implemented?”. To answer this question a literature review has been made
which is detailed in the following pages.





2
LITERATURE

2.1. INTRODUCTION

W ITHIN this chapter a literature review is given surrounding the implementation of
a wearable ultrasound neuromodulator. To understand the nature of ultrasound

neuromodulators a small section has been dedicated surrounding the ultrasound me-
chanics of imaging and neuromodulation. A review has been performed on the works
of [1], [2], [3], in which within this literature review criteria are established and used to
judge the merits of every work. This review is used as a basis for the creation of two pro-
posed designs taking inspiration from the previous works.

Due to the experimental nature of this research topic, literature has been mostly pro-
vided by the mentor of the author of this thesis. More conventional background infor-
mation is gathered from Google scholar and books.

The following terms were used within the literature search of Google Scholar.

• Depth Vagus nerve (1 useful)

• Vagus nerve physiology(3 useful)

• Vagus nerve Anatomy(2 useful)

• Ultrasound physics(2 useful)

• Vagus nerve Side-effects(3 useful)

• Vagus nerve Stimulation (7 useful)

• Ultrasound Nerve interactions(3 useful)

• Wearable ultrasound Neuromodulator(4 useful)

7
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Figure 2.1: Figure depicting an ultrasound beam with all separate components annotated.

2.2. ULTRASOUND MECHANICS

Both imaging and neuromodulation basic principles are based on the forming of an
ultrasound beam [34]. An ultrasound beam consists of a Fremel zone, a Focal spot, and a
Fraunhofferzone (see Figure 2.1). There are multiple ways to form an ultrasound beam,
one of which is to use a phased array.

Figure 2.2: Figure depicting the influence of delay generator in the forming of an ultrasound beam and the
position of the focus spot.

A phased array is a device that consists of multiple smaller transducer elements, these
transducers transmit timed acoustic waves that constructively interfere due to the Huy-
gens–Fresnel principle forming an acoustic ultrasound beam. [34]
The Huygens–Fresnel principle describes how a wave can consist of multiple smaller
waves called wavelets. These wavelets can positively or negatively interfere with each
other causing a shaped larger wave to form. In Figure 2.2 there is an example shown,
in which phased array A has larger delays between the wavelets causes the larger wave
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to be shaped as a convex with a deep curve causing the focal spot to be close to the
transducer. In comparison phased array B has short delays between the wavelets causing
the resulting larger wave to have a more shallow convex shape with a focal spot that is
farther away from the transducer. Note that not only the focal spot can move on the Y
plane but also on the X and Z plane.

The delays generated by the delay generator in Figure 2.2 can be calculated using known
parameters such as transducer element size, the sound of speed inside of medium, the
position of the focus spot. An ultrasound beam alternatively can also be created using a
mechanical lens. ([35])

2.2.1. IMAGING VIA ULTRASOUND

Figure 2.3: Figure depicting an ultrasound B-mode image of a fetus inside of the uterus.

To create an image such as a Figure 2.3 a transducer must sweep the beam over a large
area of tissue. The ultrasound wave sent by the transducer will encounter different types
of impedance from the tissue, this impedance can cause the ultrasound wave to deflect
or reflect. This reflection commonly known as an ‘echo’ is sent back to the transducer
where its piezoelectric properties will create a voltage shift. These delays from these
echos relative to each other are the inverse of the delays used to create the initial trans-
ducer beam. ([33])

An ultrasound wave moves at the speed of sound, as that is a constant the distance of
a reflector is known based on the time of the reflection. To make sure that the axial
resolution is as high as possible the usage of a short ultrasound pulse is advised as to
when a pulse length stretches over multiple Reflectors, the resulting echo will not be
able to distinguish between the two reflectors, as can be seen in Figure 2.4. ([34])
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Figure 2.4: This drawing depicts an ultrasound wave produced via a transducer where the wavelength is larger
then the distance between Reflector 1 and Reflector 2 resulting in an echo which is unable to distinguish

between the two reflectors.

2.2.2. NEUROMODULATION VIA ULTRASOUND
To stimulate a nerve using ultrasound a constant ultrasound wave is necessary, in con-
trast to the short pulse required for imaging. The beamwidth needs to hit the nerve for
an action potential to occur. Multiple factors are influencing the nerve when subjected
to ultrasound, these factors can be split up into thermal effects and non-thermal effects.
There is not yet a clear scientific consensus on how these factors precisely affect the
nerves, however, and as such all of the information surrounding ultrasound, neuromod-
ulation is hypothetical. The effects of ultrasound on the nerve are simulated using the
neuronal intramembrane cavitation excitation (NICE) model which is based on the ther-
mal and non-thermal effects which shows comparable results compared to real imple-
mentation within human and animal models ([36]).

Normally high-intensity thermal effects induce biological changes including tissue ho-
mogenization, protein denaturation, and DNA fragmentation that eventually lead to cel-
lular death. If the thermal energy is kept low enough 3 main thermal effects influence the
nerve; Synaptic changes with constant temperatures, rapidly changing temperatures,
slow prolonged temperature changes. However, as the amount of thermal energy de-
livered by ultrasound is very low these effects are considered negligible. ([36–38])

When a low amount of thermal energy is delivered to the nerve over a period it manifests
as a perturbation of neuronal levels such as ultrastructural synaptic changes, decrease
in synaptic vesicle count, and expansion of pre-and postsynaptic junctions. In other
words, neural signaling is blocked between neurons at temperatures below the energy
input level which causes the nerve to dissolve.

Slow and prolonged heating of neuronal tissue reversibly inhibits action potential gener-
ation and propagation by increasing the rate of sodium channel inactivation and potas-
sium channel activation suppressing the action potential activation. In low intensity
focused ultrasound, the thermal effects of sonification can be seen as neglectable, as
minimal temperature increase in tissue only is around 0.1-degree Celsius or lower.

The Main non-thermal effects are: Stable cavitation, unstable cavitation, compression
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and refraction, and finally acoustic radiation. These effects are seen as the main driving
force in ultrasound neuromodulation. ([37, 38])

Stable cavitation occurs when in areas of peak low pressure, gas-filled microbubbles pre-
cipitate out of solution and oscillate periodically without damaging the surrounding tis-
sue. Stable cavitation of nanobubbles within the polar membrane of the lipid bilayer
of the cell might play a role in action potential generation. These rapid oscillations can
cause the spread of the bilayer into two monolayers under negative pressure, while un-
der positive pressure the monolayers are squeezed against one another. The accumu-
lated nanobubbles in the hydrophobic zone during this process modify the bilayer’s lo-
cal curvature altering the excitable cell’s overall membrane capacitance changing the
membrane capacitance as seen in Figure 2.5.

Figure 2.5: Figure depicting the effect of negative pressure on the cell membrane causing the lipid bilayer to
split into two monolayers.

Unstable cavitation occurs when exposed to intensities higher than stable cavitation.
When this occurs, the microbubbles have the risk of expanding non-linearly and collaps-
ing. This is called inertial cavitation. Depending on the size of the microbubbles and the
employed sonication parameters, inertial cavitation can destroy surrounding tissue.

Compression and rarefaction of the surrounding plasma during sonication alters the flu-
idity and permeability turning the cell layer from the gel phase into the Fluid phase as
seen in Figure 2.6 causing changes in the permeability of the cell membrane.

In acoustic radiation, the ultrasonic waves provide steady pressure on the targeted neu-
rons. The mechanical energies conveyed by these ultrasound waves stretch and distort
the cell membrane resulting in adjustments of the mechanics of ion channels. These ad-
justments affect the crossing of the ions through the lipid bilayer and thus the neuron’s
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Figure 2.6: The effect of compression and rarefaction of the surrounding plasma during sonification on the
cell membrane.

action potential probability.

2.3. REVIEW OF PREVIOUS WORKS
Neuromodulators have been shown to be successful in animal models ([39, 40]), in-vitro
([41]), and Human test subjects ([42, 43]), however none of these works would fall under
the terminology of ‘wearable’ of which the requirements are explained later down the
line in this section.
To create a good wearable ultrasound neuromodulator design, inspiration must be taken
from previous works, in which both the good and the bad must be recognized, to com-
bine the positives of previous works and leave out the negatives.
First, the definition needs to be made what wearable means in the context of this litera-
ture review, as such the following criteria have been established.

• The neuromodulator needs to be able to stimulate the nerve chosen by the wielder.

• The neuromodulator needs to be able to make an ultrasound image of the nerve
and surrounding tissue.

• The neuromodulator should be able to freely sweep the target area by forming a
beam of ultrasound using a phased ultrasound transducer array.

• The neuromodulator should be able to perform its tasks autonomously.

• The user should not experience any discomfort from wearing the neuromodulator
or be perceived as cumbersome.

• The neuromodulator should be able to find the nerve with high accuracy and within
a small time frame.
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2.3.1. A CMOS 2D TRANSMIT BEAMFORMER

The work of [1] seeks to improve on commercially available ultrasonic transducers for
neuromodulation applications, which are typically single focused transducers with a
large form factor and off-the-shelf electronics for operation. A CMOS 2D beamformer
with integrated lead zirconate titanate (PZT) ultrasonic transducers is reported in this
paper for peripheral nerve neuromodulation. Without an acoustic matching layer, the
suggested prototype of the work may reach a maximum focal pressure of roughly 100
kPa with a 5 V supply at 0.5 cm depth.

The technical specifications of the design made by [1] consists of CMOS 2d beamformer
with an integrated lead zirconate titanate ultrasound transducer array. This device is
connected to a computer for control of the focal spot of the neuromodulation beam as
shown in Figure 2.7.

Figure 2.7: Figure from paper by [1]. depicting the setup for ultrasound neuromodulation on an animal
model.

The transducer array designed in this work is a monolithic 10 MHz frequency consisting
of 676 elements providing 100 KPa at 0.5 cm depth making it suitable for stimulation of
the nerve as can be seen Figure 2.8 , however this design is purely focused on neuro-
modulation as such it is not designed to transmit imaging pulses resulting in no created
ultrasound image of the nerve. The work by [1] can beamform via ultrasound delays, this
is done via a transceiver circuit that can cause delays for every individual transducer in
the transducer array, these delays have a full 360 degree phase coverage with a resolution
of 7.5 degrees.

The transceiver circuit is connected to an external laptop, making the only possibility
for stimulation external input consisting of the required delays, making this device not
autonomous, this combined with the device’s inability to create an ultrasound image, the
two requirements to find the nerve, as such this device no has nerve finding capabilities.
Disconnected from a laptop the overall size of the device is 5 by 4 mm2, as such the user
should not encounter any discomfort from its size.
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Figure 2.8: Photo taken from paper by [1]. depicting depecting transducer array within CMOS 2d beamformer.

2.3.2. WEARABLE ULTRASOUND FOR IMPROVEMENT MOTOR FUNCTION IN

AN MPTP MOUSE
The aim of the work by [2] is to examine whether ultrasound stimulation of the mo-
tor cortex can improve parkinsonian motor deficit in a mouse model induced by 1-
Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The ultrasound transducer used in
this work provides 100 kPa at a depth of 4 mm , this was used to perform low frequency
low intensity pulsed ultrasound (LIPUS) 40 minutes a day resulting over 7 days in an
indication that LIPUS may be a novel neuromodulation tool for PD treatment.

Figure 2.9: Figure from paper by [2]. depicting the setup for ultrasound neuromodulation on an animal
model.

The technical specifications of the design made by [2] consists of a single-element fo-
cused wearable transducer using PZT-5H/epoxy 1-3 composite as the piezo material
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for the transducer due to its high electromechanical coupling factor and low acousti-
cal impedance. This wearable transducer is connected towards a function generator to
produce neuromodulation ultrasound waves. This setup was tested on a mouse model
altered by an injection of MPTP to see whether neurostimulation on the motor cortex
improves a parkinsonian motor deficit as shown in Figure 2.9.
The ultrasound transducer provides 100 kPa at a depth of 4mm making it suitable for
neuromodulation, as it constructed with only neuromodulation in mind as such it’s not
suitable for producing ultrasound imaging pulses, nor does the setup does not have any
circuitry to convert the imaging echoes towards digital data. As can be seen from 2.10
the transducer consists of one element pressed into a steel ball at a temperature of 65
degrees to achieve a natural convex shape. This transforms any ultrasound wave into a
natural beam with a focus spot, however as the shape of the transducer is set it is impos-
sible to change the focal spot in 2 dimensions unless physically moved.

Figure 2.10: Figure from by [2] depicting the setup for ultrasound neuromodulation on an animal model.

As shown in 2.9 the ultrasound transducer is connected to an external function gen-
erator, making the only possibility for stimulation external input making it non autonomous,
this combined with the lack of capability to find the nerve means the device has no nerve
finding capabilities. As the size of the ultrasound transducer is not specified an assump-
tion need to be made, considering the ultrasound transducer fits on a mouse’s skull and
is smaller than a coin it can be reasonably assumed the ultrasound transducer would fit
on a human neck without being seen as cumbersome or otherwise cause discomfort.

2.3.3. ULTRASOUND PATCH FOR IMAGE-GUIDED NEUROMODULATION
This work by [3] describes the design and validation of body-conformal active ultrasound
patches for image-guided neural stimulation. A mechanically flexible patch on the probe
gives patient-specific feedback on array curvature for real-time ultrasound beamform-
ing focusing optimization. The modulation shows a sensitivity of 80 kPa/V with a 3 MHz
bandwidth, while the imaging array has a sensitivity of 20 kPa/V with a 6 MHz band-
width, according to experimental data from a flexible prototype. Also given is an algo-
rithm for accurate and automated localization of specific nerves utilizing neighboring
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blood vessels (e.g., the carotid artery) as image markers.

The technical specifications wearable device created by [3], consists of two transducer
arrays. A 64 element linear transducer array is used for imaging and an 8 element phased
transducer array is used for low-intensity neuromodulation, both transducers are made
from lead zirconate titanate (PZT) with an acoustic matching layer made from acrylic
plastic, with an adhesive made from silicon-based materials. A lensing layer of a material
matching the acoustic matching layer is added to the imaging array. These transducers
are connected to two pre-made chips; a MAX14808, Maxim Integrated to generate eight-
channel transmit waveforms, and an eight-channel receiver (AD9276, Analog Devices)
to process the resulting echoes. All this circuitry is combined in flexible PCB this PCB
is connected with a wire towards an Altera System on a Chip (SoC) which will act as the
controller and as the digital backend. For the full overview see Figure 2.11.

Figure 2.11: Figure from paper by [3]. depicting the setup for a wearable ultrasound neuromodulator.

The neuromodulation provides a pressure of 80 kPa/V making it suitable for Neuromod-
ulation, idem ditto for image generation as a linear array is used to create an ultrasound
image from the tissue surrounding the vagus nerve. The neuromodulation ultrasound
beam is created via ultrasound delays, since the neuromodulation transducer array is a
phased type that uses a delay circuit to create a neuromodulation focus beam with an
estimated spatial resolution of 1.2 mm. These delays are calculated using an Altera SOC.
This Altera SOC is the controller in this device as it controls both the beamforming as well
as searching for the vagus nerve. Using feedback from the PCB sensors, adjustments are
made for the aforementioned functionality, this makes this device autonomous as no
outside commands or interference is required for the device to function. As the device
consists of a flexible PCB collar wrapped around the neck with a size of approximately
4.5 cm by 25 cm, connected via a wire towards a suitcase filled with the Altera SoC. The
size and complexity impede the wearer and causes discomfort.

To find the vagus nerve using an ultrasound image created by the imaging array a tem-
plate matching algorithm is used. The images used for template matching will first go
through the following steps before the cross-correlation factor is calculated. ([44])

• The target image goes through a gaussian filter to smooth out the edges and re-
move any noise.
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• It is then passed through other pre-processing filters like dilation, noise pixel re-
moval, thresholding, etc.

Figure 2.12: Two images taken from [4] showing a completely different shaped Vagus nerve within an
ultrasound B-mode image.

Then template matching is applied to compare the target image with all the stored tem-
plates which correspond to different orientations. In template matching the algorithm
loops through every pixel of the target image to compare that pixel and its surrounding
pixels to the template. The set threshold determines to what level the pixels in the tem-
plate have to match the considered area in the frame for the area to be identified as a
marker location. This threshold ranging from 0 to 1 thus determines the precision of the
system, 0 meaning no pixels match the template, 1 meaning all pixels have to match the
template image. The full formula is described in more detail within section 3.2.1. This
technique does have its drawbacks in implementation, one of which is the accuracy, the
templates are static, and the vagus nerve is dynamic since it moves around, stretches,
changes shape, or otherwise distorts (see Figure 2.12 a,b). This means that a picture of
the template will not always be a good representation. The second problem lies in the
large number of calculations that need to be done, e.g., if a target image of 720×480 pixels
is cross-correlated with a template image of 70x70 pixels this translates into a compar-
ison of 1693440000 pixel pairs, combined with the multiple templates, the calculations
will take a large time on a microcontroller or an SoC. This leaves the nerve finding ca-
pabilities of the template matching algorithm within this work slow and inaccurate but
usable.

2.3.4. SUMMARY

As can be gleaned from table 2.1 there is not a single implementation that satisfies all
of the criteria presented. This raises the following problem: “How do we implement a
wearable real-time autonomous ultrasound neuromodulation device?”.
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Work Neuromodulation Imaging Beamforming Autonomous Cumbersome Quick and precise
[1] yes no yes no no no
[2] yes no no no no no
[3] yes yes yes yes yes no

Table 2.1: Table containing works from [1], [2], [3], with an overview of how they compare against the require-
ments set in section 2.3, note that none of the featured works satisfy all requirements.

2.4. PROPOSED APPROACHES
To satisfy the requirements to make a wearable ultrasound neuromodulator in Figure
2.13 a design is proposed. In this design, a flexible wearable patch is introduced which
can be applied by the patient simply by pressing it against the left side of the neck around
the area of the jugular vein. From this point onwards the patch can be turned on and the
neuromodulator will start scanning for the vagus nerve autonomously and once found
will start exciting the nerve on a frequency proposed by the user. While exciting every
two seconds another scan will be done to search for the location of the vagus nerve to
make sure that it is still excited in case of, for example, movement. As can be seen from
this picture it is smaller than any of the previously made ultrasound devices while ad-
vancing on functionality. To do this there are two designs proposed, while both designs
are the same input, output, and dataflow, they both have their unique challenges associ-
ated with them. Do note that further within the confines of this thesis the focus has only
been laid on implementing the vagus nerve finding capability is detailed within both
designs and not implementing the whole design detailed within these sections, as such
all components aside from the nerve finding capability is should be considered future
work and within the following sections meant to give a more realistic interpretation of
the wearable environment that the object detection will operate in.

2.4.1. VAGUS NERVE FINDER USING ANDROID
In Figure 2.14 the cross-section of the first proposed solution is given, which for ease of
writing will be referred to as solution 1. The body of the device will consist of a flexi-
ble pad with an adhesive sticky ultrasound gel. On top of this patch, a battery will pro-
trude which can be replaced if necessary. The control of the entire neuromodulator will
be done via a microcontroller that has either Wi-Fi or Bluetooth access. This micro-
controller will contain the predetermined delay values needed for a complete imaging
sweep of the tissue surrounding the vagus nerve while also being able to calculate the
delays necessary for a neuromodulation ultrasound beam. This information will be sent
via I/O ports towards the transceiver chip where it will be converted into pulses with the
delays ordered by the microcontroller. The microcontroller will also be receiving infor-
mation from the transceiver regarding the echos created by the imaging. These echos
will be converted into a complete image by the microcontroller which will be sent via
either Direct Wi-Fi or Bluetooth towards the patient’s Smartphone.
The image sent towards the patient’s smartphone will be put through a neural network
algorithm using the Smartphone graphics card. Once the position of the vagus nerve has
been located with a degree of certainty the angle and depth will be calculated in relation
to the transducer, the angle and depth will be sent back towards the microcontroller. This
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Figure 2.13: Figure depicting proposed ultrasound setup of wearable ultrasound neuromodulation patch.

Figure 2.14: Figure depicting the cross-section of the mobile phone based ultrasound wearable neuromodula-
tion patch.

will be the input for calculating the delays. The transducer chip will be connected with
the transceiver chip and will be able to send both imagine waves as well as neuromodu-
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lation waves. The transceiver chip will handle both the bit data from the microcontroller
concerning the delays and convert them into pulses with delays matching the bit data,
and they will handle the echos created by imaging and convert them into digital data
which can be handled by the microcontroller.

The main problem with solution 1 lies in the connection between the phone and the
microcontroller, as there is a large amount of information sent wirelessly between two
devices which due to its medical nature cannot be corrupted nor can it be encrypted with
loss. This causes both problems with the speed of this connection as well as cybersecu-
rity. The speed of the connection will be a problem since the neural network algorithm
needs to have all the bits of the image before it can proceed to estimate the position of
the vagus nerve, this might cause a large bottleneck to appear to in case the image uses
a higher resolution.
The second problem concerning the wireless connection between phone and microcon-
troller is cybersecurity. An open unencrypted wireless data stream leaves itself easily
open for a man-in-the-middle attack. During a man-in-the-middle attack, a bad actor
will intercept the transmission between microcontroller and smartphone or vice versa
and corrupt to possibly harm the patient. Fears of hackers targeting electrical medical
devices are not unknown, as famously former Vice President Dick Cheney had a wireless
connection towards his pacemaker removed This can be solved via encryption, Public
Key Pair Based Authentication, or Strong login credentials, all of these solutions will in-
crease the size of the send data and it will add calculations used for verification on both
the microcontroller- and smartphone-end further increasing the time needed to send
data.
The third drawback might be the inclusion of laws surrounding medical data being used
on smartphones, as throughout the world different rules exist and can change leading to
an unworkable product down the bottom line.
The final drawback is concerning the availability of smartphones being able to run neu-
ral networks using a graphics card. According to android developer studio, the minimum
SDK required for neural networks to easily connect to the smartphone’s graphics card is
installed on 60.8 percent of Android devices as shown inside android studio. As of 2020,
there are 3.8 billion smartphone users over the world, considering Android has a market
share of 72.48 percent as of December 2020 [45], a rough estimation can be made of eligi-
bility of 1.674 billion people out of a worldwide population of 7.842 billion, this results in
around roughly 23 percent of the worldwide population being able to use this design for
a neuromodulator device. Most of these users are inside richer countries which brings
ethical concerns towards distribution of health care. The goal should be for healthcare
to be affordable and easily distributed for all, this design brings this goal into question.

2.4.2. VAGUS NERVE FINDER USING FPGA
The second proposed solution, referred to within this thesis as solution 2 is very similar
to proposed solution 1, as can be seen in Figure 2.15. The microcontroller, transceiver,
and transducer all have the same functionality. The main difference is how the func-
tionality used by the smartphone is overtaken by an FPGA which eventually further into
its development will be transformed into an ASIC, however due to the constraints that
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master’s thesis brings within this thesis only an FPGA will be implemented. This FPGA
will be referred to as the ‘Imaging Algorithm Chip’. The connection between the Imaging
Algorithm Chip and the MicroController will be done via IO ports. An alternate option
is to use a pre-made ASIC for computer vision, both options have their positives and
negatives.

Figure 2.15: Figure depicting the cross-section of the ‘Imaging Algorithm Chip’ based ultrasound wearable
neuromodulation patch.

For the FPGA prototype use case a pipeline will be created which will convert pictures
taken of the vagus nerve into an HDL representation of the imaging algorithm/neural
network. In theory, this will provide a unique Neural network or algorithm per patient,
this should provide a higher accuracy, and faster inference compared to generalized
imaging algorithms/neural networks. However, developing the prototype on an FPGA
will take a long time, which is only the first step, as this prototype, once it has proven
to results in adequate performance, the conversion from an FPGA prototype to an ASIC
will cause further time as well as money, however once a design is created producing the
ASIC should prove cheaper than buying a pre-made ASIC depending on how high the
markup is.

In the use case of a pre-made ASIC, a neural network or imaging algorithm will be im-
plemented on an ASIC specifically made to run computer vision tasks. Implementing
computer vision task should prove to be easier then creating a FPGA prototype as ASICS
usually work straight out of the box and only the Software part needs to be implemented.
However, a generalised ASIC will never provide as fast of an inference, accuracy, and
power efficiency then a custom-made design for a specific task. Due to this reason the
choice is made to focus on implementing an FPGA instead.
The only difference between the smartphone and the Smartphone implementation will
be the output and the connection between the microcontroller. The Smartphone will
output the angle and the depth, while the Imaging Algorithm Chip outputs the pixel
location of the input image, leaving the microcontroller to calculate the angle and the
depth.
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Solution 2 in theory will solve a lot of problems regarding both the bottleneck in speed
as well as cybersecurity issues, as the wireless connection between the microcontroller
and the smartphone is replaced by a wired I/O connection between the microcontroller
and the Imaging Algorithm Chip.
As it is a standalone product, no mobile phone is needed, increasing the userbase by a
large degree. Due to the inclusion of either an FPGA or an ASIC the basic price will be
higher compared to solution 1, the severity of this price increase is unknown and will
depend on the complexity of the HDL design of the Neural network/imaging algorithm.
As one of the main goals of the medical device is still to provide accessible and cheap
healthcare the choice of which proposed solution will be better will depend to a large
degree on the complexity of the Neural network/imaging algorithm.

2.4.3. MOTIVATION FOR APPROACHES
In Figure 2.16 the class diagram of the approach is described as both approaches 1 and 2
have the same general data flow they can be combined into the same diagram. The main
characteristic that sets this implementation apart from the previous designs is the usage
of a GPU, FPGA, Custom Made Chip to find the Vagus nerve, the usage of these devices
was chosen to improve upon the time required to find the Vagus Nerve. As imaging al-
gorithms/Neural networks are considered “embarrassingly parallel” ([46]) the usage of a
high core card like a GPU or FPGA should improve the speed radically. In an embarrass-
ingly parallel task, there is little, or no effort needed to separate the problem into several
parallel tasks, in the use-case of finding the vagus nerve these parallel tasks can be the
calculations done over a pixel or a bundle of several pixels.

Figure 2.16: Class diagram depicting the general dataflow of ultrasound wearable neuromodulation patch.

The choice to use a Neural network or a more dynamic imaging algorithm compared to
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template matching is its more dynamic nature, as a vagus nerve moves around, stretches,
changes shape, or otherwise distorts (see Figure 2.16 a,b). A more dynamic algorithm
should be able to handle any drastic changes in the ultrasound image without losing too
much accuracy.

Figure 2.17: Two images taken from [4] showing a completely different shaped Vagus nerve within an
ultrasound B-mode image.

Using a small microcontroller compared to a system on a chip is motivated by the fact
that all of the calculations needed to find the vagus nerve are done by GPU/FPGA/Custom
Made Chip. The previous iteration by [3], chose a system on a chip for its high clock
speed. While this has merit since speed is an important factor the usage of multicore
card makes it obsolete, the calculations that are leftover such as phased array delay cal-
culations can be considered negligible in terms of recourse requirements, as such to
make the device as small as possible the usage of a microcontroller was chosen.
The choice to have a transducer array that can do both imaging, as well as neuromod-
ulation in contrast to two separate transducer arrays that specialize in either imaging
or neuromodulation, is based on works showing that transducer arrays which are capa-
ble of both imaging and neuromodulation can do so without too large of a drawback to
resolution or focal point pressure. ([47]). The transceiver circuit will be based on the
phase modulator design by [1], considering its small size and high resolution compared
to premade boards used by e.g., [3].

Based on the two designs discussed within these pages a following chapter is intro-
duced which compromises the general background info and methodology surrounding
various facets of implementing an wearable object detector of the vagus nerve using ei-
ther an FPGA or a Android Phone using a GPU.
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METHODS

3.1. INTRODUCTION

T HIS chapter compromises the general background info and methodology surround-
ing various facets of implementing an wearable object detector of the vagus nerve,

these facets can be subdivided under the following aspects: background info surround-
ing computer vision techniques: Template Matching, and Artificial Neural Networks.
Background Motivation regarding certain design choices: Amdahl’s Law and Quantisa-
tion. Methods chosen for validation of every implemntation created within this thesis
project: Image dataset, and accuracy measurement method. Finally background infor-
mation is given surrounding prototyping platform: The Ultra96V2.

3.2. OBJECT DETECTION METHODS TO FIND THE VAGUS NERVE
Based on section 2.4.3 two methods were chosen to find the vagus nerve, Artificial Neural
Networks and template matching. Both of these implementations are configured to pro-
duce a bounding box which is centered on the vagus nerve. Template matching has been
chosen to create an implementation which builds on top of the progress made by [3] by
furthering inference using the proposed designs in section 2.4. Artificial Neural Net-
works should improve the accuracy of detecting the dynamically shaped vagus nerve.
This is not to say that Artificial Neural Networks and Template matching are the only
methods of object detection, but for the sake of keeping the thesis manageable, these
two methods have been chosen. Methods of object detection not implemented within
this thesis such as Block matching can be considered as future work.

3.2.1. TEMPLATE MATCHING

Template matching can be seen as a very basic form of object detection. Using template
matching, objects can be detected in an input image using a “template” containing the
object to be detected.
This requires two inputs:

25
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1. Source image: e.g. a b-mode ultrasound image of the vagus nerve and surrounding
tissue, in this image locating the vagus nerve is the objective.

2. Template image: e.g. a b-mode ultrasound image of the vagus nerve, this is used
to locate the vagus nerve inside the source image

To find the vagus nerve the template image is slid across the source image as shown
Figure 3.1

Figure 3.1: Figure showing the sliding of the template over the target image.

At every pixel within the source image a score is calculated between 0 and 1 representing
the similarity between template image and the source image at that pixel’s location. This
score is calculated as
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(3.1)

With T being the template image and I the source image.

3.2.2. ARTIFICIAL NEURAL NETWORKS
Artificial Neural Networks (ANNs) are statistical models that are partially inspired by and
modelled after Biological Neural Networks (BNNs). Nonlinear correlation between dis-
tinct inputs and outputs can be computed using ANNs. They are powerful instruments
that can assist in the solution of problems that cannot be handled using an algorithmic
approach. Neural networks can be used to handle problems like image categorization
and natural language recognition. A full detailed explanation of the general working of
ANNs is detailed within appendix A, this is recommended reading if the reader is not
familiar with the workings of neural networks or wishes to find a deeper explanation re-
garding a specific subject mentioned within this thesis. For ease of reading within this
thesis Neural Networks (NNs) refer to Artificial Neural Networks.
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3.3. DETAILS REGARDING IMAGE DATASET USED WITHIN THE-
SIS

The image dataset consists of 199 images taken from the video provided by [4]. Within
this video the patient turns his head and swallows, giving some variety to the placement
and deformation of the vagus nerve. Every 4 frames within the video an image was re-
trieved with the surrounding Graphics User Interface from the ultrasound machine and
external Point of view cropped out. Within all these images the vagus nerve and sur-
rounding tissue were annotated with the centre of the annotation box of variable size
being centered square on top of the vagus nerve.
The surrounding tissue triangle shape makes a distinctive feature which can be more
easily recognized via algorithms under the assumption being that the ultrasound neuro-
modulation beam will always be point squarely in the middle of the annotation box.
All images within the dataset contain a single annotation of the vagus nerve.
These images where annotated in the YOLO Darknet text format. The dataset complete
with annotations can be found at [48].

3.3.1. DATASET TRANSFORMATIONS
The bounding box placement shows very little variation as can be seen in Figure 3.2.

Figure 3.2: Heatmap showing the position of every annotation within the dataset used in this Thesis.

To increase the variety but keep within the bounds of realism the following transforms
were applied individually up to 3 times to every image within the dataset resulting up to
a maximum of 3 new images for every existing image.

1. Rotation: Between -16◦ and +16◦

2. Bounding Box Shear: ±12◦ Horizontal, ±12◦ Vertical
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The rotation simulates different angles under which the ultrasound probe is applied to
the targeted area and the Bounding box shear simulates compression of the targeted
tissue.
Finally the dataset is split randomly into 70% training, and 30% to the test set in order to
protect against overfitting.

3.3.2. ACCURACY MEASUREMENT USED IN VERIFICATION IMPLEMENTATIONS
All of the imaging algorithms described in the coming sections return bounding boxes.
These bounding boxes represent the predicted position of the vagus nerve.
As described in section 3.3 the dataset does not contain any false positives, this means
that the accuracy measurement is purely taken in precision and not in recall.
In order to measure the accuracy of the implementations used, a 2-part function has
been defined.

0.95∗1o j
i j [(x − x̂)2 + (y − ŷ)2 (3.2)

The term in formula 3.2 consists of the bounding box, indicated by the x and y coordi-
nates parametrized with an offset of a particular grid cell location. That secures that the
coordinates are bounded between 0 and 1. A scalar is set at 0.95, accuracy of the bound-
ing box is seen as critical, it is crucial that the centre of the bounding box comes as close
to the vagus nerve as possible.

0.05∗1o
i j [(

p
wi −

√
ŵi )

2 + (
√

hi −
√

ĥi )
2

(3.3)

In the second term bounding box width and height are normalized by the image
width and height so that they fall between 0 and 1, as small deviations in large boxes
matter less than in small boxes. square root of the bounding box width w and height h
instead of the width and height directly to partially address this problem. A scaler is set
to 0.05 as the size of the box is not relevant to its centre position.

3.3.3. EFFECT OF DATASET ON DESIGN OF IMPLEMENTATION
As can be seen within Figure 3.2 the dataset can be considered flawed, as such there is
a realistic scenario that a generated NN might be needed to be retrained, it might even
be shown that the size of some of the layers within the created NN can be considered
lacking leading to decreased accuracy.
In this case coding an implementation of a NN for use within an FPGA in HDL requires
rewriting of the code, for an untrained user this could take some time.
As such the choice was made to create an automated pipeline in which the user only
has to make adjustments to a NN and the end output would be an HDL representation
and/or bitstream for use within an FPGA.
To achieve this aim the choice has been made to use existing open source frameworks
both with wildly varying ideas of how a neural network should be implemented.
The choice has been made to use FINN and NNgen with arguments in favour and against
detailed within section 4.6 and section 4.5 respectfully. A small sub aim of this thesis is
now to create a pipeline in which future users will have to interface as little as possible
with any kind of code or parameters to gain an as accurate and as efficient as possible
implementation within an FPGA of a NN.
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3.4. HARDWARE USED FOR IMPLEMENTATION
The Ultra96V2 is an ARM-based, Xilinx Zynq UltraScale+ MPSoC development board
based on the Linaro 96Boards specification, the Ultra96-V2 boots from a 16 GB microSD
card. The xczu3eg-sbva484-1-I fpga part contained inside is considered to be the main
platform for running accelerators to find the Vagus Nerve.
The specs that are given for the Ultra96V2 are detailed within 3.1

Display
Name

Part I/O
Pin
Count

Available
IOBs

LUT Ele-
ments

FlipFlops Block
RAMs

Ultra
RAMs

DSPs Min Op-
erating
Voltage (V)

Ultra96-
V2

xczu3eg-
sbva484-
1-i

484 82 70560 141120 216 0 360 0.825

Table 3.1: Specifications given for the Ultra96V2 taken from [9].

As the xczu3eg-sbva484-1-I does not contain many resources it is important for every
implementation to be as resource efficient as possible, however since this is an objective
of the final implementation anyways the xczu3eg-sbva484-1-I could be seen as a proper
prototyping platform for the goal of implementing a low resource, low power, high infer-
ence object detector for the vagus nerve.

3.5. METHODS OF OPTIMIZING HARDWARE IMPLEMENTATIONS
To implement the methods described within section 3.2 within a hardware implementa-
tion such as an FPGA, while getting optimal results such as high inference, high accuracy,
low resource usage, and low power usage, two methods have been implemented, Paral-
lelisation and quantisation. Within this section the workings and the advantages of these
methods are explained, shown, and proven.

3.5.1. PARALLELISATION
In 1967, Gene Amdahl proposed a scaling law that is often overlooked: sequential com-
putations of a program severely limit the maximum possible acceleration. This means
that any non-parallel execution or intercore connection, regardless of the number of
additional computing resources, quickly reduces the scalability of parallel applications
[49].

The addition of these resources also shows within the power efficiency of accelerators in
completing tasks. Within table 3.2 an overview is given of the research by Bonamy et al.
their setup containing a Xilinx ML550 board, containing a microblaze core and an FPGA.
Within this setup an implementation within the microblaze core referred to as Soft, a
sequential implementation of the hardware task on the FPGA represented as HardS, and
HardP representing the best parallelised solution in terms of time within the FPGA. As
shown in table 3.2 in all assignments that an increase of parallelism lowers the amount
of energy usage as well time taken to complete the assignment.

This transfers well to the choice of hardware used (FPGA and GPU) as they allow
a larger amount of parallelism than a conventional CPU. A full detailed explanation of
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Matrix mult Full Search Deblock. filter
Time Energy Time Energy Time Energy

Soft (ms, mJ) 10.75 244.79 0.4786 18.2 0.5742 26.09
HardS (ms, mJ) 1.04 61.99 0.0369 2.01 0.0529 3.68
HardP (ms, mJ) 0.38 27.48 0.0246 1.05 0.0417 2.74
Soft/HardP Ratio 28.29 8.91 19.37 17.33 13.77 9.52
HardS/HardP Ratio 2.74 2.26 1.50 1.91 1.26 1.34

Table 3.2: Table taken from the works of [10] showing an increase of parallelism lowers the amount of energy
usage as well time taken to complete the assignment.

the general working of parallelism of NN within FPGA accelerators is detailed within ap-
pendix B, this is recommended reading if the reader is not familiar with the various types
of parallelism of NNs withing FPGA accelerators or wishes to find a deeper explanation
regarding the specific types of parallelism mentioned within this thesis.

3.5.2. QUANTISATION
NN models for object detection tasks can use millions up to billions of floating point
parameters. As can be seen in section 4.2, Vivo Las Vagus, the NN designed in the span of
this thesis already includes up to a million floating point parameters. This large number
of floating point parameters lead to high compute and resource challenges. This makes
implementing an object detector NN nontrivial in devices such as mobile phones, FPGAs
or ASICs who have limited compute, memory, and power budgets.
Creating a more efficient NN can be roughly broken up in two categories.

1. Creating a more efficient NN Architecture

2. Quantizing the parameters from a floating point representation to a integer repre-
sentation

Creating a more efficient NN architecture refers to simple guidelines for a designer to
keep in mind. Examples of this are choosing kernel sizes and total amount of kernels that
lead to efficient RAM usage [50]. Depth wise separable convolutions in contrast to the
usual dense convolutions are another good way of lowering the number of parameters
needed within a calculation as explained in section D.0.5.

Figure 3.3: A Figure depicting a visual representation of both 1 bit and 8 bit quantisation of a float valued
between 0 and 1.
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Figure 3.4: Energy and area comparison of different operations for different precision of operands in 45nm
technology taken from [5] [6], with the image taken from [7].

Within quantisation a floating point representation of a value to a discrete set of integer
values within a specific range dictated by the number of bits used to represent the quan-
tized value. For example a 0 to 1 floating point number might be represented by an 8 bit
integer as a number of 0 to 255, or a 1 bit integer as a value of either 0 or 1 as detailed
within Figure 3.3.
There are roughly two methods for quantisation: the method of quantizing a trained
model with a floating point numbers for parameters into integers (Post-Training Quan-
tisation) and the method of training while quantizing (Quantisation-Aware Training).
The advantage of a quantized architecture is that the computations are expressed in
lower precision arithmetic, which is more power and area efficient and faster than float-
ing point arithmetic. Figure 3.4 a and Figure 3.4b visualise the energy and area costs of
various operations in 45nm technology respectively implemented on an ASIC.
As can be gleaned from the table all integer operations use less resources and energy then
their floating point equivalent, as well as a decrease of resource usage and energy usage
when lowering the overall bit size. These smaller sizes allow the designer to implement
stored values within smaller, often faster, types of memory ’closer’ to the compute logic.

Using the methods discussed within this chapter implementations for wearable ob-
ject detection of the vagus nerve are be created as discussed within the following pages.
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IMPLEMENTATIONS

4.1. INTRODUCTION

W ITHIN this chapter severally implementations for wearable object detection of the
vagus nerve within an ultrasound b-mode image are detailed. The implemen-

tations are based on the android phone neuromodulator design in which an android
phone is used to find the vagus nerve, and the FPGA based design using an FPGA for
finding of the vagus the nerve which for future work will be replaced by an ASIC. For both
of these designs a more detailed overview is specified in paragraph 2.4. These imple-
mentations are based on the object detection methods detailed in paragraph 3.2, mainly
template matching and Neural Networks. Using Neural Networks an object detector is
created called Vivo las Vagus, this object detector together with template matching im-
plemented in both an Android smartphone environment as well as a FPGA. Within the
FPGA environment there are two implementations of Vivo las Vagus, one created within
a systolic array accelerator and one within a streaming dataflow accelerator, both with
their own positives and negatives discussed within their own respective chapters.

4.2. VIVO LAS VAGUS: AN OBJECT DETECTOR CREATED USING

NEURAL NETWORKS
Vivo las Vagus (VLV) is a single-stage object detection model and was developed during
this thesis project. VLV is a single neural network that predicts bounding boxes and class
probabilities directly from full ultrasound B-mode images in one evaluation, as such it
can be optimized end-to-end directly on detection performance. Object detection is
implemented within a loss function in which the loss is calculated based on spatially
separated bounding boxes and associated class probabilities based on the works of [51].
The network uses features from the entire image to predict each bounding box, with
every bounding box regardless of the class being found simultaneously, his means the
network makes decisions about object detection based on the full image and all features
within the image.

33
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The input layer takes 224 x 224 RGB images as input. The input image gets divided into
a 7 by 7 grid. If the centre of the vagus nerve is located within one of these grid cells, that
grid cell will be responsible for detecting it. Each grid cell predicts two bounding boxes
with confidence scores attached. These confidence scores range from 0 to 1 and reflect
how confident the neural network is whether either three objects are detected (ie. Vagus
nerve, Common Carotid Artery, Jugular vein) however in practice VLV is only trained on
one object (Vagus nerve). These bounding boxes and confidence scores get combined
resulting in the position of the Vagus nerve as shown in Figure 4.1

Figure 4.1: Figure depicting both outputs per grid cell(The output boxes and the scores) being combined into
a final output.

4.2.1. ARCHITECTURE

Within Figure 4.2 a detailed layer by layer anatomy of the model is given.

The architecture consists of 10 layers consisting of 2d convolutional layers in tandem
with RELU layers with 2DMax pool layers intertwined. These maxpool images shrink the
overall image by half allowing the grid cells to form. The convolutional layers have a low
number of filters due to the need to fit inside of a dedicated accelerator within an FPGA
and the goal of only finding one class (the vagus nerve). Due to the lower complexity of
the dataset from its greyscaled nature a lower number of filters can be implemented with
a lesser risk of losing accuracy.
Almost every convolutional layer passes the requirement set for depthwise convolution:
out_channel s == K ∗ i n_channel s where K equals a positive integer. As described
in paragraph D.0.5 depth wise convolution use a lesser number of parameters compared
to standard dense convolutions leading to lower resource usage and higher speed.

For training purposes a dataloader has been created with a batch size of 64 randomised
images loaded in from the training dataset every training epoch.
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Figure 4.2: Figure depicting an detailed overview of the architecture of VLV.

4.2.2. LOSS CALCULATION
The Accuracy loss function is based on the loss function defined in the YoloV1 paper[51]
as such it will be referred to as the YOLOLoss function. The YOLOLoss function is a com-
bination of the following functions

λcoor d

S2∑
i=0

B∑
j=0

1ob j
i j [(xi − x̂i )2 + (yi − ŷi )2] (4.1)

Function 4.2:The x and y coordinates of the bounding box are parametrized to be offsets
of a specific grid cell position, therefore they are also bound to 0 and 1. And only when
there is an object is the sum of square error (SSE) estimated.

l ambd acoor d

S2∑
i=0

B∑
j=0

1ob j
i j [(

p
wi −

√
ŵi )2 + (

√
hi −

√
ĥi )2] (4.2)

Function 4.3:The width and height of the bounding box are normalized by the width



4

36 4. IMPLEMENTATIONS

and height of the image to be between 0 and 1. SSE is only estimated when there are ob-
jects. Because the small deviations in large boxes are smaller than those in small boxes.
The square root of the bounding box width w and height h instead of the width and
height directly to partially solves the problem.

S2∑
i=0

B∑
j=0

1ob j
i j (Ci − Ĉi )2 (4.3)

λnoob j

S2∑
i=0

B∑
j=0

1noob j
i j (Ci − Ĉi )2 (4.4)

Function 4.3 and 4.4: Many grid cells in every image do not include any objects. This
causes the model to become unstable by pushing the confidence scores of those cells to-
wards zero, frequently overpowering the gradient from cells that actually contain objects.
As a result, the loss from confidence predictions for boxes without objects is reduced,
with noobj=0.5.

S2∑
i=0

1ob j
i

∑
c∈cl asses

(pi (c)− p̂i (c))2 (4.5)

Function 4.5: When there are objects, SSE of class probabilities

4.3. IMPLEMENTING THE OBJECT DETECTORS WITHIN AN AN-
DROID PHONE

The implementation of an object detector using a microcontroller and mobile phone as
detailed within paragraph 4.3 can be broken up within two separate subjects: Transfer-
ring a B-mode ultrasound image from the microcontroller within the Ultrasound patch
towards the android phone and implementing the object detectors within an android
phone, all of the subjects are described within the following chapters.

4.3.1. TRANSFERRING AN ULTRASOUND IMAGE FROM MICROCONTROLLER

TO ANDROID PHONE
The main problem with implementing the microcontroller-mobile phone model de-
scribed in paragraph x is to transfer the data of the generated B-mode ultrasound image
from the microcontroller towards the Mobile phone without losing any data possibly
corrupting the accuracy.
As such a lossless protocol has been implemented using a microcontroller and an an-
droid phone using Bluetooth. As Bluetooth is a low power implementation and the range
between the users mobile phone and ultrasound patch is expected to be short, it would
offer the ideal tradeoff between battery life and range vs for example direct Wi-Fi.
Another large proponent of Bluetooth is that it is one of the worldwide most imple-
mented wireless protocols allowing users around the world from a large variety of eco-
nomic backgrounds to use the wireless patch.
To create a prototyping environment first the choice of a microcontroller had to be taken,
based on previous research the choice was made to include the tiny pico V2 within this
test set up. To create a connection between the mobile phone for sharing the images
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code for both the android phone as well as the Tinypico is needed as described in Figure
4.3. A connection was made using the Bluetooth module SerialBT in which a Bluetooth
profile is created. This profile will then start advertising itself for a connection with a
client, once this profile has a client (the android phone) it will be open for input from
the client.
Once an arbitrary command is given by the client, in this case an 8 bit Uint representing
the number 46, a quantized 224 by 224 pixel quantized to 8 bit Uint b-mode ultrasound
is send in packages of 8 bit, within [52] the code for the microcontroller is written.
From the perspective of the android phone a scan is done for the created profile using
the BluetoothAdapter module with android. Once a connection the user will be able to
send the send image command by pressing a button, this will send a 8 bit Uint number
of 46 via the outputstream.
Have these requirements been fulfilled the BluetoothAdapter will open its input stream
via the getInputStream command. This input stream will be read as 8 bit Uint and all the
values taken from this input stream are written towards a 2D int array. This 2d array will
be the basis for vagus nerve detection, code for the android side is written in [52].

Figure 4.3: Actions taken by both the Android phone and the tinypico in order to send a ultrasound B-mode
image via Bluetooth from the tinypico towards the Android phone.

4.3.2. TEMPLATE MATCHING
To implement Template matching within an android environment the OpenCV Module
was used. This module provides pre-made function that uses the android phones GPU
if available to implement Cross-correlated template matching. The code used in the
implementation is described in [52].

4.3.3. VIVO LAS VAGUS
To implement VLV within an android environment the usage of Tensorflow LITE is rec-
ommended as android has the AutoML feature to automatically integrate a Tensorflow
Lite model within an android environment optimized for usage of GPU’s. To convert the
to tinyML a conversion scheme shown in fig 4.4 is implemented and is realized in [52].
When the generated Tensorflow LITE model is imported within an android environment
AutoML automatically creates a class out of it and shows a description on how to im-
plement it. This guide can simply be followed requiring the user only to recreate the



4

38 4. IMPLEMENTATIONS

postprocessing steps taken in the original python version. Within [52] the realised code
is shown.

Figure 4.4: Flowchart for conversions of original PyTorch model of VLV towards the AutoML accepted Tensor-
flow Lite model.

4.4. IMPLEMENTATION OF A TEMPLATE MATCHING ACCELERA-
TOR WITHIN AN FPGA

Within this thesis a template matching accelerator has been created to be implemented
within the Ultra96V2, this was done using verilog code with the full code detailed in [52].
Within the following paragraphs an overview is given of all the functionality and consid-
erations needed to implement template matching within a FPGA.

4.4.1. DESIGN CONSIDERATIONS

The aim of the Template matching on an FPGA is to create an accelerator which applies
a cross correlation algorithm as detailed in formula 4.6 into a HDL representation.

R(x, y) =
∑

x′ , y
′
(T (x

′
, y

′
) · I (x +x

′
, y + y

′
))√∑

x′ ,y ′ T (x ′ , y ′ )
2 ·∑x′ ,y ′ I (x +x ′ , y + y ′ )2

(4.6)

To perform this calculation within a FPGA accelerator environment, a design was cre-
ated using a computation unit that calculates a single value of a pixel. This computation
unit is controlled via an external controller, such as a microcontroller. This external con-
troller controls which templates get cross correlated with which cut outs of the target
image.

This design has a major advantage that it easily allows the user to add parallelism
to the overall design by increasing the amount of computation units. The number of
computation units directly corresponds to the amount of time needed to calculate, e.g.
upgrading from 1 computation unit to two will cut the overall time needed to complete
cross correlation over the targeted image by half, as such the amount of resources used
for adding another computation unit also increase almost linearly.

The overall design was created with flexibility in mind, as such a streaming input has
been chosen as a way for the master to upload the template and the cropped target im-
age, allowing a wide range of masters to be implemented.
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4.4.2. IMPLEMENTATION
To create a computation unit running a normalized cross correlation template matching
algorithm as described in formula 4.6, the following IP’s are created:

1. Nominator

2. int_to_fractional

3. denomsquare

4. divider

The connections between these ip’s are shown in Figure 4.5.
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Figure 4.5: A diagram showing all the IP’s used with the template matching computation unit created within
this thesis and the connections between all of the IP’s.

Looking at the general design it can be simplified as a Blackbox diagram shown in Figure
4.6. The overall design expects a 30 by 30 original greyscale image linearised as an 8 bit
uint 1 dimensional array ranging from the top left to the bottom right and a 30 by 30
template greyscale image linearised as a 8 bit uint 1-dimensional array ranging from the
top left to the bottom right. These inputs are written simultaneously to memory via a
streaming interface activated when the write signal receives a high input which after one
clock signal immediately gets lowered to a low input. After 7200 clock cycles the input
data and the template data is written.

With the Memory block filled, the go input is ready to receive a high input. Once this
is done after 7105 cycles, or after the done output returns a high signal, a 24 bit fixed
point number, with the first 10 bits representing the integer part and the 14 bits to the
left representing the number after the dot is outputted. This 24 bit number represents
the Cross-correlation factor and can be seen as the main output of the computation unit.
The memory can be reset to an empty state and the calculation process can be stopped
via setting the reset signal high, alternatively the calculation process can be stopped
without emptying the memory blocks via setting the kill input signal high.
Within [52] the code for the IP’s which are described within the following paragraphs in
detail.
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Figure 4.6: A black box diagram showing the relation between the input and the output of the Template match-
ing computation unit, do note that the Cross correlation factor is represented with a 24 bit fixed point number.

4.4.3. LOADING AND CALCULATING THE SET-UP VALUES OF THE DENOMI-
NATOR/NOMINATOR

Nominator is a IP created within this thesis containing a state Machine comprising the
following states: idle, calculate, write, and finish.
Outside of this state machine the reset and the kill command exist.
The Reset acts as an initializer for the Flip flop busses and the LUT busses used.
The standard State of the state machine is the Idle state, the only functionality this state
has, is to check the go input and the writesignal, once one of these values goes high the
state changes into calculate and write respectively.
A state diagram is shown in Figure 4.7

Figure 4.7: State diagram of the Nominator IP, note that the finish state remains in its own state for only one
cycle after which it automatically reverts back to the idle state.

Once the write state is reached it remains at this state until the write is complete or the
reset or kill is high. The functionality of the write state is described in the flowchart of
Figure 4.8. Do note that the 2D array A and B is a LUT Array within the implementation
within the FPGA.

The calculate state is reached it remains at this state until the write is complete or the
reset or kill is high. The functionality of the write state is described in the flowchart of
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Figure 4.8: A flowchart depicting the information flow of the write state in which via a streaming inputs dat_inA
and dat_inB two LUT registers get filled, do note that this begin and end occurs within the frame of one clock
cycle.

Figure 4.9. The multiplication of the LUT elements A and B is implemented within the
FPGA environment as two flip flop arrays using arithmetic units within one clockcycle.

Figure 4.9: A flowchart depicting the information flow of the calculate state which loop through all the LUTS
and calculates the base nominator and denominator values used to calculate the normalized cross correlation
factor, do note that this begin and end occurs within the frame of one clock cycle.

The finish state can be seen as soft reset in which all of the used LUTS and Flip-Flops
are reset to their original state and sends a high signal through the done ouput signaling
the connected IP block to start running. After one clock cycle the state is reset to an idle
state.
Once the finish state has been reached the integer output needs to be converted into a
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fixed point representation for accurate division and square root by IP’s further down the
pipeline, this is done via the ‘int_to_fractional’ IP. The dataflow of the int_to_fractional
IP is described in figure 4.10. The main purpose of this IP is to convert the input 57 bit
integer into a 67 bit Fixed-Point.

Figure 4.10: flow chart of the Int_to_fractional IP, do note that this begin and end occurs within the frame of
one clock cycle.

4.4.4. IMPLEMENTATION OF SQUARE ROOT OF THE DENOMINATOR
Denomsquare is a IP block that convert a 68 bit fixed point with 10 fractional radicand
bits into a 68 bit fixed point with 10 fractional square root. Within this Verilog imple-
mentation the following square root algorithm [53] is taken a converted into a Verilog
representation.
The full flowchart of this IP can be seen in appendix E, but for ease of overview the fol-
lowing flowchart is presented with pseudocode to represent how in all its bare basics the
square root is calculated.
For this basic implementation 4 registers are generated.

1. X - input radicand

2. A –register holding the current value being worked on

3. T - result of sign test

4. Q - the square root
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Within Figure 4.11 the flowchart is shown for this bare implementation. A constraint of
this implementation is that the input radicand will always have to be fully divisible by 2.

Figure 4.11: Simplified flowchart depicting square division from to input radicand X to the output square root
Q„ do note that this begin and end occurs within the frame of one clock cycle.

4.4.5. IMPLEMENTATION OF DIVISION
Divider is a IP block that convert a 68 bit fixed point with 10 fractional radicand bits into
a 24 bit fixed point with 10 fractional. Within this Verilog implementation the following
long division algorithm [54] is taken a converted into a Verilog representation.
The full flowchart of this IP can be seen in appendix F, but for ease of overview the fol-
lowing flowchart is presented with pseudocode to represent how in all its bare basics the
square root is calculated.
For this basic implementation 4 registers are generated.

X - input dividend
Y- input divider
A –register holding the current value being worked on
Q - the quotient

Within Figure 4.12 the flowchart is shown for this bare implementation.

4.5. SYSTOLIC ARRAY ACCELERATOR IMPLEMENTATION VIVO LAS

VAGUS WITHIN AN FPGA VIA NNGEN
Within this paragraph the VLV implementation on the FPGA through NNgen is discussed.
NNgen is a framework to convert a software representation of a neural network into a
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Figure 4.12: Simplified flowchart depicting division from to input dividend X and input divider Y, to the output
quotient Q„ do note that this begin and end occurs within the frame of one clock cycle.

hardware representation inside of an FPGA.[55]

4.5.1. ARCHITECTURE

NNgen is a framework to generate FPGA accelerators for ANNs consisting of the basic
layers of a neural network, such as convolution, pooling, and full-connection. Veriloggen
is used to generate processing hardware circuits in the form of an IP containing Verilog
code.
In NNgen, there are two ways to represent a model of a neural network. One is that
the programmer explicitly builds a computational graph by combining NNgen operators
that support various neural network operations.
The other is to convert trained models built with common neural network frameworks
such as PyTorch and Tensorflow into a common neural network format called ONNX
(Open Neural Network Exchange). The ONNX model is used as a basis to create a NNgen
model, this NNgen model represents both the operators from the original ONNX model
as well as Hardware attributes such as right shift and parallelism.
This NNgen Model is converted via Veriloggen to create an IP as discussed before.
The full design flow can be seen in Figure 4.13

The IP that NNgen finally produces looks like the diagram shown in Figure 4.14. The
IP is split up in the three operator circuits: The Ram Pool, Containing the BRAM. The
Computing Unit Pool containing functionality corresponding to neural network layer eg.
conv2d, matmul, and max_pool. Substream Pool contains the arithmetic units. These
three operator circuits are connected via custom in-chip networks eg. Substream Inter-
connect, Memory Interconnect, the Main Thread, and the Direct Memory Access (DMA )
controller. The Main Thread acts as a control unit and the DMA controller that transfers
data to the outside of the NNgen hardware.

The NNgen IP is a systolic array implementation which causes only one operator cir-
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Figure 4.13: Figure depicting the full design flow of NNgen.

Figure 4.14: Figure depicting the full hardware design of an example generated NNgen IP.

cuit to be generated corresponding to an operator used within the graph even when
that operator is used multiple times within the calculation graph. In the RCNN, conv2d
and matmul are used 7 to 9 times correspondingly, but only one circuit is generated for
each. NNgen is characterized by analyzing computational graphs and generating hard-
ware with the greatest common divisor.
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In addition, the arithmetic units used by each operator are collectively generated in the
Substream Pool, and each operator shares the pooled arithmetic units via the in-chip
network (Substream Interconnect). For example, both conv2d and matmul perform
multiply-accumulate operations, but they do not generate their own multiply-accumulate
units, but share the same group of units. By sharing the operator circuit and the arith-
metic unit, it is possible to suppress the increase in the circuit scale even if the number
of layers of the neural network increases. Leading to low amount of resource usage even
when large neural network are implemented, this comes at a counter cost of higher la-
tency and higher energy usage compared to a streaming implementation.

4.5.2. DESIGN SPACE EXPLORATION
As the generated NNgen accelerator is an systolic array implemention , every layer and
every arithmetic unit is reused within the architecture, as such the flexibility of design
space is more limited compared to say, a streaming data flow accelerator.

As the main objective is to simply implement the VLV floating point representation
within an HDL representation to be implemented within the Ultra96V2 the following
sub-objectives can be added.

1. NNgen implementations of VLV accuracy should be as close as possible to the
baseline VLV implementation

2. Power usage per image inference should be as low as possible

3. Inference Time should be as low as possible

4. Resource usage should be as low as possible

Within NNgens design space there are two major variables that influence the afore-
mentioned sub-objectives: The bit width of the quantized weights, biases, input and
output and the parallelism, both kernel as well as pixel parallelism. NNgen provides the
user with a pre-made quantizer to change the floating point representation of parame-
ters within the original ONNX model to a quantized version used within the generated
NNgen Accelerator, however due to lacking results within this thesis an expansion upon
this quantizer is suggested.

The hardware parallelism generated by NNgen can be specified in the form of a param-
eter, separate from the model definition. In this example, the degree of parallelism is
specified for each of the conv2d operator (including the matmul operator), pool opera-
tor, and element-by-element operation provided via the par_ich, par_och, par_col, and
par_row parameter.

Due to systolic nature of the implementation every arithmetic unit is reused within
a layer, as such there is no clear cut way to measure BRAM efficiency as such the only
conclusion that is made regarding efficiency is the one that is made within Appendix
B.0.5, namely that pixel parallelism has to increase at the same level as kernel parallelism
otherwise resources such as BRAM might not be used optimally, and that an increase of
both kernel parallelism as well as pixel parallelism will result in an linear increase of the
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latency over all of the created layers, increasing/decreasing the parallelism by a factor of
2 will decrease/increase the latency by a factor of 2 respectively.

Within NNgen the option is given for the user to quantize input/output, weights, bi-
ases, scales in steps of 8 bits up 32 bits of bit width using the parameters act_dtype,
weight_dtype, bias_dtype, and scale_dtype . As the bit width directly influences the re-
source usage it is necessary to keep the bitwidth of all variables as low as possible to
make sure that the resulting neural network is implementable as well as power efficient.
NNgen provides the user with a pre-made quantizer to change the floating point rep-
resentation of parameters within the original ONNX model to a quantized version used
within the generated NNgen Accelerator, however due to lacking results an alternative
is suggested within this thesis using the cshamt_out which controls the amount of right
shift per layer. Using this right shift operator and the fact that the generated NNgen
computation graphs can be run as Python software by passing input data as arguments
a flowchart can be created as shown in figure 4.15.

Figure 4.15: A flowchart depicting the workflow a user needs to take to create an accurate quantized model
compared to the original floating point model.

Inside, it consists of functions corresponding to each operator that generate the same
integer operation results as the hardware. The user can compare this execu- tion result
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with the calculation result with the original floating point number to check whether it
works as expected before hardware conversion. By passing the input data as an argu-
ment, the calculation graph in NNgen format can obtain the same result as the calcula-
tion result on the quantisation hardware by soft- ware execution. This makes it possible
to check how much the behaviour until final recognition changes due to quantisation
before hardware conversion. Within the NNgen software implementation it is possible
to manually generate a layer by layer simulation by creating a custom graph in which
every layer has its own independent output. if any layers output does not match the
original ONNX/PyTorch layer, the amount of right shift should be adjusted within that
layer.

4.5.3. WORKFLOW
NNgen’s workflow is described within Figure 4.16 Within the following paragraphs the
steps are detailed. The PyTorch code broken up into the steps described in figure 4.16
is found in appendix C. As none all of these steps are implemented within the examples
provided within the NNgen for the purpose of recreation and future the steps are de-
scribed with more detailed explanations within appendix C and the code implementing
these steps are shown within [52].

Figure 4.16: A depiction of the workflow within NNgen.

4.6. STREAMING DATAFLOW ACCELERATOR IMPLEMENTATION

VIVO LAS VAGUS WITHIN AN FPGA VIA FINN
FINN is a project that aims to provide tools and libraries for creating high-inference, low-
latency DNN computation architectures. FINN offers an end-to-end flow a high-level
neural network implementation in PyTorch to specialized hardware architectures using
an FPGA as show in Figure 4.17. This end-to-end flow starts with the implementation
of a NN in Brevitas, which is a PyTorch library for quantisation-aware training and ends
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with the generation of a bitstream that can be used to program an FPGA. FINN supports
custom architectures, custom precision, and is open source to allow for transparency
and flexibility for end-user applications.

Figure 4.17: Figure depicting the full design flow of FINN.

The neural network accelerators generated by FINN do not use the systolic array archi-
tecture, like NNgen’s accelerators. Instead, it falls under custom streaming dataflow ar-
chitectures (DF). The main difference between systolic array architecture and DF archi-
tecture lies in the fact that the former executes the network layer-by-layer and uses a
more generic hardware implementation to suit multiple layers. DF-style accelerators
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have optimized datapaths and the layers can be executed in parallel. They can theo-
retically be more efficient and provide a lower latency than systolic array accelerators.
However, they also have high memory and resource requirements as every layer is im-
plemented individually resulting in duplicate arithmetic units and layers as shown in
Figure 4.18, practically this means that NNs implemented as an accelerator within an
FPGA using FINN work best if they are small to medium sized. This DF-style architec-
ture results in an extremely flexible implementation in which every layer can be tailored
to the requirements of the user.

Figure 4.18: Figure depicting the full hardware design of an example generated FINN IP.

The VLV network is small enough to be implemented on an Ultra96V2 board. Its low-
latency and low power consumption should make it a good fit for goals set within this
thesis.

4.6.1. DESIGN SPACE EXPLORATION
As previously mentioned FINN allows the user to customize every layer within the NN
accelerator to its own requirements such as inference time, power and resource usage
and accuracy.

As the main objective is to simply implement the VLV floating point representation
within an HDL representation to be implemented within the Ultra96V2 the following
sub-objectives can be added.

1. FINN implementations of VLV accuracy should be as close as possible to the base-
line FINN implementation

2. Power usage per image inference should be as low as possible

3. Inference Time should be as low as possible

4. Resource usage should be as low as possible

Within FINNS design space all of the sub objectives can be interfered using the DF
architecture as every layer can adjust its levels of bit width, parallelism, type of data stor-
age, and types of primitives used in the data storage. This is done via the Brevitas im-
plementation and the aforementioned transforms inherent to FINN. Within these next
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paragraphs the solutions created to get optimal results for the sub-objectives are de-
tailed.

The typical start of the conversion process is to create a neural network description in
PyTorch and train it with Brevitas. Brevitas is a PyTorch library for quantisation-aware
training and allows for exporting models suited for the FINN compiler flow; models are
exported in ONNX format with datatype annotations to weights to enable quantizing the
weights to datatypes smaller than 8 bit integers.

Brevitas implements a set of building blocks at different levels of abstraction to model a
reduced precision hardware data path at training time, additionally, a super-set of quan-
tisation schemes implemented across various frameworks and compilers under a single
unified API is supported.

The main objective of the Brevitas PyTorch implementation is to create a quantized rep-
resentation of the VLV network that will result in an as resource light as possible HDL
representation on the FPGA. The resource usage directly correlates to the bit width used
within the individual layers as the target device is relatively small the average bit width
over the entire model should be kept as low as possible.

This can be done manually as the bit width in a layer can be manually set via the param-
eter weight_bit_width and act_bit_width, note that the default bit width is set to 8 bit.
The model can simply be trained in a similar vein as the original PyTorch implementa-
tion. To decrease the resource usage the user is expected to manually lower the bit width
parameter values for each layer per run while making sure that the overall accuracy of
the NN does not decrease. As such if the objective is to decrease resource usage of the
VLV implementation with a bit width range of 2 bits to 8 via decrease of bit width of in-
dividual layers the theoretical amount of runs needed to find the optimal application
would require 6(10)= 60466176 runs, where 6 stands for the bit width range and 10 for the
number of layers.

As far as the author is aware there is no work yet that implements automatic bitwidth
scaling versus the accuracy of the model, as part of this thesis project, a new method
using a loss function for Brevitas was developed which automatically tries to decrease
the overall bit width of the model without losing any form of accuracy, allowing VLV
and by extension, any other NN implemented within Brevitas to have a as time-efficient
and minimized user input training as possible, while getting a as accurate and resource
effective implementation within FINN. This would also be a significant gain towards the
objective of automating the process of creating an object detector within an FPGA as
the user will only have to load in the dataset and run the python file without needing
any in-depth knowledge of NNs nor of hardware. Finding a balance between making
the model more efficient (i.e. smaller bit width) without sacrificing accuracy is a non-
trivial problem. It can be looked at as a multi-objective optimization problem or as a
constrained optimization problem.

The various ways of implementing the effects of bit width can be quite varied, the fol-
lowing loss function 4.7 has been chosen for its simplicity to implement bit width loss in
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tandem with the regular VLV loss function, within this function n equals the batchsize.

Bi tLoss =
∑n

e=0 av g bi t c
e

n
(4.7)

With av g bi t being defined in formula 4.8.

av g bi t = (
∑n

e=0 Bi t wi d th(e))

n
(4.8)

With e being a parameter within VLV and n the total amount of adjustable parameters
within VLV.
The variable c should be run through a sweep with each training session starting from
scratch to retrieve the optimal size of the accelerator while achieving a precision that is
similar to the floating-point representation of VLV. The total loss function of the Brevitas
implementation of VLV is summarized in function 4.9.∑n

e=0 Y ol oLosse +Bi tLosse

n
(4.9)

The FINN-generated DF architecture includes the implementation of loop parallelism
and task parallelism, as well as the ability to set data parallelism. Two parameters are re-
quired for FINN-HLS layers representations: PE and SIMD. These parameters specify the
number of processing elements (PE) within each compute unit (layer), and the number
of Single Instruction, Multiple Data, (SIMD), lanes per PE, do note that this type of paral-
lelism only applies to so called MVAU operator used for convolution layer within FINN,
Different types of layers may have different levels or parallelism. These parallelism fac-
tors within the FINN are called the folding factors. Only kernel parallelism is available
within Convolution layers, however, the experimental branch has pixel parallelism. This
is not covered in the thesis.

It is not easy to set the right level of parallelism for each layer. The parallelism factors
can be used to adjust two parameters: inference and resource usage. The goal of a paral-
lelism factor is to optimize the inference while preserving the resource limits of the target
device. A designer would aim to adjust the parallelism to match the latency of each layer
(compute unit).
The goal of this work is to consume as little power as possible and fit within the Ultra96V2
with a 2 second inference. To achieve the inference goals, it is recommended to choose
a low clocking speed with a slight degree of parallelism.

Note that the folding factors of a layer have a linear relationship with the latency of that
layer, increasing/decreasing the parallelism by a factor of 2 will decrease/increase the
latency by a factor of 2 respectively. The logic and utilization of memory resources will
be affected if the layer’s parallelism is adjusted. The expectation is that increasing the
parallelism will result in an increase in the logic resources (i.e. DSPs and LUTs will vary
depending on the logic resources used to implement the arithmetic. The shape of the
array that holds the weights will be determined by the parallelism factors PE or SIMD.
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The total weight array is composed of MW·MH· WB bits. With WB bits referring to the
number of bits representing a weight value, and MW and MH being related to the num-
ber of input and output channels respectively. . Furthermore, note that each PE will
have SIMD number of multiplication/additions in parallel between the input pixels and
weights
Therefore, when a convolution layer implemented within FINN reads in a new data
packet for processing, it should also read PE· SIMD ·WB bits from the weight array. Exper-
iments have shown that this results in a weight array of width as expressed via variable
W ,and depth as expressed via variable D ,are expressed by formula 4.10 and formula 4.11
respectively

W = PE ·SI MD ·WB (4.10)

D = MW ·M H

PE ·SI MD
(4.11)

As certain resources have a fixed shape, e.g. BRAM within the Ultrascale environment
can store 36 kilobits; either as a single 36 kbits RAM module or two independent 18 kbits
RAM modules with a fixed amount of write ports influencing how arrays are partitioned.
For example, the width of the weight array is not utilizing the full width of the hardware
memory component, the memory component will not be fully occupied and the remain-
ing bits along the width are wasted. Especially for less flexible memory components,
such as BRAM, this might lead to severe underutilisation of the memory component.
FINN gives the user the option to perform an analysis which gives a layer by layer output
regarding BRAM resource usage, this is used to calculate the BRAM efficiency. The BRAM
efficiency is calculated as formula 4.12.

BR AMe f f = W

BR AM16c
(4.12)

With BR AM16c, the 16 bit bram estimated capacity calculated within formula 4.13.

BR AM16c = BR AM16est ·36 ·512 (4.13)

With BR AM16est being calculated as Formula 4.6.1

BRAM16est (W,D)≜



⌈ D
16384

⌉
, if W = 1⌈ D

8192

⌉
, if W = 2⌈ D

4096

⌉⌈W
4

⌉
, if W ≤ 4⌈ D

2048

⌉⌈W
9

⌉
, if W ≤ 9⌈ D

1024

⌉⌈W
18

⌉
, if (W ≤ 18)∨ (D > 512)⌈ D

512

⌉⌈W
36

⌉
, otherwise

(4.14)

The wish for the BRAM efficiency to at least be higher than 50% for every layer inside of
VLV, as this means that the BRAM usage is nonoptimized allowing the degree of paral-
lelization to be doubled for that particular layer without using more BRAM resources.

Within FINN the ability is set for individual layers to use different types of primitives
for weight memory. The goal of any FPGA design is to have a balanced design in which
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every primitive is utilized to roughly the same degree. Using the resType within a FPGA
dataflow node attribute primitive types can be selected.
FINN supports two types of the mem_mode attribute for the HLS implementation of
activation layers. This mode controls how the weight values are accessed during the
execution. Currently, two settings for the mem_mode are supported in FINN: Const and
decoupled.[8]

Figure 4.19: Figure depicting the architecture of a MVAU FPGA dataflow Component in const mode, note how
the weights are baked into to the component. Figure inspired by [8].

The const mode has the weights baked in. This means that they are part of the HLS code.
The weight values are included in the code during the IP block generation and synthe-
sized with it. The user can find the code that generated the resulting IP in the FINN HLS
Library. As shown in Figure D.6, the resulting IP block contains an input stream and an
output stream, FIFOs are connected to these.
Const mode offers a significant advantage over traditional decoupled modes as they use
fewer resources resulting in less power usage. However, because it allows the user to
control the weight memory primitives with less precision, resource allocation problems
can arise. Vivado HLS may not always produce the correct synthesis.

A different version of the MVAU with three ports is used in decoupled mode. The circuit’s
input and output streams are connected via Verilog FIFOs. A third input is used to stream
weights. The user can find the code that generated the IP in the FINN HLS Library. A Ver-
ilog weight streamer component retrieves the weight memory from the MVAU and sends
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Figure 4.20: Figure depicting the architecture of a MVAU FPGA dataflow Component in Decoupled mode, note
the added weight streamer with the FIFO attached for loading the weights into the weight memory from a .dat
file. Figure inspired by [8].

them the values via the third FIFO. This FIFOis located in FINN. For the IP block gener-
ation this component, the IP block resulting from the synthesis of the HLS code of the
streaming MVAU and a FIFO for the weight stream are combined in a Verilog wrapper.
The weight values are saved as.dat files, and then stored in the weight memory that the
weight streamer can read. Externally, the MVAU in decoupled mode provides the same
inputs and outputs as the const mode MVAU.

Decoupled mode has a larger resource footprint due to the additional weight FIFO and
weight streamer. However, it gives the user more control over which primitive they
choose to use. Because it has lower synthesis times than Const mode, and can load dif-
ferent weights through the .dat file, prototyping environments have more functionality
using decoupled memory mode.
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Due to the main objective of the implementation of VLV inside of an FPGA, for the design
to be as power and resource efficient as possible as opposed to have a more balanced but
heavier resource usage the choice of data type was set at const. In an attempt to create
a balanced resource usage the final layers of VLV, which are expected to be the largest,
have their primitive types set to DSP.

4.6.2. WORKFLOW
The sequence of converting a PyTorch implementation into a neural network accelerator
can be broken up into the following parts.

1. Brevitas implementation

2. Tidy-up and define input

3. Streamlining floating-point operations

4. Lowering convolutions

5. Conversion to HLS layers

6. Layer folding

7. Selecting memory mode

8. Set FIFO depths

9. ZYNQ build

Due to the fact that there is no earlier implementation for object detectors within
FINN, within this thesis these steps have been implemented for the first time using
FINN’s available transformations. For the purpose of recreation of this thesis or possible
expansion have these transformations been described with more detailed explanations
within appendix C and the code using these transforms are shown within [52].

Now that an overview is given of 5 implementations using VLV an overview is given of
the results of the efficiency of every implementation detailed within this chapter. This
overview is detailed in the next few pages.
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RESULTS

5.1. BASELINE ACCURACY TESTED ON CPU WITH FLOATING POINTS

T O set the baseline standard for all future wearable implementations detailed within
this chapter the accuracy of both template matching as well as VLV within a floating

point Python environment ran using a CPU, was measured using the accuracy measure-
ment algorithm described within section 3.3.2. This measurement was done over the
test set within the overall data split with VLV being trained to 99.4 percent accuracy us-
ing the training data set. Template matching is done with only one template used shown
in appendix H.

Figure 5.1: A bar chart depicting accuracy of desktop implementation of both VLV as well as template
matching.

The VLV implementation is to be expected to be highly accurate while for template match-
ing an extremely low accuracy of around 10 percent is expected based on the previous
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works of Videa Pashei et al.[3], as can be seen Figure 5.1 in both VLV as well as template
matching the accuracy is relatively high, this can perhaps be contributed towards the
static spirit of the created data set. The increase of accuracy of VLV compared towards
the template matching implementation does show that NN object detectors are more
suited for the task of finding the dynamically shaped vagus nerve.

5.2. RESULTS OF THE MOBILE IMPLEMENTATION
For the mobile implementation a Bluetooth connection between the Android phone
HUAWEI Mate 20 and the TinyPico over which a ultrasound B-mode image was send
from the test set was sent via the TinyPico over Bluetooth towards the HUAWEI Mate 20
for inference as detailed in section 4.3.

5.2.1. ACCURACY OF THE MOBILE IMPLEMENTATION
With Figure 5.2 the accuracy of the mobile implementation over the test set for both a
floating point Tensorflow lite implementation of VLV as well as template matching. As
can be seen from Figure 5.2 the loss of data from the Bluetooth transfer is minimal if any
exist, nor is there any loss of accuracy from the transformation of the original PyTorch
implementation towards the finalTensorflow lite implementation. As expected the tem-
plate matching implementation behaves the same way as the original Python version on
the CPU.

Figure 5.2: Bar chart depicting accuracy of the android implementation of both VLV as well as template
matching.

5.2.2. INFERENCE TIME OF THE MOBILE IMPLEMENTATION
The average inference over test set on the mobile phone has been tested on the HUAWEI
Mate 20 lite using the Mali-G51 MP4 GPU. The time taken for processing a single image
is shown in Figure 5.3 A. To find the true time to process a single image the time taken to
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send the target image from the TinyPico needs to be included, since the average time to
send a 224 by 224 via Bluetooth is around 6.64 seconds via the implementation written
within this thesis a more accurate inference time is shown in Figure 5.3 B.

Figure 5.3: Figure A depicts a bar chart of the base average inference time of the HUAWEI Mate 20 lite using
the Mali-G51 MP4 of both VLV and template matching with Figure B showing the average inference time

including both the base inference of the HUAWEI Mate 20 lite as well as the time taken for the image transfer
from the TinyPico towards the the HUAWEI Mate 20 lite.

As shown in 5.3 B this is a significant increase in time taken for inference 5.3 A, while
no minimum standard has been set for maximum inference time, these results in the
opinion of the author are still unacceptably high.
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5.3. RESULTS OF THE FPGA IMPLEMENTATIONS

5.3.1. RESULTS FINN DESIGN SPACE
As FINN allows for a large degree of freedom through its DF style architecture, as such
the FINN implementation has a specific section showing results for the two problems
detailed within FINNs design space section:

• Under what conditions does the BitLoss function for automatic minimisation of
bit width over the VLV perform the best?

• At what amount of parallelization is the BRAM efficiency higher than 50 percent
over all the layers of VLV?

The parallelism implementation based on the MW and the MH of the generated HLS
is written down in Table 5.1 resulting in a BRAM efficiency shown in Figure 5.4. The
algorithm used to calculate BRAM efficiency is described in section 4.6.1.

Layers PE SIMD MW MH IFMChannels
1 2 3 27 32 3
2 2 8 288 64 32
3 2 8 576 64 64
4 2 8 576 64 64
5 2 8 576 64 64
6 2 8 576 64 64
7 2 8 576 64 64
8 3 8 64 15 64
9 4 15 735 124 1
10 7 4 124 637 1

Table 5.1: Overview of the parallelism and MW and MH as described in section 4.6.1, note that layer 9 and 10
have only 1 channel, with PE parallelizing over the MH dimension while SIMD parallelizes over the MW

dimension. As shown the final 2 layers 9 10, are shown to be the largest layers with the highest MW and MH.

As can be seen overall the BRAM is efficiently used however the parallelism could be in-
creased for the initial layer and the second layer resulting in an increase in speed without
losing resource usage.
Table 5.2 shows the BRAM efficiency together with the total amount of BRAM and DSP
used per layer. Note that this shows that the resource usage is most heavy in the final
2 fully connected/linear layers even when the primitives have been set to DSP within
FINN as described in section 4.6.1.
To find the most effective configuration of the VLV, a setup was created to perform a
variable sweep. The variable ’c’ corresponding to the power of the BitLoss function is
shown in function 5.1 and further detailed in section 4.6.1. This is swept from 0 to 10 in
steps of 1. Within the NN, a seed is set, that the NN starts training without randomisation
acting as a nuisance variable. The setup code for this experiment is provided in [52].

Bi tLoss =
∑n

e=0 av g bi t c
e

n
(5.1)
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Figure 5.4: A bar chart depicting the BRAM efficiency of the VLV FINN implementation layer per layer, do note
that the first two layers have low enough efficiency that parallelism could be increased without resulting in
higher resource usage.

Layer 1 2 3 4 5 6 7 8 9 10
BRAM
effi-
ciency
(%)

14.06 50 66.7 66.7 66 x 66 x 74.17 85.7

BRAM
usage

1 6 9 6 6 0 20 0 20 15

DSP us-
age

0 0 0 0 0 0 0 0 60 28

Table 5.2: This Table gives an overview of the resource usage layer by layer while including the BRAM
efficiency estimation based on the formula detailed in section 4.6.1.

Two versions of this experiment have been created, one which initialises VLV over all
layers with a bit width of 8, and a version which initialises VLV over all layers with a bit
width of 2.

The results of the average bit width across VLV for the variable sweep with an starting bit
width of 8 is shown in Figure 5.5A and the corresponding amount of epochs is shown in
Figure 5.5B, with the full results shown in appendix I.

As shown in the Figure 5.5A there seems to be a strong correlation between the power of
the BitLoss function and average bit width until the power variable reaches 6. As can be
seen in Figure 5.6A while the bit width for all layers goes down initially it seems to stall
at 4 bits idem ditto for power variable set at 7, 8, 9, and 10, there is no concrete answer
on why this occurs aside from the BitLoss function being seen as too large in comparison
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Figure 5.5: Figure A depicts a bar chart of the average bit width of VLV within Brevitas over a power sweep of
the variable C depicted section 4.6.1 with the starting values for every layer being 8 bits wide, while Figure B
depicts a bar chart of the average amount of epochs required for training over the power sweep of variable C

with the starting values for every layer being 8 bits wide.

to the loss from YOLOLoss function as seen in Figure 5.6B, however a guess can be made
that it relates to the stop condition of a precision of 95%, perhaps training the NN past
this stop condition would cause the avarage bit width to go down further.

In contrast the sweep starting at 2 bit shows as strong correlation between accuracy and
of power the BitLoss function as shown in Figure 5.7A regardless of how large the power
of the BitLoss function becomes, showing that in all cases the average bit width is lower
or equal to its 8 bit width equivalent. What also can be seen is that comparatively the
amount of epochs that are needed for the 2 bit implementation increases compared to
the 8 bit implementation as shown in Figure 5.7B.

The most efficient average bit width resulting from a trained VLV NN is the one that cor-



5.3. RESULTS OF THE FPGA IMPLEMENTATIONS

5

63

Figure 5.6: Figure A depicts a bar chart of the average bit width of VLV within Brevitas over a power sweep of the
variable C depicted in section 4.6.1 with the starting values for every layer being 8 bits wide and the variable C
being set a value of 6, note how all of the layers of VLV are equal to the Conv1, and Linear2 layer giving them
the appearance of hiding. Figure B depicts a bar chart of the average amount of epochs required for training
over the power sweep of variable C with the starting values for every layer being 8 bits wide. Note that Accuracy
Loss and YOLO Loss are used interchangeably.

responds to a BitLoss function with the power variable set to 10 with the initial bit width
set to 2. As can be seen from the Figure 5.7A the bit width over all the layers within the
VLV NN remain static throughout all the epochs and barely change, this due to the over-
bearing presence of the BitLoss function compared to the YOLOLoss function as shown
in Figure 5.7B.

The almost static bit width throughout all layers under a low initial bit width is a recur-
ring pattern, as can be seen in appendix I.

This is in contrast to the implementations in which the initial bit width starts at 8 bits,
with a more dynamic bit width throughout all epochs shown in Figure 5.9A, even when
the BitLoss function lays dominant in later epochs as shown in 5.9B, the act of lowering
the bit width within a individual layer within VLV has a such detrimental effect on the
accuracy that the YOLOLoss function again rises to dominance causing the bit width to
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Figure 5.7: Figure A depicts a bar chart of the average bit width of VLV within Brevitas over a power sweep of
the variable C depicted section 4.6.1 with the starting values for every layer being 2 bits wide, while Figure B
depicts a bar chart of the average amount of epochs required for training over the power sweep of variable C

with the starting values for every layer being 2 bits wide.

revert backs to its original state, this could be the major contributing factor as to why
starting training from a lower bit width seems to contribute to a higher precision.
For future implementations with new data sets or for a completely different NNs alto-
gether, the best implementation of the BitLoss function is to do a parameter sweep in
which the power variable is swept from 2 to 10 with the initial bit width set at 2 if the goal
is to find the highest accuracy while retaining the lowest bit width via training.

5.3.2. INFERENCE FPGA
The inference time for the FPGA implementations are shown in Figure 5.10, do note that
no interface between the template matching implemention detailed in section 4.3.2 and
the ZYNQ Ultrascale+ MPSoC, as such the amount of time taken within an implemented
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Figure 5.8: Figure A depicts a chart of the individual bit-width of every layer within VLV throughout the
training process with the power of the BitLoss being 10, note how all of the layers stay mostly static

throughout the training, with Figure B depicting a chart of the loss produced by the BitLoss aswell as the
YOLOLoss, note that the BitLoss is dominant throughout all the training iterations. Be aware that Accuracy

Loss and YOLO Loss are used interchangeably.

simulation is taken as the inference. The test-bench code is shown in [52].

As can be seen the FINN implementation with its high parallelism and streaming dataflow
structure results in the fastest inference of all the implementations at 0.174 second per
image, secondly comes the systolic array implementation of NNgen without any par-
allelism build in at 0.54 seconds per image. Finally the template matching implemen-
tation with a 0.776 seconds per image is the slowest, do note however that for every
pixel calculated within the template matching algorithm almost half of the computation
time(14305ns) goes into streaming the input template as well as the cut-out of the target
image(7200ns), also of note is that this template matching implementation only has one
computation unit, doubling the amount would result in roughly half the inference time.
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Figure 5.9: Figure A depicts a chart of the individual bit-width of every layer within VLV throughout the
training process with the power of the BitLoss being 5 and the initial bitwidth set to 8, note how all of the
layers stay dynamic throughout the training, with Figure B depicting a chart of the loss produced by the

BitLoss aswell as the YOLOLoss, note that the BitLoss majorly dominant throughout the early training
iterations while throughout the later training iterations the loss produced by BitLoss and YOLOLoss is roughly

equivalent. Note that Accuracy Loss and YOLO Loss are used interchangeably.

5.3.3. RESOURCE USAGE FPGA
Within the FPGA implementation the following resource usage is defined for VLV im-
plemented within the FINN streaming dataflow architecture with absolute values being
showing in Figure 5.11A and percentage based resource usage in the context to the Ul-
tra96V2 inside of 5.11B, the resource usage of NNgen systolic array architecture with ab-
solute values being showing in Figure 5.12A and percentage based inside of 5.12B, and
finally the resource absolute resource usage of the template matching computing unit is
shown Figure 5.13A, with the percentage based resource usage on Figure 5.13B.
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Figure 5.10: A bar chart depicting of the base average inference time in seconds of the VLV accelerators based
on FINN and NNgen as well as the template matching accelerator running on the Ultra96V2.

As can be seen from the percentage based resource usage none of the implemented de-
signs have a particularly balanced resource usage, this is perhaps due to the uint8 based
quantisation shown in both NNgen implementation as well as the template matching
implementation, in which LUTs are used for temporary storage of the template image,
and the cut-out of the target image, as well as the multiplication arithmetic units.
The FINN implementation with its modular primitive types has given the most balanced
design resulting in the smallest usage difference between every primitive type.
As can be seen in every implementation the resource usage is kept well within the lim-
itations set by the Ultra96V2 as shown in 5.13 B and 3.4, with the only exception being
the LUT usage by the template matching set at 55.82 percent and the LUT usage of the
FINN VLV Accelerator set 67.03 percent which takes up a significant larger amount of
the available 70560 LUT elements, however even though it is an outlier compared to the
other primitive usage it still fits comfortably within the Ultra96V2.
The NNgen Implementation of VLV is the only implementation that requires external
DRAM, drastically increasing the resource usage shown by Vivado this DRAM estima-
tion is based on the log produced via the NNgen workflow described in section C with
the resulting generated log shown in appendix G. As the log shows that 3929791 8 bit ad-
dresses are needed for implementation and a single DRAM taking up 32 * 1024 = 32768
bits, or 4096 Bytes per DRAM, 960 DRAM is needed.

5.3.4. ACCURACY FPGA
In Figure 5.14 the accuracy of all 3 FPGA implementations is shown, note that template
matching’s precision is measured within an implemented simulation.
The quantize aware training from Brevitas used inside of the FINN implementation shows
a tremendous increase in accuracy compared to the float-to-int quantisation used within
the NNgen implementation. The training set accuracy within the Brevitas model is set to
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Figure 5.11: Figure A depicts bar chart showing the absolute resource usage of the FINN implementation of
VLV while Figure B depicts the percentage based resource usage based on the resources available within the

Ultra96V2.

95.6 percent compared to the PyTorch models 99.4 percent accuracy. Template match-
ing’s implementation has shown a small difference between the cpu baseline and the
simulation but not enough to invalidate the implementation.

5.3.5. POWER USAGE FPGA
Within this chapter two approaches will be taken to measure the power usage of the
implemented FPGA designs. Firstly Vivado’s automated power usage measurement and
a real life test setup using the Ultra96V2.

VIVADO ESTIMATIONS

Within Vivado estimation the following results were returned as shown in Figure 5.15A
leading to the following temperature estimations shown Figure 5.15B.
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Figure 5.12: Figure A depicts bar chart showing the absolute resource usage of the NNgen implementation of
VLV while Figure B depicts the percentage based resource usage based on the resources available within the

Ultra96V2, note how there is 960 external DRAM required which is not required within any of the other
implementations created within this thesis.

As can be seen there is a large degree of estimated power usage difference between both
VLV accelerator implementations compared to the template matching computing unit.
This can be explained due to the lack of implementation of a connection between the
ZYNQ Ultrascale+ MPSoC IP and the computation unit, resulting in lower but more ac-
curate power usage compared to the inflated numbers found in the both VLV accelera-
tors.
Within all implementations the heat estimation shown in Figure 5.15B while perhaps
uncomfortable will not lead to any tissue damage on the wearer allowing a user to safely
wear all of the implementations designed.
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Figure 5.13: Figure A depicts bar chart showing the absolute resource usage of the template matching
accelerator while Figure B depicts the percentage based resource usage based on the resources available

within the Ultra96V2.

To get a more accurate results the power consumption was measured on the Ultra96V2
board during inference of the trained VLV model in both the NNgen as well as the FINN.
The measured voltage of the power supply to the board was multiplied with the mea-
sured current to compute the power consumption, with the current being measured via
a GW instek GPPP-4323 power supply, with the supply voltage set at 12 volt. The mean
power during inference is calculated as a mean over 10 inferences. The power consump-
tion of the different implementations created during this thesis is defined as the differ-
ence of the Ultra96v2 board idling and power during inference. The idle power con-
sumption was measured over a five-minute period to be Pidle = 4.14 watt. This results in
an average power consumption for both VLV implementations as shown in Figure 5.16.
It should be noted however that this form of measurement could be seen as flawed for
the NNgen implementation as the external DRAM of the Ultra96V2 is already in use un-
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Figure 5.14: A bar chart depicting the accuracy of the VLV accelerators based on FINN and NNgen as well as
the template matching accelerator running on the Ultra96V2.

der the shared CMA as described in section C this drastically decreases the actual power
usage as this implementation purely measures the FPGA part.

As can be noted the template matching implementation is not measured in real life as
no ZYNQ Ultrascale+ MPSoC IP was created.

5.4. COMPARISON TO OTHER WORKS
As finding a nerve via a object detection algorithm implemented within a phone and an
FPGA according to the author something that has not yet been done, for the comparison
this work will be broken up in two parts: Implementing an object detector for detecting
Bio-markers within Ultrasound B-mode images within an CPU, and taking the accuracy
as the main comparison point, and Implementing an object detector within an FPGA
environment, and taking the power efficiency in FPS/watt as it main comparison point.

5.4.1. COMPARISON OF OBJECT DETECTORS FOR BIO-MARKERS WITHIN AN

CPU BASED ON ACCURACY

Aside from a traditional RCNN and template matching implementations created within
this thesis a more recent implementation by [11] in which a so called siamese Regional
convolutional neural network was created with a attached linear Kalman filter for short
term memory object tracking.

As seen in table 5.3 a comparison is made between the works detailed in [11] com-
pared to VLV, within [11] multiple object detetectors created in other works were tested
again their Siamese object tracking algorithm upgdSiamFC which is the SIAMFC NN
taken from [56] with a linear Kalman filter (LKF) attached, within this work also other al-
ternative object tracking alternatives were implemented and tested, including multiple
Siamese neural network architectures but also traditional algorithms such as variations
on block matching algorithms. As can be noted the accuracy detection within the work
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Figure 5.15: Figure A depicts bar chart showing the vivado estimations of power usage in watts of the VLV
accelerators based on FINN and NNgen as well as the template matching accelerator running on the

Ultra96V2, with Figure B depicting a bar chart showing the vivado estimations of heat generation in degree C.

of [11] is calculated in mm compared to the relative accuracy in percentage within this
thesis, this since the shape of the created bounding box is not variable as the SiamFC
always results in a bounding box the size of the input template image, another factor is
that within the work of [11] the size of the pixels within the B-mode ultrasound relative
to real life milimeters is known this is unfortunately case within the test set of this thesis.

As shown in Table 5.3 the training of upgdSiamFC was done using the ILSVRC dataset
that consists of camera images of real-world objects, such as animals, vehicles, and
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Figure 5.16: A bar chart showing the power usage from real life measurements in watts of the VLV accelerators
based on FINN and NNgen within the Ultra96V2.

household items, and the network was not retrained using Ultrasound images for the
application. Furthermore, SiamFC does not update the template model or incorporate
any motion model.

As can be noted that all works featured in [11] consist of object trackers instead of ob-
ject detectors, as such they usually depend on the input of the previous frame to detect
the object in comparison to a traditional object detector that calculates the location of
an object independently of any previous input, object tracking NNs generally have both
a higher accuracy as well as a higher inference to object detectors NNs of similar size,
however, they require a constant flow of images within every second to return an ac-
curate output. As ultrasound neuromodulation is a process that occurs with delays in
between individual modulations to make sure that the targeted nerve doesn’t overheat,
large moments of inactivity can occur, within these moments of inactivity a traditional
object detector can simply not run while an Object tracker is required to run to keep ac-
curacy high, this could have as an effect that object trackers could require more power
despite being more power efficient compared to object detectors.

The NN designed in [11] called the upgdSiain has a an overal size of around 5.5 times as
large of the VLV base implementation, size here is defined the size floating-point weights
and biases of the architecture combined, while no FPGA implementation exist as far as
the author knows, an educated guess can be made that the resource usage of upgdSi-
amFC within a streaming dataflow accelerator would result in a far larger NN unable to
fit within the Ultra96V2, as such the only viable implementation within an FPGA would
be a systolic array accelerator, however even if it can be implemented, based on the pre-
dicted size of upgdSiain the prediction could also be made that VLV will have a faster
inference.

The block matching algorithm implementation by [10] has the highest accuracy despite
not being a neural network, there is no specific implementation for the algorithm de-
signed within this specific paper, however, there are similar algorithms implemented
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Name
work

Neural
net-
work
type

FPS Size Accuracy Device Input size
image

Training
Dataset

[11] Object
track-
ing

4 8.5
MB

1.59 mm CPU 255x255x3
127x127x3

ILSVRC
dataset

VLV Object
detec-
tion

5.75 1.9
MB

85% FPGA 224x224x3 114 US
images

[10] X X X 0.72 mm CPU X X

Table 5.3: Table giving overview over the accuracy of a floating point implementation of VLV compared to the
works of [11] ,and [10], note how both the accuracy assesment aswell as the test set differ between implemen-
tation causing the comparison to be somewhat moot.

within an FPGA showing the possibility of reasonable resource usage for within the Ul-
tra96V2. Within a block matching algorithm a cost function, such as mean absolute dif-
ference (MAD), mean squared error (MSE), or Normalized Cross-Correlation (NCC), is
used to calculate the similarity between the reference block and the candidate block in
an iterative fashion. The predefined search region is searched exhaustively to obtain the
best-matching candidate block. Consequently, the cost function is calculated in every
iteration, making the method computationally expensive.
All the different works tested within are all variations of the algorithms detailed within
this section as such the assumption is made that the predictions made within this chap-
ter hold up for the other works tested within [11]. A important next step for an accuracy
comparison is to gather a realistic dataset and have multiple object detection algorithms
and run inference over this dataset using the accuracy assessment algorithm discussed
within section 3.3.2.

5.4.2. COMPARISON OF OBJECT DETECTORS IMPLEMENTED WITHIN AN FPGA
The most efficient power per frame implementation was chosen, with the FINN imple-
mentation with its 0.092 watt per frame or 10.88 FPS/watt was chosen as a comparison to
other works, the results are shown in Figure 5.17. For this comparison a small literature
search was done using the search term: “object detector fpga power usage” resulting
in the following object detectors to be chosen for comparison:Nested RNS [14] Event-
Driven OD [13], OD thermal [12], Deep CNN Accelerator [15], and BCNN Accelerator
[16].

It should be noted however that measuring power via MPSOC is not a precise science
and the choice of using different FPGA or MPSOC boards can have a wildly different ef-
fect on the power usage of every implementation shown, with every implemented NN
having a completely different objective in mind for object detection with completely dif-
ferent types of input, nor do all off the works selected mention how they got their repre-
sentative watt usage this makes this comparison somewhat moot. A more true approach
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would be to convert the HDL representation into an ASIC and check the power usage of
that compared to other works implementing a NN within a ASIC with the same objective
of finding the vagus nerve or a similar Bio marker inside of a B-side ultrasound image.

Figure 5.17: A bar chart showing the power usage from real life measurements in watts of the VLV accelerators
based on FINN and NNgen within the Ultra96V2.

Despite this assessment certain conclusions can be made by looking at the techni-
cal specifications. As can be seen from Figure 5.17 the VLV accelerator made within the
FINN framework compares well against all other works except for OD thermal [12] and
Event-Driven OD [13], both created by the same team. To explain the difference of ef-
ficiency of these outliers a comparison is done to VLV FINN implementation created
within this thesis to the most efficient implementation of [12].
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Layertype
VLV

VlV dimensions VLV In.
F.Size

LayerType
[12]

[12] dimension [12] In.
F.Size

Conv.
Block

32x3x3x3 224x224 Conv.
Layer

64x4x11x11 181×181

Conv.
Block

64x32x3x3 112x112 MaxPool 64x64x3x3 43×43

Conv.
Block

64x64x3x3 56x56 Conv.
Layer

64x64x5x5 22×22

Conv.
Block

64x64x3x3 28x28 MaxPool 64x64x3x3 22×22

Conv.
Block

64x64x3x3 14x14 Conv.
Layer

64x64x3x3 11×11

Conv.
Layer

64x64x3x3 7x7 Conv.
Layer

64x128x3x3 11×11

Conv.
Layer

15x64x3x3 7x7 Conv.
Layer

128x128x3x3 11×11

Conn.
Layer

1x735 1x735 Conv.
Layer

128x128x3x3 11×11

Conn.
Layer

7x7x13 7x7x13 Conv.
Layer

128x128x1x1 11×11

Conv.
Layer

128x128x1x1 11×11

Conv.
Layer

128x21x1x1 11×11

Table 5.4: Comparison between VLV FINN and [12], note how compared to VLV FINN the linear layers are
missing within the work of [12]

Table 5.4 shows the general architectural differences between VLV and OD thermal
detector from work [12], do note that a “Conv.Block” consists of a Convolution layer a
MaxPool function with a 2x2 kernel, and a ReLu Function while the Conv.Layer just con-
sists of a convolutional layer and a ReLu function. A clear difference between the two
implementations is that the OD thermal NN implementation on the FPGA does not con-
sist of a fully connected layer, seen from section 5.3.1 the fully connected layers are the
most resource-intensive layer within the VLV FINN implementation as such it can be as-
sumed that they will also be the most energy inefficient and will have to largest inference
times. Within the work of [12], these fully connected layers instead run via the user’s lap-
top making the FPGA implementation resource usage quite lighter and inference speed
compared to VLV faster, however, this makes the full setup computer-dependent, mak-
ing it hard to compare with the VLV FINN implementation in which the full NN is imple-
mented within the FPGA. As such the question arises whether this can be considered a
full NN implemented within an FPGA or half of one. A secondary attribute that can be
noticed within OD thermal is that in the initial Convolutional and MaxPool layers the in-
put size of the image due to the large kernel sizes has shrunk significantly with the final
few layers having a kernel size of 1 making the convolutional process resource light.
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Implementation VLV FINN [12]
Platform Ultra96V2 ZCU102
Clock Freq.[GHz] 0.1 0.1
Power[watt] 0.528 1.2
Architecture style Streaming Streaming
FPS 5.745 164
Bit width 2-3 bit integer 16-bit floating-point

Table 5.5: Comparison between VLV FINN and [12], note how despite the large increase of FPS over VLV FINN
does not result in a linear increase of power requirement.

As can be seen in table 5.5 both the VLV FINN implementation as well the OD ther-
mal use a Streaming Data flow style architecture as defined within section 4.6, while the
individual layer architectures are uniquely implemented they do share the same pros
and cons compared to a systolic implementation. The OD thermal implementation has
a way larger Power usage and a higher FPS compared to the VLV FINN implementation,
this thanks to a large amount of parallelism is shown in Table 5.6 resulting in far larger
resource usage as shown in table 5.7. Due note that the only way this larger resource
usage can be implemented is by using an FPGA with larger resource usage such as the
ZCU102, how the power usage within this FPGA is calculated is not defined within the
work of [12], which might result in an inaccurate comparison to this work. The bit width
within OD thermal has chosen to use PE’s using 16 bit floats to increase accuracy, as the
VLV FINN implementation uses quantize aware training with automated reduction of bit
size while keeping the accuracy to a maximum the VLV implementation can be seen as
an objective improvement compared to the implementation by [12].
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Layertype
VLV

PE VLV FINN SIMD
VLV
FINN

LayerType
[12]

SIMD
[12]

Relu 2 3 Conv.
Layer

181

Conv. Block 2 8 MaxPool x
Conv. Block 2 8 Conv.

Layer
22

Conv. Block 2 8 MaxPool x
Conv. Block 2 8 Conv.

Layer
11

Conv. Block 2 8 Conv.
Layer

11

Conv. Layer 2 8 Conv.
Layer

11

Conv. Layer 3 8 Conv.
Layer

11

Conn. Layer 4 15 Conv.
Layer

11

Conn. Layer 7 4 Conv.
Layer

11

Conv.
Layer

11

Table 5.6: Table comparing the kernel wise parrelisation, versus the pixel wise parrelisation of [12], note that
the pixel parrelelism is fully exploited as the parrelism is queal to one axis of the corresponding input shape as
detailed in Table 5.4.

Table 5.6 shows a comparison between the FINN VLV implementation and OD ther-
mal implementation in regards to parallelism, it is hard to compare this as there is no
industry standard for terminology used for parallelism within NNs, as such what the de-
scription of parallelism has been converted to the terminology used within the context
of this thesis. The major difference between the VLV FINN implementation and the OD
thermal implementation is that VLV FINN uses kernel-based parallelism and OD ther-
mal uses pixel-based parallelism on either the y or x-axis. Using table 5.4 it can be seen
that for every layer the maximum amount of pixel parallelism is chosen, as every pixel
has its PE for loading the pixel. This massive amount of parallelism is according to the
author the major reason why the inference is so fast and the FPS/watts is high.

As can be seen there the OD thermal implementation by table 5.7 uses more re-
sources than the VLV FINN implementation, despite the smaller neural network and the
loss of the fully connected layers, due to the high amount of parallelism, this results in
higher power usage in watts but also a faster interference. This overall large amount of
resources is required raising the question of the overall size of the eventual ASIC and
whether it can be implemented within a wearable ultrasound patch as designed within
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Implementation VLV FINN [12]
LUT 47,298(67.03%) 105,060(38.33%)
LUTRAM 12,588(43.71%) X
FF 62,774(44.48%) 100,508 (18.34%)
BRAM 50(23,15%) 224 (12.28%)
DSP 90(25%) 390 (15.48%)

Table 5.7: Table showing the resource usage and efficiency in FPS/watt of VLV implemented inside FINN, and
[12], as can be seen has a higher resource usage due the large amount of parallelism.

section 4.These variables combined to give a good explanation regarding the extreme ef-
ficiency of work [12], especially the high amount of parallelism and the loss of the fully
Connected layers gives a good insight into where the next steps can be taken into opti-
mizing the inference as well despite the overall large usage of resources raising the ques-
tion on the validity of usage within an ASIC as described in this thesis. This work can be
used as an example to see how Amdahl’s law of increasing parallelism does not only in-
crease interference but also creates a greater power efficiency at a cost of higher resource
usage.

Implementation FINN VLV [12] [13] [14] [15] [16]
LUT 47,298

(67.03%)
105,060
(38.33%)

24,672
(9.00%)

427,014
(98%)

N/A N/A

LUTRAM 12,588
(43.71%)

X x 0 N/A N/A

FF 62,774
(44.48%)

100,508
(18.34%)

21,896
(6.30%)

0 N/A N/A

BRAM 50 (23,15%) 224
(12.28%)

539
(29.5%)

1,235
(42%)

N/A N/A

DSP 90 (25%) 390
(15.48%)

152
(6.30%)

0 N/A N/A

Efficiency
(FPS/watt)

10.88 137.17 65 1.097 7.93 10.44

Table 5.8: Table showing the resource usage and efficiency in FPS/watt of VLV implemented inside FINN, [12],
[13], [14], [15], and [16], as can be seen all the works either have unknown or higher resource usage.

As seen in table 5.8 it is a running theme that all works which out class VLV imple-
mented via FINN on efficiency have resource usages far exceeding this work, the as-
sumption being that these works have implemented a high degree of parallelism, as such
due to the aim of creating an autonomous object detector implementation that uses as
few resources as possible yet does not require a microcontroller for making calculations,
and can be eventually implemented as a ASIC within a patch as described in section 4,
FINN VLV does appear as the most optimal choice. Based on these results conclusions
can be drawn as described in the next chapter.





6
CONCLUSION

I N this thesis 5 unique works have been created, resulting in to the best of the authors
knowledge the first fully automated end to end flow for creating a software NN object

detector and converting it towards an HDL representation. This is implemented by using
FINN, allowing biomedical engineers without knowledge of digital electronics or Neural
networks to simply load in data and run the python files. This resulted in an object de-
tector (Using VLV) within FINN with an accuracy of 87.5 percent on the test set and an
efficiency of 10.88 FPS/watt. To create this automated end to end flow, a loss function
which keeps the bit width down automatically, working in tandem with the YOLOLoss
function, to increase the accuracy, was implemented. This resulted in an automated
function that creates an implementation of a trained NN with a maximum accuracy and
lowest possible bit width combination, trained within one single training session, this is
to the authors knowledge the first something like this is created for quantize aware train-
ing. To further optimize the object detection process a special NN was created specifi-
cally for finding the vagus nerve inside of an ultrasound B-mode image, these factors
combined show that NN object detector accelerators implemented within an FPGA do
not require a large number of resources, even for streaming dataflow architectures.
Another object detector accelerator implemented within an FPGA using VLV was created
within NNgen resulting in a systolic array accelerator with an accuracy of 57.6 percent on
the test set with the 4.17 FPS/watt, within the NNgen framework an algorithm was cre-
ated for accurate quantisation from floating-point representation towards integer repre-
sentation.
Finally, within the FPGA a cross-correlation template matching implementation was cre-
ated from scratch using Verilog, this ran with an inference of 0.776 seconds and an accu-
racy of 27.32 with an estimated power usage of 0.448 watts.
Template matching and VLV have also been represented within an android phone con-
nected via Bluetooth with a Tiny Pico, proving that Bluetooth can be used to send medi-
cal data lossless from one device to the other, however, it also has shown to be a very slow
medium of transporting information uncompressed, resulting in an overall throughput
of 7.06 seconds and an accuracy on the test set of 99.21 percent, finally, another an-
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droid phone implementation was created this time focussing on template matching con-
nected via Bluetooth with a Tiny Pico resulting in an overall throughput of 7.5 seconds
and an accuracy on the test set of 27.39 percent

Within this thesis, multiple approaches were shown, for the machine learning imple-
mentations a very limited data set had to be used. For future work, it would be important
to go beyond a proof-of-concept and to create a data set with which a NN can be trained
more reliably. To create an as accurate dataset as possible, the B-mode ultrasound im-
ages used for training and test data sets should be created via the ultrasound transducer
array used within the final designs described within section 4. The created image set
should be a variable as possible, with the test subjects consisting of varied ages, races,
and gender, the position of the annotations of the vagus nerve also has to be as varied
as possible, resulting in a more realistic implementation and accuracy estimation of the
implementations. The NN that was created within this thesis, VLV, could be more op-
timised as the final two fully connected layers are assigned for three classes expecting
two objects within a single grid cell, as is however the case within this thesis the only
objective is to find the vagus nerve which only appears singularly within an ultrasound
B-mode image ergo it also only appears once within a grid cell, as such the last two fully
connected layers can be downscaled to expect one class with one object within a gridcell.
This should lead to a large reduction in resource usage as can be seen in section 5.3.1, the
fully connected layers were seen as the main culprits in resource usage. Finally, an im-
plementation of an active contour model on a cut-out of the found bounding box might
increase the overall accuracy of the postprocessing.

The implementation of VLV within NNgen has a very low accuracy through the quanti-
zation process compared to the floating-point representation original and the quantize
aware model trained in Brevitas. To get a higher accuracy two options can be imple-
mented: Automation of the process described within section 4.5.2 by averaging the er-
ror over the entire dataset and implementing it within Pytorch, and implementing an
NNGEN representation of VLV and loading it with the parameters taken from a trained
Brevitas model. Within the NNgen small research should also be done to see the connec-
tion between channel and pixel parallelism and the increase of power/resource usage
versus a better FPS.

To get a better comparison of accuracy of VLV versus other object detection models, once
a better dataset is created a comparison should be made using the accuracy assessment
algorithm detailed in section 3.3.2.

The implementation of VLV within FINN has multiple small issues which decrease its
overall performance, as can be seen from the power sweep done in section 5.3.1 of the
loss function the average bit width can be set to 2 bit while right now the overall bit width
is 2.24 this should result in better performance. Another increase in performance can be
by increasing the parallelisation constants of the first two layers of the VLV implemen-
tation resulting in faster throughput with no effect on the amount BRAM used as the
BRAM usage efficiency lies at or below 50 percent. Finally, the Brevitas implementation
can be trained to higher accuracy, right now it is trained at an accuracy of 95.6 percent
on the training set but it should be able to reach 99.4 percent of the original Pytorch
implementation as shown in section 5.1.

The main problem with the implementation of template matching inside of an FPGA is
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the reduced performance as well as the extra resource usage from the LUT block con-
taining a cut-out of the target image and the template. A new design is proposed which
will replace the 2 900 long 8 bit LUT blocks with a single 2 8 bit LUT block. Instead of
writing to these memory blocks first using the writesignal input and then following the
calculation function activated via the go input a single input is created, this input still ex-
pects a bit by bit streaming input but the moment that it fills both of the 8 bit LUT blocks
it will automatically calculate the initial denominator and nominator values, after which
the LUT blocks will be emptied allowing the cycle to repeat itself. This should reduce a
large amount of the LUT usage resulting in a lower resource usage overall and decrease
the time taken to calculate the cross-correlation value of a single pixel by one-third as
seen in section 5.3.2. Finally, an implementation for a data streaming interface should
be made between the Template matching computation unit and the ZYNQ Ultrascale+
MPSoC for easy prototyping.
The major problem of both the template matching and the VLV implementations within
an Android phone is to transfer the information from the Tiny Pico microcontroller to the
Android phone as can be seen in section 5.2.2, to increase the speed of the throughput
two different approaches can be taken: Realise the transfer of the information from the
Tiny Pico to the android within a different medium then Bluetooth, such as Direct Wi-
Fi, or decrease the size of the transferred information by using compression algorithms
such as run-length encoding, area image compression, and Huffman coding. The only
real requirement set to this method is that the compression methods are lossless.
To complete the conversion from a research to a product, a conversion from an FPGA
implementation to an ASIC should be made, as referred to as the ‘imagine algorithm
chip’ within section 4. The major difference between that proposed implementation
and the implementation suggested now is that instead of the output of the transceiver
chip going through the microcontroller for pre-processing and then through the ASIC,
the pre-processing will be done via a separate chip directly in contact with the ASIC and
only the output of the ASIC will be sent to the microcontroller for post-processing. Once
an ASIC is created a comparison should be made between the existing ASIC’s created by
Google specifically for accelerating neural networks.

Finally once the ASIC has been chosen and created the designs described in 4 should
be created.
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A
ARTIFICIAL NEURAL NETWORKS

Artificial Neural Networks (ANNs) are statistical models that are partially inspired by and
modelled after biological neural networks(NNs). Nonlinear correlation between distinct
inputs and outputs can be computed using ANNs. They are powerful instruments that
can assist in the solution of problems that cannot be handled using an algorithmic ap-
proach. Neural networks can be used to handle problems like image categorization and
natural language recognition.

A.1. NEURONS
An ANN will have nodes that are connected to several other nodes, just like a biological
neural network. There are many inputs to a neuron, but only one output. The sum
of all weighted inputs plus a starting constant is taken into account by a neuron. The
output is then passed through a neuron’s activation function. A further explanation of an
activation function will be given in paragraph A.5. The neuron’s output is subsequently
passed on to the ANN’s next neuron.

A.2. WEIGHTS
A synapse is a link between two nodes. Each synapse has a certain amount of weight.
The weight indicates how much the previous node’s input should be taken into account.
Lower weights imply that the input is less important for the output, whereas higher
weights indicate that the input is more important.

A.3. OUTPUT NODES
An ANN’s output nodes represent the output node’s expected data. The output of an
ANN are also called dependant variables. Depending on the data, an ANN can have one
or multiple output nodes.
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A.4. HIDDEN LAYER

An Artificial Neural Network’s hidden layer is made up of a network of neurons that con-
nects the input and output layers. Each node in the preceding layer is connected to each
neuron in the hidden layer. A single neuron or a group of neurons can make up a hidden
layer. There is no hard and fast rule for the number of neurons that make up a hidden
layer. In addition, ANNs can have one or more hidden layers. Figure A.1 depicts an ex-
ample of a rudimentary artificial neural network.

Figure A.1: Figure depicting a simple neural network

A.5. ACTIVATION FUNCTION

A neuron in an ANN does not just send the weighted inputs to the next node. Instead,
a function termed an activation function is applied to a neuron’s input. The activation
function takes a neuron’s weighted inputs and transforms them again before outputting
them, with the ANN gaining nonlinearity as a result of this change. There are several
activation functions available, with LeakyReLu and ReLu being two of the most popular
activation functions.
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A.5.1. RELU
The ReLu is the most used activation function right now.The ReLU activation function is
defined in formula A.1.

f (x) = x i f x > 0
0 other wi se

(A.1)

the function sets any negative value to zero, while letting all positives value through un-
changed. The ReLu function has a range from 0 to ∞ as seen in the graph Figure A.2.

Figure A.2: Graph depicting the ReLu activation function

The main issue is that all the negative values become zero, which decreases the ability of
the model to fit or train from the data properly. That means any negative input given to
the ReLU activation function turns the value into zero immediately in the graph, which
in turns affects the resulting graph by not mapping the negative values appropriately.

A.5.2. LEAKY RELU
Leaky ReLu is an attempt of solving the ReLu the negative value problem inherent in
the ReLu activation. The function differentiates compared to the regular ReLu that it
incorporates a negative element in order to increase the range of the function resulting
in formula A.2.

f (x) = x i f x > 0
bx other wi se

(A.2)

The variable b usually is 0.01 resulting in the range of -∞ to ∞ represented in the graph
of Figure A.3.

A.6. TRAINING AN ANN
An Artificial Neural Network (ANN) must first be trained before it can be utilized to gen-
erate predictions. Training refers to supervised learning in the context of this paragraph.
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Figure A.3: Graph depicting the LeakyReLu activation function

A dataset that is reflective of the problem to be solved is required to train an ANN. The
steps for training an ANN are as follows.

1. Initialization of the weights and the constants of the ANN

2. Forward propagation

3. Evaluation of the loss function

4. Backwards propagation

The ANN must be trained before it can be used. The ANN’s weights and constants must
be established first. This can be accomplished in a variety of ways. The initial constants
and weights can all be set to zero or another uniform number. However, the most fre-
quent technique to establish the weights is to do it at random. The dataset is fed through
the ANN once the weights have been established.

A.6.1. FORWARD PROPAGATION
The training of the ANN can commence when the weights of the ANN have been initial-
ized. First, enter the dataset’s independent variables and examine the ANN’s output. As
an example, consider the following dataset.

x =[1.2,0.0,2.4]y = 0.33 (A.3)

A single point where x represents a set of independent variables from a dataset and y
represents the dependent variable that the ANN is attempting to predict. The indepen-
dent variables will be entered into the ANN for the time being to see what it predicts in
its current condition. The first neuron’s output is determined by adding the weighted in-
puts together and then using the sigmoid activation function to calculate the outcome.
This is done as followed:

z =(0.7∗1.2)+ (0.3∗0.0)+ (−0.4∗2.4)+(−0.8)⇒−0.9 (A.4)
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σ(− 0.9)= 0.28 (A.5)

The calculation of the second neuron is the same as the first neuron which is as followed:

z = (0.2 ·1.2)+ (−0.2 ·0.0)+ (0.3 ·2.4) ⇒ 0.5 (A.6)

σ(0.5) = 0.61 (A.7)

And finally the output node is calculated as followed:

z = (0.5 ·0.28)+ (0.4 ·0.61)+0.9 ⇒ 1.3 (A.8)

σ(1.3) = 0.78 (A.9)

Unfortunately the calculated output differs from the real output of the dataset. To correct
this, the performance of the ANN must be evaluated. This is done with a loss function

A.6.2. LOSS FUNCTION
A loss function, also known as a cost function or error function, is a function that calcu-
lates the difference between expected and projected outputs. The loss function is used
to compare the output of an ANN to the real value. The performance of the ANN may be
evaluated using a variety of loss functions. The following is an example of a loss function:

E(y, ŷ) =
∫ n

i=1
(

1

2
)(ŷ − y)2 (A.10)

The y in formula A.10 represents the dataset’s anticipated output value, whereas the ŷ is
the ANN’s predicted variable. The Σ in the formula denotes the total of all the values.
The total of all outcomes and projected values in the dataset is used in this situation.
In this formula, the square serves two functions. The first is to get absolute values, as
just the disparities between the two numbers are required. The second goal of squaring
the difference is to punish large discrepancies in the two variables while rewarding tiny
differences. The ANN will be trained using the loss function. An ANN that can reliably
predict the output based on the dataset is trained by minimizing the output of the loss
function. By applying the loss function to the predicted and expected output the follow-
ing error is calculated:

(
1

2
)(0.33−0.78)2 = 0.101 (A.11)

The next step is to move backwards and adjust the weights to minimize the loss.

A.6.3. BACKWARDS PROPAGATION
Moving backwards through the ANN and modifying each weight is known as backwards
propagation. After tweaking the weights, forward propagation is used once more to see
the ANN’s output. The loss function is then applied once more to check how the ANN
performed. This procedure can be repeated indefinitely. When this procedure is com-
plete, the weights that result in the smallest loss are chosen. The term for this way of
training an ANN is brute forcing. It is not just possible that this process will take a lengthy
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time to finish. When dealing with increasingly intricate ANNs, however, the time it takes
to compute the best set of weights skyrockets. A different method must be employed to
fast approach the point of minimal error in order to speed up the process of training an
ANN. This can be done with an optimizing strategy which minimizes the loss function.
In Figure A.4 a scatterplot of what this brute force method can be seen.

Figure A.4: Graph depicting brute force method of finding minimum error within a function

After many iterations of forward and backwards propagation, the ideal weights for the
dataset have been found. In Figure A.5 a visualization of the correct weights and a calcu-
lation of the output can be seen.

Neur on 1 =σ((−0.1 ·1.2)+ (0.1 ·0.0)+ (−0.9 ·2.4)±0.5) = 0.06 (A.12)

Neur on 2 = ((0.0 ·1.2)+ (0.9 ·0.0)+ (−0.5 ·2.4)±0.8) = 0.12 (A.13)

Out put = ((−0.6 ·0.06)+ (0.20 ·0.12)±0.7) = 0.33 (A.14)

A.7. OPTIMIZER
Optimizers, also known as optimizing algorithms, aid in the reduction of the loss func-
tion. The optimizer achieves the minimal point of a loss function faster than brute forc-
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Figure A.5: Figure depicting the weights and calculations of a simple neural network

ing a solution for the ANN. There are a plethora of optimization techniques available,
one of which is the gradient descent method.

A.7.1. GRADIENT DESCENT

One of the most significant optimization strategies for training and optimizing an ANN
is gradient descent. A multidimensional derivative (dy/dx) of a function is called a func-
tion’s gradient. A gradient is a multidimensional slope that is calculated instead of a
single value that represents the slope of a tangent line. The goal of gradient descent is
to use the gradient to approach the minimum of the loss function described in para-
graph A.6.2. The first step is to compute the derivative of the first point. Second, the
partial derivative is used to compute the contribution of each weight to the loss func-
tion. Depending on the slope of the derivative, the weight is modified correspondingly.
This approach is continued until the loss function’s minimum is found. Figure A.6 shows
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a visual representation of the Gradient Descent.

Figure A.6: Figure depicting gradient Descent within a 2d graph

A.8. STOCHASTIC GRADIENT DESCENT
Gradient Descent is a good way to reach a minima of the loss function the problem arises
when the loss function has more than one minima. With Gradient Descent the chance
of getting stuck in a local minima is big when the loss function is not parabolic. In Figure
A.7 the effect of using gradient descent on a function with more local minima’s can be
seen.

To avoid this, the weights might be modified after a single sample rather than after pass-
ing through the entire dataset. This reduces the likelihood of the optimizer becoming
trapped in a local minimum. Adjusting the weights after each point in the dataset might
take a long time, depending on the size of the dataset. As a result, rather of executing this
for each every point in the dataset, it is suggested that you do it in batches. This keeps
the optimizer from becoming trapped in a local minimum while reducing the amount of
time it takes to modify the weights.

A.9. IMPORTANT LAYERS
To find the Vagus nerve within a ultrasound b-mode image the following specific layers
are used.
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Figure A.7: Figure depicting Stochastic gradient Descent within a 2d graph

A.9.1. CONVOLUTION
Convolution, also known as feature mapping is when a kernel is used to detect how dis-
tinctly a certain feature are present in an image. This is done by laying the kernel at the
start of a matrix of the image and then multiplying the matrices with each other. After
the multiplication, each number of the resulting matrix is summed up. A high number
means that the feature is strongly present in the current spot of the image, while a low
number means that the feature was barely present in the image. This number is placed
in a new matrix. The next step is to move the kernel one stride to left and repeat the
process until the kernel has passed the whole matrix. The result of this process is a new
matrix called a feature map. The feature map shows where a feature is present in a pic-
ture. It also shows how distinctly the feature is present. In Figure D.2 a simplified version
of this convolutional process is shown.
The convolutional layer consists of parameters discussed in the following paragraphs

KERNEL

A Kernel which is also known as a filter, feature or a feature detector. As the word “feature
detector” already implies a kernel is used to detect features of picture. A kernel is a matrix
where the depth is the same as the depth of the input picture and where the height and
width can be any size as long as it is smaller than the input picture. The kernels are the
weights of the CNN, this means that while training a CNN, the kernels will be adjusted
to make the CNN more accurate.

PADDING



A

96 A. ARTIFICIAL NEURAL NETWORKS

Figure A.8: Figure depicting the "Border effects problem

Depending on the size of the kernel not every pixel will be cantered causing a loss of
information at the edge of an image, this is referred to as the “Border effects problem”,
within deep neural network with a lot of layers this will result in simply running out of
data. In Figure A.8 the Border effects problem is illustrated, as the 3 by 3 kernel cannot
be centred on the outer edge the outer layer gets lost. In Figure A.9 it is illustrated how to
counteract this problem. Pixel values can be added to the edge of the input data, these
pixels are usually valued at 0 in order to not affect the output of the Kernel

Figure A.9: Figure depicting the negation of the "Border effects problem by adding padding to the model

STRIDE

Stride is the amount of steps taken by the kernel by the kernel for cross correlation.

AMOUNT OF KERNELS

In an effort to capture multiple patterns within an image multiple kernels can be used,
a general rule of thumb dictates that the complex the image the more Kernels should be
used.

A.9.2. MAX POOLING
Pooling also referred to as down sampling, is the act of reducing the input matrix result-
ing in an abstract representation of the original matrix. This is done for two reasons. The
first being to prevent overfitting and the second is to reduce the amount of input which
in turn also reduces the computational cost of the CNN by reducing the amount of pa-
rameters. When applying max pooling to a matrix, a smaller two dimensional matrix
also called a filter will traverse the input matrix. The filter will usually move by the same
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amount as its width. At each stride the maximum number within the filter is included in
a new representation map. For a visual representation of max pooling, as seen in Figure
A.10. The idea behind max pooling is that when a feature is strongly present in an area
of picture the surrounding area is less important and can be ignored.

Figure A.10: Figure depicting a visual representation of max pooling

A.9.3. FLATTENING
The result of applying one or more convolutional and pooling operation are multiple
smaller matrices. These matrices are then flattened and then used as the input parame-
ters for an ANN. The ANN uses these inputs to classify image.

A.9.4. LINEAR
A linear layer applies transform which can be described as:

Y = X At +B (A.15)

A Feed-forward layer is a combination of a linear layer and a bias. It is capable of learning
an offset and a rate of correlation. Mathematically speaking, it represents an equation of
a line. Within a neural network linear layers are used in the first layers to scale the input
and in the last layers to scale the output. As can be seen in Figure A.11

Figure A.11: Figure depicting a visual representation of a linear layer





B
PARALLELISM NEURAL NETWORKS

FPGA ACCELERATORS

Parallelism of Neural networks FPGA accelerators can be roughly divided under the fol-
lowing types parallelism:

1. Loop parallelism

2. Data parallelism

3. Task parallelism

How these are implemented is discussed within the following paragraphs.
To show how parallelism is implemented a simple streaming dataflow architecture is
created, as shown in Figure B.1, do note that Data parallelism and Loop parallelism can
also be implemented within a systolic array implementation.

Figure B.1: depiction of a standard streaming dataflow architecture neural network implementation
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In this architecture , conv1, conv2, fc1, fc2 are all implemented as different circuits. An
SRAM buffer ( x’, x”, x”’) inside the FPGA is inserted between each layer, and this buffer
serves as input and output for each layer. From this point onwards each layer will be
seen as a task within the implementation.

B.0.1. BASELINE SEQUENTIAL PROCESSING

Figure B.2 shows the visualization of the execution time when inference processing is
performed 3 times within this architectures.

The execution time for each task is based on the actual operation waveform of the indi-
vidual task resulting throughput times in which from order of longest to shortest can be
seen as conv2 > conv1 > fc1 > fc2. Although conv1, conv2, fc1, fc2 are implemented as
separate tasks in this module, these tasks can only run one at a time. Therefore, if the
execution time of conv1= t0, conv2= t1, fc1= t2, fc2= t3, the overall execution time over
all the evaluations can be seen as 3 * (t0 + t1 + t2 + t3)

Figure B.2: Fully linear execution of neural network layer tasks

B.0.2. PARALLEL PROCESSING OF TASKS

In this hypothesis the tasks are modified so that they could run at the same time, result-
ing in multiple tasks processing different interferences at the same time. The execution
of this hypothetical is visualised in Figure B.3.

Figure B.3: Parallelized execution of neural network layer tasks

Extracting parallelism so that multiple tasks move at the same time in this way is called
task parallelization . Since the execution time of conv2 is dominant in this processing,
the processing time for 3 frames is t0 + 3 * t1 + t2 + t3.

B.0.3. IDEAL TASK PARALLELISM

Finally, an ideal version of task parallelism is hypothesized. As mentioned previously,
simply extracting task parallelism will make the slowest task the bottleneck, and the over-
all processing speed will be dictated by the performance of that task. Therefore, the most
efficient task parallelism is when all tasks have the same execution time.

In this case, the processing time t0 + 3 * t1 + t2 + t3 remains the same, but t0 = t1 = t2 =
t3 the execution time of each task is adjusted so that it becomes , so the performance is
improved.
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Figure B.4: Ideal parallelized execution of neural network layer tasks

B.0.4. TASK PARALLELISM
The main reason the architecture shown in Figure B.1 cannot simply implement task
parallelism is that the buffers cannot read and write at the same time in between tasks,
for task parallelism to be achieved this is a necessity.
In this architecture, task-level parallelization is achieved by using the ping-pong buffer x’
as the buffer between tasks. The ping-pong buffer is a buffer that prepares two buffers,
one for writing and one for reading. The block diagram with the ping-pong is shown
Figure B.5.

Figure B.5: Depiction of streaming dataflow architecture with implementation of ping pong buffer between
layers for task parallelism

When the circuit is configured in this way, the buffer that stores the output from conv1
and the buffer that conv2 reads the input are separate, so conv1 and conv2 can operate
at the same time. Although omitted in the figure, all layers can be moved at the same
time by performing double buffering for conv2 <-> fc1, fc1 <-> fc2 as well.
Do note that for optimal performance input data as well as weights and biases should
be loaded via BRAM then for example externally. BRAM inside FPGAs can operate much
faster than DRAM, and data can be read and written stably every cycle. Therefore a more
realistic block diagram of a circuit is shown in Figure B.6, within implementation, all the
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data such as images and weight sizes are copied in advance inside the FPGA, and each
layer is modified to read the data from the memory inside the FPGA.

Figure B.6: Depiction of streaming dataflow architecture neural network implementation with implementation
BRAM buffers for high throughput loading of inputs and weights.

X_local has the role of temporarily storing the input data from the DRAM from the Load
task. The same applies for the weights and biases, for the output layer fc2 the data is
buffered in the local memory y_local and later stored in the store layer.
In this figure, the local buffer is a single buffer for simplicity. This buffer should be a
ping-pong buffer for task parallelism as described previously.

SPEEDING UP THE CONVOLUTION LAYER BY LOOP PARALLELIZATION

The innermost loop of the convolution function is roughly divided into the following
three processes.

1. Pixel, weight load

2. Pixel, weight multiplication

3. Add the multiplication result to the sum register

Figure B.7 below shows a rough visualisation of the above kernel processing flow.

Figure B.7: process flow of standard kernel processing flow of convolution layer

Here, the Figure is based on the assumption that the load processing takes 1 cycle, the
fmul processing takes 3 cycles, and the fadd processing takes 4 cycles. With ‘i’ represent-
ing the number of iterations.
Just like in task parallelism we can imagine a hypothetical situation in which the kernel
acts almost completely simultaneous and parallel as shown in Figure B.8.
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Figure B.8: Ideal parallel implementation of loop parallelism.

Previously, the next iteration started every 8 cycles, but in this hypothetical, the next
iteration starts every 1 cycle. Extracting parallelism between different iterations in this
way is called loop parallelization . The interval at which iterations can be performed is
called Iteration Interval (II), and in this example it is written as II = 1.
In loop parallelism, the way of extracting parallelism is almost the same as in task par-
allelism. The difference being that task parallelism extracts parallelism between inter-
ferences, while loop parallelism extracts parallelism between iterations of processing
within each layer. In addition, since the processing of multiple interferences must oper-
ate at the same time to extract task parallelism, there are restrictions such as the input
data for multiple frames must be expanded to the DRAM on the FPGA in advance. On the
other hand, since loop parallelism is completed only within the interference, parallelism
can be extracted without any particular restrictions.

Figure B.9: Realistic parallel implementation of loop parallelism due to the fact that the multiplication result
to the sum register is dependent on the input of the previous iteration

PERFORMANCE IMPROVEMENT BY DUPLICATING THE SUM REGISTER

As the calculation of every iteration depends on the value within the sum register a more
realistic process flow depicted in Figure B.9, as can be immediately concluded gives a
huge hit to the performance of the overall design.
A simple solution can be implemented by implementing the amount of sum registers
equal to the amount of clock cycles taken, in this case 4 as shown in Figure B.10.

Figure B.10: Ideal parallel implementation of loop parallelism due to multiple sum registers, note that every
colour depicts a different sum register.

Within this process flow the separate color of fadd represents a different a different sum
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register, as can be seen every 4th iteration of the cycle the same sum register is used
again.

B.0.5. DATA PARALLELISM
Data parallelism indicates the parallelism between the data to be processed.
The main difference between loop parallelism and data parallelism is that loop paral-
lelism executes each process in a pipeline as shown in Figure B.11

Figure B.11: Parallelized implementation of processing data within a waveform while using purely loop paral-
lelism

Extracting data parallelism, on the other hand, is equivalent to duplicating an processing
element (PE). The waveform when two arithmetic units are duplicated is shown in Figure
B.12.

Figure B.12: Parallelised implementation of processing data using two arithmetic units, this is referred to as
data parallelism

The difficulty in dealing with data parallelism is that the more data parallelism that is
extracted, the more hardware resources it consumes. Of particular concern are memory
access resources (load / store). Note that BRAM in the FPGA can usually issue a total of
two load / stores per cycle, so if more load/stores per cycle are required, the BRAM will
be replicated. While loop and task parallelism is usually implemented within designs
as an industry standard due to its low resource usage, data parallelism is something the
designer has to choose how to implement whether designing from scratch or using a
framework like FINN or NNgen.
Loop parallelism and data parallelism can be extracted at the same time as shown in the
Figure B.13.
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Figure B.13: Parallelized implementation of processing data within a waveform while using both loop paral-
lelism as well as data parallelism

DATA PARALLELISM IN CONVOLUTION PROCESSING

There are various forms of data processing within the convolution processing loop, within
this paragraph two types of data parallelism used within NNgen will be discussed.
The first type of parallelism that can be implemented is pixel parallelism is visualized in
Figure B.14.

Figure B.14: Convolutional layer pixel parallelism

The orange and blue pixel calculations are independent of each other, so they can be
calculated in parallel, with the yellow kernel being used for both calculations. Therefore,
the memory access required for one process (two convolutions) is to run the load process
twice and the full process once.
The second type parallelism discussed within this thesis is the parallelism between the
output channels also known as kernel parallelism shown in Figure B.15.

Figure B.15: Convolutional layer Kernel parallelism resulting in data parallelism
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Convolution calculations using the yellow and blue kernels do not depend on each other,
can be calculated parallel from each other. Which means that in contrast to pixel paral-
lelism, that in kernel parallelism the kernel needs to read twice, but the pixel only needs
to be read once. The memory access required for one process (convolution) is to run the
load process once and the full process twice.

Figure B.16 shows combined kernel as well as pixel parallelism. Four output values can
be calculated with two pixel reads and two kernel reads.

Figure B.16: Both kernel as well as pixel parallelism

The following is a block diagram of the HW to be implemented based on this diagram.

Figure B.17: Pixel parallelism as well as kernel parallelism combined with their used arithmetic units arranged
in a grid pattern.

Note that the arithmetic units (PE) can be arranged in a grid pattern.

When data parallelization is performed only for one axis (pixel / output channel), the
number of processing elements equal only the amount of parallelism for that axis. As
mentioned above, an increase in the degree of parallelism results in an increase in the
usage of memory resources such as BRAM. Parallelization on one axis does not use all
ports for BRAM/DSPs due to only partially parallelizing the convolutional processing
loop.
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On the other hand, if the two axes are parallelized as shown Figure B.17, and the degree of
parrelelism in both axis are equal the usage of memory access ports should be balanced
resulting in optimal resource usage. As such if the designer chooses to increase pixel
parallelism it almost always cost minimal resources to also increase kernel parallelism
within the same task, vice versa this
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SETTING UP ENVIRONMENT

The following environment was set up for NNgen usage

1. Ubuntu 1.04.4.2 LTS

2. Python 3.7.7

3. Vivado 2019.1

Within a python virtual environment the following modules have been installed.

1. veriloggen: 1.8.2

2. pyverilog: 1.2.1

3. pillow: 7.1.2

4. onnx: 1.7.0

5. torch: 1.5.0

6. torchvision: 0.6.0

7. jupyter: 1.0.0

When these requirements are met NNgen can be installed using the following com-
mands.
git clone https://github.com/NNgen/nngen.git
cd nngen
git checkout b063ad58052229057864a10b4e80c9d96cf53154
python3 setup.py install
The setup is complete.
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CREATE PYTORCH IMPLEMENTATION

Accelerators generated by NNgen do not currently support floating point arithmetic,
only integers (or fixed decimals) are available.
Since many FPGAs consume more circuit resources to implement floating-point arith-
metic than integer arithmetic, it is preferable to use low-bit width integers from a circuit
perspective.
As described within Paragraph 3.5.2 two methods exist for quantisation: Post-Training
Quantization) and and Quantization-Aware Training. For this implementation the choice
was made to implement Post-Training Quantization, in contrast of Quantization-Aware-
training implementation used by Finn.
The neural network described in paragraph 4.2 was implemented within a Pytorch envi-
ronment detailed within [52].

CONVERT PYTORCH MODEL TO ONNX GRAPH

Pytorch has its own functionality to convert Pytorch models into ONNX models, when
converting to ONNX models the nodes within the graphs should be able to be converted
to it its NNgen representation. Within git version b063ad58052229057864a10b4e80c9d96cf53154
the following ONNX nodes are supported.

1. add: Add two tensors

2. sub: Subtraction of two tensors

3. add_n: Add n tensors

4. multiply: multiply two tensors

5. multiply_shared: Multiply two tensors (share multiplier)

6. multiply_add_rshift_clip: After the sum of products (x * y + z) with a tensor of 3,
right shift and clip

7. div: division of two tensors

8. neg: sign inversion

9. abs: absolute value

10. equal: Match comparison of two tensors (==)

11. not_equal: Mismatch comparison of two tensors (! =)

12. less: Comparison of two tensors (<)

13. less_equal: Comparison of two tensors (<=)

14. greater: Comparison of two tensors (>)

15. greater_equal: Comparison of two tensors (> =)

16. sign_binary: returns +1 for positive values, -1 for zero or negative values
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17. sign_ternary: returns +1 for positive values, -1 for negative values, 0 for zero

18. clip: Clip (saturation) with the maximum and minimum values determined from
the bit width

19. where: ternary operator (a? B: c)

20. lshift: left shift

21. rshift: right shift

22. rshift_round: Rounded right shift

23. zeros_imm: returns an immediate value of 0

24. ones_imm: returns an immediate value of 1

25. full_imm: returns any one immediate value

26. zeros_imm_like: Returns zeros_imm with the same shape as an existing tensor,
similar to zeros_like

27. ones_imm_like: Returns ones_imm with the same shape as an existing tensor,
similar to ones_like

28. full_imm_like: Returns full_imm with the same shape as an existing tensor, similar
to full_like

29. relu: ReLU (Rectified Linear Unit)

30. leaky_relu: Leaky ReLU

31. exp: exponential function

32. sigmoid: sigmoid function

33. add: Add two tensors

34. sub: Subtraction of two tensors

35. add_n: Add n tensors

36. multiply: multiply two tensors

37. multiply_shared: Multiply two tensors (share multiplier)

38. multiply_add_rshift_clip: After the sum of products (x * y + z) with a tensor of 3,
right shift and clip

39. div: division of two tensors

40. neg: sign inversion

41. abs: absolute value
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42. equal: Match comparison of two tensors (==)

43. not_equal: Mismatch comparison of two tensors (! =)

44. less: Comparison of two tensors (<)

45. less_equal: Comparison of two tensors (<=)

46. greater: Comparison of two tensors (>)

47. greater_equal: Comparison of two tensors (> =)

48. sign_binary: returns +1 for positive values, -1 for zero or negative values

49. sign_ternary: returns +1 for positive values, -1 for negative values, 0 for zero

50. clip: Clip (saturation) with the maximum and minimum values determined from
the bit width

51. where: ternary operator (a? B: c)

52. lshift: left shift

53. rshift: right shift

54. rshift_round: Rounded right shift

55. zeros_imm: returns an immediate value of 0

56. ones_imm: returns an immediate value of 1

57. full_imm: returns any one immediate value

58. zeros_imm_like: Returns zeros_imm with the same shape as an existing tensor,
similar to zeros_like

59. ones_imm_like: Returns ones_imm with the same shape as an existing tensor,
similar to ones_like

60. full_imm_like: Returns full_imm with the same shape as an existing tensor, similar
to full_like

61. relu: ReLU (Rectified Linear Unit)

62. leaky_relu: Leaky ReLU

63. exp: exponential function

64. sigmoid: sigmoid function

65. reshape: change shape

66. cast: change the data type
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67. expand_dims: expand dimensions

68. transpose: transpose

69. conv2d: 2D convolution

70. binary_weight_conv2d: 2D convolution with binarized weights

71. ternary_weight_conv2d: 2D convolution with ternary and t-weights

72. log_weight_conv2d: 2D convolution with log-quantized weights

73. matmul: Matrix product (mainly used for fully connected layers)

74. max_pool: maximum value pooling

75. avg_pool: average pooling

76. max_pool_serial: Lightweight implementation of maximum pooling (available if
area size is larger than stride)

77. avg_pool_serial: Lightweight implementation of mean pooling (available if area
size is larger than stride)

78. pad: add margins

79. slice_: Cut out a vector from a matrix

80. concat: combine multiple tensors

81. upsampling2d: Upsampling (reverse of pooling)

82. pad: add margins

83. slice_: Cut out a part

84. concat: combine multiple tensors

85. upsampling2d: Upsampling (reverse of pooling)

As ONNX is a open source community project the nodes created through the Pytorch
through ONNX change over releases. As such it is recommended to manually select
which operator version nodes match the ones supported by NNgen, further details of
this are detailed within the ONNX github.

CONVERT ONNX FORMAT MODEL TO NNGEN FORMAT

The first step of converting an ONNX graph into a HLS representation is to convert
the ONNX graph into a NNgen graph. This can be done via the from_onnx operation.
Within this operation the bitwidth for the scaling, the bias, the activation function and
the weight, note that the bitwidth for these datatypes across all nodes will be uniform
and the ability to select bitwidth for each individual layer is not given. As the resource
usage is the main concern within implementing a NN inside of a ultrasound patch the
bitwidth for all values is chosen to be the minimal value of 8 bits with an exception of the
bias which is given 32 bits space.
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QUANTIZE THE NNGEN MODEL

Since NNgen is a compiler that quantizes a trained model, it has a quantisation function
for Post-Training Quantization that quantizes the trained model from a floating point
implementation towards a integer representation. When quantizing to an integer, it is
necessary to appropriately truncate the value by right-shifting so that the calculation
result of each layer does not overflow. NNgen’s quantizer randomly generates input data
and determines the amount of shift based on the expected mean and variance of the
input data.
The code used to automatically go through the dataset and find the mean and variance
of the input can be found in appendix X.

SET HARDWARE ATTRIBUTES

The hardware parallelism generated by NNgen can be specified in the form of a param-
eter, separate from the model definition. In this example, the degree of parallelism is
specified for each of the conv2d operator (including the matmul operator), pool opera-
tor, and element-by-element operation. To keep the amount of resource usage as small
as possible there is the bitwidth of the quantisation is kept as low as NNgen allows it,
namely 8 bits. To further increase accuracy right-shift operations are inserted to the
tail of (almost) each operator. The amount of right-shift also can be assigned via the
cshamt_out parameter.

SIMULATING THE NNGEN GRAPH

Before generating the hardware from this computational graph, it’s a good to check if the
defined computational graph behaves as desired after quantisation.
Computational graphs on NNgen can be run as Python software by passing input data as
arguments. Inside, it consists of functions corresponding to each operator that generate
the same integer operation results as the hardware. The user can compare this execu-
tion result with the calculation result with the original floating point number to check
whether it works as expected before hardware conversion.
By passing the input data as an argument, the calculation graph in NNgen format can
obtain the same result as the calculation result on the quantisation hardware by soft-
ware execution. This makes it possible to check how much the behaviour until final
recognition changes due to quantisation before hardware conversion.
Within the NNgen software implementation it is possible to manually generate a layer
by layer simulation by creating a custom graph in which every layer has its own inde-
pendent output. if any layers output does not match the original ONNX/Pytorch layer,
the amount of right shift should be adjusted within that layer as described in paragraph
C. The process to do so is described in Figure C.1

HARDWARE DESCRIPTION GENERATION

To generate a bitfile within an hardware synthesizer an IP needs to be generated. The
to_ipxact method generates a hardware-structured Verilog HDL description and an IP-
XACT format configuration file from the computational graph.
Next to the output of the quantized array a log will be printed out, this log points to all
the memory addresses for input, weights and outputs.
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Figure C.1: A flowchart depicting the workflow a user needs to take to create an accurate quantized model
compared to the original floating point model

SAVE THE QUANTIZED WEIGHTS

As the HDL generation finishes, the weight parameters of the neural network used on
the actual FPGA are converted to the ndarray format of a single numpy array with the
export_ndarray and saved as a numpy file. In the accelerator generated by NNgen, it is
important to predefine the shape of weights used inside of the accelerator. This numpy
array will be loaded onto the DRAM of the generated accelerator.

CREATE BITSTREAM

At this point the generated IP can be loaded inside a hardware synthesizer and the con-
straints can be set for implementation within an FPGA, resulting in a bitstream, however
due to the unique property of the Ultra96 being an MPSoC the resulting IP will instead
be connected to the Ultra96’s ARM processor. To do this first a block diagram has to
be created containing the generated NNGen IP. The ARM processor is depicted within
the vivado environment as a ZYNQ Ultrascale+ MPSoC IP and should be added together
with the NNgen IP.
Using the function Run Block Automation a board preset will be set on the processing
system, this should add a reset port on the ZYNQ block. NNgen’s software repository is
provided with a driver for running the NNgen IP connected to the ARM processor using
PYNQ, within this driver AXI input/outputs are defined, to sync up this interface the AXI
Bus within the PS_PL interface should be defined as:

1. AXI HPM0 FPD

2. AXI HP0 FPD

Any other AXI interface whether it is Master or Slave should be removed from the PS-PL
Configuration.
To finalize the block design the following IP need to be added:
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1. AXI Interconnect: connects the AXI memory-mapped master ZYNQ IP to the AXI
memory mapped slave NNgen IP

2. AXI SmartConnect: connects the AXI memory-mapped master NNgen IP to the
AXI memory mapped slave ZYNQ IP

3. Processor System Reset: Gets connected to PL-PS interface’s reset port of the ZYNQ
IP resulting into an asynchronous reset connected to the NNgen’s IP reset port

These connections can be automated via Vivado’s Run Connection Automation, this should
result in the block design shown in Figure C.2.

RCNN_0

RCNN_v1_0

maxi

saxi

CLK

RESETN

axi_smc

AXI SmartConnect

S00_AXI

M00_AXIaclk

aresetn
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AXI Interconnect

S00_AXI

M00_AXI
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ARESETN
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pl_resetn0
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Figure C.2: The created block design after correct implementation of NNgen IP RCNN_0

The bitstream at this point can be generated as normal with the generate Bitstream func-
tion within the Vivado GUI.

RUN THE NNGEN IP WITHIN PYNQ
If the ultra96V2 or any other PYNQ compatible MPSoC device is chosen as the basis to
run the generated circuit the following described steps can be taken execute to evaluate
the resulting IP.
PYNQ v2.5 is a python package installed in a linux-based OS within the ARM processor
and used as an interface with the wider FPGA part. In PYNQ, the memory area shared
by the CPU and FPGA circuit is secured by using a mechanism called CMA (Continuous
Memory Allocator). Here, this memory area is called the CMA area.
For the created accelerator to work proper the input data, and weight parameters need
to be loaded into CMA area in advance via the ARM controller using PYNQ, the addresses
in which this data is loaded is described within the log referenced in paragraph C. Once
the generated accelerator on the FPGA is executed, input,output, and temporal data is
read and written out of the CMA area by the DMA Controller to perform calculations.
Within the pre-built PYNQ Released by Avnet, the maximum size of the CMA area is
128MB.
For larger neural network implemented within NNgen the CMA area might need to be
increased. The maximum size of the CMA area can be specified inside the build script of
the boot-related files.
A directory is created within the notebooks subdirectory, within this directory the fol-
lowing files are added:
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1. Nngen_ctrl.py found within the nngen repository

2. Input image

3. Weight file RCNN.npy generated in paragraph C

4. The generated design_1_wrapper.bit and design_1.hwh from paragraph C renamed
to the generated IP’s name, e.g. RCCN.bit and RCNN.hwh, respectively

Within this directory a .ipnyb file can be generated, within this file the created acceler-
ator will be ran. The .ipnyb file is found in appendix X with comments annotating the
code.
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D.0.1. INSTALLING FINN
To use FINN the following were run from a virtual machine

1. Ubuntu 18.04 with bash installed

2. Docker without root

3. A working Vivado 2019.1 or 2020.1 installation

4. A VIVADO_PATH environment variable pointing to the Vivado installation direc-
tory (e.g. the directory where settings64.sh is located)

The generated accelerator was run on an Ultra96V2 running PYNQ 2.6.
It is highly advised to run FINN with at least 16 GB of RAM, because synthesizing is a very
RAM-intensive procedure. The created environment should at least comprise 150 GB of
free storage.

D.0.2. BREVITAS IMPLEMENTATION
The typical start of the conversion process is to create a neural network description in
PyTorch and train it with Brevitas. Brevitas is a PyTorch library for quantisation-aware
training and allows for exporting models suited for the FINN compiler flow; models are
exported in ONNX format with datatype annotations to weights to enable quantizing the
weights to datatypes smaller than 8 bit integers.
Brevitas implements a set of building blocks at different levels of abstraction to model a
reduced precision hardware data path at training time, additionally, a super-set of quan-
tisation schemes implemented across various frameworks and compilers under a single
unified API is supported.
The main objective of the Brevitas PyTorch implementation is to create a quantized rep-
resentation of the VLV network that will result in an as resource light as possible HDL
representation on the FPGA. The resource usage directly correlates to the bit width used
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within the individual layers as the target device is relatively small the average bit width
over the entire model should be kept as low as possible.
This can be done manually as the bit width in a layer can be manually set via the param-
eter weight_bit_width and act_bit_width, note that the default bit width is set to 8 bit.
The model can simply be trained in a similar vein as the original PyTorch implementa-
tion. To decrease the resource usage the user is expected to manually lower the bit width
parameter values for each layer per run while making sure that the overall accuracy of
the NN does not decrease. As such if the objective is to decrease resource usage of the
VLV implementation with a bit width range of 2 bits to 8 via decrease of bit width of in-
dividual layers the theoretical amount of runs needed to find the optimal application
would require 6(10)= 60466176 runs. Where 6 stands for the bit width range and 10 for
the number of layers.
As part of this thesis project, a loss function for Brevitas was developed which automati-
cally tries to decrease the overall bit width of the model without losing any form of accu-
racy, allowing VLV and by extension, any other NN implemented within Brevitas to have
a as time-efficient and minimized user input training as possible, while getting a as ac-
curate and resource effective implementation within FINN. Finding a balance between
making the model more efficient (i.e. smaller bit width) without sacrificing accuracy is a
non-trivial problem. It can be looked at as a multi-objective optimization problem or as
a constrained optimization problem.
The various ways of implementing the effects of bit width can be quite varied, the fol-
lowing loss function x has been chosen for its simplicity to implement bit width loss in
tandem with the regular VLV loss function.

Bi tLoss =
n∑

e=0
av g bi t c

e (D.1)

With av g bi t being defined in formula D.2.

av g bi t = (
∑n

e=0 Bi t wi d th(e))

(n)
(D.2)

With e being a parameter within VLV and n the total amount of adjustable parameters
within VLV.
The variable c should be run through a sweep with each training session starting from
scratch to retrieve the optimal size of the accelerator while achieving a precision that is
similar to the floating-point representation of VLV. The total loss function of the Brevitas
implementation of VLV is summarized in function x

n∑
e=0

Y ol oLosse +Bi tLosse (D.3)

As FINN accepts an ONNX model as input the Brevitas model needs to be converted to
the ONNX model. The model is only composed of ONNX standard Nodes, but it also
includes additional attributes to the ONNX nodes that can be used to represent low pre-
cision data types. To work with the model it is wrapped into ModelWrapper provided by
FINN.
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D.0.3. TIDY-UP AND DEFINE INPUT
The Tidy-up is the first graph transformation. This pre-processing includes input defini-
tion. It is common for neural networks to perform some preprocessing on the raw data
before it can be used in a machine-learning framework. This may be used to convert
8-bit RGB data into floating-point values between 0 and 1.
These pre-operations in FINN can be baked into an ONNX graph. In some cases, they
can be very beneficial for performance because the accelerator can directly consume
raw data and not go through CPU preprocessing.
Within the original Brevitas preprocesses VLV input images with torchvision.transforms.ToTensor()
before training, which converts 8-bit RGB values into floats between 0 and 1 by dividing
the input by 255. FINN allows the user to achieve the same effect by exporting a single
node ONNX graph to divide by 255. FINN can also set the input tensor to 8 uint so that
it knows which level of precision to use.
The Tidy up transformation takes the data types and shapes of the Tensors and extracts
them from the model properties. It then sets them in the model’s ValueInfo. Each graph
node has a name attribute that is unique and human-readable.
Constant folding is used to simplify the model. It determines the output of a node that
has constant inputs. After determining the output, the result is set as constant-only
inputs to the next node. The old node is also removed. Although this transformation
changes the structure of the model, it is a transformation that is usually always desired
and can be applied to any model.

D.0.4. STREAMING FLOATING
[] The second graph transform is the streamlining transformation. Note that the FINN
compiler currently only supports fully quantized NNs. However, in practice, quantized
NNs can contain floating-point computations in between quantized layers to improve
the accuracy of the model. For example, in the case of the quantized VLV model, batch
normalization layers with floating-point parameters for the mean and standard devia-
tion can be found in front of several activation functions as well as channelwise scaling
operators after several convolutional layers. These floating-point computations limit the
ability to fully leverage the benefits of deploying such a model on FPGA; floating-point
computations and floating-point parameters are more expensive in terms of resources
and power than their integer counterparts. The streamlining transformation eliminates
all floating-point operations from the model [57].
To understand how the floating-point parameters get eliminated, or also referred to as
absorbed, the underlying principle of the streamlining transformation must be explained.
First, note that the streamlining algorithm only works for uniform quantizers. The algo-
rithm contains three fundamental steps that enable the conversion to a network with
only integer operations and parameters:

1. Quantization as successive thresholding

2. Reordering and collapsing linear transformations.

3. Absorbing linear operations into thresholds
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QUANTIZATION AS SUCCESSIVE THRESHOLDING

Given a set of threshold values t = t0, t1 . . . tn , the successive thresholding function T(x,t),
which maps any real number to an integer within the interval [,.n], returns the integer
that corresponds to the number of thresholds where x is greater or equal to:

T (x, t ) =

0, for x ≤ t0

1, for t0 < x ≤ t1

· · · . . .
n −1, for tn−2 < x ≤ tn−1

n, for tn−1 < x

A uniform quantizer can be expressed by successive thresholding, followed by a linear
transform such that Q(x)= a · T (x)+ b. For example, the 2-bit uniform HWGQ quantizer
could be expressed as HWGQ(x)= 0.538 · T (x, t) wi th t0 = 0,t1=0.807,t2=1.345. This
technique is not economical for activations with more then few bits. The number of
thresholds increases exponentially with activation bit width.

MOVING AND COLLAPSING LINEAR TRANSFORMATIONS

Any sequence of linear transforms can be rearranged into one linear transformation.
First all floating point linear operations can be moved between the quantized matrix op-
erator and activation quantisation. Then, they are all collapsed into one linear transfor-
mation. For example The linear transformation ax+b that was used to quantize the acti-
vation layer before can be moved beyond the matrix multiplication. Since W · (ax +b)= a · (W x)+W b,
it forms a sequence with the α–scaling, batch normalization, and the linear transforma-
tion. This sequence of three linear transforms can then be reduced to one linear trans-
formation.

ABSORBING LINEAR OPERATIONS INTO THRESHOLDS

The final step in the streamlining process is to update the threshold values as ti ← ti−b
a using

the parameters a,b of the linear transformation. Observe that in the inequality t0 < x ≤ t1,
x can substituted as ax + b, resulting in the entire formula being rewriten as t0 −− b

a < x ≤ t1 −− b
a .

This update allows the user to remove floating-point linear transforms completely and
feed the result from the quantized matrix operation directly into each subsequent thresh-
olding layer. If the input to the quantized matrix operation is an integer Each threshold
can be easily rounded up to get the closest integer, even if the input to the quantized ma-
trix operation is an integer (i.e. the activations of the previous layer were also quantized),
without changing the results.

D.0.5. LOWERING CONVOLUTIONS
The third graph transformation is to lower convolutions to matrix multiplications . The
operation of a standard convolutional layer can be thought of as a filter sliding over the
input data, as explained in Section A.9.1. Within the FINN compiler a convolution oper-
ation for each output pixel is obtained by a dot product between a vector of input pixels
and a vector of kernel weights. Both depthwise, as well as pointwise convolutions, are
supported resulting in different implementations since there are two domains in which
lowered convolutions can be executed; software domain (Python, ONNXruntime) and
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hardware domain. The lowering in both software level as well as hardware-level is shown
in Figure D.1

Figure D.1: Schematic of how the ONNX operators are transformed to FPGA dataflow nodes, starting from a
regular convolution and applying the lowering transformation and subsequently converting the layers to HLS
layers. Blue nodes are standard ONNX operators, orange nodes are FINNONNX operators, and green nodes
represent FPGA dataflow nodes.

The first two nodes are used to represent the graph until the layers are converted to
HLS layers, as shown in Figure D.1, and can be used used to execute the graph utiliz-
ing ONNXruntime. This paragraph will describe depthwise convolution, which is the
most common type of convolution layer within VNV. A MatMul operator replaces con-
volution. The Im2Col operator will be replaced by the SWU one after conversion to HLS
layers. Depending on whether a depthwise, regular/pointwise or mixed convolution was
applied, the MatMul can be replaced by a Vector Vector Activate Unit (VVAU) or Matrix
Vector Activate Unit (MVAU).

In Figure D.2, a functionally reduced pointwise convolutional layer is expressed as ma-
trix multiplication. This example shows the convolution of an input image having three
input channels (IFMC), of dimensions [IFMH and IFMW] = 3, 3 and a kernel with dimen-
sion [KH or KW] = 2, 2. The input image is not padded and strides and dilation values
are assumed to be 1. The SWU organizes the input image into rows, which contain all of
the input pixels necessary to calculate a single output. The lower leftmost matrix illus-
trates this. Each row of this matrix includes, for each output pixel, all input pixels that are
within the receptive fields of that particular output pixel. Each vector product is created
by rearranging the weights in the correct format.
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Figure D.2: An example of a convolution lowering method for a regular convolution. Note that the image rep-
resents the SWU and matrix multiplication from the perspective of the HLS implementation of these kernels
as well as how a lowered convolution is executed in the FINN ONNX domain taken from [7]

Figure D.3 shows a lowered Depthwise layer of convolutional layers. Note that the Depth-
wise convolution requires significantly fewer parameters and multiply-and-additions
than the regular convolution.

D.0.6. CONVERTING TO HLS LAYERS

Before the layers are folded, it is necessary to convert the ONNX layers into HLS layers.
This paragraph discusses the design challenges involved in converting ONNX layers into
another set of FPGA dataflow nodes with the appropriate methods to generate the HLS
kernels. The network should contain a set of nodes with an equivalent C++ kernel de-
scription to HLS in the FINN hlslibrary. The FINN flow’s final stage allows the ONNX
operators to infer a C++ description for the corresponding operator from the resulting
nodes. Converting each node to a FPGA dataflow Node is how this is done. This wraps
around the FINN custom operators class for ONNX and includes several attributes and
methods that allow for the inference of the correct HLS description for the kernel. Two
things must be considered when converting ONNX layers into HLS layers. The first is
to make sure that the graph transformation is correct. This will ensure that HLS layers
can be inferred correctly as shown for the Conv operator in Section D.0.5 i.e. the node
must be inserted in the right place in the graph and the correct attributes must be in-
ferred Secondly, the FINN hlslibrary should contain an HLS description that matches
the ONNX operator.
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Figure D.3: An example of a convolution lowering method for a depthwise convolution. Note that the image
represents the SWU and matrix multiplication from the perspective of the HLS implementation of these ker-
nels. In the ONNX domain of FINN, a depthwise convolution is executed in a similar way as shown in Figure
D.2, except that the weight matrix is sparse to ensure that a depthwise convolution is performed taken from
the works of [7]

D.0.7. LAYER FOLDING
The FINN-generated DF architecture includes the implementation of loop parallelism
and task parallelism, as well as the ability to set data parallelism. Two parameters are re-
quired for FINN-HLS layers representations: PE and SIMD [7]. These parameters spec-
ify the number of processing elements (PE) within each compute unit (layer), and the
number of Single Instruction, Multiple Data, (SIMD), lanes per PE, do note that this type
of parallelism only aplies to so called MVAU operator used for convolution layer within
FINN, Different types of layers may have different levels or parallelism. These paral-
lelism factors within the FINN are called the folding factors. Only the kernel parallelism
is available within convolutional layers. However, the experimental branch has pixel
parallelism. This is not covered in the thesis.

The user can also adjust the number of SIMD lanes and PEs in each Layer. This only
applies to the so-called MVAU. Different types of layers may have different levels or par-
allelism.
It is not easy to set the right level of parallelism for each layer. The parallelism factors
can be used to adjust two parameters: interference and resource usage. The goal of a
parallelism factor is to optimize the interference while preserving the resource limits of
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the target device. A designer would aim to adjust the parallelism to match the latency of
each layer (compute unit).

The goal of this work is to consume as little power as possible and fit within the Ultra96V2
with a 2 second interference. To achieve the interference goals, it is recommended to
choose a low clocking speed with a slight degree of parallelism.

Note that the folding factors of a layer have a linear relationship with the latency of that
layer, increasing/decreasing the parallelism by a factor of 2 will decrease/increase the
latency by a factor of 2 respectively. The logic and utilization of memory resources will
be affected if the layer’s parallelism is adjusted. Consider the node that performs matrix
multiplication in a convolution with a lower frequency, known as the MVAU. Figure D.4
shows such a matrix multiplication. The first operand is the matrix with weights, and the
second operand the lowered image. This Figure is identical to Figure x but with both ma-
trices being transposed and switched in order. The blue color denotes the dimension in
which SIMD parallelism is operating, while the green color denotes the PE parallelism.
Finally, the red color denotes the MMV parallelism, which is always 1, as explained pre-
viously. This layer performs a matrix multiplication between the input pixels, weight
matrix of form [MH, MW], where the number of input channels and output channels are
respectively. The parallelism factors PE and SIMD are directly related to the number of
multipliers and adders used to unroll the matrix multiplication. The expectation is that
increasing the parallelism will result in an increase in the logic resources (i.e. DSPs and
LUTs will vary depending on the logic resources used to implement the arithmetic). The
shape of the array that holds the weights will be determined by the parallelism factors
PE or SIMD. The total weight array is composed of MW·MH· WB bits. WB bits refering
to the number of bits that represent a weight value. Furthermore, note that each PE will
have SIMD number of multiplication/additions in parallel between the input pixels and
weights.

Figure D.4: Convolution operation expressed as matrix multiplication between the weights (first operand) and
input image inspired by [7]

Therefore, when the MVAU reads in a new data packet for processing, it should also read
PE· SIMD · WB bits from the weight array. Experiments have shown that this results in a
weight array of width and depth as expressed by formula X and formula X respectively

Width = PE ·SIMD ·WB
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Depth = MW ·M H

PE ·SI MD
As certain resources have a fixed shape, e.g. BRAM within the Ultrascale environment
can store 36 kbits; either as a single 36 kbits RAM module or two independent 18 kbits
RAM modules with a fixed amount of write ports influencing how arrays are partitioned.
For example, the width of the weight array is not utilizing the full width of the hard-
ware memory component, the memory component will not be fully occupied and the
remaining bits along the width are wasted. Especially for less flexible memory compo-
nents, such as BRAM, this might lead to severe underutilisation of the memory compo-
nent. Within FINN analysis exist on whether the BRAM Resources are utilized efficiently
which gives a layer by layer output regarding Resource usage. The BRAM efficiency is
calculated as formula X

BR AMe f f = W i d th

BR AM16estcapaci t y

With BR AM16estcapaci t y calculated within formula X

BR AM16estcapaci t y = BR AM16est ∗ 36 ∗ 512

With BR AM16est being calculated as formula X

BRAM16est(W i d th,Depth)≜



⌈
Depth
16384

⌉
, if W i d th = 1⌈

Depth
8192

⌉
, if W i d th = 2⌈

Depth
4096

⌉⌈
W i d th

4

⌉
, if W i d th ≤ 4⌈

Depth
2048

⌉⌈
W i d th

9

⌉
, if W i d th ≤ 9⌈

Depth
1024

⌉⌈
W i d th

18

⌉
, if (W i d th ≤ 18)∨ (

Depth > 512
)⌈

Depth
512

⌉⌈
W i d th

36

⌉
, otherwise

(D.4)
The wish for the BRAM efficiency to at least be higher than 50% for every layer inside of
VLV, as this means that the BRAM usage is nonoptimized allowing the degree of paral-
lelization to be doubled for that particular layer without using more BRAM resources.One
of the future features in the pipeline for FINN is automated resource-aware folding.

D.0.8. SELECTING MEMORY MODE
Within FINN the ability is set for individual layers to use different types of primitives
for weight memory. The goal of any FPGA design is to have a balanced design in which
every primitive is utilized to roughly the same degree. Using the resType within a FPGA
dataflow node attribute primitive types can be selected.
FINN supports two types of the mem_mode attribute for the HLS implementation of
activation layers. This mode controls how the weight values are accessed during the
execution. Currently, two settings for the mem_mode are supported in FINN:

1. const

2. decoupled
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CONST

Figure D.5: Figure depicting the architecture of a MVAU FPGA dataflow Component in const mode, note how
the weights are baked into to the component, Figure inspired by [8].

The const mode has the weights baked in. This means that they are part of the HLS code.
The weight values are included in the code during the IP block generation and synthe-
sized with it. The user can find the code that generated the resulting IP in the FINN HLS
Library. As shown in Figure D.6, the resulting IP block contains an input stream and an
output stream,FIFOs are connected to these.
Const mode offers a significant advantage over traditional decoupled modes as they use
fewer resources resulting in less power usage. However, because it allows the user to
control the weight memory primitives with less precision, resource allocation problems
can arise. Vivado HLS may not always produce the correct synthesis.

DECOUPLED

A different version of the MVAU with three ports is used in decoupled mode. The circuit’s
input and output streams are connected via Verilog FIFOs. A third input is used to stream
weights. The user can find the code that generated the IP in the FINN HLS Library. A Ver-
ilog weight streamer component retrieves the weight memory from the MVAU and sends
them the values via the third FIFO. This FIFOis located in FINN. For the IP block gener-
ation this component, the IP block resulting from the synthesis of the HLS code of the
streaming MVAU and a FIFO for the weight stream are combined in a Verilog wrapper.
The weight values are saved as.dat files, and then stored in the weight memory that the
weight streamer can read. Externally, the MVAU in decoupled mode provides the same
inputs and outputs as the const mode MVAU.
Decoupled mode has a larger resource footprint due to the additional weight FIFO and
weight streamer. However, it gives the user more control over which primitive they
choose to use. Because it has lower synthesis times than Const mode, and can load dif-
ferent weights through the .dat file, prototyping environments have more functionality
using decoupled memory mode.
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Figure D.6: Figure depicting the architecture of a MVAU FPGA dataflow Component in Decoupled mode, note
the added weight streamer with the FIFO attached for loading the weights into the weight memory from a .dat
file. Figure inspired by [8].

CONCLUSION

Due to the main objective of the implementation of VLV inside of an FPGA, for the design
to be as power and resource efficient as possible as opposed to have a more balanced but
heavier resource usage the choice of data type was set at const. In an attempt to create a
balanced resource usage the final layers of VLV the primitive types have been set to DSP.

D.0.9. SET FIFO DEPTHS

Even with all FINN HLS FPGA-dataflow layers appropriately parallelized, it is necessary
to insert FIFOs between them to prevent stalls due to burst errors. The sizes of those
FIFOs are hard to predict analytically, as such the transform setFifoDepths creates very
deep FIFO’s between all the FPGA-dataflow nodes, creating a stitched together Verilog IP.
The design is simulated with a stream of multiple random input images. During the sim-
ulation the maximum occupancy for each FIFO is tracked. With the simulation finished
the inFIFODepth/outFIFODepth attributes are set to the maximum observed occupancy
to a minimum of 0.

D.0.10. ZYNQ BUILD

Technically with the stitched IP generated the build flow is done and can be imple-
mented within an FPGA. Due to the unique MPSOC ZYNQ attributes off the ultra96V2
an automatic bit file can be generated which can be run via PYNQ within the Arm pro-
cessor. The zynqbuild transform connects the previously generated Stitched IP to an
Ultrascale+ MPSOC IP and implements it on the chosen board environment resulting in
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a generated bit file and an HWH file to be implanted within the PYNQ environment.
The PYNQ transform uses the generated zynqbuild transform files and automatically
generates a driver to be used inside PYNQ.
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G
NNGEN LOG

NNgenlog.txt

/home/christiaan/nngen_test/python3/bin/python3 "/home/christiaan/nngen/examples/RCNN Example/make.py"
NNgen: Neural Network Accelerator Generator version 1.3.0
[IP-XACT]

Output: RCNN
[Configuration]
AXI Master Interface

Data width : 32
Address width: 32

AXI Slave Interface
Data width : 32
Address width: 32

[Schedule Table]
Stage 0
Stage 1

<conv2d Conv_0 dtype:int16 shape:1, 448, 448, 16 strides:1, 1, 1, 1 padding:1, 1, 1, 1 bias:16, scale:1, cshamt_out:30 act_func:relu sum_dtype:int64 concur_och:2 stationary:filter default_addr:35231488 g_index:0 l_index:1 word_alignment:2 aligned_shape:1, 448, 448, 16 layout:’N’, ’H’, ’W’, ’C’ onnx_layout:’N’, ’C’, ’H’, ’W’ scale_factor:18.129389>
<placeholder act dtype:int16 shape:1, 448, 448, 3 default_addr:1280 g_index:2 word_alignment:2 aligned_shape:1, 448, 448, 4 layout:’N’, ’H’, ’W’, ’C’ onnx_layout:’N’, ’C’, ’H’, ’W’ scale_factor:128.000000>
<variable 97 dtype:int16 shape:16, 3, 3, 3 default_addr:1606912 g_index:3 word_alignment:2 aligned_shape:16, 3, 3, 4 layout:’O’, ’H’, ’W’, ’I’ onnx_layout:’O’, ’I’, ’H’, ’W’ scale_factor:4641.265189>
<variable 98 dtype:int32 shape:16, default_addr:1606912 g_index:3 word_alignment:1 aligned_shape:16, scale_factor:594081.944199>
<variable onnx_Conv_0_conv.scale dtype:int16 shape:1, default_addr:1606912 g_index:3 word_alignment:2 aligned_shape:2, scale_factor:32767.000000>

Stage 2
<max_pool_serial MaxPool_2 dtype:int16 shape:1, 224, 224, 16 ksize:1, 2, 2, 1 strides:1, 2, 2, 1 padding:0, 0, 0, 0 no_reuse default_addr:41654016 g_index:0 l_index:2 word_alignment:2 aligned_shape:1, 224, 224, 16 layout:’N’, ’H’, ’W’, ’C’ onnx_layout:’N’, ’C’, ’H’, ’W’ scale_factor:18.129389>
<conv2d Conv_0 dtype:int16 shape:1, 448, 448, 16 strides:1, 1, 1, 1 padding:1, 1, 1, 1 bias:16, scale:1, cshamt_out:30 act_func:relu sum_dtype:int64 concur_och:2 stationary:filter default_addr:35231488 g_index:0 l_index:1 word_alignment:2 aligned_shape:1, 448, 448, 16 layout:’N’, ’H’, ’W’, ’C’ onnx_layout:’N’, ’C’, ’H’, ’W’ scale_factor:18.129389>

Stage 3
<conv2d Conv_3 dtype:int16 shape:1, 224, 224, 32 strides:1, 1, 1, 1 padding:1, 1, 1, 1 bias:32, scale:1, cshamt_out:30 act_func:relu sum_dtype:int64 concur_och:4 stationary:filter default_addr:43259648 g_index:0 l_index:3 word_alignment:2 aligned_shape:1, 224, 224, 32 layout:’N’, ’H’, ’W’, ’C’ onnx_layout:’N’, ’C’, ’H’, ’W’ scale_factor:24.698720>
<max_pool_serial MaxPool_2 dtype:int16 shape:1, 224, 224, 16 ksize:1, 2, 2, 1 strides:1, 2, 2, 1 padding:0, 0, 0, 0 no_reuse default_addr:41654016 g_index:0 l_index:2 word_alignment:2 aligned_shape:1, 224, 224, 16 layout:’N’, ’H’, ’W’, ’C’ onnx_layout:’N’, ’C’, ’H’, ’W’ scale_factor:18.129389>
<variable 100 dtype:int16 shape:32, 3, 3, 16 default_addr:1606912 g_index:3 word_alignment:2 aligned_shape:32, 3, 3, 16 layout:’O’, ’H’, ’W’, ’I’ onnx_layout:’O’, ’I’, ’H’, ’W’ scale_factor:44643.112445>
<variable 101 dtype:int32 shape:32, default_addr:1606912 g_index:3 word_alignment:1 aligned_shape:32, scale_factor:809352.345566>
<variable onnx_Conv_3_conv.scale dtype:int16 shape:1, default_addr:1606912 g_index:3 word_alignment:2 aligned_shape:2, scale_factor:32767.000000>

Stage 4
<max_pool_serial MaxPool_5 dtype:int16 shape:1, 112, 112, 32 ksize:1, 2, 2, 1 strides:1, 2, 2, 1 padding:0, 0, 0, 0 no_reuse default_addr:46470912 g_index:0 l_index:4 word_alignment:2 aligned_shape:1, 112, 112, 32 layout:’N’, ’H’, ’W’, ’C’ onnx_layout:’N’, ’C’, ’H’, ’W’ scale_factor:24.698720>
<conv2d Conv_3 dtype:int16 shape:1, 224, 224, 32 strides:1, 1, 1, 1 padding:1, 1, 1, 1 bias:32, scale:1, cshamt_out:30 act_func:relu sum_dtype:int64 concur_och:4 stationary:filter default_addr:43259648 g_index:0 l_index:3 word_alignment:2 aligned_shape:1, 224, 224, 32 layout:’N’, ’H’, ’W’, ’C’ onnx_layout:’N’, ’C’, ’H’, ’W’ scale_factor:24.698720>

Stage 5
<conv2d Conv_6 dtype:int16 shape:1, 112, 112, 64 strides:1, 1, 1, 1 padding:1, 1, 1, 1 bias:64, scale:1, cshamt_out:31 act_func:relu sum_dtype:int64 concur_och:8 stationary:filter default_addr:47273728 g_index:0 l_index:5 word_alignment:2 aligned_shape:1, 112, 112, 64 layout:’N’, ’H’, ’W’, ’C’ onnx_layout:’N’, ’C’, ’H’, ’W’ scale_factor:44.620043>
<max_pool_serial MaxPool_5 dtype:int16 shape:1, 112, 112, 32 ksize:1, 2, 2, 1 strides:1, 2, 2, 1 padding:0, 0, 0, 0 no_reuse default_addr:46470912 g_index:0 l_index:4 word_alignment:2 aligned_shape:1, 112, 112, 32 layout:’N’, ’H’, ’W’, ’C’ onnx_layout:’N’, ’C’, ’H’, ’W’ scale_factor:24.698720>
<variable 103 dtype:int16 shape:64, 3, 3, 32 default_addr:1606912 g_index:3 word_alignment:2 aligned_shape:64, 3, 3, 32 layout:’O’, ’H’, ’W’, ’I’ onnx_layout:’O’, ’I’, ’H’, ’W’ scale_factor:118399.188790>
<variable 104 dtype:int32 shape:64, default_addr:1606912 g_index:3 word_alignment:1 aligned_shape:64, scale_factor:2924308.372883>
<variable onnx_Conv_6_conv.scale dtype:int16 shape:1, default_addr:1606912 g_index:3 word_alignment:2 aligned_shape:2, scale_factor:32767.000000>

Stage 6
<max_pool_serial MaxPool_8 dtype:int16 shape:1, 56, 56, 64 ksize:1, 2, 2, 1 strides:1, 2, 2, 1 padding:0, 0, 0, 0 no_reuse default_addr:48879360 g_index:0 l_index:6 word_alignment:2 aligned_shape:1, 56, 56, 64 layout:’N’, ’H’, ’W’, ’C’ onnx_layout:’N’, ’C’, ’H’, ’W’ scale_factor:44.620043>
<conv2d Conv_6 dtype:int16 shape:1, 112, 112, 64 strides:1, 1, 1, 1 padding:1, 1, 1, 1 bias:64, scale:1, cshamt_out:31 act_func:relu sum_dtype:int64 concur_och:8 stationary:filter default_addr:47273728 g_index:0 l_index:5 word_alignment:2 aligned_shape:1, 112, 112, 64 layout:’N’, ’H’, ’W’, ’C’ onnx_layout:’N’, ’C’, ’H’, ’W’ scale_factor:44.620043>

Stage 7
<conv2d Conv_9 dtype:int16 shape:1, 56, 56, 128 strides:1, 1, 1, 1 padding:1, 1, 1, 1 bias:128, scale:1, cshamt_out:31 act_func:relu sum_dtype:int64 concur_och:18 stationary:filter default_addr:49280768 g_index:0 l_index:7 word_alignment:2 aligned_shape:1, 56, 56, 128 layout:’N’, ’H’, ’W’, ’C’ onnx_layout:’N’, ’C’, ’H’, ’W’ scale_factor:143.101578>
<max_pool_serial MaxPool_8 dtype:int16 shape:1, 56, 56, 64 ksize:1, 2, 2, 1 strides:1, 2, 2, 1 padding:0, 0, 0, 0 no_reuse default_addr:48879360 g_index:0 l_index:6 word_alignment:2 aligned_shape:1, 56, 56, 64 layout:’N’, ’H’, ’W’, ’C’ onnx_layout:’N’, ’C’, ’H’, ’W’ scale_factor:44.620043>
<variable 106 dtype:int16 shape:128, 3, 3, 64 default_addr:1606912 g_index:3 word_alignment:2 aligned_shape:128, 3, 3, 64 layout:’O’, ’H’, ’W’, ’I’ onnx_layout:’O’, ’I’, ’H’, ’W’ scale_factor:210187.857274>
<variable 107 dtype:int32 shape:128, default_addr:1606912 g_index:3 word_alignment:1 aligned_shape:128, scale_factor:9378591.204066>
<variable onnx_Conv_9_conv.scale dtype:int16 shape:1, default_addr:1606912 g_index:3 word_alignment:2 aligned_shape:2, scale_factor:32767.000000>

Stage 8
<max_pool_serial MaxPool_11 dtype:int16 shape:1, 28, 28, 128 ksize:1, 2, 2, 1 strides:1, 2, 2, 1 padding:0, 0, 0, 0 no_reuse default_addr:50083584 g_index:0 l_index:8 word_alignment:2 aligned_shape:1, 28, 28, 128 layout:’N’, ’H’, ’W’, ’C’ onnx_layout:’N’, ’C’, ’H’, ’W’ scale_factor:143.101578>
<conv2d Conv_9 dtype:int16 shape:1, 56, 56, 128 strides:1, 1, 1, 1 padding:1, 1, 1, 1 bias:128, scale:1, cshamt_out:31 act_func:relu sum_dtype:int64 concur_och:18 stationary:filter default_addr:49280768 g_index:0 l_index:7 word_alignment:2 aligned_shape:1, 56, 56, 128 layout:’N’, ’H’, ’W’, ’C’ onnx_layout:’N’, ’C’, ’H’, ’W’ scale_factor:143.101578>

Stage 9
<conv2d Conv_12 dtype:int16 shape:1, 28, 28, 256 strides:1, 1, 1, 1 padding:1, 1, 1, 1 bias:256, scale:1, cshamt_out:33 act_func:relu sum_dtype:int64 concur_och:16 stationary:filter default_addr:50284288 g_index:0 l_index:9 word_alignment:2 aligned_shape:1, 28, 28, 256 layout:’N’, ’H’, ’W’, ’C’ onnx_layout:’N’, ’C’, ’H’, ’W’ scale_factor:185.249740>
<max_pool_serial MaxPool_11 dtype:int16 shape:1, 28, 28, 128 ksize:1, 2, 2, 1 strides:1, 2, 2, 1 padding:0, 0, 0, 0 no_reuse default_addr:50083584 g_index:0 l_index:8 word_alignment:2 aligned_shape:1, 28, 28, 128 layout:’N’, ’H’, ’W’, ’C’ onnx_layout:’N’, ’C’, ’H’, ’W’ scale_factor:143.101578>
<variable 109 dtype:int16 shape:256, 3, 3, 128 default_addr:1606912 g_index:3 word_alignment:2 aligned_shape:256, 3, 3, 128 layout:’O’, ’H’, ’W’, ’I’ onnx_layout:’O’, ’I’, ’H’, ’W’ scale_factor:339364.461657>
<variable 110 dtype:int32 shape:256, default_addr:1606912 g_index:3 word_alignment:1 aligned_shape:256, scale_factor:48563589.857899>
<variable onnx_Conv_12_conv.scale dtype:int16 shape:1, default_addr:1606912 g_index:3 word_alignment:2 aligned_shape:2, scale_factor:32767.000000>
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Stage 10
<max_pool_serial MaxPool_14 dtype:int16 shape:1, 14, 14, 256 ksize:1, 2, 2, 1 strides:1, 2, 2, 1 padding:0, 0, 0, 0 no_reuse default_addr:50685696 g_index:0 l_index:10 word_alignment:2 aligned_shape:1, 14, 14, 256 layout:’N’, ’H’, ’W’, ’C’ onnx_layout:’N’, ’C’, ’H’, ’W’ scale_factor:185.249740>
<conv2d Conv_12 dtype:int16 shape:1, 28, 28, 256 strides:1, 1, 1, 1 padding:1, 1, 1, 1 bias:256, scale:1, cshamt_out:33 act_func:relu sum_dtype:int64 concur_och:16 stationary:filter default_addr:50284288 g_index:0 l_index:9 word_alignment:2 aligned_shape:1, 28, 28, 256 layout:’N’, ’H’, ’W’, ’C’ onnx_layout:’N’, ’C’, ’H’, ’W’ scale_factor:185.249740>

Stage 11
<conv2d Conv_15 dtype:int16 shape:1, 14, 14, 512 strides:1, 1, 1, 1 padding:1, 1, 1, 1 bias:512, scale:1, cshamt_out:34 act_func:relu sum_dtype:int64 concur_och:8 stationary:filter default_addr:50786048 g_index:0 l_index:11 word_alignment:2 aligned_shape:1, 14, 14, 512 layout:’N’, ’H’, ’W’, ’C’ onnx_layout:’N’, ’C’, ’H’, ’W’ scale_factor:170.044475>
<max_pool_serial MaxPool_14 dtype:int16 shape:1, 14, 14, 256 ksize:1, 2, 2, 1 strides:1, 2, 2, 1 padding:0, 0, 0, 0 no_reuse default_addr:50685696 g_index:0 l_index:10 word_alignment:2 aligned_shape:1, 14, 14, 256 layout:’N’, ’H’, ’W’, ’C’ onnx_layout:’N’, ’C’, ’H’, ’W’ scale_factor:185.249740>
<variable 112 dtype:int16 shape:512, 3, 3, 256 default_addr:1606912 g_index:3 word_alignment:2 aligned_shape:512, 3, 3, 256 layout:’O’, ’H’, ’W’, ’I’ onnx_layout:’O’, ’I’, ’H’, ’W’ scale_factor:481269.224985>
<variable 113 dtype:int32 shape:512, default_addr:1606912 g_index:3 word_alignment:1 aligned_shape:512, scale_factor:89154998.747469>
<variable onnx_Conv_15_conv.scale dtype:int16 shape:1, default_addr:1606912 g_index:3 word_alignment:2 aligned_shape:2, scale_factor:32767.000000>

Stage 12
<max_pool_serial MaxPool_17 dtype:int16 shape:1, 7, 7, 512 ksize:1, 2, 2, 1 strides:1, 2, 2, 1 padding:0, 0, 0, 0 no_reuse default_addr:50986752 g_index:0 l_index:12 word_alignment:2 aligned_shape:1, 7, 7, 512 layout:’N’, ’H’, ’W’, ’C’ onnx_layout:’N’, ’C’, ’H’, ’W’ scale_factor:170.044475>
<conv2d Conv_15 dtype:int16 shape:1, 14, 14, 512 strides:1, 1, 1, 1 padding:1, 1, 1, 1 bias:512, scale:1, cshamt_out:34 act_func:relu sum_dtype:int64 concur_och:8 stationary:filter default_addr:50786048 g_index:0 l_index:11 word_alignment:2 aligned_shape:1, 14, 14, 512 layout:’N’, ’H’, ’W’, ’C’ onnx_layout:’N’, ’C’, ’H’, ’W’ scale_factor:170.044475>

Stage 13
<conv2d Conv_18 dtype:int16 shape:1, 5, 5, 1024 strides:1, 1, 1, 1 padding:0, 0, 0, 0 bias:1024, scale:1, cshamt_out:34 act_func:relu sum_dtype:int64 concur_och:4 stationary:filter default_addr:51036928 g_index:0 l_index:13 word_alignment:2 aligned_shape:1, 5, 5, 1024 layout:’N’, ’H’, ’W’, ’C’ onnx_layout:’N’, ’C’, ’H’, ’W’ scale_factor:213.966888>
<max_pool_serial MaxPool_17 dtype:int16 shape:1, 7, 7, 512 ksize:1, 2, 2, 1 strides:1, 2, 2, 1 padding:0, 0, 0, 0 no_reuse default_addr:50986752 g_index:0 l_index:12 word_alignment:2 aligned_shape:1, 7, 7, 512 layout:’N’, ’H’, ’W’, ’C’ onnx_layout:’N’, ’C’, ’H’, ’W’ scale_factor:170.044475>
<variable 115 dtype:int16 shape:1024, 3, 3, 512 default_addr:1606912 g_index:3 word_alignment:2 aligned_shape:1024, 3, 3, 512 layout:’O’, ’H’, ’W’, ’I’ onnx_layout:’O’, ’I’, ’H’, ’W’ scale_factor:659731.491335>
<variable 116 dtype:int32 shape:1024, default_addr:1606912 g_index:3 word_alignment:1 aligned_shape:1024, scale_factor:112183695.392112>
<variable onnx_Conv_18_conv.scale dtype:int16 shape:1, default_addr:1606912 g_index:3 word_alignment:2 aligned_shape:2, scale_factor:32767.000000>

Stage 14
<conv2d Conv_20 dtype:int16 shape:1, 5, 5, 1024 strides:1, 1, 1, 1 padding:1, 1, 1, 1 bias:1024, scale:1, cshamt_out:35 act_func:relu sum_dtype:int64 concur_och:2 stationary:filter keep_input default_addr:51088128 g_index:0 l_index:14 word_alignment:2 aligned_shape:1, 5, 5, 1024 layout:’N’, ’H’, ’W’, ’C’ onnx_layout:’N’, ’C’, ’H’, ’W’ scale_factor:143.102944>
<conv2d Conv_18 dtype:int16 shape:1, 5, 5, 1024 strides:1, 1, 1, 1 padding:0, 0, 0, 0 bias:1024, scale:1, cshamt_out:34 act_func:relu sum_dtype:int64 concur_och:4 stationary:filter default_addr:51036928 g_index:0 l_index:13 word_alignment:2 aligned_shape:1, 5, 5, 1024 layout:’N’, ’H’, ’W’, ’C’ onnx_layout:’N’, ’C’, ’H’, ’W’ scale_factor:213.966888>
<variable 118 dtype:int16 shape:1024, 3, 3, 1024 default_addr:1606912 g_index:3 word_alignment:2 aligned_shape:1024, 3, 3, 1024 layout:’O’, ’H’, ’W’, ’I’ onnx_layout:’O’, ’I’, ’H’, ’W’ scale_factor:701318.289938>
<variable 119 dtype:int32 shape:1024, default_addr:1606912 g_index:3 word_alignment:1 aligned_shape:1024, scale_factor:150058892.051316>
<variable onnx_Conv_20_conv.scale dtype:int16 shape:1, default_addr:1606912 g_index:3 word_alignment:2 aligned_shape:2, scale_factor:32767.000000>

Stage 15
<conv2d Conv_22 dtype:int16 shape:1, 7, 7, 30 strides:1, 1, 1, 1 padding:1, 1, 1, 1 bias:30, scale:1, cshamt_out:32 act_func:relu sum_dtype:int64 concur_och:2 stationary:filter keep_input default_addr:51139328 g_index:0 l_index:15 word_alignment:2 aligned_shape:1, 7, 7, 30 layout:’N’, ’H’, ’W’, ’C’ onnx_layout:’N’, ’C’, ’H’, ’W’ scale_factor:309.065831>
<conv2d Conv_20 dtype:int16 shape:1, 5, 5, 1024 strides:1, 1, 1, 1 padding:1, 1, 1, 1 bias:1024, scale:1, cshamt_out:35 act_func:relu sum_dtype:int64 concur_och:2 stationary:filter keep_input default_addr:51088128 g_index:0 l_index:14 word_alignment:2 aligned_shape:1, 5, 5, 1024 layout:’N’, ’H’, ’W’, ’C’ onnx_layout:’N’, ’C’, ’H’, ’W’ scale_factor:143.102944>
<variable 121 dtype:int16 shape:30, 1, 1, 1024 default_addr:1606912 g_index:3 word_alignment:2 aligned_shape:30, 1, 1, 1024 layout:’O’, ’H’, ’W’, ’I’ onnx_layout:’O’, ’I’, ’H’, ’W’ scale_factor:283090.702343>
<variable 122 dtype:int32 shape:30, default_addr:1606912 g_index:3 word_alignment:1 aligned_shape:30, scale_factor:40511112.926941>
<variable onnx_Conv_22_conv.scale dtype:int16 shape:1, default_addr:1606912 g_index:3 word_alignment:2 aligned_shape:2, scale_factor:32767.000000>

Stage 16
<_lazy_reshape Flatten_24 dtype:int16 shape:1, 1470 alias_of:Conv_22 default_addr:51139328 g_index:0 l_index:15 word_alignment:2 aligned_shape:1, 1470 scale_factor:309.065831>
<conv2d Conv_22 dtype:int16 shape:1, 7, 7, 30 strides:1, 1, 1, 1 padding:1, 1, 1, 1 bias:30, scale:1, cshamt_out:32 act_func:relu sum_dtype:int64 concur_och:2 stationary:filter keep_input default_addr:51139328 g_index:0 l_index:15 word_alignment:2 aligned_shape:1, 7, 7, 30 layout:’N’, ’H’, ’W’, ’C’ onnx_layout:’N’, ’C’, ’H’, ’W’ scale_factor:309.065831>

Stage 17
<matmul Gemm_25 dtype:int16 shape:1, 496 bias:496, scale:1, cshamt_out:33 act_func:relu sum_dtype:int64 concur_out_col:2 stationary:right keep_left default_addr:51142272 g_index:0 l_index:16 word_alignment:2 aligned_shape:1, 496 scale_factor:1405.615995>
<_lazy_reshape Flatten_24 dtype:int16 shape:1, 1470 alias_of:Conv_22 default_addr:51139328 g_index:0 l_index:15 word_alignment:2 aligned_shape:1, 1470 scale_factor:309.065831>
<variable fcs.1.weight dtype:int16 shape:496, 1470 default_addr:1606912 g_index:3 word_alignment:2 aligned_shape:496, 1470 scale_factor:1192254.230479>
<variable fcs.1.bias dtype:int32 shape:496, default_addr:1606912 g_index:3 word_alignment:1 aligned_shape:496, scale_factor:368485044.734294>
<variable onnx_Gemm_25_gemm.scale dtype:int16 shape:1, default_addr:1606912 g_index:3 word_alignment:2 aligned_shape:2, scale_factor:32767.000000>

Stage 18
<matmul Gemm_27 dtype:int16 shape:1, 637 bias:637, scale:1, cshamt_out:33 sum_dtype:int64 concur_out_col:8 stationary:right keep_left default_addr:0 g_index:1 word_alignment:2 aligned_shape:1, 638 scale_factor:3760.972195>
<matmul Gemm_25 dtype:int16 shape:1, 496 bias:496, scale:1, cshamt_out:33 act_func:relu sum_dtype:int64 concur_out_col:2 stationary:right keep_left default_addr:51142272 g_index:0 l_index:16 word_alignment:2 aligned_shape:1, 496 scale_factor:1405.615995>
<variable fcs.4.weight dtype:int16 shape:637, 496 default_addr:1606912 g_index:3 word_alignment:2 aligned_shape:637, 496 scale_factor:701433.668319>
<variable fcs.4.bias dtype:int32 shape:637, default_addr:1606912 g_index:3 word_alignment:1 aligned_shape:637, scale_factor:985946383.808247>
<variable onnx_Gemm_27_gemm.scale dtype:int16 shape:1, default_addr:1606912 g_index:3 word_alignment:2 aligned_shape:2, scale_factor:32767.000000>

[RAM spec: num]
32-bit 1024-entry 2-port 1-bank RAM: 1
16-bit 32768-entry 2-port 2-bank RAM: 1
16-bit 8192-entry 2-port 2-bank RAM: 1
16-bit 4096-entry 2-port 2-bank RAM: 18
16-bit 2048-entry 2-port 2-bank RAM: 1
16-bit 512-entry 2-port 2-bank RAM: 1

[Substream spec: num]
’acc_rshift_round_frac’, 64, 0, True, 64, 0, True: 1
’add_tree’, 64, 0, True, 1: 1
’add_tree’, 64, 0, True, 9: 1
’mul_rshift_clip’, 64, 0, True, 16, 0, True, 80, 0, True, 16, 0, True: 1
’mul_rshift_round_madd’, 16, 0, True, 16, 0, True, 32, 0, True: 9
’reduce_max’, 16, 0, True: 1

[Stream spec: num]
<class ’nngen.operator.conv2d.conv2d’>, <dtype int16>, <dtype int16>, <dtype int32>, <dtype int16>, <dtype int16>, 1, 3, 3, None, <dtype int64>, 1, 1, 1, 1, 9, 9: 1
<class ’nngen.operator.pool_serial.max_pool_serial’>, <dtype int16>, <dtype int16>, 1, 2, 2, True, 1: 1
<class ’nngen.operator.conv2d.conv2d’>, <dtype int16>, <dtype int16>, <dtype int32>, <dtype int16>, <dtype int16>, 1, 1, 1, None, <dtype int64>, 1, 1, 1, 1, 1, 1: 1
<class ’nngen.operator.basic._lazy_reshape’>, <dtype int16>, <dtype int16>, 1, True: 1
<class ’nngen.operator.matmul.matmul’>, <dtype int16>, <dtype int16>, <dtype int32>, <dtype int16>, <dtype int16>, 1, 1, 1, None, <dtype int64>, 1, 1, 1, 1, 1, 1: 1

[Control name # states: num]
main_fsm # states: 163
control_conv2d_24 # states: 56
control_max_pool_serial_26 # states: 26
control_conv2d_54 # states: 40
control_matmul_58 # states: 40

[Register Map]
0 R : header0 default: 0
4 R : header1 default: 0
8 R : header2 default: 0

12 R : header3 default: 0
16 W: Start set ’1’ to run
20 R : Busy returns ’1’ when running
24 W: Reset set ’1’ to initialize internal logic
28 R : Opcode from extern objects to SW returns ’0’ when idle
32 W: Resume extern objects set ’1’ to resume
36 RW: Global address offset default: 0
40 RW: Address of temporal storages size: 15539KB
44 RW: Address of output matmul ’Gemm_27’ size: 2KB, dtype: int16, shape: 1, 637, alignment: 2 words 4 bytes, aligned shape: 1, 638
48 RW: Address of placeholder ’act’ size: 1568KB, dtype: int16, shape: 1, 448, 448, 3, alignment: 2 words 4 bytes, aligned shape: 1, 448, 448, 4
52 RW: Address of variables ’97’, ’98’, ’onnx_Conv_0_conv.scale’, ’100’, ’101’, ’onnx_Conv_3_conv.scale’, ’103’, ’104’, ’onnx_Conv_6_conv.scale’, ’106’, ’107’, ’onnx_Conv_9_conv.scale’, ’109’, ’110’, ’onnx_Conv_12_conv.scale’, ’112’, ’113’, ’onnx_Conv_15_conv.scale’, ’115’, ’116’, ’onnx_Conv_18_conv.scale’, ’118’, ’119’, ’onnx_Conv_20_conv.scale’, ’121’, ’122’, ’onnx_Conv_22_conv.scale’, ’fcs.1.weight’, ’fcs.1.bias’, ’onnx_Gemm_25_gemm.scale’, ’fcs.4.weight’, ’fcs.4.bias’, ’onnx_Gemm_27_gemm.scale’ size: 32837KB

[Default Memory Map start - end] entire range: [0 - 51143295], size: 49945KB
[ 0 - 1279]: output matmul ’Gemm_27’ size: 2KB, dtype: int16, shape: 1, 637, alignment: 2 words 4 bytes, aligned shape: 1, 638
[ 1280 - 1606911]: placeholder ’act’ size: 1568KB, dtype: int16, shape: 1, 448, 448, 3, alignment: 2 words 4 bytes, aligned shape: 1, 448, 448, 4
[ 1606912 - 1608063]: variable ’97’ size: 2KB, dtype: int16, shape: 16, 3, 3, 3, alignment: 2 words 4 bytes, aligned shape: 16, 3, 3, 4
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[ 1608064 - 1608127]: variable ’98’ size: 64B, dtype: int32, shape: 16,, alignment: 1 words 4 bytes, aligned shape: 16,
[ 1608128 - 1608191]: variable ’onnx_Conv_0_conv.scale’ size: 64B, dtype: int16, shape: 1,, alignment: 2 words 4 bytes, aligned shape: 2,
[ 1608192 - 1617407]: variable ’100’ size: 9KB, dtype: int16, shape: 32, 3, 3, 16, alignment: 2 words 4 bytes, aligned shape: 32, 3, 3, 16
[ 1617408 - 1617535]: variable ’101’ size: 128B, dtype: int32, shape: 32,, alignment: 1 words 4 bytes, aligned shape: 32,
[ 1617536 - 1617599]: variable ’onnx_Conv_3_conv.scale’ size: 64B, dtype: int16, shape: 1,, alignment: 2 words 4 bytes, aligned shape: 2,
[ 1617600 - 1654463]: variable ’103’ size: 36KB, dtype: int16, shape: 64, 3, 3, 32, alignment: 2 words 4 bytes, aligned shape: 64, 3, 3, 32
[ 1654464 - 1654719]: variable ’104’ size: 256B, dtype: int32, shape: 64,, alignment: 1 words 4 bytes, aligned shape: 64,
[ 1654720 - 1654783]: variable ’onnx_Conv_6_conv.scale’ size: 64B, dtype: int16, shape: 1,, alignment: 2 words 4 bytes, aligned shape: 2,
[ 1654784 - 1802239]: variable ’106’ size: 144KB, dtype: int16, shape: 128, 3, 3, 64, alignment: 2 words 4 bytes, aligned shape: 128, 3, 3, 64
[ 1802240 - 1802751]: variable ’107’ size: 512B, dtype: int32, shape: 128,, alignment: 1 words 4 bytes, aligned shape: 128,
[ 1802752 - 1802815]: variable ’onnx_Conv_9_conv.scale’ size: 64B, dtype: int16, shape: 1,, alignment: 2 words 4 bytes, aligned shape: 2,
[ 1802816 - 2392639]: variable ’109’ size: 576KB, dtype: int16, shape: 256, 3, 3, 128, alignment: 2 words 4 bytes, aligned shape: 256, 3, 3, 128
[ 2392640 - 2393663]: variable ’110’ size: 1KB, dtype: int32, shape: 256,, alignment: 1 words 4 bytes, aligned shape: 256,
[ 2393664 - 2393727]: variable ’onnx_Conv_12_conv.scale’ size: 64B, dtype: int16, shape: 1,, alignment: 2 words 4 bytes, aligned shape: 2,
[ 2393728 - 4753023]: variable ’112’ size: 2304KB, dtype: int16, shape: 512, 3, 3, 256, alignment: 2 words 4 bytes, aligned shape: 512, 3, 3, 256
[ 4753024 - 4755071]: variable ’113’ size: 2KB, dtype: int32, shape: 512,, alignment: 1 words 4 bytes, aligned shape: 512,
[ 4755072 - 4755135]: variable ’onnx_Conv_15_conv.scale’ size: 64B, dtype: int16, shape: 1,, alignment: 2 words 4 bytes, aligned shape: 2,
[ 4755136 - 14192319]: variable ’115’ size: 9216KB, dtype: int16, shape: 1024, 3, 3, 512, alignment: 2 words 4 bytes, aligned shape: 1024, 3, 3, 512
[14192320 - 14196415]: variable ’116’ size: 4KB, dtype: int32, shape: 1024,, alignment: 1 words 4 bytes, aligned shape: 1024,
[14196416 - 14196479]: variable ’onnx_Conv_18_conv.scale’ size: 64B, dtype: int16, shape: 1,, alignment: 2 words 4 bytes, aligned shape: 2,
[14196480 - 33070847]: variable ’118’ size: 18432KB, dtype: int16, shape: 1024, 3, 3, 1024, alignment: 2 words 4 bytes, aligned shape: 1024, 3, 3, 1024
[33070848 - 33074943]: variable ’119’ size: 4KB, dtype: int32, shape: 1024,, alignment: 1 words 4 bytes, aligned shape: 1024,
[33074944 - 33075007]: variable ’onnx_Conv_20_conv.scale’ size: 64B, dtype: int16, shape: 1,, alignment: 2 words 4 bytes, aligned shape: 2,
[33075008 - 33136447]: variable ’121’ size: 60KB, dtype: int16, shape: 30, 1, 1, 1024, alignment: 2 words 4 bytes, aligned shape: 30, 1, 1, 1024
[33136448 - 33136575]: variable ’122’ size: 128B, dtype: int32, shape: 30,, alignment: 1 words 4 bytes, aligned shape: 30,
[33136576 - 33136639]: variable ’onnx_Conv_22_conv.scale’ size: 64B, dtype: int16, shape: 1,, alignment: 2 words 4 bytes, aligned shape: 2,
[33136640 - 34594879]: variable ’fcs.1.weight’ size: 1425KB, dtype: int16, shape: 496, 1470, alignment: 2 words 4 bytes, aligned shape: 496, 1470
[34594880 - 34596863]: variable ’fcs.1.bias’ size: 2KB, dtype: int32, shape: 496,, alignment: 1 words 4 bytes, aligned shape: 496,
[34596864 - 34596927]: variable ’onnx_Gemm_25_gemm.scale’ size: 64B, dtype: int16, shape: 1,, alignment: 2 words 4 bytes, aligned shape: 2,
[34596928 - 35228863]: variable ’fcs.4.weight’ size: 618KB, dtype: int16, shape: 637, 496, alignment: 2 words 4 bytes, aligned shape: 637, 496
[35228864 - 35231423]: variable ’fcs.4.bias’ size: 3KB, dtype: int32, shape: 637,, alignment: 1 words 4 bytes, aligned shape: 637,
[35231424 - 35231487]: variable ’onnx_Gemm_27_gemm.scale’ size: 64B, dtype: int16, shape: 1,, alignment: 2 words 4 bytes, aligned shape: 2,
[35231488 - 51143295]: temporal storages size: 15539KB
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