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Towards Individual-Sensitive Automation for Air Traffic
Control using Convolutional Neural Networks

S.J. van Rooijen ∗, J. Ellerbroek †, C. Borst ‡, E. van Kampen §

Delft University of Technology, Delft, The Netherlands, 2629HS

Lack of trust and acceptance caused by strategic mismatches in problem-solving have been
identified as obstacles in the introduction of workload-alleviating automation in air traffic
control. One possible way to overcome these obstacles is by creating automation capable of
providing personalized advisories conformal to the individual controller. This paper focuses
on performing an exploratory investigation into the tools and methodology required for creat-
ing conformal automation. Central in the creation of individualized prediction models is the
combination of a visual feature, capturing traffic situations, and a tailored convolutional neural
network model trained on individual controller data recorded from a human-in-the-loop simu-
lation. The main advantage of using a visual feature is that it could facilitate ‘transparency’ of
the machine learning model. Results show that the trained models can reasonably predict com-
mand type, direction and magnitude. Furthermore, a correlation is found between controller
consistency and achieved prediction performance. A comparison between individual-sensitive
and general models showed a benefit of individually trained models, confirming the strategy
heterogeneity of the population, which is a critical assumption for personalized automation.
Future research should be done in refining themodel architecture, finding richer visual features
that capture the breadth of human decision-making behavior and feedbackmodel outputs back
to individuals for measuring controller agreement.

I. Introduction

The introduction of automated decision support tools for Air Traffic Control (ATC) is widely seen as unavoidable
to keep up with air traffic growth [1, 2]. However, in the past, the introduction of support tools for separation

management has shown that such tools are frequently left unused [3–5]. In an extensive review on past efforts in
automating parts of the ATC work, Westin et al.[6] argue that low automation conformance (i.e., a mismatch between
human and computer problem-solving strategies and solutions) can be one of the reasons for low acceptance of automated
advisories. For instance in the separation task, often multiple resolution options are available for a given conflict, and
resolutions proposed by automation do not always coincide with human strategies and best practices[7].

Recent work has argued that making advisories strategically conformal can be an effective way to increase trust and
acceptance of automation [6, 8]. If a decision support tool has the ability to adapt to individual strategies, acceptance
should increase. In a human-in-the-loop simulation study, Hilburn et al.[8] demonstrated that conformal advisories
were accepted more often than non-conformal advisories. In that study, however, conformal automation was simulated
by replays of an individual’s actions instead of real automation.

A promising method to create truly conformal automation that is able to predict human strategies is machine learning
[9]. The advantage of having a decision support tool for ATC based on machine learning is that it would be able to
adapt to different controller preferences without full knowledge of the underlying decision-making dynamics. However,
prerequisites for individual-sensitive automation is that controllers should be sufficiently consistent and a group of
controllers should be adequately heterogeneous in strategies and decisions for individual-sensitive automation to be
beneficial.

A first proof-of-concept has been explored by Regtuit et al.[10], who showed that machine learning techniques are
able to identify and replicate conflict resolution strategies from simple, synthetic traffic situations. While the results
from this study were promising, its method is not easily extended to capture more realistic, multi-aircraft situations. The
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work presented in this paper extends on that previous effort by proposing and testing a different machine learning model
able to predict Air Traffic Controller (ATCo) commands in more realistic traffic situations.

To capture relevant aspects of realistic traffic situations in a concise form, the Solution Space Diagram (SSD)[11],
also known as velocity obstacle diagram [12], will be used as visual input to the learning algorithm. The SSD is a
visual representation of a velocity space of conflicting and conflict-free velocities and headings. Essentially, the SSD
connects conflict situations with all possible actions to solve those situations, all in one diagram, thereby making it an
ideal candidate as a learning feature. Numerous previous studies that have used the SSD as a decision-support tool
have shown that it contains sufficient information concerning an air traffic situation to make an informed decision
regarding conflict resolution [11, 13–16]. Learning from an image can be advantageous as it serves two purposes.
First, it eliminates the need for manually designing features based on heuristics and assumptions. Second, a visual
feature can make the machine learning algorithm more ‘transparent’ when presenting it to a human operator. This
could facilitate understanding and monitoring what the machine is learning, thereby potentially addressing one of the
challenges associated with artificial intelligence[17, 18].

The proposed model will use convolutional neural networks, a machine learning technique that is especially well-
suited for visual learning [19], and uses the SSD and controller actions as inputs in learning to predict individual decisions.
To provide training data, and to test controller consistency and the efficacy of using the SSD as a machine learning
feature, a human-in-the-loop experiment is carried out featuring participants with various degrees in ATC expertise and
experience. The recorded datasets are used to train individual-sensitive predictive models using a supervised learning
algorithm. Individual model performance is compared to controller consistency and an inter-participant comparison and
a comparison with general group-based models are performed to test the effect of individual-sensitive automation. Note
that this study only focused on modeling and predicting individual controller decisions, and therefore did not analyze
the model outputs with participants’ acceptance.

The remainder of this paper is structured as follows: The proposed concept is introduced in section II. Experiment
design is discussed in section III, and results are provided in section IV, followed by a discussion in section V and
conclusions & recommendations in section VI.

II. Concept

INPUT
Channels: 3

OUTPUT
Classes: 2 or 3

SIZE:64x32x3 63x31x32 31x15x32 30x14x64 15x7x64 14x6x32 2688 1024 1024 2 or 3

Convolution
Filters: 32

Downsampling
Convolution
Filters: 64

Convolution
Filters: 32

Downsampling Flattening Dense Dropout Dense

Fig. 1 The Convolutional Neural Network structure. All weights in one plane are iden-
tical. Filter size denoted in pixels. Adapted from LeCun (1998)[19].

Achieving conformal automation has similarities to a machine learning field called Imitation Learning, where
machine learning is used to learn to perform tasks based on expert demonstrations. The aim is to generalize these
observations to unseen situations, usually using supervised learning [20]. Artificial neural networks with a deep
architecture are a powerful method for supervised learning as they automatically devise learning features, without
reliance on pre-engineered parameters [21]. This research follows a similar approach, where the input images are
provided in the form of rasterized SSDs. In particular, Convolutional Neural Networks (CNNs)[22] have shown their
potential of training on image data, for example in learning to play computer games [23], self-driving cars [24, 25] and
competing with world-class board game champions [26]. The most important reason to choose CNNs over other types
of deep NN’s is that there is a visual representation available (i.e., the SSD) that captures/summarizes conflict situations
in a single image and reveals opportunities to solve those situations (in heading and/or speed). CNNs have proven to
provide high accuracy in image classification tasks. They were originally inspired by human visual perception [22] and
use fewer parameters compared to a fully connected network by re-using the same parameter numerous times.
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A. Convolutional Neural Networks
Similar to a regular neural network, a CNN consists of multiple stacked neurons. In the case of a CNN, every input

is connected to a pixel-value of the original image, as shown in Figure 1. On each layer of the network, individual
neurons are connected to the weighted combination of the outputs of the previous layer, which is passed through a
convolution filter. These filters slide over the entire image to create a new output map. By using different filters, specific
visual features can be extracted from the input image, such as small corners or edges. In this study, filter size is always
2 × 2 pixels, and filters progress over the image with a stride of 1 pixel. The visual features are subsequently combined
to form compositions while progressing through the net, using successive layers of filters. To avoid overfitting and
reduce computational cost, the data is also downsampled in between filter steps [27]. In the final steps, the data is
flattened, and reduced in steps to the expected number of output classes (e.g., when a conflict resolution maneuver can
be either using heading, speed, or a direct-to, output classes are heading, speed, and direct-to, resulting in an output size
of three). To reduce overfitting, a dropout layer is added here that sets the weights of a fraction of the neurons to zero at
each epoch during training [28].

The neurons in each layer are specified by an activation function. In this study, all layers but the final layer use a
Rectified Linear Unit (ReLU) activation function, because of its computational efficiency [29]. The final layer uses a
softmax function [30], which transforms the layer of real values into a vector of probabilities per output class f(z).
The softmax function is defined by Equation 1, where all entries of f are real, within [0, 1], and add up to 1.  is the
dimension of input vector z.

f(z) 9 =
4I 9∑ 
:=1 4

I:
for 9 = 1, ...,  (1)

A cross-entropy function is used to take these probabilities into account in the loss function [31]. The cross entropy
� is calculated for " output classes by comparing the probability vector f resulting from the softmax function to the
one-hot encoded target vector H8:

� (H, f) = −
"∑
8

H8 logf8 (2)

The calculated losses, averaged over a minibatch of samples are used to update the network parameters \. In this
study, this update is done using a first-order gradient-based optimization algorithm called Adam. Empirical results show
that it outperforms previously popular optimizers such as AdaGrad, RMSProp and SGDNesterov [32].

B. Solution Space Diagram
The performance of CNNs is naturally determined by their inputs, as they should capture all relevant information for

the model to make a prediction. This research utilizes the Solution Space Diagram (SSD) as input to the neural network.
The SSD was originally designed as a decision-support tool that integrates various critical parameters of the Conflict
Detection and Resolution problem [33–35]. This was later extended to complexity and workload analysis [11, 36–38],
automated conflict resolution [15, 16, 39] and even ATC training[40]. Based on the findings of these studies, this
research hypothesizes that an SSD image as learning feature contains sufficient information concerning air traffic
conflicts to make an informed decision. Compared to using raw traffic images (e.g., locations and velocities of blips on
a radar display), the SSD seems a more informed approach as it captures the essence of conflict situations (i.e., conflict
angle, proximity, passing in front / behind, absolute and relative speeds, protected zone dimension, etc.) and describes
the conflict situation directly in an action state-space used by controllers (i.e, heading and/or speed opportunities). Thus,
the SSD connects conflict situations with all possible actions to solve those situations, all in one visual diagram.

Figure 2 illustrates how the SSD is constructed. It consists of an area of reachable velocities, bounded by concentric
limits of minimum and maximum operating speeds. This reachable space is reduced by triangular velocity obstacles
that correspond to the set of velocity vectors that would lead to a loss of separation with a nearby aircraft. The color
of the velocity obstacles is determined by the time to closest point of approach (CPA), divided into three ranges: red
(Ccpa < 60B), orange (60 < Ccpa < 120B) and gray (Ccpa > 120B). The remaining free space corresponds to the reachable
conflict-free speed/heading combinations. In the SSD, the current heading and speed are indicated by the green vector,
see Figure 2. As an additional feature, the target heading to the exit waypoint of the respective aircraft is shown with a
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blue line. This information is part of the normal tasks of an air traffic controller, and may influence conflict resolution
decisions.

Exit waypoint

Protected zone

Vcon

Acon

Vint

Aint

(a)

Vmax
Vmin

Vint

(b)

Velocity obstacleExit bearing

Reachable velocities

Vcon

(c)

Fig. 2 Construction of the SSD: (a) conflicting relative velocities, (b) velocity vector displacement and (c)
limiting the solution area. Adapted from Mercado et al. (2010) [11].

In the current study, the above method is used to learn individual controller strategies for observed traffic conflicts.
FollowingWestin’s approach [41], this study defines strategy in terms of three control variables: resolution type (heading,
speed, or direct-to), resolution direction (left or right, speed increase or decrease), and resolution magnitude ([0, 10]
deg, [10, 45] deg and > 45 for heading resolutions, and [200 − 250] kts, and [250 − 290] kts for speed resolutions)
With the SSDs of all detected conflicts as input, three independent CNNs (as described in Figure 1) are trained to match
the SSD of the controlled aircraft to the observed controller strategy: one CNN for resolution type, one for resolution
direction, and one for resolution magnitude.

III. Experiment
An experiment was performed to provide training and test data for the model described in the previous section. In

this experiment, participants were asked to control a sector with multiple incoming aircraft, where they guided the
aircraft to their exit waypoint as efficiently as possible, while avoiding losses of separation. The shape of the sector –
inspired by Amsterdam Sector South 1 – is shown in Figure 3, with the main traffic flows north- and west-bound. The
circles surrounding the aircraft indicate the protected zones (� = 5nm). Maneuvering was restricted to the horizontal
plane, i.e., all aircraft flew at the same flight level and only heading, speed, and direct-to commands were allowed by
means of a command interface (Figure 4). Furthermore, no wind was present in the simulation and communication with
aircraft was simulated with a digital data link, requiring no radio telephony (R/T). These simplifications decreased the
degrees of freedom and potential confounding factors, which enabled better comparison between controllers in terms of
consistency and strategy.

A. Conditions
Two traffic scenarios (S1 and S2) were used in the experiment with identical sector geometry, but different traffic

flows. The scenarios have been setup in such a way that they represent traffic entering and leaving an airspace sector
along major traffic routes / streams, similar to real-life situations. Randomness in the scenarios was not desirable for
this study, given that measuring participants’ consistency in solving similar conflicts situations was required. Each
scenario consisted of 10 conflict pairs. The main aircraft flow was always directed towards the north, and was crossed by
traffic on several headings from the east. All conflicts were crossing conflicts, with conflict angles between 45 and 135
degrees. Every conflict angle in the set {45, 55, ... , 135} was visited at least four times during the entire experiment.
The conflicts were chronologically spaced in a way to minimize interference between conflicts.

Both scenarios were performed two times, resulting in a total of four 20-minute scenarios, generating 80 minutes of
data per participant. The order of the conditions was balanced between participants to avoid learning biases.
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SPL

SUG

HSD

SSB

NIK

Fig. 3 The 50nm × 60nm sector as displayed in ATC simulator SectorX. Three aircraft are visible of which two
are in conflict.
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7
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4 5 6

1 2 3

0

CLR

PRV

EXQ

RA4743:EFL70:DCT

Clear

Preview

Execute

Executive Flight Level

Heading

Speed

Speed Vector On/Off

Direct

Transfer of Control

Protected Zone On/Off

Selected Aircraft and Commands

Fig. 4 The command interface that participants used in controlling the aircraft.
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B. Participants
The population consisted of 12 participants, all university staff and students, with varying experience levels in

performing ATC control tasks. These experiences ranged from participation in previous ATC-related experiments
toward a five-day Area Control course at the Royal Netherlands Aerospace Laboratory (NLR). Given the simplified
simulation environment, participation of professional controllers was not deemed critical in this exploratory study where
the goal is to create prediction models tuned to the individual participant.

C. Procedure
The experiment was performed on a personal computer with a 30" screen showing the sector under control, and

a touch control device window similar to the touch control devices used at the Dutch air navigation service provider
LVNL. Participants could control aircraft through this interface using a computer mouse. Before measurements, each
participant performed three training runs of increasing difficulty to get acquainted with the ATC simulator. Training
runs lasted 90s, but could be prolonged when required.

Each time a command was given by a participant, the application saved the command plus an image of the controlled
aircraft’s SSD. Commands were defined in terms of type (heading, speed, or direct-to), direction (left or right, speed
increase or decrease) and magnitude (magnitude of the heading or speed change). During supervised model training,
the SSD image functions as input while the given command functions as target.

D. Data preprocessing
The SSD dataset consists of 128x128 pixel RGB samples which were preprocessed for computing time improvements.

First, the SSD images were rotated track-up, so that the velocity vector of the controlled aircraft always points upward.
Second, because the most relevant information in the SSD is located in the upper half of the image (aircraft are not
likely to make turns larger than 90 deg), the lower half of the SSD was cropped away to decrease training times.

E. Dependent measures
To avoid misleading results from an imbalanced dataset, model performance is evaluated using the Matthews

Correlation Coefficient (MCC) [42] for training and validation. For example, if a controller chooses to use heading
instead of speed commands in 95% of the situations, simply always guessing ‘heading’ would result in a 0.95 accuracy
score. This would give a false sense of model performance, because 0% of the speed commands are predicted. In such
cases, the MCC metric gives less biased results than accuracy [43]. The definitions of accuracy and the two-class MCC
are shown in Equations (3) and (4) respectively, where )% = true positive, )# = true negative, �% = false positive,
�# = false negative.

accuracy =
)% + )#

)% + )# + �% + �# (3)

with possible values [0, 1].

MCC=
)%×)#−�%×�#√

()%+�%) ()%+�#) ()#+�%) ()#+�#)
(4)

with possible values [-1, 1]. As MCC is a more critical metric, MCC values are often lower compared to accuracy
values for identical models.

In this study, consistency is considered as the relative occurrence of the most often-used command. For resolution
type and resolution direction this is determined by summing over all commands per participant:

consistencytype, direction = max(
∑
class 1∑

class 1 + . . . + class n , . . . ,∑
class n∑

class 1 + . . . + class n ) (5)

where for example class 1, 2, and 3 are respectively hdg, spd, and direct-to for command type consistency. Using
this definition, consistency equals 1 when a single command type is used and 0.5 when they are evenly balanced.
For example, when a participant steers the aircraft to the right 90 out of 100 times and left 10 out of 100 times, the
consistency is calculated to be 0.9 = max( 90

100 ,
10
100 ).
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Iteration 1 TestTrainingVal

Run 1 - 3

Iteration 2 TestVal

Iteration 3 TestVal

Iteration 4 TestVal

Iteration 5 TestVal

Run 4

Fig. 5 Performance is validated using stratified 5-fold cross-validation with a separate test set. One bar
represents all available data per participant.

For resolution magnitude, a different equation is used:

consistencymagnitude =

∑
unique values possible∑
unique values used

(6)

where the consistency of a participant decreases when a broader range of magnitude values is used.

F. Model training
The data from the experiment is used in two ways: First, the dataset from each participant is used to train individual

models. Then, five general models are trained on random samples drawn from the combined participant data.
The individual models are trained following the procedure illustrated in Figure 6. The dataset consists of input (SSD

images) and target (commands) data. Model performance is based on prediction accuracy. After preprocessing, the test
data is separated into a training set (experiment runs 1-3) and a test set (experiment run 4). The training data is used to
train three personalized models per participant, one for each resolution dimension (type, direction, and magnitude),
see Table 1 for a summary of the selected training procedure settings. During training, K-fold validation is used to
select a model that obtains the highest prediction performance. With K-fold validation, 1/: Cℎ of the data is iteratively
reserved for validation, as illustrated in Figure 5. In this case 5 folds are used, which means that the data is shuffled into
5 different training–validation sets. Using this validation data, the best model is then selected as a final model. This
combination of model training and validation has proven to have lower variance and bias of performance measures
compared to other methods [44]. In the current experiment, five folds are applied during training.

The five general models are trained on random samples of all (between-subject) data, in the same way that the
individual models are trained. An equal number of random samples is used as is available in the individual model
training. The mean performance of these five models will be taken, and will be compared to the individual models as a
(non-individually sensitive) baseline.

G. Model testing
After training, each individual model is tested with the participant’s corresponding test dataset (i.e. the 4Cℎ run),

to test the individual prediction accuracy of the trained models, as shown in Figure 7a. Additionally, each individual
model is tested with all other participants’ test datasets, to evaluate how individually-sensitive each model is (Figure 7b).
The general models are also tested with all participants’ test datasets (Figure 7c). In all three above-mentioned cases, the
test data is data unseen up to this point.

IV. Results
Using the data from twelve participants in the human-in-the-loop experiment, twelve individual models and five

general models were trained. This section presents the individual model results, individual model performance as a
function of participant consistency, an inter-participant test of model performance, and a comparison of individual
models to the average general model performance. Performance is measured using the MCC (see section III.E), which
ranges between −1 and 1. Because negative correlation did not occur, all MCC result figures are clipped to a range
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Fig. 7 Three validation steps for participant 1 (P1).

of [0, 1]. To test for robustness of the results, the models for Participant 1 were trained 50 times (i.e., 50 runs). The
validation performance has a standard deviation of 0.018, 0.014 and 0.017 for direction, type and value respectively,
indicating that the training method is indeed robust.

A. Training convergence
In the training phase, data from the first three experiment runs is used to train several candidate models. Using the

K-fold method illustrated in Figure 5, five candidate models are trained, of which the performance is validated using five
different subsets of the data. Figure 8 shows the training progress in terms of these validation results for the individual
model of Participant 1, with training epoch on the x-axis, and the resulting MCC score on the y-axis. Here, the spread
around each line depicts the range between the least and best performing folds per control variable during training,
which lasts 25 epochs. It can be seen that with successive epochs, MCC values increase, which indicates that the neural
network successfully ‘learns’ from the data samples. In most cases, the models reach MCC scores > 0.95 during
training, a performance level that is not achieved in the validation steps, as can be seen in Figure 8. This difference
between training and validation performance indicates overfitting on the training data. The spread shows that validation
MCC can differ more than 0.2 per fold, which is a relatively large amount compared to the mean value.

B. Model performance on individual test data
After training (Figure 8), the individual models are applied to the test datasets of each participant (Run 4). Figure 9

shows the achieved MCC scores per control variable. In this figure, the large variability in performance (particularly for
the type control variable) indicates that the personalized predictions are not equally effective across the entire population
of participants. The direction prediction shows the highest MCC score (mean = 0.76, SD = 0.11), while type (mean =
0.52, SD = 0.21) and magnitude (mean = 0.64, SD = 0.12) predictions achieve lower performances.

A potential reason for poor performance of the trained model is low participant consistency: in some cases, the
participant data on which the model is trained does not show sufficiently consistent behaviour across different runs,
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Table 1 (Hyper)parameters used during training of the convolutional neural networks

Parameters Value

Optimization algorithm Adam
Output activation Softmax classifier
Loss function Categorical entropy
Train/val/test ratio 60%/15%/25%
K-folds 5
Mini batch-size 32 samples
Steps-per-epoch 2 × training samples / batch-size
Epochs 30
Learning rate 0.01
Dropout rate 20%
Input image dimensions 128x128 px

5 10 15 20 25
Epoch

0.0

0.2

0.4

0.6

M
C

C

Type Direction Magnitude

Fig. 8 Validation performance, expressed in the Matthews Correlation Coefficient (MCC), during training of
P1’s individual model. The spread indicates the maximum and minimum performance for each fold per control
variable.
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Fig. 10 Consistency scores per participant split per control variable.

and between conflicts that do appear comparable in the SSD. Figure 10 shows the normalized consistency (as defined
in Section III.E) per participant and control variable. Here, it can be seen that while some participants are relatively
consistent (participants 5, 7 and 10), other participants (particularly 8 and 11) show more erratic decision-making.
Figure 10 also shows that participant consistency varies per control variable. For instance, participants can be very
consistent in the type of resolution they choose, but are less consistent in the direction they choose for their resolutions.

The effect of participant consistency on the performance of the trained model can be evaluated by observing
the correlation between consistency and model performance. To illustrate this, Figure 11 shows the mean model
performance (the mean over all folds and abstraction levels), against the mean consistency per participant. When a
Pearson Correlation Coefficient test is applied to this data, a positive correlation (A = 0.75, ? = .005) can be found
between participant consistency and individual model MCC. This supports the assumption that the personal models of
more consistent participants perform better than the models of their less consistent counterparts.

C. Model performance on inter-participant data
A way to evaluate whether the personalized models are indeed individual-sensitive, is to test the models against all

other participant test datasets. Figure 12 shows the results of using the models of each participant on the test data of all

10



1.0 0.5 0.0 0.5 1.0 1.5
Participant Consistency

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

M
ea

n 
M

C
C

P1
P2

P3
P4

P5

P6
P7

P8

P9 P10

P11

P12

Fig. 11 Participant consistency vs individual model performance. '2 = 0.56.

participants. In these spider-plots, the model performance (MCC value) in terms of type (blue), direction (orange), and
magnitude (green) is shown for each participant’s test data, along twelve radials of each chart. For the individual models
of participants 1, 6, 7, 9, and 10 it can be seen that overall performance is highest when the model is applied to the test
data of the corresponding participant. For instance, for the individual model of participant 1, a mean performance of
MCC = 0.72 is achieved when the model is applied on the test data of participant 1, compared to an average MCC of
0.37 when testing with other participants’ data. This difference indicates that participant 1 makes different decisions in
similar situations compared to the rest of the population. Other participants’ models show more uniform MCC scores,
regardless of which test set is use.

D. Comparison between individual and general models
A second way to test whether the trained models are individual-sensitive is to compare individual model performance

to the performance of the general models, when applied to the test data of each respective participant. Figure 13 shows
the average individual model performance per participant, compared to the average general model performance per
participant. The chart shows that most individual models outperform the mean of the general models, but some cases
show near equal or even worse (P4 and P8) performance, possibly caused by a strategy change in the final run.

A paired t-test shows that the individual models perform significantly better (C (11) = 2.9, ? = 0.02) than the general
models in terms of MCC, see Figure 14. The individual models provide a mean 0.08 (SD = 0.10) MCC improvement
over the general models. The personalized approach is most effective for participant 1, whose individual models score
0.20 MCC higher than the baseline.

V. Discussion
The aim of this study was to create individual-sensitive models of controller actions by training a set of convolutional

neural networks on a visual representation of traffic conflicts. The main advantage of using a visual learning feature is
that it could eventually be used to make machine learning more ‘transparent’ and explainable. A human-in-the-loop
experiment was performed to generate training data for the model creation. The results are promising in predicting
individual controller actions compared to a general “one-size-fits-all” model, especially when controllers are more
consistent. For some participants, however, the individual model did not outperform the general model in terms
of prediction performance, requiring a discussion on the possible areas for improvement in terms of the proposed
methodology.
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Fig. 12 Performance (in MCC) of individual models tested on the test datasets of all other participants.

One source of diminished prediction performance could be attributed to the visual model, the SSD, that was used to
train the models. In its currently used form, the SSD is a state-based representation of the instantaneous traffic state at
the time a controller command was given. This corresponds to a controller who only looks one step ahead when making
a decision to solve a conflict. In the experiment, it was observed that some participants were planning several steps
ahead. As an example, a deliberate strategy was temporarily vectoring an aircraft inside the no-go velocity obstacle of a
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Fig. 14 Comparison of model performance between general and individual models.
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far-away aircraft when solving a conflict with a near-by aircraft. Such intentional behavior is not supported by the SSD
in its current form. It is therefore recommended to revise the SSD or find an alternative visual representation that can
“look forward” and thus capture planning activities. It would also be interesting to look at the use of raw conflict images,
which the human operator would use, as input to the CNN’s, to see if the CNN’s can extract any relevant and useful
features from this data. Additionally, our current machine learning model also does not “look backwards” as it contains
no memory of the commands given in the past. In dynamic control problems, actions are usually impacted by actions
undertaken in the past. One way to solve this issue could be by combining the CNN with a Recurrent Neural Network
(RNN) to account for temporal dynamic behavior.

Other sources of diminished prediction performance can be attributed to the quantity and quality of the data as well
as the model architecture. It is a common problem in machine learning that model training requires a large amount
of data. To mitigate this problem, the performed experiment considered only a subset of the types of conflict that
controllers can encounter in their sector. Throughout the experiment, similar conflicts were presented to each participant
multiple times, by only introducing conflicting traffic from the east, with a limited number of crossing angles. Increasing
the breadth of encountered conflicts could increase the validity and applicability of the trained models, but would require
more training data. Results show that model performance per validation fold can fluctuate up to 0.2 MCC, which shows
sensitivity to random state-action pair sampling from the training set. This indicates that even for this limited subset of
conflicts, performance improvements can be gained with exposure to more training data. Data quantity, however, is
often a limiting factor in machine learning experiments with human data. Also in this case study, more samples could
have been generated per participant in the experiment, but participant availability was limited. Part of the goal of this
research was to show heterogeneity between participants and to demonstrate this, one initially does not need very large
sample sizes. However, future research could aim to obtain higher accuracy by measuring one participant for a longer
period of time to generate more training samples.

Evidence that our CNN model is able to interpret the SSD is shown by the accuracy increase during training. This
might, however, also indicate that the network overfits on the training data at pixel-level without generalization to new
samples. For the current dataset, the ability to generalize is demonstrated by the fact that the validation performance
during training follows an upward trend similar to the training performance. Test results using the separate test set
further confirm this. On the other hand, overfitting on the training samples does occur to a certain extent, indicated by
the performance difference between the training and test sets.

It is expected that performance improvements can be achieved by a formal grid search to optimize the hyper-
parameters of the model. However, since every training iteration generates 360 models (12 participants × 3 control
variables × 2 repetitions × 5 cross-validation folds), iterating over parameters is computationally expensive and
meticulous. The network architecture used in this research is kept constant for all control variables, i.e., it can predict
command type, direction and magnitude by only altering the last fully connected layer. Designing separate network
architectures that are tailored to each control variable could consequently improve performance. Resolution magnitude
predictions are obtained using classification (i.e., dividing possible magnitudes over a limited number of bins) to more
easily compare results to type and direction predictions. As resolution magnitude values are, in reality, more finely
grained, this caused the accuracy of magnitude predictions to be reliant on the classification, i.e., the granularity of the
bins. Therefore, more precise predictions are expected to be achieved using regression instead of classification.

VI. Conclusions
This research evaluated to what extent prediction models of actions undertaken by individual air traffic controllers

can be achieved using convolutional neural networks. A 12-participant experiment was devised to generate training
data consisting of solution space diagram (SSD) images, capturing both conflict situations and the action state-space,
and conflict resolutions. Results show a correlation between the controller consistency metric and achieved model
performance, confirming the hypothesis that consistent controllers would be more suited for strategic conformal
automation support. Personalized models obtained significantly higher prediction accuracy than general models,
indicating that controllers in this experiment exhibit differentiating strategies, i.e., are not homogeneous as a group. This
is a critical assumption for strategic conformal automation. However, the performance improvement due to individual
modeling substantially differed per participant, indicating the need to refine the proposed methodology by finding
better ways to capture more aspects of human decision-making behavior and by exploring different machine learning
architectures.
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