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Abstract

This thesis investigates the interpretation of forensic evidence through the use of likelihood ratios (LRs), with
a particular focus on the role of prior probabilities and LR distributions in forensic DNA analysis. In forensic
science, LRs are commonly used to quantify the strength of evidence in favor of one hypothesis over another.
However, challenges arise in practice due to the complexity of DNA mixtures and the necessity of integrating
prior information in certain scenarios. The first part of this work explores when and how prior probabilities
must be incorporated into LR calculations, demonstrating through theoretical exposition and case studies that
neglecting priors or assuming equal priors can lead to misleading conclusions.

Two detailed case studies illustrate the impact of introducing new persons of interest (PoIs) and how prior
knowledge about associations between individuals can alter posterior probabilities. A comparison is also drawn
between categorical and probabilistic approaches in body fluid analysis, with the latter offering a more nuanced
interpretation of mRNA profiling data.

In the second part, the thesis introduces methods to estimate LR distributions for DNA contributors. These
include threshold-based and genotype sampling techniques, which are tested across synthetic mixtures with
varying contributor ratios. Furthermore, the behavior of LRs is studied for relatives of the true donor.

The findings underscore the importance of transparently reporting assumptions about priors and the value
of presenting LR tables to facilitate Bayesian reasoning by decision makers. Overall, the thesis contributes to a
more robust and interpretable application of statistical reasoning in forensic science.
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Chapter 1

Introduction and Overview

A key responsibility of forensic experts is to evaluate whether the collected evidence supports one hypothesis
over another. For example, whether it is more likely that a suspect contributed to a DNA trace or that the
DNA originated from an unknown individual. To quantify this, forensic scientists often use the likelihood ratio
(LR). The LR expresses how much more likely the observed evidence is under one hypothesis than under the
alternative hypothesis. Also, this LR serves as the bridge between prior belief and posterior belief. The prior
belief means the belief before the forensic investigation about the hypotheses, and the posterior belief means the
belief after the forensic investigation. The posterior belief can be interpreted as final conclusion about which
hypothesis is more plausible. The mathematical background of this reasoning is introduced in Chapter 2.

While the theoretical foundation of LR-based reasoning is well-established, its practical application in forensic
contexts introduces several challenges. One challenge is how to determine the prior probability of a hypothesis.
For instance, how to determine what the probability is that a suspect contributed to a DNA trace. This prior
probability is needed to compute the posterior probability and can significantly change the value of the posterior
probability.

A second important challenge lies in interpreting the magnitude of the LR in a practical way. While the
LR tells how much more likely the evidence is under one hypothesis compared to another, it does not tell
whether the result is convincing enough to act upon. In this research, the LRs for donors of DNA mixtures are
investigated under the hypothesis the suspect contributed to the DNA trace against the hypothesis an unknown
individual contributed to the DNA trace.

In practice, forensic institutes use often thresholds as cutoff to either report or not report. For instance, a
hit from a DNA database is only reported if the LR is higher than a certain LR. This motivates to study the
expected LR for a donor of a DNA mixture.
This research has two main goals:

1. Clarify how Bayesian reasoning can be applied in forensic science, with a focus on the role of
prior probabilities. The aim is to identify when prior probabilities are unavoidable in forensic research
and how they can substantially affect the posterior probability.

2. Develop and evaluate methods to derive LR distributions for contributors of DNA mixtures.
The order of magnitude of the LR depends on various variables as the quality of the DNA material, the
uniqueness of the DNA material, the number of contributors to the DNA trace, etc. Therefore, the
magnitude of the LR for the donors varies from case to case. With an LR distribution an indication can
be made on the order of magnitude that is expected for the donors.

To address these goals, different types of forensic evidence are examined and several case studies are developed.

The structure of the thesis is as follows:

• Chapter 2 introduces the basic concepts of forensic statistics, including hypotheses, likelihood ratios and
Bayesian inference.

• Chapter 3 explains DNA and genetic concepts that are essential for understanding forensic DNA analysis.
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• Chapter 4 focuses on the role of prior probabilities: when they are needed and how they influence the
evidential value.

• Chapter 5 introduces forensic DNA identification in detail and presents two case studies, including one
where the introduction of a second suspect drastically changes the evidential value for the first suspect.

• Chapter 6 covers body fluid analysis using mRNA markers, here the main question is what body fluids
are present in the DNA trace. Different approaches are compared to evaluate this evidence.

• Chapter 7 compares the frameworks used for DNA identification analysis and body fluid analysis. It
focuses on the differences between the methods with the hope of gaining new insights.

• Chapter 8 introduces two methods to obtain distributions to estimate LR distributions for DNA donors.

• Chapter 9 simulates close relatives of the donors to investigate whether they can be distinguished from
the actual contributors based on their LR values.

• Chapter 10 concludes with a discussion of the main findings and suggestions for further research.

The core part of this thesis is divided into two parts. Part I (Chapters 4-7) focuses on understanding the current
LR framework in forensic science and the practical challenges in applying Bayesian reasoning. Part II (Chapters
8-9) focuses on LR distributions: how they can be achieved and how to use them.
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Chapter 2

Introduction to Forensic Statistics

Forensic scientists play a crucial role in the justice system by evaluating evidence and providing an assessment
about a pair of hypotheses. Examples of possible hypotheses are: person x contributed DNA to a trace, sperm is
present in the trace, or person x wrote these texts. The goal of forensic analysis is to evaluate these hypotheses
such that the decision maker is able to draw conclusions based on the evidence. For evaluating the evidence
a metric is needed to quantify the strength of the evidence. A widely used metric in forensic analysis is the
Likelihood Ratio (LR). The LR provides a numerical representation of how strong the evidence supports a
hypothesis compared to another hypothesis. The LR (in forensic setting) is simply the probability that we find
the evidence E under the prosecution’s hypothesis Hp divided by the probability that we find the evidence
under the defendant’s hypothesis Hd:

LR =
P (E | Hp)

P (E | Hd)
.

Interpreting which of the two hypotheses is more likely to be true according to the evidence is straightforward
using the LR. An LR > 1 means that the evidence supports the prosecution’s hypothesis, indicating that the
evidence is more likely found when the prosecution’s hypothesis is true rather than the defendant’s hypothesis
is true. When the LR = 1 the evidence is neutral, meaning that the evidence does not favor one of the two
hypotheses. Lastly, when the LR < 1 the evidence supports the defendant’s hypothesis, meaning that the
evidence is more likely found under the defendant’s hypothesis.

The magnitude of an LR can be difficult to interpret. Say that we found an LR of 100, then the evidence
is more likely to be found under the prosecution’s hypothesis than under the defendant’s hypothesis. Whether
this LR is labeled as ’strong evidence’ or ’weak evidence’ depends on the person assigning the label and the
context. The label is irrelevant to the degree of certainty: what always matters is the value of the LR [9].
Consider the following two settings. In the medical setting where Hp is that a person recovers due to medicine
A and Hd is that the recovery is due to medicine B, an LR of 100 in favor of Hp might be considered as ’strong
evidence’. But on the other hand, if Hp is that person x contributed to a DNA trace and Hd is that an unknown
person contributed to a trace, it might be labeled as ’weak evidence’, since a higher LR might be expected if
person x were indeed the true contributor.

The role of the forensic experts is to investigate the evidence objectively using scientific methods and after
that give an unbiased result based on that. Therefore, the forensic expert is typically not given additional
background information about the case. After this investigation, a report will be sent to a decision maker,
such as the court. The forensic expert does not determine a conclusive result, but only provides an LR as an
quantitative measure of the strength of the evidence. The decision maker combines the LR with other available
information of the case to arrive at a final judgment. This is also the idea of using Bayesian reasoning in
forensics. The Bayesian approach allows the forensic expert to determine the evidential value, which is reported
as an LR. It is up to the decision maker to assign the prior probability. The prior probabilities are defined as
P (Hp) and P (Hd). These prior probabilities are the beliefs of the hypotheses before observing the evidence.
The posterior probability in this setting means the probability that the hypothesis is true given that we have
found the evidence, thus P (Hp | E) and P (Hd | E). Using the Bayes’ theorem we find the following expressions
for the posterior probabilities

P (Hp | E) =
P (E | Hp)P (Hp)

P (E)
and P (Hd | E) =

P (E | Hd)P (Hd)

P (E)
.
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Dividing the posterior probability of Hp by the posterior probability of Hd, we find the posterior odds. This
posterior odds expresses which hypothesis is more likely after observing the evidence. The posterior odds can
be obtained by the product of the LR and the prior odds. The prior odds expresses which hypothesis is more
likely before observing the evidence.

P (Hp | E)

P (Hd | E)︸ ︷︷ ︸
posterior odds

=
P (E | Hp)

P (E | Hd)︸ ︷︷ ︸
likelihood ratio

× P (Hp)

P (Hd)︸ ︷︷ ︸
prior odds

This Bayesian approach should result in an unbiased presentation of the evidence and provides a method for
the decision maker to combine the evidence and draw a conclusion.

8



Chapter 3

Introduction to DNA and Genetic
Concepts

Deoxyribonucleic acid (DNA) is hereditary material found in nearly all living organisms. DNA has two primary
purposes [2]: (1) to make copies of itself so cells can divide and carry on the same information; and (2) to carry
instructions on how to make proteins so cells can build the machinery of life. The genetic information encoded
in DNA is passed from generation to generation. Half of a person’s DNA is inherited from their mother, and
the other half from their father.

The information in the DNA is encoded in sequences of four nucleobases: adenine (A), thymine (T), cyto-
sine (C), and guanine (G). The variation in the sequences of the nucleobases can be used to identify individuals.
There are specific regions, called loci, that contain short sequences of DNA that are repeated a variable number
of times. The number of repeats at a locus is referred to as an allele, and each person inherits one allele from
each parent at every locus. The alleles are represented by numbers that reflect the number of repeats of the
DNA sequence.

When a DNA trace is recovered from a crime scene, the detected alleles can be compared to the DNA profiles
of potential suspects. Statistical methods can be used to quantify whether it is likely that an individual con-
tributed to the trace. Importantly, the strength of a match also depends on how common or rare the alleles are in
the general population. Matches involving rare alleles provide stronger support than matches with common ones.

Because DNA is inherited, it also contains information about biological relationships. For example, a father and
son share at least one allele at each locus, since the son inherits one allele from the father. For brothers, allele
sharing is more variable. Each allele in one brother’s genotype has a 50% chance of also being found in the
genotype of the other brother. This is because each parent randomly passes on one of their two alleles to each
child. These patterns of allele sharing allow forensic scientists to evaluate the biological relationships between
individuals.

Figure 3.1 presents an example of these mixtures. This is a two-person mixture with proportions 300:150
in picograms (1 picogram = 10−12 gram). The major donor thus contributed twice the amount of DNA mate-
rial compared to the minor donor. This mixture is classified as having high allele sharing, indicating that the
donors of the mixture share more alleles than would typically be expected between unrelated individuals.

In Figure 3.1, the first column shows the markers (or loci). At each locus, every individual has two alleles.
If both alleles at a locus are the same, the individual is said to be homozygous at that locus. If the two alleles
are different, the individual is heterozygous. A DNA mixture of two persons can thus have at most four alleles
per locus. Four alleles are observed when both donors are heterozygous at the locus, and none of their alleles
overlap. The marker AMEL can be used to determine the sex of an individual, for example males have alleles
X and Y and females have twice X.

In the figure, each allele is associated with a peak height, which is a measure of how much DNA material
of this allele has been found in the mixture. For example, consider the third marker, counted from above,
D1S1656. We note that there have been four alleles found for this marker in the mixture. This indicates that
both donors are heterozygous for this marker and do not share an allele. By inspecting the peak heights, we
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can make an informed guess about which alleles originate from the major donor and which from the minor
donor. In this case, the alleles 13 and 15.3 show peak heights more than twice as high as 16 and 18.3, suggesting
that alleles 13 and 15.3 originate from the major donor and the alleles 16 and 18.3 originate from the minor donor.

The informed guess can be confirmed as the genotypes of the donors are known. In Figure 3.2 the geno-
types of the donors can be found. As expected, the genotype at D1S1656 is (13, 15.3) for the major donor and
(16, 18.3) for the minor donor.

While the last example is straightforward, in practice it is often more complex. For instance, software needs
to estimate how many persons contributed to the trace and what are the proportions of the contributed DNA
material without prior knowledge. If contributors have proportions that are closer to each other than in the
last example it becomes more difficult to assign the alleles to the correct contributor based on the peak heights.
Furthermore, when alleles are shared between donors, their peak heights may be elevated due to combined
contributors, complicating interpretation.

Figure 3.1: Alleles and peak heights of a two-person mixture where the proportions are 300:150.
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Figure 3.2: Genotypes of the two individuals who contributed to the mixture shown in Figure 3.1. Donor 1 is
the major donor and donor 2 is the minor donor.

In addition to identifying individuals through DNA, forensic scientists can also investigate which body fluids,
such as blood, saliva, or semen, are present at the crime scene. This distinction can be crucial in certain cases,
such as sexual assault. To determine the type of body fluid, the presence of body fluid specific markers is
used. For example, hemoglobin is typically found in blood. Each body fluid has a set of characteristic markers.
However, the analysis is complicated by the fact that some markers are shared across fluids, and even body
fluid specific markers are not always consistently detected.
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Part I

The Role of Prior Probabilities in Forensic
Statistics
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Chapter 4

Prior Probabilities

In forensic practice, the forensic expert typically determines the LR, while the decision maker combines this
LR with prior information to reach a conclusion about the competing hypotheses. For instance, consider the
hypothesis that there is blood in a trace versus the hypothesis that there is no blood. In such a case, the forensic
expert can calculate an LR for these hypotheses without needing any prior information. The calculation of an
LR in body fluid analysis is discussed in detail in Chapter 6.

However, there are cases in which the forensic expert cannot compute an LR without relying on prior prob-
abilities. One case where prior information is needed is when the prosecution’s hypothesis can be subdivided
into several scenarios, and the forensic expert can only determine the likelihood for each scenario individually.
In these cases, prior probabilities are needed to combine the LRs into a single LR for the prosecution’s hypothesis.

Section 4.1 presents an example where prior probabilities are required to compute an LR. Section 4.2 de-
scribes the mathematical framework for incorporating prior into such calculations. Section 4.3 describes the
alternative option to report the subdivided LRs.

4.1 Example: subdivision of a hypothesis
Suppose a DNA trace is found, which is a mixture of two individuals. There are two suspects and the forensic
expert is asked to calculate for both of the suspects an LR for the contribution to the DNA trace. The forensic
expert usually uses ’unknown individual’ profiles in the calculation of the LR. A DNA profile of an unknown
individual is based on population allele frequencies. More details on this process can be found in Chapter 5.

The complexity arises in calculating the LR for the contribution of either suspect. The forensic expert can-
not directly compare the hypothesis that suspect 1 contributed with the hypothesis that suspect 1 did not
contribute, as the latter cannot be modeled directly. Instead, the forensic expert evaluates the four hypotheses:

• both suspects contributed,

• suspect 1 and an unknown individual contributed,

• suspect 2 and an unknown individual contributed,

• two unknown individuals contributed

against the hypothesis that two unknown individuals contributed. These resulting four LRs can then be com-
bined using prior probabilities to compute the LR for a separate suspect. Without prior probabilities, the
forensic expert is unable to combine these LRs into a single LR for a suspect.

4.2 Mathematical framework: the role of the prior probability
Assume that there are two different scenarios in which the prosecution’s hypothesis is true. For instance, the
hypothesis that suspect 1 is a donor to a DNA trace is true if either suspect 1 and suspect 2 are the donors, or if
suspect 1 and an unknown individual are the donors. Consider that there are two different scenarios Hp1

, Hp2
,

if one of either is true, then Hp is true. If the scenarios Hp1
, Hp2

are mutually exclusive, i.e. they cannot both
be true, we get using the law of total probability:
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P (E | Hp) = P (E | Hp1
)P (Hp1

| Hp) + P (E | Hp2
)P (Hp2

| Hp).

In words, this means that the likelihood of finding the evidence under the prosecution’s hypothesis is equal to
the likelihood of finding the evidence under Hp1

times the prior probability of Hp1
given that Hp is true plus

the likelihood of finding the evidence under the prosecution’s is equal to the likelihood of finding the evidence
under Hp2 times the prior probability of Hp2 given that Hp is true.

If the two scenarios are not mutually exclusive the likelihood of finding the evidence under the prosecution’s
hypothesis is as follows:

P (E | Hp) = P (E | Hp1
)P (Hp1

| Hp) + P (E | Hp2
)P (Hp2

| Hp)− P (E | Hp1
∩Hp2

)P (Hp1
∩Hp2

| Hp).

When Hp1 and Hp2 are mutually exclusive P (H1 ∩H2 | Hp) = 0 and the formula reduces to the same formula
that we found for mutually exclusive scenarios.

4.2.1 Generalization to multiple scenarios
The prosecution’s hypothesis may in some cases be divided into more than two scenarios. Assume that there
are n ∈ N mutually exclusive scenarios that can explain the prosecution’s hypothesis, then we find similarly
using the law of total probability that

P (E | Hp) =

n∑
i=1

P (E | Hpi
)P (Hpi

| Hp).

In cases where the scenarios are not mutually exclusive a formula can be derived using the inclusion-exclusion
principle.

4.3 Reporting without priors
A practical alternative is to report the LRs for each sub-hypothesis individually. In most cases where one of
the hypotheses is clearly most likely this suffices. In cases where there is more doubt about the best fitting
hypothesis more work is needed. The decision maker now has to combine the LRs with prior probabilities to
an LR for the prosecution’s hypothesis. This process may be challenging as statistical expertise in needed.
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Chapter 5

Forensic DNA Analysis

In Chapter 4, we discussed how prior probabilities can be essential for evaluating forensic evidence. A field where
this issue frequently arises is forensic DNA analysis. From crime scenes often DNA traces can be retrieved.
These DNA traces contain useful information about the individuals whose body fluids were found on the crime
scene. Often these DNA traces are mixtures of DNA material of several persons, which introduces complexity
in interpreting the evidence.

Section 5.1 introduces the mathematical framework for calculating LRs and posterior probabilities in foren-
sic DNA analysis. Section 5.2 outlines current guidelines on communicating the results. This chapter then
presents two case studies. In Section 5.3 a case study is explored where the evidential value of a suspect com-
pletely diminishes after the introduction of a new suspect. In Section 5.4 a case study is considered where the
suspects are associates. This affects the prior probabilities, which affects the posterior probabilities.

5.1 Calculating LRs and posterior probabilities in forensic DNA anal-
ysis

To assess whether a person contributed to a DNA trace, population allele frequencies are used to quantify how
common or rare the observed alleles are. These frequencies allow us to compute the probability of observing
a given genotype in the population. When both the mixture and the genotype of the person of interest (PoI)
share rare alleles, this provides stronger support for the hypothesis that the PoI contributed to the trace than
if only common alleles are shared.

Most often, DNA traces are mixtures of DNA material from several individuals. To calculate LRs in such
cases, the statistical software requires hypotheses that fully explain the trace. For example, hypotheses for a
two-person mixture need to include two individuals, i.e. suspect 1 and suspect 2 created the DNA trace, or
suspect 1 and an unknown individual created the trace. As defendant’s hypothesis, the statistical software uses
the hypothesis that two unknown individuals created the trace.

Consider that a DNA trace is found and it is determined that it is a mixture of two contributors. The police
has two suspects. It does not suffice to calculate only separate LRs for the suspects. In example, it is possible
that the two hypotheses: suspect 1 and an unknown, and suspect two and an unknown are significantly more
likely than two unknown individuals created the trace, and thus achieve both a high LR. But the hypothesis
that suspect 1 and suspect 2 created together the trace is less likely than the alternative hypothesis. This
suggests that while both suspects’ profiles match portions of the trace, they do not explain together all the
DNA observed. It is thus unlikely that both the suspects are donors of the trace, but it is likely that one of the
two suspects is a donor of the trace.
To properly evaluate the evidence, we consider four mutually exclusive hypotheses:

• H12 : PoI 1 and PoI 2 contributed to the trace,

• H1u : PoI 1 and another unknown person, that is unrelated to both PoIs contributed to the trace,

• H2u : PoI 2 and another unknown person, that is unrelated to both PoIs contributed to the trace,

• Huu : Two unknown unrelated persons contributed to the trace.
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For all these four hypotheses, the defendant’s hypothesis Huu can be used to calculate an LR. Clearly, for the
hypothesis Huu this would result in an LR of 1, as the prosecution’s is the same as the defendant’s hypothesis.
These LRs can then be used to assess which hypothesis is most likely to support the evidence with respect to the
hypothesis Huu. Let E be the event that we find the DNA trace and let S1 be the event that PoI 1 contributes
to the trace. Let Sc

1 be the complement of S1, thus PoI 1 did not contribute to the crime stain. By definition,
S1 is true if either PoI 1 and an unknown contributed, or PoI 1 and PoI 2 both contributed. The LR for the
contribution of PoI 1 is given by the likelihood of finding the trace given that PoI 1 contributed divided by the
likelihood of finding the trace given that PoI 1 did not contribute.
In the sequel the likelihood is defined as L and prior probabilities as π. In the subscripts is specified, which
hypothesis is considered. For example, L2u is the likelihood of H2u, thus P (E | H2u). The hypotheses are
clearly mutually exclusive as they cannot co-occur. Thus, the law of total probability can be used to derive the
likelihood that we find the trace under the hypothesis that PoI 1 is a donor. We find

P (E | S1) = P (E | H1u)P (H1u | S1) + P (E | H12)P (H12 | S1)

= L1u
π1u

π1u + π12
+ L12

π12

π1u + π12
=

L1uπ1u + L12π12

π1u + π12
.

(5.1)

Here we used that
P (H1u | S1) =

P (H1u)

P (S1)
=

P (H1u)

P (H1u) + P (H12)
=

π1u

π1u + π12
.

Similarly, we can calculate the defendant’s likelihood P (E | Sc
1).

P (E | Sc
1) = P (E | H2u)P (H2u | Sc

1) + P (E | Huu)P (Huu | Sc
1)

= L2u
π2u

π2u + πuu
+ Luu

πuu

π2u + πuu
=

L2uπ2u + Luuπuu

π2u + πuu
.

(5.2)

Now, the LR of PoI 1 contributing to the DNA mixture against not contributing can be calculated. This LR
is denoted using the subscript 1/1̄, thus meaning the LR for the hypothesis that PoI 1 contributed against the
hypothesis that PoI 1 did not contribute. Using (5.1) and (5.2) follows that

LR1/1̄ =
P (E | S1)

P (E | Sc
1)

=
L1uπ1u + L12π12

L2uπ2u + Luuπuu
× π2u + πuu

π1u + π12
.

Statistical software can calculate the LRs of one specific explanation of the trace against the likelihood that two
unrelated unknowns contributed to the trace. To obtain a formula with LRs, we can simply divide the right
hand side by Luu, then follows

LR1/1̄ =
LR1u,uuπ1u + LR12,uuπ12

LR2u,uuπ2u + πuu
× π2u + πuu

π1u + π12
. (5.3)

Note that prior probabilities are thus needed to calculate LR1/1̄. This formula can easily be extended for DNA
mixtures that have more than two donors. It can also be easily extended for cases where there are more PoIs.
When prior probabilities are available it is more logical to report posterior probabilities than LRs. Posterior
probabilities are easier to interpret. The posterior probability can be calculated using the Bayes’ theorem and
the law of total probability as follows:

P (H1u | E) =
P (E | H1u)P (H1u)

P (E)

=
P (E | H1u)P (H1u)

P (E | H1u)P (H1u) + P (E | H2u)P (H2u) + P (E | H12)P (H12) + P (E | Huu)P (Huu)
.

(5.4)

Similarly, the posterior probabilities for the other hypotheses can be calculated. The posterior probability for
a separate PoI can also be calculated, since the hypotheses are mutually exclusive follows that

P (S1 | E) = P (H1u | E) + P (H12 | E).
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5.1.1 Example LR calculation using prior probabilities
To illustrate the use of equation (5.3), consider again a two-person DNA mixture with two PoIs. Statistical
software has calculated LRs for the four possible hypotheses, which can be found in Table 5.1 presented on a
logarithmic scale (base 10). From the table we note that the hypothesis that both PoIs contributed (H12) receives
the strongest support from the evidence. Also, the hypothesis H1u has quite strong support and H2u has weak
support. Now, if prior probabilities are available, the LRs and priors can be used to calculate LR1/1̄ and LR2/2̄.
Assume that there is moderate prior belief in individual contributors and weak belief in joint contribution,
reflecting that the PoIs are not known to be associated. Take the prior probabilities π1u = π2u = 0.2 and
π12 = 0.04. Lastly, take πuu = 1 − π12 − π1u − π2u = 0.56. The prior probabilities sum up to 1 as one of the
four hypotheses needs to be true. Then using equation (5.3) follows that

LR1/1̄ =
106 · 0.2 + 1012 · 0.04
103 · 0.2 + 1 · 0.56

× 0.2 + 0.56

0.2 + 0.04
≈ 6.3× 108

and

LR2/2̄ =
103 · 0.2 + 1012 · 0.04
106 · 0.2 + 1 · 0.56

× 0.2 + 0.56

0.2 + 0.04
≈ 6.3× 105.

Then using equation (5.4) follows the posterior probabilities

• P (H1u | E) ≈ 10−9,

• P (H2u | E) ≈ 10−6,

• P (H12 | E) ≈ 0.999995,

• P (Huu | E) ≈ 10−11.

Now, it can be concluded that the prior probabilities in combination with the LRs from Table 5.1 provides
overwhelming support for the hypothesis that both PoIs contributed to the trace. The posterior probability for
this hypothesis is approximately 99.999995%.

Hypothesis H log10(LRH,Huu)

H12 12
H1u 6
H2u 3
Huu 0

Table 5.1: LRs for four competing hypothesis for the example in Section 5.1.1.

5.1.2 Equal priors
By setting all prior probabilities equal, the LR formula for the contribution for PoI 1 simplifies to a formula
without prior probabilities:

LR1/1̄ =
LR1u,uu + LR12,uu

LR2u,uu + 1
.

At first glance, this seems like a reasonable assumption, since this assumption does not favor one of the hypothe-
ses. However, this can be a problematic assumption that leads to wrong conclusions. To illustrate, consider the
hypotheses and their corresponding LRs in logarithmic scale from Table 5.2.

Hypothesis H log10(LRH,Huu
)

H12 -3
H1u 6
H2u 3
Huu 0

Table 5.2: LRs for four competing hypothesis for the example in Section 5.1.2.
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From the table, it is evident that both PoI 1 and PoI 2, each together with an unknown contributor, are
more likely than the hypothesis with two unknowns contributors. However, the hypothesis of PoI 1 and PoI
2 together is not more likely than the hypothesis of two unknowns. This can occur, for instance, when both
profiles separately match parts of the DNA mixture, but the two profiles together fail to match DNA material
that is present in the DNA mixture. Meaning that the two profiles are not likely to have created the trace
together. Using equal priors, we find

LR1/1̄ =
106 + 10−3

103 + 1
≈ 103 and LR2/2̄ =

103 + 10−3

106 + 1
≈ 10−3.

Thus, the likelihood of observing the DNA trace under the hypothesis that PoI 1 contributed is 1000 times
greater than under the hypothesis that PoI 1 did not contribute. The likelihood of observing the trace under
the hypothesis that PoI 2 contributed is 1000 times smaller than under the hypothesis that PoI 2 did not
contribute. These result are difficult to interpret on their own, as they do not directly reflect the probability of
a hypothesis being true. A more informative approach is to calculate the posterior probabilities.

• P (H1u | E) ≈ 0.9999,

• P (H2u | E) ≈ 0.0001,

• P (H12 | E) ≈ 10−9,

• P (Huu | E) ≈ 10−6.

The posterior probabilities suggest a very strong evidence in favor of hypothesis H1u.
Now suppose that police information strongly supports the involvement of PoI 2 in the trace, while the
genotype of PoI 1 has been found in a database. We can reflect this belief in the prior probabilities. Take
(π1u, π2u, π12, πuu) = (10−9, 0.5, 10−9, 0.5). Then follows that

LR1/1̄ =
106 · 10−9 + 10−3 · 10−9

103 · 0.5 + 1 · 0.5
× 0.5 + 0.5

10−9 + 10−9
≈ 1000

and

LR2/2̄ =
103 · 0.5 + 10−3 · 10−9

106 · 10−9 + 1 · 0.5
× 0.5 + 10−9

0.5 + 10−9
≈ 1000.

Under the new priors, both PoIs appear roughly 1000 times more likely to have contributed than not. This is
a significant change for PoI 2, for which under equal prior we found LR2/2̄ ≈ 10−3.
Now consider the posterior probabilities under the updated prior. We find

• P (H1u | E) ≈ 2 · 10−6,

• P (H2u | E) ≈ 0.9999,

• P (H12 | E) ≈ 2 · 10−15,

• P (Huu | E) ≈ 0.0001.

The posterior probabilities here are strongly in favor of hypothesis H2u.

This example thus clearly illustrates how the assumption of equal priors, although seemingly a neutral assump-
tion, can lead to wrong conclusions. Under equal priors, the analysis misleadingly points to PoI 1 as contributor
and not to PoI 2. However, when the prior probabilities are updated to reflect reasonable contextual knowledge,
the analysis points to PoI 2 as contributor and not to PoI 1.

5.2 Guidelines for reporting LRs
In cases with a single PoI and an n-person DNA mixture, two hypotheses are typically considered. Firstly, the
hypothesis that the PoI created the trace with n− 1 other unknown persons and secondly the hypothesis that
the trace is created by n unknowns unrelated to the PoI. Statistical software can calculate an LR for the first
hypothesis against the second hypothesis. In cases where there are more PoIs it is more complex. There are
more possible hypotheses and the question arises which hypotheses are relevant to consider. However, the LR
for a specific PoI cannot be obtained without the use of prior probabilities as explained in Section 5.1.
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Slooten (2022) advocates that the most natural way to retain the overview on all hypotheses is by report-
ing a table of LRs as the output of the forensic laboratory. This table allows the decision maker to move from
prior odds to posterior odds. In some cases, evidence supports the proposition that all PoIs contributed. This
was also illustrated in Section 5.1.1. In that case the simplest summary is that within the considered hypotheses
the trace is 106 (in the example) times more likely if both PoI 1 and PoI 2 contributed.

Other articles suggest to report an LR per person. Thus, using the hypothesis that the PoI contributed to
the trace against the hypothesis that the PoI did not contribute to the trace. However, as explained in Section
5.1 this is not possible without invoking prior probabilities. In Hicks et al. (2021) an LR for a certain PoI having
contributed is obtained by setting all prior probabilities equal, in their article this is denoted as Assumption
1. It is written that "in general this would seem reasonable but it would be best if this was disclosed in some
way." As discussed in Section 5.1.2, this assumption may lead to incorrect conclusions. For this reason, we
recommend avoiding this assumption.

Another alternative approach is to explore how different prior assumptions influence the evidential value. In-
stead of reporting single LRs, the forensic expert could calculate several posterior probabilities using a set of
clearly defined prior probability scenarios. This allows the decision maker to see how these assumptions influence
the posterior probabilities. However, this approach requires additional effort from the forensic expert and may
not always be necessary, particularly in cases where there is a really dominant hypothesis. This additional effort
could also be made by the decision maker, since the decision maker is ultimately responsible for determining
the prior probabilities.

5.3 Case study 1: one PoI weakens the evidential value of the other
This section presents a real-world case example. Initially, a PoI had a relatively high evidential value. However,
a few years later, a second PoI emerged whose presence significantly altered the interpretation of the first PoI’s
evidential value. We explore different ways this could be reported to a decision maker and discuss how certain
reporting choices might lead to a misinterpretation.

5.3.1 Case background
The DNA trace is a two-person mixture. Initially, only one PoI was under consideration. Based on the pros-
ecution’s hypothesis that PoI 1 and an unknown individual contributed to the trace versus the defendant’s
hypothesis that two unknown individuals contributed to the trace the software calculates an LR of 60,000.

While an LR of 60.000 appears convincing, it raises the question of whether this is sufficient to support a
conviction. Such a high LR may result from coincidence or from the possibility that the PoI is a relative of the
true contributor, thereby sharing many genetic characteristics.

A few years later, a second PoI was identified. For this individual (PoI 2), the LR for the hypothesis that
PoI 2 and an unknown individual contributed to the trace versus two unknown individuals was calculated to
be 60.000.000. This significantly diminished the evidential value previously assigned to PoI 1. Also, the LR
for the hypothesis that both PoI 1 and PoI 2 contributed against the hypothesis that two unknown individuals
contributed to the trace is calculated, this LR is 0.001.

From this LRs it seems that either PoI 1 or PoI 2 contributed to the trace, but not both. Also, it seems
that PoI 2 is more likely to have contributed to the trace than PoI 1. The low LR for contribution of both PoIs
can be explained as follows: there may be DNA material present in the DNA trace that is not present in the
DNA material from PoI 1 and PoI 2, implying that PoI 1 and PoI 2 can not have created the trace together.
Separately, both PoIs have DNA material that is also found in the mixture, suggesting that each of the PoIs
together with an unknown they may have created the trace, or at least are more likely to create the trace in
comparison to two unknown individuals.
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5.3.2 Equal priors
When assuming a priori that all hypotheses are equally likely, the LRs for the contribution of the PoIs can be
calculated as follows:

LR1/1̄ =
LR12,uu + LR1u,uu

LR2u,uu + 1
and LR2/2̄ =

LR12,uu + LR2u,uu

LR1u,uu + 1

The complete derivation of this formula can be found in the Section 5.1.
In this specific example LR12,uu ≪ LR1u,uu and 1 = LRuu,uu ≪ LR2u,uu. The LR for PoI 1 then reduces
approximately to

LR1/1̄ =
LR1u,uu

LR2u,uu
=

60.000

60.000.000
=

1

1000
.

For PoI 2, also LR12,uu ≪ LR2u,uu, and we find

LR2/2̄ =
LR2u,uu

LR1u,uu
=

60.000.000

60.000
= 1000.

The calculations above are based on the assumption that all hypotheses are a priori equally likely. This implies
that the probability that the trace is from PoI 1 together with an unrelated unknown individual (π1u) is 0.25,
thus 25%. Similarly, π12 = π2u = πuu = 0.25. This assumption may be reasonable if PoI 1 was identified
based on external information (e.g., police investigation), indicating a non-negligible belief in their involvement.
However, if PoI 1 is not identified by investigative leads but instead results from a database search, assuming
a prior probability of 0.25 is no longer justifiable. As of September 2024, the Dutch DNA databank contains
over 400.000 profiles. Approximately 50% of crime scene DNA traces in the Netherlands result in a match
with a profile in this databank. Assuming that all persons in the databank are equally likely to contribute,
the prior probability for a randomly selected PoI from the database contributing to the trace is approximately

1
400,000 × 1

2 ≈ 10−6. Note that this is a rough estimate.

5.3.3 Unequal priors
We now consider the case where both PoIs originate from a DNA database. We assign prior probabilities
π1u = π2u = 10−6. This reflects the assumption that both PoI 1 and PoI 2 have a prior probability 10−6 of
contributing to the trace. Assuming PoI 1 and PoI 2 have no relation to each other, it is reasonable to treat
the prior probabilities as independent, yielding π12 = π1u · π2u = 10−12. This independence reflects that the
probability for PoI 1 and PoI 2 to both contribute to the trace is much smaller than the contribution of only
one of the two PoI. The remaining prior probability is then assigned to πuu = 1 − 2 · 10−6 − 10−12, ensuring
that the total probability sums to 1.

With unequal priors, the formula for the LR of contribution for PoI 1 is derived in 5.1 and is given by

LR1/1̄ =
LR12,uuπ12 + LR1u,uuπ1u

LR2u,uuπ2u + LRuu,uuπuu
× π2u + πuu

π12 + π1u
,

and for PoI 2
LR2/2̄ =

LR12,uuπ12 + LR2u,uuπ2u

LR1u,uuπ1u + LRuu,uuπuu
× π1u + πuu

π12 + π2u
.

We find that the LR of contribution for PoI 1 is now 9.84 × 102 and the LR of contribution for PoI 2 is now
5.66 × 107. Interestingly, these LRs are considerably larger than LRs calculated under equal priors (10−3 and
103). These LR values are significant because most laboratories apply reporting thresholds to databank hits. If
such a threshold lies between 103 and 107, this example illustrates that PoI 2 would be reported under unequal
priors, but not under equal priors.

Forensic experts often avoid specifying priors, as these cannot always be chosen objectively. Nevertheless,
the role of prior probabilities should not be overlooked. A PoI with a high prior probability requires less ev-
idential support (i.e., a lower LR) to reach the same posterior level as one with a low prior. In other words,
"extraordinary claims require extraordinary evidence". Often, the exact relationship between the PoIs is un-
known, making it difficult to assign appropriate priors. The priors may not be agreed upon by all parties.
Therefore, most forensic institutes chose to report a table of likelihoods to the decision maker.
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5.3.4 Detailed explanation of the change in evidential value in terms of the pos-
terior

To combine likelihoods and the prior probability the posterior probability can be calculated. We begin by
revisiting the case involving only PoI 1. The two hypotheses we consider are H1u : PoI 1 contributed to the
trace together with an unknown, that is unrelated to PoI 1 and Huu : two unknown individuals contributed to
the trace, that are unrelated to PoI 1 and each other. The posterior for PoI 1 is calculated as follows

Posterior 1 =
LR1u,uuπ1u

LR1u,uuπ1u + πuu
.

With equal priors, i.e., π1u = πuu = 0.5, the resulting posterior is 0.99998. For priors π1u = 0.01 and πuu = 0.99
this gives a posterior of 0.99835. Lastly, the ’database prior’ π1u = 10−6 and πuu = 1 − 10−6 gives a posterior
of 0.05660. These results show that when there is prior support for PoI 1, the posterior strongly favors their
contribution. However, when PoI 1 originates from a databank search, the posterior drops to approximately
5.7%, indicating weak support for contribution.

Next, consider the case with two PoIs, under the four competing hypotheses: H12, H1u, H2u, Huu. The posterior
for PoI 1 is then calculated as follows

Posterior 1 =
LR12,uuπ12 + LR1u,uuπ1u

LR12,uuπ12 + LR1u,uuπ1u + LR2u,uuπ2u + LRuu,uuπuu
.

With equal priors, the posterior probability for PoI 1 is 0.00099 and for PoI 2 is 0.999. Assuming both PoIs
originate from the Dutch DNA databank, the posteriors for PoI 1 is 0.000856 and 0.856 for PoI 2. Thus, in
both cases the posterior is in strong favor for PoI 2. The posterior can also be calculated for the contribution
of both PoI 1 and PoI 2. The posterior probability for H12 is 1.67× 10−11 under equal priors, and 1.43× 10−17

under databank priors, providing extremely strong evidence against this hypothesis.

5.3.5 Conclusion of the case study
This case study illustrates several challenges in the interpretation of forensic DNA evidence. First, it is impor-
tant to note that a LR alone is, in most cases, insufficient to justify a conviction.

Second, this example underscores that the prior probabilities should be chosen with caution. Priors can sig-
nificantly change the LR. The seemingly innocuous assumption of equal priors can result in a substantial
underestimation of evidential strength, which in this case may lead to no reporting. If forensic experts chose to
use prior probabilities, or assume they are equal, such assumptions should be clearly communicated to decision
makers.

The recommendation by Slooten (2022) to report a table of LRs for all relevant hypotheses proves useful
in this example. This is demonstrated in Table 5.3.

Hypothesis H LRH,Huu

H12 0.001
H1u 60.000
H2u 60.000.000
Huu 1

Table 5.3: LRs of the compared hypotheses.

The table clearly shows that, for non-extreme prior probabilities, there is strong support for the hypothesis
that one of the PoIs contributed to the trace, but not both. Moreover, it is evident that π2u would need to be
significantly smaller than π1u for PoI 1 to be more likely than PoI 2 to have contributed.

When only PoI 1 is considered, the posterior probability shows that the evidential value depends heavily on the
prior. If PoI 1 was identified through a databank search, the posterior remains low. However, if there is already
case-based suspicion, the posterior supports PoI 1’s contribution strongly. When both PoIs are considered, the
posterior probabilities indicate that, under equal priors, the evidence strongly favors PoI 2. However, if there
is already case-based suspicion, the posterior supports PoI 1’s contribution strongly.
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5.4 Case study 2: PoIs are associates, how do the priors change and
influence results?

This case study examines how prior probabilities affect results depending on whether the PoIs are unrelated or
known associates. When PoIs are associates, the presence of one individual’s DNA may increase the probability
of the presence of the other. This information is considered as background information and is not for the
forensic expert to investigate. It is the decision maker’s role to consider this information when assigning prior
probabilities. We consider here a three person DNA mixture where there are three PoIs. LRs for all eight
hypotheses were computed using statistical software. These LRs are presented in logarithmic scale in Table 5.4.

Hypothesis H Log10(LRH,Huuu
)

H123 33
H12u 27
H13u 29.4
H23u 12.2
H1uu 17.5
H2uu 12.1
H3uu 7.9
Huuu 0.0

Table 5.4: LRs for the considered hypotheses

Table 5.4 shows that all hypotheses (other than Huuu) are substantially more likely to explain the observed
DNA trace than Huuu. The hypothesis H123 has the highest LR and is at least 103.6 times more likely to explain
the trace than any other considered hypothesis.

5.4.1 Overview of the considered cases
In this Section we will consider three different cases with different prior probabilities.

• Case 1: Equal priors =⇒ all eight priors for the hypotheses are 0.125.

• Case 2: PoI 1 is suggested by the police and PoI 2 & PoI 3 come from the DNA databank. The
corresponding priors for hypothesis involving a PoI with two unknowns contributors are respectively
(0.3, 10−6, 10−6). We treat the priors independently, meaning that for example π12 = π1uπ2u.

• Case 3: Again PoI 1 is suggested by the police and PoI 2 & PoI 3 come from the DNA databank. Now
assume that PoI 1 and PoI 2 are associates. Then we should no longer assume independence for PoI 1
and PoI 2 anymore. Finding DNA for PoI 1 increases the probability of finding DNA for PoI 2 and also
the other way around. This should be reflected in the prior probabilities. We use the prior probabilities
(π1uu, π2uu, π3uu, π12u, π13u, π23u, π123) = (0.1, 10−6, 10−6, 0.2, 10−6, 10−12, 2× 10−7).

5.4.2 Intuition
In case 1 the prior probabilities are uniform, meaning that there is no background information that one of the
hypotheses is more likely than the others. In this case we would expect that the posterior reflects that H123 is
most likely, due to the fact that this has an LR that is at least 103.6 times higher than all other hypotheses and
the prior does not change this information.
Case 2 is interesting as the dominant term now shifts using the priors. While the dominant term in terms
of LRs is for hypothesis H123, the dominant in terms of LR × prior is for the hypothesis H13u. The prior
π123 = 0.3×10−6×10−6 = 0.3×10−12 and the prior π13u = 0.3×10−6× (1−0.3−2×10−6) ≈ 0.3×10−6. This
difference in priors is greater than the difference in LR, thus indeed the posterior term for H13u is greatest. We
thus expect the posterior for PoI 1 and for PoI 3 to be large and for PoI 2 to be small.
In case 3 it will be interesting to see how the different prior probabilities will shift the posterior.

5.4.3 Extension formulas to a three person DNA mixture with three PoIs
For a three-person DNA mixture involving three PoIs, we extend the two-person formula 5.3 as follows:
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LR2/2̄ =
LRH123,uuu

π123 + LRH12u,uuu
π12u + LRH23u,uuu

π23u + LRH2uu,uuu
π2uu

LRH13u,uuu
π13u + LRH1uu,uuu

π1uu + LRH3uu,uuu
π3uu + πuuu

× π13u + π1uu + π3uu + πuuu

π123 + π12u + π23u + π2uu

=
1033π123 + 1027π12u + 1012.2π23u + 1012.1π2uu

1029.4π13u + 1017.5π1uu + 107.9π3uu + πuuu
× π13u + π1uu + π3uu + πuuu

π123 + π12u + π23u + π2uu
.

Recall that we find S2 as the event that PoI 2 is a donor of the trace. Then the Posterior for PoI 2 can be
calculated as follows:

P (S2 | E) =
π123LR123,uuu + π12uLR12u,uuu + π23uLR23u,uuu + π2uuLR2uu,uuu∑

H∈H πHLRH,uuu
,

where in the summation is the summand over all eight possible hypotheses. The corresponding formulas for PoI
1 and PoI 3 can be calculated similarly.

5.4.4 Results and conclusion case study

Case 1 Case 2 Case 3

LR1/1̄ 3.52e+20 1.41e+17 7.42e+20
LR2/2̄ 3.98e+03 6.12e+03 6.37e+03
LR3/3̄ 1.00e+06 1.94e+08 4.55e+05
P (S1 | E) 1 1 1
P (S2 | E) 0.999 7.90e-3 0.999
P (S3 | E) 0.999 0.996 0.500

Table 5.5: LRs of contribution and posterior probabilities for all three PoIs and the three cases

In Table 5.5 we note that the LRs for PoI 1 are really large, also the posterior for PoI 1 is in all three cases 1.
Strictly speaking the posteriors should all three be a bit smaller than 1, but they are rounded up in excel. In
case 1 the posterior probability for PoI is 0.9999... where the 16th decimal is the first decimal unequal to 9. For
PoI 1 the evidential value for contribution is really strong all three cases. In case 1, as expected, for all three
PoIs the posterior is almost 1. Meaning that contribution of all PoIs is likely.
In case 2 the posterior for PoI 2 is really low, but for PoI 3 it is almost 1.
In case 3 the posterior for PoI 2 is almost one and for PoI 3 a half. The half is due to the fact the the posteriors
for H123 and H12u are equally likely and the two dominant posteriors.
The shift in posterior probability for PoI 2 between case 2 and case 3 is due to the assumed association between
PoI 1 and PoI 2 in case 3, which increases the prior probability of their joint contribution.

This case study highlights the critical importance of carefully selecting the prior probabilities, as they can
significantly alter the conclusions. In case two the conclusion would be that PoI 2 did not contribute to the
trace and case three the conclusion is that PoI 1 did contribute to the trace. This change of result is caused by
the change of prior probabilities and thus highlights the proper use of prior probabilities.

A sound strategy for the forensic expert here is to report a comprehensive table of LRs rather than relying
solely on the highest LR. Reporting only the highest LR and stating that the highest LR is at least 103.6 times
more likely to explain the trace than all other considered hypotheses is insufficient, as such a margin may be
overridden by differences in prior probabilities, thereby altering which hypothesis is most supported.
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Chapter 6

Body Fluid Analysis

Evidentiary biological traces provide not only information about the contributors to the trace, but also about
the types of body fluids present. This distinction is particularly important in case such as sexual assaults, where
identification of specific body fluids can substantially influence the interpretation of the evidence in court. For
judicial interpretation, it is important to distinguish whether only skin cells were present at the crime scene or
whether additional fluids such as vaginal mucosa or menstrual secretion were also identified.
Several analytical methods exist for identifying specific body fluids. For instance, seminal fluid can be identified
using RSID (Rapid Stain Identification Series) semen test or the PSA (Prostate Specific Antigen) test and
for saliva there is the RSID saliva test. However, not all body fluids have corresponding detection methods,
and most current methods are only suitable to identifying a single body fluid type per analysis. Moreover,
conducting these tests consumes part of the evidentiary sample, thereby reducing the material available for
subsequent DNA analysis.

6.1 mRNA profiling: categorical method
An alternative method for body fluid identification involves the use of messenger RNA (mRNA) profiling. Mes-
senger RNA molecules reflect the activity of specific markers within a cell. Body fluids can, to some extend
be distinguished based on their markers. For instance, the marker hemoglobin is typically detected in blood
samples. However, hemoglobin may also be present in other body fluids. While hemoglobin is consistently
present in blood, some other markers appear only intermittently across samples. For example, the marker
CD93 is detected in approximately 58% of the blood samples. Figure 6.1 presents the detection rate of 15
relevant markers across different body fluids. Body fluid-specific markers are indicated in purple. If all body
fluid-specific markers for a particular fluid are detected, it is likely that the corresponding fluid is present in
the mixture. The detection rates represent the percentage of samples in which a given marker is present. The
detection rates were derived from a dataset consisting of single-source body fluid samples 1.

This dataset, compiled by the NFI, provides insight into marker overlap across body fluids. It includes the
peak heights for 15 relevant markers from single samples are available expressed in relative fluorescence units
(rfu). Additionally, there are two housekeeping markers used to assess the mRNA profile quality, as well as two
sex determination markers. It is important to note that these samples may not be entirely pure; for instance,
saliva can easily spread and may be detected on samples primarily containing other fluids such as skin.
Because many markers are shared among body fluids, and even fluid-specific markers are not consistently present,
distinguishing between fluids can be challenging. To illustrate marker occurrence across fluids, a heatmap in
Figure 6.2 displays the mean peak heights per marker for each body fluid. The body fluids may be distinguished
based on the peak heights, but the difficulty is what happens when the quantity/quality of the sample is not so
good. For example, do the peak heights for the same marker sum up in a mixture or is it the maximum peak
height. The peak heights for different markers can differ substantially due to numerous variables, such as for
example physical condition of the donor [3].

1The dataset is available from an online repository https://github.com/NetherlandsForensicInstitute/body_fluids_mRNA/
blob/master/Datasets/Dataset_NFI_rv.xlsx
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Figure 6.1: Detection rate markers per body fluid. The colored squares highlight markers that are body fluid
specific markers to a specfic body fluid. Taken from [7]

6.1.1 n/2 method
A straightforward method for body fluid identification is the n/2 method, introduced by Lindenbergh et al.
For this method all body fluids have a couple of body fluid specific markers allocated, which are highlighted
in Figure 6.1. The method provides a categorical verdict based on the presence of these body fluid specific
markers in samples obtained from the crime stain. More precisely, let x denote the number of observations of
specific markers associated with a given body fluid in the collected samples, and let n represent the maximum
number of such markers that could theoretically be detected. For example, with two samples and three body
fluid specific markers, the total number of theoretical detections would be n = 2× 3 = 6. If x ≥ n

2 , the method
reports that there is an indication for presence of the body fluid. If 0 < x < n

2 , it is reported that no reliable
statement is possible for the body fluid, and lastly if x = 0 it is reported that there is no indication of presence
for the body fluid.

Example

Consider that we have taken two samples from a crime scene. In the first sample the markers HBB, ALAS2,
CD93, MUC4, SEMG1 and KLK3 are present and in the second sample are the markers HBB, ALAS2, CD93
present. Based on this, the n/2 method concludes that there is an indication of the presence of blood and sterile
semen. For saliva and fertile semen, the method yields no reliable conclusion. For the other body fluids there
is no indication of presence.

Difficulties for the n/2 method

A drawback of this categorical method is the ’fall-off-the-cliff-effect’, which arises from the hard cut off between
the different verdicts. For instance, the method yields the same verdict whether 1 out of the 12 markers is
detected or 5 out of the 12 are detected, yet this does not correspond to a proportional increase in evidential
support. However, if 6 out of the 12 markers are detected, the verdict changes abruptly. The categorical ap-
proach does not reflect the gradual increase in support as more markers are found.

By contrast, probabilistic models provide a probabilistic statement about the presence of certain cell types,
rather than issuing a fixed categorical verdict. A multi-label classification framework is particularly suitable
for identifying the simultaneous presence of multiple body fluid types withing a sample. In the probabilistic
model we can set up an LR system, such that the background information of the case can be used as prior
information after which the posterior can be calculated. The n/2 method does not make use of the possibly
available background information in the case.

Interestingly, for menstrual secretion, the average detection rate over the corresponding specific markers is
lower than 0.5, as could be seen in the Figure 6.1. This implies that for single-source menstrual secretion sam-
ples, the n/2 method will most likely yield a ’no reliable conclusion’ outcome, despite the fluid being present.
The method therefore fails to incorporate the differences in the amplification rates for different markers and cell
types.
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Figure 6.2: Heatmap showing the mean relative fluorescence unit (rfu) values of 15 mRNA markers across nine
body fluid types. Higher rfu values indicate stronger marker expressions.

Additionally, the method performs poorly when distinguishing between nasal mucosa and saliva in mixed sam-
ples. Both body fluids are characterized by only two specific markers, one of which they share. Since this shared
marker has a high detection rate (higher than 0.9) in both fluids, the presence of either body fluid often causes
the n/2 threshold to be exceeded for both, resulting possibly in a misclassification.

6.2 mRNA profiling: probabilistic methods

6.2.1 LR framework for mRNA analysis
Computing an LR for mRNA based body fluid analysis is more complex than for DNA based identification
analysis. In forensic DNA analysis, the alternative hypothesis can be constructed involving unknown contribu-
tors based on the allele frequencies in the population. In contrast, constructing such an alternative hypothesis
for mRNA based body fluid identification is not straightforward. Ideally, one would require information about
which body fluids, and consequently, which markers, would be expected in the absence of the alleged crime. In
practice, this is intractable, as the necessary contextual information is typically case-specific and often unavail-
able.

Consequently, a different strategy must be employed for mRNA based inference. One such approach involves
considering all possible combinations of body fluids. Assuming the nine body fluids shown in Figure 6.1 are of
interest, there are 29 possibilities of possible mixtures (including single-fluid and no-fluid scenarios, which are
also referred to as mixtures for simplicity).

All 29 mixtures can be generated in silico by computationally combining marker data from single-source body
fluid samples. Each generated mixture is then evaluated for its similarity to the crime scene sample using a
probabilistic model.
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To compute an LR for the body fluids under investigation, referred to here as the specified body fluids, we
define the following hypotheses:

• Hp : The sample contains the specified body fluid(s), and possibly others.

• Hd : The sample does not contain all of the specified body fluids.

The first step is to compute the probability for each of the 29 created mixtures that include the specified body
fluid(s), that the mixture matches the observed mixture of the crime scene sample. These probabilities are
estimated using a probabilistic model (e.g., using logistic regression). Next, we sum over all probabilities in
which the body fluids from the prosecution’s hypothesis are present to obtain the probability that the specified
body fluid(s) are present in the crime scene mixture. An LR for the competing hypotheses is then computed as
follows:

LR =

∑
m∈Hp

P (m)

1−
∑

m∈Hp
P (m)

.

Here, P (m) represents the estimated probability that mixture m corresponds to the true composition of the
crime scene sample. The summation is over all mixtures that contain at least the specified body fluid(s) from
Hp.

6.2.2 Prior probabilities incorporated in training data
In probabilistic methods, prior probabilities are often implicitly embedded within the training data used for
classification. However, this approach conflicts with the principles of forensic inference. The consensus is that
the forensic expert calculates an LR, while the decision maker assigns prior probabilities based on contextual
case information. The classification outcomes of probabilistic methods often depend on the relative frequencies
of body fluids in the training data. For example, if a particular body fluid is present in 50% of the training
data, then the model implicitly treat the prior probability for that body fluid as 50%.

Ypma et al. conducted a sensitivity analysis to evaluate this effect. They trained probabilistic models un-
der varying background levels. With the background levels we mean the presence of the body fluids. They
compared uniform background levels, thus all body fluids are as many times present, against adjusted back-
ground levels. First, a uniform background level of 50% was assigned to all body fluids. After that, different
dataset splits are tested where background levels for selected fluids are set to 90%. If large deviations of LRs
are noted, this indicates that the model’s output is sensitive to the choice of the prior.

6.2.3 Best probabilistic methods for mRNA profiling
Zoete et al. present two probabilistic methods for making probabilistic inferences about the presence of spe-
cific body fluids in a sample. The first method is a Bayesian Network (BN) with a naïve Bayes assumption,
where the detection rate of each marker is considered conditionally independent given the body fluid type. This
model generates LRs, which can subsequently be converted into a posterior probability. The second method
is a multinomial logistic regression (MLR) model, which directly estimates posterior probabilities. The prior
probabilities are incorporated in the training process, based on the relative frequencies of different body fluids
in the training data.

The performance of both probabilistic methods, along with the categorical n/2 method, is tested in Zoete
et al. For the BN and MLR the majority rule is used, which means that the output of the models is instead of a
probabilistic statement the mixture that is most likely. While this simplification results in a loss of information,
it allows a direct comparison with the categorical n/2 method. Even under this majority rule simplification
both probabilistic models outperform the n/2 method. However, all three the methods show limitations when
applied to samples containing saliva.

Although both probabilistic models perform similarly the paper concludes that the BN with naïve Bayes as-
sumption method is preferable as this method is easier to adapt to complex situations. Furthermore, it does
not assume a prior distribution and it is easier to implement/understand.
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Ypma et al. explored five classification models: (multinomial) logistic regression, multi-layer perceptron, sup-
port vector machine, and random forest. After training, each model outputs a score for a new sample. This
score is mapped with a calibration step into an LR. The authors conclude that multinomial logistic regression
method is the most suitable method and note: "Its performance is comparable to other models, its robustness
is similar or better and its interpretability is much higher. "

6.3 Case study: Evaluating a body fluid mixture using the n/2 method
and multinomial logistic regression.

In this Section, we analyze a trace recovered from a crime scene, with the objective of determining whether
vaginal mucosa and semen are present in the sample. Table 6.1 presents the detection results for each mRNA
marker across three replicates.

Vaginal mucosa Semen Other markers

Markers MUC4 MYOZ1 CYP2B7P1 SEMG1 KLK3 PRM1 HBB ALAS2 CD93 HTN3 STATH BPIFA1 MMP10 MMP7 MMP11

Samples 2/3 1/3 3/3 2/3 1/3 0/3 3/3 3/3 2/3 0/3 0/3 0/3 0/3 0/3 1/3

Table 6.1: Detection results for three replicates of the sample.

6.3.1 Evaluation based on detection rates
Before applying the n/2 method and multinomial logistic regression, we first interpret the mixture based on the
detection rates from Figure 6.1. An initial examination reveals that six out of nine body fluid specific markers
for vaginal mucosa are present. For semen, the number is slightly lower: three out of nine. It should be noted
that PRM1 is a specific marker for fertile semen only, and not for sterile semen, thus for sterile semen three
out of six specific markers are present. Additionally, the three blood specific markers were detected eight out
of nine possible observations.

The marker MMP11 was detected in one of the three replicates. This detection could originate from either
blood or semen sterile, as they have a low detection rate for this marker. Furthermore, KLK3 is a useful
marker. In Figure 6.1, we find that this marker is only detected for semen sterile and semen fertile, supporting
the inference that one of these body fluids is likely present.

6.3.2 n/2 method
Using the n/2 method we find the following results:

• For vaginal mucosa, six out of nine specific markers are detected, which exceeds the n/2 threshold. The
method concludes that there is an indication of presence for vaginal mucosa.

• For semen fertile, three out of nine specific markers are detected, which falls below the n/2 threshold, but
greater than zero. The method concludes that there is no reliable statement possible for semen fertile.

• For semen sterile, three out of six specific markers are detected, which meets the n/2 threshold. The
method concludes that there is an indication of presence for semen sterile.

6.3.3 Multinomial logistic regression
Although an MLR model has not been trained in this study, we outline the general approach for illustrative
purposes. In MLR, the log LR for the presence of a specific body fluid is computed as: log LR = β0+

∑p
i=1 βiri.

Here, the β′s are parameters estimated from the training data. The r′is are the detection results (e.g., 2/3 for
MUC4) and p is the number of markers. If no markers are detected ri = 0 for all i and thus the log LR will be
equal to the intercept β0. The coefficient βi reflects how much the detection of marker i increases or decreases
our belief in the presence of the target body fluid. For instance, when modeling the likelihood for blood, we
would expect the βi corresponding to hemoglobin to be positive, as hemoglobin is a specific body fluid for blood.
To compute log LRs for specific hypotheses we must first train the MLR model on labeled data containing the
relevant body fluid classes. Once trained, the model can evaluate new samples and output log likelihood ratios
for each body fluid of interest.
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6.3.4 Conclusion
To conclude, the n/2 method is simple, quick to apply, and easy to interpret. It offers a clear verdict based on
the presence or absence of specific markers. This makes the n/2 method a suitable starting point for forensic
research. However, its simplicity limits the evidential strength it can provide.

The MLR method is more complex and requires model training and prior probabilities. By contrast, the
probabilistic framework allows for a more nuanced and quantitative interpretation of the evidence.
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Chapter 7

Comparison Forensic DNA Analysis and
mRNA Analysis

Forensic DNA analysis and mRNA analysis represent two distinct but complementary domains within forensic
science. While DNA profiling seeks to identify individuals who may have contributed to a trace, mRNa profiling
is primarily concerned with determining which body fluids are present in a sample. This chapter provides
a comparative analysis of the two domains with the aim of understanding their respective methodological
frameworks, statistical structures, and reporting practices.

7.1 Comparison of the state space
In DNA profiling, it is often possible to estimate the number contributors to a DNA trace based on the number
of observed alleles, especially when the number of contributors low. For mRNA analysis determining the number
of body fluids in a mixture is more difficult. This is because many markers are shared across different body
fluids. The presence of all markers for a specific body fluid does not always guarantee that the body fluid is
actually present.

One notable advantage in mRNA profiling is that the set of potential contributors, the body fluids, is finite and
predefined. This constrained state space enables a complete, tractable enumeration of all possible combinations
(29 in total), facilitating systematic hypothesis testing. In contrast, forensic DNA profiling involves an open set
of potential contributors, making exhaustive exploration of the state space computationally infeasible.

Another key difference lies in the construction of the alternative hypothesis. In DNA analysis, the allele
frequencies of the population are used for the alternative hypothesis. This enables the comparison between a
PoI and a weighted average over the allele frequencies. The alternative hypothesis for mRNA profiling is more
difficult. Ideally, we would want to know what body fluids would be present if the crime did not take place,
but this heavily depends on the context of the scene. For example, background body fluids will differ between
a bathroom, bedroom or a park.

7.2 Comparison on reporting
In DNA analysis, it was suggested by Slooten et al. to report a table with LRs. This allows the decision maker
to incorporate their prior beliefs and move from prior odds to posterior odds. For mRNA profiling making such
a table is more complicated. There are 29 possible mixtures, which makes the table enormous and difficult to
use. Moreover, to derive an LR for the presence blood in the trace, the decision maker would need to assign
priors for all hypotheses. This can be done using equation (5.3), where the PoIs are replaced by body fluids.
One possible solution is to report only those mixtures that have an LR above a certain threshold (e.g., greater
than 1). Here the LR refers to the prosecution’s hypothesis that a specific body fluid (or several) is present
in the mixture, possibly with other body fluids, against the defendant’s hypothesis that not all specified body
fluids are present. Note that applying MLR as described in Section 6.2.3 a considerable amount of effort is
required, as the model needs to be trained based on the hypotheses.

Reporting only a table of LRs per body fluid is not sufficient, it does not reflect the dependencies between
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the body fluids in the mixture. For example, it is unclear for the decision maker how the LR for menstrual
secretion change depending on whether blood is assumed to be present or absent in the trace. The trace is often
a mixture of different body fluids this dependency is often significant and should not be ignored in interpretation.

If background information clearly indicates that a specific body fluid is present, the MLR can be trained
on this information. All mixtures of the training data should then contain this body fluid. If it is clear from
the background information that one specific body fluid is not present in the mixture, then this body fluid
should be excluded from the training data. In contrast, if one contributor of a DNA trace is already known,
the this contributor can be conditioned on during the analysis, which simplifies the modeling of the remaining
contributors.

7.3 Conclusion
In conclusion, forensic DNA analysis and mNRA analysis differ substantially in both statistical framework and
reporting complexity. DNA analysis benefits from the available allele frequencies in the population, enabling the
construction of likelihood ratios based on the alleles. However, it requires the availability of genotype profiles
from the PoIs, which can limit its applicability. By contrast, mRNA analysis does not rely on individual profiles
but instead assumes a fixed set of potential body fluids. The main complexity in mRNA analysis is that reliable
marker frequencies that would be expected if the crime did not take place are not available. As a result, defining
a meaningful alternative hypothesis is more difficult in mRNA analysis.

In DNA analysis, LRs can often be clearly presented in a table covering a manageable set of hypotheses.
In mRNA analysis, however, dependencies between body fluids and the implicit incorporation of prior proba-
bilities through model training make interpretation more complex. Consequently, summarizing the evidential
value in a transparent and interpretable way requires greater care and methodological nuance.

31



Part II

LR Distributions for the Donors of DNA
Mixtures
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Chapter 8

LR Distribution

In this chapter, we explore methods to estimate the distribution of LRs in advance of a forensic investigation.
Specifically, we focus on the LR obtained by comparing the prosecution’s hypothesis that a PoI a contributor
of the trace together with an unknown (or several unknowns) against the defendant’s hypothesis that two
unknowns created the trace (or more unknowns). Having access to this LR distribution in advance allows the
forensic expert to check whether the LR observed for a suspect aligns with what would be expected if the
suspect were indeed a true contributor. We use a dataset of laboratory-generated DNA mixtures1. The dataset
covers a broad range of scenarios, including mixtures with varying DNA proportions per donor, differing levels
of allele sharing, and mixtures containing between two and five contributors. Each mixture is produced three
times to account for technical variability in DNA processing, such as pipetting inconsistencies. These technical
replicates help ensure that observed differences in LRs are due to the biological and statistical features of the
mixtures, rather than random experimental noise.

8.1 Method 1: Posterior probability threshold
In this method, we calculate the posterior probabilities for all possible genotypes at each locus, representing
the potential allele combinations that a given donor may have. The posterior probability is defined as the
probability that donor i has genotype (a1, a2) at locus j, given the observed mixture E. At each locus, all alleles
not present in the mixture are grouped together into a placeholder called allele Q. This allows us to account for
possible allele drop-in and drop-out, while significantly reducing the number of genotypes for which posterior
probabilities must be calculated. For each locus, we generate all possible genotypes that can be formed using the
observed alleles in the mixtures, along with allele Q. For each of these genotypes, we calculate the corresponding
LRs and posterior probabilities.

8.1.1 Threshold method in detail
For each locus, DNAStatistx calculates the unnormalized posterior probabilities P (E|Di

j = (a1, a2))P ((a1, a2))
for all generated allele pairs (a1, a2). This represents the probability of observing the evidence (i.e., the DNA
mixture), assuming that donor i has genotype (a1, a2) at locus j, multiplied by the prior probability (i.e., the
population frequency of the genotype). The likelihoods P (E|Di

j = (a1, a2)) are marginal likelihoods as the
likelihoods are marginalized over the donors. In the sequel, the unnormalized posterior probabilities will be
abbreviated to P (E | (a1, a2))P ((a1, a2)).

Suppose that at locus j, alleles 13 and 14 are observed in the DNA mixture. We restrict genotype generation to
combinations involving only these observed alleles, and group all other alleles into a placeholder denoted as Q.
Thus, Q means that there is a dropout, i.e. an allele present in the genotype of the donor is not present in the mix-
ture. Therefore, the set of considered allele pairs at this locus is: (13, 13), (13, 14), (13, Q), (14, 14), (14, Q), and (Q,Q).

1All generated mixtures and genotypes of the donors are available in the online repository https://github.com/
NetherlandsForensicInstitute/DNANet/tree/main/resources/data

33

https://github.com/NetherlandsForensicInstitute/DNANet/tree/main/resources/data
https://github.com/NetherlandsForensicInstitute/DNANet/tree/main/resources/data


The posterior probability for the allele combinations at a specific locus can be calculated as follows

P ((a1, a2) | E) =
P (E | (a1, a2))P ((a1, a2))

P (E)

=
P (E | (a1, a2))P ((a1, a2))∑

(b1,b2)
P (E | (b1, b2))P ((b1, b2))

.

In the first step, Bayes’ theorem is applied and in the second step the law of total probability is used. For each
locus, the possible allele combinations are ordered on posterior probability. We construct a dictionary G that,
for each locus, stores the most probable allele combinations whose cumulative posterior probability exceeds a
threshold t (e.g., t = 0.5). This ensures that, with at least probability t, the true allele combination for the
donor is included in G. In most cases, the total posterior probability of selected combinations exceeds the
threshold, since the last included combination will typically push the cumulative sum above t.

Next, we use dictionary G to construct a set S containing full genotypes that can be formed by combining
the selected allele pairs across loci. Assuming independence across loci, the posterior probability that the true
genotype is included in S is at least tNumber of loci. The size of S grows exponentially in the number of allele
combinations possible at each locus. The number of genotypes in S is the product over all considered loci of
the number of allele combinations possible at the locus.

8.1.2 Disadvantages of the threshold method
The main limitation of this method is that it relies on setting a threshold to determine which allele combinations
are included. When the contributors to the mixture cannot be clearly distinguished, the posterior probabilities
for the best-fitting allele combinations tend to be lower. This means that more allele combinations must be
stored in order to exceed the threshold. The number of possible genotypes generated from the dictionary grows
exponentially with the number of allele combinations, which can make the method computationally expensive
or even infeasible. As a result, there is a trade-off between computational efficiency and accuracy, defined here
as the probability that the correct genotype is included in the generated set. A higher accuracy thus means
that the threshold needs to be placed higher and this implies that more genotypes are generated, giving more
computation time.

For several of the mixtures analyzed, the threshold could not be set higher than t = 0.2. Then when con-
sidering 23 loci, there is only a 0.223 ≈ 10−16 probability of having the correct genotype in the genotype
set. This will not lead to a good expectation of the LR that is expected for the true donor and the posterior
probabilities of the genotypes obtained will be low.

8.2 Method 2: Sampling genotypes
Instead of generating a set of genotypes using a posterior probability threshold, an alternative approach is
to apply a sampling method. In this approach, genotypes are sampled according their posterior probabili-
ties. In this way the genotypes are sampled proportional to their probability and also the number of times a
specific genotype is sampled gives an indication of the probability that that is the correct genotype of the donor.

As before, DNAStatistx is used to compute unnormalized posterior probabilities. Thus, for each donor, it
calculates for each locus all possible allele combinations (a1, a2)

P (E | (a1, a2))P ((a1, a2)).

Using the Bayes’ formula and the law of total probability the posterior probability can be calculated.

P ((a1, a2) | E) =
P (E | (a1, a2))P ((a1, a2))

P (E)

=
P (E | (a1, a2))P ((a1, a2))∑

(b1,b2)
P (E | (b1, b2))P ((b1, b2))

.

These posterior probabilities are then used as sampling weights to draw allele combinations per locus. The
sampling process works as follows: on each locus we sample an allele combination by using the corresponding
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posterior probabilities as weights.

In this way, the genotypes that have highest probability of occurrence will be sampled more often. According to
the law of large numbers, the proportion of times a genotype is sampled converges to its posterior probability
of being the true donor genotype.

8.3 Calculate the LR and posterior probability for the generated
genotypes.

Given the set of generated genotypes, the next step is to evaluate how well each genotype explains the observed
DNA mixture. We consider the following hypotheses:

• H1 : The allele combination for donor i on locus j is (a1, a2).

• H2 : The allele combination for donor i on locus j is unknown.

To compute the likelihood of the evidence under H2 we apply the law of total probability by computing a
weighted average of the likelihoods over all possible allele combinations, using their genotype frequencies in the
population.

LR(a1, a2) =
P (E | (a1, a2))
P (E | unknown)

=
P (E | (a1, a2))∑

b1,b2
P (E | (b1, b2))P ((b1, b2))

.

The likelihood P (E|(a1, a2)) can be obtained by dividing the unnormalized posterior probability calculated by
DNAStatistx by the population frequency of the allele combination.

P (E | (a1, a2))P (a1, a2)

P (a1, a2)
= P (E|(a1, a2)).

As the allele pairs at each locus are independent, the LR for a full genotype g, comprising allele pairs across
multiple loci, can be computed by taking the product of LRs at each locus. Thus,

LR(g) =
∏
locus

LR(a1, a2).

The posterior probabilities for the genotypes can be calculated using Bayes’ law and the law of total probability.
Assuming independence between loci, the posterior probability of a full genotype can be obtained by taking the
product of the posterior probabilities at each individual locus.

P (g | E) =
∏
locus

P ((a1, a2) | E)

=
∏
locus

P (E | (a1, a2))P ((a1, a2))

P (E)

=
∏
locus

P (E | (a1, a2))P ((a1, a2))∑
(b1,b2)

P (E | (b1, b2))P ((b1, b2))

8.4 Results two-person mixtures

8.4.1 Mixture with 300:150 DNA proportions
In this section, we compare the threshold method and the sampling method for generating a set of genotypes
for the mixture shown in Figure 3.1. The DNA proportions in the mixture are 300:150 in picograms.

Threshold method

We begin by applying the threshold method to the major donor. Through testing, it was determined that a
threshold of t = 0.999 could be applied. This high threshold is feasible in this case as the alleles from the
major donor and the minor donor are distinguishable. Thus, for each locus, the posterior probability of having
considered the correct allele combination is 99.9%.
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Figure 8.1a shows the LRs of all generated genotypes. The distribution appears approximately a normal
distribution. However, this histogram reflects only the number of genotypes that result in a given LR. It does
not account for the posterior probabilities of these genotypes, and therefore does not accurately represent the
expected LR for the donor. For example, we would expect that the LR of 1030 is much more likely to be the
LR of the true donor than the LR 1010. This relationship is not captured in the histogram. The issue with this
histogram is that it does not plot LR against their posterior probabilities. The true-donor LR is for the major
1032.4 and is indicated by a red line in the figure. It seems from the histogram that the true-donor LR is even
higher than the genotypes coming from the threshold method, but this is thus caused by the fact that LRs are
not plotted against the probability of obtaining this LR.
On the other hand, for this mixture the histogram gives a couple of insights. One key insight is that, because
the threshold is high we know that with a posterior probability of at least 0.99923 ≈ 0.977 the correct genotype
is in the range of the LRs from the histogram. This probability is even higher if we use the achieved sum
of posterior probabilities per locus instead of the threshold and then take the product over these values. By
taking allele combinations until the threshold is achieved, the actual posterior probability is often higher than
the threshold. The allele combinations do often not exactly sum up to the threshold. Taking the product over
the achieved posterior probabilities, we find that there is a probability of 0.9966 that the genotype of the donor
is in the set. This histogram therefore provides an indication of the range of LRs that might be expected for
the true donor.

In Figure 8.1b the LRs of the genotypes are placed against the posterior probabilities of the genotypes. In
this case, the genotype with the highest LR also has the highest posterior probability. This is not necessarily
the case. The relative frequency (prior probability) of the genotype affects the posterior probability. The highest
LR has a posterior probability close to 10%.

The scatterplot allows us to infer the minimum LR that is expected for the true donor. For example, the
red line in the scatterplot indicates the posterior probabilities on the right hand side of the line have 90% of the
posterior mass. This indicates that, with 90% posterior probability, the LR of the true donor is greater than
1030.2855. This provides useful information in forensic investigations. If an LR 1025 is observed, this method
allows us to estimate the probability that the LR of the true donor exceeds 1025.

(a) Histogram (b) Scatterplot

Figure 8.1: Histogram and scatterplot for the major donor in the mixture with 300:150 DNA proportions, using
a threshold of t = 0.999 in the threshold method. In the histogram, the red line marks the LR of the true donor’s
genotype. In the scatterplot, the red line represents a posterior cutoff: the cumulative posterior probability of
genotypes to the right of this line is at least 0.9.

Next, we apply the threshold method to the minor donor. Due to greater uncertainty about which alleles belong
to the minor donor than for the major donor, a lower threshold of t = 0.95 was used.
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(a) Histogram (b) Scatterplot

Figure 8.2: Histogram and scatterplot for the minor donor in the mixture with 300:150 DNA proportions, using
a threshold of t = 0.95 in the threshold method. In the histogram, the red dashed line marks the LR of the true
donor’s genotype. In the scatterplot, the red dashed line represents a posterior cutoff: the cumulative posterior
probability of genotypes to the right of this line is at least 0.5.

The probability that the actual genotype of the donor is in the LR range of the histogram is calculated to be
0.76. Again, the red line is on the far right side of the histogram in Figure 8.2a. Figure 8.2b shows that the LR
of the true genotype is greater than 1029.9029 with 50% posterior probability.

Sampling method

Using the sampling method, we generate n = 100.000 genotypes for both the major donor as the minor donor.

(a) Major donor (b) Minor donor

Figure 8.3: Histogram of the LR distribution for the major and minor donor in the 300:150 DNA mixture. The
genotypes are generated using the sampling method. The red dashed line marks the LR of the true donor’s
genotype.

Figures 8.3a and 8.3b the LR distributions, with the true donor’s LR indicated by a red dashed line. In
contrast with the threshold method, these histograms approximate the actual distribution of the LRs, as the
genotypes are sampled proportionally to their posterior probabilities. The rightmost bin in the major donor’s
histogram corresponds to a single genotype with an LR of approximately 1032.6. The genotype was sampled
approximately 10.000 times, meaning it appeared in about 10% of all samples. This result is consistent with
the posterior probability previously calculated using the threshold method. Figure 8.3a shows multiple peaks.
This is due to the fact that relatively few different genotypes are sampled, which results from the alleles being
easily distinguishable based on peak heights. The limited number of distinct genotypes are sampled repeatedly,
leading to the visible spikes in the distribution.

8.4.2 Mixture with 150:150 DNA proportions
In this section, a two person mixture with DNA proportions of 150:150 picograms is analyzed. The goal was
to include equal amounts of DNA from both contributors. If that is the case, we would expect that the LRs
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and posteriors for the major/minor donor are more or less the same, as there is no major/minor donor, but two
profiles that donated as much DNA. Since there is no true major or minor donor in this case, both possibilities
were explored. We evaluated both scenarios and assigned the genotype with the highest LR as the major donor
and the one with the lowest LR as the minor donor. In one configuration, the major donor has an LR of
approximately 1025 and the minor donor 1024. In the other configuration, the respective LRs are 107 and 1013.
Based on these results, we proceed with the first configuration.

Threshold method

The threshold is set here at t = 0.75 for both donors. The histograms for both donors appear similar in shape
and spread. More genotypes were sampled for the minor donor than for the major donor. In the scatterplots 8.4b
and 8.5b, we note that the highest posterior probability for a sampled genotype is 5× 10−5. This difference low
posterior probabilities can be attributed to the lower degree of allele distinguishability in the 150:150 mixture,
as both donors contributed equal amounts of DNA. In contrast, the 300:150 mixture allows for better separation
of contributors, leading to higher LRs and posterior probabilities for the most likely genotypes.

(a) Histogram (b) Scatterplot

Figure 8.4: Histogram and scatterplot for the major donor in the mixture with 150:150 DNA proportions, using
a threshold of t = 0.75 in the threshold method. In the histogram, the red dashed line marks the LR of the true
donor’s genotype.

(a) Histogram (b) Scatterplot

Figure 8.5: Histogram and scatterplot for the minor donor in the mixture with 150:150 DNA proportions, using
a threshold of t = 0.75 in the threshold method. In the histogram, the red dashed line marks the LR of the true
donor’s genotype.

Sampling method

Figure 8.6b shows the LR distributions for both donors in the 150:150 mixture. The distributions are highly
similar, as expected given the equal DNA contribution from both donors. Unlike the 300:150 mixture, where
a few genotypes were sampled repeatedly, resulting in visible peaks in the LR distribution, no such peaks are
observed here. This again reflects the reduced distinguishability between contributors and the more uniform
spread of posterior probabilities across possible genotypes.
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(a) Major donor (b) Minor donor

Figure 8.6: Histogram of the LR distribution for the major and minor donor in the 150:150 DNA mixture. The
genotypes are generated using the sampling method. The red dashed line marks the LR of the true donor’s
genotype.

8.4.3 Comparison threshold method and sampling method
Both methods provide valuable insights into the expected LRs. The threshold method, however, has several
drawbacks. Its histograms reflect only the number of genotypes associated with a given LR, not the probability
of obtaining that LR, which makes the interpretation less straightforward. Additionally, the threshold method
requires manual selection of a threshold per donor, which must be adapted to each mixture depending on the
posterior probabilities. This makes it difficult to apply the method in a standardized or automated way.

In contrast, the sampling methods does not require a threshold and directly approximates the probability
distribution of the LR, as genotypes are sampled proportionally to their posterior probabilities. Based on these
advantages, we proceed with the sampling method for the remainder of this study.

8.5 Validation of the sampling method
The sampling method produces a distribution of LRs based on genotypes drawn using posterior probabilities
as weights. Since the true donor genotype is known for each mixture, we can validate the method by examining
where the true-donor LR lies within the sampled LR distribution.

For each two-person mixture and each donor (major and minor), we compute the percentile of the true-donor
LR within the LR distribution obtained through sampling. A percentile of x% means that x% of the sampled
genotypes have a lower LR than the true genotype, and the remaining (100-x)% have a higher LR. Since geno-
types are sampled proportionally to their posterior probabilities, we expect the true-donor LR to fall randomly
within the distribution, leading to a uniform distribution of percentiles if the sampling method is well-calibrated.

Figure 8.7: For each two-person mixture and each donor, the percentile of the true-donor LR is calculated
within the LR distribution obtained using the sampling method. These percentiles are plotted as a histogram.
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Figure 8.7 shows the percentiles for all two person mixtures and all donors (major/minor) in a histogram. The
peak at 50% occurs when only one genotype is repeatedly sampled. In such cases, at each locus there is one allele
combination whose posterior probability dominates over the other. As a result, at each locus, only one allele
combination is sampled. Thus, only one genotype is sampled repeatedly. This genotype typically corresponds
to the genotype of the true donor. It thus has the same LR as the donor. In this way the percentile is 50%.
In eight cases, the true-donor LR falls below all sampled genotypes, resulting in a percentile of 0%. No con-
sistent pattern could be identified among these cases, and further investigation is required to understand the
conditions under which the percentiles of 0% occur.

The histogram does not show a clear uniform distribution. A noticeable concentration of percentiles falls
within the 0-10% range. Also,there seems to be greater density between 55-100% than between 10-45%. To
better understand this behavior, the percentiles are split into two histograms: one for the major donor and one
for the minor donor.

(a) Major donor (b) Minor donor

Figure 8.8: Histograms of the percentiles for the true-donor LRs in the LR distribution splitted for the major
donor and the minor donor.

A couple of differences could be observed in Figure 8.8. The peak at 50% appears only in the major donor
histogram. This supports the idea that in some mixtures the major donor’s genotype is so well supported by
the evidence that it is sampled exclusively. The peak heights of the dominant donor are so strong that there is
no debate possible for the genotype of the major donor. This leads to only one genotype being sampled over
and over. The percentile of the true-donor LR is in this way 50%.
In contrast, the minor donor histogram does not show a peak at 50%. Through allele sharing it is more difficult
to assign alleles to the minor donor, which increases the number of plausible genotypes. For example, suppose
a locus has strong peaks at alleles A and B, and a much smaller peak at allele C. It may be clear that the major
donor has genotype (A,B), but for the minor donor, multiple genotypes such as (A,C), (B,C) and (C,C) could
be plausible. This uncertainty increases the diversity of sampled genotypes and dilutes the sampling frequency
of the true one.

The sharp peak between 0-10% in the combined histogram is largely driven by the minor donor probabilities.
Finally, we observe that for both donors the lack of percentiles between 10-45%, while a noticeable concentration
is present between 55-100%. This asymmetric pattern deviates from the expected uniform distribution. Further
investigation is needed to understand the underlying cause of this imbalance.

8.6 Comparison of DNA kits and their impact on LR estimation
DNA kits used for measuring the DNA have improved over time. In particular, the number of loci measured has
increased substantially. This means modern measurements give much more information. However, the DNA
databank still stores a large number of profiles measured on the older kits. The kit SGM includes 10 loci, NGM
includes 15 loci and the newest kit, PPF6C PowerPlex Fusion, 23 loci. The number of loci directly affects
the evidential strength of a DNA match, and thus the magnitude of the resulting LR. For instance, consider a
two-person mixture where the DNA profile of the major donor is known. We would expect the LR based on 23
loci to be substantially higher than one based on only 10 loci, as more genetic information is incorporated into
the LR calculation.

In practice, a DNA databank match is typically reported when the LR exceeds 105. This raises the ques-
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tion of whether profiles that do not exceed the 105 threshold when only 10 or 15 loci are available might surpass
this threshold when 23 loci are used.

However, an increase in the number of loci does not guarantee a higher LR. For example, it could be the
case that the first 10 loci match (relatively) good, but the additional loci show less similarity or mismatch. In
such cases, including more loci may actually decrease the LR.

In addition to variation of the number of stored loci, the quality of the DNA mixture may also vary. For
example, degraded DNA, caused by environmental exposure, time, or physical and chemical processes, can lead
to missing alleles at certain loci, which reduces the number of loci available for LR calculation.

The number of loci available can therefore vary both across stored reference profiles and across mixtures.
A flexible analysis method is required to accommodate this variability.

8.6.1 Mixture with 300:30:30 DNA proportions
In this section, we analyze a three-person mixture with proportions 300:30:30. The major donor thus contributed
significantly more DNA to the mixture than the second and third donor. It can thus be expected that the alleles
of the major donor are distinguishable from the alleles from second and third donor. The second and third
donor contributed equal amounts of DNA, so their alleles are difficult to distinct.

(a) First donor, SGM (b) First donor, NGM (c) First donor, PowerPlex Fusion

(d) Second donor, SGM (e) Second donor, NGM (f) Second donor, PowerPlex Fusion

(g) Third donor, SGM (h) Third donor, NGM (i) Third donor, PowerPlex Fusion

Figure 8.9: LR distributions obtained using the sampling method for a three-person mixture (300:30:30) across
three different DNA kits. Each row corresponds to one donor; each column represents a kit.

From Figure 8.9, we observe that the number of loci included in the analysis substantially affects the resulting
LRs for all three donors. The LRs increase as more loci are included in the analysis.

As expected, the first donor, who contributed the largest amount of DNA material achieves the highest LR
across all three kits. For all three kits, there is one genotype that is sampled almost all of the times. The LR of
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this genotype increases from 1015 (SGM) to 1024.2 (NGM) to 1033.6 (PowerPlex Fusion). All three LRs exceed
the threshold used for databank reporting.

For the second and third donor, we note that the true-donor LRs are similar. The LR distributions differ.
The sampling method gives relatively higher LRs in the LR distribution for the second donor than for the third
donor. This suggests that the model finds the second donor more distinguishable than the third donor. The
LRs for the sampled donors for NGM and PowerPlex Fusion are almost all higher than the databank search
threshold for the second donor. For the kit SGM, the left tail is lower than the databank search threshold and
also the true-donor LR. It follows that, when the true profile of the second donor is stored in the databank
using the kit SGM, it will not always be detected by a databank search. For the third donor with both kits
NGM and PowerPlex Fusion a part of the distribution falls below the databank threshold. The true-donor
LR for SGM is lower than the threshold. It is also visible that a part of the LRs from the sampled donor for
PowerPlex Fusion do not exceed the databank search threshold. This indicates that the third donor’s contribu-
tion is harder to resolve, making genotype matching more challenging, especially with kits that include fewer loci.

A summary of the true-donor LRs for the three kits and the three donors can be found in 8.1.

SGM NGM PowerPlex Fusion
First Donor 15.0 24.2 33.6

Second Donor 3.8 7.8 11.4
Third Donor 4.7 7.1 11.1

Table 8.1: True-donor LRs per kit, shown on a logarithmic scale, for the 300:30:30 mixture.
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Chapter 9

Identifying Relatives

Using the sampling method described in Chapter 8, we can estimate the expected order of magnitude of LRs for
the contributors of a mixture. An important question is whether we can distinguish between an actual donor
and a relative of the donor based on the LR.

The mixtures examined in this study are generated in the laboratory, so the genotypes of the actual donors
are known. Based on the known genotypes, we generate hypothetical sons and siblings. For these generated
relatives we use the same statistical framework to calculate LRs as we do for the actual donors. By comparing
the resulting LR distributions, we assess how well the LR can differentiate between the true donor and a relative.

9.1 Generating relatives

9.1.1 Generating sons
For simplicity, we use the term sons, though the same approach yields to generate daughters, fathers and
mothers. To generate a son, one allele at each locus is randomly inherited from the donor, and the other is
sampled from the population according to allele frequencies. This reflects the way the alleles are inherited from
the parents, i.e. one allele from the father and one allele from the mother. We assume only one of the two
parents is a donor of the mixture.

9.1.2 Generating siblings
To generate a sibling, each of the donor’s alleles is inherited with 50% probability. If only one allele is inherited,
the other allele is sampled with the allele frequencies of the population. If no allele is inherited, both alleles are
sampled with the allele frequencies of the population. This approach reflects the genetic relatedness between
full siblings, in this way siblings share on average 50% of the alleles.

9.1.3 Differences between the sons and the siblings
The hypothetical sons inherit exactly one allele per locus from the donor, meaning that one allele is always
shared. The hypothetical siblings inherit at each locus two alleles from the donor with 25% probability, one
allele with 50% probability and no alleles with 25% probability. Thus, on average, both the hypothetical sons
and siblings inherit one allele at each locus from the donor. However, due to the possibility of inheriting either
two or zero alleles, the variance in the LR distribution is greater for the hypothetical siblings than for the
hypothetical sons. For example, some generated genotypes will have relatively higher LRs (inherited relatively
many alleles from donor) and some generated genotypes will have relatively lower LRs (inherited relatively less
alleles from the donor).

9.2 Mixture with 150:60:30 DNA proportions

9.2.1 The first donor
The first donor has relatively high LRs, which is expected given that the first donor contributed 2.5 times more
DNA than the second donor. The peak heights of the alleles originating from the first donor are higher than
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those of the other donors. For the first donor, one genotype is sampled in approximately 66.000 of the 100.000
iterations, corresponding to a posterior probability of 66%. This genotype is also the true genotype of the donor.
The corresponding LR is around 1033.

Figure 9.1: LR distribution for the major donor of the 150:60:30 mixture.

Figure 9.2 shows that both the hypothetical sons and the siblings yield extremely low LRs. This is expected,
given the dominance of the first donor in the mixture. As a result, it follows that the probability that other
alleles are from the major donor is very small. Since the hypothetical sons and siblings inherit approximately
half of their alleles from the donor and the remaining alleles are drawn from the general population, many
of their genotypes include alleles that are either not present in the mixture or appear with much lower peak
heights than expected for the major contributor. These discrepancies lead to substantially lower likelihoods
and, consequently, low LRs for the relatives.

Figure 9.2 also shows that the means of the LR distributions of the sons and siblings are approximately equal,
but the variance is greater for the siblings. This is a consequence of how alleles are inherited as described in
Section 9.1.3.

Figure 9.2: LR distributions for the hypothetical sons and siblings for the first donor of the 150:60:30 mixture

9.2.2 The second donor
The second donor contributes a smaller proportion to the mixture. Some alleles may be shared between the
first and second donors, making it more difficult to attribute specific alleles to the second donor. As a result,
the true-donor LR is lower than that of the first donor. The second donor has an LR of 1020.5 and the LR
distribution of the sampled genotypes is around 1020. As shown in Figure 9.3, there is some overlap between
the LR distribution of the generated donors and that the distributions of the relatives.

44



To quantify the overlap between the LR distributions, we proceed as follows. From both the sets of sam-
pled donors and sampled relatives take one genotype randomly. Now by doing this a number of times, we can
estimate the probability that a randomly sampled relative yields a higher LR than the true donor. For the
son this probability is 10−5 and for the sibling this probability is 0.00015. The maximum LR observed for a
hypothetical son is 5.8× 1015, and for a sibling it is 2.9× 1016.

Figure 9.3: LR distributions for the hypothetical sons and siblings for the first donor of the 150:60:30 mixture

9.2.3 The third donor
Finally, the third donor has a true-donor LR of almost 1016, which is lower than that of the first and second
donors, as expected due to its smaller DNA contribution. Figure 9.4 shows a greater overlap between the LR
distributions of the hypothetical sons and siblings and that of the sampled donor genotypes.

The probability that a hypothetical son has a higher LR than the true donor is 0.00864, and for a sibling
this probability is 0.01549. The maximum LR observed for a hypothetical son is 1.1× 1016, and for a sibling it
is 3.7× 1020.

Figure 9.4: LR distributions for the hypothetical sons and siblings for the third donor of the 150:60:30 mixture

9.2.4 Conclusion LR distribution relatives
For the major donor the hypothetical relatives yielded extremely low LRs. This is the consequence of the fact
that the major donor contributed significantly more DNA material to the mixture than the other donors. It
is thus clear which alleles are in the genotype of the major donor. This suggests that, in general, the risk of a
relative being mistakenly matched instead of the actual contributor is very small for dominant donors.

We saw that for the second and the third donor there was a small chance that a relative could be retrieved
in a databank search. This possibility should be kept in mind in forensic investigations. In general we expect
the overlap between the distributions to increase further for the smaller donors if the number of contributors
increases. In this case it is more difficult to assign alleles to the smaller donors by the overlap of alleles and
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thereby the probability of generating a hypothetical relative with alleles that are not observed in the mixture
decreases. Also, for the same reasoning we expect the overlap to increase when the amount of contributed DNA
of the donors lies closer to each other.
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Chapter 10

Conclusion

This thesis is set out with two goals:

1. Clarify how Bayesian reasoning can be applied in forensic science, with a focus on the role of prior
probabilities.

2. Develop and evaluate methods to derive LR distributions for contributors of DNA mixtures.

These goals were pursued through a combination of mathematical derivation, illustrative case studies, and
evaluation of forensic practice. This concluding chapter reflects on the extent to which these goals were achieved
and outlines the main findings that emerged along the way.

10.1 The role of prior probabilities in forensic statistics
While LRs are widely accepted as a way to quantify evidential value, this thesis has demonstrated that in
practice, their computation and interpretation are not always inseparable from prior assumptions. The prose-
cution’s hypothesis may consist of several mutually exclusive sub-scenarios. For example, the hypothesis that
PoI 1 contributed may be divided into the scenarios in which PoI 1 and PoI 2 contributed, and the scenario
in which PoI 1 and an unknown individual contributed. To compute an LR for the prosecution’s hypothesis
against the hypothesis that PoI 1 did not contribute, the LRs for the sub-scenarios against the hypothesis that
two unknown individuals contributed to the trace need to be combined using prior probabilities.

It became clear that assuming equal priors is not a neutral act. Rather, it can systematically bias the re-
sulting inference, particularly when PoIs originate from databases or have (familial) relationships. Case studies
demonstrated how results can drastically change depending on the assumed prior probabilities.

By presenting the relevant LRs and deferring the choice of priors to the decision maker, the forensic expert
respects the mathematical structure of Bayesian inference and leaves the choice of priors open for the decision
maker, if this is needed in the case. In this way, the thesis contributes to a more careful and transparent use of
statistical reasoning in forensic contexts.

10.2 LR distributions for DNA contributors and relatives
Obtaining LR distributions for DNA mixtures contributors is practically important, as forensic laboratories
often use LR thresholds to decide whether to report a match. If true contributors fall below such thresholds,
or if relatives can exceed them, these decisions risk being misleading.

Two methodological approaches were developed to obtain LR distributions. The first was a threshold-based
approach, which adds for each locus allele combinations to a set until the sum of posterior probabilities of the
allele combinations exceed the threshold. With these allele combinations all possible genotypes are generated.
The second approach was a more flexible sampling-based approach in which genotype profiles are sampled to
empirically estimate the LR distribution. This method proved especially valuable in estimating realistic LR
distributions.
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Examples showed that the LR values for true donors vary widely, depending on factors such as: the num-
ber of contributors, DNA proportions, number of loci. The LR distribution for relatives was also investigated.
It was found out that, in some cases, there is overlap between the LR distribution of a relative and that of the
true donor. Experiments comparing different DNA kits revealed that the number of loci considered significantly
affects the LR distribution, or the order of magnitude of the LR. This can result in the LR exceeding a threshold
for one kit but not for another.

By simulating such scenarios and plotting the resulting LR distributions, the thesis offers practical tools to
interpret LRs found in forensic research.

10.3 Concluding remarks
Taken together, the results of this thesis form a coherent argument in favor of more transparent, context-aware
forensic evaluation. Prior probabilities can only be used with the utmost caution and LR distributions shape the
practical reliability of threshold-based reporting. Both aspects are essential for understanding what a reported
LR actually means in context.

The next and final chapter will reflect more broadly on these findings, discuss their limitations, and identify
directions for future research and practical improvement.
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Chapter 11

Discussion and Suggestions for Further
Research

11.1 Discussion
Throughout this thesis, DNAStatistx has been an important tool by computing unnormalized posterior prob-
abilities. In this thesis, we calculated LRs for a PoI being the first donor, rather than simply being a donor.
This approach differs from real-world casework. It is more useful to determine whether the PoI contributed,
regardless of which donor they are. The methods discussed in this thesis can also be applied without marginal-
izing over the donors. For instance, prior probabilities are still needed to combine the LRs from sub-scenarios,
that PoI 1 and PoI 2 contributed, and that PoI 1 and an unknown individual contributed, into the broader
hypothesis that PoI 1 contributed to the trace. Also, LR distributions can be achieved when the donors are not
marginalized.

It was expected that the percentiles of true-donor LRs within their LR distribution would follow a uniform
distribution. In Section 8.5 we saw that the percentiles for all two-person mixtures did not give a uniform dis-
tribution. Most notably, there were eight true-donor LRs that fell below all sampled LRs, producing a percentile
of 0%. This is not consistent with the assumed posterior model. Two other observations that are made from the
percentile plot are: (1) a high number of percentiles fall between 0-10% for the minor donor, and (2) for both
donors, there appear to be relatively more percentiles in the 55-100% range than in the 10-45% range. These
observations indicate that, although the method is promising and practically applicable, it is not yet perfectly
calibrated and warrants further investigation.

11.2 Suggestions for further research

11.2.1 Generating a DNA mixture containing both parents
An intriguing extension of the work in Chapter 9 on relative identification would be to examine the scenario in
which both of an individual’s parents contribute to a DNA mixture, but the individual themselves does not. In
such a case, the child’s genotype would entirely consist of alleles that also appear in the mixture, potentially
yielding high LR values despite the child not being a contributor.

To explore this, one could generate parent pairs for existing donor genotypes and construct synthetic mix-
tures including the mother and the father (and possibly other contributors). From there, the LR for the child
could be computed to determine how often the system mistakenly treats the child as a contributor. The simu-
lation requires a different strategy from those used previously: for each locus, one allele from the child should
be assigned to the father and the other to the mother, with the second allele in each profile drawn randomly
using population allele frequencies as weights.

11.2.2 Reference profiles
Another area that merits further investigation is the effect of replicate mixtures on LR outcomes. The in-
vestigated mixtures are produced three times. This raises questions about the stability and robustness of LR
estimates across replicates. For example, to what extent do the different samples yield consistent LR values for
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the donors? Should these replicates be treated independently, or combined in a principled way to strengthen
the inference?

Answering these questions would involve running the full LR pipeline for each replicate and analyzing the
variation. If large discrepancies are observed, this might suggest that stochastic effects need to be better
understood before reporting final LR values.
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