Height Inference for all USA Building Footprints in the Absence of Height Data

P5 Presentation Imke Lánský

 Supervisors:
 Dr. H. Ledoux & B. Dukai & Dr. F. Biljecki

 Co-reader:
 Prof.dr. J.E. Stoter

 Delegate:
 Prof.dr. W.K. Korthals Altes

Introduction

3D City Models

Applications 3D city models

lmage: [Biljecki et al., 2015]

3D City Models

Applications 3D city models

lmage: [Biljecki et al., 2015]

Levels of Detail (LODs)

Image: [Biljecki et al., 2016]

3D City Models

Applications 3D city models

lmage: [Biljecki et al., 2015]

Levels of Detail (LODs)

Image: [Biljecki et al., 2016]

Building heights from LiDAR

Image: [Biljecki et al., 2017]

Alternative Options

Alternative Options

"Can the **125 million** USA building footprints be assigned a height **without** making use of **height data**, and what **accuracy** can be achieved?"

"Can the **125 million** USA building footprints be assigned a height **without** making use of **height data**, and what **accuracy** can be achieved?"

1. What **methods** can be used to **assess the accuracy** of the building height estimations? And when are the estimations deemed **accurate enough**?

"Can the **125 million** USA building footprints be assigned a height **without** making use of **height data**, and what **accuracy** can be achieved?"

- 1. What **methods** can be used to **assess the accuracy** of the building height estimations? And when are the estimations deemed **accurate enough**?
- 2. What **relations** are present between the different **geometric properties** of the building footprints and the building height? And which **subset** is deemed '**optimal**' for predicting building heights?

"Can the **125 million** USA building footprints be assigned a height **without** making use of **height data**, and what **accuracy** can be achieved?"

- 1. What **methods** can be used to **assess the accuracy** of the building height estimations? And when are the estimations deemed **accurate enough**?
- 2. What **relations** are present between the different **geometric properties** of the building footprints and the building height? And which **subset** is deemed '**optimal**' for predicting building heights?
- 3. Are the **geometric properties** of the building footprints as training features **sufficient** for meeting the accuracy requirements?

"Can the **125 million** USA building footprints be assigned a height **without** making use of **height data**, and what **accuracy** can be achieved?"

- 1. What **methods** can be used to **assess the accuracy** of the building height estimations? And when are the estimations deemed **accurate enough**?
- 2. What **relations** are present between the different **geometric properties** of the building footprints and the building height? And which **subset** is deemed '**optimal**' for predicting building heights?
- 3. Are the **geometric properties** of the building footprints as training features **sufficient** for meeting the accuracy requirements?
- 4. What **other features**, besides the geometric properties of the building footprints, can be used in the machine learning algorithms to estimate building heights? And does including these features, even if they are incomplete, **improve the accuracy** of the estimations?

"Can the **125 million** USA building footprints be assigned a height **without** making use of **height data**, and what **accuracy** can be achieved?"

- 1. What **methods** can be used to **assess the accuracy** of the building height estimations? And when are the estimations deemed **accurate enough**?
- 2. What **relations** are present between the different **geometric properties** of the building footprints and the building height? And which **subset** is deemed '**optimal**' for predicting building heights?
- 3. Are the **geometric properties** of the building footprints as training features **sufficient** for meeting the accuracy requirements?
- 4. What **other features**, besides the geometric properties of the building footprints, can be used in the machine learning algorithms to estimate building heights? And does including these features, even if they are incomplete, **improve the accuracy** of the estimations?
- 5. What **methods** can be used for **scaling** the machine learning techniques to the whole of the USA?

State-of-the-Art

[Gröger et al., 2012; Ledoux et al., 2019]

3D city model encodings

[Gröger et al., 2012; Ledoux et al., 2019]

LOD1 roof reference points [Biljecki et al., 2014]

3D city model encodings

[Gröger et al., 2012; Ledoux et al., 2019]

LOD1 roof reference points [Biljecki et al., 2014]

Machine Learning

Random Forests – Rotterdam, The Netherlands [Biljecki et al., 2017]

Machine Learning

Random Forests – Rotterdam, The Netherlands [Biljecki et al., 2017]

Support Vector Machines – Building Classification

[Henn et al., 2012]

Contributions

1. Scale to a much larger extent than previously done, and deal with the diversity in built-up areas

Contributions

- 1. Scale to a much larger extent than previously done, and deal with the diversity in built-up areas
- 2. Investigate the possibility of only using geometric features for inferring the building heights, and try to determine an optimal subset for this purpose

Contributions

- 1. Scale to a much larger extent than previously done, and deal with the diversity in built-up areas
- 2. Investigate the possibility of only using geometric features for inferring the building heights, and try to determine an optimal subset for this purpose
- 3. Consider the different roof reference points and their influence on the height prediction results

Methodology

Overview

Overview

Geometric Features

	Feature	Description	Computation
1.	Area	Footprint area	-
2.	Compactness	Normalised Perimeter Index	$\frac{2\sqrt{\pi A}}{P}$
3.	Number of neighbours	Buildings within 100m	Centroids
4.	Complexity	The irregularity of the footprint	$\frac{P}{\sqrt[4]{A}}$
5.	Number of adjacent buildings	Buildings within 1m	Buffers
6.	Length	Longest edge oriented MBR*	-
7.	Width	Shortest edge oriented MBR*	-
8.	Slimness	Side ratio	$\frac{Length}{Width}$
9.	Number of vertices	Number of vertices in footprint	-

* Minimum Bounding Rectangle

Detect CBDs

Atlanta, Georgia

No filter

Detect CBDs

Atlanta, Georgia

No filter

Detect CBDs

Atlanta, Georgia

Random Forest Regression

Multiple Linear Regression

Simple linear regression – 1D example

Support Vector Regression

Implementation
Data & Software

USBuildingFootprints dataset

NYC OpenDataPortal

Data & Software

USBuildingFootprints dataset

USBuildingFootprints

Suburban & Rural Data

Own models: USBuildingFootprints and LiDAR data

CBD & Suburban Data

16

Test Areas

Contribution Geometric Features

Contribution Geometric Features

Methodology Runtime

	Training time* [s]					
Regressor	Suburban / Rural model	CBD model	Combined model			
RFR	13.96	2.62	17.03			
MLR	0.12	0.01	0.50			
SVR	0.70	0.04	2.23			

20

ŕ

* Average of 10 runs

Methodology Runtime

	Training time* [s]				
Regressor	Suburban / Rural model	CBD model	Combined model		
RFR	13.96	2.62	17.03		
MLR	0.12	0.01	0.50		
SVR	0.70	0.04	2.23		

* Average of 10 runs

	Predicting time [mm:ss]				
Regressor	Split model	Combined model			
RFR	03:38.03	05:56.08			
MLR	00:09.73	00:23.13			
SVR	00:10.55	00:26.91			

~125 million building footprints

Model Accuracy

		S	eattle	Portland		Astoria	
Regressor		CBD	Combined	Suburban / Rural	Combined	Suburban / Rural	Combined
RFR	MAE [m]	40.54	39.74	1.42	1.42	2.29	2.29
	MAPE [%]	224.93	216.87	24.77	24.92	28.90	28.91
	RMSE [m]	48.58	47.91	2.36	2.36	2.99	2.98
	RMSPE [%]	361.21	351.15	32.64	32.76	36.00	35.95
MLR	MAE [m]	37.09	32.84	1.67	1.77	2.28	2.30
	MAPE [%]	218.27	117.57	27.27	29.30	29.30	29.91
	RMSE [m]	44.73	49.66	2.61	2.68	2.93	2.94
	RMSPE [%]	341.09	186.50	32.59	36.72	35.04	36.32
SVR	MAE [m]	36.83	34.88	1.65	1.41	2.27	2.51
	MAPE [%]	216.12	78.68	26.79	22.64	29.08	30.13
	RMSE [m]	44.44	55.25	2.58	2.39	2.92	3.21
	RMSPE [%]	337.03	107.51	31.91	26.64	34.58	34.21

Prediction model with area morphology as additional feature

Model Accuracy – Seattle CBD

Model Accuracy – Seattle CBD

Prediction model trained on rural and suburban data

24

Model Accuracy – Portland

Portland, Oregon Reference Model Random Forest Regression Model

Model Accuracy – Portland

Model Accuracy – Portland

Comparison OCM

Prediction model trained on rural and suburban data

Error Measure	ОСМ	SVR
MAE [m]	2.16	2.09
MAPE [%]	27.29	27.89
RMSE [m]	2.76	2.64
RMSPE [%]	31.56	33.34

Non-Geometric Features Denver

- Census:
 - Population density
 - Avg. household income
 - Avg. household size
- Cadastral:
 - Building type
- Miscellaneous:
 - #Amenities
 - Raster building height

Non-Geometric Features Denver

		Suburbs		CBDs		Combined	
Regressor		Base	Enriched	Base	Enriched	Base	Enriched
RFR	MAE [m] MAPE [%]	1.35 22.05	0.96 15.68	20.84 152.40	17.29 114.66	1.44 22.67	1.03 16.02
	RMSE [m] RMSPE [%]	2.71 33.30	2.11 25.08	30.68 267.17	27.12 208.19	3.55 36.97	2.93 28.52
MLR	MAE [m] MAPE [%] RMSE [m] RMSPE [%]	1.59 26.81 2.93 35.05	1.47 25.16 2.58 33.73	21.33 158.71 31.55 246.51	16.87 109.09 28.57 200.89	1.72 27.99 3.80 40.21	1.60 26.66 3.37 37.75
SVR	MAE [m] MAPE [%] RMSE [m] RMSPE [%]	1.55 23.94 2.98 31.21	1.46 23.79 2.64 31.07	26.10 87.49 41.45 88.19	25.80 89.80 39.83 95.24	1.68 25.12 3.84 36.17	1.59 24.93 3.41 34.84

Additional Results

Feature subsets

 Highly dependent on test area and prediction model

• Height percentiles

- CBDs: 90th percentile
- Other: 50th percentile

Conclusions

"Can the **125 million** USA building footprints be assigned a height **without** making use of **height data**, and what **accuracy** can be achieved?"

YES

CBDs problematic (MAE 32.84m) **Suburban / Rural** areas more promising (MAE 1.41m)

"What **methods** can be used to **assess the accuracy** of the building height estimations? And when are the estimations deemed **accurate enough**?"

MAE, MAPE, RMSE, RMSPE CityGML specification: 5m suggestion

"What **relations** are present between the different **geometric properties** of the building footprints and the building height? And which **subset** is deemed '**optimal**' for predicting building heights?"

> CBDs: clear (linear) relations (length, width) Suburban/ Rural: less clear (#adjacent buildings) Combined: less clear (area morphology)

Not one subset best for all test areas and prediction models

"Are the **geometric properties** of the building footprints as training features **sufficient** for meeting the accuracy requirements?"

PARTIALLY

CBDs: no Suburbs / Rural: yes

"What **other features**, ..., can be used in the machine learning algorithms to estimate building heights? And does including these features, even if they are incomplete, **improve the accuracy** of the estimations?"

YES

Census & cadastral information #Amenities & raster heights

"What **methods** can be used for **scaling** the machine learning techniques to the whole of the USA?"

Parallelisation of processes

Detect area morphologies: differently trained prediction models

1. Methods partially reliable on building height data

38

1. Methods partially reliable on building height data

- 2. Reference models introduce uncertainty
 - i. Both during training and testing phase

- 1. Methods partially reliable on building height data
- 2. Reference models introduce uncertainty
 - i. Both during training and testing phase
- 3. Only small area for non-geometric features

- 1. Methods partially reliable on building height data
- 2. Reference models introduce uncertainty
 - i. Both during training and testing phase
- 3. Only small area for non-geometric features
- 4. Prediction model without area morphology

- 1. Methods partially reliable on building height data
- 2. Reference models introduce uncertainty
 - i. Both during training and testing phase
- 3. Only small area for non-geometric features
- 4. Prediction model without area morphology
- 5. Comparison Open City Model

- 1. Methods partially reliable on building height data
- 2. Reference models introduce uncertainty
 - i. Both during training and testing phase
- 3. Only small area for non-geometric features
- 4. Prediction model without area morphology
- 5. Comparison Open City Model
- 6. Area morphology detection

Suggestions for Future Work

1. Improve CBD detection process [suggested at P4]

Hexagonal grid

- 1. Improve CBD detection process [suggested at P4]
- 2. Additional area morphologies [suggested at P4]

Hexagonal grid

39

- 1. Improve CBD detection process [suggested at P4]
- 2. Additional area morphologies [suggested at P4]
- 3. Extra non-geometric features, e.g.
 - i. US-wide census and cadastral data
 - ii. Shadows in satellite imagery

Hexagonal grid

- 1. Improve CBD detection process [suggested at P4]
- 2. Additional area morphologies [suggested at P4]
- 3. Extra non-geometric features, e.g.
 - i. US-wide census and cadastral data
 - ii. Shadows in satellite imagery
- 4. Test more feature subsets

- 1. Improve CBD detection process [suggested at P4]
- 2. Additional area morphologies [suggested at P4]
- 3. Extra non-geometric features, e.g.
 - i. US-wide census and cadastral data
 - ii. Shadows in satellite imagery
- 4. Test more feature subsets
- 5. Higher diversity in training data
 - i. Mainly for CBDs

- 1. Improve CBD detection process [suggested at P4]
- 2. Additional area morphologies [suggested at P4]
- 3. Extra non-geometric features, e.g.
 - i. US-wide census and cadastral data
 - ii. Shadows in satellite imagery
- 4. Test more feature subsets
- 5. Higher diversity in training data
 - i. Mainly for CBDs
- 6. Extra testing areas
 - i. Experiment with more granular footprints

Thank you for your attention. Are there any questions?

References

- Biljecki, F., Ledoux, H., and Stoter, J. (2014). Height references of CityGML LOD1 buildings and their influence on applications. *Proceedings*. 9th ISPRS 3DGeoInfo Conference.
- Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., and Çöltekin, A. (2015). Applications of 3D City Models: State of the Art Review. *ISPRS International Journal of Geo-Information*, 4:2842–2889.
- Biljecki, F., Ledoux, H., and Stoter, J. (2016). An improved LOD specification for 3D building models. Computers, Environment and Urban Systems, 59:25–37.
- Biljecki, F., Ledoux, H., and Stoter, J. (2017). Generating 3D city models without elevation data. Comput- ers, Environment and Urban Systems, 64:1–18.
- Gröger, G., Kolbe, T. H., Nagel, C., and Häfele, K.-H. (2012). OGC City Geography Markup Language (CityGML) Encoding Standard. Open Geospatial Consortium.
- Henn, A., Römer, C., Gröger, G., and Plümer, L. (2012). Automatic classification of building types in 3D city models. *GeoInformatica*, 16(2):281–306.
- Ledoux, H., Ohori, K. A., Kumar, K., Dukai, B., Labetski, A., and Vitalis, S. (2019). CityJSON: a compact and easy-to-use encoding of the CityGML data model. Open Geospatial Data, Software and Standards, 4(1-12).