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Abstract
Atrial fibrillation (AF) is one of the more common clinical arrhyth-
mias with a high morbidity and mortality [1]. Despite this, the
electrophysiological and pathological mechanisms associated with
AF largely remain a mystery, encouraging the use of ever more so-
phisticated techniques to extract vital information for diagnostic
and therapeutic purposes. Contamination by signals of ventricular
origin is considered the main artifact present in high-resolution epi-
cardial electrograms (EGMs) that hinders the accurate and efficient
analysis of AF EGM datasets. Furthermore, the complexity and dy-
namism of AF signals calls for robust data analysis tools that can
effectively reduce or remove ventricular activity (VA) while preserv-
ing the texture and morphology of atrial activity (AA). Multiway
component analysis, specifically block term decomposition (BTD),
proves useful for the decontamination of epicardial EGMs as demon-
strated in this project by enabling the automatic estimation of VA
on an electrode-by-electrode basis, which is thereafter temporally
and/or power spectrally subtracted thus retaining AA at a relatively
high accuracy. The performance of BTD compared to average beat
subtraction (ABS) and the more restrictive canonical polyadic de-
composition (CPD) is visually verified and numerically confirmed
based on a set of key performance indices. Additionally, the tech-
nique is entirely data-driven i.e., does not depend on any statistical
properties, but if/when available, can contribute to enhanced per-
formance via the imposition of appropriate constraints in the tensor
decomposition.
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Abstract

Atrial fibrillation (AF) is one of the more common clinical arrhythmias with a high
morbidity and mortality [1]. Despite this, the electrophysiological and pathological
mechanisms associated with AF largely remain a mystery, encouraging the use of
ever more sophisticated techniques to extract vital information for diagnostic and
therapeutic purposes. Contamination by signals of ventricular origin is considered
the main artifact present in high-resolution epicardial electrograms (EGMs) that
hinders the accurate and efficient analysis of AF EGM datasets. Furthermore, the
complexity and dynamism of AF signals calls for robust data analysis tools that can
effectively reduce or remove ventricular activity (VA) while preserving the texture
and morphology of atrial activity (AA). Multiway component analysis, specifically
block term decomposition (BTD), proves useful for the decontamination of epicardial
EGMs as demonstrated in this project by enabling the automatic estimation of VA
on an electrode-by-electrode basis, which is thereafter temporally and/or power spec-
trally subtracted thus retaining AA at a relatively high accuracy. The performance of
BTD compared to average beat subtraction (ABS) and the more restrictive canonical
polyadic decomposition (CPD) is visually verified and numerically confirmed based
on a set of key performance indices. Additionally, the technique is entirely data-
driven i.e., does not depend on any statistical properties, but if/when available, can
contribute to enhanced performance via the imposition of appropriate constraints in
the tensor decomposition.
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Introduction 1
Atrial fibrillation (AF) is the most common cardiovascular disease in clinical practice
affecting up to 1% of the general population and up to 10% of the population over
70 years old with an incidence rate that is expected to double every decade [10].
Examples of major consequences linked to AF are an increased risk of mortality and
strokes, and a poor quality of life [10]. Additionally, up to 60% of patients who
undergo cardiothoracic surgery are vulnerable to AF-related complications which
correspondingly increases the chances of morbidity and prolongs their stay at the
hospital [11].

Although AF is one of the most commonly encountered arrhythmia in clinical prac-
tice, it is yet to be completely understood due to its complex pathophysiology with
various triggers and substrates interacting in multiple ways, causing fibrillation waves
that have various appearances ranging from narrow to broad, and disorganized to
organized [10]. In order to better understand the pathophysiological mechanisms
of AF, it is common to take invasive (epicardial or endocardial) atrial electrograms
(EGMs). Epicaridal atrial electrograms are recorded on the surface of the atrium
while endocardial atrial electrograms are recorded within the atrium.

AF is typically characterized by seemingly chaotic atrial activation with a cycle
length of about 160 ms, and an irregular and frequently rapid ventricular response
[10]. Consequently, the ventricular rate response varies in a rather unpredictable
fashion, eventually resulting in a failure to restore and maintain sinus rhythm (SR),
especially if it progresses from paroxysmal to persistent AF [10]. See Figure 1.1 for
an illustration of atrial and ventricular activation in SR and in AF.

Clinically, the two key attributes currently used for characterizing AF are: 1) the
dominant atrial frequency (DAF) i.e., the repetition rate of the fibrillatory waves,
and 2) the organization of the AF i.e., the repetitiveness of the AF signal pattern.
An estimation of the DAF is an indication of the atrial cycle length, and it has
been demonstrated that AF recordings with a low DAF are more likely to terminate
spontaneously and respond better to antiarrhythmic drugs or cardioversion, while
a high DAF is more often associated with resistance to therapeutic interventions
[12]. As for AF organization, the state of the arrhythmia can be inferred from the

1



1.1. Thesis Motivation Chapter 1

Figure 1.1: Illustration of atrial and ventricular activation rates in sinus rhythm and in
atrial fibrillation [2].

repetitiveness of the AF signal pattern and may be used to determine appropriate
AF treatment strategies such as catheter ablation and electrical cardioversion [13],
[14]. Overall, the repetition rate of atrial waves is the most studied parameter with
regard to clinical management, identification of pathomechanisms and evaluation of
various treatment options [12].

Since the goal of recording surface ECG and/or invasive EGM is to understand the
nature of AF, the presence of ventricular activity (VA) in the recordings is consid-
ered a contaminant signal that should be removed. However, due to the temporal,
spectral and spatial overlap of atrial and ventricular activity, linear filtering tech-
niques generally underperform and more advanced signal processing techniques such
as nonlinear filtering and multidimensional signal processing are often necessary for
the extraction of atrial signals during AF [14].

1.1 Thesis Motivation

Normally, a clinician attempts to visually identify and unmix atrial and ventricular
sources using human reasoning. It would be a lot better if the process could be
automated so as to [6]:

2



Chapter 1 1.1. Thesis Motivation

1. Unmix and isolate the atrial signal in atrial fibrillation into its constituent
components

2. Provide information on the number of distinct components underlying the EGM
measurements

3. Provide the spatial distribution of atrial activity besides the time series of the
source itself

4. Track changes in the number, spatial distribution and morphology of atrial
and/or ventricular activity over time

5. Determine the local activation time of atrial activity for the construction of
activation time maps

The goal of this research project is to automatically extract the atrial activity from
AF EGMs so that the characteristics of atrial electrograms can be studied with-
out interference from ventricular activity. This separation is based on the fact that
the two physiological signals originate from different, spatially isolated bioelectrical
sources, and separation may exploit temporal redundancy among successive heart-
beats as well as spatial redundancy when multichannel recordings are analyzed. See
Figures 1.2 and 1.3 for examples of EGMs that are analyzed in this report, in SR
and AF respectively.

Figure 1.2: Epicardial electrograms in sinus rhythm.

3



1.1. Thesis Motivation Chapter 1

Figure 1.3: Epicardial electrograms in atrial fibrillation.

However, the inherent variability and complexity of the AF EGMs proves challenging,
especially because an estimate of the AA is required on an electrode-by-electrode
basis so as to capture the local atrial activation without VA at the various electrode
array locations. See Figure 4.1 for the various locations at which the electrode array
is placed to record EGMs during open chest surgery. Further details on the recording
mechanism can be found in the chapter on ”Experimental Methodology” under data
acquisition.

Therefore, array processing techniques that exploit spatial diversity such as indepen-
dent component analysis (ICA) prove unsuitable because ICA in its standard form
can only extract as many sources as there are channels/electrodes i.e., to obtain 2
sources (AA and VA) using ICA, we would need at least 2 electrode recordings, such
that one source would represent the AA in both electrodes and the other the VA.
Therefore, to be more precise, ICA exploits spatial ’redundancy’ across electrodes.
While the number of signal recordings is not a problem in our case (we have plenty of
data for each location), the very fact that the recorded AA varies from electrode to
electrode implies that if we were to extract say 5 sources from 8 electrode recordings,
then each source would be considered an ’average’ of sources that are recorded by the
8 electrodes. Consequently, we would automatically lose part of the high-resolution
data that was recorded. See Figures 1.5 and 1.6 to see an example of the variability
present in AF EGM signals across 3 consecutive electrodes in 2 consecutive rows

4
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Figure 1.4: Image of the various EGM recording locations and the rectangular electrode
array configuration.

recorded at the same electrode array location.

Figure 1.5: Variability of AF EGMs for electrodes 11, 12, 13 in row 2 at location BB0.

5
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Figure 1.6: Variability of AF EGMs for electrodes 19, 20, 21 in row 3 at location BB0.

While the above mentioned restrictions are of concern, of even more significance is
the fact that the dataset we are dealing with is new in the sense that there are no
statistical studies that have been done on epicardial EGM signals to the best of our
knowledge. This is probably in part due to the fact that every patient generates a
unique set of AF signals, and though there may be a certain level of consistency across
different patients such that it is possible to observe patterns and conclusively make
statements about the statistical properties of AA and VA, this is yet to be published
in the scientific literature. Therefore, while it is often assumed that during AF the
AA and VA originate from independent sources and consequently have independent
probability distributions such that standard approaches like ICA could work [15],
[16], [10].

1.2 Mixing Model

As discussed in [17], it is known that the physiological mixing process that gives rise
to the recorded AF EGM signals is quite complex. Not only are the observed record-
ings weighted and delayed, but each of the atrial source signals likely contributes to
the sum with multiple delays corresponding to multiple paths by which the AF sig-
nals propagate from the sources to the recording location. Consequently, the filtered

6



Chapter 1 1.2. Mixing Model

sums of the source signals (AA and VA) results in a convolutive mixing process.
The convolutive model is described by the following relation between the mth mixed
signal, the original R source signals and additive sensor noise vm(t) [18]:

xm(t) =
R∑

r=1

L−1∑
l=0

amrlsr(t− l) + vm(t). (1.1)

The mixed signal is therefore a linear mixture of filtered versions of the source sig-
nals and amrl represents the mixing filter coefficients. While in reality the filter
coefficients probably evolve in time, it is usually assumed that the mixing model is
stationary. Additionally, we assume that the filters are of finite length i.e., L < ∞.
The convolutive model can be written in matrix form as:

x(t) =
L−1∑
l=0

Als(t− l) + v(t). (1.2)

It is possible to simplify the convolutive mixing model by transforming the mixtures
into the time-frequency (TF) domain where for small enough window frames, the
signal can be assumed stationary, and the mixing model becomes instantaneous
when the length of the discrete Fourier transform (DFT) � window length. We
also assume that the mixing process is noise-free such that we can drop the v(t)
term.

The mixing model in each TF frame now becomes:

x(k, t) = A(k)s(k, t), (1.3)

where k is a discrete frequency index, A(k) is a complex M ×R matrix, x(k, t) is a
complex M × 1 vector and s(k, t) is a complex R× 1 vector. Equation 1.3 describes
an instantaneous mixing problem in each time-frequency bin.

The model just described is often assumed for blind source separation (BSS) of
convolutive sources in the TF domain. However, we take a different spin on the
instantaneous linear mixing model described by Equation 1.3 such that each TF
bin is approximated by a linear combination of nonnegative rank-1 elementary spec-
trograms such that only one source is active in each TF bin. We stack the TF
representations of each electrode recording on a row-by-row basis to form a three-
way tensor, and jointly factorize the TF representations of the electrodes to extract

7



1.3. Thesis Contributions Chapter 1

common latent components across the electrodes. The model is thus represented
by:

X =
R∑

r=1

Er ◦ cr =
R∑

r=1

ar ◦ br ◦ cr, (1.4)

where X is a mode-3 tensor of the TF representations of the EGM data, ◦ denotes
the outer product, Er = ar ◦ br is a rank-1 matrix, and vectors ar ∈ RI , br ∈ RJ

and cr ∈ RM . I is the length of the DFT, J is the number of window frames and M
is the number of electrodes/recordings in a row of the electrode array.

Although it is sometimes the case that Er is indeed a rank-1 matrix, this is fairly
restrictive and we increase the assumed rank of the matrices Er such that we perform
a block term decomposition (BTD) in rank-(Lr, Lr, 1) terms:

X =
R∑

r=1

Er ◦ cr. (1.5)

Our proposed approach is thus a factor analysis via BTD of the TF representation
of each electrode across M electrodes in the same row to find an estimate of the VA.
Our tensor model is illustrated in Figure 1.7 and this technique is often referred to
as multiway linked component analysis.

Figure 1.7: Illustration of the data model for factor analysis of AF EGMs[3].

1.3 Thesis Contributions

The bulk of this thesis report focuses on multilinear data analysis via tensor decom-
positions for the extraction of ventricular activity. The selected method, block term

8



Chapter 1 1.3. Thesis Contributions

decomposition, is inspired in part by the following key constraints: 1) complexity
and variability of AF EGMs, 2) preservation of high-resolution data, and 3) lack of
definitive AA and VA statistical properties.

In summary, we basically decompose the time-frequency tensorial representation of
the AF EGM datasets while assuming that each source is characterized by specific
temporal and spatial signatures, and originates from one direction. In this way, each
of the the latent components represented by the temporal × spectral matrices are
projected to a specific spatial subspace. This exploits both the spatial redundancy
of the EGM recordings and the local variance in AA across electrodes in that the
VA is assumed to originate from one direction across a row of the array while the
AA originates from another, if not multiple, direction(s). By imposing a rank-1
constraint in the spatial mode of the tensor formed by the time × frequency ×
channel representation of the AF EGM datasets, we only allow one source from
a particular direction to be active in each extracted component. Constraining the
other modes to be rank-1 as well may work if there is only one source active in the
time and/or frequency domain of the dataset. However, given the temporal and/or
spectral overlap of AA and VA such that there is likely to be more than one active
source in the TF representation, it is preferable to impose a low-rank constraint.

The main contributions of this thesis project are multilinear subspace techniques
via tensor decompositions to obtain an estimate of the VA, temporal and/or power
spectral subtraction to reduce or completely remove the VA, synthesis of pseudoreal
AF EGM signals with which to evaluate the performance of the selected algorithm,
and an extensive compilation of performance metrics to quantitatively measure the
extent to which VA has been removed from the AF EGMs on a electrode-by-electrode
basis. As an added plus, the technique is almost completely automatic, the ’almost
completely’ aspect due to the inherent variability in the EGM recordings requiring
the user to initially manually determine the signal kurtosis range. Signal kurtosis is
used to categorically identify the extracted components after tensorial decomposition
(identifiability is problematic due to the permutation indeterminacy of factor analysis
and blind source separation (FA-BSS) techniques). Besides this, certain inevitable
implementational details like the FA-BSS scaling/counterscaling indeterminacy and
unknown number of components necessitate a few algorithmic tricks as a workaround
to still obtain good performance. Nevertheless, the results indicate sufficient (if
not better) performance over other VA reduction and/or removal techniques in AF
EGMs, as indicated by both visual inspection of the extracted AA and the evaluated
performance indices.
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1.4 Thesis Outline

This thesis report comprises seven chapters including the introduction. In chapter
two, we give a brief overview of conventional VA reduction/removal techniques in
ECG/EGM analysis as part of the background for this research project. Thereafter,
in chapter three we cover multiway component analysis (MWCA) in detail, laying
the groundwork for tensor decompositions. Chapter four goes over the experimental
methodology i.e., the acquisition and preprocessing of the AF EGM data, as well as
consolidating implementation details into a clear and concise step-by-step procedure.
Chapter five discusses the performance metrics used to evaluate the capabilities of the
selected algorithm, whose results are presented and analyzed in chapter six. Chapter
seven then concludes the thesis report by reiterating the key aspects and significant
results of this research project, and describes future research directions based on the
results and insights obtained thus far.

While it has been our intention to minimize the number of mathematical definitions
for ease of reading while still maintaining the required level of mathematical rigor,
we may have unintentionally overlooked some mathematical intricacies that are of
interest to some readers. For their satisfaction and those more interested in tensor
decompositions, we have included an appendix containing other mathematical defi-
nitions related to this thesis project. The bibliography is also a good starting point
to explore alternative applications of multilinear algebra.
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Background 2
In this background section, factor analysis and blind source separation (FA-BSS) is
introduced and traditional ventricular activity (VA) cancellation techniques, namely
average beat subtraction (ABS) and adaptive filtering, as well as more recent matrix
(two-way) FA-BSS techniques, specifically principal component analysis (PCA) and
independent component analysis (ICA), are discussed. Multiway FA-BSS techniques
aka tensor decompositions for the removal of VA, which underlie the main contribu-
tions of this thesis project, will be extensively explored in chapter three. However,
before delving into previous work done on the cancellation of VA and the extraction
of atrial and ventricular activity in surface ECG and invasive EGM recordings, we
will first go over the mathematical notation that is consistently used throughout this
thesis report.

2.1 Mathematical Notation

Scalars are denoted by lowercase italic letters (a, b, ...), vectors by lowercase bold-
face letters (a,b, ...), matrices by boldface capitals (A,B, ...) and tensors by cal-
ligraphic letters (A,B, ...). Italic capitals are used to denote index upper bounds
(i = 1 , 2 , ..., I ). The entry with row index i and column index j in a matrix A, i.e.,
Aij, is symbolized by aij . Similarly, we have (A)i1,i2,...,iN = ai1,i2,...,iN . The columns

of A are denoted by [a1, a2, ...].

For a tensor A ∈ RI1×I2×...×IN , A:,:,i3,...,iN represents the I1 × I2 slice indexed by
i3, ..., iN , and Ai1,...,iN−1,:,: represents the IN−2 × IN slice indexed by i1, ..., iN−2.
The (R × R) diagonal matrix containing the values a1, a2, ..., aR is denoted by
diag(a1, a2, ..., aR). The superscripts T and † denote the transpose and the Moore-
Penrose pseudo-inverse respectively.

Additionally, some clinical letter sequences referring to fiducial points in ECG and
EGM recordings are used in this report. The term QRS complex is often used to refer
to ventricular activity. To better understand what is meant by these letter sequences,
see Figure 2.1 for an illustration of these points on an ECG recording.
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Figure 2.1: Fiducial points in an ECG recording [4].

2.2 Factor Analysis and Blind Source Separation

Factor analysis (FA), also known as component analysis, and blind source separation
(BSS) are unsupervised learning methods with the goal of estimating R components
represented in the matrix S ∈ RT×R from the measurement matrix X ∈ RI×T by
decomposing X in R interpretable rank-1 components such that:

X = AST =
R∑

r=1

ars
T
r =

R∑
r=1

ar ◦ sr, (2.1)

where the outer product ◦ is defined in Table 2.1. A = [a1, a2, ..., aR] ∈ RI×R is
the unknown factor or mixing matrix (also sometimes called the basis matrix or
dictionary depending on the application), S = [s1, s2, ..., sR] ∈ RT×R is the matrix
of loadings or sources (aka components or latent variables), and 1 ≤ r ≤ R. In
FA terminology, matrices A and S are the factor and loading matrices respectively,
while in BSS terminology they refer to the mixing and source matrices respectively.
Regardless of physical interpretation, the problem definition and proposed strategies
to solve FA and/or BSS are essentially the same and from here onwards we shall

12
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refer to them both as FA-BSS.

Although we explicitly assume that the columns of S are the loadings or source
signals, the roles of A and S can be switched if we consider XT in Equation 2.1.
The term blind in BSS emphasizes the fact that nothing is known about the source
signals or the mixing structure.

Without any constraint(s), the matrix factorization problem in Equation 2.1 is gen-
erally highly undetermined since it has an infinite number of solutions [9]. However,
with some apriori information, FA-BSS enables the recovery of sources i.e.:

Ŝ = Ψ(X) = SΛP, (2.2)

where Ŝ is an estimate of the loading/source matrix S, Ψ denotes a suitable FA-BSS
algorithm, Λ is a diagonal scaling matrix, and P is a permutation matrix. Equation
2.2 clearly demonstrates the well-known unavoidable scaling (Λ) and permutation
(P) ambiguities of FA-BSS (nonuniqueness). In general, Ψ transforms the data ma-
trix X into a representation that preserves as much of the information as possible
while increasing the interpretability of the latent components. Examples of more
popular FA-BSS techniques are Principal component Analysis (PCA) and Indepen-
dent Component Analysis (ICA). In general, the type of information to be preserved
determines the various FA-BSS criteria and methodologies [9]. For example, when
using independent component analysis (ICA), a linear transformation of the ma-
trix X is sought such that the latent components become statistically independent,
representing an estimate of the source signals up to scaling and permutation inde-
terminacies. Alternatively, when using PCA, the transformation seeks components
that are maximally uncorrelated.

More often than not, the data (epicardial EGMs in our case) is (or can be) organized
as data matrices (or tensors), and described by linear (or multilinear) combination
models such that FA-BSS boils down to decomposing the original data matrix (or
tensor) into two (or more) factor matrices (the factor/mixing matrix A and load-
ing/source matrix S). Although standard FA-BSS methods differ from each other
because of the varying constraints imposed on the structure and properties of com-
ponent matrices, there is no constraint on the sign of the elements in the factorized
matrices and subtractive combinations (negative components) are generally allowed
[19].
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Table 2.1: Definitions of matrix and tensor products [9].

Matrix/Tensor Product Definition

C = A×n B
Mode-n product of A ∈ RI1×I2×...×IN and B ∈
RJn×In yields C ∈ RI1×...×In−1×Jn×In+1×...×IN

C = JA;B(1),B(2), ...,B(N)K Full multilinear product C = A×1 B
(1) ×2 B

(2) . . .×N B(N)

C = A ◦ B
Tensor or outer product of A ∈

RI1×I2×...×IN and B ∈ RJ1×J2×...×JM yields C ∈
RI1×I2×...×IN×J1×J2×...×JM

X = a1 ◦ a2 ◦ . . . ◦ aN Tensor or outer product of vectors a(n) ∈ RIn(n =
1, ..., N) yields a rank-1 tensor X ∈ RI1×I2×...×IN

C = A⊗B
Kronecker product of A ∈ RI1×I2 and B ∈

RJ1×J2 yields C ∈ RI1J1×I2J2

C = A�B

Khatri-Rao product of A = [a1, ...,aR] ∈
RI×R and B = [b1, ...,bR] yields C ∈

RIJ×R with columns cr = ar ⊗ br

2.3 Previous Work

2.3.1 Average Beat Subtraction

Average beat subtraction (ABS) was first proposed by Slocum et al. as a method
of identifying P-waves (AA) during ventricular tachycharia [20]. It has since then
become a standard technique for the removal of ventricular signal artifacts in both
surface ECG and invasive EGM recordings [14]. The method exploits the fact that
there is no fixed relationship between AA and VA, and that the QRS complex usually
has a fairly consistent morphology across ECG leads or EGM electrodes [20], [14].
In ECG signal processing, an average beat that represents the ventricular cycle is
obtained from each ECG lead and subtracted from the individual heartbeats. Ideally,
the residual atrial signal only contains fibrillatory waveforms that can be further
analyzed to better understand the nature of AF.

For the purposes of processing epicardial EGM data, the fiducial points from QRS
complexes in the recorded ECG and EGM data are detected and aligned, and an
average heartbeat is generated whose window length is determined by either the
minimum or the mean of the R-R interval. The windows are then aligned with
the fiducial points. In this manner, a template of average beats is constructed and
subtracted from the original EGM signals in AF, resulting in only atrial activity.
See Figure 2.2 for an example of the AA estimate (in green) obtained using ABS. It

14



Chapter 2 2.3. Previous Work

should be noted that if the QRS complexes are not well aligned in time to each other,
the resulting atrial signal usually contains residual ventricular activity. Temporal
alignment is therefore crucial to any method that involves beat subtraction.

Figure 2.2: ABS for removal of VA in electrodes 1 to 4 of row 3 AF EGMs at recording
location RA4.

Since ABS relies on the assumption that an average beat accurately represents an in-
dividual beat on a single lead/electrode, even minor changes due to variations in the
heart’s electrical axis in ECGs (primarily caused by respiratory activity) affect the
QRS morphology leading to large QRS-related residuals [14]. Considering the vari-
ability of EGM signal recordings, it is easy to see that this is a formidable hindrance
to effective VA reduction.

Finally, the most recent ABS method as of writing this thesis is based on adaptive
singular value cancellation (ASVC) of VA [21]. The ASVC method detects all the
R waves using the Pan and Tompkins method. The start and end points of each
QRS complex are then detected and the complexes are subsequently aligned using
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the R-peaks. Once all the beats are temporally aligned, their eigenvector sequence
is obtained by singular value decomposition (SVD) such that the largest variance
resulting from the SVD is assumed to uniquely represent VA, and therefore used as
the primary cancellation template. The template is then adapted to individual QRS
widths and heights, and is temporally aligned with each R peak in the EGM, before
finally subtracting the customized template for each beat from every QRS complex.
This SVD-based method generally provides a more accurate representation of VA
morphed to each individual beat and consequently, a higher quality AA extraction
[21], [14].

Whichever way, with subtraction techniques, there is the inevitable loss of atrial
information since AA that coincides with VA is deleted from the EGM signal. The
standard approach for coping with this loss of data is interpolation of the atrial
signal in the QRS segments from the SQ intervals that enclose the QRS complex
via sinusoidal interpolation [12]. The concatenated signal is then low-pass filtered to
deal with any jumps that may occur at interval boundaries.

2.3.2 Adaptive Filtering

Due to the aforementioned shortcomings of ABS (see section 2.3.1), adaptive filter-
ing has been proposed as a viable atrial activity estimation technique. Adaptive
ventricular cancellation (AVC) is based on an adaptive filter that operates on the
reference channel/electrode to produce an estimate of the interference, which is then
subtracted or filtered from the channel under consideration. The channel under
consideration contains both atrial and ventricular components, while the reference
channel ideally contains pure VA that is precisely time-aligned with the QRS com-
plex of the EGM. Again, since time alignment is an issue, if QRS complexes in the
reference channel and the channel under consideration are not well aligned to each
other, we end up with residual ventricular activity that makes further signal pro-
cessing a challenge [12]. Additionally, we have to somehow obtain a reference signal,
which is not always readily available.

See Figure 2.3 for a block diagram illustration of adaptive filtering of ECG signals.
Naturally, the block diagram can be updated with more sophisticated techniques like
LMS estimation based on a more thorough understanding of either ECG or EGM
signals. Nevertheless, Figure 2.3 suffices to give a sense of what adaptive filtering
entails. Fs indicates the signal sampling rate.
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Figure 2.3: Standard adaptive filtering method for ECG signals (also applies to EGM; just
replace ECG with EGM and noise with a VA estimate)[5].

2.3.3 Principal Component Analysis

Principal Component Analysis (PCA) performs an orthogonal linear transformation
of the data such that it is projected onto a set of ’principal components’ in the
directions of maximum variance and minimal redundancy [12], [22]. The principal
components are obtained as a linear combination of latent variables in the dataset,
with weights chosen so that the principal components become mutually uncorre-
lated.

Let the signal segment of a beat (in sinus rhythm or otherwise) be represented by
the column vector:

x =


x(1)
x(2)

...
x(N)

 , (2.3)

where N can either be the number of samples in a heart beat segment, or the entire
length of the EGM. The segment is extracted from several successive beats or various
EGM recordings, thus resulting in an N ×M data matrix:

X =
[
x1 x2 ... xM

]
. (2.4)
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The vectors x1, ...,xM can be viewed as M observations of the random process x.
The derivation of principal components is based on the assumption that the signal x
is a zero-mean random process characterized by the correlation Rx = E[xxT]. The
principal components of x result from applying an orthonormal linear transformation
Ψ = [ψ1, ψ2, ..., ψN] to x:

w = ΨTx, (2.5)

such that the elements of the principal component vector w = [w1, w2, ..., wN ]T be-
come mutually uncorrelated.

Since Rx is rarely known in practice, the N ×N sample correlation matrix defined
by:

R̂x =
1

M
XXT, (2.6)

replaces Rx when calculating the eigenvectors. PCA then amounts to computing the
SVD of R̂x:

R̂x = A(1) · diag(σ1, ..., σR) ·A(2)T =
R∑

r=1

σra
(1)
r a(2)T

r , (2.7)

where A(1) ∈ RI1×R and A(2) ∈ RI2×R are columnwise orthonormal and the singular
values σr are positive, 1 ≤ r ≤ R. If the singular values are distinct, then the

dyads σra
(1)
r a

(2)T

r are unique for 1 ≤ r ≤ R. The uniqueness of SVD comes from the
orthogonality constraints on A(1) and A(2) [23].

In summary, the PCA algorithm involves computation of the covariance matrix from
the ensemble of EGMs, eigenvalue and eigenvector decomposition of the covariance
matrix, sorting eigenvectors in the descending order of eigenvalues, and finally pro-
jecting the original EGM data in the directions of sorted eigenvectors. The first few
components represent most of the variability present in the data.

Since in AF the AA and VA overlap in time and frequency, this already invalidates a
PCA decomposition either only in the time domain or in the frequency domain, and
encourages the use of time-frequency decomposition techniques such as the short-
time Fourier transform (STFT) and the wavelet transform. Additionally, since the
PCs are only statistically uncorrelated, they are in general not directly related to
actual independent physical or physiological sources [6], and PCA cannot irrevocably
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recover independent source signals [6]. Furthermore, there is no reason to assume that
bioelectrical sources of the heart are spatially orthogonal to one another unless the
measurement electrodes are intentionally placed in an orthogonal configuration.

2.3.4 Independent Component Analysis

Independent Component Analysis (ICA) is a FA-BSS technique that attempts to
extract mutually independent sources or latent components from a set of random
variables, measurements or signals by linearly transforming the matrix of record-
ings X such that the source estimates are statistically independent [6]. The source
components are assumed to be linearly or nonlinearly mixed together, and both the
factor/mixing matrix A and loading/source components in matrix S are assumed
unknown. Figure 2.4 below shows the ICA mixing and separation model.

Figure 2.4: ICA mixing and separation model[6].

In contrast to PCA, A is not constrained to be orthogonal, but can take on any
structure as long as S has full column rank [12]. The general ICA principles as
defined by Hyvaerinen et al in [24] are:

• Nonlinear decorrelation: components are independent if both they and their
appropriately chosen nonlinear transformations are uncorrelated

• Maximization of component nongaussianity: since the central limit theorem
implies that summing nongaussian random signals generates more gaussian-like

19



2.4. Conclusion Chapter 2

signals, decomposing the sums of such signals by maximizing the nongaussianity
of the original signals results in independent components (ICs)

ICA has been implemented through numerous approaches such as nongaussianity
maximization, maximum likelihood estimation, nonlinear decorrelation, tensorial
methods and nonlinear PCA [6]. Although second-order characteristics can be ex-
ploited to extract ICs since statistical independence implies statistical uncorrelation,
most ICA methods take advantage of higher-order statistics to achieve better per-
formance. Therefore, since Gaussian signals are only defined up to second-order
statistics (mean and variance), it is impossible to separate more than one Gaussian
signal from a mixture of signals using higher-order statistics ICA. Additionally, ICA
typically finds at maximum as many ICs as there are ICA input signals, although
workarounds to extract more ICs than input signals exist in literature [6].

Since biomedical signals are stochastic random signals by nature, fulfillment of the
ICA assumptions, especially regarding nongaussianity, cannot be guaranteed [6].
However, even if ICA may fail with a specific set of input signals and using one
algorithm with certain parameters, this does not necessarily imply that the dataset
was unfit for ICA. Convergence can still be achieved by either changing the number
of ICA input samples, i.e., the length of the EGM signal segment, and/or by changing
the number of EGM electrodes, input signal bandwidth and sampling rate, or ICA
parameters. Naturally, different ICA algorithms may yield different performances
[6].

2.4 Conclusion

Standard AA and VA estimation techniques have been presented and briefly discussed
in this chapter. The required time-alignment and inherent variability of AF EGM
signals already implies that the performance of ABS and adaptive filtering is likely
to fall short of our expectations. Furthermore, we really do not take full advantage
of the spatial diversity of our AF EGM datasets with these two methods.

Matrix decompositions provide a more advanced alternative, but the imposition of
constraints that are not necessarily valid may cause the algorithm to underperform.
While incorporation of prior information via constraints is usually beneficial e.g., if
the sources are uncorrelated then S is orthogonal, the data model becomes invalid
when the priors do not correspond to properties of the available datasets leading to
subpar performance.

Multiway component analysis in chapter three goes a step further to allow for a tensor
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representation of the AF EGM datasets, whose decomposition based on multilinear
algebra is unique under milder conditions, and only requires that the columns of the
factor matrices be linearly independent.
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Two-way (matrix) component analysis is a well established FA-BSS technique whose
umbrella covers the aforementioned principal component analysis (PCA) and inde-
pendent component analysis (ICA). However, given the ubiquity of modern homoge-
neous and/or heterogeneous sensor modalities, a lot of the data collected nowadays
is of a multiway character that is better represented by multiway arrays (tensors).
Tensor decompositions therefore allow the extension of matrix component analysis
(two-way CA) to multiway component analysis (MWCA)

Datasets from a variety of fields such as audio and speech processing, image and video
processing, biomedical engineering etc., can naturally be represented as high dimen-
sional arrays, i.e., tensors. For example, in biomedical applications, an ECG/EGM
recording can be formed from a channel(electrodes)×time matrix, and multiple dis-
parate recordings (trials) form a third-order tensor of channel × time× trial. If we
consider the time-frequency representation of each channel, we obtain a fourth-order
tensor of channel × time × frequency/scale × trial. See Figure 3.1 for the time-
frequency representation of a multichannel signal recording as a three-way tensor.
Via multiway FA-BSS we can extract spectral components, temporal components,
and spatial components of ECG/EGM data simultaneously, together with the links
between them that are represented by a core tensor [9].

While it is of course possible to unfold multiway data to form a large matrix and
apply two-way FA-BSS methods, this often results in a loss of internal structure,
and the flattened view along with the rigid assumptions inherent in two-way analysis
are at times not suitable for multiway data [9], [8]. Through tensor decompositions,
sophisticated models that capture multiple interactions and couplings can be devel-
oped and implemented, instead of standard dyadic interactions. To put it differently,
we can only discover hidden components within multiway data if the analysis tools
account for the intrinsic multidimensional patterns present [8].

Furthermore, tensor decompositions are not just matrix factorizations with addi-
tional subscripts, but rather are more structurally rich than linear algebra. For
instance, basic notions such as rank have a more subtle meaning in multilinear alge-
bra, and the uniqueness conditions for higher-order tensor decompositions are more
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Figure 3.1: Time-frequency representation of a multichannel signal recording X as a tensor
X [7].

natural and relaxed than those for matrices [25], [26], [8]. To quote the paper ”Tensor
Decompositions for Signal Processing Applications” [8]: ”data analysis techniques
using tensor decompositions are shown to have great flexibility in the choice of con-
straints which match data properties and extract more general latent components in
the data than matrix-based methods.”

As a natural extension of FA-BSS, multiway FA-BSS is an attractive and promising
approach because it allows components to be simultaneously extracted from different
domains (modes) of tensor data. Besides the well-known FA-BSS indeterminacies
(arbitrary scaling and permutation of the rank-1 terms), it is quite often the case
that the physical meaning of the factors is not directly apparent. If the model in
Equation 2.1 (see the section ”Factor Analysis and Blind Source Separation”) is
unconstrained, it admits infinitely many combinations of A and S. Standard matrix
factorizations in linear algebra such as QR-factorization, eigenvalue decomposition
(EVD) and SVD obtain their uniqueness from the restrictive constraints imposed
such as triangularity and orthogonality. Additionally, other constraints like statistical
independence, sparsity, nonnegativity and uncorrelatedness can permit the unique
estimation of A and S [8].

In anticipation of any confusion as to the formal definition of tensors, we here define
a tensor as a multiway array of numbers that are multilinear mappings over a set
of vector spaces [27]. While it is possible to make sense of tensor decompositions
from a linear algebra perspective, certain subtleties unique to higher-order arrays
necessitate mathematical definitions specific to higher-order tensors. The interested
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reader is referred to the appendix under the section ”Mathematics of Tensor Decom-
positions”. For the purposes of understanding the factorization models discussed in
this document, the few but important mathematical definitions will be explained in
the appropriate sections.

3.1 TUCKER Decomposition

Tucker decomposition, aka higher-order singular value decomposition (HOSVD), is
a form of higher-order PCA. It was first introduced by Tucker in 1963 and has been
referred to by a variety of names since then; more commonly N -mode PCA and
HOSVD [3]. The Tucker model decomposes a tensor into a core tensor multiplied by
a matrix along each mode. Thus, in the three-way case where X ∈ RI×J×K , we have
[3]:

X ≈ G ×1 A×2 B×3 C =
P∑

p=1

Q∑
q=1

R∑
r=1

gpqr(ap ◦ bq ◦ cr), (3.1)

where A ∈ RI×P ,B ∈ RJ×Q, and C ∈ RK×R are the factor matrices (usually orthog-
onal) and can be thought of as the principal components in each mode. The tensor
G ∈ RP×Q×R is called the core tensor and its entries show the level of interaction
between the different components. Figure 3.2 shows the Tucker decomposition of a
three-way tensor.

Elementwise, the Tucker decomposition in 3.1 is written as:

xijk ≈
P∑

p=1

Q∑
q=1

R∑
r=1

gpqr(aip ◦ bjq ◦ ckr), (3.2)

for i = 1, ..., I, j = 1, ..., J and k = 1, ..., K. Here P , Q and R are the number
of components (i.e., columns) in the factor matrices A, B, and C respectively. If
P,Q,R are smaller than I, J,K, the core tensor G is a compressed version of X .

Additional constraints on the factor matrices and/or core tensor are necessary to
obtain a unique and physically meaningful decomposition. For example, in order to
get orthogonal factor matrices in Equation 3.1, truncated SVD is often applied to
mode-n matricization X(n) for n = 1, 2, ..., N i.e., the orthonormal bases are obtained
via the SVD of the mode-n matricized tensor X(n) = Un

∑
n VT

n . As in the matrix
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Figure 3.2: Tucker decomposition of a three-way tensor [8].

case, the multilinear singular values govern the multilinear rank, while the multilinear
singular vectors allow, for each mode separately, an interpretation as in PCA making
the Tucker decomposition a useful tool for compression and signal enhancement in
multiway datasets [8]. This brief description explains why the Tucker decomposition
is sometimes referred to as higher-order SVD.

Since the TUCKER decomposition is explained primarily for erudition purposes as
a gentle introduction to canonical polyadic decompositions, the details of how it is
computed in practice are not elaborated in this document and the interested reader
is encouraged to consult one of the many resources mentioned in the references for
information thereon.

3.2 Canonical Polyadic Decomposition

A polyadic decomposition (PD) represents an N -th order tensor X ∈ RI1×I2×...×IN

as a linear combination of rank-1 tensors in the form [8]:

X =
R∑

r=1

λra
(1)
r ◦ a(2)

r ◦ . . . ◦ a(N)
r . (3.3)
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Equivalently, X can be expressed as a multilinear product with a diagonal core:

X = D×1A
(1) ×2 A(2) . . .×N A(N) (3.4)

= JD;×1A
(1),A(2), . . .A(N)K, (3.5)

where D = diagN(λ1, λ2, ..., λR). The tensor rank is defined as the smallest value of
R for which Equation 3.3 holds exactly; the minimum rank PD is called canonical
PD (CPD) and is desired in signal separation. In fact, Canonical Polyadic Decom-
positions (CPDs) can be viewed as a special case of TUCKER decompositions where
the core tensor is superdiagonal and P = Q = R i.e., we restrict the core tensor G
to be diagonal with R1 = R2 = . . . = RN = R [3]. The CPD of a two-way tensor
(matrix) X and a three-way tensor X is shown in Figure 3.3.

Figure 3.3: Canonical Polyadic Decomposition (CPD) of (a) a two-way tensor (matrix) (b)
a three-way tensor [8].

Unlike the decomposition of a matrix in rank-1 terms where uniqueness is obtained by
imposing orthonormality, the CPD of a tensor is unique up to scaling/counterscaling
and permutation (FA-BSS indeterminacies) under mild conditions. Interestingly, the
CPD can even be unique for values of R that are greater than the tensor modes [23].
From a more theoretical perspective, the following theorem defines the uniqueness
of CPDs:

Theorem 1: Consider a tensor X ∈ RI1×I2×I3 that admits the CPD where N = 3. If
(i) the columns of A(1) are linearly independent, (ii) the columns of A(2) are linearly
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independent, and (iii) A(3) does not have proportional columns, then the CPD is
unique modulo permutation of the rank-1 terms and modulo scaling/counterscaling
of factors within the same term [23].

Indeed, the uniqueness of a CPD is based entirely on multilinear algebra and has
nothing to do with the physical attributes of the factors. Under the conditions defined
in Theorem 1, the CPD can be computed via a generalized Eigenvalue Decomposition
(EVD) [23].

Before moving on to the computation of CPDs in practice, it is useful to address
the meaning of tensor rank in the context of CPD. The rank of a tensor X , denoted
rank(X ), is defined as the smallest number of rank-1 tensors that generate X as
their sum i.e., the smallest number of components in an exact CP decomposition.
While the definition of tensor rank is analogous to matrix rank, their properties are
quite different. Furthermore, finding the rank of a given tensor is NP-hard and there
is no straightforward algorithm to calculate it [28], [3]. Numerically, the rank of a
tensor is determined by fitting various rank-R CPD models. Additionally, while for
matrices, the maximum rank (defined as the largest attainable rank) and the typical
rank (defined as any rank that occurs with probability greater than zero) are the
same, for tensors the two may be different.

3.2.1 Computation of CPDs

Needless to say, there have been a lot of significant developments in the computation
of CPDs with the goal of decreasing the computation time and storage space. In
this regard, numerous linear and nonlinear algorithms exist, but in this report we
focus on the alternating least squares (ALS) approach since the computation of
the CPD is intrinsically a multilinear problem that can be solved by optimizing a
sequence of linear subproblems [8]. Other more sophisticated algorithms will be
briefly mentioned for expository purposes and more information thereon can easily
be found in the literature.

When finding latent variables or source components, the CPD only permits an ap-
proximation of the data due to either the presence of noise or the inexactness of the
model [23]. It is therefore standard to fit the decomposition in a least squares sense
i.e., by minimizing the Frobenius norm of the difference between the data tensor
and its CP approximation (if the noise is Laplacian, we fit the least absolute error).
The working horse of CPD is therefore the Alternating Least Squares algorithm
(ALS).

We now describe the ALS algorithm for a third-order tensor, but this can easily be
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generalized to higher-order tensors. We want to find the CPD with R components
for the tensor X ∈ RI×J×K that best approximates it i.e.:

min
X̂

||X − X̂ || with X̂ =
R∑

r=1

λrar ◦ br ◦ cr = Jλ; A,B,CK. (3.6)

The ALS method works as follows: fix B and C to solve for A, then fix A and C to
solve for B, then fix A and B to solve for C; continue repeating the entire procedure
until some convergence or stopping criterion is satisfied. Common convergence or
stopping criteria are little or no improvement in the objective function, little or no
change in the factor matrices, the objective value is at or near zero, and exceeding a
predefined maximum number of iterations [3].

ALS is pretty straightfoward and often works fairly well [3], but it can also get
very slow especially for ill-conditioned problems. Additionally, like most alternating
algorithms, it is not guaranteed to converge to a stationary point and/or find a global
minimum, and the update procedure breaks symmetry if the tensor to be factorized
is symmetrical [23]. To rectify the first problem (nonconvergence), we can opt to only
update the factor matrix whose cost function has decreased the most at any given
step, but this comes with the penalty of an N -times increase in computational cost
per iteration. For the second problem (breaking symmetry), we can do ALS with
a line search after each major iteration such that all the component matrices are
simultaneously updated based on the standard ALS search directions [3]. The line
search scheme works because of the multilinearity of the CPD in that we can compute
the optimal step along a line by polynomial rooting. Other optimization tricks to
improve convergence and/or retain symmetry such as Tikhonov regularization are
also possible [3].

Lastly, the question of rank i.e., the number of R components that the data should
be factored into is of concern, since as already mentioned, there is no finite algorithm
to determine the rank of a tensor [3]. The standard approach is to try different R
until a ”good” fit is found. Given the ambiguousness of the word ”good”, the fact
that some tensors may have approximations of lower rank that are arbitrarily close
in terms of fit, and that the data is often noisy invalidating a best fit approach to find
the rank, researchers have come up with techniques to compare different fits (what
value of R to use). The most common method is a consistency diagnostic called
CORCONDIA, where, since we have already established that CPD is a special case
of the Tucker Decomposition with a superdiagonal core tensor, the CORCONDIA
carries out a modified Tucker Decomposition (the factor matrices are not orthogonal)
and tries to make the core tensor maximally diagonal. Significant deviations from
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a superdiagonal core or nonconvergence due to too many iterations either indicate
that the decomposition rank is not appropriate, that the dataset it too noisy, or
that the CPD model does not apply for the given dataset. In some cases applying
proper constraints on the CPD such as nonnegativity, orthogonality or bounding the
condition number of the factor matrices can improve the fit of the CPD. However,
if meaningful constraints cannot be imposed and CORCONDIA still fails, then the
CPD is not the right model for the data and an alternative decomposition should be
considered [23].

Indeed performing the CORCONDIA (also known as rank test) on the time-frequency
representation of EGM data in SR and AF is part of the motivation to consider Block
Term Decomposition, where we relax the rank-1 constraint in CPD. This is because
although the rank test works fine for a time-frequency representation of the recordings
in SR, it fails for AF recordings implying that the CPD model is only valid for SR
and does not hold for AF.

3.3 Block Term Decomposition

Block Term Decomposition (BTD), otherwise referred to as Block Component Anal-
ysis (BCA) is a generalization of Canonical Polyadic Decomposition (CPD), where
instead of decomposing a matrix or tensor into rank-1 terms, we relax the rank-1
constraint and decompose the dataset into rank − (Lr, Lr, 1) terms [29]. This is
because the rank-1 constraint is a relatively strong assumption on the components
that are obtained, and one may wonder if this is indeed satisfied for different kinds
of datasets. In fact, it is likely possible (and often is), that a low multilinear rank is
a better representation of reality [29], which opens up a whole new set of possibilities
for multiway FA-BSS. It has been shown in [30] and [31] that BCA is related to Sparse
Component Analysis (SCA) and Compressive Sensing (CS) respectively. While in
SCA the factors are low-dimensional in that they are often zero, in BCA the factors
have a low intrinsic dimension that is characterized by multilinear rank. In compres-
sive sensing, low intrinsic dimensionality is used for compact signal representation
while in BCA this trait serves as the basis for signal separation.

The BTD of a tensor X ∈ RI1×I2×I3 is a sum of rank (Lr, Lr, 1) terms for 1 ≤ r ≤ R,
and is defined as:

X =
R∑

r=1

(Ar ·BT
r )⊗ cr, (3.7)
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where each of the matrices Ar ∈ RI1×Lr and Br ∈ RI1×Lr has linearly indepen-
dent columns and the vectors cr ∈ RI3 are nonzero. We assume that R is minimal
[29]. Figure 3.4 shows both the (Lr, Lr, 1) and the generalized BTD of a three-way
tensor.

Figure 3.4: (a) (Lr, Lr, 1) BTD of a three-way tensor (b) Generalized BTD of a three-way
tensor [8].

The BTD is also unique up to FA-BSS indeterminacies i.e., post-multiplication of
Ar by a square nonsingular matrix Wr and premultiplication of BT

r by W−1
r , (1 ≤

r ≤ R) also leads to a valid decomposition of X ∈ RI1×I2×I3 .

It can be claimed that the success of CPD is probably due to the fact that the rank-
1 terms capture the essence of components that are actually a lot more complex.
However, in more complicated situations where the rank-1 constraint no longer suf-
fices, it is logical to check if BCA provides more information. To put it differently,
a rank-1 term can be called an atom since it is a constituent element that cannot
be split into smaller parts. CPD splits a data tensor into atoms. For three-way
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(temporal × spectral × spatial) data, CPD results in latent components consisting
of rank-1 temporal by rank-1 spectral by rank-1 spatial weighting factors. However,
for biomedical signals or speech signals whose sources have a particular spectral con-
tent, the latent components correspond to molecules rather than atoms. BCA can
thus be viewed as separation on the level of molecules, and provides a better signal
model. Thus, for temporal×spectral×spatial data, BTD results in components con-
sisting of rank-Lr temporal by rank-Lr spectral by rank-1 spatial weighting factors,
depending on how you order the modes of the tensor i.e., the components can also
be represented by rank-Lr temporal by rank-Lr spatial by rank-1 spectral weighting
factors [29].

3.3.1 Computation of BTDs

Similar to CPD, the block term decomposition in rank− (Lr, Lr, 1) terms is trilinear
in the component matrices A, B and C. Consequently, the solution to BTD can also
be obtained via an alternating least squares (ALS) approach where we solve multiple
linear least squares subproblems. The update rules and associated challenges with
the ALS method for BTD are similar to those already described in the section on
computing the CPD. Refer to the section ”Computation of the CPD” for further
details on ALS.

Using the BTD model defined in Equation 3.7, let A = [A1, ...,AR],B = [B1, ...,BR]
and C = [c1, ..., cR]. We then rewrite the tensor X in its matrix representations as
follows:

XIJ×K = [A1 �c B11L1 . . . (AR �c BR)1LR
] ·CT, (3.8)

XJK×I = (B�C) ·AT, (3.9)

XKI×J = (C�A) ·BT, (3.10)

where � denotes the Khatri-Rao product as defined in Table 2.1 and �c denotes the
columnwise Khatri-Rao product.

The ALS algorithm for the decomposition in rank − (Lr, Lr, 1) terms as described
in [32] is shown below.
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procedure BTD ALS(X , Lr, Lr, 1)
Initialize B,C
Iterate until convergence:

Update A:

A← [(B�C)† ·XJK×I]
T

Update B:

B̃ = [(C�A)† ·XKI×J]
T

For r = 1, ..., R:

QR-factorization: B̃r = QR,Br ← Q
Update C:

C̃ = {[A1 �c B11L1 . . . (AR �c BR)1LR
]† ·XIJ×K}T

For r = 1, ..., R:
cr = c̃r/||c̃r||

end procedure

3.4 Conclusion

This chapter has covered the specifics of multiway component analysis in depth
first by introducing the TUCKER decomposition, then constraining the core of the
TUCKER decomposition to be diagonal thus deriving the canonical polyadic decom-
position (CPD), and finally relaxing the rank-1 constraint in CPD resulting in the
block term decomposition (BTD).

In the results section, we apply the CPD and BTD discussed in this section to the AF
EGM datasets with the goal of factorizing the time-frequency (TF) representations
of AF EGM datasets such that the components obtained represent physiologically
meaningful signals. It turns out that BTD is the preferred MWCA tool to get an
estimate of the VA, enabling the realization of the research objective set out at the
beginning of this project: reduction or complete removal of VA from AF EGMs via
temporal subtraction and/or power subtraction of the VA estimate from the AF
EGMs.
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Experimental Methodology 4
The epicardial EGMs were graciously provided by the Translational Electrophysi-
ology group within the department of Cardiology at Erasmus MC Rotterdam. All
data analysis is carried out on a 13-inch Mid 2010 2.4 GHz Intel Core2 Duo Mac-
Book Pro laptop using MATLAB, a proprietary programming language developed by
MathWorks Inc. While there are a number of tensor analysis toolboxes in existence
which in theory would return the same results irrespective of the toolbox used, we
exclusively use the Tensorlab toolbox developed by N. Vervliet, O. Debals, L. Sor-
ber, M. Van Barel and L. De Lathauwer within the Group Science, Engineering and
Technology at KU Leuven, in part because of the elegance of the Structured Data
Fusion framework (SDF) that abstracts the minutiae of algorithmic implementation,
while allowing the user access to the algorithms should he/she desire to modify any
for his/her purposes.

4.1 Data Acquisition

The epicardial EGM data was recorded using a rectangular electrode array (dimen-
sions 4.6 × 1.4 cm) that is placed at different locations on the surface of the heart
during open chest surgery. The electrode array consists of a rectangular electrode
matrix (32 rows by 8 columns) whose wires are made of silver (diameter 0.3 mm) and
the interelectrode spacing is 2 mm. Figure 4.1 (repeated here from the Introduction
for the reader’s convenience) shows the various positions at which the electrode array
is placed to record EGM signals. The configurations are more or less the same for
SR and AF EGMs, human error notwithstanding.

The recorded EGMs (256 channels per location) are then amplified (gain 1000),
filtered using a 50 Hz fixed filter to remove power line interference and a bandpass
filter (0.5 - 400 Hz) to remove baseline trend and high frequency noise. They are
then multiplexed at a sampling rate of 1 kHz and A/D converted at a resolution of
8 bits. Signal measurement lasts 5 seconds in SR and 10 seconds in AF.
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Figure 4.1: Image of the various EGM recording locations and the rectangular electrode
array configuration.

4.2 Data Preprocessing

In light of the variability in amplitude and variance in the EGM recordings, some
preprocessing of the dataset is necessary prior to the application of any algorithmic
procedures. Fortunately, the data recordings are quite clean, and it is thus not
necessary to further filter the signals to remove noise and/or other extra-cardiac
contaminants. We therefore, on an electrode by electrode basis, simply remove the
mean of the data and standardize it by scaling the amplitude (±1) and variance (unit
variance).

We also remove the reference electrode at channel 8 and the ECG recording at
electrode 1, which is generally used to categorically identify the presence and location
of VA since it is much easier to see in the ECG. As for the rest of the EGM data,
we manually went over the dataset to identify faulty electrodes and removed them
so as to only retain valid EGMs.

Due to the nonstationarity of the EGM signal and the convolutive rather than in-
stantaneous mixing model assumed (due to the time delay between AA and VA and
probably a more complex filter between the AA and VA generation sites and EGM
recording sites), we utilize a time-frequency representation of the dataset. This is
because for short enough window frames in the time domain, the EGM signal can be
assumed stationary, and if the length of the short-time Fourier Transform (STFT) is
much longer than the length of the framing window, convolutive mixing in the time
domain becomes instantaneous mixing in the frequency domain[18].
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For our particular application, we chose the simpler STFT to begin with, so as to
demonstrate the applicability of a time-frequency analysis, before considering more
sophisticated techniques like wavelet analysis. The drawback of this approach is
that since the size of the window is fixed with the STFT, we still have to tradeoff
resolution in the time domain for resolution in the frequency domain. While atrial
and ventricular activity are temporally isolated in SR, they often overlap in AF, and
so the bigger window (128 samples with an overlap of 50% i.e., 64 samples) when
analyzing EGM signals in SR must be made smaller when analyzing EGM signals in
AF (32 samples with an overlap of 16 samples). Moreover, while the spectral content
(repetition rate) is the same for AA and VA in SR, it is different, although still
overlapping in AF. In both cases the frames are windowed using a Hanning window
to make the transition from frame to frame smoother and avoid ringing effects caused
by the abruptness of a rectangular window. The inverse Fourier Transform (ISTFT)
is always used to revert to the time domain post-analysis.

Furthermore, we only work with the magnitude (squared) of the data in the time-
frequency representation (power spectral density), since at the moment it is not
known how much information is contained in the phase of the signal, particularly
during AF where the generation mechanism appears random. Thereafter, the time-
frequency representation of each electrode in the same row is stacked to form a
three-way tensor so as to exploit the spatial information as well. The three-mode
tensor of the observed EGM signals is the input to the multiway algorithms discussed
in this thesis.

Lastly, it is useful to know the rank of the tensor we are working with in order to get
an accurate decomposition of the datasets. This is because even if it turns out that
the dataset is better represented by lower-rank terms instead of rank-1 terms, the
decomposition is valid for 1 ≤ r ≤ R where R is the rank of the tensor. Additionally,
the number of components into which the data should be decomposed is always
an input parameter, and generally hard to determine unless we conclusively know
how many sources are present in the signal recordings. While we can safely assume
two sources in SR (AA and VA), the complex generation mechanism of AA in AF
(AA wave regeneration and AA wave splitting) results in what could be considered
multiple sources, therefore making it impossible to state apriori the number of active
sources present in an EGM at different locations. To make things even more complex,
it could be possible that the number of sources recorded by one electrode is different
from that recorded by another on the same electrode array at the same location for
the duration of the EGM recording. As a simple solution to intelligently guess the
rank of the tensor before applying any tensor decomposition to the EGM tensors, we
determine the (low) rank of the tensor via a (low)rank test provided in the Tensorlab
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toolbox.

It should be noted that although we work with the power spectral density of the
datasets, the algorithms evaluated in this report can also utilize complex-valued
data (magnitude and phase), as long as the appropriate constraints are applied (eg.,
nonnegativity is no longer a valid constraint with complex valued data).

4.3 Pseudoreal EGM Signals

It is of course imperative that we evaluate the performance of the selected algorithms
using appropriate performance indices as defined in the following chapter on ”Per-
formance Metrics”. However, for some of the metrics defined, it is necessary to have
a pure atrial signal against which to compare the extracted atrial activity. Unfortu-
nately, without a sophisticated biophysical model of the generation and propagation
mechanism of atrial fibrillation, it is practically impossible to obtain a pure atrial
and/or ventricular signal since the recorded signals are almost always contaminated
by the far ventricular signal. Despite the absence of a pure atrial and/or ventricular
signal, measuring and comparing the performance of any algorithm requires a num-
ber of quantitative indices against which we can claim that one algorithm is superior
to another.

Therefore, as a workaround to this problem, we instead generated pseudoreal sig-
nals, following the technique developed for ECG’s by Rieta et al. in the paper
”Spatiotemporal Blind Source Separation Approach to Atrial Activity Estimation in
Atrial Tachyarrhythmias” [10]. To synthesize pseuodreal signals, the VA is obtained
from the SR recordings by segmenting out the VA at QRS peak locations. Since the
duration of the VA is about 140 - 150 ms, we use a frame of 140 samples (sampling
rate = 1 kHz) and window it with a Hamming window of the same length to avoid
abrupt transitions between segments when we add the VA to the AA to generate
pseudoreal AF.

For the atrial activity, we isolate the AA from T-Q intervals during AF episodes in
the AF recordings and carefully extrapolate it between two adjacent T-Q segments
to replace the regions of QRS activity that are segmented out of the AF EGMs
(once again using the ECG signals to find the location of the QRS peaks). The
extrapolation method is fairly simple, in that the AA prior to the QRS complex
is replicated within the QRS interval, but linearly weighted such that the weights
are one at the beginning of the interval and decrease down to zero at the end of
the interval. Similarly, the AA following the QRS complex is replicated within the
QRS interval and weighted from zero at the beginning of the interval rising up
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to one at the end of the interval. Both segments are combined to build up the
extrapolated AA wave(s) within the QRS interval. This is repeated for all electrodes
in the AF EGMs. Although the reconstructed AA samples do not exactly correspond
to the true AA signal masked by the QRS complex as seen in the deviations in
Figure 4.2, which compares the real AF EGM signals to the generated pseudoreal AF
signals, the model more or less preserves the all the key features of the recorded EGM
signals. Table 4.1 summarizes the mean NMSE and standard deviation between the
real EGMs and the pseudoreal EGMs, which indicates that the pseudoreal signals
are a relatively good representation of the clinical EGM signals, while providing a
synthesized version of pure AA and pure VA that is necessary for the evaluation of
algorithmic performance.

Figure 4.2: Pseudoreal and real EGM signals generated from real SR and AF EGMs of
row 8 at location RA3.

In conclusion, the pseudoreal AF signals are generated by adding the extracted VA
from SR recordings and the extracted AA from AF recordings. While not necessarily
a realistic scenario with regard to actual AF generation and propagation mechanisms,
it nevertheless gives us a way to objectively evaluate the performance of the selected
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Figure 4.3: Pseudoreal AA signals generated from real AF EGMs of row 8 at location RA3.

Figure 4.4: Pseudoreal VA signals generated from real SR EGMs of row 8 at location RA3.

algorithm in this report, whose results can of course also be confirmed by visual
inspection of the estimated AA. See Figures 4.3, 4.4 and 4.2 for the estimates of the
pure atrial activity, pure ventricular activity and the summation thereof, respectively,
for electrodes 1 through 4 of row 3 in the EGMs of the electrode array placed at
location RA1 of a patient in atrial fibrillation.
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Table 4.1: Average and Standard Deviation of the Normalized Mean Square Error (NMSE)
between generated pseudoreal and real clinical AF signals for the 10 different recording
locations.

Recording Location Average NMSE Standard Deviation

BB0 0.1758 0.1300
LA2 1.0372 0.8509
LA3 0.6576 0.7932

PVL1 0.3333 0.1958
PVR1 0.1554 0.0614
RA1 0.0933 0.0504
RA2 0.1915 0.1013
RA3 0.1180 0.0465
RA4 0.1301 0.0599
RA5 0.1589 0.0696

4.4 Step-by-Step Algorithmic Procedure

1. Preprocessing: for each electrode, remove EGM signal mean and normalize to
unit variance and unit amplitude.

2. If necessary, remove baseline wander (low-pass filter 0-1 Hz) and power-line
interference (stopband filter at 50 Hz). Not necessary since our datasets are
quite clean.

3. Tensorize the EGM data on a row-by-row basis by applying the STFT to each
electrode recording to obtain a three-way tensor (temporal × frequency ×
spatial).

4. Apply the relevant FA-BSS algorithm i.e., CPD or BTD.

5. Find the ISTFT of the separated components.

6. Calculate signal kurtosis to identify the ventricular and non-ventricular source
components.

7. Remove the VA by scaling the source component corresponding to VA accord-
ingly (due to FA-BSS scaling ambiguity) and temporally or power spectrally
subtract the VA estimate from the EGM data.

8. Measure the quality of ventricular activity reduction or removal using the de-
fined performance metrics.
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For the purposes of determining how well the ventricular artifacts have been either
reduced or completely removed from epicardial EGM signals in atrial fibrillation,
the following performance metrics have been selected: cross-correlation coefficient,
dominant frequency, normalized mean square error (NMSE), spectral concentration
and ventriculo-atrial sample ratio (VASR). They will each be briefly introduced in the
following sections. Note that almost all of the performance indices can be computed
on either the entire length of the signal recording or an a beat-by-beat basis. In
general, the beat-by-beat approach, whenever applicable, provides more detailed
information on ventricular activity (VA) reduction because it focuses on the beat
segments where VA is typically expected. Nevertheless, to also account for the level
of distortion that the algorithm may induce, performance indices that depend on the
entire length of the EGM signals such as NMSE also prove to be of importance.

5.1 Cross-Correlation Coefficient

The cross-correlation coefficient ρ between two vectors a and b is a measure of the
quality of a least squares fitting of the two vectors. It is also referred to as the
normalized cross-covariance. Mathematically, this is expressed as:

ρ(a,b) =
1

N − 1

N∑
i=1

(
ai − µa

σa
)(
bi − µb

σb
) (5.1)

=
cov(a,b)

σaσb
, (5.2)

where N is the signal length (a and b are of the same length), µa and σa are the
mean and standard deviation of vector a respectively, and µb and σb are the mean
and standard deviation of vector b respectively.

In our case, the two vectors a and b are the pure atrial signal and the extracted
atrial signal respectively. The cross-correlation essentially measures the degree of
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similarity between the two signals, which indicates how well the ventricular signal
is removed from the EGMs, while preserving the atrial activity. Therefore, if the
pure AA and extracted AA are perfectly correlated, the cross-correlation coefficient
evaluates to 1 and if completely uncorrelated, it evaluates to 0.

5.2 Normalized Mean Square Error

The normalized mean square error (NMSE) is a measure of the difference between
two vectors. Mathematically, for two vectors a and b, it is defined as:

NMSE(a,b) =
||a− b||2

||a− µa||2
, (5.3)

where µa is the mean of the vector a. Once more, a and b represent the pure atrial
signal and the extracted atrial signal respectively. Therefore, if the NMSE is low, then
the two vectors have a lot in common, and if the NMSE is high, then there are a lot
of deviations between the two vectors. A low NMSE is therefore preferred, but high
NMSE values do not necessarily imply that the two vectors are quite different, but
rather that there might be time shifts between the samples. Additionally, significant
differences between peak values in the two vectors have a higher weight on the NMSE
than other values [33]. This is why we also use the NMSE to measure the difference
between the pseudoreal EGMs and the real EGMs.

5.3 Ventriculo-Atrial Sample Ratio

This performance metric is evaluated on a beat-by-beat basis. Based on the con-
cept of signal-to-noise ratio, the ventriculo-atrial sample ratio (VASR) is defined as
[34]:

V ASR(dB) = 10log10

(
EV A

EAA

)
= 10log10

(∑M
i=1 s

2
V A(i)∑M

i=1 s
2
AA(i)

)
, (5.4)

where M is the length of the signal segment that would typically contain VA, sAA

is the segmented atrial signal and sV A is the segmented original EGM recording.
Essentially, we want to determine the ratio of the energy in the signal segments when
contaminated with ventricular activity to that when VA is removed. Signal segments
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with both atrial and ventricular activity are more energetic than those with only
atrial activity. Consequently, a high VASR is undesirable. For the purpose of getting
rid of ventricular activity, a VASR closer to zero is preferred. Negative values point to
an error in the algorithm since that implies that there is more energy in the extracted
atrial activity after VA reduction than there was prior to any processing.

5.4 Dominant Frequency

Estimating the dominant frequency (DF), although typically done to determine the
cycle length of atrial waves, can also be used to measure the quality of ventricular
reduction since the presence of ventricular activity has been shown to affect the
dominant frequency of AA [1]. Consequently, if we calculate the dominant frequency
of the original epicardial EGMs, that of the EGMs with reduced ventricular activity,
and that of pure atrial activity, dominant frequencies close to that of pure atrial
activity indicate a good reduction in ventricular activity.

The dominant frequency is defined as the largest spectral peak (maximum funda-
mental frequency) in the power spectrum (aka power spectral density) of a signal. To
compute the power spectral density, we divide the signal into short overlapping seg-
ments that are appropriately windowed, calculate the FFT on the segments, square
its magnitude and average the power spectra of the short segments (Welch’s method).
The length of the signal segments is important since it determines the estimation
accuracy of the DF by restricting spectral resolution [14]. We choose the segment
length to be about 1 second (1024 samples) with an overlap of 50% (512 samples)
and an FFT length of 8192 samples.

5.5 Spectral Concentration

Based on the discussion in the paper ”Spatiotemporal blind source separation ap-
proach to atrial activity estimation in atrial tachyarrhythmias” [10], where the spec-
tral concentration of AF EGMs has been shown to be an indicator of effective re-
duction of ventricular activity, we define the spectral concentration (SC) around the
main frequency peak fp as:

SC =

∑1.17fp
0.82fp

PAA(fi)∑fs/2
0 PAA(fi)

, (5.5)
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where PAA is the power spectrum of the AA signal computed using Welch’s method
with a 8192 point FFT, 1024 point Hamming window and 50% overlap, and fs is the
signal sampling rate (1 KHz). In general, a decrease in the SC corresponds to a better
estimate of the atrial activity and thus a good reduction of the ventricular activity
present in the EGM. In accordance with the results given in [10], a bandwidth of 2 Hz
for a typical AF frequency of 4-6 Hz is chosen which they claim to be sufficient even
for AF episodes that show a wideband spectrum with several peaks. If the bandwidth
is wider, this parameter should be scaled accordingly. The spectral concentration is
measured for the original EGM signals, the EGMs sans VA and the pure atrial EGMs
when available (from pseudoreal EGMs).
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Results 6
This chapter presents and discusses the results of the CPD and BTD algorithms for
the estimation of ventricular activity in AF EGMs. We corroborate the claims made
in chapter three that the CPD is valid for SR EGM signals, but not for AF EGM
signals, and that BTD indeed provides a viable alternative for the estimation of VA.
Interestingly, in spite of the number of gross assumptions made in selecting some of
the key parameters in the BTD algorithm, the proposed solution works surprisingly
well for most of the datasets. As is often the case when dealing with any set of
datasets that are recorded at different times and/or locations, the variations in the
recordings necessitate some algorithmic tweaking so as to optimize performance, but
overall the methodology proves quite robust and should be able to handle other
yet-to-be-recorded datasets estimation errors notwithstanding.

As a side note to facilitate the interpretation of figures present in this chapter, the
multiple subplots in a figure depicting an obtained component represent the same
component extracted across all electrodes in a particular row, which is why all are
labelled with the same component number i.e., 1 or 2, even though there are 8
different subplots.

6.1 Clinical EGM Data

6.1.1 CPD

In this section, we demonstrate that the CPD indeed is a valid model for the decom-
position of the EGM data in SR since the rank-1 constraint on each of the dimensions
(temporal × spectral × spatial) actually holds. As previously mentioned in the ex-
planation of CPDs and how they are computed, this is because the atrial (AA) and
ventricular activity (VA) are temporally isolated, thus for the time-frequency bins in
which there is signal energy, the energy is due to only one active source; AA or VA.
This can be clearly seen in Figures 6.3, 6.4 and 6.5, where we decompose the tensor
into 3 components: the depolarization of the AA, the VA, and the repolarization of
the AA, which has a different spectral signature from the depolarization of the AA

47



6.1. Clinical EGM Data Chapter 6

since it is much slower. Figures 6.1 and 6.2 contain the original EGMs whose source
components are shown in the aforementioned figures.

Figure 6.1: Electrode 1 to 4 EGMs in SR for row 12 at location RA2.

However, as shown in Figures 6.8, 6.9 and 6.10, the CPD is not a valid model for the
AF EGM data. The original EGMs for these source components are shown in Figures
6.6 and 6.7. This is due to the temporal and/or spectral overlap, such that there can
be more than one active source in each time-frequency bin. Therefore, the rank-1
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Figure 6.2: Electrode 4 to 8 EGMs in SR for row 12 at location RA2.

constraint is too restrictive since the multiple sources in each time-frequency bin
belong to more than one subspace, in which case even though the rank-1 constraint
in the spatial dimension may apply, the reconstruction of the source components
identified by their (temporal × spectral × spatial) signatures will contain residuals
due to the invalid rank-1 temporal and/or spectral components. The AA and VA are
therefore not separable, unless the window frames are made small enough to include
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Figure 6.3: Extracted component 1 using CPD for row 12 at location RA2 SR EGMs.
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Figure 6.4: Extracted component 2 using CPD for row 12 at location RA2 SR EGMs.

only one active source, which we then in turn have to trade off for spectral resolution
since the size of the short-time frequency transform (STFT) window is fixed. Since it
is possible to simply relax the rank-1 constraint by using the (Lr, Lr, 1) BTD model
instead, we opt to do that instead, and this indeed provides better results for the AF
EGM data as seen in the BTD results section.
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Figure 6.5: Extracted component 3 using CPD for row 12 at location RA2 SR EGMs.
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Figure 6.6: Electrode 1 to 4 EGMs in AF for row 12 at location RA2.
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Figure 6.7: Electrode 4 to 8 EGMs in AF for row 12 at location RA2.
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Figure 6.8: Extracted component 1 using CPD for row 12 at location RA2 AF EGMs.
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Figure 6.9: Extracted component 2 using CPD for row 12 at location RA2 AF EGMs.
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Figure 6.10: Extracted component 3 using CPD for row 12 at location RA2 AF EGMs.
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6.1.2 BTD

We now consider the results of the BTD algorithm at length. The original EGMs
whose extracted components are depicted in this section are shown in Figures 6.11
and 6.12 for reference. As already demonstrable in Figures 6.13 and 6.14 for row 5
at location RA1, the BTD is indeed capable of extracting the VA simply by relaxing
the rank-1 constraint in the temporal and spectral modes, but retaining the rank-1
constraint in the spatial mode. The relaxation basically allows for more than one
source to be active in each time-frequency bin, while the rank-1 constraint in the
spatial mode confines the linearly independent temporal and spectral columns to
unique spatial subspaces for different components.

Visually, it is already possible to conclude from Figure 6.15 that the VA estimate
obtained is quite good and minimally modifies the AA when temporally subtracted,
and even when VA and AA temporally overlap, it is still possible to preserve the AA
to a considerable extent. This is again proven to be true when observing the results
of the pseudoreal AF EGM signals in the section ”Pseudoreal EGM Data”.

The performance of the BTD algorithm is also evaluated using a set of quantitative
measures, but given the immense amount of data to be analyzed (7 datasets each
with 136 electrodes), we only show tabulated averages and standard deviations of
the performance measures per recording location. Since it is important to know how
much our model deviates from the actual tensorized datasets, we also tabulate the
relative Frobenius norms, especially since we make somewhat brazen and imprecise
assumptions like decomposing the tensors into only two components when it is very
possible that there are more than two latent sources.

Table 6.1 compares the results of temporal subtraction of the VA estimate obtained
using the BTD algorithm to that obtained using average beat subtraction (ABS).
Table 6.2 shows the relative Frobenius norm of the tensor data to its BTD.

6.1.3 Discussion

It is difficult to tell with absolute certainty that the reduction in ventricular activity
(VA) for all the electrodes at a particular recording location is good based on the
performance metrics since only the averages and standard deviations are tabulated
in Table 6.1. We can however on average claim to have a substantial reduction in VA
for most of the recording locations as indicated by low VASR values and an overall
decrease in the spectral concentration (SC). Additionally, changes in the dominant
frequency (DF) between the original EGMs and the AA estimates correspond to
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Figure 6.11: Electrode 1 to 4 EGMs in AF for row 5 at location RA1.

reduction in VA since the presence of VA modifies the dominant atrial frequency
due to spectral overlap of AA and VA. However, this metric should not be used on
its own to qualify the goodness of VA reduction because no change in the DF is
observable when there is no spectral overlap.

More specifically, comparison with the results of ABS indeed points to a reduction
in VA since ABS is known to work well in practice, but this should be considered
with a grain of salt since ABS has its own shortcomings despite being the go-to
method for VA removal in AF EGMs. It is also apparent from some relatively
higher VASR values that the BTD algorithm does not perform as well for certain
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Figure 6.12: Electrode 4 to 8 EGMs in AF for row 5 at location RA1.

recording locations, particularly location LA3 and RA1. This is likely due to the
organized nature of the AF EGMs recorded at these locations whose AA and VA
overlap temporally, spectrally and/or spatially such that the extracted components
contain residuals making it difficult to identify the VA component solely based on
signal kurtosis. The estimation errors are most probably due to selection of the
wrong component for subtraction.

Since the quantitative values shown here are averages, it is a good idea to compare
the results of the metrics on an electrode-by-electrode basis to identify the erroneous
estimates, especially if the AF EGM data sans VA is to be used for mapping purposes.
We opted not to do this here due to the sheer amount of space that would be
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Figure 6.13: Non-VA component using Lr, Lr, 1 BTD for row 5 real AF EGMs at RA1.

required to display all the values, without adding much insight on the usefulness of
the BTD. Visually analyzing the AA signal estimates if in doubt as to the accuracy
of the algorithm is also recommended, possibly with the aid of the associated ECG
signal when necessary and available. Furthermore, if we look at the VASR values,
a lower VASR does not categorically indicate better VA reduction since we lack
a benchmark value below which we can assert that VA is significantly reduced or
completely removed. In theory, one would have to determine such a value for each
dataset and visually verify its verity by looking at the AA estimate, before using it to
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Figure 6.14: Ventricular activity component using Lr, Lr, 1 BTD for row 5 real AF EGMs
at RA1.

qualify our algorithmic performance. This is not done here, although it is relatively
straightforward if one chooses the right electrode as the reference standard; the tricky
part is deciding which electrode to use.

On the whole, without pure AA signals against which to measure the effectiveness
of VA reduction, caution should be taken when making definitive statements on
algorithmic performance using only real AF EGMs since the performance metrics
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Figure 6.15: Obtained atrial activity after temporal subtraction for electrodes 4 to 8 in
row 5 real AF EGMs at RA1.

themselves need to be investigated to determine appropriate thresholds for compari-
son purposes. This is one of the many reasons why we opted to generate pseudoreal
AF EGM signals; while an imprecise representation of reality, the availability of
pseudoreal pure AA signals allows us to more meaningfully analyze the performance
metrics. However, it should be noted that the inexactness of the pseudoreal AF EGM
synthesis procedure may also at times contribute to either decreased performance or
over-optimistic results.
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Table 6.1: Comparison of ABS to BTD for real EGM data as measured by the mean of
performance metrics across all electrodes at a recording location (the standard deviation
is shown in parentheses).

Recording Loca-
tion

Performance Met-
ric

ABS AA Esti-
mate

BTD AA Esti-
mate

Original EGM

BB0

VASR 10.98 (5.26) 2.16 (1.62) -
DF 3.91 (0) 3.9 (0.02) 3.91 (0)
SC 0.28 (0.13) 0.3 (0.14) 0.29 (0.07)

LA3

VASR 6.28 (2.86) 4.35 (2.3) -
DF 4.51 (0.26) 4.57 (0.28) 4.51 (0.04)
SC 0.1 (0.03) 0.1 (0.02) 0.13 (0.03)

RA1

VASR 7.63 (3.37) 4.53 (2.42) -
DF 4.74 (1.02) 4.78 (1.03) 4.53 (1.03)
SC 0.2 (0.06) 0.18 (0.06) 0.2 (0.04)

RA2

VASR 7.22 (1.17) 3.52 (1.95) -
DF 4.21 (0.71) 4.12 (0.88) 4.03 (0.49)
SC 0.13 (0.05) 0.12 (0.06) 0.16 (0.05)

RA3

VASR 6.28 (1.44) 3.49 (2.27) -
DF 4.13 (0.28) 4.1 (0.63) 4.08 (0.18)
SC 0.16 (0.05) 0.14 (0.05) 0.18 (0.04)

RA4

VASR 7.07 (1.56) 3.9 (2.08) -
DF 4.06 (0.15) 3.97 (0.31) 3.95 (0.1)
SC 0.15 (0.05) 0.14 (0.04) 0.18 (0.04)

RA5

VASR 8.63 (1.75) 3.79 (2.11) -
DF 5.09 (0.6) 4.75 (0.68) 4.42 (0.47)
SC 0.2 (0.04) 0.19 (0.05) 0.2 (0.05)

Table 6.2: Mean and Standard Deviation (std) of the Frobenius Norm between the Actual
Dataset and the Decomposed Dataset.

Recording Location Mean Frobenius Norm (std)

BB0 0.19 (0.09)
LA3 0.2 (0.06)
RA1 0.29 (0.1)
RA2 0.29 (0.07)
RA3 0.35 (0.03)
RA4 0.31 (0.06)
RA5 0.21 (0.05)
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6.2 Pseudoreal EGM Data

6.2.1 BTD

Here we show the results of the BTD algorithm using pseudoreal AF EGM data. As
seen in Table 6.3, the mean cross-correlation for all electrodes in the various datasets
is quite high, while the mean NMSE is quite low, indicating good performance. The
few datasets for which the performance is not as satisfactory shall be dealt with in
the discussion section, as well as suggesting ways to enhance the performance for
those particular datasets.

The VASR for the AA estimate and the pure AA are also comparable, as shown
in Table 6.3, also pointing to a good reduction in the VA. Even more important is
the comparison of the dominant frequencies and spectral concentrations between the
’pure’ AA and the AA estimates for the various datasets, shown in Table 6.3, whose
closeness reveals the significant reduction in VA across the electrodes, outliers and
algorithmic errors notwithstanding. The Frobenius norm between the pseudoreal
data and the BTD model is once again displayed to illustrate the level of inaccuracy
of the chosen model.

6.2.2 Discussion

The quantitative results for pseudoreal AF EGM data also confirm the reduction/re-
moval of VA that can be observed visually. Once more, the exact value of the
dominant frequency does not tell us much with regard to VA reduction, but the fact
that is changes relative to that of the original EGM signals implies that VA has been
affected somehow. Besides, the closeness between the DF of the AA estimates and
the pseudoreal pure AA verifies the reduction in VA compared to the mixed pseu-
doreal AF EGMs. With regard to the spectral concentration metric, it is impossible
to determine if the values observable in Table 6.3 indicate a reduction in VA. The
uninterpretability is probably caused by the way in which the pseudoreal AF EGM
signals are generated since they are not an accurate representation of the generation
mechanism in the heart.

As for the remaining performance indices, the availability of ’pure’ AA signals enables
the calculation of cross-correlation coefficients and NMSEs. We are able to observe
good VA reduction based on relatively high cross-correlation coefficients and low
NMSE values for most of the recording locations. The similarity between VASR for
the ’pure’ AA and the AA estimates also implies that the VA indeed has been either
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Table 6.3: Comparison of ABS to BTD for pseudoreal EGM data as measured by the mean
of performance metrics across all electrodes at a recording location (the standard deviation
is shown in parentheses).

Recording Loca-
tion

Performance Met-
ric

ABS AA Esti-
mate

BTD AA Esti-
mate

Pure AA Original EGM

BB0

CC Coeff 0.91 (0.03) 0.9 (0.06) - -
NMSE 0.45 (0.2) 0.39 (0.13) - -
VASR 10.87 (3.33) 2.91 (1.98) 3.33 (2.19) -
DF 3.91 (0.02) 3.9 (0.02) 3.9 (0.02) 3.9 (0.03)
SC 0.29 (0.11) 0.27 (0.09) 0.29 (0.1) 0.25 (0.05)

LA3

CC Coeff 0.84 (0.18) 0.72 (0.24) - -
NMSE 0.35 (0.4) 0.68 (0.67) - -
VASR 8.04 (4.04) 4.33 (2.85) 8.47 (2.33) -
DF 4.57 (0.38) 4.49 (0.35) 4.54 (0.12) 4.06 (0.56)
SC 0.09 (0.03) 0.1 (0.03) 0.1 (0.04) 0.12 (0.03)

RA1

CC Coeff 0.89 (0.07) 0.81 (0.17) - -
NMSE 0.26 (0.18) 0.49 (0.52) - -
VASR 6.21 (2.53) 3.58 (1.84) 4.18 (1.92) -
DF 4.64 (1.1) 4.9 (1.03) 4.98 (1.07) 4.84 (1.06)
SC 0.18 (0.06) 0.17 (0.05) 0.21 (0.06) 0.19 (0.05)

RA2

CC Coeff 0.91 (0.03) 0.82 (0.1) - -
NMSE 0.22 (0.07) 0.42 (0.25) - -
VASR 7.91 (1.25) 4.3 (2.29) 4.87 (1.33) -
DF 4.39 (0.88) 4.16 (0.81) 4.09 (0.45) 3.95 (0.33)
SC 0.13 (0.05) 0.12 (0.05) 0.14 (0.05) 0.16 (0.04)

RA3

CC Coeff 0.93 (0.03) 0.77 (0.1) - -
NMSE 0.15 (0.06) 0.52 (0.21) - -
VASR 5.21 (1.23) 3.14 (1.98) 4.32 (1.28) -
DF 4.08 (0.24) 3.98 (0.51) 4.07 (0.29) 4.05 (0.2)
SC 0.18 (0.06) 0.15 (0.05) 0.18 (0.07) 0.17 (0.04)

RA4

CC Coeff 0.93 (0.02) 0.69 (0.17) - -
NMSE 0.15 (0.06) 0.66 (0.36) - -
VASR 6.31 (2.04) 2.84 (1.91) 4.2 (1.24) -
DF 4.03 (0.29) 4.11 (0.69) 4.06 (0.22) 3.84 (0.21)
SC 0.14 (0.04) 0.12 (0.04) 0.14 (0.04) 0.15 (0.04)

RA5

CC Coeff 0.92 (0.02) 0.79 (0.11) - -
NMSE 0.28 (0.1) 0.47 (0.19) - -
VASR 7.1 (1.92) 1.8 (1.49) 2.44 (1.34) -
DF 5.27 (0.62) 5.18 (0.74) 5.33 (0.63) 5.24 (0.58)
SC 0.21 (0.04) 0.2 (0.05) 0.23 (0.04) 0.22 (0.04)

substantially reduced or completely removed. Again, the performance at certain
locations is subpar compared to ABS due to significant overlaps of AA and VA in
the temporal, spectral and/or spatial modes. In such cases, while the ABS does not
provide any analytical insight into the AF EGM data, it still manages to remove
most of the VA by pinpointing the window frames with VA using the ECG’s QRS
complex and subtracting the average VA template.

We would however like to once more emphasize we are examining averages and the
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Table 6.4: Mean and Standard Deviation (std) of the Frobenius Norm between the Pseu-
doreal Dataset and the Decomposed Dataset.

Recording Location Mean Frobenius Norm (std)

BB0 0.2 (0.09)
LA3 0.15 (0.03)
RA1 0.31 (0.09)
RA2 0.21 (0.03)
RA3 0.36 (0.04)
RA4 0.35 (0.07)
RA5 0.28 (0.05)

performance for each electrode might vary, necessitating a more thorough evaluation
of the metrics on an electrode-by-electrode basis if the AF EGM data is to be used
in applications that require high-resolution AF EGMs. In addition, while we now
sort of have a threshold via the ’pure’ AA signal against which to compare our
calculated performance metrics for the AA estimates, the inaccuracies associated
with the generation procedure for pseudoreal EGMs may influence the values of
the performance metrics. Nevertheless, given the lack of an alternative method of
acquiring pure AA signals, our methodology will have to suffice for now.

It is apparent that despite the albeit somewhat inaccurate assumptions made for
purposes of simplicity, for example the number of components into which the tensor
is decomposed and the heuristic approach to determining the low multilinear rank
of the tensors, we are still able to obtain a fairly good estimate of the VA, which
is thereafter temporally or power spectrally subtracted from the original AF EGM
recordings. While temporal subtraction usually suffices for most of the datasets,
there are more challenging datasets like those recorded at locations LA2, PVR1 and
PVL1, where the VA’s morphology significantly varies for electrodes in the same
row, not only with regard to shape, but also with regard to sign. As shown in Figure
6.16, the VA appears as a positive sweep for beats 6, 8 and 9, and as a negative
sweep for beats 2 and 5. This becomes problematic when correcting for the sign and
scaling ambiguities of FA-BSS techniques, and temporal subtraction often results in
oversubtraction. As a workaround to this, power spectral subtraction proves useful,
with the minimum capped at zero so that you cannot subtract more energy than is
actually present in a particular TF bin, since it is the energy of the signal (squared
DFT coefficients for each TF bin), and not the morphology of the signal in the time
domain, that determines what is left over after subtraction.

Most of the outliers and/or erroneous results in each dataset are due to the fairly
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Figure 6.16: Illustration of the appearance of VA as both a positive and negative sweep in
row 15 PVL1 AF EGMs.

simplistic component selection process wherein the signal kurtosis is used to decide
which source component is the VA and which is not. We use the standard deviation
of the kurtosis of the VA extracted from different electrodes in the same row as a
deciding factor i.e., a Euclidean distance measure of the electrode signal kurtoses
from the mean VA signal kurtosis, since the VA is consistent across the electrodes
while the local AA varies from electrode to electrode such that the non-VA component
standard deviation will be higher. This of course fails when you have highly organized
AA, or if the AA closely resembles the VA, such that AA residuals are present in
the VA estimate possibly making the standard deviation of the VA component larger
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than that of the non-VA component.

Furthermore, the idiosyncrasies unique to each recording location necessitate the
alteration of input parameters. We however use the same BTD parameters for all
analyzed datasets to keep things simple, but it is likely that properly adjusting the
various input parameters for each dataset based on a more thorough understanding
of its properties will improve the algorithmic performance. Irrespective of the pro’s
and con’s of the BTD approach, the fact that the algorithm is more or less fully
automatic is a big plus. Computation time still poses a bit of a challenge, since
tensor decompositions are computationally taxing, but improvements in computa-
tional efficiency as well as increased computational power should soon alleviate this
problem.

6.3 Conclusion

The results of the various algorithms evaluated in this thesis report are presented in
this chapter, and their suitability for MWCA of epicardial EGM data, both in SR
and AF, is discussed. It has been verified that the CPD algorithm works for SR data
since the rank-1 constraint in the signal model actually holds, but that CPD fails
for AF EGM data. BTD is shown to provide superior results as measured by the
quality of the VA estimated that is obtained. The VA estimate is either temporally
or power spectrally subtracted, depending on the nature of the recordings in the
dataset, but may also be used for other more sophisticated methods like nonlinear
Wiener filtering and semi-blind nonnegative matrix factorization.

The algorithmic performance is evaluated both visually and quantitatively, and the
dissatisfactory as well as erroneous results are explained in the discussion section
of this chapter. This concludes the bulk of the research done on MWCA for the
removal of far ventricular signal in AF EGMs. In the succeeding chapter we wrap
up the report and make recommendations for future work in line with the objectives
of this master’s thesis project and the overall goals of research on atrial fibrillation
within the circuits and systems group at TU Delft in collaboration with Erasmus
MC Rotterdam.
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In this chapter we round up the thesis project by stating conclusions on tensorial
analysis of AF EGM datasets and making recommendations for future research work.
Although we have been able to automatically remove the VA via multiway component
analysis to a fairly high accuracy on most datasets, and thus have achieved the
research objective set out at the beginning of the thesis project, there is definitely
more to be done. This is primarily with regard to refining the quality of the results
so as to obtain even better performance. More specifically, we still need to eliminate
erroneous estimates, properly handle the idiosyncrasies of AF EGM data recorded
at different locations, and further exploit multiway component analysis techniques
for the characterization of AA. This chapter covers these aspects to some level of
detail, and the reader is encouraged to use his/her imagination to conceive further
applications of MWCA for the analysis of AF EGM signals.

7.1 Conclusions

Clearly, the AF EGM datasets prove quite challenging when it comes to the auto-
matic extraction and identification of source components using FA-BSS algorithms
because the components not only overlap temporally and spectrally, but also spa-
tially at times. Ideally, source separation/factor analysis works excellently if one can
find a domain or combination of domains in which the sources/factors are separa-
ble and identifiable based on statistical and/or other signal properties. However, if
this is not possible, we are usually compelled to either settle for subpar performance
or devise a way to improve the data model based on a thorough understanding of
the signals being dealt with. Unfortunately, at the time of writing this thesis re-
port, statistical information on AA and VA was still not at our disposal, and so we
resorted to multilinear data analysis techniques that map the datasets to unique sub-
spaces (linearly independent bases) in the temporal, spectral and spatial domains,
whose connections are maintained through a core tensor. In this way, it is presumed
that the extracted latent components i.e., distinct temporal, spectral and spatial
factors/signatures, represent physiologically interpretable sources.
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However, the uncertainties (unknown number of source components, unknown low
multilinear rank, arbitrary permutation and scaling) associated with FA-BSS pose a
difficulty, warranting the use of heuristics to extract meaningful latent components.
In spite of the unknown low multilinear rank of the different source components and
the unknown overall number of components into which the tensors are to be decom-
posed, by simply factorizing the tensors into two components while constraining the
spatial dimension to be rank-1, we are able to get an estimate of VA. This is because
for each constructed tensor, the far VA more or less presents itself to the electrode
array as a signal originating from one direction. However, due to the overlapping
factors i.e., the bases associated with AA and VA are not entirely different depending
on the dataset, AA residuals are sometimes present in the extracted VA component.
In such cases, a better approximation of the low multilinear rank may be able to
separate the components due to the increased or decreased number of linearly inde-
pendent subspaces i.e., a better data model. A more suitable guess of the overall
number of components, also corresponding to a better data model, may be able to
extract the truly different latent components present in the tensorized dataset. Note
that determining the best low multilinear rank of a tensor is an NP-hard problem and
is thus typically solved numerically using trial-and-error and/or best-fit approaches
[35].

The adequate algorithmic performance of block term decomposition (BTD) is sub-
stantiated both visually and quantitatively as can be seen in the results section,
and serves as a good starting point to advance the study of AF EGMs from a
(temporal× spectral× spatial) approach, as opposed to matrix decompositions that
not only limits analysis to two modes, but additionally imposes strict constraints to
guarantee uniqueness that are not necessarily applicable to AF EGM datasets. This
last remark is quite relevant to nonstationary, dynamically complex physiological
data that is at times difficult to model; unlike signals, for example in telecommuni-
cations, that are generated with the explicit intent of facilitating interpretability, in
biomedical applications we attempt to demystify the surprisingly efficient function-
ality of the human body. While undoubtedly an exigent undertaking, the benefits
thereof suffice to motivate the constant pursuit of a deeper understanding of, in our
case, the generation and propagation of anomalous atrial signals in patients suffering
from atrial fibrillation.

Using the selected algorithmic procedure, we are able to substantially reduce the
presence of VA in AF EGMs, which is the first step in achieving the long-term goal
of the research project on atrial fibrillation at TU Delft in collaboration with Erasmus
MC; namely, the development of age- and gender-based bioelectrical diagnostics to
characterize the invasive and noninvasive AF fingerprint thus enabling optimal AF
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treatment and improving the therapeutic outcome of patients with AF.

7.2 Future Work

In general, FA-BSS usually presents a hurdle when it comes to interpretation because
the mathematics works, but what do the extracted components actually mean? Even
more so when dealing with ’abnormal’ physiological signals whose variability often
preempts the ’Aha! I see it!’ solution to the problem. Furthermore, we had no
way of telling apriori the number of components to extract or the low multilinear
rank of the tensors, and thus relied on a trial-and-error approach, which of course
is not robust to the natural variance in data recordings due to noise and/or other
contaminants. Therefore, there is indeed much more to be done, not only to improve
on the removal of VA, but to extend the usability of multiway data analysis techniques
to the characterization of AA. For instance, is it possible to approximate the number
of sources active in each time-frequency bin based on the multilinear rank of the
(time×frequency×electrodes) tensor? Or maybe extract temporal and/or spectral
AA signatures from an AF patient based on a decomposition of the (temporal ×
spectral× electrode× trial) tensor to study the evolution of AF? Indeed, multiway
component analysis shows a lot of promise in terms of allowing the joint analysis
of multivariate or disparate datasets with the goal of acquiring ever more pertinent
diagnostic and therapeutic details on AF.

Future possibilities notwithstanding, there are a few recommendations to be made
within the scope of this project. For starters, the number of components into which
the tensor is decomposed. For purposes of simplicity, we made the assumption that
one component, the VA, originated from one directional subspace, and that ’every-
thing else’ should be mapped to the other component’s subspace. This of course only
works 100% if the VA is entirely separable from ’everything else’ in one (or all) of
the three domains i.e., it occupies a unique subspace, otherwise residuals are to be
expected. Moreover, while this allows us to use the VA estimate to temporally or
power spectrally subtract it from AF EGMs, we have, in a sense, not gained much
information on the temporal, spectral and/or spatial signatures of AA. We therefore
solve the given task i.e., the reduction/removal of VA, but much is still left to do on
the subject of modeling AA.

Additionally, we do not take advantage of any apriori information on the generation
and propagation mechanisms of AF. This is partly due to the fact that the scientific
community is still unclear on the precise details thereof, but should this information
be at our disposal, then it is certainly going to aid in the identification of the latent
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components and improved removal of VA in AF EGMs. This goes hand in hand
with knowledge of statistical properties. For example, if AA and VA were spatially
mutually uncorrelated, then we could easily apply orthogonality as a constraint in
the spatial mode of the tensor enhancing the quality of the decomposition.

FA-BSS indeterminacies (scaling and permutation) are admittedly dealt with in a
fairly crude manner in this project. While it suffices to demonstrate the usefulness of
MWCA, more advanced techniques like back-projection [36], [37] would definitely be
preferable so as to obtain the correct sign, permutation and scaling of the extracted
components.

Last but not least, the phase information of the AF EGM signals was ignored in the
analysis since we are currently not aware its relevance. Perfunctory exploration of the
phase component of the data indicated a level of randomness possibly correlated to
the unpredictability of AF, and so we opted not to use it. However, it is conceivable
that we were indeed in the wrong and phase information should be included in the
proposed approach. Fortunately, all of the decomposition techniques presented in this
report also allow for complex data as input, but a reinterpretation of the extracted
factors/components would be inevitable.

All in all, AF analysis via tensor decompositions turns out to be a formidable but
stimulating task that we believe holds a lot of promise, not only to effectively remove
VA and other artifacts if present, but also to better characterize the nature of AF.
Consequently, more suitable diagnostic and therapeutic tools to combat AF can be
developed so as to alleviate its associated dangers and risks.
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Appendix: Mathematics of
Tensor Decompositions A
The following mathematical definitions apply to all higher-order arrays, although
it is simpler to visualize and work with third-order arrays in some of the examples
given for clarification purposes. A lot of the tensor definitions have been borrowed
from the seminal works on multilinear algebra by DeLathauwer and Moor [27], and
Kolda and Bader [3] respectively: ”From Matrix to Tensor: Multilinear Algebra and
Signal Processing” and ”Tensor Decompositions and Applications”.

Definiton 1: (Outerproduct) The outer product A ◦ B of a tensor A ∈
RI1×I2×...×IP and a tensor B ∈ RJ1×J2×...×JQ is defined by:

(A ◦ B)i1,i2,...,iP ,j1,j2,...,jQ

def
= ai1,i2,...,iP bj1,j2,...,jQ , (A.1)

for all values of the indices. The outer product generalizes expressions of the type
abT where a and b are vectors.

Definition 2: (Scalar product) The scalar product < A,B > of tensors A,B ∈
RI1×I2×...×IN is defined as:

< A,B > def
=

∑
i1

∑
i2

. . .
∑
iN

bi1i2...iNai1.i2...iN (A.2)

Definition 3: (Orthogonality) Tensors whose scalar product equals 0 are mutu-
ally orthogonal.

Definition 4: (Frobenius-norm) The Frobenius norm of a tensor A is defined
as:

||A|| =
√
< A,A > (A.3)

Analogous to the matrix Frobenius norm denoted as ||A|| for a matrix A, the norm
of a tensor X ∈ RI1×I2×...×IN is the square root of the sum of the squares of all its

75



Chapter 1

elements, i.e.,

||X || =

√√√√ I1∑
i1=1

I2∑
i2=1

. . .

IN∑
iN=1

x2i1i2...iN . (A.4)

The inner product of two same-sized tensors X ,Y ∈ RI1×I2×...×IN is the sum of the
products of their entries, i.e.,

< X ,Y > =

√√√√ I1∑
i1=1

I2∑
i2=1

. . .

IN∑
iN=1

xi1i2...iNyi1i2...iN . (A.5)

Therefore, < X ,X >= ||X ||2.

Definition 5: The mode-n product of a tensor A ∈ RI1×I2×...×IN by a matrix U ∈
RJn×In , denoted by A×n U is an (I1× I2× ...× In−1Jn× In+1...× IN)-tensor defined
by

(A×n U)i1i2...jn...iN =
∑
in

ai1i2...in...iNujnin , (A.6)

for all index values.

Using this notation, the matrix product A = U(1)BU(2)T takes the form of the sym-
metric expression A = B×1 U(1) ×2 U(2), reflecting the fact that U(2) acts in exactly
the same way on the columns of B as U(1) does for the rows. The mode-n product
allows us to express the effect of a basis transformation in RIn on the tensor A.

For distinct modes in a series of multiplications, the order of the multiplication is
irrelevant, i.e.,

X ×m A×n B = X ×m B×n A (m 6= n). (A.7)

If the modes are the same, then

X ×n A×n B = X ×n BA. (A.8)

The n-mode (vector) product of a tensor X ∈ RI1×I2×...×IN with a vector v ∈ RIn is
denoted by X×̄nv. The result is of order N − 1, i.e., the size is I1 × . . . × In−1 ×
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In+1× . . .× IN i.e. I compute the inner product of each mode-n fiber with the vector
v. Elementwise,

X×̄n vi1...in−1in+1...iN =
In∑

in=1

xi1i2...iNvin . (A.9)

For mode-n vector multiplication, precedence matters because the order of the in-
termediate results changes i.e.:

X×̄ma×̄nb = (X×̄ma)×̄n−1b = (X×̄nb)×̄ma, (A.10)

for m < n.

Definition 6: (Mode-n rank) The mode-n vectors of a tensor A ∈ RI1×I2×...IN

are the In-dimensional vectors obtained from A by varying the index in and keeping
the other indices fixed. The mode-n rank of A, denoted by Rn = rankn(A), is the
dimension of the vector space generated by the mode-n vectors.

Definition 7: (Rank-1 tensor) An Nth-roder tensorA has rank 1 when it equals
the outer product of N vectors U (1), U (2), ..., U (N):

A = U (1) ◦ U (2) ◦ ... ◦ U (N) (A.11)

Definition 8: (Rank) The rank or an arbitrary Nth-order tensor A, denoted by
R = rank(A), is the minimal number of rank-1 tensors that yield A in a linear
combination.

Definition 9: (Symmetry) A tensor is cubical if every mode is the same size, i.e.
X ∈ RI×I×I×...×I . A cubical tensor is called supersymmetric if its elements remain
constant under any permutation of the indices. For instance, a three-mode tensor
X ∈ RI×I×I is supersymmetric if

xijk = xikj = xjik = xjki = xkij = xkji, (A.12)

for all i, j, k = 1, ..., I.

Tensors can be (partially) symmetric in two or more modes as well. For example, a
three-mode tensor X ∈ RI×I×K is symmetric in modes one and two if all its frontal
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slices are symmetric, i.e.:

Xk = Xk
T (A.13)

for all k = 1, ..., K.

Definition 10: (Diagonal tensors) A tensor X ∈ RI1×I2×...×IN is diagonal if
xi1i2...iN 6= 0 only if i1 = i2 = . . . = iN . Figure A.1 shows a cubical tensor with ones
along the superdiagonal.

Figure A.1: Cubical 3-way tensor with ones along the superdiagonal[3].

Definition 11: (Kronecker, Khatri-Rao and Hadamard Products) The
Kronecker product of matrices A ∈ RI×J and B ∈ RK×J is denoted by A⊗B. This
results in a matrix of size (IK)× (JL) and defined by:

A⊗B =


a11B a12B . . . a1JB
a21B a22B . . . a2JB

...
...

. . .
...

aI1B a12B . . . aIJB

 = [a1 ⊗ b1a1 ⊗ b2a1 ⊗ b3 . . . aJ ⊗ bL−1aJ ⊗ bL].

(A.14)

The Khatri-Rao product is the ”matching columnwise” Kronecker product. Given
matrices A ∈ RI×J and B ∈ RJ×K , their Khatri-Rao product is denoted by A ·B.
The result is a matrix of size (IJ)×K defined by:

A ·B = [a1 ⊗ b1 a2 ⊗ b2 . . . aK ⊗ bK]. (A.15)

If a and b are vectors, the the Khatri-Rao and Kronecker products are identical, i.e.
a⊗ b = a · b.
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The Hadamard product is the elementwise matrix product. Given matrices A and
B, both of size I × J , their Hadamard product is denoted by A ∗B. The result is
also of size I × J and defined by:

A ∗B =


a11b11 a12b12 . . . a1Jb1J
a21b21 a22b22 . . . a2Jb2J

...
...

. . .
...

aI1bI1 aI2bI2 . . . aIJbIJ

 . (A.16)

These matrix products have the following properties:

(A⊗B)(C⊗D) = AC⊗BD,

(A⊗B) = A† ⊗B†,

(A ·B ·C) = (A ·B) ·C = A · (B ·C))),

(A ·B)T(A ·B) = ATA ∗BTB,

(A ·B)† = ((ATA) ∗ (BTB))†(A ·B)T.

A† denotes the Moore-Penrose pseudoinverse of A.

Definition 12: (Matricization and vectorization) Matricization, also known
as unfolding or flattening, is the process of reordering the elements of an N -way array
into a matrix. For instance, a 2× 3× 4 tensor can be arranged as a 6× 4 matrix or
a 3 × 8 matrix. It is also possible to vectorize a tensor, but this will not be further
discussed since it is quite straightforward. The ordering is not important as long as
it is consistent.

The mode-n matricization of a tensor X ∈ RI1×I2×...×IN is denoted by X(n) and
arranges the mode-n fibers to be the columns of the resulting matrix. Tensor element
(i1, i2, ..., iN) maps to matrix element (in, j), where:

j = 1 +
N∑
k=1
k 6=n

(ik − 1)Jk, (A.17)
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with

Jk =
k−1∏
m=1
m6=n

Im. (A.18)

Definition 13: (Tensorization) Tensorization is the formation of a tensor from
lower-dimensional data. This can be accomplished by:

• Rearrangement of lower-dimensional data structures. For example, a one-way
exponential signal x(k) = azk can be rearranged into a rank-1 Hankel matrix
or a Hankel tensor [36][8]:

H =


x(0) x(1) x(2) . . .
x(1) x(2) x(3) . . .
x(2) x(3) x(4) . . .

...
...

...

 = aa ◦ b, (A.19)

where b = [1, z, z2, ...]T .

• Mathematical construction. For example, a (channel × time) data matrix can
be transformed into a (channel×time×frequency) or (channel×time×scale)
tensor via time-frequency or wavelet representations.

Definition 14: (Super-symmetry) Moments and cumulants are symmetric in
their arguments i.e.:

(MN
X)i1i2...iN = (MN

X)P (i1i2...iN ) (A.20)

(CNX )i1i2...iN = (CNX )P (i1i2...iN ) (A.21)

in which P is an arbitrary permutation of the indices.
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Appendix: MATLAB Code B
The MATLAB code used to analyze the epicardial electrogram datasets is presented
below. MATLAB software is proprietary but can be easily acquired from the Math-
works Inc. website with the proper licenses. The Tensorlab toolbox is necessary
to implement the tensor decompositions discussed in this thesis report, and can be
downloaded for free from the Tensorlab website [38], whose url can be found in the
bibliography.

B.1 Data Preprocessing

1 function [ rowsEGM , ecg , val ] = loadEGM_noFigs (x )
% Loads the given electrogram (EGM) datasets without plotting the ECG

or

% any channel data.

% x is the kind of EGM dataset i.e. in sinus rhythm (SR) or in atrial

% fibrillation (AF).

6
% Load the EGM datasets

egm_datasets ;
egm_datasets_AF ;

11 % Load the requested EGM dataset

if strcmp (x , ’EGM_SR_BB0’ )
EGM = EGM_SR_BBO ;
val = 1 ;

elseif strcmp (x , ’EGM_SR_LA2’ )
16 EGM = EGM_SR_LA2 ;

val = 1 ;
elseif strcmp (x , ’EGM_SR_LA3’ )

EGM = EGM_SR_LA3 ;
val = 1 ;

21 elseif strcmp (x , ’EGM_SR_PVL1’ )
EGM = EGM_SR_PVL1 ;
val = 1 ;

elseif strcmp (x , ’EGM_SR_PVR1’ )
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EGM = EGM_SR_PVR1 ;
26 val = 1 ;

elseif strcmp (x , ’EGM_SR_RA1’ )
EGM = EGM_SR_RA1 ;
val = 1 ;

elseif strcmp (x , ’EGM_SR_RA2’ )
31 EGM = EGM_SR_RA2 ;

val = 1 ;
elseif strcmp (x , ’EGM_SR_RA3’ )

EGM = EGM_SR_RA3 ;
val = 1 ;

36 elseif strcmp (x , ’EGM_SR_RA4’ )
EGM = EGM_SR_RA4 ;
val = 1 ;

elseif strcmp (x , ’EGM_SR_RA5’ )
EGM = EGM_SR_RA5 ;

41 val = 1 ;
elseif strcmp (x , ’EGM_AF_BB0’ )

EGM = EGM_AF_BBO ;
val = 1 ;

elseif strcmp (x , ’EGM_AF_LA2’ )
46 EGM = EGM_AF_LA2 ;

val = 1 ;
elseif strcmp (x , ’EGM_AF_LA3’ )

EGM = EGM_AF_LA3 ;
val = 1 ;

51 elseif strcmp (x , ’EGM_AF_PVL1’ )
EGM = EGM_AF_PVL1 ;
val = 1 ;

elseif strcmp (x , ’EGM_AF_PVR1’ )
EGM = EGM_AF_PVR1 ;

56 val = 1 ;
elseif strcmp (x , ’EGM_AF_RA1’ )

EGM = EGM_AF_RA1 ;
val = 1 ;

elseif strcmp (x , ’EGM_AF_RA2’ )
61 EGM = EGM_AF_RA2 ;

val = 1 ;
elseif strcmp (x , ’EGM_AF_RA3’ )

EGM = EGM_AF_RA3 ;
val = 1 ;

66 elseif strcmp (x , ’EGM_AF_RA4’ )
EGM = EGM_AF_RA4 ;
val = 1 ;

elseif strcmp (x , ’EGM_AF_RA5’ )
EGM = EGM_AF_RA5 ;
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71 val = 1 ;
else

disp (’Pseudoreal EGM Data’ )
rowsEGM = 0 ;
val = 0 ;

76 ecg = 0 ;
return ;

end

if EGM ˜= 0
81 EGM ( 8 , : ) = [ ] ; % Remove the reference signal from the dataset

EGM ( 1 4 8 , : ) = [ ] ;
EGM ( 1 8 3 , : ) = [ ] ;
EGM ( 1 8 4 , : ) = [ ] ;
EGM ( 1 8 8 : end , : ) = [ ] ; % Remove the empty channels from the dataset

86
% Basic preprocessing of the EGM signals

% Remove the mean of the signal

EGM = EGM − repmat ( mean (EGM , 2 ) ,1 , size (EGM , 2 ) ) ;
% Variance normalization

91 for i = 1 : size (EGM , 1 )
EGM (i , : ) = sqrt ( size ( EGM (i , : ) , 2 ) ) ∗EGM (i , : ) /norm ( EGM (i , : ) ) ;

end

% Amplitude normalization

EGM = repmat ( 1 . / ( max ( abs ( EGM ) , [ ] , 2 ) ) ,1 , size (EGM , 2 ) ) .∗ EGM ;
96 %

end

% Construct the EGM dataset on a row-by-row basis

nsamples = size (EGM , 2 ) ;
101 ecg = EGM ( 1 , : ) ;

rowsEGM = zeros (23 ,8 , nsamples ) ;

row1 = EGM ( 2 : 7 , : ) ;
row1 = vertcat (row1 , zeros (2 , nsamples ) ) ;

106 rowsEGM ( 1 , : , : ) = row1 ;

for i = 2:18
rowsEGM (i , : , : ) = EGM (8∗ (i−1) : 8∗ ( i−1) +7 , : ) ;

end

111
row18 = EGM ( 1 4 4 : 1 5 0 , : ) ;
row18 = vertcat ( row18 , zeros (1 , nsamples ) ) ;
rowsEGM ( 1 8 , : , : ) = row18 ;

116 for i = 20:23
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srt = 8∗(i−1)−1;
rowsEGM (i , : , : ) = EGM ( srt : srt+7 , :) ;

end

121 row23 = EGM ( 1 8 3 : end , : ) ;
row23 = vertcat ( row23 , zeros (3 , nsamples ) ) ;
rowsEGM ( 2 3 , : , : ) = row23 ;
end

B.2 Pseudoreal EGM Signals

1 % Generate artificial pure AA

function pureAA = artificial_pureAA ( dataSR , dataAF , row )
% MATLAB function to create an pure atrial activity (AA) signal from

signal in atrial

% fibrillation (AF).

6 [ ˜ , ecgSR , ˜ ] = loadEGM_noFigs ( dataSR ) ;
[ EGM , ecg , ˜ ] = loadEGM_noFigs ( dataAF ) ;
EGM = squeeze ( EGM (row , : , 1 : size ( ecgSR , 2 ) ) ) ;
ecg = ecg ( 1 : size ( ecgSR , 2 ) ) ;

11 nchan = size (EGM , 1 ) ;
% nsamples = size(EGM,2);

fs = 1000 ; % Sampling frequency is 1KHz

time = 0:1/ fs : ( size (EGM , 2 ) /fs )−(1/fs ) ;

16 ecg = abs ( ecg ) . ˆ 2 ;
[ ˜ , locs ] = findpeaks (ecg , time , ’MinPeakHeight’ , 0 . 4 , ’MinPeakDistance’

, 0 . 1 5 0 ) ;

% Isolate pure atrial signal from the EGM recordings in AF

% Algorithm: 1) Find the peak locations of the QRST complex in the ECG

21 % signal 2) Isolate segments of ~ 90 seconds by taking 45 samples to

the

% left of the peak and 44 samples to the right of the peak for each

channel

% 3) For the segments that have been left over, decreasingly weigh the

AA

% segments to the left of the VA and increasingly weigh the segments to

the

% right of the VA and sum them up to create pseudoreal pure AA

recordings

26 % 4) Concatenate the segments 5) The resulting signals are pure AA

% recordings
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% AA activity lasts approx. 0.09 sec but include delay at the AV node

of

% 0.07 sec giving a total of 0.16 sec = 160 samples

31 % VA activity lasts approx. 0.09 sec = 90 samples

pureAA = EGM ;
AA_preBgn = zeros (1 , 60 ) ;
AA_postBgn = zeros (1 , 60 ) ;
AA_end = zeros (1 , 60 ) ;

36 for i = 1 : nchan
AA_preBgn ( 1 : 3 0 ) = EGM (i , ( floor (fs∗locs (1 ) )−(40) ) : ( floor (fs∗locs (1 ) )

−(11) ) ) ;
AA_preBgn ( 3 1 : 6 0 ) = AA_preBgn ( 1 : 3 0 ) ;
AA_postBgn ( 1 : 3 0 ) = EGM (i , ( floor (fs∗locs (1 ) ) +(21) ) : ( floor (fs∗locs (1 )

) +(50) ) ) ;
AA_postBgn ( 3 1 : 6 0 ) = AA_postBgn ( 1 : 3 0 ) ;

41 AA_preBgn = linspace (1 ,1/ length ( AA_preBgn ) , length ( AA_preBgn ) ) .∗
AA_preBgn ; % Linearly weight the pre-AA signal

AA_postBgn = linspace (1/ length ( AA_postBgn ) ,1 , length ( AA_postBgn ) ) .∗
AA_postBgn ; % Linearly weight the post-AA signal

AA_bgn = padarray ( ( AA_preBgn+AA_postBgn ) , [ 0 (60−length ( AA_postBgn ) )
/ 2 ] ) ;

AA_bgn = hamming ( length ( AA_bgn ) ) ’ .∗ AA_bgn ;
pureAA (i , ( floor (fs∗locs (1 ) )−30:floor (fs∗locs (1 ) ) +29) ) = zeros (1 , 60 )

;
46 pureAA (i , ( floor (fs∗locs (1 ) )−30:floor (fs∗locs (1 ) ) +29) ) = pureAA (i , (

floor (fs∗locs (1 ) )−30:floor (fs∗locs (1 ) ) +29) )+AA_bgn ;
for j = 2 : length ( locs )−1

AA_pre = EGM (i , ( floor (fs∗locs (j ) )−(80) ) : ( floor (fs∗locs (j ) )−(21)
) ) ;

AA_post = EGM (i , ( floor (fs∗locs (j ) ) +(21) ) : ( floor (fs∗locs (j ) )
+(80) ) ) ;

AA_pre = linspace (1 ,1/ length ( AA_pre ) , length ( AA_pre ) ) .∗ AA_pre ; %

Linearly weight the pre-AA signal

51 AA_post = linspace (1/ length ( AA_post ) ,1 , length ( AA_post ) ) .∗
AA_post ; % Linearly weight the post-AA signal

AA_inter = padarray ( ( AA_pre+AA_post ) , [ 0 (60−length ( AA_post ) )
/ 2 ] ) ;

AA_inter = hamming ( length ( AA_inter ) ) ’ .∗ AA_inter ;
pureAA (i , ( floor (fs∗locs (j ) )−30:floor (fs∗locs (j ) ) +29) ) = zeros

(1 , 60 ) ;
pureAA (i , ( floor (fs∗locs (j ) )−30:floor (fs∗locs (j ) ) +29) ) = pureAA (

i , ( floor (fs∗locs (j ) )−30:floor (fs∗locs (j ) ) +29) )+AA_inter ;
56 end

AA_end ( 1 : 3 0 ) = EGM (i , ( floor (fs∗locs (j+1) ) +(21) ) : ( floor (fs∗locs (j+1)
) +(50) ) ) ;

85



B.2. Pseudoreal EGM Signals Chapter 2

AA_end ( 3 1 : 6 0 ) = AA_end ( 1 : 3 0 ) ;
AA_end = padarray ( AA_end , [ 0 (60−length ( AA_end ) ) / 2 ] ) ;
AA_end = hamming ( length ( AA_end ) ) ’ .∗ AA_end ;

61 pureAA (i , ( floor (fs∗locs (j+1) )−30:floor (fs∗locs (j+1) ) +29) ) = zeros

(1 , 60 ) ;
pureAA (i , ( floor (fs∗locs (j+1) )−30:floor (fs∗locs (j+1) ) +29) ) = pureAA (

i , ( floor (fs∗locs (j+1) )−30:floor (fs∗locs (j+1) ) +29) )+AA_end ;
end

% Generate artificial pure VA

66 function pureVA = artificial_pureVA ( dataSR , dataAF , row )
% MATLAB function to create an pure ventricular activity (AA) signal

from signal in

% sinus rhythm.

% Isolate pure ventricular signal from the EGM recordings in NSR and/or

the

71 % signal model developed by Bahareh and/or in the BSS_Hendriks_3 paper

% Algorithm: 1) Find the peaks of the QRS complex in the ECG signal 2)

Do the exact same procedure as for

% creating the AA activity except use the NSR signals to isolate pure

VA

% and interpolate the data by concatenating zeros before and after the

VA

% and using a Hanning window 3) Ensure that the signal lengths are the

same

76 % for both VA and AA.

[ EGM_SR , ecgSR , ˜ ] = loadEGM_noFigs ( dataSR ) ;
[ EGM_AF , ecgAF , ˜ ] = loadEGM_noFigs ( dataAF ) ;
EGM_AF = squeeze ( EGM_AF (row , : , 1 : size ( EGM_SR , 3 ) ) ) ;

81 EGM_SR = squeeze ( EGM_SR (row , : , 1 : size ( EGM_SR , 3 ) ) ) ;
ecgAF = ecgAF ( 1 : size ( EGM_SR , 2 ) ) ;

nchan = size ( EGM_AF , 1 ) ;
nsamples = size ( EGM_AF , 2 ) ;

86 fs = 1000 ; % Sampling frequency is 1KHz

time = 0:1/ fs : ( size ( EGM_SR , 2 ) /fs )−(1/fs ) ;

% Find the peak locations in NSR

ecgSR = abs ( ecgSR ) . ˆ 2 ;
91 [ ˜ , locsSR ] = findpeaks ( ecgSR , time , ’MinPeakHeight’ , 0 . 3 , ’MinPeakDistance’

, 0 . 1 5 0 ) ;
% Find the peak locations in AF

ecgAF = abs ( ecgAF ) . ˆ 2 ;
[ ˜ , locsAF ] = findpeaks ( ecgAF , time , ’MinPeakHeight’ , 0 . 3 , ’MinPeakDistance’
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, 0 . 1 5 0 ) ;

96 pureVA = zeros ( nchan , nsamples ) ;
for i = 1 : nchan

maxAmp = zeros (1 , length ( locsAF ) ) ;
maxAmp (1 ) = min ( EGM_AF (i , floor (fs∗locsAF (1 ) )−(20) : floor (fs∗locsAF

(1 ) ) +(19) ) ) ;
VA = EGM_SR (i , floor (fs∗locsSR (4 ) )−(60) : floor (fs∗locsSR (4 ) ) +(59) ) ;

101 VA = abs ( maxAmp (1 ) ) ∗(1/ max ( abs (VA ) ) ) ∗VA ;
VA = padarray (VA , [ 0 (120−length (VA ) ) / 2 ] ) ;
VA = hamming ( length (VA ) ) ’ .∗ VA ;
pureVA (i , floor (fs∗locsAF (1 ) )−(45) : floor (fs∗locsAF (1 ) ) +(74) ) =

pureVA (i , floor (fs∗locsAF (1 ) )−(45) : floor (fs∗locsAF (1 ) ) +(74) ) + VA

;
for j = 2 : length ( locsAF )−1

106 maxAmp (j ) = min ( EGM_AF (i , floor (fs∗locsAF (j ) )−(20) : floor (fs∗
locsAF (j ) ) +(19) ) ) ;

VA = EGM_SR (i , floor (fs∗locsSR (4 ) )−(65) : floor (fs∗locsSR (4 ) ) +(74)
) ;

VA = abs ( maxAmp (j ) ) ∗(1/ max ( abs (VA ) ) ) ∗VA ;
VA = padarray (VA , [ 0 (140−length (VA ) ) / 2 ] ) ;
VA = hamming ( length (VA ) ) ’ .∗ VA ;

111 pureVA (i , floor (fs∗locsAF (j ) )−(65) : floor (fs∗locsAF (j ) ) +(74) ) =
pureVA (i , floor (fs∗locsAF (j ) )−(65) : floor (fs∗locsAF (j ) ) +(74) )
+ VA ;

end

maxAmp ( end ) = min ( EGM_AF (i , floor (fs∗locsAF ( end ) )−(20) : floor (fs∗
locsAF ( end ) ) +(19) ) ) ;

VA = EGM_SR (i , floor (fs∗locsSR (4 ) )−(60) : floor (fs∗locsSR (4 ) ) +(59) ) ;
VA = abs ( maxAmp (1 ) ) ∗(1/ max ( abs (VA ) ) ) ∗VA ;

116 VA = padarray (VA , [ 0 (120−length (VA ) ) / 2 ] ) ;
VA = hamming ( length (VA ) ) ’ .∗ VA ;
pureVA (i , floor (fs∗locsAF ( end ) )−(69) : floor (fs∗locsAF ( end ) ) +(50) ) =

pureVA (i , floor (fs∗locsAF ( end ) )−(69) : floor (fs∗locsAF ( end ) ) +(50) )
+ VA ;

end

end

121
% Generate pseudoreal EGM signals

function [ mixedAF , pureAA , pureVA ] = artificial_superimposed_EGM ( SR_Data ,
AF_Data , row )

% MATLAB script to generate artificial (not synthetic) EGM signals.

% This is done by isolating a pure atrial activity (AA) signal and

126 % superimposing a pure ventricular activity (VA) signal to create the

% atrial fibrillation (AF) signal contaminated by far ventricular

signal.
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% This is useful for determining the performance of our algorithm since

we

% can measure how well the ventricular artifacts have been removed from

the

131 % recorded unipolar epicardial AF signals.

% Pseudoreal signals in AF

pureAA = artificial_pureAA ( SR_Data , AF_Data , row ) ;
pureAA = pureAA ( : , 1 : 4 9 9 9 ) ;

136 pureVA = artificial_pureVA ( SR_Data , AF_Data , row ) ;

% Load EGM data in atrial fibrillation

[ EGM , ecg , ˜ ] = loadEGM_noFigs ( AF_Data ) ;
% [EGM,~,~] = loadEGM_noFigs(AF_Data);

141 EGM = squeeze ( EGM (row , : , 1 : size ( pureVA , 2 ) ) ) ;
ecg = ecg ( 1 : size ( pureVA , 2 ) ) ;
fs = 1000 ; % Sampling frequency is 1KHz

time = 0:1/ fs : ( size (EGM , 2 ) /fs )−(1/fs ) ;

146 % Superimpose the atrial and ventricular signals to create an

artificial

% signal in AF using the appropriate mixing model.

mixedAF = pureAA + pureVA ;

B.3 Average Beat Subtraction

1 function [ EGM , AA_estimate ] = EGM_ABS ( AF_Data , ecg , nRow )
% MATLAB script to implement average beat subtraction (ABS) as a

benchmark

% against which to measure the performance of the BTD algorithm.

% The ABS algorithm

6 % 1) Load the AF EGM datasets on a row-by-row basis

% 2) Align the peaks of the VA to the QRS peaks in the ECG recording

% 3) Slice out the VA in the AF EGM recordings

% 4) Find an average template (either using SVD or find the mean)

% 5) Subtract the template from the AF EGM recordings to remove the VA

11 % 6) Evaluate the performance of the algorithm using the performance

metrics

% For the normal operation of the function

[ EGM , ˜ , val ] = loadEGM_noFigs ( AF_Data ) ;
row = nRow ;

16
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if val == 1
EGM = squeeze ( EGM (row , : , : ) ) ;

elseif val == 0
EGM = squeeze ( AF_Data (row , : , : ) ) ;

21 end

nchan = size (EGM , 1 ) ;
nsamples = size (EGM , 2 ) ;

26 fs = 1000 ; % Sampling frequency is 1KHz

time = 0:1/ fs : ( size (EGM , 2 ) /fs )−(1/fs ) ;
% Align the data sets based on the peaks of the QRS complex in the ECG

% Find the peak locations in sinus rhythm (SR)

ecg = abs ( ecg ) . ˆ 2 ;
31 [ ˜ , locs_QRS ] = findpeaks ( ecg ( 1 : size (EGM , 2 ) ) ,time , ’MinPeakHeight’ , 0 . 4 , ’

MinPeakDistance’ , 0 . 1 5 0 ) ;

% Aign and segment out the beats

nbeats = length ( locs_QRS ) ;
36 locs_VA = zeros ( size (EGM , 1 ) , nbeats ) ;

len_nbeat = 120 ;
template_VA = zeros ( size (EGM , 1 ) , nbeats , len_nbeat ) ;
for i = 1 : nchan

for j = 1
41 peak_VA = min ( EGM (i , floor (fs∗locs_QRS (j ) )−20:floor (fs∗locs_QRS (

j ) ) +20) ) ;
peakVA_loc = find ( EGM (i , floor (fs∗locs_QRS (j ) )−20:floor (fs∗

locs_QRS (j ) ) +20) == peak_VA ) ;
locs_VA (i , j ) = floor (fs∗locs_QRS (j ) )−20 + peakVA_loc (1 ) ;
template_VA (i , j , : ) = EGM (i , locs_VA (i , j )−40:locs_VA (i , j ) +79) ;

end

46 for j = 2 : nbeats−1
peak_VA = min ( EGM (i , floor (fs∗locs_QRS (j ) )−20:floor (fs∗locs_QRS (

j ) ) +20) ) ;
peakVA_loc = find ( EGM (i , floor (fs∗locs_QRS (j ) )−20:floor (fs∗

locs_QRS (j ) ) +20) == peak_VA ) ;
locs_VA (i , j ) = floor (fs∗locs_QRS (j ) )−20 + peakVA_loc (1 ) ;
template_VA (i , j , : ) = EGM (i , locs_VA (i , j )−59:locs_VA (i , j ) +60) ;

51 end

for j = nbeats

peak_VA = min ( EGM (i , floor (fs∗locs_QRS (j ) )−20:floor (fs∗locs_QRS (
j ) ) +20) ) ;

peakVA_loc = find ( EGM (i , floor (fs∗locs_QRS (j ) )−20:floor (fs∗
locs_QRS (j ) ) +20) == peak_VA ) ;

locs_VA (i , j ) = floor (fs∗locs_QRS (j ) )−20 + peakVA_loc (1 ) ;
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56 template_VA (i , j , : ) = EGM (i , locs_VA (i , j )−69:locs_VA (i , j ) +50) ;
end

end

avgTemplate = zeros ( nbeats , len_nbeat ) ;
61 for i = 1 : nbeats

avgTemplate (i , : ) = mean ( squeeze ( template_VA ( : , i , : ) ) , 1 ) ;
end

avg2Subtract = zeros ( nchan , nsamples ) ;
66

% Subtract the average beat template from the AF EGM

AA_estimate = zeros ( nchan , nsamples ) ;
for i = 1 : nchan

for j = 1
71 avg2Subtract (i , locs_VA (i , j )−40:locs_VA (i , j ) +79) = avg2Subtract (

i , locs_VA (i , j )−40:locs_VA (i , j ) +79)+avgTemplate (j , : ) ;
end

for j = 2 : nbeats−1
avg2Subtract (i , locs_VA (i , j )−59:locs_VA (i , j ) +60) = avg2Subtract (

i , locs_VA (i , j )−59:locs_VA (i , j ) +60)+avgTemplate (j , : ) ;
end

76 for j = nbeats

avg2Subtract (i , locs_VA (i , j )−69:locs_VA (i , j ) +50) = avg2Subtract (
i , locs_VA (i , j )−69:locs_VA (i , j ) +50)+avgTemplate (j , : ) ;

end

AA_estimate (i , : ) = EGM (i , : ) − avg2Subtract (i , : ) ;
end

B.4 Block Term Decomposition

function [ EGM , X_atrTime , X_vtrTime , relerr ]= EGM_MLRD_AF_Temporal ( AF_Data
, ecg , nRow , sigPick )

% MATLAB function to compute the low multilinear rank decomposition (

BTD) of the EGM

% datasets in atrial using the Tensorlab framework , and to obtain the

% atrial signal estimates via temporal subtraction.

5
% Load AF EGM datasets

[ EGM , ˜ , val ] = loadEGM_noFigs ( AF_Data ) ;
row = nRow ;

10 if val == 1
EGM = squeeze ( EGM (row , : , : ) ) ;

elseif val == 0
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EGM = squeeze ( AF_Data (row , : , : ) ) ;
end

15
nchan = size (EGM , 1 ) ;
fs = 1000 ; % Sampling frequency is 1KHz

time = 0:1/ fs : ( size (EGM , 2 ) /fs )−(1/fs ) ;
% Align the data sets based on the peaks of the QRS complex in the ECG

20 % Find the peak locations in sinus rhythm (NSR)

ecg = abs ( ecg ) . ˆ 2 ;
[ ˜ , locs ] = findpeaks ( ecg ( 1 : size (EGM , 2 ) ) ,time , ’MinPeakHeight’ , 0 . 4 , ’

MinPeakDistance’ , 0 . 1 5 0 ) ;

% Calculate the time-frequency representation using STFT

25 fs = 1000 ;
nfft = 256 ;
nhop = 16 ;
nwin = 32 ;

30 % Calculate the STFT of the entire EGM dataset

[ egm_stft_mag , egm_stft_phi ] = EGM_STFT (EGM , fs , nfft , nhop , nwin ) ;

% Absolute value of STFTs (squared)

egm_stft_mag = egm_stft_mag ( 1 : ( nfft/2+1) , : , : ) . ˆ 2 ;
35

stft_permute = permute ( egm_stft_mag , [ 1 2 3 ] ) ;

% Calculate the multilinear low rank representation using the BTD

% formulation

40
% Begin of data reduction using LMRA

options . Display = true ; % Show progress on the command

line.

options . Initialization = @lmlra_rnd ; % Select pseudorandom

initialization.

options . Algorithm = @lmlra_minf ; % Select NLS as the main

algorithm.

45 options . AlgorithmOptions . TolFun = 1e−5; % Set stop criteria.

options . AlgorithmOptions . TolX = 1e−5;
[ U_MLRA , S_MLRA ] = lmlra ( stft_permute , [ 5 , 1 0 , 2 ] , options ) ;
stft_permute = lmlragen ( U_MLRA , S_MLRA ) ;
% End of data reduction using LMRA

50
L = [ 5 5 ] ;
disp (L )
U0 = ll1_rnd ( size ( stft_permute ) ,L , ’OutputFormat’ ,’btd’ ) ; % Generate

random tensor to initialize the decomposition
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R = length (L ) ; % Number of tensors

55
[ Uhat , ˜ ] = ll1_nls ( stft_permute , U0 , L ) ;

relerr = frob ( ll1res ( stft_permute , Uhat ) ) /frob ( stft_permute ) ; % Uhat in

BTD format

60 T = zeros ( size ( stft_permute , 1 ) , size ( stft_permute , 2 ) , size ( stft_permute
, 3 ) ,R ) ;

for i = 1 : R
T ( : , : , : , i ) = btdgen ( Uhat (i ) ) ;

end

65 sigKurt = zeros (R , nchan , 1 ) ;
for i = 1 : R
% Reconstruct each basis as a separate source

for j = 1 : nchan
C = squeeze (T ( : , : , : , i ) ) ;

70 XmagHat = squeeze (C ( : , : , j ) ) ;
% Create upper half of frequency before ISTFT

XmagHat = [ XmagHat ; conj ( XmagHat (end−1:−1:2 , : ) ) ] ;
XmagHatR (i , j , : , : ) = XmagHat ;
% Multiply with phase

75 XHat = XmagHat .∗ exp (1i∗egm_stft_phi ( : , : , j ) ) ;
xhatR ( : , i , j ) = real ( invmyspectrogram (XHat , nhop ) ) ’ ;
xhat ( : , j ) = real ( invmyspectrogram (XHat , nhop ) ) ’ ;
sigKurt (i , j , : ) = kurtosis ( squeeze ( xhat ( : , j ) ) ) ;

end

80
end

maxKurt = 170∗ones ( size ( sigKurt ) ) ;
85 minKurt = 5∗ones ( size ( sigKurt ) ) ;

cMid = 0 ;
cmptStd = zeros (R , 1 ) ;
for i = 1 : R

90 if sum ( ( sigKurt (i , : ) > minKurt (i , : ) ) & ( sigKurt (i , : ) < maxKurt (i
, : ) ) ) > nchan−1
cmptStd (i , : ) = std ( sigKurt (i , : ) ) ;
cMid = cMid+1;

else

cmptStd (i , : ) = 1000 ;
95 end

end
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if cMid > 1
if strcmp ( sigPick , ’min’ )

100 cmptIdx = find ( cmptStd == min ( cmptStd ) ) ;
else

cmptIdx = find ( cmptStd == max ( cmptStd ) ) ;
end

else

105 cmptIdx = find ( cmptStd == min ( cmptStd ) ) ;
end

X_NewTime = zeros ( size (EGM , 2 ) , nchan ) ;
X_vtrTime = zeros ( size (EGM , 2 ) , nchan ) ;

110
% Subtract the ventricular activity in the temporal domain

for j = 1 : nchan
for i = cmptIdx

if sum ( ( sigKurt (i , : ) > minKurt (i , : ) ) & ( sigKurt (i , : ) < maxKurt

(i , : ) ) ) > nchan−1
115 scaling = max ( abs ( EGM (j , : ) ) ) ;

X_Time = scaling ∗(1/ max ( abs ( squeeze ( xhatR ( : , i , j ) ) ) ) ) .∗
squeeze ( xhatR ( : , i , j ) ) ;

for k = 1
if max ( X_Time ( floor (fs∗locs (k ) )−10:floor (fs∗locs (k ) )

+10) ) > 0 .05
X_Time ( floor (fs∗locs (k ) )−45:floor (fs∗locs (k ) ) +74) =

−1∗X_Time ( floor (fs∗locs (k ) )−45:floor (fs∗locs (k )
) +74) ;

120 end

end

for k = 1
top = min ( EGM (j , floor (fs∗locs (k ) )−10:floor (fs∗locs (k ) )

+10) ) ;
btm = min ( X_Time ( floor (fs∗locs (k ) )−10:floor (fs∗locs (k ) )

+10) ) ;
125 X_Time ( floor (fs∗locs (k ) )−45:floor (fs∗locs (k ) ) +74) = (

top/btm ) ∗X_Time ( floor (fs∗locs (k ) )−45:floor (fs∗locs (k
) ) +74) ;

end

for k = 2 : length ( locs )−1
if max ( X_Time ( floor (fs∗locs (k ) )−10:floor (fs∗locs (k ) )

+10) ) > 0 .1
X_Time ( floor (fs∗locs (k ) )−70:floor (fs∗locs (k ) ) +69) =

−1∗X_Time ( floor (fs∗locs (k ) )−70:floor (fs∗locs (k )
) +69) ;

130 end
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end

for k = 2 : length ( locs )−1
top = min ( EGM (j , floor (fs∗locs (k ) )−10:floor (fs∗locs (k ) )

+10) ) ;
btm = min ( X_Time ( floor (fs∗locs (k ) )−10:floor (fs∗locs (k ) )

+10) ) ;
135 X_Time ( floor (fs∗locs (k ) )−70:floor (fs∗locs (k ) ) +69) = (

top/btm ) ∗X_Time ( floor (fs∗locs (k ) )−70:floor (fs∗locs (k
) ) +69) ;

end

for k = length ( locs )
if max ( X_Time ( floor (fs∗locs (k ) )−10:floor (fs∗locs (k ) )

+10) ) > 0 .1
X_Time ( floor (fs∗locs (k ) )−69:floor (fs∗locs (k ) ) +50) =

−1∗X_Time ( floor (fs∗locs (k ) )−69:floor (fs∗locs (k )
) +50) ;

140 end

end

for k = length ( locs )
top = min ( EGM (j , floor (fs∗locs (k ) )−10:floor (fs∗locs (k ) )

+10) ) ;
btm = min ( X_Time ( floor (fs∗locs (k ) )−10:floor (fs∗locs (k ) )

+10) ) ;
145 X_Time ( floor (fs∗locs (k ) )−69:floor (fs∗locs (k ) ) +50) = (

top/btm ) ∗X_Time ( floor (fs∗locs (k ) )−69:floor (fs∗locs (k
) ) +50) ;

end

X_Time = (1/ max ( abs ( X_Time ) ) ) .∗ X_Time ;
X_vtrTime ( : , j ) = X_Time ( 1 : length ( EGM (j , : ) ) ) ;
X_NewTime ( : , j ) = EGM (j , : ) ’ − X_vtrTime ( : , j ) ;

150 end

end

end

X_NewTime = X_NewTime ’ ;
155 X_vtrTime = X_vtrTime ’ ;

% Basic postprocessing of the extracted atrial signals

% Remove the mean of the signal

X_NewTime = X_NewTime − repmat ( mean ( X_NewTime , 2 ) ,1 , size ( X_NewTime , 2 ) ) ;
160 X_vtrTime = X_vtrTime − repmat ( mean ( X_vtrTime , 2 ) ,1 , size ( X_vtrTime , 2 ) ) ;

% Variance normalization

for i = 1 : size (EGM , 1 )
X_NewTime (i , : ) = sqrt ( size ( X_NewTime (i , : ) , 2 ) ) ∗X_NewTime (i , : ) /norm (

X_NewTime (i , : ) ) ;
X_vtrTime (i , : ) = sqrt ( size ( X_vtrTime (i , : ) , 2 ) ) ∗X_vtrTime (i , : ) /norm (
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X_vtrTime (i , : ) ) ;
165 end

% Amplitude normalization

X_NewTime = repmat ( 1 . / ( max ( abs ( X_NewTime ) , [ ] , 2 ) ) ,1 , size ( X_NewTime , 2 ) ) .∗
X_NewTime ;

X_vtrTime = repmat ( 1 . / ( max ( abs ( X_vtrTime ) , [ ] , 2 ) ) ,1 , size ( X_vtrTime , 2 ) ) .∗
X_vtrTime ;

%

170 X_atrTime = X_NewTime ;

B.5 Results Compilation

% MATLAB script to evaluate the performance of the BTD algorithm on

real EGM signals

% based on the performance measures.

4 % Recorded EGM datasets

SR_Data = {’EGM_SR_BB0’ ; ’EGM_SR_LA2’ ; ’EGM_SR_LA3’ ; ’EGM_SR_PVL1’ ; ’
EGM_SR_PVR1’ ; ’EGM_SR_RA1’ ; ’EGM_SR_RA2’ ; ’EGM_SR_RA3’ ; ’EGM_SR_RA4’ ; ’
EGM_SR_RA5’ } ;

AF_Data = {’EGM_AF_BB0’ ; ’EGM_AF_LA2’ ; ’EGM_AF_LA3’ ; ’EGM_AF_PVL1’ ; ’
EGM_AF_PVR1’ ; ’EGM_AF_RA1’ ; ’EGM_AF_RA2’ ; ’EGM_AF_RA3’ ; ’EGM_AF_RA4’ ; ’
EGM_AF_RA5’ } ;

9 nRows = 23 ; % Number of rows with recordings in the given datasets

nCols = 8 ; % Number of columns with recordings in the given datasets

nDsets = 10 ; % The total number of datasets in AF

Excess_All = zeros ( nDsets , nRows , nCols ) ;
14 avgCh_VASR_All = zeros ( nDsets , nRows , nCols ) ;

stdCh_VASR_All = zeros ( nDsets , nRows , nCols ) ;
avgCh_VDR_All = zeros ( nDsets , nRows , nCols ) ;
stdCh_VDR_All = zeros ( nDsets , nRows , nCols ) ;
mixedDF_All = zeros ( nDsets , nRows , nCols ) ;

19 demixedDF_All = zeros ( nDsets , nRows , nCols ) ;
mixedSpConc_All = zeros ( nDsets , nRows , nCols ) ;
demixedSpConc_All = zeros ( nDsets , nRows , nCols ) ;
relErr = zeros ( nDsets , nRows ) ;

24 % Evaluate the algorithm for all given datasets

% for i = 1:length(AF_Data)

for i = 1
% Load the EGM dataset

[ ˜ , ecgAF , ˜ ] = loadEGM_noFigs ( AF_Data{i}) ;
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29
% Evaluate the algorithm for all rows (can also change to do this

for columns if appropriate)

for j = 2:17
row = j ;
% Perform BTD on EGM recordings in atrial fibrillation (AF)

34 [ EGM , atr_Time , ˜ , relerr ] = EGM_MLRD_AF_Temporal ( AF_Data{i} , ecgAF
, row , ’min’ ) ;

% Relative error between original tensor and decomposed tensor

relErr (i , j ) = relerr ;

39 % VASR metric (done on the original EGM recording and the

demixed signal)

VASR_time = VASR ( atr_Time , EGM , ecgAF ) ;
avgCh_VASR_All (i , j , : ) = mean ( VASR_time , 2 ) ;
stdCh_VASR_All (i , j , : ) = std ( VASR_time , [ ] , 2 ) ;

44
% VDR metric (done on the original EGM recording and the

demixed signal)

VDR_time = VDR ( atr_Time , EGM , ecgAF ) ;
avgCh_VDR_All (i , j , : ) = mean ( VDR_time , 2 ) ;
stdCh_VDR_All (i , j , : ) = std ( VDR_time , [ ] , 2 ) ;

49
% Dominant frequency metric

dFreqMixed = dominantFreq ( EGM ) ;
dFreqTime = dominantFreq ( atr_Time ) ;
demixedDF_All (i , j , : ) = dFreqTime ;

54 mixedDF_All (i , j , : ) = dFreqMixed ;

% Spectral concentration metric

spConcMixed = spectConc ( EGM ) ;
spConcTime = spectConc ( atr_Time ) ;

59 demixedSpConc_All (i , j , : ) = spConcTime ;
mixedSpConc_All (i , j , : ) = spConcMixed ;

end

end

64 dataOut = [ squeeze ( Excess_All (i , : , : ) ) ’ ; squeeze ( avgCh_VASR_All (i , : , : ) ) ’ ;
squeeze ( stdCh_VASR_All (i , : , : ) ) ’ ; squeeze ( avgCh_VDR_All (i , : , : ) ) ’ ; . . .
squeeze ( stdCh_VDR_All (i , : , : ) ) ’ ; squeeze ( mixedDF_All (i , : , : ) ) ’ ; squeeze

( demixedDF_All (i , : , : ) ) ’ ; squeeze ( mixedSpConc_All (i , : , : ) ) ’ ; . . .
squeeze ( demixedSpConc_All (i , : , : ) ) ’ ] ;
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