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Abstract

Personalized treatment methods for a complex dis-
ease such as cancer benefit from using multiple data
modalities from a patient’s cancer cells. Multi-
ple modalities allow for analysis of dependencies
between complex biological processes and down-
stream tasks, such as drug response and/or expected
survival rate. To this end, it is important to gain an
understanding of the relationships between modal-
ities in tumor cells. Multimodal Variational Auto-
Encoders (MVAEs) are a combination of generative
models trained on different sets of data modalities.
In this research, the ability of MVAEs to capture
common information between different data views
from the same tumor cells is assessed. MVAE mod-
els discussed here are a Mixture-of-Experts (MoE)
and a Product-of-Experts (PoE) approach to com-
bining the generative model posterior distributions
into a single common latent space. The perfor-
mance assessment is done by: i) comparing the
loss of information when reconstructing the train-
ing data to MOFA+, a linear method for combining
multimodal data, and ii) measuring if one modal-
ity of a tumor cell can generate another modality,
based on characteristics of the latent space learned
by the MVAE. Biological data modalities consid-
ered are RNA-seq, gene-level copy number and
DNA methylation (DNAme), gathered by The Can-
cer Genome Atlas. It is found that PoE reconstructs
data from all data types with a higher accuracy
compared to MoE and MOFA+. The mean squared
error of PoE’s average reconstruction loss is about a
quarter of MOFA+’s, and less than a seventh of the
MoE’s average reconstruction loss. In terms of pre-
dicting modalities from other modalities, the PoE
again outperforms MoE on all cross-modal predic-
tions. Additionally, it can be concluded that both
models have higher losses in their prediction of
DNAme from other modalities, indicating a lesser
correlation between this data type and the others.

Keywords — Multimodal Variational Auto-Encoder,
The Cancer Genome Atlas, Deep Learning, Data integration

1 Introduction
Cancer is a common and dangerous disease with many dif-
ferent manifestations in the body. Most forms also have a
wide array of treatment options, such as chemotherapy, radi-
ation therapy and surgery [1]. While many people will deal
with some form of cancer in their lives, treatment methods
are often “effective in only a subset of the patient population”
[2], due to the disease’s heterogeneity. Searching a primary
treatment method that is tailored to an individual patient is
therefore critical, contributing to the growing field of preci-
sion treatment [3]. One of the foundations of precision treat-
ment is assaying biological “omics” data from cells in indi-
viduals; measuring levels of proteins, genes or specific muta-
tions. Observing across modalities in cancer cells can bring
much insight into its development in the patient.

Retrieving omics data, correlating with clinical outcome
and building a treatment plan from it can be a time-consuming
and costly endeavour [4]. In order to alleviate this challenge,
this research explores the modeling of multiple biological
data layers from cancer cells by a deep learning model. This
modeling produces a common latent space representation of
these different data types. Based on the quality of this latent
space, it can bring insights into underlying systematic rela-
tionships between the different data modalities, aiding corre-
lation with clinical outcome. This understanding of cell dy-
namics could additionally help predict data modalities based
on other modalities. The data gathering process could be less
intensive, as data on fewer modalities needs to be retrieved.

One of the models proposed for the modeling of cancer
cell data are Variational Auto-Encoders (VAE) [5]. VAE’s are
based on a general Auto-Encoder (AE) framework, consisting
of an encoder-decoder pair. A standard AE is deterministic. It
encodes data into a lower-dimensional latent space and then
reconstructs it. The sole AE training objective is “to find the
best encoder-decoder pair” [6] that minimizes the loss of the
data compression. VAE’s are in contrast stochastic, where in-
put is not encoded as a single point, but rather as a distribution
over the latent space. A VAE regularizes the training process,
and instead of deterministic encoding uses variational infer-
ence to approximate a posterior of the encoder. These prop-
erties make VAE a generative model, able to encode high-
dimensional data into a meaningful, smaller-dimensional la-
tent space, “regular enough to be used for generative purpose”
[6]. This process is illustrated in Figure 1.
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Figure 1: Schematic of a Variational Auto-Encoder. The neural net-
work encoder takes input (x) and creates a distribution over the latent
space P (z | x). This distribution is then sampled to create the latent
space representation of the input z ∼ P (z | x). Then this latent
space is decoded into meaningful content.

Distinctive from typical VAE usage, this research does not
solely want a representation for a single data modality, but
aims to find a latent space that captures common informa-
tion between multiple modalities. To that end, this research
is focused on a VAE variant that can incorporate these differ-
ent modalities, called Multimodal Variational Auto-Encoder
(MVAE or MMVAE) [7] [8] [9]. A MVAE can be broadly
defined as a combination of VAE models, each trained on dif-
ferent sets of data modalities, whereafter a probabilistic vari-
ational posterior distribution over the individual modalities is
taken to form one joint posterior distribution. The generative
properties of VAE’s in this combination allow for the data
generation of all input modalities from this singular poste-
rior distribution. In this work, the Mixture-of-Experts (MoE)
and Product-of-Experts (PoE) MVAE models are examined.
Their names refer to the approach taken to combine the gen-
erative model posterior distributions into a single common
latent space. The MoE MVAE model is based on the model
introduced by Shi et al. [8], and the PoE MVAE model is
based on the implementation by Wu and Goodman [7].

The dimensionality reduction of input data into a single
common latent space, intrinsic to MVAE, can be beneficial
for discovering (hidden) correlations or topics in data. The
central dogma of molecular biology [10] describes the path-
way of genetic information in cells, and proves there are re-
lations between features in the cell data. For example, gene-
level copy number and gene expression are expected to be
strongly correlated, because if a gene is not present in a chro-
mosome it can’t produce RNA, and over representation of that
gene can make it produce more RNA than normal. Therefore,
if the latent space of the MVAE has good properties, there
must be similar common features that appear in the genera-
tive data produced by the MVAE’s.

Various studies have previously assessed the efficacy of
VAE models in learning biological data. Research by Greene
and Way has introduced a VAE model specifically trained on
RNA-seq data used in this study, and found learned features
of their model “were generally non-redundant and could dis-
entangle large sources of variation in the data” [11]. Though
this is a promising result, questions about a combination of
these types of models for multi-omics data is left unanswered.
That is in contrast to the MVAE model introduced by Zhang
et al., where their OmiVAE model was also trained on two

of the three modalities used in this work. Their model’s ac-
curacy was determined to be “better than existing methods”
[12] in terms of tumour type classification. Compared to [12],
the novelty of the research in this paper is found in deter-
mining accuracy of MVAE in predicting modalities based on
other modalities. This is akin to the research by Minoura
et al. [9], whose Mixture-of-Experts approach to a MVAE
model is adjusted and re-purposed for this research. Their
work uses transcriptome and surface protein measurements,
whereas this work attempts to expand the cross-modal predic-
tions to three modalities using RNA sequencing, gene level
copy number and DNA methylation.

This research examines the capability of MVAE’s to cap-
ture common information between different data views and
then check if one data modality can generate other data
modalities, based on the quality, continuity and uniformity
of the latent space learned by the MVAE. This will be ex-
amined in twofold, by: i) comparing the loss of information
when reconstructing the training data to Multi-Omics Fac-
tor Analysis v2 (MOFA+) [13], a linear method of combining
multimodal data, and ii) measuring if one modality of a tumor
cell can generate another modality, based on characteristics of
the latent space learned by the MVAE. This means both the
lossyness of the encoder’s dimensionality reduction and the
predictive abilities of MVAE models are assessed.

To answer the research question in a scientifically responsi-
ble manner, section Two discusses why this approach to mea-
suring efficiency of MVAE’s was chosen, and which tumor-
cell modalities are selected and processed. Then section
Three provides the requisite elaborations of the linear model
MOFA+ and the two MVAE models, Mixture-of-Experts and
Product-of-Experts. In section Four, the experimental setup
and results are presented. A discussion of the results and
scope-limitations or shortcomings are provided in section
Five. Section Six will highlight methods undertaken to es-
tablish reproducibility, and a reflection is given on the ethical
considerations of this work. The conclusion and recommen-
dation of future work is given in section Seven.

2 Materials and Methods
2.1 Research Approach
Assessment of the MVAE models will be based on two fac-
tors: i) the mean squared error (MSE) when reconstructing
data from the model, and ii) the MSE of cross-modal predic-
tions compared to the omitted data.

Reconstruction loss is often considered when using dimen-
sionality reduction algorithms. When reconstructing data en-
coded into a smaller-dimension, a perfect algorithm should
return the exact data entered into the algorithm. The goal for
a deep learning model such as a VAE is to capture underly-
ing patterns or systems in the dimensionality reduction from
high-dimensional input data to a smaller latent space, aiming
that when data is reconstructed, it does so more accurate than
a linear method. Therefore a good benchmark is comparing
the reconstruction loss to such a linear method. For multi-
modal data, a state-of-the-art algorithm for linear dimension
reduction is Multi-Omics Factor Analysis V2 (MOFA+) [13].
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To measure predictive capabilities of a MVAE, a part of the
original training data is omitted during training. Only after
the model is trained, will one modality of this missing data
be inserted into the model. The joint posterior distributive
method of the MVAE allows this data to be used to generate
other modalities. This predicted data can be compared against
the other modalities from the omitted data during training, the
actual measurements. Comparing two MVAE models on the
MSE of this measured data with the cross-modal prediction,
will provide a benchmark of the models, in addition to mea-
suring predictive capabilities. Models used in this research,
MOFA+ for the linear comparison, and Mixture-of-Experts
and Product-of-Experts MVAE models for prediction, will be
elaborated upon in section Three. To aid reproducibility of
results, further details of the experimental setup will be stated
in Section Four and exact model implementations are found
in Appendix A.

2.2 Datasets
The biological information in this research is tumor cell data
from The Cancer Genome Atlas (TCGA) pan-cancer multi-
omics datasets [14]. Three types of high-dimensional omics
data are selected; gene expression RNA sequencing (RNA-
seq) [15], gene-level copy number variation (GCN) [16] es-
timated using the GISTIC2 [17] method, and DNA Methy-
lation [18]. RNA-seq data is given by a log2-transform of
normalized mRNA data. GCN data is expressed in the Gis-
tic2 copy number, and “measured experimentally using whole
genome microarray at Broad TCGA genome characterization
center” [16]. Finally, DNA methylation is expressed in beta
values, which are “continuous variables between 0 and 1, rep-
resenting the ratio of the intensity of the methylated bead type
to the combined locus intensity” [19]. All data is available
publicly and exact sources are provided.

These datasets were selected for this research due to a be-
lief in high common signal. By the dogma of molecular bi-
ology [10], these three datasets are each part of the general
transfer of sequence information in cells, where DNAme is
more upstream than RNA-seq and GCN, respectively. The
three datasets have 8,440 samples in common. For analysis
of the results, it was further required that for each sample the
cancer type was known. This curated clinical data is also pro-
vided by the Pan-cancer Atlas [20]. All clinical data has been
anonymized and is appropriately discussed in the Ethics sec-
tion of this research. The cancer type was known for 8,418
samples of the common modality space, therefore 8,418 is
the sample size in this research. This sample space includes
samples from 33 different tumor types [21].

The input of the TCGA data in this research can be de-
scribed similarly to that of Machiraju et al. in research with
similar data [22]. We define input matrix X per data modality
m in Equation 1, and X is visualized in Figure 2.

X{m} ∈ R8418×3000m ∀m ∈ {RNA-seq, GCN, DNAme}
(1)

Figure 2: Visualization of multimodal dataset X in this research,
composed of three individual datasets. Features are placed on the
columns and denoted per datatype. In this research datasets are
RNA-seq, Gene-level Copy Number and DNA Methylation.

2.3 Data Preprocessing
The 3,000 most variable features of each of the three modal-
ities in TCGA’s dataset were used for VAE training. Highest
variability is defined by a feature’s median absolute deviation
(MAD). This was done since less variable features contribute
less to the variability and distinction between cells. In prior
research by Way and Greene, who ran VAE’s on similar bio-
logical data, the 5,000 most variable features in the data were
selected [11]. After experimentation in the early stages of
this research, it was decided to use only the 3,000 most vari-
able features for each dataset. This makes training the MVAE
models smaller, easier, and ensures each modality is repre-
sented with similar importance and reduced noise.

It is important to note the original RNA-seq and GCN
datasets contained negative values for some features in sam-
ples, while DNAme was presented as values between zero
and one. For data consistency, all datasets were normalized
to values between zero and one in preprocessing. Results pre-
sented in this paper were based on this normalized data. Be-
sides consistency, normalization also prevents factorization
or posterior distributions of input data being skewed by the
larger or negative values from the RNA-seq and GCN data, in
comparison to normalized DNAme values.

3 Analysis of Multimodal Data Integration
Models

In order to critically assess the results and reproduciblity of
this research, it is important to in-depth discuss the models
used in multimodal data integration. In this section the meth-
ods are explained to obtain reconstruction loss and prediction
losses, in addition to the internal working of the models. It
is vital to note these models are based on existing literature,
and software used is provided publicly by the original au-
thors. Since those works do not consider this specific data
input, or were not programmed to express reconstruction loss
specifically, they had to be modified. These modifications are
discussed in detail in the respective sections of the models,
where applicable.
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3.1 MOFA+: A Linear Method
Principal component analysis (PCA) is one of the most com-
mon linear dimensionality reduction algorithms. Though it
lies at the basis of this method, it needs alterations order to
suit data from multiple modalities. Multi-Omics Factor Ana-
lyis V2 (MOFA+) can in that sense be described as “a versa-
tile and statistically rigorous generalization of principal com-
ponent analysis to multi-omics data” [23]. MOFA+ infers a
low-dimensional latent space from a high-dimensional set of
data. This process is presented in Figure 3. Each modality
is presented to the algorithm as a separate view (Y1 ... Ym in
Figure 2). Each sample is then decomposed into ten factors
and this low-dimensional representation is presented as the
Z matrix in Figure 2. Ten factors were chosen since previ-
ous research on RNA-seq and DNA methylation showed 10
factors explained all the variance [13]. Then “for each fac-
tor, the weights (W) link the high-dimensional space with the
low-dimensional manifold and provide a measure of feature
importance” [13]. Further details are withheld here but are
explained thoroughly in the original paper.

Figure 3: MOFA+ takes M data matrices as input (Y1, ..., YM ), one
from each data modality. The M matrices are decomposed into a
matrix of factors (Z) for each sample and M feature weight matrices
(W1, ...,WM ). Figure adapted from [24].1

This decomposition is the basis for the computation of the
reconstruction loss, given by Equation 2:

Reconstruction Loss =
3∑

m=1

||Ym − Ŷm||2 (2)

where Ŷ is given by Equation 3.

Ŷm =Wm × Z (3)

Equation 2 indicates the reconstruction loss is the total
MSE of each modality. Per modality reconstruction losses
will be presented in the Results section.

1Image licensed for use in any medium under Creative Commons
(CC BY 4.0 license)

3.2 MVAE models
The MoE model in this work is adapted from scMM, a MoE
MVAE introduced by Minoura et al. [9]. The PoE model in
this work is adapted from the PoE MVAE introduced by Wu
and Goodman [7]. All software is available publicly in the
provided repositories [25] [26].

Both repositories were adapted to better fit this research
project. Implementations of the unimodal VAE’s which com-
promise the MVAE models are derived from the Vanilla-VAE
model [5]. The implementation of this Vanilla-VAE model
is derived from the PyTorch-VAE repository [27]. Both MoE
and PoE originally had different VAE models, but this change
allowed for comparison of performance of singular VAE’s
with the peer group. It was also established by the super-
visors to use a singular hidden dimension in the VAE models,
with a size of 256 (see Appendix A).

The Vanilla-VAE model implementation also redefined the
training objective of the models. For both models, originally
“the training objective is to maximize the marginal likeli-
hood approximated by optimizing the evidence lower bound
(ELBO) by stochastic gradient” [9]. Their definitions are
given in the scMM paper [9] and PoE paper [7]. However, the
training objective, or loss function, used by the Vanilla-VAE
and therefore this paper, is defined by [5] [27] and shown in
Equation 4.

loss = ||x− x̂||2 +KLweight · KL[N(µx, σx), N(0, 1)]
(4)

So the loss is defined by a reconstruction term ||x − x̂||2,
the MSE of the model’s input and output where x represents
the input into the model and x̂ is the outputted data (visu-
alized in Figure 4). The KL term is the Kullback-Leibler
divergence between the returned distribution and a standard
Gaussian. The KL term is used to regularise the organisation
of the latent space, an important role in the generative capac-
ity of the VAE. For that purpose it is accounted for in the
models’ training objective (loss function). Elaborated upon
in the original VAE paper [5]. To summarize, the objectives
of the MVAE models were changed by the author to more re-
semble the Vanilla-VAE models. The next sections explain
the differences between MoE and PoE, and a visualization of
a MVAE is given in Figure 4.

Mixture-of-Experts MVAE Model
In the Mixture-of-Experts (MoE) MVAE model as proposed
by Shi et al., the joint variational posterior is given as a com-
bination of unimodal posteriors, using a Mixture-of-Experts
approach. Further details on the mathematics are presented
in the original paper [8]. The joint variational posterior is
created as stated in Equation 5.

qφ(z | x1:M ) =

M∑
m=1

1

M
· qφm(z | xm) (5)

M in equation 5 is the number of modalities used in this
research (3). qφ(z | x1:M ) denotes the variational joint pos-
terior, or the latent space (z) under the condition of each in-
put data’s (x). The joint posterior is defined as a summation
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Figure 4: Schematic of general MVAE model. Input data (x) from
each modality is entered into an encoder for that modality. Then
for this research, either a Mixture-of-Experts OR Product-of-Experts
approach is used to create a joint posterior distribution z. This joint
distribution is used in the decoder of each modality to generate new
data (x̂).

of each export, scaled down by a factor 1
M , where M is the

number of modalities (3 in this case).

This repository was originally written for dualomics anal-
ysis, transciptome and surface protein data with chromatin
accessibility data. This was expanded to the three different
modalities in this paper. Feature vectors in the original paper
are modelled by a negative binomial distribution for transcip-
tome and surface protein data and with a zero-inflated neg-
ative binomial for chromatin accessibility data [9]. In this
work, each modality is modelled by a normal distribution,
akin to the Pytorch-VAE Vanilla-VAE model. With a normal
distribution, the encoder can be trained to return the mean and
the covariance matrix that describe the posterior distributions.

Product-of-Experts MVAE Model

For the Product-of-Experts (PoE) MVAE model, proposed by
Wu and Goodman [7], the joint posterior is a product of in-
dividual posteriors. This approach is originally introduced
by Hinton [28]. The idea is that each unimodal VAE in the
model is considered an expert. In PoE, “each expert holds
the power of veto—in the sense that the joint distribution
will have low density for a given set of observations if just
one of the marginal posteriors has low density”, as explained
by a contrasting section in the original MoE paper [8]. This
implies that experts with high precision are weighing more
heavily in determining the posterior distribution than lower
density experts, since we take a product. The general formula
from the paper [7] is given in Equation 6. A more in-depth

look is also given in the original paper’s supplement.

qφ(z | x1:M ) =

M∏
m=1

qφm
(z | xm) (6)

qφ(z | x1:M ) denotes the variational joint posterior, or the
latent space (z) under the condition of each input data’s (x).
M is the number of modalities in this research. The equa-
tion makes clear the name of this approach, as each unimodal
VAE’s posterior is factorised to create a joint posterior.

MVAE Model Comparison
For clarity it is appropriate to contrast and compare both
MVAE models. PoE suffers from potentially biased experts
weighing in too heavily on the joint posterior. Since the joint
distribution is formed from factorisation, a low density poste-
rior distribution from one of the experts can make the joint
distribution have low density. Besides this caveat, it was
noted by Wu and Goodman that PoE requires a sub-sampled
training paradigm [7], where a sub-sampling is required of
the loss functions (ELBO in the original paper) for combined
and individual modalities’ to optimize each gradient step. In
contrast to Equation 6, the MoE approach takes an equal vote
among its experts, a summation of experts scaled down by a
factor 1

M . This spread of densities over all experts does not
require the sub-sampled training paradigm from PoE. Fur-
thermore, the original paper claims that “this characteristic
makes them better-suited to latent factorisation, being sensi-
tive to information across all the individual modalities” [8].

4 Results
4.1 Evaluation setup
Training data was splitted using a 70/10/20 ratio for the train-
ing set, validation set and prediction set respectively. This
split was implemented to ensure enough samples can be used
for prediction, whilst not hindering the training process of
the models. This means that from a total of 8,418 samples,
5,892 were used to train the MVAE models, 841 to use as the
validation set during training, and 1683 were omitted during
training and only entered into the already trained model for
measuring predictive capabilities. The implementation of the
linear method MOFA+ does not require such a data split. This
is an advantage of this method over the MVAE models. How-
ever, MOFA+ is not suited for prediction, while this research
does omit 20% of the data for MVAE prediction. Therefore
only 80% of samples were entered into the MOFA+ model.
This ensures the comparison of models is fair, while keeping
the advantage of not requiring a split of data into a training
and validation set for MOFA+ intact. Exact models used, in-
cluding hyperparameters and configurations are provided in
Appendix A.

All three datasets are prepared in advance to have the same
ordering of cancer cell samples. This ordering is randomized,
so that batches of data contained a random selection of cancer
types, preventing overfitting a model on a single type. Then
on program execution, random indices are defined for each set
used in execution. Features from each modality of the same
samples were added to a training, validation or prediction set.
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These indices are saved in files, so later downstream tasks are
made aware of all samples entered into the model.

Reconstruction loss was calculated per epoch, and repre-
sent the reconstruction losses of the validation set, not the
training data. Reconstruction loss results from the MVAE
models presented here are the reconstruction losses of the fi-
nal epoch. For MOFA+ the reconstruction loss is explained
in the MOFA+ analysis chapter. Y axis of all shown results
has been fixed for legibility.

4.2 Comparison of Data Reconstruction Losses
Reconstruction losses are shown in Figure 5. Results in the
figure are grouped by modality per model. The losses an-
swer the first part of the research question’s assessment, giv-
ing a comparison in reconstruction performance between the
MVAE models and the MOFA+ model. The most interesting
outcome is the Mixture-of-Experts MVAE under performing
to both the Product-of-Experts MVAE and the MOFA+ linear
model across all modalities. This observed disparity could
be a result of the model not being appropriate for this kind
of data, conflicting with findings from the original paper [9].
Another explanation could be the different implementation of
this model compared to the Product-of-Experts MVAE, a con-
cern further discussed in the Discussion section. Section 4.5
and 4.6 will also highlight this disparity by modelling each
model’s latent space.

In addition to poor Mixture-of-Experts results, it can be
seen that Product-of-Experts outperformed both models on
average, and is sizably better than MOFA+ in reconstructing
all three data types. A promising result, it tells on the ability
of the PoE model to capture common data in the latent space.
Also of note, all three models have a larger loss when recon-
structing DNAme. This indicates lesser correlation from this
modality compared to the others. Finally, GCN is relatively
easier to reconstruct for MOFA+ and MoE, and harder for
PoE.

Figure 5: Mean squared error reconstruction losses of all data inte-
gration models. A higher mean squared error means a higher differ-
ence between input and output data, indicating unfavourable recon-
structive capabilities.

4.3 MVAE Unimodal Predictions
In Figure 6 it is clearly shown how much the trained model
has learned after 100 epochs. Omitted data during training
is entered into each respective encoder of the trained model.
In Figure 6, data is then decoded by the respective decoder.
Data entered into both MVAE models is predicted with al-
most similar results to normal reconstruction losses presented
in Figure 5. This suggests the validation split of the data in
these models could be a good indicator of how well the model
can reconstruct newly entered data in the future.

Figure 6: Mean squared error predictive loss of singular uni-modal
predictions. The arrow A −→ A indicates omitted data from modality
A was entered into the trained models’ respective encoder, and was
used to predict the equal modality A.

4.4 MVAE Cross-modal Predictions
Finally, Figure 7 shows answers to the cross-modal predic-
tive capabilities of MVAE’s as mentioned in the second part
of the research question’s assessment. In this figure, sam-
ples of only one of three modalities was entered into the
respective encoder of the trained model, and the other two
modalities were then reconstructed by their decoders based
on the entered modality. These reconstructed modalities were
then compared to the withheld sample data of those modal-
ities using MSE. Interestingly enough, Product-of-Experts
strongly outperforms Mixture-of-Experts here as well, with
lower predictive MSE losses across all modalities. In addition
to that, it is interesting to see both MVAE models have higher
losses when predicting DNA methylation from other modali-
ties. Both models are seemingly struggling more in learning
features representative of DNA methylation when creating a
common latent space. This was also reflected in the recon-
struction losses for DNAme shown in Figure 5.
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Figure 7: Mean squared error predictive loss of singular cross-modal
predictions. The arrow A −→ B indicates omitted data from modal-
ity A was entered into the trained models’ respective encoder, and
was used to predict modality B.

4.5 Latent Space Models for Result Interpretation
To place the results in a broader context and to find reasoning
behind the aforementioned results, the learning capabilities of
the three models are modelled in this section. As mentioned,
a common latent space representation of multiple data modal-
ities can shed light on the underlying systematic relationships
between them in cells. This means the latent space represen-
tation of the 33 different cancer types should be able to distin-
guish between the different cancer types. For this reason, the
latent space of each data integration model (Z) has been plot-
ted using UMAP [29] visualization. UMAP is a dimension-
ality reduction algorithm that creates a 2-dimensional map
(embedding) of high-dimensional data. To see if the model’s
latent space has learned something meaningful from the data,
the UMAP point of every latent space representation of each
sample has been coloured by the sample’s cancer type. Re-
sults are shown in Figure 8.

Ideally, each model has learned to differentiate these can-
cer types, and can therefore better reconstruct or predict
modalities from that cancer type. In the UMAP plot, cluster-
ing of each different cancer type informs on the quality of the
local structure. Furthermore, similar categories tend to colo-
cate in UMAP, revealing a global structure. Figure 8 clearly
shows this clustering taking place in MOFA+ and PoE, while
MoE’s latent space is scattered seemingly at random. The
UMAP of the MoE MVAE model indicates it is not learn-
ing properly, defining the bad performance relative to the oth-
ers. Additionally, the cancer type clustering of the PoE model
has more clusters and they also seem to be more tightly con-
densed than MOFA+. From this it is gathered that PoE dis-
tinguishes the different cancer types better than MOFA+, and
this could be an indication to the lower reconstruction losses
boasted by the PoE model when compared to MOFA+.

4.6 Regularisation Term Weighting for Improved
Learning

Continuing the investigation into poor learning of the input
data by the MoE model has led to examination of the Vanilla-
VAE model as implemented in [27]. The MoE model is com-
promised of three Vanilla-VAE’s, and thus learning capabili-
ties of the Vanilla-VAE models reflect on the MoE’s overall
learning. Using UMAP visualization of the Vanilla-VAE’s la-
tent space using the same configurations, results showed no
coherency in clustering of cancer types indicating no local or
global structure. Results are shown in Appendix B.

When comparing to the UMAP of the MoE latent space in
Figure 8, it does seem as if the MoE latent space is in fact
showing really small clustering at the borders of its circular
shape. This could indicate the KL term is weighing heavily
in the model’s training objective. The regularisation term is
important for continuity of the latent space (close points in
the latent space should give close results), and is therefore
naturally impeding on the models’ reconstruction accuracy.

In order to test the hypothesis of heavy regularization im-
peding on the model’s learning capabilities, MoE and Vanilla-
VAE models were retrained with a flat scalar applied to the
KL term in the training objective. Also, for a clearer indi-

Figure 8: UMAP visualization of each model’s latent space (z). Each sample’s latent space representation is reduced to two dimensions using
UMAP, and are then colored by the cancer type of the sample. Cancer type names in the figure are abbreviated and are found in the TCGA
Study supplement [21].
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cation of learning, the number of cancer types in the data
were reduced to the three most prevalent types. Results are
shown in Appendix C. In this configuration, it was found that
for a scalar of 0.00001 and lower applied to the KL term, the
Vanilla-VAE’s latent space clearly distinguishes between can-
cer types. This scalar of 0.00001 was then also applied to the
KL term in the MoE model. Unfortunately this did not lead
to increased cancer type distinction in MoE.

5 Discussion
Taken together, the investigation in section 4.6 suggests that
weighting down the KL term is the clear solution for fixing
learning in Vanilla-VAE, but this should not be the conclusion
drawn from this investigation. Pushing the KL term causes
the model to learn a decoding of the data rather than a rep-
resentation of data. This clashes with the goal of the VAE to
predict or generate new data. Weighting the KL term also de-
viates from the definition of the Vanilla-VAE, and changes the
model to a β-VAE [30]. In doing so the comparison between
PoE or other models using Vanilla-VAE becomes faulty, and
is something to consider for future work.

Models were provided by earlier literature [7] [9] [13]. The
logic and implementation were mostly kept as intended by
their original authors. This disclaimer is mentioned, since
specifically the implementations of the MVAE models varied
wildly. A note of caution is due since the performance of
MoE was below expectations given the findings in the MoE
model paper [9].

For instance, the Mixture-of-Experts model in this research
performed a prior and posterior Laplace distribution on the
data. Also, the manner in which a common latent space is
obtained was implemented differently software-wise, besides
of course being logically different. The author wants to ac-
knowledge this research has merit on the basis of using these
provided software libraries, but as discussed this approach
has its shortcomings. Furthermore, choice of hyperparam-
eters was based on the work of peers, who benchmark the
influences of certain hyperparameters or initialization meth-
ods on the VAE networks. To rule out faulty hyperparameters
configurations explaining poor MoE results, different values
of the MoE model’s learning rate and latent dimension were
also considered. A small grid search of learning rate values
{0.0001, 0.001, 0.01}, with latent dimensions of {128, 64,
32} was performed. This grid search indicated results did not
much differ between configurations.

Finally, the evidence presented by this research could also
imply the 3,000 features were still much too noisy. Data with
too much noise can skew the completeness of the latent space.
Less variable features also contribute less to distinction be-
tween cells. A further study could assess if the data is in fact
too noisy by reducing the number of features in the configu-
ration.

6 Responsible Research
This section touches upon the reproducibility and ethical re-
sponsibility of this research, in order to verify the trustwor-
thiness of the results and to build upon this research in the
future. The scientific community should be able to critically

asses and validate presented results. For that reason, mea-
surements taken to increase the reproducibility will be listed
in paragraph 6.1. Furthermore, the goal of this section is also
to discuss the ethical implications of this research. Since the
results of this research can potentially influence the decision-
making process for personalized cancer treatment, these im-
plications, shortcomings and disclaimers should be discussed
thoroughly. This is discussed in paragraph 6.2.

6.1 Reproducibility in Data and AI
The Materials and Methods section and the experimental
setup are described as accurate as possible, to accomplish
open and reproducible science. In this section, this effort
is highlighted by further discussing measures taken to make
clear the experimental parameters.

A primary concern of machine learning algorithms is that
they are highly sensitive to intrinsic factors such as; effect of
random seeds or environment properties, and extrinsic fac-
tors; hyperparameters, codebases, resulting in a wide range
of results [31]. Therefore it is paramount when using ma-
chine learning algorithms that all factors, intrinsic and extrin-
sic, are made public to be able to reproduce the results. To this
end, the exact PyTorch [32] neural network module [33] con-
figurations have been added for the Mixture-of-Experts and
Product-of-Experts MVAE models in Appendix A. Added to
these model descriptions are the exact input parameters and
random seeds used to obtain results presented in this paper.
Besides the deep learning MVAE models, Appendix A also
contains model- and training options for MOFA+ used in this
research.

The MVAE models were taken from the GitHub reposi-
tories provided by the MVAE models’ research papers this
research was based on [25] [26]. Any modifications are refer-
enced and discussed accordingly in their respective sections
in the Analysis. All software written and repurposed for this
research is published on GitHub.2 Any software dependen-
cies or environment settings are also uploaded to the reposi-
tories in the form of an Anaconda Environment file.

The Materials and Methods section discusses the prepro-
cessing done on this research’s input data is discussed. To
expunge any confusions on the preprocessing, a documented
script is written that does all the preprocessing from raw
source data to the processed data used in this research. This
is included in this project’s personal GitLab repository.3

6.2 Ethical Considerations
As mentioned in the Materials and Methods section of this
paper, data used in this research is from the Pan-Cancer Atlas
[14]. The results gathered here are thus in whole based upon
data generated by The Cancer Genome Atlas (TCGA) Re-
search Network. The datasets used here are released publicly
by TCGA. The overarching National Cancer Institute has de-
veloped research policies “to address many ethical and logis-
tical considerations associated with collecting, analyzing, and
providing access to data from human tissue specimens” [34].
This research does not publish any form of the TCGA data
itself, and references to the download links of the raw data

2Repository: https://github.com/brmprnk/bachelor-thesis
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are made in the Materials and Methods section. It should be
noted that the quality of this data was not verified as part of
this research. The training data must be interpreted with cau-
tion, as it could be biased, or not representative of all patients
with these cancer types. Therefore these findings cannot be
extrapolated to all patients, a concern that is shared with pre-
vious research on the RNA-seq dataset by Way and Greene
[11].

In addition to the training data, it is important to bear
in mind that developed systems in this research were never
tested in a clinical setting. For the results of this research
to have any weight in the decision-making process of cancer
treatment, there is a definite need for a monitored approach
and a slow implementation in a real life setting. Furthermore,
the discussion section tried to be as forthcoming as possible
when discussing the limitations of this research.

7 Conclusions and Future Work
This project was undertaken to examine the capability of
MVAEs to capture common information between different
data views and then check if one data modality can generate
other data modality, based on the quality, continuity and uni-
formity of the latent space learned by the MVAE. Quality of
findings are measured by comparing reconstruction losses to
MOFA+ [13], a linear data-integration method, and by com-
paring a Mixture-of-Experts (MoE) MVAE model [9] with
a Product-of-Experts (PoE) MVAE model [7] on data losses
when making predictions.

The first major finding was that PoE outperforms the other
models on all fronts. Both MOFA+ and MoE had higher
losses when reconstructing all modalities, and MoE had sig-
nificantly higher losses when predicting other modalities. A
promising result, it tells on the ability of the PoE model to
capture common data in the latent space. This observed dis-
parity between the MVAE models could be a result of the
MoE model not being appropriate for this kind of data, con-
flicting with findings from the original paper [9]. Another ex-
planation could be the different implementation of this model
compared to the PoE MVAE. Investigation into the poor re-
sults further came up with UMAP visualizations of each mod-
els’ latent space, and found MoE was not learning any mean-
ingful representations of the 33 cancer types.

The second major finding was that reconstructing and pre-
dicting DNA methylation data was found to be more difficult
for all models. This indicates lesser systematic relationships
between DNAme data and RNA-seq and GCN data, possibly
since DNAme is considered to be a more upstream process in
cancer’s life cycle. The empirical findings in this study pro-
vide arguments towards the assessment posed in the research
goal, the lossyness of the encoder’s dimensionality reduction
is established together with the predictive abilities of MVAE
models.

To explicitly mention the limitations of this study, it should
be noted implementations of models were taken as is from
provided software repositories, which could have implica-
tions on the way these models perform and the results pre-
sented. Furthermore, training data must be interpreted with
caution, as it could be biased, or not representative of all pa-

tients with these cancer types. Therefore these findings can-
not be extrapolated to all patients, a concern that is shared
with previous research on the RNA-seq dataset by Way and
Greene [11].

Greater efforts are needed to ensure any application of
these models or incorporation of these results in a clinical
setting. In future work, the MVAE models should be rewrit-
ten to the exact same environment besides their core logic.
There should be no factors influencing the results other than
the MoE or PoE factorisation of the joint distribution. As it
stands, models implemented ran with equal hyperparameters,
but inner logic differs in areas mentioned in the Discussion
section. The UMAP modelling of the latent space per cancer
type showed the MoE implementation requires substantially
more tweaking in order to make it learn a useful data rep-
resentation. Finally, it is important to bear in mind that de-
veloped systems as implemented in this research were never
tested in a clinical setting. Thus for the results of this re-
search to have any weight in the decision-making process of
cancer treatment, further research has a definite need for a
monitored approach, possibly involving slow implementation
of these models in a real life setting.
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A MVAE Models
A.1 Mixture of Experts Model
Input shape Training Data : 5892, 3000 || Input shape Validation Data : 841, 3000 || Input shape Prediction Data : 1683, 3000
Input args : latent_dim=128, batch_size=256, epochs=100, learn_prior=False, llik_scaling=1.0, lr=0.0001, model=’rna_gcn_dna’,
num_hidden_layers=1, p_dim=3000, p_hidden_dim=256, r_dim=3000, r_hidden_dim=256, seed=1)

RNA_GCN_DNA(
(vaes): ModuleList(
(0): RNA(
(enc): Enc(
(enc): Sequential(
(0): Sequential(
(0): Linear(in_features=3000, out_features=256, bias=True)
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()

)
)
(fc_mu): Linear(in_features=256, out_features=128, bias=True)
(fc_var): Linear(in_features=256, out_features=128, bias=True)

)
(dec): Dec(
(dec): Sequential(
(0): Sequential(
(0): Linear(in_features=128, out_features=256, bias=True)
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()

)
)
(fc31): Linear(in_features=256, out_features=3000, bias=True)
(final_layer): Sequential(
(0): Linear(in_features=256, out_features=3000, bias=True)
(1): Sigmoid()

)
)
(_pz_params): ParameterList(

(0): Parameter containing: [torch.FloatTensor of size 1x128]
(1): Parameter containing: [torch.FloatTensor of size 1x128]

)
)
(1): GCN(
(enc): Enc(
(enc): Sequential(
(0): Sequential(
(0): Linear(in_features=3000, out_features=256, bias=True)
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()

)
)
(fc_mu): Linear(in_features=256, out_features=128, bias=True)
(fc_var): Linear(in_features=256, out_features=128, bias=True)

)
(dec): Dec(
(dec): Sequential(
(0): Sequential(
(0): Linear(in_features=128, out_features=256, bias=True)
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()

)
)
(fc31): Linear(in_features=256, out_features=3000, bias=True)
(final_layer): Sequential(
(0): Linear(in_features=256, out_features=3000, bias=True)
(1): Sigmoid()

)
)
(_pz_params): ParameterList(

(0): Parameter containing: [torch.FloatTensor of size 1x128]
(1): Parameter containing: [torch.FloatTensor of size 1x128]

)
)
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(2): DNA(
(enc): Enc(
(enc): Sequential(
(0): Sequential(
(0): Linear(in_features=3000, out_features=256, bias=True)
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()

)
)
(fc_mu): Linear(in_features=256, out_features=128, bias=True)
(fc_var): Linear(in_features=256, out_features=128, bias=True)

)
(dec): Dec(
(dec): Sequential(
(0): Sequential(
(0): Linear(in_features=128, out_features=256, bias=True)
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()

)
)
(fc31): Linear(in_features=256, out_features=3000, bias=True)
(final_layer): Sequential(
(0): Linear(in_features=256, out_features=3000, bias=True)
(1): Sigmoid()

)
)
(_pz_params): ParameterList(

(0): Parameter containing: [torch.FloatTensor of size 1x128]
(1): Parameter containing: [torch.FloatTensor of size 1x128]

)
)

)
(_pz_params): ParameterList(

(0): Parameter containing: [torch.FloatTensor of size 1x128]
(1): Parameter containing: [torch.FloatTensor of size 1x128]

)
)
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A.2 Product of Experts Model
Input shape Training Data : 5892, 3000 || Input shape Validation Data : 841, 3000 || Input shape Prediction Data : 1683, 3000
Input args : (n_latents=128, batch_size=256, epochs=100, annealing_epochs=2, lr=0.0001, log_interval=10, cuda=False, seed=1,
num_hidden_layers=1, hidden_layer_dim=256)
MVAE(
(rna_encoder): Encoder(
(encoder): Sequential(
(0): Sequential(
(0): Linear(in_features=3000, out_features=256, bias=True)
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()

)
)
(fc_mu): Linear(in_features=256, out_features=128, bias=True)
(fc_var): Linear(in_features=256, out_features=128, bias=True)

)
(gcn_encoder): Encoder(
(encoder): Sequential(
(0): Sequential(
(0): Linear(in_features=3000, out_features=256, bias=True)
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()

)
)
(fc_mu): Linear(in_features=256, out_features=128, bias=True)
(fc_var): Linear(in_features=256, out_features=128, bias=True)

)
(dna_encoder): Encoder(
(encoder): Sequential(
(0): Sequential(
(0): Linear(in_features=3000, out_features=256, bias=True)
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()

)
)
(fc_mu): Linear(in_features=256, out_features=128, bias=True)
(fc_var): Linear(in_features=256, out_features=128, bias=True)

)
(rna_decoder): Decoder(
(decoder): Sequential(
(0): Linear(in_features=128, out_features=256, bias=True)
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()

)
(final_layer): Sequential(
(0): Linear(in_features=256, out_features=3000, bias=True)
(1): Sigmoid()

)
)
(gcn_decoder): Decoder(
(decoder): Sequential(
(0): Linear(in_features=128, out_features=256, bias=True)
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()

)
(final_layer): Sequential(
(0): Linear(in_features=256, out_features=3000, bias=True)
(1): Sigmoid()

)
)
(dna_decoder): Decoder(
(decoder): Sequential(
(0): Linear(in_features=128, out_features=256, bias=True)
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()

)
(final_layer): Sequential(
(0): Linear(in_features=256, out_features=3000, bias=True)
(1): Sigmoid()

)
)
(experts): ProductOfExperts()

)
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A.3 MOFA+ Model Settings

Following Code is repurposed from the Jupyter Notebook found in the "Training a model in Python" section
of the MOFA+ tutorials: https://biofam.github.io/MOFA2/tutorials.html

## (4) Set model options ##
# - factors: number of factors. Default is K=10
# - likelihoods: likelihoods per view (options are "gaussian","poisson","bernoulli").
# Default is None, and they are infered automatically
# - spikeslab_weights: use spike-slab sparsity prior in the weights? (recommended TRUE)
# - ard_factors: use ARD prior in the factors? (TRUE if using multiple groups)
# - ard_weights: use ARD prior in the weights? (TRUE if using multiple views)

# Model settings used:
# Simple (using default values)
ent.set_model_options()

# Advanced (using personalised values)
ent.set_model_options(

factors = NUM_FACTORS,
spikeslab_weights = False,
ard_factors = False,
ard_weights = True

)

## (5) Set training options ##
# - iter: number of iterations
# - convergence_mode: "fast", "medium", "slow".
# For exploration, the fast mode is good enough.
# - startELBO: initial iteration to compute the ELBO (the objective function used to assess convergence)
# - freqELBO: frequency of computations of the ELBO (the objective function used to assess convergence)
# - dropR2: minimum variance explained criteria to drop factors while training.
# Default is None, inactive factors are not dropped during training
# - gpu_mode: use GPU mode? this needs cupy installed and a functional GPU, see https://cupy.chainer.org/
# - verbose: verbose mode?
# - seed: random seed

# Model training settings used:
# Simple (using default values)
ent.set_train_options()

# Advanced (using personalised values)
ent.set_train_options(

iter = 100,
convergence_mode = "medium",
startELBO = 1,
freqELBO = 1,
dropR2 = None,
gpu_mode = False,
verbose = True,
seed = 1

)
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B UMAP Plots of Vanilla-VAE Latent Space
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C Vanilla-VAE KL Weighting

Figure 10: UMAP of Vanilla-VAE latent space (z). Model
gradually increases its capability of differentiating three can-
cer types as the KL term in the loss function is scaled down.
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