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Preface 

first edition 

These course notes are intended for use at undergraduate level. They are a 
substantial revision of the course not es used during the academic years 1983-'84 
till 1993-'94. The most notabie changes are an omission of some abstract system 
formulations and the addition of new chapters on modelling principles and on 
polynomial representation of systems. Also changes and additions in the already 
existing chapters have been made. The main purpose of the revision has been 
to make the student familiar with some recently developed concepts (such as 
'disturbance rejection') and to give a more complete overview of the field. 

A dilemma for any author of course notes, of which the total contents is 
limited by the number of teaching hours and the level of the students (and of 
the author!), is what to include and what not. One extreme choice is to treat a 
few subjects in depth and not to talk about the other subjects at all. The other 
extreme is to touch upon all subjects only very briefly. The choice made here is to 
teach the so-called state space approach in reasonable depth (with theorems and 
proofs) and to deal with the other approaches more briefly (in general no proofs) 
and to provide links of these other approaches with the state space approach. 

The most essential prerequisites are a working knowledge of matrix manipu­
lations and an elementary knowledge of differential equations. The mathematics 
student will probably experience these notes as a blend of techniques studied in 
other (first and second year) courses and as asolid introduction to a new field, 
viz. that of mathematical system theory, which opens vistas to various fields of 
application. The text is also of interest to the engineering student, who will, with 
his background in applications, probably experience these notes as more funda­
mental. Exercises are interspersed throughout the text; the student should not 
skip them. Unlike many mathematics texts, these not es contain more exercises 
(63) than definitions (31) and more examples (56) than theorems (36). 

For the preparation of these notes various sources have been consulted. For 
the first edit ion such a source was, apart from some of the books mentioned in 
the bibliography, 'Inleiding wiskundige systeemtheorie' by A.J. van der Schaft, 
Twente University of Technology. For the preparation of these revised notes, 
also use was made of 'Cours d'Automatique, Commande Linéaire des Systèmes 

v 



vi MATHEMATICAL SYSTEMS THEORY 

Dynamiques' by B. d'Andréa-Novel and M. Cohen dé Lara, Ecole Nationale 
Supérieure des Mines de Paris. The contents of Chapter 2 have been prepared 
by dr. J.W. van der Woude, which is gratefully acknowledged. The author is 
also grateful to many of his colleagues with whom he had discussions about the 
contents and who sometimes proposed changes. The figures have been prepared 
by Mrs T. Tijanova, who also helped with some aspects of the I:;\1E;X document 
preparation system by means of which these notes have been prepared. 

Parallel to this course there are computer lab sessions, based on MATLAB, 
by means of which the student himself can play with various examples such as 
to get a bet ter feeling for concepts and for designing systems himself. This lab 
has been prepared by ir. P. Twaalfhoven and dr. ir. J.G. Braker. 

Delft, April 1994 G.J.OIsder 

second edition 

The main changes of this second edition over the first one are (i) the addition of 
a chapter with MATLAB exercises and possible solutions, and (ii) the chapter 
on 'Polynomial representations' in the first edition has been left out. A summary 
of that chapter now appears as a section in chapter 8. The material within the 
chapter on 'Input/output representations' has been shifted somewhat such that 
the parts dealing with frequency methods form one section now. Moreover , some 
exercises have been added and some mistakes have been corrected. I hope that 
this revised edition will find its way as its predecessor did. 

Delft, December 1997 G.J.OIsder 
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Chapter 1 

Introd uction 

1.1 What is mathematical systems theory? 

A system is part of reality which we think to be a separated unit within this 
reality. The reality outside the system is called the surroundings. The interaction 
between system and surroundings is realized via quantities, quite of ten functions 
of time, which are called input and output. The system is influenced via the 
input(-functions) and the system has an influence on the surroundings by means 
of the output(-functions). 

input ~I,-__ S_y_s_te_m_---,I--o-u-tp-u-t-il~~ 
reality 

Three examples: 

• How to fly an aeroplane: the position of the control wheel (the input) has 
an influence on the course (the output). 

• In economics: the interest rate (the input) has an influence on investment 
behaviour (the output). 

• Rainfall (the input) has an influence on the level of the water in a river 
(the output). 

1 



2 MATHEMATICAL SYSTEMS THEORY 

In many fields of study, a phenomenon is not studied directly but indirectly 
through a model of the phenomenon. A model is a representation, of ten in 
mathematical terms, of what are felt to be the important features of the object 
or system under study. By the manipulation of the representation, it is hoped 
that new knowledge about the modelled phenomenon can be obtained without 
the danger, cost, or inconvenience of manipulating the real phenomenon itself. In 
mathematical system theory we only work with models and when talking about 
a system we mean a modelled version of the system as part of reality. 

Most modelling uses mathematics. The important features of many phys­
ical phenomena can be described numerically and the relations bet ween these 
features described by equations or inequalities. Particularly in natural sciences 
and engineering, quantities such as mass, acceleration and force can be described 
in mathematical terms. To successfully utilize the modelling approach, however, 
requires a knowledge of both the modelled phenomena and properties of the mod­
elling technique. The development of high-speed computers has greatly increased 
the use and usefulness of modelling. By representing a system as a mathematical 
model, converting that model into instructions for a computer, and running the 
computer, it is possible to model systems larger and more complex than ever 
before. 

Mathematica! system(s) theory is concerned with the study and 
control of input / output phenomena. There is no difference between the 
terminologies 'system theory' and 'systems theory'j both are used in the (sci­
entific) literature and will be used interchangeably. The emphasis in system(s) 
theory is on the dynamic behaviour of these phenomena, i.e. how do characteristic 
features (such as input and output) change in time and what are the relation­
ships, also as functions of time. One tries to design control systems such that a 
desired behaviour is achieved. In this sense mathematical system(s) theory (and 
control theory) distinguishes itself from many other branches of mathematics in 
the sense that it is prescriptive rather than descriptive. 

Mathematical system theory forms the mathematical base for technical areas 
such as automatic control and networks. It is also the starting point for other 
mathematical subjects such as optimal control theory and filter theory. In op­
timal con trol theory one tries to find an input function which yields an output 
function that must satisfy a certain requirement as weIl as possible. In filter 
theory the interpretation of the input function is observations with measurement 
errors, the system tries to realize an output which equals the 'ideal' observations, 
that is, without measurement errors. Mathematical system theory also plays a 
role in eeonomies (specially in macro-economie control theory and time series 
analysis), theoretical computer science (via automaton theory, Petri-nets) and 
management science (models of firms and other organizations). Lastly mathem­
atical system theory forms the hard, mathematical, core of more philosophically 
oriented areas sueh as general systems theory and cybernetics. 

EXAMPLE 1.1 [Autopilot of a boat] An autopilot is a device which receives as 
input the present heading a of a boat (measured by an instrument such as a 
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magnetic compass or a gyrocompass) and the desired heading a c (reference point) 
by the navigator. Using this information, the device automatically yields, as a 
function of time, the positioning command u of the rudder so as to achieve the 
smallest possible heading error e = a c - a. 

perturbation 

+ 

Given the dynamics of the boat and the external perturbations (wind, swell, etc.) 
the theory of automatic control hel ps to determine a control input command 
u = f(e) that meets the imposed technical specifications (stability, accuracy, 
response time, etc.). For example, th is control might be bang-bang; 

u = {+umax ~f e > 0, 
-Umax lf e < O. 

Alternatively, it might be proportional; 

u=Ke, 

where K is a constant. It is tacitly assumed here that for all e-values of interest, 
-Umax ~ Ke ~ umax• If this is not the case, some kind of saturation must 
be introduced. The con trol law might also consist of a proportional part, an 
integrating part and a differentiating part; 

f t d e(t) 
u(t) = Ke(t) + K' e(s)ds + K"----;It, (1.1) 

where K, K' and K" are constants. This controllaw is sometimes referred to as 
a PID controller, where P stands for the proportional part, I for the integral 
part and D for the differential part. The lower bound of the integral in (1.1) has 
not been given explicitly; various choices are possible. 

Automatic con trol theory aids in the choice of the best controllaw. If the ship 
itself is considered as a system, then the input to the ship is the rudder setting 
u (and possibly perturbations) and the output is the course a. The autopilot is 
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another systemj its input is the error signal e and its output is the rudder setting 
u. Thus we see that the output of one system can be the input of a different 
system. The combination of ship, autopilot and the connection from a to a c (see 
the figure) can also be considered as a systemj the input is the desired course a c 

and th , output is the real course a. 0 

EXERCISE 1.1 The water clock ('clepsydra ') invented by Ktesibios, a Greek of the 
third century before Christ, is an aid and very welt known e:cample of feedback 
control (i.e. the error is fed back in order to make corrections). Look this up and 
give a schematic drawing of the water cloek with control. Another old e:cample 
of a control is the steam engine with Watt's centrifugal governor. How does it 
work? See [Faurre, Depeyrot (1977)}. 

EXAMPLE 1.2 [Optimal control problem] The motion of a ship is described by 

x(t) = f(:c(t), u(t), t), 

where the state :c = (Xl' X2f E 'R-2 represents the ship's position with respect to 
a fixed coordinate system. The vector u = (UI' u2f E 'R-2 represents the control 
and t is the time. The notation x refers to the time derivatives of the two state 
components. The superscript Trefers to 'transposed'j if not explicitly stated 
differently, vectors are supposed to be column vectors. One control variabie to 
be chosen is the ship's heading Ulj the other one, U2, is the ship's velocity. The 
problem now is to choose UI and U2 in such a way that the ship uses as little 
fuel as possible such that, if it leaves Rotterdam at a certain time, it arrives in 
New York not more than 10 days later. The functions UI and U2 may depend on 
available information such as time, weather forecast, ocean streams, et cetera. 
Formally, U = (u}, U2)T must be chosen such that 

l
t, 

g(:c, U, t)dt 
to 

is minimized. This criterion describes the fuel used. The function 9 is the amount 
of fuel used per time unit, to is the departure time and t f is the arrival time. 0 

EXAMPLE 1.3 [Filtering] NAVSAT is the acronym for NAVigation by means of 
SATellites. It refers to a worldwide navigation system studied by the European 
Space Agency (ESA). During the 1980s the NAVSAT system was in the de­
velopment phase with feasibility studies being performed by several European 
aerospace research institutes. At the National Aerospace Laboratory (NLR) , 
Amsterdam, the Netherlands, for instance, a simulation tooI was developed with 
the aid of which various alternative NAVSAT concepts and scenarios could be 
evaluated. 
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The central idea of satellite based navigation system is the following. A user 
(such as an airplane or a ship) receives messages from satellites, from which he 
can estimate his own position. Such a satellite broadcasts its own coordinates (in 
some known reference frame) and the time instant at which this message is broad­
cast. The user measures the time instant at which he receives this message on 
his own dock. Thus he knows the time difference between sending and receiving 
the message which yields the distance between the position of the satellite and 
the user. If the user can calculate these distances with respect to at least three 
different satellites, he can in principle calculate his own position. Complicating 
factors in these calculations are: (i) different satellites send messages at different 
time instants while the us er moves in the meantime, (ii) several different sources 
of error present in the data, e.g. unknown ionospheric and tropospheric delays, 
the docks of the satellites and of the user not running exactly synchronously, the 
satellite position being broadcast with only limited accuracy. 

The problem to be solved by the user is how to calculate his position as accur­
ately as possible when he gets the information from the satellites and if he knows 
the stochast ic characteristics of the errors or uncertainties mentioned above. As 
the satellites broadcast the information periodically, the us er can update also 
periodically the estimate of his position, which is a function of time. 0 

1.2 A brief history 

Feedback - the key concept of system theory - is found in many places such 
as in nature and in living organisms. An example is the control of the body 
temperature. AIso, social and economic processes are controlled by feedback 
mechanisms. In most technica~ equipment use is made of control mechanisms. 

In ancient times feedback was already applied in for instance the Babylonic 
waterwheels and for the control of water levels in Roman aquaducts. Historian 
Otto Mayr describes the first explicit use of a feedback mechanism as having been 
designed by Cornelis Drebbel [1572-1633], both an engineer and an alchemist. 
He designed the "Athanor", an oven in which he optimistically hoped to change 
lead into gold. Control of the temperature in this oven was rather complex and 
could be viewed as a feedback design. 

Drebbel's invention was then used for commercial purposes by his son in law, 
Augustus KufHer [1595-1677]. KufHer was a temporary of Christian Huygens 
[1629-1695], who himself designed a fly-wheel for the control of the rotational 
speed of windmills. This idea was refined by R. Hooke [1635-1703] and J. Watt 
[1736-1819], the latter being the inventor ofthe steam engine. In the middle ofthe 
19th century more than 75,000 James Watt's flyball governors (see Exercise 1.1) 
were in use. Soon it was realized that these contraptions gave problems if control 
was too rigid. Nowadays one realizes that that behaviour was a form of instability 
due to a high gain in the feedback loop. This problem of bad behaviour was 
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investigated J.C. Maxwell [1831-1879] - the Maxwell of the electromagnetism­
who was the first to study the mathematical analysis of stability problems. His 
paper "On Governors" can be viewed as the first mathematical article devoted 
to control theory. 

The next important development started in the period before the Second 
World War in the Bell Labs in the USA. The invention of the electronic ampli­
fication by means of feedback started the design and use of feedback controllers 
in communication devices. In the theoretical area frequency-domain techniques 
were developed for the analysis of stability and sensitivity. H. Nyquist [1889-
1976] and H.W. Bode [1905-1982] are the most important representatives of this 
direction. 

Norbert Wiener [1894-1964] worked on the fire-control of anti-aircraft defence 
during the Second World War. He also advocated control theory as some kind of 
artificial intelligence as an independent discipline which he called 'Cybernetics' 
(this word was already used by A.M. Ampere [1775-1836]). 

Mathematical system theory and automatic control, as known nowadays, 
found their feet in the 1950s; (classic) control theory played a stimulating role. 
Initially mathematical system theory was more or less a collection of concepts 
and techniques from the theory of differential equations, linear algebra, matrix 
theory, probability theory, statistics, and, to alesser extent, complex function the­
ory. Later on (around 1960) system theory got its own face; 'own' results were 
obtained which were especially related to the 'structure' of the 'box' between 
input and output. Two developments contributed to that. Firstly there were 
fundamental theoretical developments in the fifties. Names attached to these 
developments are R. Bellman (dynamic programming), L.S. Pontryagin (optimal 
control) and R.E. Kalman (state space models and recursive filtering). Secondly 
there was the invention of the chip at the end of the sixties and the subsequent 
development of micro-electronics. This led to cheap and fast computers by means 
of which control algorithms with a high degree of complexity could really be used. 

1.3 Brief description of contents 

The present chapter, Chapter 1, gives a very superficial overview of what system 
theory is and discusses the relations with other (mainly: technically oriented) 
fields. One could say that in this chapter the 'geographical map' is unfolded and 
that in the subsequent chapters parts of the map are studied in (more) detail. 

Chapter 2 discusses modelling techniques and as such it does, strictly speak­
ing, not belong to the area of system theory. Since, however, the starting point 
in system theory is always a model or a class of modeis, it is important to know 
about modelling techniques and the principles underlying such modeis. Such 
principles are for instance the conservation of mass and of energy. A classific­
ation of the variables involved into input variables, output (or: measurement) 
variables and variables which describe dependencies within the model itself will 
become apparent. 
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In Chapters 3, 4 and 5 the theory around the important class of linear dif­
ferential systems is dealt with. The reason for studying such systems in detail 
is twofold. Firstly, many systems in practice can (at least: approximately) he 
described by linear differential systems. Secondly, the theory for these systems 
has been well developed and has matured during the last twenty five years or 
so. Many concepts can be explained quite naturally for such systems. The view 
on systems is characterized by the 'state space approach' and the main math­
ematical technique used is that of linear algebra. Besides linear algebra one 
also encounters matrix theory and the theory of differential equations. In sub­
sequent chapters other views are presented, together with the relationships to 
the approach of Chapter 6. Chapter 3 deals specifically with linearization and 
linear differential systems. Chapter 4 deals with structural properties of linear 
systems. Specifically, various forms of stability and relationships between input, 
output and the state of the system, such as controllability and observability, are 
dealt with. Chapter 5 considers feedback issues, both state feedback and output 
feedback, such as to obtain desired system proper ties. The description of the 
separation principle is also part of this chapter. 

Chapter 6 also deals with linear systems, but now from the input/output 
point of view. One studies formulas which relate inputs to outputs directly. 
Main mathematical tools are the theories of the Laplace transform and of com­
plex function theory. The advantage of this kind of system view is that systems 
can easily be viewed as 'blocks' and that one can build larger systems by combin­
ing subsystems. A possible disadvantage is that th is way of describing systems is 
essentially limited to linear time-invariant systems, whereas the state space ap­
proach of the previous chapter is also suitahle as a means of describing nonlinear 
and/or time-dependent systems. 

In Chapters 3, 4, 5 and 6 'time' was considered to flow continuously. In 
Chapter 7 one deals with 'discrete time' models. Rather than differential equa­
tions one now has difference equations which decribe the model from the state 
space point of view. The most crucial concepts of Chapters 4 and 5 are repeated 
here for such systems. The role of the Laplace transform is taken over by the so­
called z-transform. The theories of continuous-time systems and of discrete-time 
systems are equivalent in many aspects and therefore Chapter 7 has been kept 
rat her brief. Some modelling pitfalls in approximating a continuous-time system 
by a discrete-time one are briefly indicated. 

Chapter 8 shows some avenues towards related fields. There is an abstract 
point of view on systems, characterizing them in terms of input space, output 
space and maybe state space and the mappings between these spaces. Also the 
recently introduced 'behavioural approach' towards system theory is briefly men­
tioned. In this approach no distinction is made between inputs and outputs. It is 
followed by a brief introduction of polynomial matrices used to represent linear 
systems algebraically. Some remarks on nonlinear systems - a class many times 
larger than the class of linear systems - will be made together with some progress 
in this direction. Also other types of systems are mentioned such as descriptor 
systems, stochastic systems, finite state systems, distributed parameter systems 
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and discrete event systems. Brief introductions to optimal control theory, filter 
theory, model reduction and adaptive and robust control will be givenj in those 
fields system theoretical notions are used heavily. 

Lastly, Chapter 9 contains a collection of problems and their solutions that 
can be used for this course on system theory. The problems are solved using 
the software package MATLAB. For most of them also the MATLAB Con trol 
Toolbox must be used. The nature of this chapter is clearly different from that 
of the other chapters. 

Books mentioned in the text and some 'classics' in the field of systems theory 
are given in the bibliography. This book ends with an index. For many technical 
expressions Dutch translations are given in a list before the index. 



Chapter 2 

Modelling Principles 

In this chapter we present some tools that can be used in the modelling of dy­
namical phenomena. This chapter does not give an exhaustive treatment of such 
tools, but it is meant as an introduction to some of the underlying principles. 
One could argue that modelling principles do not belong to the domain of math­
ematical system theoryj in this theory one usually starts with a given model, 
perhaps built by an expert of the field of application concerned. 

2.1 Conservation laws 

One of the most fundamental modelling principles is the notion of conservation. 
The laws derived from this notion follow from natural reasoning and can be 
applied everywhere. 

For instance, when modelling physical phenomena, one of ten uses (even without 
realising) conservation of matter, conservation of electrical charge, conservation 
of energy, and so on. But also in disciplines that are not so much physically 
oriented conservation principles are used. For instance, in describing the evolu­
tion of a population, it can be assumed that there is conservation of individuals, 
simply because no individuals can be created or lost without reason. Similarly in 
economy, there always has to be conservation of assets in one sense or the other. 

Hence, conservation laws can be seen as laws based on reasoning and on 
counting. 

2.2 Phenomenological principles 

In addition to the conservation laws discussed above, often also so-called phe­
nomenologicallaws are used. These laws are obtained in an empirical way and 
are very much depending on the nature of the phenomenon that has to be mod­
elled. One example of such a law is Ohm's law V = RI relating the voltage 
V over a resistor of value R with the current I that goes through the resistor. 

9 
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Ohm's law is of importance in modelling electrical networks. However, laws with 
a similar form occur in other disciplines like Fourier's law on heat conductivity 
and Fick's law on light diffusion. It is not by reasoning that laws like Ohm's law 
are derived, but they simply are the result of experiments. There is no reasoning 
why the voltage, the current and the resistance should be related as they do 
in Ohm's law. Nevertheless, it turns out to be part of the physical reality and 
therefore it can be used in the modelling of dynamic phenomena. Many more 
phenomenologicallaws exist, some of which are discussed in the next section. 

2.3 Physical principles and laws 

In this section we brietly discuss some of the most important laws and principles 
that hold in (parts of) the physical reality. 

2.3.1 Thermodynamics 

When modelling a thermodynamic phenomenon we can make use of three very 
fundamentallaws and principles. 

1. Conservation of energy 

2. The irreversibility of the behavior of a macroscopie system 

3. The absolute zero temperature can not be reached 

The second law is of ten also rephrased as that the entropy of a system can not 
decrease. The entropy is a measure for the disorder in a system. 

We no te that the first law is based on reasoning. If the law were not satisfied, 
then some form of energy would be missing, and the law could be made to hold 
by simply introducing the missing type of energy. The second and third law are 
based on experiments and describe phenomenological properties. 

2.3.2 Mechanics 

When modelling mechanical phenomena we of ten use, without realizing this, some 
very important laws and principles. One of these principles, the conservation of 
energy, is already discussed. Other forms of the conservation principle are also 
used often. Furthermore, the following three laws (postulates) of Newton are 
very useful. 

1. If there is no force acting on a point mass, then this mass will stay in rest, or 
it will move with a constant speed along a straight line 

2. The force F on a point mass mand its position s are related by F = m ~:~ 

3. action = - reaction 
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The first law was already known to Galileo, as the result of experiments that 
he carried out. The second law could be formulated by Newton, once he had 
developed a differential calculus. 

Newton's laws, especially the first one, are inspired by experiments. Ori­
ginally, the laws were developed for point masses and rectilinear movements. 
Gradually, versions of his laws were developed for continuous media, rotational 
motions, in fluids, in gasses, and so on. For instance, if a torque N is applied at 
a point of a body, and the moment of inertia around that point equals J, then 
N = J ~, wh ere ~ denotes the angular acceleration of the body. 

After Newton's laws were available, also other approaches to describe the gen­
eral motion of mechanical structures were developed. One of these approaches, 
using the concepts of kinetic and potential energy, leads to equations of mot ion 
that are known as the Euler-Lagrange equations. 

2.3.3 Electromagnetism 

When modelling electromagnetic phenomena, versions of laws that are expressed 
by the four Maxwell equations can be used, completed by the Lorentz equation. 

In a medium with dielectric constant f. and magnetic susceptibility JL, the 
Maxwell equations relating an electric field E, a magnetic field B, a charge density 
pand a current density t are the following. 

divE=!p, rotE=-°!;lB, divB=O, rot B =JL(t+f.°!). 
f. ut ut 

In these equations all variables depend on the time t, and on the position, in 
general (x, y, z). Furthermore, E, Band t are vectorial quantities, whereas p 
is a scalar. The words div and rot stand for the di vergen ce and the rotation, 
respectively. The first and the third equation in the above Maxwell equations 
express in a sense the conservation of electrical charge and 'magnetic charge', 
respectively. In fact, div B = 0 can be related to the fact that there do not exist 
magnetic monopoles (isolated magnetic charges). 

The force F on a particle with a charge q moving with a velo city v In a 
medium as described above is given by the Lorentz equation 

F = q(E + v x B). 

Here x denotes the cross product. Both F and vare vectors, and q is a scalar. 
All three will depend on the time tand the position (x, y, z). 

The above equations are very general in nature and are often too general 
for our purposes. Therefore, other (more simplified) laws have been obtained 
from these equations. A number of these laws for electrical networks is discussed 
below. Amongst others, these networks are built from basic elements such res­
istors, capacitors and coils. For these elements the following relations have been 
established. 
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1. If a current of strength I is led through aresistor with value R, then the 
voltage drop V over the resistor can he computed by Ohm's law as 

I 
R 

• 
V = RI 

• • 
V 

2. If a current of strength I is sent into a capacitor with capacity C, then the 
voltage drop V over the capacitor is related to land C in the following way 

c 

C:~=I~~ 
~ . 

v 

3. Finally, if a current of streng th I goes through a coil with inductance L, the 
voltage drop V over the coil can be obtained as 

I 
L 

V = L dl 

dt • • 
V 

The variahles V and I in the above are functions of time. Of ten, the values 
R, C and L are assumed to be time independent. 

The ahove laws (rules) are phenomenological in nature. They are the results 
of experiments. In addition to these laws, two other laws (rules) play an import­
ant role in the area of electrical networks. These laws are called the laws of 
Kirchhoff, and can be formulated as follows. 

4. In any node of the network the sum of all the currents is zero. 

5. In any loop of the network the sum of all the voltage drops is zero. 

Note that the Kirchhoff laws are of the conservation type. To explain these two 
laws we consider the next abstract network with a source over which the voltage 
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drop is constant V. An arrow in the figure below with index i stands for an 
element through which a current li floats that induces a voltage drop Vi, both in 
the direction of the arrow. 

1 4 

2 

• 3 5 

Then there should hold in the four nodes (also the source is considered to be a 
node) : 

-ft + h + 14 = 0, -12 - Is + 13 = 0, -14 + Is = 0, ft - h = O. 

For the three loops in the network there should hold : 

2.4 Examples 

In this section we give some examples of systems. The models underlying the 
examples can be derived using the physical principles and laws discussed in the 
previous. 

2.4.1 Inverted pendulum 

Consider the inverted pendulum in the following figure. The pivot of the pen­
dulum is mounted on a carriage which can move in horizontal direction. The 
carriage is driven by a small motor that at time t exerts a force u(t) on the car­
riage. This force is the input variabie to the system. 
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u(t) 

H 

0~,-0 
i 

I----------~ 

The mass of the carriage will be indicated by M, that of the pendulum by m. 
The distance of the pendulum between pivot and center of gravity is 1. In the 
figure H(t) denotes the horizontal reaction force and V(t) is the vertical reaction 
force in the pivot. The angle that the pendulum makes with the vertical is in­
dicated by tjJ(t). For the center of gravity of the pendulum we have the following 
equations, that all are in the spirit of Newton's second law. 

d2 d2 

m dt2 (s+lsintjJ)=H, mdt2(lcostjJ)=V-mg , (2.1) 

d2tjJ 
J dt2 = VI sin tjJ - Hl cos tjJ . (2.2) 

The function s(t) denotes the position of the carriage and J is the moment of 
inertia with respect to the center of gravity. If the pendulum has leng th 21 and 
a uniform mass distribution of ;; per unit of length, then the moment of inertia 
around the center of gravity is given by 

The equation which describes the motion of the carriage is 

d2s 
M dt 2 = u-H. 

Eliminatioll of Hand V in the above equations leads to 

~~ - gsintjJ + scostjJ = 0, 
(M + m)s + ml(~costjJ - ~2sintjJ) = u, 

(2.3) 

(2.4) 

where . denotes the first derivative with respect to time, and .. the second deriv-
t · S . d. d :i. d~ <b a lve. 0, S = dt an 'I' = ~. 
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The above two equations ean also be written as a set of four first order differ­
ential equations with a vector x defined as x = (1jJ, ~,s, sf, where T den ot es the 
transpose (see also Exereise 2.1 below). In order to distinguish sueh differential 
eqations from partial differential equations, to be introdueed shortly, one some­
times ealls the differential equations just introdueed also ordinary differential 
equations. 

The equations of motion of the inverted pendulum ean also be obtained as 
the Euler-Lagrange equations using the following expressions for the total kinetie 
energy Tand the potential energy V 

2/ 

T = ~Ms2 + ~ ~ J ({S + O'~eos 1jJ)2 + (O'~sinljJ)2)dO', 
o 

2/ 

V = ~g J u cos IjJdO' = mgl eosljJ, 
o 

wh ere T, in addition to the kinetie energy of the earriage, consists of the kinetic 
energy of all the infinitesimal parts of the pendulum dO' at a distanee u from the 
pivot, 0 ~ u ~ 21. A similar remark holds with respect to the potential energy. 
Defining the Lagragian L = T - V, it follows af ter evaluation of the integrals 
that 

L = ~M s2 + ~ms2 + mls~eosljJ + ~mI2~2 - mgl eosljJ. (2.5) 

The Euler-Lagrange equations deseribing the motion of the inverted pendulum 
ean now be obtained by working out the next equations 

In these equations the variabie L is eonsidered to depend on 1jJ,~, s and s. For 
instanee, with Tand V as above this means that 

aL . 4 2· -. = mIs cos ljJ+ -mI 1jJ, 
aljJ 3 

d . ·1 c 8L 8L d 8L an Slml ar lor 83' 8ef> an a;. 

EXERCISE 2.1 Assume that the angle ljJ of the pendulum with the vertical is meas­
ured. Let this measurement be denoted by the variabie y. So, y = 1jJ. Note that y, 
as weU as all the other variables 1jJ, ~, s, s and u are functions of time. Consider 
the vector x = (1jJ,~, s, s)T, and find functions f(x, u) and h(x, u) such that the 
inverted pendulum can be des cri bed as 

:i: = f(x, u), y = h(x, u) . 
. _ d _ ( .... ··)T Here x - "dtx - 1jJ, 1jJ, s, s . 
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EXERCISE 2.2 Take the variabie L as in (2.5) and derive the equations of motion 
of the inverted pendulum by working out the Euler-Lagrange equations. 

EXERCISE 2.3 In the above example the carriage moves horizontally. Now as­
sume that the carriage moves only in the vertical direction and that only vertical 
forces can be exerted, while the gravity remains to act vertically. Investigate how 
the equations change in the above example. 

2.4.2 Satellite dynamics 

Consider the motion of a satellite of mass ms , in a plane through the center of 
earth. See also the picture below. 

As the satellite will orbit around the earth, it is natural to give its position and 
velo city in terms of polar coordinates r,O, and their time derivatives r, IJ, with 
the earth's center located at the origin (r = 0). 

The velocity of the satellite has a radiaP component given by T, and a tan­
gential2 component equal to riJ. To apply Newton's laws also the radial and tan­
gential components of the acceleration of the satellite are required. The radial 
component of the acceleration is given by r - riJ2, and the tangential component 
equals 2riJ + rÖ. The above expressions for the radial and tangential components 
of the velo city and acceleration are elementary, and can be found in any textbook 
on mechanics. 

When in orbit the satellite is attracted to the earth by the gravitational 
force. This force is radially directed, and its magnitude equals G m

;,:', where 
me denotes the mass of the earth and G stands for the gravitational constant. 
Assume that in addition to gravity, the satellite is also subjected to a radially 
directed force Fr. and a tangentially directed force Fe. The force Fr is assumed 

1 'radial' refers to in the direction of the radius 
2'tangential' refers to in the direction of the tangent 
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to be directed away from the earth. Both Fr and Fe can be caused by thrust jets 
that can be mounted on the satellite. 

Application of Newton's second law in the radial direction and the tangential 
direction results in 

ms(r - r(2 ) = _Gme';s + Fr. m s (2Ör + rÖ) = Fe. (2.6) 
r 

REMARK 2.1 The above equations also can be obtained from the equations of 
Euler-Lagrange. Therefore, note that the kinetic energy Tand the potential 
energy V of the satellite is given as follows 

1 .2 • 2 mems 
T = 2ms(r + (re) ), V = -G-r -. 

Now defining the Lagrangian as L = T - V, the above equations follow from 
working out the next equations 

where r Fe must be interpreted as a torque acting on the satellite due to the 
tangential force Fe. 0 

EXERCISE 2.4 Assume that the distance r is measured and is denoted y. Further, 
introduce the vectors x = (r,O,r,Ö)T and u = (~,~)T, and find functions 
f(x, u) and h(x, u) such that the above model for a satellite can be described as 

x = f(x, u), y = h(x, u). 

EXERCISE 2.5 Starting from the above Lagrangian, work out the equations of 
Euler-Lagrange to obtain the equations of the motion of the satellite. 

2.4.3 Heated bar 

Consider a metal bar of leng th L which is insulated from its environment, except 
at the left side where the bar is heated by a jet with heat transfer u(t). 

u(t) -ILo _________ ~ 

r 

o L 

The temperature of the bar at position r, with 0 :::; r :::; L, is denoted by T(t, r), 
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i.e. r is the spatial variabie. In order to be able to determine the thermal 
behaviour of the bar one must know T(to, r), ° ~ r ~ L, the initial temperature 
distribution and u(t), t ~ t~. The state of the system is T(t, .) : [0, L] -t n. 
From physics it is known that T satisfies the partial differential equation 

oT(t, r) o2T(t, r) 
at = c or2 ' (2.7) 

where c is a characteristic constant of the bar. At the left side we have 

_AOT(t, r) I - (t) 
or r=O - U , (2.8) 

where A is the surface of the cross section of the bar. At the right hand side of 
. the bar we have 

OT~; r) Ir=L = 0, (2.9) 

because of the insulation there. The evolution of the state is described by the 
partial differential equation (2.7), with boundary conditions (2.8) and (2.9). In 
this example the input enters the problem only via the boundary conditions. In 
other problems the input can also be distributed. Can you give an interpretation 
of the partial differential equation 

8T(t, r) 82T(t, r) ( )? 
Ot = c 8r2 + u t, r . 

2.4.4 Electrical circuit 

Consider the following network consisting of aresistor R, a capacitor C and a 
coil L. The network is connected to a source with constant voltage drop V and 
the voltage drop over the capacity is measured. The current is denoted by J. 

C-r--

If VR, Vc and VL denote the voltage drops over the resistor, the capacitor and 
the coil, respectively, then it follows from the laws of electricity mentioned in the 
previous subsection that 



wh ere Q denotes the electrical charge on the capacitor and satisfies I 
According to the Kirchhoff laws, there holds V = VR + Ve + VL. Hence, 

Now rearranging these equations it follows that 

1 
R -y; 

We define u = V, Y = Ve, and 

1 
R -y; 

Ve = ( i: 

o ) , 

19 

~ 
dt • 

where it must be emphasized that the newly defined C is a matrix (more spe­
cifically: here a row vector with two elements). It should not be confused with 
the capacity C. This is an instance of the same symbol being used for different 
quantities. With this way of writing, the following description of the system is 
obtained 

x = Ax + Bu, y = ex. 

REMARK 2.2 Elimination of I from the equations above yields the following 
ordinary linear differential equation with constant coefficients 

This type of equation not only occurs in the modelling of electrical networks. 
Also in ot her disciplines this type of equations may arise. For instance, when 
modelling a mechanical structure as depicted below. 

wall 

The structure consists of a mass M connected to a vertical wall by means of a 
spring with constant k and a damper with damping factor f. On the mass an 
external force Fext may be exerted. As the mass is moving horizontally only, 
gravity does not play a role. If s denotes the displacement of the mass from its 
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equilibrium position, it follows from Newton's second law th at Ms = -ks - fs + 
Fext. Hence, 

Ms + fs + ks = Fext. 

This equation is similar to the one derived for the electrical network above. Other 
examples of equations of this type can be found in the modelling of phenomena 
in disciplines like aceousties, ehemistry and hydraulies. 0 

EXERCISE 2.6 Consider the following electrical network. 

• Rl R 2 

Yml 
V out 

~ 

• L 
C 

Take as input Vin, and as output Vout , and derive a state space model for the 
network of the above form using the laws introduced in the previous section. 

2.4.5 Population dynamics 

Consider a closed population of humans in a country, or animals or organisms in 
nature. Let N(t) denote the number of individuals in the population at time t. 
Assume that N(t) is so large that it ean be thought of as being a eontinuously 
varying variabIe. If B(t, t + 0) and D(t, t + 0) denote the number of births and 
deaths, respectively, in the interval (t, t + 0], then eonservation of individuals 
means that 

N(t + 0) - N(t) = B(t, t + 0) - D(t, t + 0). 

Let 
B(t, t + 0) = b(t)o + 0(0), D(t, t + 0) = d(t)o + 0(0), 

where 0(0) stands for a function that tends faster to zero than o. The functions 
b(t) and d(t) are ealled the birth rate and death rate respeetively. Moreover, 
assume that b(t) and d(t) dep end on N(t) in a proportional way, independent of 
time. Henee, 

b(t) = bN(t), d(t) = dN(t), 
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for some constants band d. This means that 

N(t + 6) - N(t) = (b - d)N(t)6 + 0(6). 

Defining r = b- d, dividing by 6 and taking the limitfor 6 to zero, it follows that 

N(t) = rN(t). 

This equation has a solution N(t) = N(to)er(t-to). Hence, the number of indi­
viduals is increasing (decreasing) wh en r> 0 (r < 0). 

In general the growth rate of a population depends on more factors then the 
above mentioned birth and death rates alone. In particular, it of ten depends on 
how the internal interaction is. For instance, if a country is densely populated, 
then the death rate may increase due to the effects of competition for space 
and resources, or due to the high susceptahility for deceases. Assuming that the 
population can not consist of more than K > 0 individuals, the ahove model can 
be modified as 

. N(t) 
N(t) = r(l - K )N(t). 

This equation is also known as the logistic equation. 
The model can further he modified in the following way. Assume th at the 

species of the above population are the prey for a second population of predators 
consisting of M(t) individuals. It is then reasonahle to assume that r> 0, and 
that the previous equation has to he changed into 

. N(t) 
N(t) = r(l - K )N(t) - aN(t)M(t), 

with a > O. The modification means that the rate of decrease of prey is prop or­
tional to the number of prey, but also to the number of predators. As a model 
for the predators the following can be used 

M(t) = -cM(t) + (3N(t)M(t), 

with c > 0 and {3 > O. Together these two equations form a so-called prey­
predator model. Note that r > 0 means that the population of the prey 
has a natural tendency to increase, whereas hecause of c > 0 the population of 
predators has a natural tendency to decrease. 

Now assume that the number of prey can be unbounded (K = 00). Think 
of anchovy as prey and of salmon as predator. Assume that due to fishing a 
fraction uI(t) of the anchovy is caught, and a fraction U2(t) of the salmon. The 
previously derived prey-predator model then has to he changed as follows 

N(t) = rN(t) - aN(t)M(t) - N(t)ut(t) = (r - aM(t) - Ut (t))N(t) , 

M(t) = (3N(t)M(t) - cM(t) - M(t)U2(t) = ((3N(t) - c - u2(t))M(t). 
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This type of model is well-known, and is also called a Volterra-Lotka model. 
If the number of salmon is monitored in some way and is denoted y(t), then the 
above model can be described as a system 

with x(t) 
functions 

x = f(x, u), y = h(x, u), 

(Xl(t) X2(t))T = (N(t) M(t))T, and u(t) = (Ut(t) u2(t)f, and 

( ) ( 
(r - aX2 - UI)XI ) h( ) fx,u = ((3 )' X,U =X2· 

Xl - C - U2 x2 

EXERCISE 2.7 For each of the above models find the stationary situations. These 
are situations in which the variables remain at a constant level and therefore have 
time derivatives that are identically equal to zeró. 

2.4.6 Age dependent population dynamics 

Consider again a population. To express the population size N as a function of 
the birth rate b, let P(t, r) be the probability that somebody, born at time t - r, 
is still alive at time t (at whieh he/she has an age of r). Then 

t 

N(t) = J P(t, t - s)b(s)ds, 

-00 

where s represents the date of birth. Assume that the functions Pand bare sueh 
that this integral is weIl defined. It is reasonable to assume that P(t, r) = 0 for 
r> L for some L (nobody will become older than L). Then 

t 

N(t) = J P(t, t - s)b(s)ds. 

t-L 

If P is continuous in its arguments and if b is pieeewise eontinuous (i.e. on eaeh 
finite interval b has at most a finite number of diseontinuities, and at points of 
diseontinuity the left and right limits of b exist), then the above integral exists. 

Returning to the original integral and assuming that a function 9 exists sueh 
that P(t, r) = g(t - r), it follows that 

t 

N(t) = J g(t - s)b(s)ds. 

-00 

If this integral exists for all admissible birth rates b, then it will be shown later 
that it can be interpreted as a time-invariant, strietly causal input/output sys­
tem. (The notions of time-invarianee and (strict) causality will be made precise 
later (in Seetions 3.1 and 3.3). Heuristically time-invariance means that the ab­
solute (calendar) time does not play any role and eausality means that the future 
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does not influence the current behaviour of a process.) For such a system the 
probability that somebody is still alive at age r is determined by r only, and not 
by the date of birth. 

EXERCISE 2.8 Let p denote the population density, and let it depend on time t 
and age r. The number of people of ages between rand r + dr at a certain time 
t is given by p( t, r )dr . Define the mortality mte ft (t, r) in the following way : 
J1.(t, r)drdt is the fraction of people in the age class [r, r + dr] who die in the time 
interval ft, t + dt]. Based on the infinitesimal equality 

p(t + dt, r + dt)dr - p(t, r)dr = -J1.pdrdt. 

Show that p satisfies the following partial differential equation 

ap ap 
ar + at = -J1.p. (2.10) 

Let the initial age distribution be given as 

p(O, r) = po(r), 0 ~ r ~ 1, 

and the birth rate function as the boundary condition 

p(t,O) = u(t), t;::: o. 
Here it assumed that the age r is scaled in such a way that nobody reaches an age 
r > 1. One can consider u(t) as the input to the system and as output y(t) for 
instance the number of people in the working age, say between the ages a and b, 
0< a < b < 1. This means that 

b 

y(t) = J p(t, r)dr. 
a 

2.4.7 Bioreactor 

Consider a bioreactor as depicted in the following. 

qjn j 
biomass \ q .. + 

D \ sugar j D 

In the reactor there is biomass (organisrns) that is nourished with sugar (nutri­
tion). Further extra nutrition is supplied and products are withdrawn. Denote 
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p(t) for the concentration of biomass in the reactor (g/l), 

q(t) for the concentration of sugar in the reactor (g/l), 

qin(t) for the concentration of sugar in fiow into the reactor (g/l), 

D(t) for the fiow of 'sugar water' through the reactor (i/sec, i.e. the fraction 
of the reactor contents per second). 

The equations that govern the reaction inside the reactor are given as follows. 

d (p) ( natural growth - Dp ) 
dt q = natural consumption - Dq + Dqin ' 

where Dp and Dq stand for the amount the biomass and sugar, respectively, that 
are withdrawn from the reactor, and Dqin for the amount of sugar that is sup­
plied to the reactor. To complete the mathematical description some empirical 
laws (or rules of thumb) on the relation between biomass and sugar concentration 
will be used. Here these laws state that the growth of biomass is proportional its 
concentration and that its consumption of sugar is also proportional to its con­
centration. Furthermore, it is assumed that these proportionalities only depend 
on the sugar concentration. Hence, there are functions J.L and 11, depending on 
the sugar concentration, that determine the rate of growth of biomass and the 
consumption rate of sugar, respectively, it the following way 

d (p) ( J.L(q)p - Dp ) 
dt q = -lI(q)p - Dq + Dqin . 

EXERCISE 2.9 Assume that the fiow D of 'sugar water' into the reactor is fixed, 
but that the sugar concentration qin in this fiow can be controlled. Further, as­
su me that the concentration of sugar of the outgoing fiow is measured. Now 
describe the above process as a system with state, input and output. 

EXERCISE 2.10 The same question as above, but now the sugar concentration 
qin in the incoming fiow is fixed, and the amount of fiow D can be controlled. 

2.4.8 Transport of pollution 

Consider a 'one-dimensional' river, contaminated by organic material that is dis­
solved in the water. Onee in the water the material is degraded by the action of 
bacteria. 

river 
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Denote 

p(r, t) for the density of pollutant in the river at place rand at time t (kg/m), 

v(r, t) for the speed of pollutant and water in the river at place rand at time t 
(m/sec), 

q(r, t) for the flux of pollutant in the river at place rand at time t (kg/sec), 

k( r, t) for the mte of change by which the density of the pollutant is increased 
in the river at place rand at time t (kg/ (m sec)). 

Conservation of mass can be expressed as 

op oq _ k 
ot + or - , 

which has been obtained by considering the infinitesimal equality 

p(t + dt, r)dr = p(t, r)dr + q(t, r)dt - q(t, r + dr)dt + kdtdr. 

Now two extreme cases can be considered. 

1. There is only advection. Then p, q and vare related by q = pv. This means 
that the flux of pollutant is only due to transportation phenomena. (If 
in addition v would be independent of r, a direct resemblance with (2.10) 
becomes visible.) 

2. There is only diffusion. Then pand q are related by q = -ft~, where ft is 
some constant depending on the place rand the time t. Diffusion means 
that everything is smoothed. 

When both diffusion and advection are taken into account then q = pv - ft~. 
Assuming that ft is a constant, independent of rand t, and that v does not 
dep end on r, but only on t, the conservation of mass equation can be written as 

op 0 op 02p op 
ot = - or (pv - ft or) + k = ft or2 - v or + k. 

To model the action of bacteria that degrade the pollution, and to model the role 
of industry, assume that k = -vp + {3 with v independent of rand t, and with {3 
a measure for the pollution in the river caused by the industry. Then it follows 
that 

op 02p op 
ot = ft or2 - v or - lip + {3. 

REMARK 2.3 With ft, v and 11 constant the last equation can also formally be 
written as 

x = Ax + {3, 

where x = pand A = ft g;, - v gr - V is a linear mapping between appropriate 
function spaces. 0 
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2.4.9 National economy 

Consider the following simplified model of the national economy of a country. 
Let 

y( k) be the total national ineome in year k, 

e( k) be the eonsumer expenditure in year k, 

i(k) be the investments in year k, 

u( k) be the government expenditure in year k. 

For the model of the national economy the following assumptions are made. 

1. y(k) = e(k) + i(k) + u(k) 

2. The eonsumer expenditure is a fixed fraetion of the total income of the previous 
year: c(k) = my(k - 1) with 0 Sm < 1. 

3. The investment in year k depends on the inerease in consumer expenditure 
from year k - 1 to year k : i(k) = Jl(c(k) - c(k - 1)), where Jl is some 
positive constant 

Note the first assumption is of the conservation type, whereas the other two 
assumptions may be based on observations. 

With the above assumptions the evolution of the national economy can be 
described as follows. 

i(k + 1) - Jlc(k + 1) = -Jlc(k), 

c(k + 1) = my(k) = m(i(k) - Jlc(k)) + m(1 + Jl)c(k) + mu(k). 

If a state vector is defined as x(k) = (xl(k),X2(k))T with xl(k) = i(k) - Jlc(k) 
and x2(k) = c(k), then the state evolution equation is given by 

( :~~~ 1 g ) = (~ m(~~ Jl) ) ( :~~~~ ) + ( ~ ) u(k), 

and the output equation by 

y(k) = (1 1 + Jl) ( :~~~~ ) + u(k). 

Thus " tinear time-invariant discrete-time system has been obtained as a model 
for th~ lational economy. 

EXERCISE 2.11 Suppose that the government decides to stop its expenditure from 
the year k = 0 on. Henee, u(k) = 0 for all k ~ O. Suppose furthermore that in 
the year k = 0 the consumers do not spend any money and that the investments 
are 1 (scaled). So, c(O) = 0, i(O) = 1. Investigate how the total national income 
eh .nges for k ~ O. 
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EXERCISE 2.12 For the above model of the economy, find the stationary situ­
ations when u(k) = 1 for all k, i.e. find those situations that will not change 
anymore as the years pass, when u(k) = 1 lor all k. 





Chapter 3 

Linear differential systems 

3.1 Linearization 

In this chapter we will mainly be concerned with linear differential systems, being 
of the form . 

i:( t) 
y(t) 

A(t)x(t) + B(t)u(t), 

C(t)x(t) + D(t)u(t). 

The treatment of linear difference systems 

x(k + 1) 
y(k) 

A(k)x(k) + B(k)u(k), 

C(k)x(k) + D(k)u(k), 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

will be postponed till Chapter 7. There are two reasons for the importance 
of linear systems. The first on~ is that they are analytically attractive. These 
systems can be analyzed much bet ter than nonlinear systems. This is particularly 
true ifthe matrices in (3.1), (3.2) are constant with respect to time. In this case 
the solution, expressed in an initial condition and the input function, can be 
written down explicitly as we will see later on. The second reason is that many 
systems are 'almost' linear or can, at least, be approximated by linear systems. 
Even nonlinear systems may locally be linearized, i.e. in the neighbourhood of 
a solution small perturbations will behave as solutions of a linear system. It 
will be assumed that, given an initial condition for (3.1), say x(O), and an input 
function u(t), t ~ 0, that the solution to (3.1) and the function y(.) of (3.2) are 
weIl defined. Such initial conditions and input functions are caIled admissible. 
This is for instance the case if the entries of all matrices concerned and of the 
input are piecewise continuous. In general we will assume that sets U, U, Y, Y, 
X and X exist with u(t) EU for each t, u(.) E U, y(t) E Y for each t, y(.) E Y, 
x(t) EX for each tand x(·) E X such that the solution to (3.1) and (3.2) exists 
for elements of these sets. For simplicity of presentation, these spaces will not 
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always explicitly he indicated. If the matrices A, B, C and D happen to he 
constant matrices, i.e. they do not dep end on the time t, then we say that the 
system is time-invariant. 

We will now make the concept of linearization more precise. Consider a 
nonlinear differential equation 

x=/(x,u), xEnn , uEnm • (3.5) 

(The restriction to a time-invariant system, i.e. time t does not appear explicitly 
in the function I, is not essential). Given a solution i(t) of (3.5) with initial 
condition i(O) = io and input function ü(t), consider another solution i(t)+z(t), 
with initial condition io + Zo and input function ü(t) + v(t), where i + z 'in the 
neighhourhood of' i and ü + v is 'in the neighhourhood of' ü. This 'in the 
neighhourhood' will he made more precise later on. We have 

I(i, ü), 5:(0) = io, 

I(i + z, ü + v), i(O) + z(O) = io + Zo . 

(3.6) 

(3.7) 

We assume zand v to he small such that the right-hand side of (3.7) can be 
expanded into a Taylor series, where the expansion up to the linear terms yields 
a good approximation: 

d (- ) 1(- -) 01 (_ -) 81 (_ -) h· h d dt x + z = x, u + ox x, u z + ou x, u v + Ig er or er terms. (3.8) 

This is a vector equation. Written out in components, the terms are 

(:) CJ 
Êh. 2.h... ), ~(i) = af = ( 
a"'l a", .. 

, 1= dt ox 
!ka. !!.b. !!.b. 

dt a"'l a", .. 

(lli .§.h.. 

) ( 
ZI 

) ( 
VI ) ol = 

aUl aU m 

ou ' z = , v = 

~ ~ Zn Vm Ul Um 

If (3.6) is suhtracted from (3.8) and if the higher order terms are ignored, we get 

. 01( _ _ ) 01( __ ) 
Z = ox x, u Z + ou x, u v (3.9) 

for the approximated system. This differential equation is linear, since the coef­
ficients *(x, ü) and ~(x, ü) are given matrix-Iunctions ol time. Therefore we 
write for (3.9) 

z = A(t)z + B(t)v (3.10) 
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The output function y = g(x, u) can also be linearized around the pair (x, ü). If 
iJ = g(x, ü) and iJ + w = g(x + z, ü + v), then 

_ _ _ og(x, ü) og(z, ü) 
y + w = g(x, u) + ox z + ou v + higher order terms 

and therefore, as an approximation, 

og(x,ü) ag(x,ü) 
w = ox z + au . v, 

which we write as 
w(t) = C(t)z(t) + D(t)v(t). (3.11) 

Equations (3.10), (3.11) together form the linearized systemj linearized around 
the solution (x(t), ü(t)). 

EXAMPLE 3.1 Consider the nonlinear systems equations 

If u(t) = sin t, show that Xl = sin tand X2 = cos t is a solution of these equations. 
Subsequently, linearize the differential equations and the output equation around 
this solution and write the result in matrix form. 
Answer. That the proposed trigoniometric functions are a solution follows by 
suhstitution. The linearized equation becomes, af ter some analysis, 

. ( 0 
z= -1+sint w = (2sint 0) z + (3sin2 t)v. 

This linearized system is not time-invariant hecause some of the elements of the 
matrices involved dep end on t. 0 

EXAMPLE 3.2 [Continuation of the inverted pendulurn.] We start with the equa­
tions of motion (2.4) of Suhsection 2.4.1 which are repeated herej 

~~ - g sin ifJ + s ~.os ifJ = 0,. } 
(M + m)s + ml(ifJcosifJ - ifJ2 sinifJ) = u. 

(3.12) 

This system can he written as a set offour first order differential equations where 
the state vector is defined as X = (ifJ,~, s, sf, where T denotes the transpose. 
We either can linearize that vector differential equation, or we can linearize (2.4) 
directly and then afterwards we will construct a set of linear differential equations. 
We will continue with the lat ter method (the reader should do the first method 
himself and convince himself that the answers will he the same). Linearization 
of (2.4) will be shown around the solution 

~(t) = ~(t) = s(t) = k(t) = 0, 
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and leads to (i.e. the nonlinear terms in (2.4) are replaced hy their Taylor series 
expansions up to the linear term) 

41.. .. a<jJ - g<jJ + s = 0, (M + m)s + ml<jJ = u , (3.13) 

which can be viewed as two equations with the two unknowns ~ and s. These 
unknowns are solved and expressed in the other quantities <jJ and u. By defining 
the state vector as (<jJ,~, s, sf, Equations (3.13) can then he rewritten as 

~;=(+ ~ H)x+(~)u, x=(~) 
a41 0 0 0 b4 S 

(3.14) 

where 

3g(M + m) -3gm -3 4 
a2l = 1(4M + m) , a41 = 4M + m ' b2 = 1(4M + m) , b4 = 4M + m' 

If we take M = 0.98 kg, m = 0.08 kg, 1 = 0.312 mand 9 = 10 m/sec2 , then 
(3.14) hecomes 

x= 
( 

0 
25 

-~.6 
100) (0) o 0 0 -2.4 
o 0 1 x+ 0 u 
000 1 

(3.15) 

If s and <jJ are the measured quantities, then the output function is 

(
0010) 

y= 1 0 0 0 x (3.16) 

o 

EXERCISE 3.1 This is a continuation of Subsection 2.4.2. Consider a satellite of 
unit mass in earth orbit specified by its position and velocity in polar coordinates 
r, T, (J, iJ. The input functions are a radial th rust UI (t) and a tangential thrust of 
U2(t). Newton's laws yield 

.. (J'2 9 r = r - - + UI; 
r 2 

.. 2iJr 1 
(J= -- +-U2. 

r r 

(Compare (2.6) and take ms = 1 and rewrite Gme as g.) Show that, if Ul(t) = 
U2(t) = 0, r(t) = (j (constant), (J(t) = wt (w is constant) with (j3w2 = 9 is a 
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solution and that linearization around this solution leads to (with Xl = r(t) -
a j X2 = r j X3 = a(O - wt) j X4 = a(Ö - w)) 

1 
o 
o 

-2w 

EXERCISE 3.2 Given the differential equations 

Xl (t) X2(t) 
X2(t) -XI(t) - xHt) + u(t) 

(3.17) 

o 

and the output function y(t) = XI(t). Show that for u(t) = cos2(t) a solution of 
the differential equations is Xl = sin t, X2 = cos t. Linearize the state equations 
and the output function around this solution and write the result in matrix form. 
Is the linearized system time-invariant? 0 

EXERCISE 3.3 A tractor with n - 2 axles connected to it (if n is even then these 
axles can be interpreted as (n - 2)/2 wagons), see the figure, follows a linear 
track, i.e. the middles of all axles (including the two axles of the tractor) are 
approximately on one line l. Each wagon is connected by means of a pole to the 
hook-up point of the preceding wagon. This hook-up point is exactly in the middle 
of the rear axle of this preceding wagon. 

The distances of the middles of all axles to line l are not exactly zero (due to 
perturbations) and are indicated by XI, ••• , xn ; the distance of the midpoint of the 
two frontwheels of the tractor to the line is Xl and the distance of the middle of the 
last axle, furthest away from the tractor, to the line is Xn. With these 'distances ' 
is meant the distance vertical to line Z. The tractor moves with unit speed forward. 
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The (scalar) con trol is the angle that the frontwheels of the tractor make with 
respect to the symmetry axis of the tractor (with u = 0 the tractor moves in a 
straight line (not necessarily line i)). It is assumed that the distance between two 
successive middles ofaxies equals 1. Show that the linearized equations (around 
Xi =0, i= 1, ... ,n, andu=O) equal 

0 
f 

1 -1 0 0 
1 -1 0 0 

dx 0 1 -1 0 0 
= x+ u, (3.18) 

dt 
0 1 -1 0 
0 0 1 -1 

0 

for some appropriate f (depending on the sealing of the steering wheel). What 
are the linearized equations of motion if the tractor moves with speed 1 in the 
backward direetion ~ 

3.2 Solution of linear differential equations 

In this section we will consider time-dependent equations 

x = A(t)x + B(t)u (3.19) 

and time-invariant equations 
x = Ax+Bu (3.20) 

and consider their solutions. According to the theory of ordinary differential 
equations we know that the homogeneous differential equation 

x(t) = A(t)x(t) 

has n independent solutions, to be denoted by Xl(t), ... , xn(t). Note that here Xi 

is a vector and not a component of x. The matrix Y, the columns of which are 
X ' · 

" Y(t) = (Xl(t), ... , xn(t)) 

is called a fundamental matrix. The matrix ~(t,s) = Y(t)y-l(S) is called 
the transit ion matrix and it is the unique solution of the matrix differential 
equation 

d 
dt ~(t, s) = A(t)~(t, s), ~(s, s) = I , 

where I is the identity matrix. The i-th column of ~(t, s) is the unique solution 
of x = A(t) x with initial condition x(s) = ei , where ei is the i-th basis vector in 
nno 
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The solution of :ë(t) = A(t)x(t), x(to) = Xo, can he expressed as x(t) = 
~(t, to)xo. The transition matrix has the following properties: 

~(t2, to) 
~-l(t, s} 

~(t2, tl}~(tb to) 
~(s, t) 

for all to, tb t2 En, 
for all s, tEn, 

which are called the group properties. The first one expresses the so-called semi­
group property. Note that it follows easily from these proper ties that ~(s, s) = 
J. The solution of the inhomogeneous differential equation (3.19) with initial 
condition x(to} = Xo is 

t 

x(t) = ~(t, to}xo + J ~(t, s)B(s)u(s)ds 
to 

which can he verified hy direct suhstitution into (3.19). 

EXAMPLE 3.3 Consider the time-dependent equation 

!!: ( Xl ) = (_~ ~) ( xl ) + ( 1 ) u(t) , t > O. 
dt X2 t' t X2 t' 

which is equivalent to the following second order differential equation (XI(t) = 
y(t), X2(t) = y(t)) j 

t2ii(t} - 2ty(t) + 2y(t) = u(t). 

First consider the homogeneous equation (i.e. u(t) = 0) and suhstitute a possible 
solution of the form y(t) = tk , which leads to 

k2 
- 3k + 2 = 0 -t k = 1, k = 2 . 

Therefore y(t) = tand y(t) = t2 are two independent solutions and (t, lf and 
(t 2 ,2t)T are two independent solutions of 

. ( 0 X = 2 
-~ 

The fundamental and transition matrix are respectively 

( 
t t2

) ( ~t - ~ 
Y(t) = 1 2t ,~(t, s) = : _ ~ 

t' -t+. ) -1 + 11 
3 

o 
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We will now confine ourselves to time-invariant equations of the form (3.20). For 
such systems an explicit expression for the transition matrix exists. Therefore 
we define 

(3.21 ) 

The quantity eAt thus defined (the series is convergent!) is, as A is, an n x n 
matrix. 

REMARK 3.1 In the following the notation eA(t-~) will be used, which is defined 
according to the definition in (3.21), i.e. eA(t-~) = I +A(t-s)+···. The notation 
A(t - s) here refers to multiplication of each element of A by the factor (t - s). 
The notation e(t-.)A is also used. Please note the ambiguity in notation. In 
(3.19) for instance A(t) stands for a matrix A of which the elements are time­
functions. 0 

THEOREM 3.1 The matrix eA(t-.) is the transition matrix of x = Ax. 

Proof The proof is by substitution: 

d ( ( ) 1 2( )2 1 3( 3 dt I+At-s +2!A t-s + 3!A t-s) + ... ) 
2 1 3 2 A+A (t-s)+ 2!A (t-s) + ... 

1 
A(I + A(t - s) + ,A2(t - s)2 + ... ) = AeA(t-.) . 

2. 

Hence teIP(t, s) = AIP(t, s). Furthermore, 

1 
IP(s, s) = eA(~-.) = 1+ A.O + ,A2.O + ... = I . 

2. 

o 

The solution of x = Ax with x(O) = Xo is x(t) = eAtxo. This solution can 
also be obtained by means of the following flow diagram which represents the 
differential equation: 



x (t) 

J 

X (t) 
A 

Going around on ce in this diagram, starting at Xo, we get 

t 

x(t) = Xo + J AX(71 dC1'l. 
o 
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As X(71 can be expressed in the same way as x(t) and so on, we get, by going 
around and around in the diagram, 

x(t) 

= 

t t (72 

Xo + J AxodC1'l + J A J AxodC1'l dC1'2 + 
000 

Because eAt is a transition matrix, the following proper ties holdj 

The exponential eAt plays an important role in linear system theory and many 
papers have been published about what would be a good numerical procedure to 
calculate this exponential. A possible procedure would be to use a finite number 
of the terms in the series expansion in (3.21). This method works reasonably as 
long as the eigenvalues of A are close together. For more information and for 
more reliable methods the reader is referred to [Golub and Van Loan, 1983]. We 
will continue with an analytical method of calculating eAt • The following lemma 
will be used heavily for that purpose. 

LEMMA 3.1 IJ P is an invertible matrix, then eAt = Pe(P-l AP) p-l. 
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Proof We must show that p-1eAt P = eP -
1 
APt. 

1+ p-1 APt + :! (P- 1 AP)2t2 + :! (P- 1 AP)3t3 + ... 
I I 

p-1p + P-1APt + _P-1A2 Pt2 + _P-1A3Pt3 + ... 
2! 3! 

P- 1 [I + At + ~A2t2 + ~A3t3 + .. . ]P = p-leAt P . 
2! 3! 

o 

Suppose that A is diagonalizable, i.e. an invertible matrix T exists such that 
T- 1 AT = D, where 

D = (.ÀI.. 0) 
o .Àn 

In fact, {.Ài} are the eigenvalues of A and the columns of T are the corresponding 
eigenvectors. By means of Lemma 3.1 it now follows that 

The exponential eDt can easily be obtained by using (3.21). Indeed, 

e:.' ) . 
Unfortunately not all square matrices are diagonalizable. Therefore the method 
described above cannot be used for arbitrary square matrices. Diagonalization is 
only possible if A has n linearly independent eigenvectors. A sufficient (but not 
necessary) condition for A to have n linearly independent eigenvectors is that 
all its eigenvalues are different. A non-diagonalizable matrix of size n x n has 
therefore k« n) different eigenvalues, which are denoted by .À i , i = I, ... ,k. By 
the (algebraic) multiplicity of .Ài is meant the multiplicity of .Ài as a root of the 
characteristic polynomial det(M - A)j det is determinant. The roots Ài may 
be complex. 

THEOREM 3.2 Suppose that the n x n matrix A has k different eigenvalues .Ài 
k 

with multiplicity mi, i = 1, ... , kj L: mi = n. Define Ni = ker[(A - .ÀiI)m.], then 
i=l 

1. the dimension of the linear vector subspace Ni is mi, i = 1, ... , k j 

2. the n-dimensional linear vector space en over the complex numbers is the 
direct sum of the subspaces Ni, i.e. en = NI EB N2 EB ... EB Nk. 
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For a pro of of this theorem and other background material for matrix theory 
the reader is for instance referred to [Bellman, 1970]. The kernel of matrix M, 
indicated by ker[M], is defined as all vectors x (here with complex components) 
for which M x = O. A linear space N is the direct sum of two linear subspaces 
NI and N 2 , notation N = NI 67 N 2 , if each x E N can uniquely be decomposed 
as x = Xl + x2 with xl E NI and X2 E N2• If the n x n matrix A has n different 
eigenvalues, then Ni as defined in Theorem 3.2, is a one dimensional subspace, 
spanned by the eigenvector corresponding to .xi. 

THEOREM 3.3 For each n X n matrix A a nonsingular matrix T exists such that 

T-1AT= J, (3.22) 

where J, the so-called Jordan form, has a blockdiagonal structure defined as 
J = diag(J1 , .•. , Jk), equivalently, 

(3.23) 

Here k is as defined in Theorem 3.2. Each block Ji , i = 1, ... , k, corresponding to a 
unique eigenvalue, also has a block diagonal structure, i.e. Ji = diag(Jib ... , JiI.), 
equivalently, 

o ) , 

Jil. 

(3.24) 

where li is an integer ~ 1 and where each sub-block has the following form: 

.xi 1 0 0 

0 

Jij = 0 

1 
0 0 .xi 

EXAMPLE 3.4 If 

2 1 
2 

2 1 

J= 
2 

(3.25) -1 1 
-1 1 

-1 
-1 
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with the elements which are not explicitly indicated equal to zero, then 

J - ( Ju 0 )=(+) 1- 0 J 12 

and 

)= Cl 1 

-J J _ ( J21 0 -1 1 
2- 0 J22 -1 

0 

If the matrix T of (3.22) is partitioned as T = [Tb T2, ... , n], conform the par­
titioning in (3.23), then the column vee tors of 11 form a basis for the subspace 
Ni. Equation (3.22) yields AT = T J. If the individual column vectors of T are 
denoted by qb ... , qn, then the ith column of AT equals Aqi and the ith column 
of T J equals Àqi + ""tiqi-l, with ""ti either one or zero, depending on the location 
of the ith row with respect to the Jordan block concerned. Hence 

(3.26) 

where À is an eigenvalue and where ""ti is either zero or one. If ""ti = 0 then qi is 
an eigenvector of A. If ""ti = 1, then qi is a so-called generalized eigenvector. 

Now we are in a position to calculate eAt j 

Application of the definition of e Jt , see (3.21), gives e Jt = diag(é,t , ... , e Jkt ), and 
for each bloek, eJit = diag(éilt , ••• , é ilit ). Finally, for each sub-block, 

1 t t 2 tdij -I 

2f (dij-I)! 

eJijt = eÀit 
t 2 (3.27) 
2ï 

t 
0 1 

where dij is the dimension of Jij. See Exercises 3.6 and 3.7 for a proof. 

REMARK 3.2 Please note that if q/ij+1' .. . , q/ij+dij are the (generalized) eigen­
vectors belonging to the Jordan block Jij (and this bloek on its turn corres­
ponds to the eigenvalue Ài ), then (A - ÀiI)kq/ij+k = 0, k = 1, ... ,dij . This 
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ean been proved as follows. For k = 1 obviously (A - ),;!)q/ i;+! = 0 beeause 
q/i;+l is an eigenveetor (and not a generalized one). For k = 2 we ean write 
(A - ),J)2q1ii+2 = (A - ),J)(A - )..jI)q1ii+2 = (A - ),J)Q1ij+1 = 0, wh ere we used 
(3.26). The proof by induction can be continued for higher values of k. Thus 
the vectors Q1ij+1"'" Q1ij+dij span the linear subspace Ni as introduced in the 
statement of Theorem 3.2 (or: these vectors span part of th is linear subspaee if 
there is more than one Jordan block with the same eigenvalue ),i) . 0 

EXAMPLE 3.5 This is a continuation of Example 3.2. Calculate the transition 
matrixfor the system given in (3.15). The eharacteristie polynomialis ),2()..2 -25) 
and therefore the eigenvalues are )..1,2 = 0, )..3 = 5,),4 = -5. To the eigenvalue 
o only one eigenveetor eorresponds. 80 one extra generalized eigen vector for the 
eigenvalue 0 is needed, whieh ean be eomputed by (3.26). Therefore 

U 
1 0 i), " e t 0 

o ) J= 
0 0 1 0 0 
0 5 e = 0 0 e5t o . 
0 0 -5 0 0 0 e-5t 

The matrices Tand T- 1 ean be taken as 

T~ ( 

0 0 -125 
125 ) CO 0 1250 

1250 0 0 -625 -625 -1 1 0 30 0 
1 0 3 -3 ' T = 1250 _~ -1 0 
0 15 15 -1 0 

and 

eA
' ~ Te"T-' ~ ( 

eosh 5t i sinh 5t 0 

n· 5 sinh 5t cosh 5t 0 
1~5 (1 - cosh 5t) ~~5 (5t - sinh 5t) 1 

- 235 sinh 5t 125(+1 - cosh 5t) 0 

0 

EXAMPLE 3.6 This is a continuation of Exercise 3.1. Calculate the transition 
matrix for the system given in (3.17) with w = 1. The characteristie polynomial 
is )..4 +)..2 and therefore the eigenvalues are )..1,2 = 0, )..3 = i, )..4 = -i. For the 
eigenvalue 0 again one eigen vector exists. Again an extra generalized eigen vector 
for this eigenvalue needs to be computed. Therefore 

J = (H ~ ~), e
Jt 

= (H.? ~) 
o 0 0 -2 0 0 0 e-it 
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The matrices Tand T- 1 can be taken as 

T=U 
1 

1 ) ( 0 i -i -1 -6 
2- 2- ,T = 3 

-~ --; =i 
and 

eAt = TeJtT- 1 = 3 sin ~ 
( 

4-3cost 

-6t + 6 sm t 

sin t 
cos t 

-2 + 2 cos t 
-6 + 6 cos t -2 sin t 

EXERCISE 3.4 Calculate eAt i! 

1. A= 
0 0 

4- A= 
1 î ), 0 0 -2 

2. A= 
0 1 5. A= 

-1 -!j' 0 0 1 

3. A= 
1 0 6. A= 

5 
0 2 -1 -1 . 

o 
o 

~ ~3) 
o -1 ' 
o -1 

2 sin t 
2-2cost) 

1 -3t + 4 sin t . 
o -3+4cos t 

o 

EXERCISE 3.5 If Al and A2 commute (i.e. AIA2 = A2A1), then e(Al+A2)t = 
eA1t • eA2t . Prove this. Give a counterexample to this equality if Al and A 2 do 
not commute. 

EXERCISE 3.6 Consider the n X n matrix 

o 1 o 

N= 

o 

o 

o 
o 1 

o 

So N has zeros everywhere exept for the diagonal directly above the main diagonal, 



where it has ones. Using (3.21) prove that 

1 t 

o 
t 
1 
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EXERCISE 3.7 Let Jij be as in Theorem 3.3. Note that Jij = >"a +N, where I is 
the dij X dij identity matrix and where N is a dij x dij matrix as in Exercise 3.6. 
Using Exercise 3.5 prove the expression for eJ;; in (3.27). 

EXERCISE 3.8 We are given the n-th order system x = Ax with 

0 1 0 0 

A= 
0 

0 0 1 
-ao -al -an -2 -an-l 

Show that the characteristic polynomial of A is 

>..n + an_l>..n-l + ... + al>" + ao. 

If>.. is an eigenvalue of A, then prove that the corresponding eigenvector is 

(1, >.., >..2, ... , >..n-lf . 

EXERCISE 3.9 Show that a Jordan form of the system matrix A of Exercise 3.3 
(the tractor example) equals 

0 1 0 0 
0 0 0 0 
0 0 -1 1 0 0 
0 0 -1 1 0 0 

0 

0 -1 1 
0 0 -1 

For diagonalizable A we can write 

Cl 0 )( Wl ) A = TDT-
l = (Vl"'Vn) 0 (3.28) 

>"n W n 
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where VI, ••• , Vn are the column vectors of T (formerly we also used the notation 
q; for the column vectors), being the eigenvectors of A, and where W1, • •• , W n are 

n 

the row vectors of T-l . It easily follows that A = 'E .À;ViWi . The product of a 
i=1 

column vector with a row vector ViWi is an n x n matrix called a dyad ( a dyad 
has maximal rank one). 

Matrix A is the sum of n dyads. The transition matrix can be written as 

(3.29) 

The solution of x = Ax with x(O) = Xo can therefore be written as 

n n 

( ) At "" À·t "" À,t X t = e Xo = ~e • ViWiXO = ~fLie Vi, (3.30) 
i =1 ;=1 

where fLi = WiXO is a scaiar quantity. The solution of x = Ax (or of x = Ax + Eu 
with u = 0, the reason why this solution is sometimes called the free response) 
is thus decomposed along the eigenvectors, i.e. it is a linear combination of terms 
with exponential coefficients. The solution corresponding to only one eigenvector 
(i.e. Xo is such that fLi #; 0 for some i and fLk = 0 for k #; i) is called a mode of 
the system. If the initial vector is aligned with one eigenvector, then the corres­
ponding solution is completely situated in the one dimensional space spanned by 
this eigenvector. Generalizations of (3.28) and (3.29) to the nondiagonalizable 
case exist, but will not be treated here. 

Tacitly we assumed that .Ài and therefore Vi were real in the treatment above. 
For complex .À; and Vi the formulation above can be adjusted as follows. Suppose 
.À = (1' + iw is an eigenvalue of A (the components of A, (1' and ware real and i 
denotes .the imaginary unit) with corresponding eigenvector V = r + is (r, s E 
'Rn ). Because Av = .Àv, Aii = Xii, the upperbar denotes complex conjugate, and 
therefore X = (1' - iw is also an eigenvalue, with eigenvector r - is. Suppose that 
Xo lies in the subspace spanned by rand s. Then, with a, b E 'R, 

Xo = ar + bs = ~ (a - ib)( r + is) + ~ (a + ib)( r - is) = Ilv + WiJ , 

where fL = ! (a - ib) E C. The corresponding free response is 

x(t) = fLeÀtv + fi,eXtii • 

If Il is written as JI. = fieit/>, with pand fjJ real, then 

x(t) ~(eÀt+i t/>v _ eÀt-it/>ii) 

pr;} (eÀt+it/>v) = pr;} (eut+i(wt+t/» (r + is)) 

peut (rsin(wt + fjJ) + scos(wt + fjJ)) . 
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In some applications, the adjoint system to :i: = Ax, defined as i = 
_AT x, plays a role. It is easily verified, hy straightforward differentiation, that 
djdt(xTx) = 0 and hence the innerproduct of the vectors x(t) and x(t) does not 
dep end on time. The key property of the adjoint system is that it propagates 
backward in time as the original system propagates forward in time, as made 
precise in the following theorem. 

THEOREM 3.4 11<P(t, s) is the transition matrix lor:i:(t) = A(t)x(t), then <pT (s , t) 
is the transition matrix lor its adjoint system i (t) = _AT (t) x (t) . 

Proof Differentiate 1= <P- 1(t, s)<P(t , s) to get 

d d [ -1 )] 0= d/ = dt <p (t, s)<P(t, s 

[d -1 -1 d = dt <P (t, s)]<P(t, s) + <P (t, s) dt <P(t, s) 

d 
= [dt <P- 1(t, s) + <P- 1 (t, s)A(t)]4>(t, s). 

Since <P(t, s) is nonsingular, this means 

or 

~ [4>-I(t, s)f = _AT [<P- 1(t, s)]T, 

which, because <P- 1 (t, s) = <P(s, t), see before, is equivalent to 

d T T T dt[<P(s,t)] = -A [<P(s,t)] . 

3.3 Impulse and step response 

The solution of x = A(t)x + B(t)u can he descrihed as 

t 

x(t) = <P(t, to)xo + J <P(t, s)B(s)u(s)ds . 
to 

If an output function of the form 

y(t) = C(t)x(t) + D(t)u(t) 

o 

(3.31 ) 
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is given, y(t) ean be expressed in u(·) as 

t 

y(t) = C(t)~(t, to)xo + J C(t)~(t, s)B(s)u(s)ds + D(t)u(t) . (3.32) 
to 

Define the p X m matrix K(t, s) by 

K(t, s) = C(t)~(t, s)B(s) . (3.33) 

Sinee ~(t, s) is eontinuously differentiable in its arguments and C(t) and B(s) 
are assumed to be pieeewise continuous, the matrix K(t, s) is also pieeewise 
continuous in its arguments. 

We assume that a time to exists sueh that Xo = 0 at this time instant. We 
are only interested in the system for t ~ to and assume u(s) = 0 for s < t~. Then 
(3.32) ean be written as 

t 

y(t) = (Fu)(t) = J K(t, s)u(s)ds + D(t)u(t) , (3.34) 
-(Xl 

where F is a mapping whieh maps an m-dimensional input function u(·), whieh 
is supposed to be zero before some time t~, into a p-dimensional output fune­
tion y(.). Note that F is a linear mapping and that K(t, s) and D(t) provide a 
eharacterization of the external description of the system in state spaee form 
we started with. We also talk about external behaviour. See Chapter 8 for a 
discussion on the external description and behaviour. Heuristically speaking, an 
external description refers to the situation where the input function is directly 
mapped into an output function, without the 'intermediate' state. This 'inter­
mediate' state has been eliminated. We now assume that D(t) = 0, resulting 
in 

t 

y(t) = J K(t, s)u(s)ds . (3.35) 
-(Xl 

The matrix function K(t, s) has the following interpretation. Suppose the input 
function is u(t) = ó(t - tl)e" where e, is the i-th basis vector and ó(t - tI) is the 
so-called delta function, defined as 

(Xl 

J ó(s - tt)4>(s)ds = 4>(tI), 
-(Xl 

for any continuous 4>(-) function. Heuristically, the ó(s - tI) function can be 
defined as the limit for n -+ 00 of the sequence of functions 

{

!!. for 
!n(s -'- td = ij for 
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The output for sueh an input is 

t 

y(t) = J K(t, s)J(s - tl)eids = ith column of K(t, tt} . 

-00 

The columns of K(t, tI) can be interpreted as the response of the system (being 

the output) at time t caused by an impulse shaped input function (i.e. a J 

function) at time tI. Therefore K(t, s) is called the impulse response matrix. 

Related to the impulse response is the step response. Instead of an impulse 

shaped input function now a step shaped function will be applied. Such a step 

function, or function of Heaviside, H(t - tI) is defined as 

Note that H(t - tI) does belong to the class of admissible input functions (piece­

wise continuous functions), whereas one has to be very eareful with impulse 

functions (strictly speaking, the delta function does not satisfy the eonventional 

definition of a function). Also note that a step function is an integrated version 

of the impulse function, i.e. 

t 

H(t - tI) = J J(s - tt)ds . 

-00 

The output corresponding to the step function H(t - tl)ei, assuming that the 

system starts at the origin at a time to far in the past, is given by 

t t 

y(t) = J K(t, s)H(s - tl)eids = J K(t, s)eids . 

-00 

t 

The p x m matrix S(t, tI) = J K(t, s)ds is ealled the step response matrix. A 
tl 

relation between S(t,s) and K(t,s) is 

t d dj 
ds S(t, s) = ds K(t, r)dr = -K(t, s) . (3.36) 

(The reader is invited to contemplate the - sign at the right-hand side of (3.36).) 

The Heaviside function and the J function are related in the same way as the 

step response matrix and the impuls response matrix. This is not surprising; 

sinee the system is linear, it preserves integration. To a 6 function as input it is 

irrelevant in what order the integration and the system are applied. 
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For time-invariant systems the impulse response matrix becomes 

K(t,s) = CeA(t-·)B. 

Since only the difference t - s already defines this matrix, the matrix K(t, s) is 
usually written as a matrix G(t), depending on only one parameter; 

G(t - s) = CeA(t-.) B • (3.37) 

EXERCISE 3.10 Show that for linear systems with D(t) ~ 0, the impulse response 
can be defined as K(t, s) + D(t)6(t - s), where 6 is the delta function. 

EXAMPLE 3.7 We start with the linearized equation (3.17) of the satellite dy­
namics. Assume that both the angle () and the distance rare measured and 
processed to yield r - (7 and () - wt «(7 and ware constants, rand () are functions 
of time. Hence 

Y=(;~;t)=(~ ~ ~ ~)x. (3.38) 

Take for the constants w = 1 and (7 = 1. The impulse response matrix for this 
system is (for the calculation of eAt see Example 3.6): 

G(t) = CeAt B = ( sin t 2 - 2 co~ t ) 
- 2 + 2 cos t -3t + 4 sm t . 

o 

EXERCISE 3.11 Given are two linear differential systems in a series: 

__ ~_-.l·I,-_s_Ys_tem_-I1 ,," ~ ·IL--_s_ys_;m_-II--_YZ_-

The in- and outputs are scalar functions and the impulse response functions of 
the two systems are K;(t, s), i = 1,2. Prove that the impulse response function 
of the series connection is given by 

t 

K(t, r) = J K 2(t, V)Kl(V, r)dv . 

T 
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The external description (3.35) does not only hold for (strictly causal (see later 
for the definition of causality)) linear differential systems as is shown by the 
following example. 

EXAMPLE 3.8 Consider a single-input single-output system of the form 

t 

y(t) = ~ J u(s)ds, 

t-T 

which is sometimes called a moving average. This system is linear, time­
invariant and the impulse response function is 

G ( T) = {:j; for 0:::; T :::; T, 
o for T > Tand T < O. 

This system is not of the form (3.19) as will follow as a direct consequence of the 
following theorem. If one wants to define a state corresponding to this system, 
then it will be clear, at least intuitively, that the state x(t) equals the function 
u on the interval [t - T, t). Hence th is system has as its state space a function 
space, which is infinite dimensional. 0 

THEOREM 3.5 A given matrix K(t, s) is realizable as the impulse response matrix 
of a linear finite dimensional system (i .e. of the farm (3.19)) if and only if there 
exists a decomposition of the farm 

valid for all tand s, with Hl and H 2 being matrices with finite sizes. 

Prooi Sufficiency. Suppose that the factorization given in the statement 
of the theorem is possible. Consider the degenerate realization [A = 0, B = 
H2' C = Hl], that is, consider the relation 

Clearly this gives 

t 

y(t) Hdt)x(tol + Hl(t) J H2(U)U(u)du 

to 

t 

Hdt)x(to) + J K(t, u)u(u)du . 

to 
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Necessity. Suppose a linear system of the form (3.19) is given. Then for this 
system, 

K(t, s) = C(t)~(t, s)B(s) . 

However, if tl is any constant we have from the composition law for transition 
matrices 

~(t, s) = <)(t, tl)<)(tl, s) . 

If we make the identification 

Hl(t) = C(t)~(t, tI), H2(S) = <)(tl' s)B(s) , 

we see that H I(t)H2(s) = K(t, s). o 

EXERCISE 3.12 Show that the impulse response fuction of the moving average 
example (Example 3.8) cannot be written as a product ofthe form HI(t)H2(S) and 
hence the moving average system cannot be represented as a finite-dimensional 
linear system. 

If we write 

+00 +00 

y(t) = J K(t, s)u(s)ds ,or, y(t) = J G(t - s)u(s)ds , (3.39) 

-00 -00 

with the upperbound +00 instead of t, we get in principle a noncausal system. 

REMARK 3.3 The formal definition of strict causality will be given in Chapter 8. 
Heuristically it means that the present evolution of a system cannot dep end on 
phenomena which will happen in the future. For state space descriptions (strict) 
causality can be characterized as follows. For a strictly causal system the present 
state only depends on the past states and past inputs. If a system is only causa! 
(and not strictly causai), then the present state is only allowed to depend on the 
past states and the past and present input. 0 

These relations do not define a system according to the definitions given here. 
The causa} systems form a subclass of the class of systems described by (3.39) 
by requiring 

K(t, s) = 0 for t < s or G(r) = 0 for r < 0 . 

The external behaviour of a linear differential system is completely determined 
by the matrices K(t, s) and D(t). It is possible that different sets of matrices 
(A(t), B(t), C(t)) define the same matrix K(t, s). Let us substantiate this for 
time-invariant systems only: 

x = Ax + Bu, y = Cx + Du, G(t) = CeAt B . (3.40) 
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If S : nn -+ nn is an invertible basis transformation in the state space X = nn, 
then we get for the transformed state z = Sx the following equations: 

z = Si = SAx + SBu = SAS-1z+ SBu, 

y = Cx + Du = C S-1 Z + Du . 

The basis transformation S transforms the set of matrices (A, B, C, D) into 
(SAS-I, SB, CS-I, D). Calculation ofthe impulse response matrixfor the trans­
formed system yields 

which shows that G(t) does not change under a basis transformation. This should 
be clear sin ce the choice of a new basis in the state space should not change the 
external behaviour of a system. 

DEFINITION 3.1 Two linear systems 

:i: Ax+Bu, x Ai +Bu, 
y Cx+Du, y Cx+ bu, 
x E nn, x E nn , 

with the same number of inputs and with the same number of outputs are called 
isomorphic if an invertible linear mapping S : nn -+ nn exists such that 

A = SAS-I, B = SB, C = CS-I, b = D . 

The relationship between the two systems in the definition above can be given 
as a commutative diagram: 

n A n 
IR • IR 

/ s ~ m 
IR

P 
IR 

\ n A ! 
IR • IR 

Just before Definition 3.1 we have proved that two isomorphic systems have the 
same impulse response matrix function. It may be clear that for a given impulse 
response function there exist realizations (A, B, C, D) having state vectors of 
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different dimensions. A trivial example of this is obtained from the system given 
in (3.40) by adding a vector equation which does not affect the output; e.g. 

written as 

x 
x 

Ax+Bu 
Fx+Gu ' 

y= Cx+Du, 

! ( ~ ) = (~ ~) ( ~ ) + ( ~ ) u, 

y = (C 0) ( ~ ) + Du. 

Apparently there can be no upperbound on the dimension of a realization of 
a given impulse response function. However, under reasonable conditions there 
does exist a lower bound. If a system, given by its matrices (A, B, C, D), realizes 
the impulse response function K(t, s), it will be called a ntinintal realization 
if there exists no other realization of K(t, s) having a lower dimensional state 
vector. The minimum dimension is called the order of the impulse response 
function. 

A weU known branch of system theory is concerned with the realization prob­
lem: given the external description of a system, such as for instanee determined 
by the mapping F introduced in (3.34), determine a state space description. For 
linear time-invariant finite-dimensional differential systems this problem boils 
down to: given the impulse response matrix function G(t) + Dc5(t) (see Exer­
cise 3.10 for the addition of Dc5(t)), find an n x n matrix A, n x m matrix B 
and a p x n matrix C such that G(t) = CeAt Bj nis also to be determined. A 
conclusion is that, even with minimal n, not a unique realization existsj for, if 
(A, B, C, D) satisfies the conditions, then (SAS-I, SB, CS-I, D), with the n x n 
matrix S nonsingular, also satisfies the same conditions. 



Chapter 4 

System properties 

4.1 Stability 

Several concepts of stability for differential equations exist. They can be dis­
tinguished according to stability corresponding to autonomous systems (related 
to the state vector) and to stability corresponding to systems with inputs and 
outputs (where the stability is defined in terms ofthese inputs and outputs). The 
first four following subsections deal with the first mentioned concept of stability, 
the fifth one deals with input/output stability. Proofs of the theorems related to 
Routh stability and interval stability are not given here; they make an extensive 
use of complex function theory and, though not difficult, are lengthy and fall 
outside the scope of these notes. 

4.1.1 Stability in terms of eigenvalues 

DEFINITION 4.1 Given a first order differential equation x = f(x), the solution 
of which, with initial condition x(O) = Xo, will be indicated by x(t, xo). A vector 
x which satisfies f(x) = 0 is called an equilibrium point. An equilibrium point 
x is called stabie if for every é > 0 a fJ > 0 exists such that, if IIxo - xII < fJ, then 
Ilx(t, xo) - xII < é for all t ~ O. An equilibrium point x is called asymptotically 
stabie if it is stable and, moreover, a fJ1 > 0 exists such that lim IIx(t, xo) -xII = 

t-+oo 
o provided that IIxo - xII < fJ1 • An equilibrium point x is unstable if it is not 
stable. 

In this definition 11 11 is an arbitrary norm; usually the Euclidean norm is used. 
Intuitively, stability means that the solution remains in a neighbourhood of the 
equilibrium point, asymptotic stability means that the solution converges to the 
equilibrium point (provided the initial point is sufficiently close to this equilib­
rium point), instability means that there is always a solution, which may start 
arbitrarily close to an equilibrium point, that 'explodes' or 'diverges away' from 
the equilibrium point. 

53 



54 MATHEMATICAL SYSTEMS THEORY 

For linear differential equations X = Ax we will take as equilibrium point 
x = 0 (though there will be others if det(A) = 0). We will call x = Ax, or even 
A, (asymptotically) stabie if x = 0 is (asymptotically) stabie. 

THEOREM 4.1 Given the differential equation x = Ax, with A an n x n matrix 
with the different eigenvalues 'xl, ... , Àk (k ~ n). The origin x = 0 is asymptotic­
ally sta bie ij and only iJ'R. Ài < 0 Jor i = 1, ••• , k. The origin is stabie iJ'R. Ài ~ 0 
Jor i = 1, ... , k and moreover ij to each eigenvalue with R Ài = 0 there correspond 
as many linearly independent eigenvectors as the multiplicity of Ài. 

Proof In the proof use is made of the formula 

eAt = TeJtT- I , (4.1) 

where J is Jordan form. It is easily verified that all elements of eJt converge to 
zero for t -+ 00 if all eigenvalues have real parts less than zero. Therefore also 
the elements of eAt converge to zero and subsequently the solution x(t) = eAtxo 
also converges to zero. If some eigenvalues have real part zero, the situation is 
slightly more subtie. The sub-blocks Jij in J with 'R.('xï) < 0 still do not cause 
any problem (since eJijt -+ 0 as t -+ (0), but the sub-blocks with R(Ài) = 0 may 
disturb stability. In the matrix 

t 

o 

t 
o o 1 

the factor eÁit remains bounded (but does not approach zero (with R(Àï) = 0 
it follows that I expÀitl = 1)), whereas the elements in the matrix do not all 
remain bounded. Therefore, if the size of Jij is greater than 1 x 1, we do not 
have stability. If the si ze of all sub-blocks Jij corresponding to eigenvalues with 
real part zero is 1 x 1, th en stability is guaranteed. The condition given in the 
statement of the theorem exactly expresses the fact that all such sub-blocks have 
size 1 x 1. 0 

EXAMPLE 4.1 Consider the matrices in Exercise 3.4. The first one is stabie, the 
fifth one is asymptotically stabie, the others are unstable. 0 

EXERCISE 4.1 Investigate the (asymptatic) stability of the system matrices A 
corresponding to the inverted pendulum in Example 3.2 and ta the satellite in 
Exercise 3.1. 
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EXAMPLE 4.2 The results of Theorem 4.1 do not hold for time-varying systems 

as shown by the solution of 

d ( Xl) ( 4a 
dt X2 = ae-8at 

_3ae8at 

o 

The eigenvalues of the system matrix are .À I = a, .À2 = 3a (they happen to he 

constants, i.e. they do not dep end on time) and hen ce for a < 0 both eigenval­

ues have real parts less than zero. However, the exact solution is (with initial 

condition Xl (0) = XIO, X2(0) = X20): 

( ) 3 ( ) 5at 1 ( 3) 7 at 
Xl t 2 XIO + X20 e - 2 XIO + X20 e , 

( ) 1 ( 3) -at 1 ( ) -3at 
X2 t 2 XI0 + X20 e - 2 XI0 + X20 e , 

which is unstable for any nonzero real a. o 

DEFINITION 4.2 Consider the n-dimensional system i: = Ax. The stabIe sub­

space for this system is the (rea I) subspace of the direct sum of those linear 

subspaces Ni (see Theorem 3.2) which corespond to eigenvalues of A in the left 

half plane (i.e. eigenvalues with real parts less than zero). The unstable sub­

space is defined similarlYi it corresponds to eigenvalues with nonnegative real 

parts. 

Remark that in this definition ~.Ài = 0 is supposed to correspond to the unstable 

suhspace, though strictly speaking we could have distinguished 'stabie subspaces' 

and 'asymptotically stabie subspaces'. It follows from this definition that the 

state space n" is the direct sum of the stabie and unstable linear subspace. 

EXERCISE 4.2 Show that of the scalar nonlinear system i: = -ex + x2 the equi­

librium point i = 0 is asymptotically stabie for each e > 0 and unstable for € ~ O. 

The linearized system (linearized around the equilibrium point), however, is stabie 

for e = O. How is this explained? 

Suppose that the differential equation i: = f(x, t) has an equilibrium point i = 

0, i.e. !(i, t) = 0 for all t. Suppose also that this differential equation can 

equivalently he written as 
i: = Ax + h(x, t) , (4.2) 

where Ax is the linear part of f(x, t) around the origin. Note that the matrix A 

is assumed to be constant. By construction, IIh(x, t)1I = o(lIxll), which means 

lim IIh(x, t)1I = 0 . 
IIxll~o IIxll 
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THEOREM 4.2 Let the matrix A in (4.2) be constant (and real) with character­
is tic roots all ha ving negative real parts. If h in (4.2) is real, continuous for smalt 
Ilxll and t ~ 0 and moreover IIh(x, t)1I = o(lIxll) uniformly in t, t ~ 0, then the 
identically zero solution of (4.2) is asymptotically stabie. 

The proof of this theorem can for instance be found in [Coddington and Levinson, 
1955]. 

4.1.2 Routh's criterion 

The eigenvalues of A are the roots ofthe characteristic polynomial det( >'1 - A) = 
an>.n + an_l>.n-l + ... + al>' + ao with a n = 1. By means of the so-called 
Routh's criterion the stability of A can be checked directly by considering 
the coefficients {a,}, without calculating the roots of the polynomial explicitly. 
In terms of number of numerical operations, calculation of the position of the 
eigenvalues is much more expensive than the Routh criterion, which only checks 
whether the eigenvalues lie in the left-half plane (and does not calculate the 
positions of the eigenvalues). The criterion works as follows (no proof is given 
here: it can be found in [Gantmacher, 1959]). Arrange the coefficients {a,} in 
the following wayj 

a n an -2 an -4 

an-l an -3 an -5 

bI b2 b3 

Cl C2 C3 

where the coefficients {b,}, {Ci}, ... are defined as 

b 
_ U,,-lan -4 - an an -5 

, 2 - , •••• , 
an-l 

, .... , 

etcetera. The scheme is continued until only zeroes appear (both to the right 
and downwards). Thus one has obtained the so-called Routh tabie. In order to 
exclude singular cases, it is assumed that the first n+ 1 elements of the first column 
of the Routh table are weIl defined and nonzero. Subject to this assumption, 
Routh's criterion states that the matrix A has eigenvalues with negative real 
part if and only if the elements in the first column all have the same sign. It is 
not difficult to find polynomials for which the assumption (on excluding singular 
cases) is not satisfiedj in that case an adapted version of Routh's criterion exists, 
for which the reader is referred to [Gantmacher, 1959]. 

EXERCISE 4.3 For which value(s) of k has the equation >.3 + 3>.2 + 3>' + k = 0 
only roots with negative real parts? 
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4.1.3 Lyapunov stability 

Determining whether or not all solutions of a particular linear differential equa­

tion (time-invariant or time-dependent) remain bounded or go to zero as i tends 

to 00 can be quite diflicult. It is possible to derive some useful sufliciency con­

ditions which, if satisfied, guarantee that all solutions will be bounded or even 

converge to zero. To this end we will introduce certain scalar functions of x and 

tand study their evolution in time. The basic idea has its origin in classical 

mechanics where stability criteria involving the notion of energy are quite useful. 

A mechanical system was defined to be stabie if its energy remained bounded. 

Lyapunov developed this idea and subsequently the corresponding theory bears 

his name. 
Let us concentrate here on time-invariant linear differential equations of the 

form x = Ax. The scalar function V(x(i)), not depending on i explicitly now, 

and defined as xT(t)Px(t) for some positive-definite1 matrix P will be regarded 

as a 'generalized' energy associated with the system. In an asymptotically stabie 

system the energy should decay with time; 

d 
di V(x(i)) = xT (t)Px(t) + xT Px(t) = xT (i}[P A + AT P]x(t), 

and hence, if Q ~f -(PA + AT P) is positive-definite, the energy does decrease 

with time. Indeed, if Q > 0, then limt-+oo V(x(t)) = O. 

THEOREM 4.3 All eigenvalues of the matrix A have negative real part if and only 

if for any given positive-definite matrix Q there exists a positive-definite matrix 

P that satisfies 
(4.3) 

Proof Sufliciency: from the existence of the P matrix we will prove that 

all eigenvalues of A have negative real parts. Suppose that a matrix P > 0 

exists such that (4.3) is true, then the argumentation just above has shown that 

limt-+oo V(x(t)) = 0, which can only be true if liIIlt-too x(t) = O. This lat ter can 

only be true if all eigenvalues of A have negative real part. 

Necessity: from the asymptotic stability of A it will be shown that (4.3) has a 

solution P > O. If A is such that ~U; < 0 for all eigenvalues À;, then we shall 

prove that a suitable P-matrix is given by 

P = 100 

eATtQeAtdt. 

Due to the asymptotic stability of A, this integral will exist. Next, by substitu­

tion, 

1 A square matrix P is ealled positive-definite if it is symmetrie and if x T Px > 0 for all 

x;é o. 
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o 

Equation (4.3) is referred to as the Lyapunov equation. 

4.1.4 Interval stability 

In this section polynomials of the form p{A) = L:?:o aiAi will be studiedj we are 
specifically interested in whether their zeros belong to the left-half plane. The 
novelty here is that the coeflicients ai are not exactly knownj it will be assumed 
that only the lowerbounds ai and upperbounds at are known: ai E [ai, atl. 
The central question is: if we know ai and at, i = 0,1, ... , n, and arbitrary ai 
subject to ai E [ai, at] are chosen, what can one say about the location of the 
zeros of p(A)? What conditions should be imposed on ai and at such that the 
zeros He in the left half plane? These questions are related to robustness issues 
of linear systems, since quite of ten the exact numerical values of the coeflicients 
ai, i = 0, 1, ... , n, will not be knownj one only knows these values approximately 
by means oflower- and upperbounds. Sometimes such an 'uncertain' polynomial 
is called an interval polynomial and is written as p(À, a) = E~=o[ai, at]Ai . 
Throughout this section it will be assumed that 0 ~ [a;;, at] which amounts to 
saying that the degree of p(A, a) is constant (and equals n), whatever the values 
of ai. In this case one says that the family of polynomials p{ A, a) has invariant 
degree. 

DEFINITION 4.3 Associated with the interval polynomial 

n 

p(A, a) = :L[ai, at]Ai 

i=O 

are the following four polynomials, the so-called Kharitonov polynomials: 

Pl(A) aö + aï A + at A2 + at A3 + ai A4 + as A5 + at A6 +"', 

P2{A) at + at A + ai" A2 + ai A3 + at A4 + at A5 + as A6 +"', 

pg(A) = at + aï A + ai" A2 + at A3 + at A4 + as A5 + as A6 +"', 
P4(A) = aö+alA+atA2+aiA3+aiA4+atA5+atA6+ ... 

It will turn out that these four Kharitonov polynomials play a crucial role in 
the stability of p{A, a), with the vector a arbitrary, but subject to ai E [ai, at], 
as is expressed by 

THEoREM 4.4 Any polynomial p(A, a) with ai E [ai, at] and 0 ~ [a;;, at] has 
all its zeros in the left-half plane if and only if the four Kharitonov polynomials 
have all their zeros in the left -half plane. 



EXAMPLE 4.3 Suppose we are given the interval polynomial 

p(À, a) = (15,19] + [20,24]'\ + [2,3],\2 + [1,2],\3, 

then the four Kharitonov polynomials are: 

Pl('\) 

P2('\) = 
P3('\) 
P4('\) 

15 + 20,\ + 3,\2 + 2,\3, 

19 + 24,\ + 2,\2 + ,\3, 

19 + 20,\ + 2,\2 + 2,\3, 

15 + 24,\ + 3,\2 +,\3. 
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To study the stability of these four polynomials, one can for instance use the 
Routh criterion. If one does so, it turns out that these four polynomials are in­
deed stabie, i.e. they have all their zeros in the left-half plane. From Theorem 4.4 
it follows that p('\, a) has all its zeros in the left-half plane for all vectors a with 
ai E [a;,atl, i = 0, 1,2,3. 0 

EXERCISE 4.4 Show, by means of an interval polynomial of degree one, that the 
condition 0 rt. [a;;-, at] is indeed necessary for Theorem 4.4 to hold. 

4.1.5 Input-output stability 

This type of stability refers to the effects of input functions. It centers around 
the idea that every bounded input should pro duce a bounded output provided 
that the underlying system can be regarded stabie. Such a stability is called 
input-output stability. An input u(·) is called bounded if a constant c exists such 
that lIu(t)1I :S c for all t. One has a similar definition for the boundedness of the 
output. Let us give the formal definition. 

DEFINITION 4.4 The system 

( 
x(t) ) _ (A(t) B(t)) ( x(t) ) 
y(t) - C(t) D(t) u(t)' 

is BIBO stabie (BIBO stands for bounded input, bounded output) if for all to 
and for zero initial conditions at t = to, every bounded input defined on [to, 00) 
gives rise to a bounded output on [to, 00). The system is called uniformly BIBO 
stabie if there exists a constant k, independent of to such that for all to the 
statements 

x(to) = 0, lIu(t)lI:S 1, Yt ~ to 

imply lIy(t)1I :S k, for all t ~ t~. 

Other types of input-output stability definitions exist, for instance related to 
the requirement that input and output functions must be L2-functions (func­
tions which are measurable and square-integrable), but we will not continue this 
direction. 
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4.2 Controllability 

Controllability is a fundamental concept in mathematical system theory, as is the 
concept of observability, the latter to be introduced in the next section. These 
concepts play an essential role in the design and con trol of systems as will become 
dear. We will confine ourselves to lineair, time-invariant differential systems as 
introduced in previously. Consider therefore 

y 

Ax+Bu, 

Cx+Du, (4.4) 

with x E nn, u E n m and y E n p • The constant matrices have appropriate sizes. 
The space of admissible input functions will be the dass of piecewise continuous 
(vector) functions. The solution of (4.4) with initial condition x(O) = Xo will be 
written as x(t, Xo, u) and the corresponding output as y(t, Xo, u). 

x(t,xo,u) eAtxo+ fot eA(t-&)Bu(s)ds, 

y(t, xo, u) = CeAtxo + fot CeA(t-&) Bu(s)ds + Du(t). 

System (4.4) will sometimes be indicated by system (A, B, C, D) for the sake of 
brevity. 

DEFINITION 4.5 System (A, B, C, D) is called controllabie if for each arbitrary 
two points Xo and Xl E nn, a finite time tI > 0 and an admissible input function 
u(·) exist such that X(tb xo, u) = Xl. 

A system is controllabie if an arbitrary point Xl can be reached starting from 
an arbitrary point Xo in finite time by means of an admissible input function. 
Sometimes controllability is only defined with respect to final points Xl which 
are the origin. In that case it would be more appropriate to talk about null 
controllability. We will stick to Definition 4.5. The 'reverse' concept of null 
controllability, i.e. being able to reach an arbitrary point starting from the origin, 
is called reachability. For differential systems (A, B, C, D) the two additional 
concepts are equivalent to Definition 4.5 as can be proven. If such a system is 
reachable, then it is also controllabie and null-controllable, etc. This equivalence 
does not hold for discrete-time systemsj see Chapter 7. (The essence is that 
the transition matrix for discrete-time systems does not necessarily have full 
rank and therefore null-controllability is easier fulfilled than 'full' controllability.) 
Controllability will be characterized in terms of the matrices A and B. It is dear 
that C and D do not play any role here. Define 

R = [BIABIA2 BI .. . IAn-IB] 

which is an n x nm matrix consisting of n blocks Ai B, j = 0, 1, ... , n - 1, and is 
called the controllability Dlatrix. The image of R, Im R, is the linear subspace2 

2Note the difference in notation between Im, 'image' and ~, 'imaginary part' 
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of nn spanned by the column vectors of Rand is called the controllability 

subspace. This name will become dear later on. 

LEMMA 4.1 lm Ak Be lm R for all k. 

Proof The assertion for k = 0,1, ... , n - 1 follows from the definition of R. If 

p(À) = Àn + Pn_lÀn-l + ... + Po = det(n - A) 

is the characteristic polynomial of A, then the theorem of Cayley-Hamilton, 

which is well known in matrix theory, states that p(A) = 0. This results in 

A n An-l A n- 2 A I = -Pn-l - Pn-2 - ... - PI - Po . (4.5) 

Hence An is a linear combination of Ai, j = 0, 1, ... , n - 1. Multiplying (4.5) by 

A leads to (and substituting An of (4.5)) 

An+l -Pn-l (-Pn_lAn-l - Pn_2An-2 - ... - PIA - Pol) 

-Pn_2An-l - ... - PlA2 - poA. 

Hence An+l also is a linear combination of Ai, j = 0,1, ... , n-1. With induction 

it can be shown that Ak , k ~ n, can be written as such a combination. Con­

sequently, all A k B can be written as a linear combination of B, AB, ... , An-1B 

for all k > n. This is of course also true for all k with 0 < k < n. Therefore 

Im Ak B ë Im R for all k. - 0 

THEOREM 4.5 The following statements are equivalent: 

1. System (A, B, C, D) is controllabie. 

2. R has rank n. 

9. lmR = nno 

Proof The equivalence of statement 2 and 3 is obvious. We continue with pro of 

1 -+ 2. Assuming rank(R) < n, we will show that (A, B, C, D) is not controllabie. 

For each input function u(t), ° ~ t ~ tI (tl> 0) we have 

X(tl, 0, u) = l tl 

eA(tl-') Bu(s)ds 

rtl ( A
2 

) Jo 1+ A(t l - s) + 2f(tl - s)2 + ... Bu(s)ds 

B l tl 

u(s)ds + AB l tl 

(tl - s)u(s)ds + 

A2B rotI (tI - S)2 ()d 
Jo 2! u s s + ... 
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This formula states that :I: (tI , 0, u) is a linear eomhination of the column vectors 
of B, AB, A2 B, .. . and aeeording to Lemma 4.1, X(tb 0, u) E Im R for eaeh 
u. If rank(R) < n, then Im R # 'Tl" (there are points which eannot he reaehed 
from :1:0 = 0) and an n-veetor a # 0 exists sueh that aT R = O. Therefore 
aT :I: (th 0, u) = 0 whieh means that the system eannot he steered in the direction 
of a. Any state reaehed is always perpendicular to a if the system started at the 
origin. 

Now we will prove the direction 2 -+ 1. Suppose rank(R) = n. First it will 
be shown that starting from Xo = 0 eaeh point Xl E 'Tl" ean be reaehed in an 
arbitrarily short time tI > O. Later the initial point heing arbitrary will he 
eonsidered. 

Define the symmetrie n x n matrix K as 

(4.6) 

It will be shown in Lemma 4.2 that matrix K is invertible. For arbitrary :1:1 E 'Tl" 
and tI > 0 define 

u(t) = ET e-ATt K-le-Atl:l:l. 

If this input is applied to the system with initial condition Xo = 0, then 

lt
l 

eA(h-')BBT e-AT• K-le-At l xlds 

eAtl (lh e-As BBT e-AT SdS) K-le-Ah:l:l 

eAh KK-le-Ah:l:l 

= Xl· 

Lastly, if Xo is arbitrary, u will be eonstrueted as follows. Consider the state 
:1:1 - eAtl:l:o E 'Tl". Aeeording to the previous part of this proof a control u exists 
which steers the system from the origin to :1:1 - eAtl:l:O E 'Tl", i.e. 

Hence, for this u, 

o 

LEMMA 4.2 The matrix K as defined in (4.6) is invertible. 
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Prooi Suppose that matrix K is not invertible. Then Ka = 0 for an n-vector 

a t 0, and hence also aT K a = 0, equivalently 

v sE [0, tI]. 

The latter equivalence follows because aT e-A 3 B is a continuous function of s. 

Differentiating the latter expression (n - 1) times with respect to s and then 

substituting s = 0 gives 

aT e- A3 B = 0 ~ aTB = 0, 

aT Ae-A3 B = 0 ~ aT AB = 0, 

aT A n- Ie-A3 B = 0 ~ aT An-IB = O. 

This gives aT R = 0 which is impossible because rank(R) = n. Therefore K is 

invertible. 0 

Controllability of a system is determined by the matrices A and B as The­

orem 4.5 teaches us. Therefore we will also speak about the controllability of the 

pair (A, B). The condition rank R = n is called the rank condition for control­

lability. In case m = 1, i.e. the input is a scalar, the matrix R is a square n x n 

matrix and controllability is identical to det R t O. Please note that Theorem 

4.5 does not say anything about tl > O. Therefore, the flnal point can he reached 

in arhitrarily short time if it can he reached at all (of course, for smaller tb the 

norm of the input function will increase). 

EXAMPLE 4.4 Consider the satellite dynamics of (3.17) and take w = 1. The 

controllability matrix is 

R=(! ~ ! ~ ~ 
o 1 I -2 0 

o 2 
-1 0 
-2 0 
o -4 

-1 
o 
o 
2 

~2 ) 
-4 ' 
o 

and rank R = 4 by inspection. Hence the satellite system is controllahle. Suppose 

now that Ul = 0 and the controllability-question is asked with respect to Uz only. 

Then (denote the controllability matrix hy Rz) 

(

00 2 0) o 2 0 -2 
Rz = 0 1 0 -4 . 

1 0 -4 0 
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By inspection rank R2 = 4 and hence U2 on its own is able to manoeuver the 
satellite to arbitrary positions (from a pragmatic point of view; Xo and Xl, initial 
and final point, should be chosen such that the linearized equations (3.17) make 
sense for these and intermediate points). Suppose now that U2 = 0 and the 
question is wh ether UI alone is able to take care of the controllability. For that 
purpose consider 

( 

0 1 
1 0 

Rl = 0 0 

o -2 

o 
-I 
-2 
o 

~I ) 
o ' 
2 

which has rank 3. Hence the system with U2 = 0 is not controllable! 0 

EXERCISE 4.5 Investigate whether system (3.15) -the inverted pendulum- is con­
trollable. 

EXERCISE 4.6 Investigate whether the following pairs of matrices are con trol­
lable. 

1.A=(~ ~),B=(~), 

2. A = (~ ~), B = ( ~ ), 

3. A = (~ ~), B = ( ; ), 

4. A = ( a} 
a2 ~),B=(i), 

5. A= ( ~l l ),B=(~), 0 

U 1 O,B=(::), 6. A = ,\ 

0 

7. A = ( 
,\ 0 

O,B=(~). 0 ,\ 

0 0 



EXAMPLE 4.5 Consider: 

x( t) 

y(t) 

o 1 o o 

o 
001 

-Po -PI -Pn-l 

(qo, qll ... , qn-l)X(t). 

x(t) + 

o 

o 
1 
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u(t), 

(This system is said to be in the 'standard controllabe form'. Not all systems 

can be put in this form by means of a coordinate transformationj see the next 

chapter). For this system 

R= 

o 

o 1 
1 x 

o 1 

1 x 

x 

wh ere the x denote possibly nonzero-elements. Since rank R = n, this system is 

always controllabie, irrespective of the values of the coefficients qi and Pi. Hence 

the name 'standard controllabie realization'. 0 

EXERCISE 4.7 Are the equations of motion of the tractor and carts (Exercise 3.3) 

when the combination moves in forward direction controllabie? Same question, 

but now the combination moves in backward direction. 

EXAMPLE 4.6 Controllability can also be studied in terms of flow diagrams. The 

system 

u 

is not controllabie since Xl cannot be influenced by u. The next system, 
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U 

---i~+ )---~ J 1----...... --.(+ )..--; .. 

is controllabie. lts state space description is 

. (alO) ( 1 ) x = 1 a2 x + 0 u. 

o 

If the system (A, B) with state space nn is not controllabie, th en those points of 
nn which are reachable (if the system starts at the origin) are exactly all vectors 
oflm R. 

Im R = {Xl E nnlthere exists tI > 0 and u E U such that Xl = X(tl, 0, u)} 

The space U refers to the space of admissible u (.) functions. An algebraic proof 
of this statement will not be given, instead we will interpret lm R in a geometric 
way. 

DEFINITION 4.6 A linear stlbspace V E nn is ca lied A-invariant i! AV C V. 

THEOREM 4.6 Im R is the smallest linear stlbspace of nn stlch that 

1. Im Be Im R 

2. lm R is A-invariant 

Proof First it will be shown that Im R satisfies proper ties 1 and 2. Because 
R = [BIABI . .. IAn-1 B], clearly Im B CIm R. Furthermore, 

A(lm R) = A(lm [BIABI .. . IAn
-

1 Bl) = Im [ABIA2 BI . . . IAn B]. 

According to Cayley-Hamilton, An B can be expressed as a linear combination of 
the column vectors of B, AB, ... , An-l B. Therefore 

A(lm R) CIm [BIABI ... IAn-IB] = Im R. 

It remains to be shown that Im R is the smallest subspace that satisfies points 
1 and 2. (That such a'smallest' subspace exists is guaranteed by the fact that 
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the intersection of two subspaces which both satisfy points 1 and 2, also satisfies 
these points.) Suppose now that a linear subspace V is given which satisfies 
points 1 and 2. It will be shown that Im R CV. Because Im B C V and 
AV C V the following inclusion holds: 

Im An-1B 

Therefore, 

A(lmB) C AV c V, 

A(Im AB) C AV C V, 

= A(lm An-2B) C AV C V. 

Im R=lm [BIABI ... IAn- 1B] =Im B+lm AB+ ... +lm An- 1B C V. 

o 

It is weU known (from the theory of matrices) that if a linear subspace V C nn 
is A-invariant, then a basis {a}, ... , an } of nn can be found such that V = 
span{al, ... ,ak} - dimV = k < n - and that with respect to this basis the 
mapping A has the form 

( A;: I A:~ ) t k 
A = ... 

I A22 t n-k 

++ ++ (4.7) k n-k 

Th. mat,ix A" = 0 b"""uso A ( ~ ) must have th. fo'm ( ~ ). 

Such a basis can for instan<;e be found by means of the Gram-Schmidt proced­
ure. The conclusion here is that if dim (Im R) = k < n, then a basis (al, ... , an ) 

ofnn can be found such that Im R = span{al,"" akl and A has the form (4.7) 
with respect to this basis. Because Im B C Im Rand the above mentioned 
subspace V is identified with Im R, then in the new basis B has the form 

( :'. ) t k 
B = 

t n-k 

++ (4.8) 
m 

In this basis, 
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and therefore the pair (Au, BI) is controllabie, since 

rank [BllAuBIl . .. IA~ll BI] = k, 

which is the maximum rank for this matrix. The choice of a new basis is equi­
valent with performing a basis transformation. Therefore, an invertible matrix S 
exists such that S-l AS and S-l B are of the form (4.7) and (4.8) respectively. 

EXAMPLE 4.7 Consider the pair 

(
0 1 00) (0) 3 0 0 2 1 

A= 0 0 0 1 ' B= 0 . 
o -2 0 0 0 

The system corresponding to this (A, B) was considered in Exercise 3.1 and 
Example 4.4. It represents a satellite with only one input, viz. the thrust in 
the radial direction. This system is not controllabie, rank R = 3 according to 
Example 4.4, which also gives three vectors which span Im Rj 

If these vectors are identified with a l, a2 and a3 respectively, th en a4 must be 
chosen independent of al, a2 and a3. We choose a4 = (2,0,0, I)T. Now define 

S; [a1Ia,la3Ia.J; ( ~ 
1 0 n, 0 -1 
0 -2 

-2 0 

and hence 

S-l; 0.1 x U 10 -5 

~4 ) 0 0 
0 -5 o ' 
0 0 2 

and calculate S-l AS and S-l B: 

( -:-
0 0 
0 -0.5 

A = S-lAS= 1 0 

0 0 

The partitioning in sub-blocks as given by (4.7) and (4.8) is clearly visible. The 
pair (Au, BI)' with 

( 

0 0 0 ) 
Au = 1 0 -0.5 , 

o 1 0 



is controllabie sin ce 

rank R= .. nk ( 
1 0 0 
o 1 0 
001 
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) =3. 

o 

EXERCISE 4.8 Write the noncontrollable pairs of Excercise 4.6 in the form of 

(4.7) and (4.8). 

Some other tests on controllability exist, to be given next. 

THEOREM 4.7 The pair (A, B) where B is an n x 1 vector and A an n x n matrix, 

will be noncontrollable if and only if a vector q t 0 and a scalar >. exist such that 

(4.9) 

In other words, (A, B) will be controllabie if and only ifthere is no row eigenvector 

(this in contrast to the more usual column eigen vector) of A that is orthogonal 

to lm B. Obviously a row eigen vector of A is a column eigenvector of AT. 

Proof Necessity. If there exists a q t 0 such th at 

then 

so that, 

0, 
= 0, 

which means that R has rank less than n, i.e. (A, B) is not controllabie. 

Sufliciency. We have to show that (A, B) noncontrollable implies the existence 

of a vector q such that as in (4.9). Assume that the pair (A, B) has been put in 

the block triangular form of formulas (4.7) and (4.8). Now it is dear that the 

following vector q is perpendicular to lm B: 

), 
tt tt 
k n - k 

aamumtlli .t tl 
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and it is perhaps not hard to guess that we should choose zT as a row eigenvector 
of A22 : 

because then 
qT A = [OlzT]A = [OI'\zT] = ,\T q. 

Therefore we have shown how: to find a row vector qT satisfying (4.9) and this 
completes the proof. 0 

It is not diflicult to verify that the proof above, and therefore Theorem 4.7, 
is not only valid for single-input systems, but also for multi-input systems. 

THEOREM 4.8 A pair (A, B), possibly representing a multi-input system, is con­
trollabie if and only if rank[sl - AIB] = n for all complex s. Here n denotes 
the size of A. Note that this condition wW clearly be met for all s that are not 
eigenvalues of A because then det[sI - A] =F o. 

The proof of the Theorem is that the rank must be n, even when s is an eigenvalue 
of A. 

Proof If [sI - AIB] has rank n, there cannot be a non zero row vector qT 
such that 

qT[sI - AIB] = 0, 

for any s, i.e. such that qT B = 0 and qT A = sqT. But then by the previous 
theorem, (A, B) must be controllabie. The converse follows easily by reversing 
the above arguments. 0 

EXERCISE 4.9 We are given a single input system i: = Ax + Bu which is con­
trollabie. Suppose that a control is applied of the form u = K x + v, where K is 
a 1 X n and v the "new" control, which is a scalar also. The new system is the 
characterized by the pair (A + BK, B). Prove, by using Theorem 4.8, that this 
new system is also controllabie. 

EXAMPLE 4.8 The starting point of this example is equation (2.7) of the heated 
bar: 

8T(t, r) 82T(t, r) 0 0 
at = c 8r2 ' ~ r ~ 1; t 2: , (4.10) 

where we will assume now that c = 1. The temperature can be controlled 

Tl T2 n-l In I n+l Tn 

~ 

1. 
n 
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at both ends of the barj at r = 0 by means of UI and at r = 1 by U2. We are going 
to dis ere ti ze the interval of the location parameter r into n discrete subintervals, 
each of length I/n. The temperature on the interval (i - I)/n ~ r < i/n is 
indicated by 11, i = I, 2, . .. , n. If we use the approximations 

then we get the following finite dimensional model: 

Tl -2 I 0 0 Tl 1 0 
T2 1 -2 1 T2 0 0 

1 d ( UI ). n2 dt + 
U2 

1 -2 I 0 0 

Tn 
0 0 1 -2 Tn 

0 I 

By checking the controllability matrix of this fini te dimensional system (not 
shown here), it is easily verified that this system is controllablej one can steer 
to any temperature profile. Is controllability maintained if n -+ 00, or in other 
words, is the system (4.10) controllabie? Formally, controllability for partial 
differential equations has not yet been defined and we will not give the defini­
tion. Intuitively, however, it should be clear that a temperature profile with a 
discontinuity, for instance 

T(t, r) = 0 for 0 ~ r ~ 1/2, and T(t, r) = 1 for 1/2 < r ~ 1, 

at a certain time t, can never be achieved. o 

4.3 Observability 

We now turn to another fundamental concept in system theory, viz. observability. 

DEFINITION 4.7 The system (A, B, C, D) is observable il a finite time tI > 0 
exists such that lor each U E U it lollows Irom y(t, Xo, U) = y(t, XI, U) lor all 
t E [0, tI], that Xo = Xl' 

A system is called observable if the state x(O) can be constructed from the know­
ledge of U and y on the interval [0, tI]' In other words, to the external behaviour 
of an observable system restricted to the interval [0, tIl corresponds only one state 
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vector at time t = O. As with controllability there are several definitions possible 
for observability. A slightly different one would be that a system is observable if 
for each pair of states Xo and Xl, Xo i= Xl, a control u E U and a time tI > 0 
exist such that y(t, Xo, u) and y(t, Xl, u) are not the same on [0, tI]. The latter 
definition means that a control can be found such that Xo and Xl can be distin­
guished. Definition 4.7, however, assumes that Xo and Xl can be distinguished 
for any control if Xo i= Xl' It turns out that for linear systems both definitions 
are equivalent (no proof). 

It will be shown that observability of a linear system (A, E, C, D) can be 
completely characterized by the matrices A and C. Define the np x n matrix W, 
called the observability matrix, as 

C 

CA 

W= 

LEMMA 4.3 IJ 
Cx = CAx = ... = CAn-lx = 0, 

then CAkx = 0 Jor all k ~ O. 

Proof For k = 0,1, ... , n - 1 the statement is immediate. According to the 
Cayley-Hamilton theorem, Ak is a linear combination of Aj, j = 0, 1, ... , n - 1 , 
for k ~ n, see also Lemma 4.1. Therefore 

for certain scalars Ct',k, and hence 

o 

THEOREM 4.9 The Jollowing statements are equivalent: 

1. System (A, E, C, D) is observable. 

2. W has rank n. 

8. ker W = O. 
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Prooi The equivalence of statement 2 and 3 is obvious. We continue with proof 
2 ~ 1. Let rank W = n. Given an arbitrary time tI > 0 and an arbitrary u E U, 
assume that y(t, Xo, u) = y(t, Xl> u) for all t E [0, tI]. We will show that these 
assumptions willlead to Xo = Xl. The equality y(t, Xo, u) = y(t, Xl, u) implies 

and hence 

CeAtxo + l t 

CeA(t-s) Bu(s)ds + Du(t) = 

CeAtxl + l t 

CeA(t-')Bu(s)ds + Du(t), 

CeAtxo = CeAtxl or CeAt(xo - xt} = 0, 

for all t E [0, tI]. If the latter expression is differentiated (n - 1) times with 
respect to tand if then t = 0 is substituted, we get 

CeAt(xo - Xl) = 0 -+ C(xo - Xl) = 0, 
CAeAt(xo - Xl) = 0 ~ CA(xo - Xl) = 0, 

(4.11 ) 

CAn-leAt(xo - Xl) = 0 ~ CAn-l(xo - Xl) = O. 

The result can be written as W(XO-Xl) = O. Since rank W = n we have Xo = Xl. 

Now we will prove the direction 1 -+ 2. Suppose rank W < n and it will be 
shown that the system is not observable. Two different vectors Xo and Xl exist 
such that Xo - Xl E ker W. Then 

C(Xo - Xl) = CA(xo - xt} = ... = CAn-l(xo - Xl) = 0 

Application of Lemma 4.3 yields CAk(xo - xI) = 0 for all k ~ O. Subsequently, 

00 k 
At '" t k Ce (xo - Xl) = L..J k!CA (xo - Xl) = 0 

k=O 

for all t. This now is equivalent with y(t, Xo, u) = y(t, Xl, u) for all tand all 
adnissible controls. Hence the system is not observable. 0 

Observability is completely determined by the matrices A and C and therefore 
we will sometimes speak about the observability of the pair (C,A). The system 
(A, B, C, D) is observable if and only if the system (A, 0, C, 0), i.e. :i: = Ax, y = 
Cx, is observable. Condition rank(W) = n is called the rank condition for 
observability. In case of a single output system W is a square matrix and (C, A) 
observable is then equivalent to det W i= O. 

EXERCISE 4.10 A nonsingular coordinate transjormation X = Si, (stlch that 
A ~ S-l AS, C ~ CS) does not destroy observability. Show this. Ij the observ­
ability matrix of the transformed system is denoted by W, then W S = W. 
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If (C, A) is observable, the interval [0, tI] in Def. 4.7 may be chosen arbitrarily 
small, as long as tI > 0 (the differentiations in (4.11) should be possible). Fur­
thermore if knowledge of u and y on [0, tI] leads to unique determination of xo, 
then also x(t) for all t E [0, tI] is known. Hence, given the initial conditions Xo 
and the known input u, the solution of the state equation is uniquely determined. 

EXAMPLE 4.9 Consider again the satellite dynamics as described in Exercise 3.1 
and the output equations given in Example 3.7. Take W = (j = 1, then 

A-e 
1 

o 0) 0 o 2 C=(~ 0 0 ~ ) . - 0 0 o 1 ' 0 1 
0 -2 o 0 

The observability matrix is 

1 0 0 0 
0 0 1 0 
0 1 0 0 

W= 0 0 0 1 
3 0 0 2 
0 -2 0 0 
0 -1 0 0 

-6 0 0 -4 

which has rank 4. Therefore the system is observable and the current state x(t) 
can be constructed ifwe are given the measurement y(t) and the input u(t) ofthe 
system on an interval [to, t] with to < t. (We have not considered the question 
of how the actual construction of the state should take placej we have proved, 
however, that it is uniquej the actual construction is the subject of Section 5.2 
on observers). Suppose that only Y2 can be measured. The corresponding ob­
servability m trix W2 is 

o 
o 

-2 
o 
i : ) , 
o -4 

which is nonsingular. Therefore the state is uniquely determined if only Y2 (and 
u) is available. If only YI is available, then 

(

10 
o 1 

W I = 3 0 

o - 1 

o 0) o 0 
o 2 ' 
o 0 

and WI has rank 3. This system is nonobservable. o 
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EXERCISE 4.11 Investigate whether the inverted pendulum, as given by the equa­
tions (3.15) and (3.16) is observable. Repeat this investigation if only one of the 
measurements (i .e. either Yl(t) or Y2(t)) is available. 

Though the properties of controllability and observability are different, the rank 
conditions are rather similar , which is expressed in the following theorem. 

THEoREM 4.10 (A, B) is controllabie if and only if (BT , AT) is observable. 
(C, A) is observable if and only if (AT, CT) is controllabie. 

Proof (A, B) controllabIe -Ç::::::> rank[B I AB 1 •••• 1 An-l B] = n -Ç::::::> 

-Ç::::::> rank[B I AB 1 •.•. 1 An-lBJT = n -Ç::::::> 

BT 

-Ç::::::> rank 

BT(AT)n-l 

-Ç::::::> (BT , AT) is observable. 

= n -Ç::::::> 

The proof of the second assertion is similar . o 

The conclusion of this theorem is that x = Ax + Bu is controllabIe if and only 
if the system i = AT z , Y = BT z is observable. The transposition of matrices 
A -t AT , B -+ BT is a simple example of the concept of duality. 

REMARK 4.1 This is a side remark with respect to the notion of duality. The 
dual space of nn consists of all linear functions c : nn -+ n and this is iso­
morphic to the set of n-dimensional row-vectors. This dual space is written as 
(nn)*, which in this example can be identified with nn itself. If A: nn -+ nn is 
a linear mapping, then AT is strictly speaking a mapping from (nn)* to (nn)*. 
o 

The mathematical conditions for controllability and observability are dual. 
Sometimes people speak about duality of these concepts themselves. This duality 
enables us to formulate results for observability by "dualizing" proven results of 
controllability. Examples of "dualization" are the following two theorems which 
will be given without proof. 

THEOREM 4.11 ker W is the largest linear subspace in nn that satisfies 

1. ker Weker C, 

Jili'""lIiiiiili 
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2. ker W is A-invariant. 

The linear subspace ker W is called the nonobservable subspace. Elements 
of ker Ware exactly those states which cannot be distinguished from the origin. 
An application of Theorem 4.11 is the following. A basis (all .... an ) in nn ~ j sts 
such that ker W = span (al! .... , ak) and A has the form (with respect to this 
basis): 

A= ( 
Au A12) 
o A 22 

f-H-+ 

k n - k 

Because ker Weker C, in this basis 

C = ( 0 
++ 
k 

Furthermore, the pair (C2, A 22 ) is observable. 

t k 
t n- k 

). 

THEOREM 4.12 A pair (C, A) will be observable if and only if 

rank [ sI ~ A ] = n for all complex s . 

The connection between input and output is (with x(O) = 0 and D = 0): 

t 

y(t) = J CeA(t-$)Bu(s)ds, 

o 

(4.12) 

(4.13) 

where CeAt B is the impulse response matrix. Now suppose that (A, B) is not 
controllabie, then a basis in nn exists such that 

A - (Au A12) B _ ( BI ) 
- 0 A22 ' - 0 . (4.14) 

In this basis 

The second part of the state space (i.e. the complement of Im R in nn) does not 
play any role in the impulse response matrix. The conclusion is that only the 
controllabie subspace ofnn plays a role in the impulse response matrix. Similarly, 
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suppose (C, A) is not observable, then a basis in nn exists (not neeessarily the 
same as above) sueh that 

( 4.15) 

Please be aware of the fact that the Aij in (4.14) and (4.15) wil! in general be 
different. In this basis 

CeAt = (0 C2eA22t). 

The first part of the state spaee (i.e. ker W) does not play any role in the impulse 
response matrix. 

4.4 Realization theory and Hankel matrices 

In this seetion we eonsider single-input single-output system only. The quantities 

gi = CAi- 1B, i = 1,2, ... (4.16) 

whieh are ealled the Markov parameters, determine the extern al deseription 
of the system 

x = Ax + Bu, y = Cx . ( 4.17) 

The Markov parameters appear in the power series expansion of the impulse 
response 

00 ti 
G(t) = CeAtB = 2:CAiB1 . 

i=O l. 

( 4.18) 

From this lat ter equation it follows that 

di - 1 

gi = dti- 1 G(t)lt=o . 

We form the so-ealled Hankel matrix of size a x (3, 

g1 g2 g3 g{3 
g2 g3 g4 g{3+1 

H(a, (3) = 
g3 g4 

(4.19) 

ga ga+1 . . . . .. ga+{3-1 
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THEOREM 4.13 To the sequence {9I, 92, ... } corresponds a finite dimensional real­
ization of the form (4.17) of order n (i.e. the state space is nn) if and only if 

det H(n + i, n + i) = 0 for i = 1,2, .... 

lf moreover det H{n, n) =ft 0 then n is the order of the minimal realization of the 
sequence {gb g2, .•. } 

The proof wil not he given here; though not difficult, it is somewhat tedious. It 
can for instance be found in [Chen, 1984]. The last column of H(n + 1, n + 1) 
is a linear combination of the first n columns and therefore coefficients a}, ... , an 
must exist sueh that 

an9j + a n-I9j+I + ... + aI9j+n-I + 9j+n = 0, j = 1, ... , n, n + 1 . 

Also without proof it is stated that, given {9I, 92, ... } such that the conditions 
mentioned in Theorem 4.13 are satisfied, a possihle realization of the underlying 
system in state spaee space form is 

0 1 0 0 91 1 
0 

A= 
0 

, B= , CT = 

0 0 1 
-an -al 9n 0 

Such a realization is not unique; basis transformations will give other realizations. 

EXERCISE 4.12 8uppose that the Bankei matrices H{a,{3) satisfy the conditions 
9iven in the statement of Theorem 4.19. Prove that H(n,n) = WR, where W 
and R are the controllability and the obervability matrices respectively, and that 
, if det H (n, n) =ft 0, an n-dimensional state space realization is both controllabie 
and observabie. 



Chapter 5 

State and Output Feedback 

5.1 Feedback and stabilizability 

In Example 1.1 about the autopilot of a boat, the control u was expressed in 

known quantities such as to obtain a good steering behaviour of the ship. A 

possible controllaw had the form u = K e, wh ere K is a constant, e is the error 

between the actual and the desired heading. One can imagine that the desired 

heading has been set by the helmsman and that the actual course is continuously 

measured (is an output signalof the ship dynamics). AIso, with manual control 

by the helmsman, wh en the autopilot is not in use, the helmsman is aware of the 

current heading and makes corrections if this heading deviates from the desired 

heading. In both situations the output (or the measurements) is fed back to 

the input u Such a control is a form of feedback control, or, equivalently, 

closed-Ioop control (the output is connected to the input; the loop is closed, 

the system will govern itself). In contrast to closed-Ioop control there exists 

open-loop contro!. In a system with open-loop control the control action (the 

function u(t)) is independent of the output. 

EXAMPLE 5.1 An automatic toaster (i.e. a toaster that switches off automatic­

ally) is an open-loop system because it is controlled by a timer (the function u(t) 

is an on-off function). The time to make "good" toast must be estimated by the 

user, who is not a part of the system. Control over the quality (say color) of toast 

(col or is the output) is removed once the timer has been set. One could design a 

toaster with a feedback control; the color of the toast is continuously measured 

and this measurement is connected to the switch of the heating element. 0 

EXERCISE 5.1 Consider the one-dimensional model x(t) = u(t), t :2: 0, x(O) = 1 

with the lollowing two options lor the (one-dimensional) control lunction u: 

1. u(t) =_e-t , 

79 
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2. u(t) = -x(t). 

The first option refers to an open-loop con trol, the second one to a closed-loop 
control. Show that in both cases the state x satisfies x(t) = e- t • Which of the 
two con trol options would you prefer if there are (unmodelled) disturbances in the 
system and if the aim of the control design is to have limt-+oo x(t) = O? 

We will now turn to a more mathematical treatment of the feedback principle. 
Suppose we are given a system described by 

X Ax+Bu, 
y Cx+Du, 

and this system is unstable. Furthermore assume C = land D = 0; i.e. the 
whole state is observed. To focus the ideas, one could think of the inverted 
pendulum introduced in Example 3.2. Given an initial perturbation Xo =I 0 
(xo = 0 corresponds to the unstable equilibrium of a carriage at rest situated 
at s = 0, with a vertical pendulum), one could calculate a time function u(t) : 
[0, (0) -t n such that the solution of x = Ax + Bu , x(O) = Xo will converge to 
Oas t -t 00. Such an (open-loop) control will be not very practical, since future 
perturbations are not taken into account. Instead one could think of a feedback 
control and more specifically, of a linear feedback control 

u(t) = Fx(t) , (5.1) 

where F is a m X n (here 1 x 4) matrix. The state x then satisfies 

x = Ax + BFx = (A + BF)x . (5.2) 

The matrix F must be chosen such that the behaviour of the closed-Ioop system 
(5.2) has a desired behaviour (if possible), i.e. for instance being asymptotically 
stabIe. A controllaw of the form (5.1) is called state feedback. If the state 
is not available, one might feed back the output; u = H y where H is a suitably 
chosen m X p matrix. The state x will then satisfy 

x = Ax+BHy = Ax+BHCx = (A+ BHC)x 

(provided D = 0). Such a control is called output feedback. It is clear that 
state feedback is at least as powerful as output feedback. Sometimes one would 
like to have the possibility of influencing the system af ter (state) feedback has 
been applied. A possibility for the control law is then 

u = Fx+ Gv, 

where v is the new input, G is a matrix of appropriate size. One could for instance 
think of stabilizing the inverted pendulum (keeping the pendulum vertical) while 
the carriage must be moved from one position to the other (by means of v(t)). 
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v u x 
G t-----'l~+ t---~ • 

x = Ax + Ru 

The input u = Fx is a controllaw. Ifit is viewed as a (statie) system itselfwith 
x as input and u as output, the controllaw is called a (static) compensator. 

The dynamie behaviour of a system can be influenced by means of a com­
pensator. We want to use this influence to stabilize the system around an 
unstable equilibrium point. This stabilization will be the heart of this section, 
though there are other system properties which can also be influenced by means 
of a compensator. Conditions on the matrices A, B will be given such that the 
new matrix A + B F is asymptotically stable if au appropriate matrix F is chosen. 

DEFINITION 5.1 The system :i; = Ax + Bu is stabilizable if an m x n matrix 
F exists such that RÀ < 0 for all eigenvalues À of A + BF. 

THEOREM 5.1 The system :i; = Ax + Bu is controllable if and only if for each 
polynomial r(À) = Àn+rn_lÀn-l+ ... +rls+rO, with real coefficients rn-l, ... , ro, 
an m x n matrix F exists such that det (M - (A + BF)) = r(À). 

Hence, if (A, B) is controllabie, the characteristic polynomialof (A + BF) can 
be chosen arbitrarily for a suitable choice of F. Therefore the zeros of the char­
acteristic polynomial, whieh are identical to the eigenvalues of A + BF, can be 
placed at any location. A particular location is the left half of the complex plane, 
such that if:i; = Ax + Bu is controllable then it is also stabilizable (the converse 
statement is not necessarily true). Theorem 5.1 is sometimes called the pole­
assignment theorem. 
Proof of Theorem 5.1. It will only be given for single-input systems. 

Necessity. In th is part we prove that, if the system is not controllable, an F 
matrix with the required property does not exist. First assume that for each 
arbitrary r(À) of the form as given in the statement of the Theorem a matrix F 
exists such that det (M - (A+BF)) = r(À) and that the system:i; = Ax+Bu is 
not controllable. Then a basis in nn can be found such that, see formulas (4.7) 
and (4.8), 

A12) B _ ( BI ) 
A22 ' - 0 . (5.3) 
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If we partition an arbitrary feedback matrix F accordingly as (Fl, F2), then 

and the characteristic polynomial is 

det (>"1 _ A _ BF) = det ( >..1 - (AlOl + BlFl) -(A12 + BlFl) ) = 
>..1 - A22 

= det ( >..1 - (Al~ + BlFl) ~). 

det (~ (U - (All + B1Ft))-1(112 + BIFl)(U - A 22 )-1 ) • 

det (~ >"1 ~ A
22 

) = 

= det (>"1 - (Au + BlFl)) . det (>..1 - A22 ) • 

This formula is based on the matrix identity 

( 
P Q) _ (P 0) (1 P-1QR-

1
) (1 0) 

OR - Ol 0 1 OR' 

where it is tacitly assumed that the inverses exist. 
Whatever the choice of Fis, the polynomial det (>..1 - A22 ) forms always a 

part of the characteristic polynomial of A+BF and cannot be chosen arbitrarily. 
Hence a contradiction has been obtained and therefore :i: = Ax + Bu is control­
labie. 
Sufficiency. In this part we prove that an F with the required can be found 
if the system is controllabie. Hence, assume that (A, B) is controllabie and 
we will show that for each r(>") a unique 1 x n matrix F exists such that 
det (>..1 - (A + BF)) = r(>..). Towards this end we assume that by means of 
a coordinate transformation A and B can be brought in the so-called controllab­
ility canonical form, defined as 

o 1 o o 

A= 
o 

o 1 

, B= 

o 

o 
1 

(5.4) 
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That such a coordinate transformation exists will be proved in the next lemma. 
Choose F = (Po - rO,PI - rl! ... ,Pn-I- rn-I), then 

A+BF= 
o 1 o o o 

+ (po - ro, ···,Pn-l - rn-l) 

o 
o 0 1 0 

-Po -Pl -Pn-l 1 

o 1 o o 

= 
o 

o 0 1 

and therefore det ()..I - (A + BF)) = r(>.) (see Exercise 3.8). It is dear that 
F is unique. A coordinate transformation does not change the eigenvalues (i.e. 
eigenvalues of A+BF are exactly the same as the eigenvalues of S-I(A+BF)S 
where S is an invertible matrix) and the result therefore also holds true for the 
original system which was possibly not in the controllability canonical form. 0 

In the proof of Theorem 5.1 we used the following lemma. 

LEMMA 5.1 If (A, B), with m = 1, is controllable, then a basis tmnsformation S 
exists, det S =f 0, such that A = S-1 AS and B = S-1 B are in the controllability 
canonical form, as defined in Equation (5.4). The elements Pi are the coefficients 
in the characteristic polynomial of A (and of A) : det ()..I-A) = >.n+pn_l>.n-l+ 

... + PI>' + Po· 

Proof A new basis (ql, ... , qn) in nn is constructed as follows: 

qn B, 

qn-I AB + Pn-IB = Aqn + Pn-lqn, · 

(5.5) 

Because (A, B) is controllabie, span {B, AB, ... , An-IB} = nn and therefore, 
by construction, also span {ql, ... , qn} = nn. Hence {ql, ... , qn} is a basis. The 
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corresponding basis transformation is defined by qi = Sei , i = 1, ... , n, with 
{eb ... , en} being the standard basis ofn!' (i.e. qi is the ith column of S). In this 
new coordinate system B is equal to (0, ... , 0, I)T, since B = qn. Furthermore, 
from the second till the last equation of (5.6) we obtain 

qn-l - Pn-lqn 

qn-2 - Pn-2Qn 

and we can write (using again the last equation of (5.6), and Cayley-Hamilton) 

Aql A(An- 1 B + Pn_lAn-2 B + ... + PIB) 

= A" B + Pn_1An-lB + ... + PIAB 

(An + Pn_lAn-1 + ... + PIA + Pol - pol)B = -PoB = -poqn . 

Now Aqi, i = 1, .. , n, have been expressed as linear combinations of qj, j = 
1, ... , n. From these expressions we see directly that A in the new basis can be 
written as (by realizing that SA = AS) 

0 1 0 ... .. . 0 

0 1 

A= 

0 
0 0 0 0 1 

-Po -PI -P2 -Pn-l 

0 

EXERCISE 5.2 Show that the linear time-invariant system x = Ax + Bu (u is 
not necessarily a scalar, i.e. m 2: 1) is stabilizable if its unstable subspace (see 
Definition 4.2) is contained in its controllabie subspace (Im R, see text above 
Lemma 4.1). Hint: assume A and Bare given with respect to a basis in nn such 
that they have the form (4.7), (4.8). 

The proof of Theorem 5.1 yields an algorithm for finding an 1 x n matrix F 
that gives the system desired properties, i.e. a desired characteristic polynomial. 
Towards the end the system (A, B) is first transformed to (S-1 AS, S-1 B), the 
controllabie canonical form. With respect to this form F is obtained in a trivial 
way. With respect to the original basis F must be replaced by F S. The following 
exercise gives another, more direct, algorithm. 
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EXERCISE 5.3 Prove that the following algorithm yields a correct feedback matrix 
F, if A, Band the desired r(>.) are given (B is 1 x n), as follows: 

F = -[0, ... ,0, I][BIABI ... IAn-lBt 1r(A) , 

where r(A) = An + rn_IAn-1 + ... + rIA + rol. 

EXAMPLE 5.2 Consider the system of the inverted pendulurn, Eq. (3.15). Since 
this system is controllabie (Exercise 4.5), it can be made asymptotically stabie 
for a appropriate feedback matrix F = (/t, 12, /3, 14). Of course, in order for 
this feedback control to be realisabie, all components of the state vector must be 
known (in the next section we will see what can be done if this is not true, but 
instead only the output y is known). The matrices A and Bare 

A = ( 2~ ~ ~ ~) ( -~.4 ) o 0 0 1 ,B= 0 

-0.6 0 0 0 1 

A has eigenvalues 0 (2 x ), 5 and -5 (Example 3.5) and the uncontrolled system 
(1.1 == 0) is not stabie. The characteristic polynomial of A is >.4 - 25>.2. Suppose 
we want to choose F in such a way that the eigenvalues of A+BF are -1, -2, and 
-2 ±i; the desired characteristic polynomial r(>') is (>' + 1)(>' + 2)(>.2 + 4>' + 5) = 
>.4 + 7>.3 + 19>.2 + 23>' + 10. In order to construct F we could either use the 
algorithm in the proof of Theorem 5.1 or the formula in Exercise 5.3. Another 
more direct method is that F = (ft, 12, fa, 14) must be chosen such that 

det (>.I - (A + BF)) = r(>') . 

This gives 

Rence, 

>. 
-25 + 2.4/t 

o 
0.6 - /t 

-1 
>'+2.412 

o 
-12 

o 
2.4/3 

>. 
-/3 

>.4 + (2.412 - f4)>.3 + (- /3 - 25 + 2.4/t)>.2 + (25f4 - 1.44f4)>' + 

(25/3 - 1.44/3) = >.4 + 7).3 + 19>.2 + 23>' + 10 

and the correct feedback components are therefore 

10 23 1 10 1 23 
/3 = 23.56; f4 = 23.56; /t = 2.4 (44 + 23.56); 12 = 2.4 (7 + 23.56)· 

o 
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EXAMPLE 5.3 We are given the system (in controllabie canonical form) 

·=0 j Dx+(D·· 
If the input is chosen as u(t) = (ft fz fa)x(t), with li constants, for what 
values of the /i is the closed-loop system asymptotically stabie? Substitution of 
the feedback law results in 

1 
o 

-3+12 
o ) 1 x. 

1+13 

The characteristic polynomial of this system matrix is 

Since the exact location of the zeros is not important, we will use the criterion of 
Routh (see Section 4.1) to obtain conditions for Ii which will guarantee asymp­
totic stability. The scheme is 

1 
-1-13 

(-1- /3)(3-12)-( -2-12) 
-I-Is 

-2- !I 
o 

3-12 0 
-2 - fI 0 

o 0 
o 

Necessary and suflicient conditions for asymptotic stability are therefore 

-1- 13 > 0; 
-2 -!I> 0; 
(-1 - 13)(3 - 12) > (-2 - fI) . 

EXAMPLE 5.4 We are given the system :i: = Ax + Bu, y = ex with 

( 
-1 2 0 -3) ( 2 ) o -2 0 0 1 

A = 2 1 -3 -3 ,B = 1 ,C = (0 1 1 - 1). 

o 2 0 -4 1 

1. Is the system controllabie? What is the controllabie (sub)space? 

2. Is the system observable? What is the nonobservable (sub)space? 

o 
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3. Is the system stabilizable? 

4. Write the system in terms of basis vectors which are chosen according to 
the following rules (and in the order specified): 

• start with the vectors which span the intersection of the controllable 
(sub)space and the nonobservable (sub)spacej 

• append to these vectors new basis vectors such that both the control­
lable (sub)space and the nonobservable (sub)space are spannedj 

• add more basis vectors, if necessary, such that the whole state space 
(n.4

) is spanned. 

5. Can you design a control law u = Fx such that the feedback system has 
its poles in -1, -1 , -3 and -4, respectively? The same question again, but 
now the poles must be located in -1, -1, -2 and -3, respectively. 

Answer question 1. The controllability matrix equals 

R= ( î =; ! =~) 
1 -1 1 -1 ' 
1 -2 4 -8 

which has rank 2. Hence the system is not controllabie. The controllabie subspace 
is spanned by the first two columns of R, which is equivalent to 

Answer question 2. The observability matrix equals 

w= ( ~ -8 
26 

1 
-3 

9 
-27 

1 
-3 

9 
-27 

-~ ) 
-1 

1 

which has rank 2. Hence the system is not observable. The nonobservable sub­
space is spanned by (two) linearly independent vectors x for which Wx = O. Two 
such vectors are 

Answer question 3. If one ca\culates the eigenvalues of A, they turn out to be 
-1, -2, -3 and -4 and hence A is (asymptotically) stabie. The system is therefore 
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(tri vially) stabilizable. 
Answer question 4. The intersection of the controllabie subspace and the 
nonobservable subspace is spanned by the vector VI = (1 1 0 1 f. The control-

lable subspace is spanned by VI and V2, with V2 ~ (1 0 1 O)T j the nonobservable 

subspace is spanned by VI and V3, with V3 ~f (0 1 -1 of. Finally, n4 is spanned 

by vI, V2, V3 and V4, with V4 ~f (100 of. Ifwe choose the basis transformation 
S = (vt, V2, V3, V4), then 

~ ~) B - S-1 B - ( ~ ) -4 0 ,- - 0 ' 
o -3 0 

(: = cs = (0 1 00). 

Answer question 5. Matrices A and B are of the form 

A- - (All A12) B- _ ( BI ) 
- 0 A22 ' - 0 . 

The eigenvalues of A 22 will not change if a feedback law is introduced. Therefore, 
whatever (linear) feedback law is implemented, the poles at locations -3 and -4 
(the eigenvalues of A 22 ), cannot be influenced. Therefore, a design with the first 
set of requirements (poles at -1, -1, -3, -4) is possiblej a design subject to the 
second set of requirements (poles at -1, -1, -2, -3) is not possible. 0 

EXERCISE 5.4 Consider the noncontrollable realization 

( 

-2 1 0 
. 0 -2 0 

:z: = 0 0-1 
. 0 0 0 

Is this realization stabilizable? Is it possible to find a vector F such that the 
feedback law u = F:z: causes the eigenvalues of the feedback system to be situated 
at -2, -2, -1, -1; or at -2, -2, -2, -1; or at -2, -2, -2, -2? 

The conclusion of all this is that A + BF can be made asymptotically stabie 
provided (A, B) is stabilizable and provided state feedback is possible, i.e. the 
output y equals the state. If y = Cx and C is not invertible, then the problem of 
making A + BH C asymptotically stabie by means of a suitable choice of H is far 
more difficult. Hardly any general theorem exists with respect to this situation. 
In the next section we will consider the problem of constructing the state x out of 
past measurements y such that the state is indeed available for feedback purposes. 
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EXERCISE 5.5 We consider the equations of motion of an airplane in a vertical 
plane. If the units are scaled appropriately (forward speed equal to one for in­
stance), then these equations are approximately 

~ sina, 

() -(a - u), 

h sm "t, 

wh ere 

• h is the height of the airplane with respect to a certain reference height; 

• "t = () - a is the flight angle; 

• () is the angle between the reference axis of the airplane and the horizontal; 

• u is the rudder con trol. 

One must design an automatic pilot to keep h constant (and equal to zero) in the 
presence of all kinds of perturbations such as vertical gusts. 

• Linearize the equations of motion and write them as a set of first order 
differential equations. 

• Show that the designer who proposes a feedback of the form u = kh, where 
k is a suitably chosen constant, cannot be successful. 

• Prove that a feedback of the form u = kIh + k2(}, with suitably chosen 
constants kl and k2 , 'does the job', i.e. the resulting closed-Ioop system is 
asymptotically stabie. 

5.2 Observers and the separation principle 

Many procedures for the control of systems are based on the assumption that 
the whole state vector can be observed. In such procedures the control law is of 



90 MATHEMATICAL SYSTEMS THEORY 

the form u = Fx (or u = Fx + Gv). In many systems, however, not the whole 
state vector can be observed. Sometimes very expensive measurement equipment 
would be necessary to observe the whole state, specifically in physical systems. 
In economie systems very extensive, statistical measurement procedures would 
be necessary. Sometimes, also, it is simply impossible to obtain measurements of 
the whole state if some internal variables cannot be reached. Think for instanee 
of a satellite; because of the weight problems hardly any measurement equipment 
(for the temperature for instanee) can be built into the satelite. Once in orbit, it 
is too far away to measure certain quantities from the earth. In all these cases, 
control must be based on the available information, viz. the output y = Cx (take 
for simplicity D = 0; the case D =1= 0 can be handled in the standard case if we 
interpret y - Du = Cx as the new measurement). An auxiliary system will be 
built, called the observer, which has as input the control u and the output y of 
the real system, and which has as output an approximation x of the state vector 
x of the real system. An ohserver for the system :i: = Ax + Bu, y = ex, is 
assumed to he of the form 

z pz+ Qu+Ky 

x Sz+Tu+Ry 

-----------------------------------1 1 1 
1 U 1 
1 1 --.,----+---.... i = pz + Qu + Ky 1\ 1 
: 1\ x 1 

X = Sz + Tu + Ry 1 
1 Y 1 
1 1 1 __________________________________ 2 

u 

j----------------------------------: 
: 1 y 1 

X = Ax + Bu : 
1 

y = ex 1 
1 1 
1 1 1 __________________________________ 2 

observer 

real 
system 

In the flow diagram both the observer and the real system, and the connections 
between these systems, have been drawn. The vector z is the state ofthe ohserver. 
The matrices P, Q, K, S, Tand Rare to be determined. Thinking of the real 
system as a satellite in orbit, where x cannot easily be measured, only a few 
output variables such as position and distance for instanee may be helpful. The 
observer is an auxiliary system on earth (a computer program for instanee) from 
which all variables are easily obtained. 

If at all possible, the observer should at least satisfy the following require­
ments: 

1. If x(to} = x(to} at a certain time instant to, th en we should have x(t) = x(t) 
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for t ~ to. Once the observer has the correct estimate of the rea} state 
vector, then this estimate should remain correct for the future. 

2. The difference x(t) - i;(t) must converge to zero (as t -T 00), irrespective 
of the initial condition conditions x(O) = Xo, z(O) = Zo and the control u. 

We will construct an observer for which S = I, T = R = O. This yields x = z 
and the state of the observer has the role of an approximation of the state x. We 
now have 

.!!.(x - x) 
dt 

Ax + Bu - Pi; - Qu - Ky 

Ax+Bu - Pi; - Qu-KCx 

(A - KC)x - Pi; + (B - Q)u . 

The first requirement formulated above now yields 

B=Q, A-KC=P. 

The observer then has the form 

i = Ax + Bu + K(y - y) with y = Ci; . (5.6) 

Apparently it very much looks like the original system. It is a duplicate of the real 
system apart from an additional input term K (y - y) which can be interpreted 
as a correct ion term. 

u 
x = At + Bu 

y = ex 

Q = ~ + Bu + K (y • ~) 
Y' = ~ 

y 

1\ 
X 

K 

In order for the second requirement to be satisfied we consider how the estimate 
error e(t) = x(t) - i;(t) behaves as t -T 00. We have here 

e = !(X-X)=(A-KC)e. 

Because e(t) should converge to zero, this requirement now can be translated 
into: the matrix (A - KC) must be asymptotically stabIe. Can a matrix K 
be found such that this is possible? The following theorem states that this is 
possible if (C, A) is observable. 



92 MATHEMATICAL SYSTEMS THEORY 

THEOREM 5.2 For each polynomial w(..\) = ..\n + Wn_l..\n-l + ... + Wl..\ + Wo with 
real coefficients Wo, Wl, ••• , Wn-l, an n x p matrix K exists stJch that det (>..1 -
(A - KC)) = w(..\) i! and only i! (C, A) is observable. 

Prooi (C, A) is observable if and only if (AT, cT) is controllabie (Theorem 
4.10). Theorem 5.1 states that (AT, CT) is controllabie if and only if for each 
polynomial w(..\) as mentioned in the statement of this theorem a matrix F exists 
such that det (Àl - (AT + CT F)) = w(..\). Choose K = _FT, then 

det (Àl - (A - KC)) = det (Àl - (AT - CT KT)) = w(..\) . 

o 

EXAMPLE 5.5 This example is a continuation of Example 5.2 of the inverted 
pendulum. We assume that only measurements of the position of the carriage 
are made, such that A and Care 

A = ( 2~ H !) , C = (0 0 1 0). 

-0.6 0 0 0 

The observability matrix is 

o 1 0) o 0 1 o 0 0 so rank W = 4 , 

-0.6 0 0 

such that Theorem 5.2 can indeed be applied. 
Suppose we want to construct an observer sueh that the poles of (A-KC) are 

situated in the points -1 (2 x) and -1 ± i. This means that K = (kb k2 , k3 , k4f 
must be constructed such that 

Hence 

..\4 + k3..\3 + (-25 + k4 )..\2 + (-25k3 - 0.6k1)..\ + (-0.6k2 - 25k4 ) = 
= ..\4 + 4..\3 + 7..\2 + 6..\ + 2, 
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which gives the solution 

106 802 
k3 = 4 j k4 = 32 j k1 = -Q.6 j kz = - 0.6 . 

The observer has the form 

~! = 2~ ~ ~ ~ X + -~.4 ti + -SlzO (y - (0 0 1 O)x). 
( 

0 0 0 0) (0) ( -1060 ) 

-0.6 . 0 0 0 1 32 

The solution of this observer satisfies lim (x(t) - x(t)) = O. 
t-+oo 

o 

EXERCISE 5.6 Consider the dynamics of the satellite as given in Example 4·9. If 
only a scalar measurement is allowed (i.e. either Yl or yz) which one would you 
choose such that observability holds? Construct an observer for this measurement 
such that the poles of the error equation è = (A - KC)e are all situated in -1. 

Theorem 5.2 gives a necessary and sufficient condition such that the poles of 
(A - KC) can be chosen at will. One may, however, be satisfied with all poles 
in the left half plane (and the poles are not necessarily at prespecified places). 
This is of course a weaker requirement for which observability is a sufficient but 
not a necessary condition. Consider for instance the matrix pair 

A = (~ _~), C = (1 0), 

which is not observable. The poles of A - KC, with K = (kl, kzf are the zeros 
of 

det (>.1 - (A - KC)) = (À - 1 + kt}(À + 1) . 

If we choose k1 > 1, both zeros are in the left half plane and an observer has 
been constructed which converges to the real state vector for t ---+ 00. One of the 
poles, viz. À = -1, is fixed and cannot be chosen at will. 

A necessary and sufficient condition such that the poles of (A - KC) must be 
situated in the left half plane is most easily given when A and Care expressed 
with respect to a particular basis such that they have the form (4.12) and (4.13) 
respectivelYj 

A = (A~1 ~~~), C = (0 Cz) 

where the pair (C2, A22 ) is observable. The condition now is that the matrix Au 
must be asymptotically stabIe. The property of the pair (C, A) such that a K 
can be chosen such that the poles of (A - KC) are in the open left half plane is 
called detectability. 

.. ........ Iiiiii 'h iiii"",ii iiii U 
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EXERCISE 5.7 Prove that the linear time-invariant system x = Ax + Bu , y = 
C x, is detectable if and only if its nonobservable subspace is contained in its stable 
subspace (compare Exercise 5.2). 

EXERCISE 5.8 Show that detectability is the dual concept of stabilizability, i.e. 
(A, B) is stabilizable if and only if (BT , AT) is detectable. 

EXERCISE 5.9 Consider Exercise 9.9 of the tractor. Show that if the combination 
of tractor and wagons moves in forward direction (with constant speed), then one 
has detectability if Xl is observed (whereas the other x,-values are not observed). 
If this combination would move in backward direction, then detectability is assured 
if of all state components only X n is observed. 

Observers were introduced because of lack of knowledge of the whole state vector. 
This state vector was used in a feedback loop such as to give the system desired 
properties. We are now going to combine the feedback concept with that of the 
observer. If u = Fx is a feedback law that makes 

:i: = Ax+BFx 

asymptotically stabie, then we would like to have the same for the feedback law 
u = Fi. Now we have to investigate the behaviour of the original system and 
the observer together: 

:i: Ax+BFi 

i Ai +BFi +K(Cx - Ci). 

These equations can be simplified somewhat when using e = X - ij 

equivalently 

x 
ë 

(A + BF)x - BFe , 
(A - KC)e, 

~ ( x ) = ( A + BF -BF ) ( x ) . 
dt e 0 A- KC e 

(5.7) 

(5.8) 

The eigenvalues of this system are equal to the eigenvalues of A + BF together 
with those of A - KC. Hence the eigenvalues of the overall system are equal to 
those obtained with state feedback u = Fx and those obtained by constructing 
the observer. The feedback law ti = Fx and the observer can be designed in­
dependently! When putting together the original system and observer, with the 
feedback law u = Fx, the eigenvalues do not interfere. This principle is called 
the separation principle. The total system of the original system, observer 
and feedback-loop is summarized in the following flow-diagram. 



I 
I 
I 

u(t): 
B 

!he original system 

x J t--___ -t C I--+---r---

A I 
I 
I 
I 

---------------------------------------~ 

A 
X 

F t--,.---I 

B 1-----, 

+ 
Kt-------( 

A 
Y C ...... ________ ...J 

compensator 
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y(t) 

The two subsystems surrounded by a dotted line are the original system and, 
what is called, the compensator. In order to distinguish this compensator from 
the statie compensator introduced earlier , th is one is sometimes called adynamie 
compensator for obvious reasons. 

EXERCISE 5.10 Show that (5.8) can equivalently be written as 

where the relationship between i:, x and e is as belore. 

EXAMPLE 5.6 We will now conclude the example of the carriage with the inver­
ted pendulum. A state feedback law was designed in Example 5.2 and an observer 
in Example 5.5. The combined design is as depicted below. The numerical values 
for li, ki, i = 1,2,3,4, are given in Examples 5.2 and 5.5. 0 
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thrust position caniage 

u 
y 

" x2 

J 

J 

-.6 

14 
" J 
X4 

Sofar we have not considered the new input v(t), which was introduced by defining 
u = Fx + v ; Fx is the feedback component, whereas v(t) is a new open-loop 
input. We slightly change the overal design of the original system and observer 
in the following sense: 
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u(t) 
original system 

y(t) 

I 
I a 
I 
I 
I 
I 
I 
I b I 

C B 

1\ + x 

F J K 

A 1-----' 

Cl-----' 
1\ 

Y 

Instead of the connection ab of the previous diagram, we now have the connection 
be. The term v(t) does not enter the compensator in this way. This will not 
change the stability property of the overall system since v(t) is a time-dependent 
(and not a state dependent) term. The latter diagram can be drawn symbolically 
as follows: 

v original y 

,~ system 

dynami<: 
~stem m 

~ 
eedback 

loop 

Viewed in this way, stabilization by means of an observer can be interpreted as 
an output feedback, where now we have a dynamic system in the feedback loop. 

EXERCISE 5.11 On the straight line eonneeting the earth with the moon a point 
(in the figure indieated by L) exists where the gravitation force exerted by the 
earth on a satellite, with mass m, in point L equals (i.e. neutralizes) the grav­
itation force exerted by the moon and the eentrifugal force (due to the rotation 
of the moon around the earth). The equations of motion of the satellite in the 
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neighbourhood of L are 

x - 2wiJ - 9w 2 0, 
ij + 2wx + 4w2 u, 

where u = F/(mw2 ). On its turn, F is the force, exerted by a rocket, on the 
satellite in the y-direction. Moreover, w = 21r/29 radians/day. 

Gf-----+-;t ~~x 8 
Moon 

Earth 

1. Write the system as a linear dynamical system of order 1 and show that 
the equilibrium point x = x = y = iJ = 0 is unstable. 

2. Investigate the controllability and/or stabilizability of this system. 

3. Determine a linear state feedback such that the poles of the closed-loop sys­
tem are located in -3w, -4w, (-3 ± 3i)w. 

4. Suppose that only y is available for measurements. Is it possible to stabilize 
the system by means of an output feedback u(t) = ay(t)? (Answer: no, it 
is not possible). 

5.3 Disturbance rejection 

Consider a linear time-invariant system with m + I inputs partitioned as (u, v) 
and p + q outputs partitioned as (y, z): 

x = Ax + Eu + Ev, y = Clx, Z = C 2 x, (5.9) 

where u is the usual control and v is to be interpreted as a 'disturbance' . For 
sake of simplicity we assume Cl = 1 and hence y = x in this brief section. 

v 

u 

Z 
I----:il~ 

y 
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The disturbance v cannot be measured directly (one only measures y) and the 
objective is to design a feedback law 

u = Fx+u, 

(more generally: u is a function of y and ofu) such that v has no effect whatsoever 
on the output z, no matter what u or the initial condition x(O) of (5.9) are. 

EXAMPLE 5.7 Consider the system 

The disturbance is not decoupled from the output as is easily seen (take for 
instance u == 0). If one applies the feedback law u = -X2 + u, however, one gets 

z(t) = X1(0) + 1t 

u(s)ds, 

which is independent of v. o 

In general terms we wish to have that y(t) defined by 

z(t) = Cet{A+BF)x(O) + C 1t 

e{t-')(A+BF) (BU(s) + Ev(s))ds 

is independent of v for some matrix F. This is equivalent to the requirement 
that 

C 1t 
e{t-')(A+BF) Ev(s)ds = 0 

for all functions v(·) and all t > O. This requirement can be shown to be equivalent 
to the following problem: find a matrix F such that C(A + BF)k E = 0, "Ik 2: O. 
The latter problem is known as the disturbanee rejection problem. This 
equivalence of requirements will not he shown here, but the pro of resemhles the 
proof of Lemma 4.2. 

EXERCISE 5.12 Consider the model 

1 
-2 
o 
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which describes the movement of a ship. The variable <jJ is the roU angle, ~ its 
time derivative and v is the lateral velocity. The control ó represents the rudder 
angle and the function f(t) represents the (unknown) infiuence of the lateral 
waves on the ship movement. Please note that other possible movements of the 
ship, such as pitching and yawing, are not included in this simple model. 

A time-varying roll angle <jJ causes sea-sickness and one wants to design a feed-

back law ó = Fx, where xT ~f (<jJ,~, v), such that <jJ is (completely) independent 
of the function f(t), whatever its values may beo Is it possible to construct such 
a matrix F'? To this end, parametrize F and investigate whether the controllabie 
subspace characterized by the matrix pair (A + RF, E), where 

1 
-2 
o 

~ ), 
-1 

is contained in the kern el of C, where C = (1 0 0). 
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Chapter 6 

Input/output 
representations 

The input/output representation of a system refers to a description where the 
input is directly related to the output, without other intermediate functions or 
variables such as the 'state'. We already have encountered such a description in 
Section 3.3 on impulse response functions or matrices. By means of the function 
K(t, s) the input function was directly related to the output function. That 
description was obtained by the elimination of the state vector x. In this chapter, 
and in Chapter 8.2, other useful input/output representations of systems will be 
discussed. 

6.1 Laplace transforms and their use for linear 
time-invariant systems 

The Laplace transform C(f) of a piecewise continuous function f : [0,00) ~ n 
is defined as 

00 

F(s) = C(f) = J f(t)e-·tdt . (6.1) 
o 

If f = O(ebt
) for t ~ 00, i.e. it grows (at most) at an exponential rate (b E n 

is a constant), then the integral exists for all real s > b. If f = O(èt ), then the 
integral also exists for all complex s with ~s > b, because 

Therefore the domain of the function F : (b, 00) ~ n can be extended to all 
sEC with ~ s > band 

F:{sECI~s>b}~C 

101 
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The function F is complex valued. In this section s wil always denote a complex 
numher. The extension to vector valued functions is straightforward: 

C(f) = (C(h), ... , C(fn))T = (Fl(S), ... , Fn(s)f = F(s) . 

The extension to matrix valued functions is also componentwise. Consider a lin­
ear time-invariant strictly causal differential system given by its impulse response 
matrix; 

t 

y(t) = J G(t - r)u(r)dr. 
-00 

For simplicity we assume u( r) = 0 for r :S 0 and hence 

t 

y(t) = J G(t - r)u(r)dr. 
o 

(6.2) 

Suppose that the functions y(.), u(·) and G(·) have Laplace transforms, to he 
denoted by Y(.), U(·) and H(.); 

00 00 00 

Y(s) = J y(t)e-stdtj U(s) = J u(t)e-stdtj H(s) = J G(t)e-stdt 
o 0 0 

then the transformation of (6.2) yields 

Y(s) = H(s)U(s) . (6.3) 

The p X m matrix H(s) is called the transfer matrix of the system. It gives 
a very simple description of the system. The property that (6.3) is the Laplace 
transform of (6.2) is called the convolution theorem. It is assumed that the 
reader is familiar with this property and, more generally, with the theory of 
Laplace transforms. 

If G(t) = O(èt ) then the transfermatrix is only defined for Rs > b. The 
theory of Laplace transforms teaches us that H (s) is analytic for Rs > band 
then complex function theory tells us that a unique analytic continuation of H(s) 
exists. A unique matrix function exists for· all sEC, analytic in the complex plane 
except for a number of isolated points, and which is identical to H(s) for Rs > b. 
In the remainder we will not distinguish H (s) and its analytic continuation. 

If X(s) is the Laplace transform of x(t), then 

00 00 

C(~~) = J ~: e-stdt = x(t)e-stlö + J x(t)se-stdt = -x(O) + sX(s) . 
o 0 

The Laplace transform of the equation 

:i: = Ax + Bu, x(O) = XO, 
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therefore is 
sX(s) - Xo = AX(s) + BU(s) , (6.4) 

equivalently 
X(s) = (sI - Arlxo + (sI - A)-l BU(s) . 

If we also transform the output equation y = Cx to Y(s) = CX(s) and assume 
that Xo = 0, then 

Comparison with 

leads to 

Y(s) = C(sI - A)-l BU(s) = H(s)U(s) . 

t 

y(t) = J CeA(t-'T)Bu(T)dT 

o 

(6.5) 

(6.6) 

At th is latter equation the theory of analytic continuation can he illustrated 
clearly. At first instance H(s) is only defined for Rs > max(R)';), where ),; are 
the eigenvalues of A. The expression C(Is - A)-1 B, however, is well defined for 
all sEC, except for possihly the points s = ),1, ••• , ),n, wh ere Is - A is singular. 
Please note that it is not necessarily true that all eigenvalues of A cause H(s) to 
he singular, since, hy multiplying (Is - A)-1 with C and B, some factors may 
cancel. In system theory, points where H(s) does not exist are called the poles 
of the transfer function H(s). Eq. (6.6) states that the transfer matrix is the 
Laplace transform of the impulse response matrix. 

EXAMPLE 6.1 Given is the system which descrihes the dynamics of the satellite 
(see also Examples 3.1 and 3.7); 

U 
1 0 n u n A= 
0 0 

B= C=(~ 0 0 ~ ) . 0 0 
, , 

0 1 
-2 0 

The transfer matrix for this system is 

H(s) = .c(G(t)) = .c( ( sin t 
-2 + 2 cos t 

2-2cost) 
-3t + 4sin t ) = 

( 
1 2 23 

)= (~ *) 3'+1 -; - 32 +1 
2 + 23 3 4 3'-3 . 

--; .'+1 -~ + 32 +1 .3+. ~ 

o 
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EXERCISE 6.1 Consider the dynamics of the inverted pendulum as given in eq. 
(9.15) and assume that only the position of the carriage is measuredi 

y = (1 0 0 O)x. 

In Example 9.5 the transition matrix was calculated for this problem. Show that 
the impulse response function and transfer function are given by, respectively, 

G(t) = -0.48sinh(5t); H(s) = s;~·~5 . 

A new method has now been found to calculate the transition matrix. The 
Laplace transforms of:i: = Ax (x(O) = xo) and x(t) = eAtxo are 

X(s) = (sI - A)-lxO' X(s) = .c(eAt)xo . 

Therefore it follows 
eAt = .c-I((sI _ A)-I) , 

where .c- I is the inverse Laplace transform. The matrix function (sI - A)-I is 
called the resolvente of the matrix A. 

6.1.1 Connection of systems 

The description of systems by means of transfer matrices is useful if one wants to 
connect systems. If we are given two systems by means of the transfer matrices 
HI(S) and H 2(s) respectively; 

y 2(s) 

then the parallel connection is given by 

H1(s) 

U(s) +' Y(s) 

,/ 

H2(s) 
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where EB denotes addition. In formula: H(s), the transfer matrix of the parallel 

connection, equals Hl(S) + H2(s). The series connection is given by 

u (s) .1 .... __ H_l (s_) ---J1-------t.IL--_H_2(S_) --,I--_Y_(S_~ 

In formula: H(s) = H2(s)H1(s). Please note that for multi-input multi-output 

systems (p, m > 1) the product of the two matrix functions H 2 ( .) and Hl (.) is 

in general not commutative; HIH2 :j; H2Hl, such that the order in which the 

systems are connected is important. The reader may convince him/herself that 

the description of a series connection, where the starting point is two state space 

descriptions, is far more diflicult. The feedback connection is given by 

+ 
U(s) V(s) Y(s) 

\....1 
H 1(s) 

-

H 2(s) 

If the signal that enters Hl (s) is called V (s), then the transfer matrix H (s) of 

the overall system can be calculated as follows. 

V(s) 
Y(s) 

= U(s) - H2(S)Y(S) } 
= Hl(S)V(S) Y(s) = Hl(S)(U(S) - H2(S)Y(S)) . 

Solving for Y(s) yields 

and therefore 

(6.7) 

In the connection considered above it was tacitly assumed that the number of in­

puts (m) and the number of outputs (p) were such that the connections described 

made sense. 
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6.1.2 Rational functions 

Let us consider the transfer matrix H(s) = .c(G(t)) = C(Is - A)-IB in more 
detail. The inverse (Is-A)-l can in principle be obtained by applying Cramer's 
rule, the result of which is 

( 

ql1(s) 
(Is _ A)-l = _1_ : 

p(s) . 
qnl(S) 

... qIn.(S)) 
: , 

qnn(s) 

where p(s) is the characteristic polynomial of A. We write p(s) as 

p( s) = sn + Pn -1 Sn -1 + ... + PI S + Po, Pi En. 

For all i, j, the terms qij (s) are determinants of an (n - 1) x (n - 1) submatrix of 
(Is - A) and are therefore polynomials in s, of at most degree n - 1. Therefore 
the elements of (Is - A)-l are rational functions of S; q'j(s)/p(s). A rational 
function is the quotient of two polynomials. It is called strictly proper if the 
degree of the numerator polynomial is smaller than the degree of the denominator 
polynomial. Ifthe rational function is given by h(s), then an equivalent definition 
of strictly proper is lim h(s) = o. If this limit is finite, but not necessarily zero, 

1·1-+00 
then one speaks of a proper rational function. Written as a qoutient of two poly-
nomials, a rational function is proper if and only if the degree of the numerator 
polynomial is not larger than the degree of the denominator polynomial. 

It easily follows that the elements of H (s) are strictly proper rational func­
tions; H(s) can be written as R(s)/p(s), where R(s) is an m x p matrix with 
polynomials as elements (of degree < n) and the degree of the polynomial p( s) 
is n. As defined earlier, poles of H(s) are points where H(s) has a singularity, 
i.e. points So where lim H(s) does not exist. The eigenvalues of A are the only 

'-+'0 
candidates for poles (but not necessarily all of them are poles). 

EXAMPLE 6.2 IfA= (~ =i), B= (i ) , c= (0 1), then 

(IS-A)-I=(S 
-1 

The matrix (Is - A)-I has poles in s = -1 and s = -2. However, 

1 
C(Is - A)-IB =--

s + l' 
and has only one pole, viz. in s = -1. o 
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EXAMPLE 6.3 We are given two linear, asymptotically stabie, single-input single­
output systems El and E2 with transfer matrices (actually, transfer functions) 
hl (s) and h2 (s) respectively. Prove, or, if not true, give a counterexample for, 
each of the following three assertions. 

1. The series connection is stabie. 

2. The feedback connection is stabie. 

3. The parallel connection is stabie. 

Answer question 1. Suppose hi (s) = Pi (s) / qi (s) and that common factors have 
been deleted, then the poles of system Ei are the zeros of q;(s) = O. Asymptotic 
stability means that these zeros are located in the left-half plane. The transfer 
function of the series connection equals PI (s )p2 (s) / (ql (s )q2 (s)). Perhaps some 
terms in numerator and denominator will cancel, but the remaining zeros of the 
denominator are a (sub)set of the zeros of ql(S) = 0 and q2(S) = 0 and therefore 
lie in the left half plane. Hence the series connection is stabie. 
Answer question 2. The feedback connection is not necessarily stabie as shown 
by the (counter)example 

1 
hl(s) = --1 ' s+ 

-2 
h2 (s) = --1' s+ 

The transfer function of the feedback connection is 

h hl(s) (s + 1) 
(s) = 1 + hl(S)h2(S) - (s + 1 - V2)(s + 1 + V2)' 

which represents an unstable system. 
Answer question 3. The parallel connection is stabie again. The proof is along 
the same lines as the proof of the stability of the series connection. 0 

So far we have concentrated on strictly causallinear systems, i.e. with D = O. 
If D :f 0, then, see Exercise 3.10, and assuming Xo = 0, 

t 

y(t) J (CeA(t-')B + Dc5(t - s))u(s)ds, 

o 
H(s) C(sI - A)-IB + L{Dc5(t - sn = C(sI - A)-l B + D . 

If we consider this transfer function in detail, it turns out that the elements 
are proper functions (and not strictly proper) since the degree of the numerator 
will now in general be equal to the degree of the denominator. The following 
example shows that also transfer matrices exist of which the elements are not 
rational functions at all. 
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EXAMPLE 6.4 The transfer function for the moving average system treated in 
Example 3.8 is 

00 T 

H(s) = J G(t)e-3tdt = ~ J 1 . e- 3tdt = _1 __ -::e-:-
3

_

T 

T sT 
o 0 

This is not a rational function. o 

It can he shown that for all proper rational transfer matrices H(s), matrices 
A,B,C and D exist such that H(s) = C(ls - A)-IB + D. Hence to such 
transfer matrices linear time-invariant differential systems correspond. In the 
next section this will he proved for transfer functions, to which single-input, 
single-output systems correspond. 

6.2 Transfer functions and matrices 

In this section we will mainly consider single-input single-output linear differential 
systems. The transfer matrix is therefore a scalar function, called the transfer 
function, and it will he indicated hy h(s) instead ofthe more general H(s), which 
is also used for the multi-input multi-output case. In this section we will also 
assume that h(s) is proper, i.e. degree (numerator) :s degree (denominator). 
Without 10ss of generality h(s) will he written more explicitly as 

(6.8) 

with k :s n and where the coefficient of the leading term sn in the denominator 
equals one. (Polynomials with the coefficient of the leading term equal to one are 
called monie polynomials.) It is weIl known that a polynomial can he factorized 
in a numher of linear terms equal to the degree of the polynomial. Hence, we 
can write 

h(s) = q(s) = c(s - bt}(s - b2 ) ••• (s - bk ), 

p(s) (s - al)(s - a2) ... (S - an ) 
(6.9) 

with ai, bi E C, eEn and k :s n. We will assume that q(s) and p(s) do 
not have any common factors. If so, they will he cancelled. The zeros of the 
denominator, al, ... , an , are called the poles ofthe transfer function and bI, ... , bk 

are the zeros of the transfer function. The reason for this terminology is the 
following. Suppose the input is given hy 

u(t) = { o 
, t ~ 0, 

t < 0, 
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then the Laplace transform of the output can be written as 

Y(s) _ c(s - bI) ... (s - bk) . _1_ 
- (s-al) ... (s-an) s-so' 

If So i= bi, i = 1, ... , k, then this expression can be factorized as 

Al A 2 An An+l 
Y(s)=--+--+ ... +--+--, Ai EC, 

s - al s - a2 s - an s - So 
(6.10) 

where, for reason of simplicity, we assumed that all poles ai have multiplicity 
one, and moreover, So i= ai, i = 1, ... , n. The inverse transformation of (6.10) 
yields 

y(t) = Alealt + ... + Aneant + An+1e30t . 

The first n terms of the right-hand side of this expression are the free modes of 
the system. The last term is a consequence of the input. If now So = bi for some 
i, say i = 1, then 

Y(s) 
c(s - bt} .... (s - bk) 1 _ c(s - b2) .... (s - bk) _ 

(s - aI) .... (s - an) (s - bI) (s - aI) .... (s - an) 

Al An --+ .... +--, AiEC. 
s - al s - an 

The frequency So of the input signal does not show up in the output signal; only 
the free modes are excited. The zeros of a system are those frequencies which do 
not form part of the output signal. 

EXERCISE 6.2 Design a system of the form :i: = Ax + Bu, y = cx, and find a 
suitably chosen initial condition, such that the input u(t) = e-3t , t ~ 0 yields the 
output y(t) = e- t + 2e-2t , t > O. Hint: it follows from the theory just treated 
that a possible transfer function is 

h(s)- s+3 
-(s+l)(s+2) 

DEFINITION 6.1 If all eigenvalues Ài have a negative real part, the time con­
stant u of the corresponding system is defined as u-I = min; {RÀ;}. 

DEFINITION 6.2 The single-input single-output system i = Ax + Bu, y = Cx 
is said to be a non-minimum phase system if at least one of its zeros has 
positive real part. 

EXAMPLE 6.5 Consider the system with transfer function 

-s + 1 3 -4 
-'s2:-+--::-5s-+---:"6 = -s -+-2 + -s -+-3' 
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This is a non-minimum phase system. If the Heaviside function is applied to the 
system, which was at rest for t ~ 0, then it is straightforward to show that the 
output is 

() 3( -2t) 4(1 -3t) Y t = 2 1 - e - '3 - e ,t ~ O. 

Of course y(O) = 0, and one sees that y(oo) = 1/6 > Oj a positive input leads 
to a positive output in the long run. For a stabilizing output feedback it is 
therefore tempting to think of u(t) = ky(t) with k < O. However, one also has 
y(O) = -1 < O. Hence the sign of y(t) for small values of t is different from the 
sign of y(t) for large values of t. This is sometimes felt to be counter-intuitive 
and leads to problems if one wants to apply an output feedback control of the 
form u(t) = ky(t). Hence non-minimum phase systems require careful attention 
if one wants to apply such an output feedback. 0 

EXAMPLE 6.6 Continuation of the satellite example (see Examples 3.1, 3.7 and 
6.1). We consider aversion ofthe dynamics where there is only one input variabie 
(U2) and one output variabie (Y2)' The matrices involved are (with w = 1): 

A; 0 j ~ n ' B; ( n ' C; (0 0 1 0) . 

The transfer function of this system is (see Example 6.1): 

S2 - 3 
s4 + s2' 

The zeros of this system are s = +v'3 and s = -V3. These 'frequencies' (strictly 
speaking, there is no oscillation at all herej s = ±v'3 correspond to exponential 
functions) cannot form a component of the output signal. However, because the 
system is not stabie, the free modes excited by the input will not die out. 0 

EXERCISE 6.3 Two unit masses are connected by springs, characterized by spring 
constants kt and k 2 respectivelYi see the figure: 

t 2 
I ti I 

woll I 
I 
I 
I 

q2 I 
I 

• I 
q, 
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The position of the masses are indicated by ql and q2, respectively. To mass 1 
we can apply a force u (the input). The output is the position of mass 1; y = ql. 
The equations describing this system are: 

ril u - k1(ql - q2), 

ih k1(ql - q2) - k 2q2 . 

Show that the zeros of this system are ±iJ(kl + k2); they correspond to 'real' 
frequencies! 

We already know that a single-input single-output system x = Ax + Bu , y = 
Cx + Du, gives rise to a transfer function (a 1 x 1 matrix) 

h(s) = C(I s - A)-l B + D . (6.11) 

In the following theorem the reverse will he shown. 

THEOREM 6.1 To each transfer function (which is a proper rational function) 
corresponds an n x n matrix A, n X 1 matrix B, 1 x n matrix C and a 1 x 1 
matrix D such that (6.11) will hold. 

Proof We are given a rational function h(s) = q(s)/p(s) with deg (q(s)) ~ 
deg (p(s)). First DEn will he constructed. There are two possihilities: 

1. if deg (q(s)) < deg (p(s)) then take D = O. 

2. if deg (q(s)) = deg (p(s)) th en 

q(s) 
h(s) = p(s) 

qnsn + qn_l sn - 1 + .... + qo 
sn + Pn_lSn-1 + .... + Po 

qn(sn + Pn_lSn-1 + .... + po) 
p(s) 

= 

+ 
(qn-l - qnPn_dsn- 1 + .... + (qO - qnPO) q(s) 

p(s) = qn + p(s) , 

where deg (q(s)) < deg(p(s)). We take D = qn in this case. 

In order not to complicate the notation q(s) will again he written as q(s), such 
that we can continue with q(s)/p(s), deg(q(s)) < deg(p(s)), and with Dalready 
defined. Hence we can write 

p(s) = sn + Pn_lSn-1 + .... + Po; q(s) = qn_lsn-1 + .... + qo . 

If Y(s) and U(s) are the Laplace transforms of y and u, then they are connected 
according to Y(s) = h(s)U(s) , equivalently, 

p(s)Y (s) = q(s)U(s) , 
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or 

sny(s) + Pn_lSn-ly(S) + .... + PoY(S) = qn_lSn-IU(S) + ... + qoU(s). (6.12) 

We start with a special q(s) polynomial, viz. q(s) is a constant, and for this 
constant we choose 1; q(s) = qo = 1. Since such a system is different from the 
original one, we will caU the output z(t), with Laplace transform Z(s), instead 
of y(t) which is preserved for the output of the original system. Then 

sn Z(s) + Pn_ISn-1 Z(s) + .... + poZ(s) = U(s) , 

which is the Laplace transform of 

dn dn - 1 

dtn z(t) + Pn-l dtn- 1 z(t) + .... + poz(t) = u(t), (6.13) 

with initial values z(O) = i(O) = .... = z(n-l}(O) = O. Here we used the following 
properties of Laplace transforms of derivatives: 

.c[i (t)] 
C[/' (t)] 

s.c[f] - f(O), 

s2 C[f] - sl(O) - I' (0), 

Eq. (6.13) can be written as a set of first order differential equations: 

z(t) 0 1 0 0 z(t) 
z(t) 

0 
z(t) 

d 
= dt 0 

0 0 0 1 
z(n-I} (t) -po -PI -pn-2 -pn-I z(n-I) (t) 

0 

+ u(t). 
o 

1 

Thus a linear differential system i: = Ax + Bu , z = ex with as state x = 
(z, z, ... , z(n-I») has been obtained with 

0 1 0 0 0 

0 
A= ,B= , C = (1 0 ... 0) . 

0 
0 0 0 1 0 

-po -PI -Pn-2 -pn-l 1 
(6.14) 
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This is arealization ofthe transfer function h(s) = ~. Note that the eigenvalues 
of A are the poles of h(s) because det(Is - A) = p(s). See ExercÏse 3.8. 

We now consider the general case with an arbitrary numerator polynomial 
q(s) of degree < n. Inverse Laplace transformation of (6.12) yields (with the 
initial values of all derivatives of u and y equal to zero) 

dn dn- 1 dn- 1 
dtn y(t) + Pn-l dtn- 1 y(t) + .... + POy(t) = qn-l dtn- 1 u(t) + ... + qou(t). (6.15) 

The solution z(t) of (6.13) will be related to the solution y(t) of (6.15). To that 
end, because z(t) satisfies (6.13), qoz(t) satisfies 

dn dn - 1 

dtn (qoz(t)) + Pn-l dtn- 1 (qoz(t)) + ... + po(qoz(t)) = qou(t) . (6.16) 

Differentiation of (6.13) and subsequent multiplication by ql leads to 

Continuing this way, we get ultimately 

for i = 0, ... , n - 1. If we add all these n equations, the result is 

d
n 
(' (n-l)) dtn qoz + qlZ + ... + qn-lz + ... + 

+ ( . (n-l)) . (n-l) (6 18) Po qoz + qlZ ... + qn-lZ = qou + qlU + ... + qn-lU .. 

If (6.15) and (6.18) are compared, we see that the unique solution y(t) of (6.15), 
with y(O) = y(O) = ... = y(n-l)(O) = 0, equals qOZ+qlZ+ ... +qn_lZ(n-l). A real­
ization of h(s) = q(s)Jp(s) therefore is, with state variabie x = (z, z, ... , z(n-l)f, 

0 1 0 0 

, B ~ ( ; 1 ' c ~ (",H.,q'A). (6.19) 
0 

A= 
0 

0 0 0 1 
-po -PI -pn-l 

Other realizations exist (other triples of matrices A, B, Care possible which cor­
respond to the same transfer function. Indeed, as explained in section 3.3, a 
coordinate transformation in the state space does not change the transfer func­
fu~. 0 
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EXAMPLE 6.7 Consider the two systems (x, u, YEn): 

x 
x 

-x+ 2Uj 

-2x + 3uj 
Y 
Y 

2x, 
-x. 

What are the transfer functions of these two systems? Subsequently, these sys­
tems are coupled to each other as indicated in the next figure. 

The input and output of this combined system are called v and z respectively. 
What is the tranfer function which describes the relation between v and z? Give 
also a state space description of this combined system. 
Answer. The transfer functions of 1:1 and 1:2 are respectively 

4 
ht(8) = --1' s+ 

In order to determine the transfer function of the coup led system, we define Xi 

to be the output of system 1:i. Then we formally get 

from which 
z= h1(1+h 2)v. 

1 - hth2 

Substitution of hl and h2 leads to the transfer function 

48 -4 

S2 + 38 + 14· 

A state space description is 

o 

The realization in (6.19) has a special name, viz., standard controllabie 
realization or the controllability canonical form and was al ready met in 
(5.4). The procedure given above to obtain a realization can also be given by 
means of a flow diagram (in this diagram n = 3 and the notation z(i) refers to 
the ith derivative of z). 
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y 

In this diagram the box [IJ denotes integration which is a shorthand notation 

of the system {x = u ; y = x} with transfer function l/s and the boxes I-Pi I 
and ~ denote multiplication with the coefficient inside the box. The diagram 
also indicates how the system could be realized in prae ti ce (i.e. be built) if we 
have devices (building blocks) at hand which integrate, add and multiply. This 
is exactly what an analog computer is being used for. 

Superficially, we could also implement or build th is system by means of dif­
ferentiators. This design or flow diagram could be obtained as follows. The 
flow diagram between u and z is (take n = 3): 

. 
z 

1--...--.1 ! 1---....--- z 

ij.1II i i III II 



... 

116 MATHEMATICAL SYSTEMS THEORY 

and therefore, by superposition, 

The latter flow diagram also describes the system characteristized by h(s) = 
q{s)jp{s). However, now differentiators, the hlocks I ft I, have heen used. As will 
he explained in Example 6.13, differentiators are technically difficult to huild. 
Because integrators can he realized much easier, a flow diagram with integrators 
instead of differentiators is to be preferred. 

EXAMPLE 6.8 In Example 6.6 a form of the satellite problem was discussed with 
transfer function 

A realization of this function is 

x= 
( 

0 1 
o 0 
o 0 
o 0 

o 0) (0\ 1 0 0 \ 
o 1 x + 0) u j Y = (-3, 

-1 0 1 

0, 1, O)x. 

Clearly, this realization is different from the one given in Example 6.6. 0 

EXERCISE 6.4 Show that the controllability canonical form of the system with the 
two connected springs in Exercise 6.3 equals 

( 

0 
. 0 
x = 0 

-k1k2 

~ ! ~)X+(~)Uj 
o -(2kl + k 2 ) 0 1 
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y = (kl + k2 , 0, 1, O)x. 

Another particular realization carries the name of ob server canonical form. 

We will not discuss it here extensively. We only give it here, for sake of com­

pleteness, for the transfer function (6.8) with qn = 0; 

-pn-l 1 0 0 qn-l 

-pn-2 . 0 
qn-2 

A= 0 ,B= , C= (1,0, ... ,0). (6.20) 

0 0 1 
-po 0 0 qo 

We will conclude this section with one other method which also realizes a 

rational function h(s) = q(s)/p(s) with deg (q(s)) < deg (p(s)), as a linear 

differential system. The method is based on the factorization of h(s)j 

h(s) = q(s) =~+~ ... +~, 
p(s) s - al s - a2 s - a n 

where ai are the poles of h(s), which are assumed to be real and to have multi­

plicity one for the time being. A realization of h(s) is given by x E nn: 

(

al 

. 0 
x= 

o 

o 

o 
which looks in a block diagram as follows: 

s-a 

u y 

This realization is called the diagonal realization. The original n-th order sys­

tem has been decoupled into n independent subsystems. The blocks with the 
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contents 1/ (8 - ai) are shorthand graphs for the following blocks: 

---I·~I sh.1 t----I.~ 

If p(s) = 0 has real roots of multiplicity larger than one, say s = a has 
multiplicity two, then factorization leads to 

A B 
h(s) = - + ( )2 + .... s-a s-a 

These terms can be realized jointly as follows: 

1 
s - a 

1 
s - a 

B 

A 

If the outputs of the two blocks with integrators are denoted by X2 and Xl, as 
indicated in the figure, then a state space realization of ....:L + ~ is $-a \$-ar 

The system matrix is now a Jordan block of size 2 X 2. 
If in p(s) factors exist of the form 82 + bs + c with b2 - 4c < 0 such that a 

further decomposition in real factors is impossible, then the following example 
shows a possible flow diagram. Suppose the transfer function is given by 

h( ) s + 2 
s = 82 + 2s + 5 . 
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The denominator cannot be decomposed any further into real factors. Therefore 
h( s) is written as 

and a flow diagram is 

u y 

s + 1 Xz 

If the output of the two blocks with integrators are denoted by X2 and XI, as 
indicated in the figure, then a state space realization is 

:t ( :~ ) = (=; -î) ( :~ ) + ( ~ ) u j Y = (~ 1) ( :~ ) 
EXERCISE 6.5 Consider the system given by the external description 

~y ~Y ~ ~u ~ 
dt3 + 4 dt 2 + 5 dt + 2y = 2 dt 2 + 6 dt + 5u . 

Determine the transfer function (take all necessary initial conditions equal to 
zero) and factorize this function. Show that this faetorization ean be given in a 
flow diagram as follows: 

.-. 1 
x 3 

--
s+2 

u 

1 
x 2 1 

xl 

+ y ....... -- --s+l s+l 

If the output of the ZoeaZ subsystems are ealled Xl, X2 and X3 as indicated, give a 



120 MATHEMATICAL SYSTEMS THEORY 

description in state space form with the vector x as state. Prove that 

di __ ( 00 1 0) (2 ) 
dt -2 _~ _! i: + -~ u, y = (1 0 O)x 

is another state spa ce description of the same system. Show that a nonsingular 
3 X 3 matrix T exists such that with the transformation x = Ti: one state space 
description can be obtained from the other. Matrix T can be interpreted as a basis 
transformation in state space. 

EXERCISE 6.6 If {A, B, Cl, with Aan n X n matrix, B an n X 1 matrix and C an 
1 X n matrix, is a realization of the transfer function q(s)/p(s), prove that degree 
q(s) = m if and only ifCAiB = 0, i = 0, 1, ... ,n- m - 2 and CAn-m-1B =ft O. 

EXERCISE 6.7 Given the flow diagram below, 

1 -
S + 3 

U Y 

+ a + -
S + 2 

1 ---
s + 1 

determine the transfer function of the overall system. For which value(s) of Ct is 
the system stabie ~ 

EXAMPLE 6.9 We are given the system 

! ( :: ) = (~l ~l i) ( :: ) + (~ :) ( :: ) , 

(:)=0 ~ nU:)· 
This is a model of a turbopropeller engine, where 
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• Xl = Yl is the deviation of the rotating speed from its nominal value at the 

desired steady-state operating pointj 

• X2 = Y2 is the deviation of the turbine-inlet temperature fr om its nomial 

valuej 

• X3 is the deviation of the fuel rate from its normal valuej 

• UI is the deviation of the propeller blade angle from the normal pointj 

• U2 is the time-derivative of the fuel rate. 

propeller 

turbine 

combustion 

chamber 

Consider the following questions. 

1. Determine the transfer matrix of the system. 

2. One wants to decouple the inputs and the outputs. That is, the first 

input should only influence the first output and the second input should 

only influence the second output. For the decoupling to be true, what 

properties must the transfer matrix satisfy? 

3. Instead of with U, we are going to control the system by means of w E n 2 , 

where U E n 2 , X E n3 , wand an auxiliary variabie v E n 2 are related to 

each other as 
U = Gv, v = Fx + w. 

Determine constant matrices G and F such that the new system, with input 

wand output y, is decoupled. 

Answer question 1. The transfer matrix is calculated from H(s) = C(sl -

A)-l B. It equals 

H(s) = ( 311 

3+1 

*~l) ) ! . 
3 

Answer question 2. H(s) must be a diagonal matrix (which is not the case). 

Answer question 3. With the new input (and output), the system equations 

can be written as 

X (A + BGF)x + BGw, 

Y Cx. 
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Write 
G = (91 92), 

g3 g4 
F-(ft 12 13) 

- 14 15 16 . 

Since Y1 = Xl must not dep end on W2, a requirement is g2 = O. Similarly, Y2 = X2 
must not dep end on W1, which leads to 2g1 + g3 = O. The element g4 can be 
chosen freely. Hence a possible choice for G is 

With this G we get 

( 

-l+ft 12 
A + BG F = 14 -1 + 15 

-2ft + 14 -212 + 15 

1+13 ) 
1 + 16 . 

-213+/6 

By choosing 12 = 0 and 13 + 1 = 0, the requirement that Xl is not influenced by 
X2 and X3 has been taken care of. Similarly, by choosing 14 = 0 and 16 + 1 = 0, 
X2 is not influenced by Xl and X3. The remaining elements ft and 15 can be 
chosen freely, take for instance ft = 15 = O. Hence 

( 0 0 -1) 
F = 0 0 -1 . 

With this choice of F and G, the system becomes 

d ( Xl) (-1 
dt :: = ~ ~l ~) ( :: ) + (i2 :) ( :: ) , 

( : ) = U ~ n ( :: ) , 
which is clearly decoupled. 

EXERCISE 6.8 Determine a realization ol the transier matrix 

( 

3 

32 +23 

H(s) = ~ o ) o 
3-1 

(3+IF 

o 

DEFINITION 6.3 11 H(s) is a matrix ol which the entries are strictly proper ra­
tionallunctions, then we will say that n is the McMillan degree of H(s) il H(s) 
has a realization C (Is - A) -1 B with Ahaving size n X n and no realizations with 
A of dimension k with k < n exist. 



123 

The following theorem, of wich the proof will not be given, provides an algorithm 
for calculating the McMillan degree. 

THEOREM 6.2 Given any p X m matrix H(s) of which the entries are strictly 
proper rational functions, and given that H(s) has the expansion 

then the McMillan degree n of H(s) is given by n = rankL(r - 1, r - 1), where 

Lp ) Lp+! 

L':;;+l ' 
with r being the degree of the least common multiple of the denominators of H (s). 

6.3 Transfer functions and minimal realizations 

THEOREM 6.3 A state space realization of a transfer function h(s) = ~ (single­

input single-output system) is both controllabie and observable if and only if q (s) 
and p(s) do not have common factors. 

Proof The proofwill only be given for transfer functions which allow a diagonal 
realization, i.e. the system matrix A is diagonal. The proof consists of two parts. 
First we will prove that, given controllability and observabibility, there are no 
common factors. Subsequently we wil! prove that, if the system is not controllabIe 
and/ or not observable, there are common factors. Together these two parts then 
prove the theorem. 
Part 1. Consider the diagonal realization 

o 
A= , B= 

o 

(6.21 ) 
with corresponding transfer function 

h(s) = q(s) = ~ ~ . 
p(s) ~ s -.xi (6.22) 
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The scalars bi and Ci satisfy biCi = Ui, but are otherwise arbitrary. The control­
lability matrix is 

R= 

b1À1 b1À~ 
b2À2 b2À~ 

bnÀn bnÀn 

), 
b Àn-l 

n n 

À1 À2 
1 

À2 À~ 

and ... À~_I) 
\n-l n 

••• A2 IJ 
• X bi • 

Àn À~ À~-1 

(6.23) 
i=l 

The determinant at the right-hand side of (6.23) is the so-called determinant of 
Van der Monde and it can be shown (the proofis by induction with respect to 
the size of the matrix; the proof will not be given here) that this determinant is 
equal to 

IJ (Àj - Ài) • 

19<j5n 

Hence det R =F 0 if and only if Ài =F Àj for all i =F j and bi =F 0 for all i. The 
lat ter requirement is quite obvious. If bi = 0 for some i then the i-th component 
of the state is not excited by the input and cannot belong to the controllabie 
subspace. Realization (6.21) is controllabie if and only if Ài =F Àj and bi =F O. 
With the same argument it can be shown that the realization is observable if and 
only if Ài =F Àj and Ci =f. O. For a controllabie and observable realization of the 
form (6.21), Ci =f. 0 and bi =f. 0 and therefore Ui =f. O. This means that there are 
no common factors in h(s). 
Part 2. Now we suppose that p(s) and q(s) have a common factor, say (s - ÀI). 
Therefore we must have 91 = 0 in (6.22), hence 

n n 
Ui Ui 

h(s) = L~ = L~ = hred(S), 
i=l S • i=2 S • 

where red stands for reduced. Since UI = 0, we have bI = 0 or Cl = 0 (or both). 
It is easily seen that bI = 0 refers to non-controllability and Cl = 0 refers to 
non-observability, which then proves the theorem. 0 

EXAMPLE 6.10 Consider the system 

d ( Xl) (1 - X2 0 
dt 1 X3 
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The Rand W matrices for this system are 

( 0 -1 -4) ( 1 
R= 0 0 0 ,W= 2 

138 4 

Both Rand Ware singular! Even one of them heing singular would he suflicient 
to conclude that the transfer function has a common factor. The transfer function 
is 

h(s) _ (s - l)(s - 2) __ 1_ 
- (s - l)(s - 2)2 - S - 2 . 

Hence the input-output hehaviour of the system given hy the realization (6.24) 
with a three-dimensional state space can also he realized hy a realization with a 
one dimensional state space. Such a realization is (x is one-dimensional) 

x = 2x + u; y = x . 

A realization of which the dimension of the state is minimal is called a mini mal 
realization. 0 

6.4 Frequency methods 

6.4.1 Oscillations 

So far we assumed that input and output functions are real functions (vectors). 
From the control point of view it turns out to he useful to admit complex func­
tions. If we take the complex valued input function 

u(t) _ { 0 for t < 0 , 
- e8t c for t ~ 0 , 

with sEC and c a complex vector. If x(O) = 0, then the corresponding output 
function will he 

t t 

y(t) = J G(t - r)e8T cdr = J G(r)e*-T)cdr = 
o 0 

t t 

= (J G(r)e- 3r dr)e8tc = (J G(r)e- 8T dr)u(t) . 
o 0 

If we consider the limit of t ~ 00 and assume that the integral converges to H(s) 
for ~s sufficiently large, th en 

y(t) '" H(s)u(t). 
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This somewhat weird looking expression must be viewed as the approximate 
equality of two (complex valued) time functionsj H(s) is a proportionality factor 
in which s has a specific numerical value. 

Since u(t) = e8t c = cePt(cos wt + i sin wt), with s = p + iw, p, w ER, u(·) 
00 

represents an oscillation. If J Gij (r )dr < 00 for each element Gij of the matrix G, 
o 

00 

then J G( r)e-3tdt exists for Rs 2: 0 and more explicitly, for all s = iw with w E 
o 

R. If an input u(t) = ceiwt is applied, an output y(t) "" H(iw)u(t) results for large 
t. The function eiwt c = c( cos wt + i sin wt) is called a harmonie oseillation 
and H(iw)eiwtc is the stationary response on the harmonie oscillation eiwtc. 
The matrix H(iw) is called the frequency response matrix. The difference 
between y(t) and the stationary response is called the transient behaviour. 

00 

This behaviour approaches zero as t -+ 00 if J Gij (r)dr < 00 for all i,j. It 
o 

00 

follows from the section on stability that J Gij(r)dr < 00 if R(Ài ) < 0 for all 
o 

eigenvalues Ài of A. 

REMARK 6.1 If in the definition of the Laplace transform as given by (6.1) one 
confines oneself to s on the imaginary axis, i.e. s = iw, w being real, th en one 
obtains a version of the Fourier Transform. (Two different versions of Fourier 
Transforms exist in the sense that, depending on the application, the lower bound 
of the integral concerned is either 0 or -00.) Thus the theory of Fourier trans­
forms can be viewed as a special case of the theory of Laplace transforms. The 
next subsection gives more information on the frequency responses. 

6.4.2 Nyquist and Bode diagrams 

In this section we confine ourselves again to single-input single-output linear 
differential systems. For the frequency response we can write 

h(iw) = Ih(iw)leiarg h(iw) . 

The stationary response of u(t) = uweiwt+<p , wand Uw ER is 

y(t) = h(iw)uweiwtH = Ih(iw)luwei(wt+arg h(iw)H) . (6.25) 

Now consider Uw sin (wt + 4» as a sinusoidal input signal and treat it as the 
imaginary part of u(t). Then, if we now take the imaginary parts of (6.25), the 
stationary response of 

equals 

~(y(t)) = ~(lh(iw)luwei(wtH+arg h(iw») , 

Ih(iw)luw sin (wt + 4> + arg h(iw)) (6.26) 
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The stationary response is also sine-shaped, with amplitude Ih( iw) luw. The 
phase of the oscillation is increased with arg (h(iw)). A linear time-invariant 
system with transfer function h(s) transforms a sinusoidal signal with frequency 
w into another sinusoidal signal with frequency w by multiplying the amplitude 
with Ih(iw)1 and increasing the phase with arg h(iw). 

EXAMPLE 6.11 Consider the following electric network (compare the example of 
subsection 2.4.4): 

u 

c 

For the state we choose Xl = q (charge of the capacitor) and X2 = cP (magnetic 
flux of the induction coil). If i is the current and v the voltage, then 

Thus 

. . 1 cP 1 
q = t = L = LX2 ' 

. 1 R 1 
cP = v = -Ri - -q + u = --cP - -q + u . 

C L C 

I 

LR 
-L ) B=(~) 1 

, C = (C 0), 

(do not confuse the output matrix C with the capacity C) and 

The poles of h (s) are the zeros of S2 + f s + lc' It is straightforward to show 
that both poles have a negative real part and hence 

y(t) '" Ih( iw) luw sin (wt + cP + arg h( iw)) j 

if an input signal Uw sin (wt + cP) is applied. Further, 

Ih(iw)1 = J{(l- Lcw2~2 + R2C2,w2} 

( 
-RCw ) 

arg h( iw) = arctan 1 _ LCw2 . 
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More generally, if a linear combination of shiusoidal signaIs, possibly of different 
frequencies, is applied to the system, then the output will he a linear comhination 
of sinusoidal signals with the same frequencies as those of the input signal. 0 

EXERCISE 6.9 Can you design a system of the form x = Ax + Bu, y = Cx, 
with a suitably chosen initial condition, such that the input u(t) = sin t yields 
the output y(t) = sin t 'I (Note that if the output equation would have been of 
the form y = Cx + Du, the answer would be affirmative almost triviallYi but the 
design requires D = 0.) If your answer is affirmative (which it should bey what 
conditions should the transfer function h(s) satisfy'l 

Frequency response functions are used frequently in network analysis, automatic 
control and acoustics. There are two well known methods to display h(iw) graph­
ically (and to get an impression of the proper ties of the system by studying these 
graphs). Many design techniques are based on these methods, to he discussed 
briefly here. 

1. The Nyquist diagram or polar plot. The function h(iw) is plotted as a 
curve in the plane, parametrized by w (varying from 0 to +(0). If we think 
of h(s) as a function mapping from the complex plane into the complex 
plane, then the Nyquist diagram is the image of the positive imaginary 
axis under h. 

2. The Bode diagram or the logarithmic diagram. In this case h is rep­
resented hy two graphs; the amplitude plot: In Ih( iw) I as a function of In w 
and the phase plot: arg (h(iw)) as a function of In w. 

In the following figures the Nyquist diagram and the Bode diagram of the system 
with transfer function 1/{1 + Ts), with T > 0 heing a constant, are given as 
an example. Please no te that the seale of In Ih(iw)l is expressed in so-called 
decibels (dB). The graph of Ih{iw)1 versus w indicates which frequencies can 
pass the system and also with what gain. The system can thus he interpretated 
as a filter for the input signaIs. In the first of the next four figures in a row 
only the low frequencies will pass the system whereas the higher frequencies are 
cut off. Such a filter is called a low frequency filter. The other figures show 
other kinds of filters; they are self-explanatory. The bandwidth B of a system 
is defined as that range offrequencies (ofthe input signal) over which the system 
will respond satisfactorily. 

A simple application of a low frequency filter is the following. Noise signals 
con sist usually of high frequency signaIs. If we want to get rid of this noise, a low 
frequency filter can he used. As a consequence, those parts of the input signal 
related to high frequencies will also be cut off. 
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~oO ______________________________________ _ 

EXAMPLE 6.12 Consider the feedback system of the following configuration (two 
blocks in the forward loop and unity feedback): 

Hl (s) is the transfer function of a given system (in practice sometimes also called: 
plant). We want to design a controller H2(S) such that the overall feedback 
system has pleasant characteristics. The controller is characterized by its transfer 
function which can be chosen by the designer. It is easily shown that the transfer 

Ihl t----.... Ihl Ihl Ihl 

gain 

o o o 
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u ~sr~ _____ ._I ___ H2_(s_) __ I ____ .:I~~H __ l(_S)~:~~~~~~-y--_. 
function of the overall system is given by 

Y(s) = H(s)U(s) , H(s) = (1 + Hl (s)H2(s.))-1 HI(S)H2(S) . 

A possible design criterion could be that Y(s) must be as close as possible to 
U(s), i.e. the output tries to follow the input. This is called tracking. A 
possibility to achievé a good tracking system is to design H 2 (s) in such a way that 
H I(s)H2(S) is'large'insomesence, sincethen (I+HI(s)H2 (s))-IHI(s)H2 (s),.... I 
and subsequently Y(s) ~ U(s). For frequency considerations sis replaced by iw, 
and then S(w) is defined as 

S(w) = [I + HI (iw)H2(iw)t l
, 

and is called the sensitivity operator. A system is said to have good sensitivity 
characteristics if - now suppose u(t) and y(t) are scalar so that S(w) is a 1 x 1 
matrix -

11 + Hl (iw)H2 (iw) 1 ;::: <p(w) 

for all Iwl ~ Wo, the bandwidth of interest, and where <p(w) is a large positive 
function. 0 

EXAMPLE 6.13 [The differentiator] Suppose y(t) = d~\t) , tEn. Then 

00 00 

Y(s) = J e-3t~~ dt = ue-3t lo + s J ue- 3tdt = sU(s), 
o 0 

if u(O) = O. The transfer function is s, which is a nonproper rational function 
(s/l). Sin ce the degree of the numerator is larger than that of the denominator, 
this is a non-causal system. Such a system cannot be realized technically (if 
u(s) is known up to time t, then the derivative at the end point s = t does not 
exist). Furthermore, Ih(iw)1 = Iwl, such that higher frequencies are amplified 
more and more. For the phase, we get arg (iw) = ~ for all frequencies. 0 

Consider (6.7) with H2 being the unit feedback, i.e. H 2 = I, and with Hl 
representing a single-input single-output system of which we write the transfer 
matrix (i.e. transfer function) now as hl (s) rat her than Hl (s). It is assumed 
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that this transfer function is strictly proper and that it does not have poles on 
the imaginary axis (the lat ter assumption is not very essential, but it simplifies 
the text to come). Equation (6.7) then becomes 

Consider the mappingw -+ h(iw), where w runs from -00 to +00 and wh ere h(iw) 
then describes a curve in the complex domain (compare this with the Nyquist 
diagram). For w = -00 this curve, called f, starts at the origin, and for w = +00 

it ends at the origin again. Therefore we will include the origin in r such that it 
becomes a closed curve. Assume that the real point -1 in the complex plane is 
not part of the curve r. 
THEOREM 6.4 Under the assumptions formulated above, the number of encircle­
ments of the real point -1 in the complex plane by the curve r, if this curve is 
traversed clockwise, equals the number of unstable poles of the closed-loop system 
minus the number of unstable poles of the open-loop system. 

The open-loop system here refers to the system characterized by h1(s) and the 
closed-Ioop system (characterized by h(s)) refers to this system provided with 
the unity feedback. One talks about unstable poles if they are located in the 
right-half plane. This theorem is a simplified version of a slightly more general 
theorem which is known as the Nyquist criterion. It can be used for checking 
whether the closed-Ioop system is stabie. 

The proof of the Nyquist criterion will not be given here, but it is based on the 
following theorem in complex function theory (known as Cauchy's theorem). 

THEOREM 6.5 Assume that h is a rational (or, more generally: a meromorphic) 
function having no poles or zeros on a simple closed curve C. Assume in addition 
that C is oriented clockwise. Then 

1 1 ~h(s) - ---ds 
21!"i c h(s) 

equals the number of poles minus the number of ze ros, both only counted in the 
region bounded by C. 

The assumption that the feedback system had to be the unit system as made 
above is not as limited as it might seem at first hand. Assuming only single-input 
single-output systems, we write for (6.7), 

which can thus be viewed as a system in series, where the two subsystems are 
characterized by h1 (s)h2(s)(1 + hl(S)h2(S))-1 and h2"l(S) respectively, provided 
that both are weU defined. The first of these two subsystems itself represents 
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a system characterized by h1(s)hz(s) provided with a unit feedback. Thus the 
stability study of a system with a general feedback function can be transformed 
to a stability study of a system with unity feedback (and some additional re­
quirements such as the existence of the system characterized by h2"l(s)). 



Chapter 7 

Linear Difference Systems 

For most of the theory in Chapters 3, 4 and 5 for linear differential equations, an 
analogue exists for discrete-time systems: 

x(k + 1) 
y(k) 

= A(k)x(k) + B(k)u(k), 
= C(k)x(k) + D(k)u(k), k = 0, 1,2, ... 

(7.1) 

AIso, for other kinds of linear system descriptions, such as in Chapters 6 and 
8.2, discrete analogues exist. Of such analogues only the z transform as the 
counterpart of the Laplace transform will he dealt with here. Linear difference 
equations of ten arise hy discretizing linear differential equations. The reasons for 
such a discretization can he many. Some of them are: 

1. The analysis must he performed on a digital computer which, hecause of 
its discrete-time hehaviour, is more apt to discrete-time systems than to 
continuous-time systems. 

2. One does not want to control the system hy a continuous varying input 
function. Instead one wants to keep the input function constant for intervals 
offixed length (easier to implement). The so-called sampling periods will 
he indicated hy 

[O,~), [<fo,2~), [2<fo,3<fo), ... 

The input u is constant in each of these periods. 

3. The output can only he measured at time instants ~, 2~, .... 

In this chapter we will - very hriefly - show what the discrete-time analogues 
are of some of the concepts already introduced for continuous-time systems. The 
solution of the homogeneous difference equation 

x(k + 1) = A(k)x(k), xE nn, (7.2) 

can he written as 
x(k) = ~(k, ko)x(ko), k ~ ko, (7.3) 
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134 MATHEMATICAL SYSTEMS THEORY 

where the transition matrix 4J is given by 

4J(k, ko) = { A1,(k - I)A(k - 2) .. . A(ko), k ~ ko + 1, (7.4) 
k = ko. 

The transition matrix is the unique solution of the matrix difference equation 

<fJ(k + 1, ko} = A(k}<fJ(k, ko}, k ~ ko; with <fJ(ko, ko} = I 

If the matrices A(k) do not dep end on time, i.e. 

A(k) = A k = ko, ko + 1, ... 

then 
4J(k, ko) = Ak-ko, k ~ ko. 

Please note that the transition matrix 4J is not necessarily nonsingular, this in 
contrast to the transition matrix for continuous-time systems. This is related 
to the fact that (7.2) is not necessarily well-defined in backward time. If A is 
invertible, then 4J(k, ko) is invertible and 4J(k, ko) = (4J(ko, k))-l. Conditions for 
stability (the definition of stability is much the same as in Definition 4.1) are 
given in the following theorem (no pro of is given since the Hne of thought is the 
same as that of the proof of Theorem 4.1). 

THEOREM 7.1 Given is the time-invariant linear difference equation (7.2) with 
A an n x n matriz with different eigenvalues A;, ... ,Ak (k ~ n). The origin z = 0 
is asymptotically sta bie if and only if \ Ad < 1 for i = 1, ... , k. The origin is sta bie 
if \),;\ ~ 1 for i = 1, ... , k and moreover if to each eigenvalue with \),;\ = 1 there 
correspond as many eigenvectors as the multiplicity of ),;. 

EXAMPLE 7.1 Consider the model of a national economy as developed in Ex­
ample 2.4.9. The system matrix is 

( 
0 -I-' ) 

A = m m(l +1-') . (7.5) 

The characteristic polynomial is ),2 - m(l + 1-')), + mI-'. The system is for instance 
asymptotically stabie for I-' = 1 and m < 1. It is unstable if I-' = 1 and m > 1. 
For I-' = 1 and m = 1 it is also unstable. 0 

EXERCISE 7.1 Let u(k), k = 0,1, ... , be a sequence of measurements. In order 
to smoothen these measurements somewhat, a moving average is defined as 

1 
y(k) = 3(u(k) + u(k - 1) + u(k - 2)). 

Determine a system in state space form (Equation (7.1)) for this input/output 
description. 
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EXERCISE 7.2 In a certain country the weather forecast takes place as follows. 
The percentage of sunshine per day is measured. At day kthere has been ak % 
sunshine. The forecast for the day thereafter is made according to 

where tlk+l is the forecast. Write the system in state space form for this forecast 
where the % of sunshine of today is the input and where the forecast for tomorrow 
is the output. What is the dimension of the state? 

The charaderistic polynomial corresponding to x(k + 1) = Ax(k), A being 

a constant matrix, is P(z) ~f det(zI - A) = anzn + an_IZn- 1 + ... + alZ + ao 
with an = 1. The following theorem gives the criterion of Jury, being the 
discrete-time counterpart of the Routh criterion. A similar criterion is named 
af ter Routh-Schur, see [Isermann, 1989]. 

THEOREM 7.2 The polynomial P(z) has all its zeros strictly within the unit circle 
if and only if all the following conditions are satisfied: 

n 
Lai > 0, 
i=O 

n 
(-lt L(-I);ai > 0, 

.=0 
lanl- ao < 0, 

labl- la~_jl < 0, for j = 1,2, ... , n - 2, 

where the coefficients ai are recursively determined by 

. h 0 def wzt ai = an -;· 

The solution of the inhomogeneous state equation 

x(k + 1) = A(k)x(k) + B(k)u(k), x(ko) = Xo 

can be written as 

k-l 

x(k) = <jl(k,ko)xo+ L <jl(k,j + l)B(j)u(j), k 2: ko+ 1 
j=k o 

If Xo = 0, then the output vector y(k) = C(k)x(k) + D(k)u(k) can be written as 

k 

y(k) = L K(k,j)u(j), k 2: ko, (7.6) 
j=k o 
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wh ere the impulse response matrix is given by 

K(k,j) = { CD((kk))rjJ(k,j + l)B(j), j::; k - 1, 
j = k. 

(7.7) 

As far as the actual computation of rjJ(k,j) or K(k,j) is concerned, for constant 
A (and B, C and D), this can be do ne by writing A in its Jordan normal form 
by means of a coordinate transformation. 

The role of the Laplace transformation for continuous-time systems is played 
by the so-called z-transformation for discrete-time (time-invariant and linear) 
systems. Suppose x(k), k = 0,1,2, ... , is a sequence of (realor complex) numbers. 
The z-transform of this sequence is defined as 

00 

X(z) = E x(j)z-j, zE C, (7.8) 
j=O 

where only those z-values will be considered for which this summation converges. 
If X(z) exists for a value z = Zo, then it will exist for all z with Izl ~ Izol. If X(z) 
is known, the sequence x(k), k = 0, 1,2, ... can be recovered in several ways. One 
way is to look it up in a table of z-transforms. Another way is to write X(z) as a 
power series expansion in z-l and subsequently to identify the coefficients of the 
terms in this series expansion with x(j), see (7.8). Still another way is provided 
by the following theorem (no proof is given here). 

THEOREM 7.3 11 
00 

X(z) = :Lx(j)z-j 
j=O 

converges lor Izl ~ Izol, then 

x(k) = -2
1 .1 X(z)zk- 1dz, k = 0,1,2, ... , 
lI't c 

where C is a closed contour in the complex plane in the area Izl ~ Izol, around 
the origin (take lor instanee a circle with radius r ~ Izol). 

If x(k + 1) = Ax(k) + Bu(k) is the state equation with A and B being constant 
matrices, then successively multiplying this equation by z-j, j = 0,1,2, ... and 
summing the results yields 

zX(z) - zx(o) = AX(z) + BU(z). 

If we solve for X(z), the result is 

X(z) = (zI - A)-l BU(z) + z(zI - A)-lX(O). 

The z-transformation of y(k) = Cx(k) + Du(k) yields 

Y(z) = CX(z) + DU(z). 

(7.9) 

(7.10) 



The combination of (7.9) and (7.10), with x(o) = 0, gives 

Y(z) = (C(zI - A)-l B + D)U(z). 

The matrix C(zI - A)-l B + Dis called the transfer matrix. 
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Suppose u(k) is a periodic (complex-valued) input signalof the followingform: 

u(k) = uoeika , k = 0, 1,2, ... , with a E n. 

As is wen known from the theory of difference equations, the general solution of 

x(k + 1) = Ax(k) + Buoeika (7.11 ) 

can be written as the summation of one arbitrary solution of this inhomogeneous 
difference equation and the general solution of the homogeneous equation x(k + 
1) = Ax(k). We will try to construct a solution of (7.11) in the form of 

x(k) = xoeika , k = 0,1,2, ... 

Substitution into (7.11) gives the following condition on xo: 

eiaxo = Axo + Buo, rm so Xo = (Ieia - A)-l Buo. 

The general solution of (7.11) therefore is 

x(k) = (Ie ia - A)-l Buoei"a + A"a, 

with a arbitrary. This vector can be determined by the initial condition for the 
system. If the system is asymptotically stabIe, then limk-too A" = 0, and 

(Ie ia _ A)-l Buoeia 

is called the stationary response of the state if the input signal is as given 
above. The term A"a is called the transient behaviour. The stationary re­
sponse of the output is 

This formula (for single-input single-output systems) is the discrete time ana­
logue offormula (6.26). Note that here the stationary response is completely de­
termined by the transfer matrix-values on the unit circle (in the continuous-time 
case: on the imaginary-axis). Confining ourselves to single-input single-output 
systems, the transfer function can be written as 

with 

q(z) 
h ( z) = d + p( z) , (7.12) 

p(z) = zn + Pn_lZn-1 + ... + Plz + Po. 



138 MATHEMATICAL SYSTEMS THEORY 

A state space realization corresponding to (7.12) is 

x(k + 1) 

y(k) 

o 1 

o 
-PO -PI 

o 

o 1 
o 

(qO, qo,···, qn-I)x(k) + du(k). 

o 

o 
1 

x(k) + 

o 

o 
1 

u(k), 

The derivation is exactly the same as in the continuous-time case. Block dia­
grams for time-discrete time-invariant linear systems can he drawn similarlyas 
in continuous-time case. The only difference is that the integrator J must he re­
placed hy an operator D defined by Dx (k) = x (k -1). This operator is sometimes 

called delay operator or backward delay operator. lts inverse 0' ~f D-Ij 

O'x(k) = x(k + 1), is called the (forward) delayoperator. 

dx/dt =Ax + Bu: u x 

x(k+ 1) = Ax(k) + Bu(k): u(k) x(k) 
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EXAMPLE 7.2 Consider a simplified version of the national economy as given in 
Example 2.4.9. The model now is 

x(k + 1) 
y(k) 

px(k) - ru(k), 

x(k). (7.13) 

The scalar y(k) is the total national income in year k and the scalar u(k) is the 
expenditure in year kj pand rare constants. The transition matrix is 

4J(k, kol = pk-ko. 

The general solution of (7.13) is 

k-l 

x(k) = pk-kox(ko) + L: pk-j-l(_ru(j)). 
j=ko 

The impulse response function is 

{ 
_rpk-ko-l, 

K(k, kol = 0, 

and the transfer function is 

-r 
h(z) =-, 

z-p 

k ;::: ko + 1, 
k = ko, 

Izl > p. 

(7.14) 

Suppose that the expenditures are constant, i.e. u(k) = uo for k = 0,1,2, ... 
Then 

~ . 1 z 
U(z) = ~ uoz-J = --1 Uo = --Uo, 

1-- z-1 j=o Z 

Izl> 1. 

The response of the output (assume x(O) = 0) is 

-r z 
Y(z) = h(z)U(z) = --Uo, 

z-pz-l 
Izl > max(p, 1). 

In order to find y( k) we will use the second mentioned method given above, i.e. 
by means of a power series expansion. Factorization of h(z) gives 

with 

-p 
z-p 

1 
z-I 

Y(z) = ( 
-p 1)-r --+-- --Uo 

z-p z-1 I-p , 

= -p (1 + E + (E)2 + ... ) , 
z z z 

1 ( 1 12) - 1+-+(-) + ... , 
z z z 

Izl > max(p, I), 
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and hence 
00 

Y(z) = E ~(1- p1)uoz-i . 
i=o P - 1 

By definition, Y(z) = L:}:o y(j)z-i, and therefore 

{ 
0 for k = 0, 

y(k) = r_rpk _ 
- p-l 1.10 for k - 1,2, ... 

This result can also he ohtained hy using (7.14) directly. 

EXAMPLE 7.3 We are given the discrete-time system 

x(k + 1) = ~ (~4 ~5) x(k) + ( ~ ) u(k), 

y(k) (2 1) x(k). 

o 

Determine the transition matrix, impulse response function and the transfer func­
tion of this system. 
Answer. The system matrix A has two eigenvalues, .À = -1/5 and .À = -4/5. If 
the two corresponding eigenvectors are put together to form the matrix T, and 
if the two eigenvalues are the diagonal values of the diagonal matrix D, we get 
for the transisition matrix 

The impulse response can he calculated according to K(k,j) = CiP(k,j + 1)B 
for j ~ k - 1: 

K(k j) = ~(_~ )k-i-l + ~(_~)k-i-l. 
, 3 5 3 5 

For j = k we have K(k,j) = 0, sin ce there is no direct throughput term in the 
model. The transfer function follows from h(z) = C(zI - A)-l Band it equals 

z+1 
5 

Z2 + z + 245. 

o 



EXERCISE 7.3 We are given the time discrete system 

x(k + 1) 

y(k) 

(~2 ~3) x(k) + ( ~ ) u(k), 

(2 1) x(k). 

141 

Determine the transition matrix, impulse response function and the transfer func­
tion of this system. Suppose the following periodic input signal is applied to the 
system: 

{
Ok < 0, 

u(k) = (_1)k, k ~ O. 

What is the output response (take x(O) as the zero state)? Why is the output 
signal not periodic? 

The time-discrete, time-invariant, linear system characterized by matrices 
(A, B, C, D) is called controllabie if for each Xo, Xl E nn a time k > 0 and a se­
quence u(O), u(I), ... exist such that x(k, Xo, u) = Xl' The meaning of x(k, Xo, u) 
will be dear; the state at time instant k, starting with initial condition x(O) = Xo 
and having applied an input sequence u. The system is observable if a k > 0 
exists such that for any sequence of controls u we have: 

y(j, Xo, u) = y(j, Xl, u), j = 0, 1, ... , k, implies Xo = Xl 

The conditions in terms of matrices A, B, C and D for controllability and ob­
servability are the same as in the time-continuous case. This wilt be shown in 
the next theorem for controllability. Sometimes one distinguishes null control­
lability (Xl = 0) and reachability (xo = 0). It can be shown that "standard" 
controllability, i.e. with arbitrary Xo and X}, is as st rong as reachability (see also 
the proof of next theorem); the condition is: 

rank [B AB ... An-IB] = n, (7.15) 

wheras null controllability is not as strong as "standard" controllability. 

EXAMPLE 7.4 The system 

x(k + 1) = (~ ~) x(k) + ( ~ ) u(k) 

is null-controllable, but not controllabie. o 

THEOREM 7.4 The discrete-time system characterized by (A, B, C, D) is con trol­
lable if (7.15) holds. 
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Proof The system is 

x(k + 1) = Ax(k) + Bu(k), x En". 

Assume for the time being that x(O) = O. Which stat es can be reached in one 
time-step? In other words, what is the class of possible x(I)-vectors? 

x(l) = Ax(O) + Bu(O) = Bu(O) 

and therefore the class of reachable x(l )-vectors equals Im B. Within two time­
steps we can reach 

x(2) = Ax(l) + Bu(l) = ABu(O) + Bu(I). 

Since u(O) and u(l) are arbitrary, the class of reachable x(2) vectors equals 
Im B + Im AB. Continuing this way we obtain that the class of reachable x(k) 
vectors (starting from x(O) = xo) is 

ImB + Im AB + . . . +Im Ak- 1B = Im [B AB ... Ak-1B]. 

According to Lemma 4.1 

Im Ak B CIm [B AB ... A"-l B] , k = 0, 1, ... , n, n + 1, ... 

and therefore the set of x-values which are reachable at all, can be reached in at 
most n steps, and this set equals 

Im [B AB .. . A"-lB]. 

If (7.15) is fulfilled then any point Xl in n" can be reached from the origin. The 
final point can always be reached in exactly n time-steps. Sometimes itmay also 
be possible to reach it in fewer time steps. If x(O) = Xo 1: 0, then instead of 
going from Xo to the final point Xl, we consider the equivalent problem of goiIig 
from the origin to Xl - A"xo in exactly n steps and this is possible if (7.15) is 
fulfilled. The same technique was used in the proof of Theorem 4.5. 0 

EXERCISE 7.4 Consider the discrete-time system 

x(k + 1) = Ax(k) + Bu(k), xEn", uE'R. 

For this system 
rank [ B AB ... A"-l B] = r < n. 

Prove that the state x can be steered Jrom the initaal point x(O) = (Jo to the final 
point (J J in at most r steps i! it is known that 

_ , 'H .~ •• _' __ .i'. 

. ; 
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EXERCISE 7.5 In econometrics, one works a lot with so-called ARMA modeIs. 
They will be briefly introduced in th is exercise. For the so-called moving average 
(MA) model, 

Y(z) = [qn_lZ-1 + qn_2z-2 + ... + qlz-n+1 + qOz-n]u(z), 

give in matrix form ({A, E, C}) and in block diagram form, two different types 
of realizations. Again the same question, but now with respect to the so-called 
autoregressive (AR) model,' 

Y(z)[1 + Pn_lZ-1 + ... + PIZ-n+1 + poz-n] = U(z). 

Given a mixed or ARMA model, 

Y(z) _ qn_lz-1 + qn_2z-2 + ... + qlz-n+l + qoz-n 

U(z) - 1 + Pn_lZ-1 + Pn_2Z-2 + ... + Plz-n+1 + poz-n 

= zn + Pn_lZn-1 + Pn_2Zn-2 + ... + PIZ-n +1 + po' 

show how to merge the block diagrams of the MA and AR models just obtained 
so as to ob ta in realizations of the ARMA model. Is it possible to construct real­
izations with no more than n delay operators? 

EXAMPLE 7.5 We are given the single-input single-output system 

x(k + 1) = Ax(k) + b(k)u(k); y(k) = c(k)x(k). 

Note that the vectors band c may dep end on k. At each time instant k only 
one component of the state vector can be controlled; all components of b are zero 
except for one which equals one. The user of the system may choose the position 
of th is latter component and this position may be k-dependent. Consider the 
following questions: 

1. Give an example (at least three dimensional) such that: 

• if the user chooses the same b( k) vector for each k, then the system is 
not controllabie and in addition, 

• if b( k) does depend on k in a suitable way (the component which equals 
1 is not always the same), the system is controllabie. 

2. Does for each matrix A a suitable sequence of b(k) vectors exist such that 
the system is controllabie ? 

Answer question 1. Consider 
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This system is not controllabie. If one chooses, however, 

then each point x(3) can be reached from any x(O) and thus the system is con­
trollabie. 
Answer question 2. No, if the state has dimension 3 and A is the zero matrix, 
it is easily seen that with the admissible b vectors controllability is not possible. 
o 

We will conclude this chapter with some remarks on the discretization of 
continuous-time systems resulting in discrete-time systems. Quite of ten the phe­
nomenon one wants to study is continuous-time. It may happen that one only has 
measurements at discrete time instants which might be a reason to model the phe­
nomenon as a discrete-time system. Also, for numerical purposes, a discrete-time 
model of a continuous-time phenomenon has of ten advantages over a cont: L uous­
time model. 

Samplingconsists in replacing a continuous-time signal x(t), -00 < t < +00, 
by the series of values x(i6.), i = ... , -2, -1, 0,1,2, ... , where 6. > 0 '.s the 
sampling interval. A choice to be made is how large should 6. be. A very large 
6. will definitely lead to loss ofinformation (it will be difficult to get an idea ofthe 
original continuous-time signal by solely observing the sampled signai). A very 
small6. does not seem very efficient from a numericalpoint of view. The following 
theorern, called Shannon 's sampling theorem, though it is also named af ter 
Nyquist, tells how large 6. can be chosen without loosing information. 

THEOREM 7.5 Ifthe function x(t) is band-limited, i.e. a W > 0 exists such that 
X (iw) = 0 for Iw I > W, then no information is lost by sampling at a period less 

than or equal to 'fr/Wo (Here we used the notation X ~f .c(x).) 

If one would sample with a certain period 6. notwithstanding the fact that high­
frequency components are present in the continuous-time signal (i.e. frequencies 
greater than 'fr/6.), then the high-frequency components are not distinguisable 
from low-frequency components. Therefore in the calculations, effects of these 
high-frequency components, not accounted for because of the sampling period 
chosen, will be attributed to low-frequency components. This phenomenon is 
called aliasing. 



Chapter 8 

Extensions and some related 
topics 

8.1 Abstract system descriptions 

The input at time t will be denoted by u(t) and the output by y(t). For the 
input function, resp. output function, as functions oftime we write u(·) and y(.). 
If no misunderstanding is possible these functions are sometimes simply written 
as u and y. The time will either be continuous (t E T with T = (-00, +00) or 
T = [to, 00)), or be discrete (t E T with T = Z or T = {tl, t2, ... , tn , .•. }). If 
t = R we talk about continuous-time systems, if T = Z we talk about discrete­
time systems. 

Two ways exist in order to describe the dynamic behaviour of systemsj an ex­
ternal and an internal description. The external description considers the system 
as an input/output map, i.e. y(t) = f(u(·), t). If a system is described by means 
of the internalor state space form description, another quantity, the state x(t), 
is introduced. Later on in this section we will see the usefulness of this concept. 

DEFINITION 8.1 [of the extern al descriptionj. A system in input/output form is 
defined as 

whereby 

l: -= {T,U,U,Y,Y,F}, 
I/a 

i) T is the time axis (i.e. T = n or Z or a subset ofn or Z). 

ii) U is the set of input values; this set is called the input space. Quite often 
U = n m , or U is a subset ofnm • 

iii) U is a set of functions from T """'* U j U is the set of admissible input 
functionsj clearly, U C {Jlf : T """'* U}. 

145 
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iv) Y is the set of output values. Usually Y = np ; Y is ca lied the output space. 

v) Y is the set of functions from T -+ Y. 

vi) F is a mapping from U to Y, i.e.F : U -+ Y. 
F defines therelation between input- and output functions. If u E U, 
then Fu is the resulting output function . lts value at time t is denoted by 
(Fu)(t). The mapping F is ca lied the input/output Junction or the system 
function. It is assumed that F is causal, i.e. if UI, U2 E U and UI(t) = 
U2(t) for t ~ t' with t' ET, then (FUI)(t/) = (FU2)(t/) and therefore also 
(FUI)(t) = (FU2)(t) for all t ~ t'. 

DEFINITION 8.2 The system :El/o is called linear if U, Y, U and Y are linear 
vectorspaces (for e:cample U = n m , Y = np ) and if F : U -+ F is a linear 
mapping. The latter requirement means that if UI, U2 E U, then F(UI + U2) = 
FUI + FU2 and F(ÀUI) = ÀFUI. 

DEFINITION 8.3 The system :EI/O is called time-invariant (or, equivalently, 

stationary) if 

i) T is closed with respect to addition, i.e. ij tI, t2 ET then also tI + t2 ET, 

ii) U and Y are invariant with respect to the shift operator ST defined by 
(STU)(t) = u(t + T), (STy)(t) = y(t + T), i.e. STU C U and STY C Y Jor 
all TE T. 

iii) STF = FST for all TE T. 

To say it in a simple way, a system is time-invariant if a shift along the time 
axis yields an equivalent system. If t -+ u(t) leads to an output t -+ y(t), then 
t -+ u(t - T) should result in t -+ y(t - T). If a signal is applied one hom later, 
we get the same response, expect for a delay of one hom. 

EXERCISE 8.1 We are given a time-invariant and linear system of which we know 
that the input u(t) yields an output y(t), where 

u(t) = { ~ o ~ t < 2 (t) - { ~ _ t 
otherwise ,y - o 

o ~ t < 2, 
2 ~ t < 4, 
otherwise. 

Determine the output function y(t) which corresponds to the input u(t), where 

u(t) = { ~ o ~ t < 1, 
otherwise. 
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input u output Y 
2 

2 3 4 2 3 4 s 

2 3 

DEFINITION 8.4 The system ~I/O is called memoryless or statie il a lunction 
I e:cists, I : U X T -t Y such that (Fu)(t) = I(u(t), t). This means that Fu at 
time t only depends on u(t) and not on the past (or luture) ol u. 

EXAMPLE 8.1 A mass m moves along a straight line and is connected with a 
spring with characteristic constant k. There is friction which is a function of the 
speed of the mass. An external force u(t) acts on the mass. Classical mechanics 
teUs us that if we want to describe the motion of the mass from a time instant tI 
onwards while the force u(t), t ~ tI is being exerted, that the position and velocity 
of the mass at time tI should be known. The state of this system therefore is the 
vector 

:c(t) = ( ~~:~ ), 
where q denotes the position and v the velocity. 

spring 

force u 
mass 

damper 

o 

EXAMPLE 8.2 Two persons play the game of goose. As time variabie we denote 
the number of times n that both persons have thrown the die (n is increased by 
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1 after both persons had a turn). This is a time discrete system. As input at 
time n we define 

( 

number of spots on the die at n-th throw, 
u(n) = 

number of spots on the die at n-th throw, 

The state can be defined as 

first person ) 

second person 

( 

position of first 
x(n) = 

position of second 

person's marker on the board at time n ) . 

person's marker on the board at time n 

For simplicity we have assumed that the rule "pass your turn" does not exist. If 
this rule would be allowed, what could then be defined as the state ofthe system? 
o 

DEFINITION 8.5 [of the internal description of a system] (or, equivalently, of a 
system in state space form). A system in state space form is defined as 

where: 

E = {T,U,U,Y,Y,X,4>,r}, 
M 

i) T, U, U, Y and Y are the same as in the definition of the extern al descrip­
tion 

ii) X is the state space. Quite often X = nn or X is a subset ofnn. 

iii) 4> : T; x X x U -+ X, whereby T; = {(tt, to) E T 2 with tt ~ tol. The 
mapping 4> is called the state evolution function. The quantity 4>(tt, to, XO, u) 
denotes the state at time ft, which was obtained by applying the input u E U 
and starting from the state Xo at time to. The function 4> must: 

a) be consistent, i.e. 4>(t, t, x, u) = x. 

b) satisfy the semi-group property, i.e. 
4>(t2, tt, 4>(tt, to, xo, u), u) = 4>(t2, to, xo, u). 

c) be determinate, i.e. if ut. U2 E U and Ut(t) = U2(t), to S t S tt, then 
4>(tt, to, xo, Ut) = 4>(t1 , to, xo, U2). 

iv) r : X x U x T -+ Y is the output function (or measurement function or 
observation function) y(t) = r(x(t), u(t), t). It is the value of the output at 
time t if the system is in state x(t) and u(t) is the input at time t. The 
function r( ., x(.), u(·)), must belong to Y. 
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DEFINITION 8.6 L:M is called linear if U, Y, U, Y, and X are linear vectorspaces 

and if 

ij the mapping ljJ(tt, to,·,·) : X x U --t X is jointly linear in both arguments, 

i.e. if ljJ (tt, to, Xo, u) = x and ljJ(tt, to, xo, it) = x then 1jJ(tt, to, Àxo, ÀU) = Àx 

and 1jJ(tt, to, Xo + xo, u + u) = x + x. 

iiJ the mapping r(t,.,.) : X x U --t is jointly linear in both arguments. 

DEFINITION 8.7 L:M is called time-invariant if tI, t2 E T then tt + t2 E T, 

StU C U, StY C Y for all tE Tand if moreover 

ij ljJ(t l + t, to + t, Xo, u) = ljJ(t l , to, Xo, Stu) for all tE T 

ii) r(t,x,u) is independent oft and therefore often written as r(x,u). 

EXAMPLE 8.3 Suppose that the relationship hetween input u(·) and output y(.) 

is the following: y(t) = u(t - 0), where 0 is a positive constant. The state x 

for th is system should he such that, given x at time tand u(s) with s ~ t, the 

future states x at times s ~ tand future outputs y at times s ~ t are uniquely 

determined. The function y is only determined for s ~ t+O ifu(s), s ~ t is given. 

Therefore the state must contain enough information such as to determine y( s) 

during the interval [t, t + 0). Therefore the state at time t, viz. x(t), should at 

least contain the function U(·): [t - 0, t) --t 'R. It turns out that the state equals 

this function: 
x(t) = UI[t-lI,t), 

where UI[t-lI,t) denotes the restriction of u(·) to the interval [t - 0, t). 0 

DEFINITION 8.8 The system L:M is called autonomous if U consists of only one 

element. (Therefore no control is possible.J 

So far we talked ahout the external description and the state space form descrip­

tion of a system. Some words wil! be devoted now as to how one description can 

he derived from the other. Suppose L:M = {T, U, U, Y, Y, X, 1jJ, r} is a description 

in state space form. In order to obtain the corresponding L:I/O the essential idea 

is to eliminate x from the cjJ- and r-relations. Suppose for simplicity that L:M is 

time invariant. Choose a to E Tand a Xo E X (think of initial time and initial 

state) and define 

(Fu)(t) = r(cjJ(t, to, xo, u), u(t)) for t ~ t~. 

Thus we obtained a system 

I: = {T n [to, 00), U, U, Y, Y, F}. 

1/0 
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The time axis can be extended to the whole T by defining 

x(t) = Xo, u(t) = Uo, y(t) = Yo, t < t~, 

where Uo and Yo are constants in resp. U and Y. For every choice we get in 
principle another F. The state Xo will usually be interpreted as an equilibrium 
for the system. A natural choice for Xo is the zero-element of X. Similarly choices 
for Uo and Yo are the zero-elements of U resp. Y. If in addition to is chosen close 
to -00 (if T = (-00, +00)) then we say that the system is in equilibrium or at 
rest at "t = -00". 

The reverse problem as how to obtain EM from EIlo is far more difficult. 
Now one has to create a space X instead of eliminate X. For linear systems this 
problem has been solved satisfactory. A whole theory has been built around the 
"creation" of the state space X and it is called realization theory. 

8.1.1 Behavioral Modelling 

Recently a new modelling philosophy has been developed which states, in an 
abstract way, that signais, rather than the equations which generate these signais, 
is the essential result of a modelling procedure. One looks at systems as devices 
or 'black boxes' . Instead of trying to understand how a device is put together and 
how its components work in detail, we are told to concentrate on its behavior, 
on how it interacts with its environment. 

DEFINITION 8.9 A dynamical system is a triple E = (T, W, B), where T repres­
ents the time-axis, W is the signal space and B ç W T is the behaviour 

Suppose one has a set of m scalar equations f;(x(t), x(t), x(t), ... ) = 0, i = 
1,2, ... ,m, where x = (Xl, ... ,Xn). Let us assume that the fi-functions are 
defined in such a way that mathematically weU defined solutions x(t) to the 
differential equations exist. In this example, T is the real axis, W is the set of all 
x(.) functions and Bis the set of all solutions to the differential equation. Instead 
of having a description by means of differential andJor algebraic equations only, 
one could also add inequalities. 

Based on this philosophy, many concepts introduced in the earlier chapters, 
are phrased in a more general setting. For a neat introduction, the reader is 
referred to [Willems, 1991]. 

8.2 Polynomial representations 

Chapter 6 is mainly devoted to systems descriptions in the Laplace domain. The 
emphasis has largely been on single-input single-output systems. The polyno­
mials (either in the denominator or in the numerator) in the transfer matrix 
determine the system. As such one can also speak ab out 'polynomial repres­
entations' of systems. This view turns out to be particularly useful for systems 
with multiple inputs and outputs. The belief is that it is easier to work with 
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polynomials (of varying degree) than with state space descriptions in which the 
dimensions of the stat es differ. One can show that the 'modelling power', which 
we will not formally define here, of state space representations and of polynomial 
representations of systems are equivalent, i.e. phenomena which can be described 
in one setting, can also be described in the other. 

Polynomial matrices are a means of representing ordinary differential equa­
tions. The differentiation operator 1t is represented by the (Laplace) variabie 
s. 

DEFINITION 8.10 A polynomial matrix (in s) is a matrix of which the entries 
are polynomials in the varia bIe s. 

DEFINITION 8.11 A linear time-independent system is said to be described in 
polynomial form if the relation between the input vector u, of dimension m, and 
the output vector y, of dimension p, is of the form 

{ P(s)~ ~ Q(s)u, 
R(s)e, 

(8.1 ) 

where P, Q and Rare polynomial matrices of sizes Ti x Ti, Ti x mand p x Ti 

respectivelYi the vector e, having Ti components is called the partial state. 

It should be emphasized that e, u and y in (8.1) are considered to be suitably 
defined vector functions of time; they are not vector functions in the Laplace 
domain. Equations (8.1) simplyare (possibly higher order) differential equations 
related to each other. 

EXAMPLE 8.4 The classical equation of a force F acting on a point mass with 
mass mis (F is the input, x the output) 

x = Flm. 

This equation allows at least two polynomial representations: 

{ 
s26 = Firn, 

y = 6, 

with the one-dimensional partial state 6 = x, and 

-1 ) 
s 6 

y 

with the two-dimensional partial state 6 = (x,x)T. o 

EXERCISE 8.2 Argue that a polynomial representation of x = Ax + Bu, y = Cx 
equals {sI - A)e = Bu, y = Ce. 

• Ui iihh ' '''''iiiiliiiiii 
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If one compares the dimension of the partial state with the dimension n of the 
state vector in the state space description, one can conveniently restrict oneself 
to n ~ n, hence the name partial state. From the example we see that two in 
some sense equivalent polynomial representations do not necessarily have partial 
states with the same dimension. For sake of completeness we now give a formal 
definition of 'equivalence', but warn the reader that it is somewhat technical and 
will not be used explicitly anymore in this text. 

DEFINITION 8.12 The two systems 

Ei: { 
Pi (s)eyi = Qi(S)U, 

= R;(S)ei' 
i = 1,2, (8.2) 

with the same number of inputs and the same number of outputs, and of which the 
partial states 6 and 6 have dimension nl and n2 respectively, are equivalent if 
polynomial matrices M 1(s)nlx n2' M 2 (s)n2X n l1 N1(s)nlxm and N 2 (s)n2xm exist 
such that the following two systems 

{ PI (s)6 = Ql(S)U, 
SI: 6 = M 2(s)6 + N 2(s)u, (8.3) 

y RI(S)6, 

{ el MI (s)6 + NI(s)u, 
S2 : P2(s)6 Q2(S)U, (8.4) 

y R2(S)6, 

have identical solutions (i.e. the same input applied to both systems yields identical 
outputs, provided that one chooses the initial conditions suitably). 

DEFINITION 8.13 The transfer matrix of (8.1) is defined by 
H(s) = R(s)P-1(s)Q(s). 

The transfer matrix can always be expressed as 

N(s) 
H(s) = d(s) , (8.5) 

where N(s) is a polynomial matrix and d(s) is a polynomial in s and is equal to 
the least common multiple of the denominators appearing in H(s). It has tacitly 
been assumed here that factors common to d(s) and all entries of N(s) have been 
cancelled. 

EXAMPLE 8.5 Consider the satellite example of Example 6.1. The transfer mat­
rix can be written as 

H s _ N(s) _ 1 (S2 2S) 
( ) - d(s) - s2(1 + s2) -2s s2 - 3 . 

o 



153 

DEFINITION 8.14 A square polynomial matrix is ca lIed nonsingular if its de­
terminant is a polynomial not identically zero. A square polynomial matrix is 
ca lied unimodular if its determinant is a nonzero constant. 

By the Cramer rule for instanee it follows that the inverse of a unimodular 
polynomial matrix is a polynomial matrix again. In general, the inverse of an 
invertible polynomial matrix is a rational matrix. 

EXAMPLE 8.6 The polynomial matrix 

is nonsingular since det PI (s) = - 2s - 2. The polynomial matrix 

is singular since det P2 (s) == O. The polynomial matrix 

( 
s+l S+3) 

P3 (s) = S2 + 3s + 3 s2 + 5s + 7 

is unimodular since det P3(S) == -2. o 

DEFINITION 8.15 The rank of a polynomial matrix is the size of a largest square 
submatrix (of this polynomial matrix) that is invertible. 

DEFINITION 8.16 Suppose N(s) = {Nij(S)} is a polynomial matrix of rank k. It 
is in the so-called Smith form if 

• Nij (s) = 0 for i i= j; 

• N" ( s) = 0 for i ~ k + 1; 

• N,,(s) is monie and divides Ni+I,i+I(S). 

THEOREM 8.1 If N(s) is a polynomial matrix, there exist unimodular polynomial 
matrices U(s) and V(s) such that N(s) = U(s)r(s)V(s), where r(s) has the 
Smith form (it is ca lIed the Smith form of N (s)). 

REM ARK 8.1 If all polynomials in N(s) would he constants, the theorem ahove 
resemhles the so-called singular value decomposition, wen known in matrix al­
p~ 0 
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One can construct the Smith form of a polynomial matrix in a way which re­
sembles the conventional column and row operations, as shown in the following 
example. 

EXAMPLE 8.7 Suppose 

(
s-a 

N(s) = 0 

Permutation of the columns yields 

and then adding the first column multiplied by -(s - a) to the second column 
gives 

N2(S) = (1 (0)2 ) . s-a - s-a 

Next one multipiies the second column by -1 and then adds the first row multi­
plied by -(s - a) to the second row so as to obtain the Smith form: 

It is not difficult to show that the U(s) and V(s) matrices are 

(
10) (s-al) U(s) = s _ al' V(s) = -1 0 . 

o 

EXERCISE 8.3 Show that the Smith form of the matrix N(s) introduced in Ex­
ample 8.5 equals 

The concepts of stability, controllability, observability, dynamic output feed­
back, poles, zeros, etc., introduced in the previous chapters, all have their natural 
imbedding in the theory of polynomial representations, see [Rosenbrock 1970] or 
[Maciejowski, 1989]. 

The contents of this section remains by and large also valid in the discrete 
time setting, provided one makes the assumption that the differential operator 
s = d/dt is replaced by, and interpreted as, the delay operator 0' defined by 

O'x(k) dJ:f x(k + 1). 
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8.3 Examples of other kinds of systems 

These course notes have mainly dealt with linear differential (and difference) 
systems. Fortunately many practical phenomena can be modeIled (at least ap­
proximately) by such linear systems. Many phenomena are, however, strictly 
speaking nonlinear and it is not always easy, or not even always desired, to come 
up with an approximate linearization. For specific classes of nonlinear systems 
mathematical tools are available. For each of these classes a huge literature exists 
and the interested reader should consult the library for more information. In this 
section we will, very briefly, touch up on a few such classes. 

8.3.1 N onlinear systems 

All systems that are not linear are by definition nonlinear. Mathematical system 
theory has been weIl developed for linear systems, but also theory exists for 
nonlinear systems, specifically with respect to certain classes of nonlinear systems. 
One such class of systems is given by 

x = J(x) + g(x)u, (8.6) 

where the control u appears linearly; x and u are finite dimensional vectors and 
J and g are vector, respectively matrix, functions of appropriate size. A typical 
example is the (simplified) modelling of maneuvring a car. 

EXAMPLE 8.8 Suppose we can directly control the speed (by means of UI) and 
the direction (by means of the steering wheel of which the position is given by 
U2) of a car, then we obtain the nonlinear system 

which is of the form (8.6). The variables Xl and X2 refer to the position and the 
angle x3 to the direct ion of the car. If one would linearize this sytem around 
any point in n 3 , the linearized system turns out to be noncontrollable. However, 
driving a car is a controIlable process, at least to the experience of most people. 
o 

A theory exists which studies controllability directly in terms of 'vector fields' 
(J(x), g.,;(x) , the latter expression denoting the ith column of the matrix g, 
i = 1, ... , m, m being the number of (scalar) controls). Toward this end one 
must construct the so-called Lie brackets of each combination of two such vector 
fields. Such a Lie bracket itself is also a vector field, which is added as a new 
member to the original set of vector fields. This augmented class of vector fields 
is again used to construct new Lie brackets, which are added again to the set. In 
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this way one continues until no new vector fields are found anymore. If a rank 
condition on the ultimate set of vector fields obtained is fulfilled, then one has 
controllability of the nonlinear system. 

Also general methods to study other aspects of nonlinear systems exist, such 
as the concept of Lyapunov stability. 

8.3.2 Descriptor systems 

When modelling, especiaUy in network theory, one sometimes encounters equa­
tions of the form 

Ti:(t) 

o 
Mx(t) + Np(t) + Pu(t), 

Qx(t) + Rp(t) + Su(t). 

(8.7) 
(8.8) 

The corresponding system is referred to as a differential algebraic system. 
The vector x(t) E n" contains those variables of which the time derivatives 
appear in the equationsj the vector pet) E n r contains the variables which only 
appear algebraically. The function u(t) E nm is, as usual, the input. The 
matrices M, N, P, Q, Rand S have appropriate sizes such that the equations 
are weU defined. If Tand R happen to he square nonsingular matrices, then the 
equations can he written in the form (by eliminating p) 

i: = Ax+Bu, 

where now A = T- l M - T- l N R-lQ and B = T- l P - T- l N R-lS. 
Equations of the form Ti: = M x + Pu are more general than those of the 

form i: = Ax + Bu. Systems cbaracterized by sucb equations are referred to as 
descriptor systems. Descriptor systems allow us for instance to model x (or a 
component of x) as a time derivative of the input u (provided of course that this 
derivative exists). Consider 

then Xl = ü. When considered of the form i: = Ax + Bu, Equation Xl = ü has 
Xl as input and u as state. The notion of eigenvalue is taken over by ,X's which 
satisfy det('xT - M) = O. 

8.3.3 Stochastic systems 

The system which we have considered so far are all determinist ie. Once the 
initial condition and input function are known, the future behaviour is uniquely 
determined. There are many systems in practice in which the future is (partly) 
determined by processes of a stochastic, probahilistic nature. The winner of 
the game of goose is not determined at the outset of the gamej the evolution 
of the game depends on the outcomes of the die, which usually are modelled in 
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probabilistic way. In principle it may be possible to describe the throwing of a die 
in a determinist ic way, but such a model would be extremely complicated and it is 
preferred to describe the outcome of a die probabilisitically. If random influences 
determine the future of a system, it is called a stochastic system. A quantity 
x(t), within a stochastic system, could be interpreted as the state at time t if, 
given x(t) and u(s), s ::; t, all fut ure quantities within the system are determined 
in a probabilistic way. That is for instance the case if the probability distribution 
functions are uniquely determined by x(t) and u(s), s ::; t. The future behaviour 
is then characterized by probabilistic laws, but the actual outcome of the system 
(who will win the game of goose) is not known before the evolution has really 
taken place. 

EXAMPLE 8.9 An industrial area can be in two situations: the atmosphere is 
good (G) or the atmosphere is bad (B). In both situations two possible actions 
exist: start the alarm ph ase (u = 1) or not (u = 0). Depending on the atmo­
spheric condition and the action, the atmosphere of the next day will be good or 
bad according to the following probabilistic rulej 

initial 
condition 

condition tomorrow 
G B 

G 0.8 0.2 
B 0.4 0.6 

u=O 

initial 
condition 

condition tomorrow 
G B 

G 0.9 0.1 
B 0.6 0.4 

u=l 

The numbers in these tabular forms denote transformation probabilities. If it 
is assumed that the transition probabilities are independent (i.e. there is no 
correlation with respect to time), then the state of this stochastic system is the 
atmospheric situationj X = {G, B} . 0 

See also Section 8.6 for other stochastic systems. 

8.3.4 Automata 

An automaton (plural: automata) is a special case of a discrete-time system in 
which the input space U and output space Y are finitej the state space X can 
be either finite or countably infinite. Because of the finite character of input and 
output spaces, they are sometimes referred to as alphabets, because alphabets 
have a finite number of elements. 

EXAMPLE 8.10 We consider the following situation of an oversimplified and old­
fashioned marriage. The state space has three elements, viz . 

• Xl: husband is angryj 

• X 2 : husband is boredj 
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• X3: husband is happy. 

The input space also has three elements and consists of the behaviour of the wife: 

• UI: wife is quietj 

• U2: wife shoutsj 

• U3: wife cooks. 

As a result of current state and input the new state is given in the following 
table. The' top row gives the input, the left column indicates the current state 
and the matrix in the 'south-east' denotes the new states. 

Xl Xl Xl X3 

X2 X2 Xl X3 

X3 X3 X2 X3 

The output, consisting of two elements, 

• Yl: husband shoutsj 

• Y2: husband is quiet, 

is related to the current input and current state as indicated by the following 
table: 

o 

EXERCISE 8.4 Give a state space farm description of a discrete-time system 
where U = Y = {O, I}, such that the output y at time t equals 1 if the input 
until (and not including) t has shown an even number of 1 's and equals 0 other­
WJse. 

8.3.5 Distributed parameter systems 

In this subsection we will briefly talk about a class of systems which is (also) 
important from a practical point of view, but which will not be discussed in 
these notes (apart from some examples in Section 2.4 and in this section). In all 
examples so far the state space X was either finite dimensional ('RP) or even finite. 
In the physical examples a finite dimensional state space could be constructed 
because physical quantities as mass, velocity, electric charge, temperature were 
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thought to be concentrated in one point. For some problems such a simplification 
may lead to inadmissible conclusions and therefore electric charge, temperature, 
etc., are not only time dependent, but also location (spatial) dependent. Such 
quantities are then elements of a function space and the state space is infinite 
dimensional. Such systems are called distributed systems (this in contrast to 
systems with finite dimensional state spaces which are called lumped systems). 

EXAMPLE 8.11 Consider the following flexible beam of length one. 

wall 

The displacement of the beam from the horizontal is denoted by z. Hence, Z(CT, t) 
denotes the vertical dis placement of the beam at place CT and at time t. The beam 
is fixed horizontally into the wall (at CT = 0). This means that z(O, t) = 0 and 
g; (0, t) = 0 for all t. At the right end of the beam (at CT = 1) the motions of the 
beam are controlled by means of a force F(t) and a torque N(t). Assume that 
the displacement in the middle of the beam (at CT = 0.5) is measured, and that 
this measurement is denoted y(t). If gravity is not taken into account, and if the 
beam has uniform mass density pand a uniform stiffness EI, th en the energy in 
the beam at time t equals 

The first term in this expression can be seen as the kinetic energy due to the 
mot ion of the beam, and the second term as the potential energy due to the 
deflection of the beam from the horizont al. If there is no loss of energy then E(t) 
is constant for all t. Using this, it follows from ~~ = 0, with some nontrivial 
mathematics (not explained here) that 

a2 z a4 z 
p at2 + EI aCT4 = O. 

The boundary conditions for the beam at CT = 0 are z(O, t) = 0, g~ (0, t) = 0 for 

all t, and at CT = 1 there should hold EI~(1,t) = N(t), -EI~(1,t) = F(t) 
for all t. 

The above constitutes a model for the dynamical behaviour of the flexible 
beam subject to a force F(t) and a torque N(t). For the complete description of 
the behaviour it remains to specify the initial conditions. These are the deflection 
and the velocity of beam at time t = 0, i.e. Z(CT, 0), ~; (CT, 0) for all CT, O:s CT :s 1. 
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As already can be seen from these initial conditions, the beam can not be 
described by a finite number of time functions, but by an infinite number of time 
functions parametrized by u, 0 ~ u ~ 1. This means that the beam cannot be 
described by means of a finite number of ordinary differential equations. 0 

EXERCISE 8.5 Assume that p = 1 and EI = 1 in the above model, i.e. 

fj2z f)4z 
fJt2 + ou4 = O. 

To see that there exists an infinite number of solutions to th is equation, check 
that for any reai), and J.l both e- À

<1 cos().2t) and cos(J.lu) cos(J.l2t) are independent 
solutions. Here initial and boundary conditions are not yet taken into account. 
Can you find additional solutions? 

8.3.6 Discrete event systems 

The starting point is the differenee equation 

X(t + 1) = Ax(t), t = 0,1,2, ... , 

with xE nn. Written out in scalar equations it becomes 

n 

Xi(t+1)=L:aijXj(t), i=l, ... ,nj t=O,l, ... 
j=1 

(8.9) 

(8.10) 

The only operations used in (8.9) or (8.10) are multiplieation (aij x Xj(t)) and 
addition (the 2: symbol). The theory of discrete event (dynamic) systems ean be 
eonsidered as a study of formulas of the form (8.9), in which the operations are 
ehanged. Suppose that the two operations in (8.10) are changed in the following 
wayj addition beeomes maximization and multiplication becomes addition. Then 
(8.10) beeomes 

xi(k + 1) = max(ail + xl(k), ai2 + x2(k), .. . ,ain + xn(k)) 
= maXj(aij + xj(k), k = 0,1,2, ... ), i = 1, ... , n , 

(8.11) 

k = 0,1, ... If an initial condition is given for both (8.9) and (8.11)~ then the 
time evolutions of (8.9) and (8.11) are completely determined. Of course the time 
evolutions of (8.10) and (8.11) will be different in general. Equation (8.11), as it 
stands, is a nonlinear differenee equation. As an example take 

(8.12) 

and as initial condition 

Xo = ( ~ ) . (8.13) 
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Then the time evolution of (8.11) becomes 

x(O) = ( ~ ) , x(l) = ( ~ ) , x(2) = ( 19
1 

) , x(3) = ( ~~ ) ,... (8.14) 

We are used to thinking of the argument t in x(t) as a time instantj at time 
instant t the state is x(t). With respect to (8.11) we will intro duce a different 
meaning for this argument. In order to emphasize th is different meaning, the 
argument t has already been replaced by k. For a practical motivation we need to 
think of a network, which consists of a number of nodes and some arcs connecting 
these nodes. The network corresponding to (8.11) has n nodesj one for eaeh 
component Xi. Entry aij corresponds to the arc from node j to node i. In terms 
of graph theory sueh a network is called a directed graph ('direeted' because 
the individual arcs between the no des are one way arrows). Therefore the ares 
corresponding to ai; and aji, if both exist, are considered to be different. 

The nodes in the network can perform certain activitiesj each node has its 
own kind of activity. Such activities take a finite time, called holding time, 
to be performed. These holding times may be different for different nodes. It 
is assumed that an activity at a certain node can only start when all preceding 
('directly upstream') nodes have finished their activities and have sent the results 
of these activities along the ares to the current node. Thus the arc corresponding 
to ai; can be interpreted as an output channel for node j and simultaneously as 
an input channel for node i. Suppose that this node i starts its aetivity as soon 
as all preceding nodes have sent their results (the rather neutral word 'results' 
is used, it could equally have been messages, ingredients or products, ... ) to node 
i, then (8.11) deseribes when the activities take place. The interpretation of the 
quantities used is: 

• xi(k) : is the earliest time instant at which node i becomes active for the 
k-th time; 

• aij : is the sum of the holding time (i.e. time duration of the aetivity) at 
node j and the travelling time (the rat her neutral 'travelling time' is used 
rather than for instanee 'transportation time' or 'communication time') 
from node j to node i. 

For the example given above, the network has two nodes and four arcs, as given 
in the figure below. 

3~ 
D.n~1 .04 

~nOde2 
2 

The interpretation of the number 3 in this figure is that if node 1 has started an 
activity, the next activity cannot start within the next 3 time units. Similarly, 
the time between two subsequent activities of node 2 is at least 4 time units. 
Node 1 sends its results to node 2 and once an aetivity starts in node 1, it takes 
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2 time units before the result of this activity reaches node 2. Similarly it takes 7 time units aft er the initiation of an activity of node 2 for the result of that 
activity to reach node 1. 

If we now look at the sequence (8.14) again, the interpretation of the vectors 
x (k) is different from the initial one. The argument k is not a time instant 
anymore, but a counter which states how many times the various nodes have 
been active. At time 14 node 1 has been active twiee (more precÎsely, node 1 
has started two activities, respectively at times 7 and 11). At the same time 14, node 2 has been active three times (it started activities at times 4, 9 and 13). 
The counting of the activities is such that it coincides with the argument of the x vector. The initial condition is henceforth considered to be the O-th activity. 

8.4 Optimal Control Theory 
In optimal control theory problems of the following kind are considered. A system is described by an ordinary differential equation with an input Uj 

:i: = !(t, x, u)j x(to) = Xo (8.15) 

It is assumed that the eonditions on ! are sueh that a solution of this differential equation exists on a given interval [to, tl] for any u E U. The function u must be chosen such that a given functional (called cost function) 

l
h 

gft, x(t), u(t))dt + q(X(tl)) 
to 

is minimized, subject to u E U and (8.15). In this problem 

u(.) E nm
, 

! : n x nn x nm -+ nn, 
g : n x nn x nm -+ n, 
q: nn -+n. 

(8.16) 

We tacitly assume that such a minimizing u-function, indicated by u*, will exist. 
Such existence questions also belong to the theory of optimal con trol. There are 
many variations on the problem stated above. Sometimes u(.) must be chosen 
such that a given point x, is reached at tlj X(tl) = xJ' This is an additional requirement on u. In the latter case the term q(X(tl)) = q(t,) is predetermined 
and is independent of the control function u(.) used. Another variation is that h is not fixed explicitly, but only implicitly by means of for instance 

t l = min{t I (t,x(t)) E a}, 
where a is a given set in the nn x n spacej t l is the first time that the area a is entered. Obviously, for different input functions one may have different 
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final times. As aspecific example of problem (8.15) and (8.16) consider a linear 
differential equation 

x = Ax + Bu; x(to) = Xo 

and aquadratic cost function 

(8.17) 

(8.18) 

with tI fixed. The constant matrices Q, Q, and R have sizes n x n, n X n and 
m x m respectively and are assumed to be positive definite. These matrices are 
weighting matrices, because of the positiveness, 

and these terms penalize deviations of x, u, resp. X(tl), from the zero-vector. 
The interpretation is that system (8.17) must be controlled such that the state 
stays near the origin (expressed by the term xT (t)Qx(t) in the cost function), but 
not at the expense oftoo much control effort (expressed by the term uT (t)Ru(t)). 
The term XT(tl)Q,X(tl) expresses the fact that we would like to have the final 
point x(tI) close to the origin also. For this particular 'linear quadratic' problem 
the solution can be obtained in a straightforward way, by a completing the square 
argument: 

l
h 

(xTQx + uT Ru)dt + XT(tl)Q,X(tl) 
to 

= l h 
(xT Qx + uT Ru + djdt(xT P(t)x))dt + xT (to)P(to)x(to), 

to 

with P(t l ) = Q,. The n x n matrix P(t) is not completely specified yet. The 
only requirement sofar is P(tl) = Q, and that it is continously differentiable. 
We also assume it to be symmetrie: P(t) = pT(t). The cost function becomes 

l
tl 

(xTQx + uT Ru + xT Px + x T Fx + x T Px)dt + xT(to)P(to)x(to) 
to 

= l tl 

[xTQx+uTRu+(Ax+Bu)Tpx+xTpx+xTp(Ax+Bu)]dt 
to 

+xT (to)P(to)x(to) 

= l tl 

[XT (Q+F+ATp+PA)x+uTRu+uTBTPX+xTpBu] dt 
to 

+xT (to )P( to )x( to) 

l
tl 

[xT (Q+ p+ ATp+ PA) x + (u + R-1 BTpx)T R(u + R-1 BTpx) _ 
to 

xT P B T R-1 BPx] dt + xT (to)P(to)x(to) 
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= f'1 [xT (Q+P+ATp+PA_PBR-1BTp)x + 
10 

(u + R-1 BT Px) T R (u + R-1 B T Px) ] dt + xT (to}P(to}x(to). 

If we now choose P(t) to satisfy the differential equation 

(8.19) 

then the cost function becomes 

(8.20) 

It can be shown (no proof here) that the solution to the matrix differential equa­
tion (8.19), with the indicated final condition, will exist on the interval [to, tl] 
and is unique. Because R> 0, it is dear from (8.20) that the minimizing control 
is 

u*(t) = _R-1 BT P(t)x(t), 

and that the value of the cost function will be 

x~ P(to)xo, 

(8.21) 

when the optimal control u*(t) is applied. The matrix differential equation (8.19) 
plays such a fundamental lale that it is named af ter one of its first investigators; 
it is called the Riccati differential equation. The requirement of P(t) being 
symmetric is automatically fulfilled as is easily seen from studying (8.19); Qf is 
symmetric; the right-hand side of the differential equation is symmetrie, therefore 
P also, and in condusion, P(t) itself must be symmetrie. One has also studied 
the behaviour of the solution when tl -t 00. It turns out that, if the pair 
(A, B) is controllabie and the pair (D, A) observable, where Dis defined through 
DT D = Q, the optimal control becomes 

u*(t) = _R-1 BT Px(t), (8.22) 

where now P is the positive definite solution of the algebraic Riccati equation 

Note that in both (8.21) and (8.22) the optimal control is given in feedback form; 
the current control depends on the current state. If (8.22) is substituted in (8.17), 
the result is 

x = (A - BR- 1 BT P)x; x(to) = xc, 

and it can be proved, subject to the conditions mentioned, that this is an asymp­
totically stabie system. For a textbook on optimal control theory with many 
applications the reader is referred to [Bryson and Ho, 1969]. 
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8.5 Parameter Estimation 

Sofar, we always assumed that the parameters in the models are known, i.e. we 
assumed that the matrices A, B, C and D in 

or 

x(k + 1) 
y 

x(k) + Bu(k), 
Cx+Du, 

x(k + 1) = Ax(k) + Bu(k), 
y(k) = Cx(k) + Du(k), 

have known entries, or that the coefficients in the transfer function h( s) = 
q(s)fp(s) are known. AIso, it was tacitly assumed that the order n of the model 
was known. In some physical models all these assumptions may be reasonable. In 
many other modeIs, for instance econometrie modeIs, (some of) the parameters 
must be estimatedj they do not follow from the modelling itself. In such a case 
it can happen that a dependence between two variables is assumed (e.g. a linear 
dependence) and the coefficients specifying this dependence must be estimated 
given measurements of the input and output values of the system. This will 
be illustrated by means of the following dependence between input and output 
variables (in discrete-time): 

y(k + n) + Pn-ly(k + n - 1) + ... + poy(k) 

= qn-lu(k + n - 1) + ... + qou(k), k=O,1,2, ... 

The parameters {Pi} and {qi} are not known. What is known, however, is the 
applied input sequence and the resulting output sequence. Suppose y(O), ... , y(r) 
and u(O), . .. , u(r) are known for some r 2:: 2n. (Note th at n is assumed to be fixed 
here.) Given these values we will try to estimate the {Pi} and {qi} parameters. 
The observations satisfy 

y(k) -Pn-ly(k - 1) - ... - Poy(k - n) + 

qn-lu(k - 1) + ... + qou(k - n) + e(k), 

k = n,n+ l, ... ,r, (8.23) 

where the quantity e(k) denotes a possible perturbation in the system due to 
measurement errors in {Yi} and {Ui} for instanee. The quantity e(k) makes the 
relation between y(k) and {Yi}, {Ui}, i < k, again an exact equality. In general 
e(k) will be smalI. Introduce the following notation: 

o (Pn-l, Pn-2, ... , Po, qn-l, qn-2, ... , qof, 

x(k) (-y(k - 1), ... , -y(k - n), u(k - 1), ... , u(k - n)f, 

then (8.23) can be written as 

y(k)=xT(k)O+e(k), k=n,n+1, ... ,r. 
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The estimate of 0, denoted by 0, is defined here as that value of 0 which minimizes 
the sum of the squares of the perturbationsj 

r 

{) = arg ~in L (y(j) - xT (jW) 2 • (8.24) 
j=n 

The estimate {) thus defined is called the least squares estimate. The summa­
tion in (8.24) can be written as 

r 

S = L(y(j) - :cT (j)O)2 = {Y - xef (Y - Xe) , (8.25) 
j=n 

where 

Y = (y(n),y(n+l), ... ,y(r))T, 

X (:c(n),x(n+l), ... ,x(r)f. 

Note that X is a matrix. Differentiation of (8.25) with respect to 0 yields for the 
minimum 

(XT X)Ê> = XTy. 

If X T X is invertible th en the least squares estimate can be written as 

A general introduction to parameter estimation is given in [Sorenson, 1980]. 

8.6 Filter Theory 

For linear systems, filtering theory can be considered as a stochastic extension 
of the (deterministic) theory of observers as treated in section 5.2. It is assumed 
that the model is not exactly known, but that it has the form 

y 
Ax+Bu+Gw, 
Cx+v. 

(8.26) 

The new terms, Gw in the system and v in the measurement equation, are meant 
to make up for errors in the system model and for measurement errors respect­
ively. These errors are not known a priori, but are assumed to have a certain 
stochastic behaviour. The matrix G is assumed to be knownj the processes w 
and v will in general vary with time in an unpredictable way (quite of ten it is 
assumed that wand vare so-called white noises). Given the measurements 
y(s),O :S s :S t, we want to construct an estimate x(t) of the current value of 
x(t). Before we can continue, equations (8.26) must be studied in more detail. 
If w is a stochastic process, drawn from a known sample space, the solution x(t) 
of the stochastic differential equation, will also be a stochastic vector. This gives 
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rise to many mathematical subtilities. An easier way is to start with a discrete 
time system: 

x(k+l) 

y(k) 

Ax(k) + Bu(k) + Gw(k), 

Cx(k) + v(k). (8.27) 

We now assume that w(k) and v(k) are independent random vectors and also 
w(k) and w(l) are independent for k i= l. Similarly, v(k) and v(l) are inde­
pendent. Essentially, all uncertainties which enter the system and measurement 
equations, are uncorrelated. We also assume that {w(k)} and {v(k)} are zero­
mean, Gaussian processes with known covariances of Rand Q respectively. The 
matrices Rand Q are assumed to be positive definite. The input u(k) to the 
system is assumed to be determinist ic (we know what we put into the system). 
It can be shown that the solution x(k) to the difference equation (8.27) is also a 
Gaussian vector. We now define the estimate x(k + 1) of x(k + 1) - the latter 
vector is only known probabilistically - by minimizing the conditional minimum 
variance given the measurements up to time instant y(k); 

x(k + 1) = argminE{lIx(k + 1) - xIl 2 Iy(O), y(I), ... , y(k)}. 
x 

E {.I.} denotes a conditional expectation. Other definitions of the estimate are 
possible, but the above turns out to be an attractive one. It says that the squared 
distance bet ween the estimate and the actual value of the state must be as small 
as possible given all the past measurements. It turns out that x(k + 1) can be 
determined recursively by 

i(k + 1) = Ai(k) + Bu(k) + K(k)(y(k) - Ci(k)). (8.28) 

The matrix K(k) can be expressed in the known matrices A, B, C, G, Q, and R 
(will not be shown here). In th~ literature, Eq. (8.28) is often referred to as the 
Kalman Filter. The reader should note the resemblance between the observer 
form in (5.6) and (8.28)! Both equations have a correct ion term; Cx(k) is the 
predicted value of the output and y(k) is the actual measurement. If these two 
values differ, a correction appears in (8.28) (and in (5.6)) for the update from x(k) 
to i(k + 1). Formulas exist which give the accuracy of i(k + 1). The estimate 
x(k + 1) is also a stochastic vector. In fact it is Gaussian, and the accuracy 
of x(k + 1) is expressed in terms of its mean and covariance. For an excellent 
introduction into this subject see [Anderson and Moore, 1979]. 

8.7 Model reduction 

In the theory of model reduction one replaces a model by a simpier one, which 
still catches the essential behaviour, in order to get a better insight and/or to 
get numerical (or analytical) results faster, with less effort. In the state space 
description one could try to replace x = Ax + Bu, y = Cx by i = Äx + Bu, y = 
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ëx, where the new state x has fewer elements than the original state x, and 
where the behaviour of the 'barred' system resembles the behaviour of the original 
system in some way. One thus speaks of model reduction since the dimension 
of the state space has been reduced. If the starting point would have been a 
transfer function, one could try to replace this transfer function by another one 
of which the degree of the numerator and of the denominator are smaller then 
of the original transfer function. We will only devote a few words on model 
reduction in state space here. 

As an example consider 

. (-1 x = 0 -~o ) x + ( ~ ) u, y = (1 l)x. 

Intuitively one may approximate this system by the one-dimensonal system 

one simply del et es the parts of the system related to the smaller eigenvalue (-10). 
However, wh ether it is wise to replace 

. (-1 
x = 0 

by the same reduced system Xl = -Xl + U, y = Xl is not so clear anymore. 
For a more fundamental approach to model reduction one starts with the 

so-called controllability Gramian: 

p= 100 

eAtBBTeATtdt, 

and the observability Gramian: 

Q = 100 

eATtcTCeAtdt. 

These Gramians are weIl defined for asymptotically stabie systems. 

EXERCISE 8.6 Show that the controllability Gramian Pand the observability 
Gramian Q satisfy, respectively, the Lyapunov equations (compare (4.9)) 

The eigenvalues of P provide a measure for controllability and the eigenvalues of 
Q provide a measure for observability. If some of these (nonnegative) eigenvalues 
are close to zero, then the system is hardly controllabie respectively observable. 
One can easily show that these eigenvalues are not invariant with respect to 
coordinate transformations. One talks about a balanced realization of the 
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system if the coordinates are chosen in such a way that Pand Q are equal, i.e. 
P = Q, and diagonal for the transformed system. 

One can also easily show that the eigenvalues of the product PQ are invariant 
under state space transformations and hen ce can be viewed as input/output 
invariants. Assume that R(À;(A)) < 0, 'Vi, th en the Hankel singular values 
(1'; ofthe system are defined as (1'; = {).;(PQ)}~, where by convention one orders 
these values in such a way that (1'; 2: (1';+1' If one wants to reduce the dim en sion 
of the system one could disregard those 'parts' of the system which correspond 
to the smaller Rankel singular values. It turns out that such reduced models still 
capture the controllability and observability behaviour of the original system 
(provided one keeps those 'parts' of the system which correspond to the larger 
Rankel singular values). 

8.8 Adaptive and robust control 

The areas of adaptive con trol and of robust control both are fully-grown scÏentific 
areas. In adaptive control one considers systems characterized by some paramet­
ers, in case of linear systems these parameters are for instance some elements of 
the A and/or B matrix, which slowly change their values with repect to time (for 
instance due to aging, changes in the environmental conditions). For the analysis 
and design of the feedback control one considers these parameters as constants. 
One, however, monitors the values of these parameters; if these values change 
markedly from the nominal values, one will change the feedback control to these 
changed cÏrcumstances. One 'resets' the parameter values and calculates the new 
control. One 'adapts' the design to the new parameter values, hence the name 
adaptive contro!. 

The theory of robust control yields (usually simpie) controllers which main­
tain the 'stability robustness' of the overall system andfor the 'performance ro­
bustness', in spite of uncertain parameters. One assumes that upper bounds on 
these uncertainties are known and given. There are basically two approaches for 
sol ving the the robust control problem; the frequency domain approach and the 
time domain approach. In many cases the most important stability robustness 
measure is the maximum bound of the tolerabie perturbation for maintaining 
stability. Consider the model x = Ax + Bu for which a feedback law u = Fx 
has been designed such that the closed loop system is asymptotically stabie. One 
will use the same feedback law for the system x = (A + aA(t))x + Bu, where the 
matrix c5A satisfies II~A(t)11 ::; a. Will this perturbed system with the feedback 
law based on the nominal model still be asymptotically stabie? It is assumed 
here that the notation IIAII refers to the spectral norm of the matrix A, i.e. 
IIAII = {).max(AAT)}~ and that a is a positive constant. For an asymptotically 
stabie A and a constant aA, asymptotic stability of x = (A + aA)x is assured if 

1 IlaA11 < a = . , 
- supo~w~oo lI~wI - All 



170 MATHEMATICAL SYSTEMS THEORY 

where i = A and where I is the unity matrix. The system with feedback, 
:i: = (A+~A+BF)x, is asymptotically stabIe if II~AII ~ (suPo<w<oo II(iwI -A­
B F) 11) -1. This uncertainty bound can be maximized by choosing an appropriate 
feedback matrix Fj 

F* = argmin(sup II(iwI - A - BF)-lll). 
F w 

Robust control is sometimes also approached from another side. The system 
is supposed to he given hy :i: = Ax + Bu + Gv, where the term Gv incorporates 
everything one is uncertain about or which is unknown. This term consists of a 
known matrix G and an unknown control v. This control v is supposed to he 
chosen by nature which accidentally might try to upset our own goal as much as 
possible. The question is whether we can still con trol the system in an appropriate 
way in spite of the fact that another decision maker ('Nature') interferes in an 
unpredictable manner. If so, one also speaks of robust contra!. If one assumes 
that Nature tries to counteract our goals as much as possihle, one speaks of 
worst case design of finding the con trol law for 'Il. The corresponding theory 
belongs to the field of differential games in which one deals with systems in 
which more decision makers interact with opposite goals. 



Chapter 9 

MATLAB • exerClses 

This chapter contains a collection of prohlems and their solutions that can he 
used for this course on system theory. The pro hl ems are solved using the software 
package MATLAB. For most of them also the MATLAB Control Tooibox must 
he used. 

The goal of these exercises is twofold: first of all they serve as an illustration 
of the theory covered hy this hook, and secondly they show the usefulness of 
MATLAB for solving larger control prohiems. Most of the prohlems in this hook 
have moderate sizes, hut it will he clear that for larger systems it hecomes hard, 
if not impossible, to do the necessary calculations by hand. 

In the first section the exercises are given. Two of them come fr om the 
previous chapters. In the second section solutions using MATLAB are presented. 

9.1 Problems 

EXERCISE 9.1 (Moving average) 
Consider the moving average exercise from the chapter on linear difference sys­
tems. Generate a random sequence of numbers using rand. Then compute the 
moving average of this sequence. Plot the sequence and the moving average. 
What effect has raising the number of samples to be averaged? 

EXERCISE 9.2 (Thermal capacity of a wall) 
Consider a barrel in which a liquid is heated. We are interested in the temperature 
evolution ofthe liquid as weIl as that ofthe wall ofthe barrel. In Figure 9.1 part 
of the liquid and the wall has been represented schematically. 

For the liquid the following relation holds: 

de 
P-Ql=C-. 

dt 

171 
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Iiquid wall· .. air 

... 

Figure 9.1: Liquid in a barrel. 

Here P is the power added by electrical heating, Q1 is the heat transfer to the 
wan, C is the heat capacity of the liquid and e is the temperature of the liquid. 
For the heat transfer to the wan it holds that 

where al is the heat transfer coefficient of the liquid to the wan, A is the total 
wan area and 6 w is the wan temperature. The thermal conductivity of the wan 
is supposed to be infinitely large, hen ce the wan temperature can be regarded as 
homogeneous. For the wan it holds that 

where Q2 is the heat transfer to the air and Cw represents the heat capacity of 
the wall. For the heat transfer to the air we have that 

where 0'2 is the heat transfer coefficient of the wan to the air and 60 is the air 
temperature. 

a. Determine a two-dimensional state space representation, where 

x=(6 6 w )'; u=(P (0)'; y=x. 

b. Suppose (in appropriate units) al = 0.1, 0'2 = 0.2, A = 3, C = 004 en 
Cw = 0.2. 
Plot the temperature evolution of both the liquid and the wan, over a time 
span of 15 time units, when the air temperature is constant and equal to 
20, and Xo = (6(0) 6 w (0))' = (0 10)'. A continuous heating of level 1 
is being supplied to the system. Choose an appropriate time step. 

Note: lsim expects a matrix with a row vector for every time step. 
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c. Determine, both analytically and from the plot, the finally reached equilibrium 
state Xeq. 

EXERCISE 9.3 (Four moving vehicles) 

----~ .. Y4 
------....;!.-----+ .. Y3 
-------------~-----~.. ~ 
--------------------~-----~.. Yj 

Figure 9.2: Four moving vehicles. 

Consider four vehicles moving in a single lane as shown in Figure 9.2. Let 
Yi, Vi, mi and Ui be the position, velo city, mass of and the applied force to 
the i-th vehicle, respectively. Let k be the viscous friction coefficient, the same 
for all four vehicles. Then we have, for i = 1,2,3,4, that 

Vi iJi, 
ui kv; + m'Vi. 

The pur pose of this problem is to maintain the distance between adjacent vehicles 
at a predetermined value ho and to maintain the velo city of each vehicle as close 
as possible to a desired velo city voo Define 

ïl;,i+l (t) y;(t) - Yi+d t ) - ho, 
Vi(t) = v;(t) - vo, 
u;(t) = Ui(t) - kvo, 

= 1,2,3 
1,2,3,4 
1,2,3,4. 

The term kvo is the force needed to overcome the friction for the vehicles to 
maintain their velo city at voo Now thc problem reduces to finding Ui(t) such that 
ïlï,i+l(t) and Vi(t) are as close as possible to zero for all t. 

a. Derive the state-space description of the system with 

the input consisting of the Ui (t) and as output the state of the system. 
What do you notice about ho and vo? 
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b. Choose ml = 5, mz = 4, m3 = 3, m4 = 2 and k = 8. Plot iÏi,i+l 
(i = 1,2,3) wh en the applied forces are: Ul(t) = 6, uz(t) = 12, U3(t) = 20 
and U4(t) = 24 for all t ~ o. Take x(O) = (0 1 0 1 0 1 0)' and 
simulate over 3 time units. What happens? 

EXERCISE 9.4 (Pole placement of four-vehicle system) 
Consider again Exercise 9.3. Use place to determine the feedback matrix F 
that places the poles of the system with feedback at -1, -2, -3, -1 ± iV7 
and -2 ± iJS. Simulate the system with zero external input using this feedback 
matrix if x (0) = (2 1 3 1 4 1 5) , . 

EXERCISE 9.5 (Observer for four-vehicle system) 
Continuation of Exercise 9.3 and Exercise 9.4. 

a. Is the system observable in the case where the velocities Vi are considered to 
be the outputs? Is it detectable? 

b. And what if the relative positions ïi;,i+l are the outputs? 

c. In the case of b, heuristically construct an observer such that Ix - xl < 0.05 
within two time units, if no input is applied. Take as initial condition 
(x - x)(O) = (2 1 3 1 4 1 5 )'. 

EXERCISE 9.6 (From external description to state space) 
Consider the system (fr om exercise 6.5) given by the external description 

a. Determine the transfer function. 

b. Use residue to obtain the partial-fraction expansion of the transfer function. 

c. Apply tf2ss to get a state-space realization. 

d. Use ss2tf to check that the transfer function of the system 

di ( 0 1 0 ) (2 ) dt = 0 0 1 i + -2 u, 
-2 -5 -4 3 

y=(l 0 O)i 

is identical to the one found in a. Determine what quantities the state 
vector i is composed of. 
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Figure 9.3: Rocket with adjustable engine. 

EXERCISE 9.7 (Rocket) 

For the rocket in Figure 9.3 the simplified equation of motion is 

d2 4J 
I dt2 = ka, 
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where I is the moment of inertia around the centre of gravity, 4J is the course 
angle relative to a fixed coordinate system, a is the angle between the engine and 
the rocket axis, and k is a constant depending on the thrust power of the engine. 

With k / I = A it follows that 

C(4J) A 
C(a) - s2' 

In Figure 9.4 the block diagram of the rocket course con trol is depicted. Here 
the gain is K and the transfer function of the controller is 

G(s) = (1 + -.!..) 2s+ 1 . 
2s O.ls+ 1 

a. Determine the transfer function H(s) of r to 4J. 

b. Determine the conditions under which the system is stabie, using the Routh 
criterion. 

c. The question for which values of K the system is stabie (for fixed A) can also 
be answered using the Root Locus method. This means that for 0 ~ K ~ 00 

the positions of the poles of H(s) are plotted, such that the so-called root 
locus is obtainedj inspection gives the stabilizing values of K. Plot the 
poles of H(s) for 0 ~ K ~ 100, where A = 0.05. For which values of K is 
the system stabie? 
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controller rocket 

+ a A 
K G(s) -;ï" . 

Figure 9.4: Block diagram. 

9.2 Solutions 

EXERCISE 9.1 (Moving average) 
The program below computes a vector u of measurements. The moving average 
y is computed. Both are plotted in Figure 9.5. 

N = 50; 
u = 10 + rand(N,1); 
y=zeros(N,1)j 
for k = 3:N, 

y(k) = (u(k) + u(k-1) + u(k-2))/3; 

% random measurements 

end; Y. the moving average 
plot (u, '--' ) ; 
axis([O N 9 12]); 
hold; 
plot(y,'-'); 
title('Moving average'); 
xlabel ('k') 
ylabel('u(k) (- -) and y(k) (---),) 

Three effects of raising the number of samples to be averaged are: 

- lowering the variance of y, 
- raising the autocorrelation of y, and 
- raising the time lag of y with respect to u. 

EXERCISE 9.2 (Thermal capacity of a wall) 

a. 

x = ( 
_a,A 

C 
a,A 
C'" 
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Moving average 
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Figure 9.5: Moving average. 

( -~ - 4 - 3 
'2 

y= 

b. al=O.l; a2=0.2; area=3; Cl=0.4; Cw=0.2; 
A=[-al*area/Cl al*area/Cl ; al*area/Cw -al*area/Cw+ 

-a2*area/Cw] ; 
B=[l/ClO ; 0 a2*area/Cw]; C=eye(2); D=zeros(2,2); xO=[O 10]; 
t= [0 : O. 1 : 15] , ; 
u=ones(size(t))*[120]; 
[y,x]=lsim(A,B,C,D,u,t,xO); 
plot(t,y(:,l),'--'); 
hold; 
plot(t,y(:,2),'-'); 
xlabel('time'), ylabel('temperature of liquid (- -) and 

wall (---),) 
title('Thermal capacity of a wall ,) 

c. The equilibrium can be found by setting ~~ and d~t to zero, giving Q2 = 
Q1 = P = 1 and x eq = (e ew )' with 

+P(a2A)-1 = 
+P(a1A)-1 + P(a2A)-1 = 

21 1 
3 

25 
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Thermal capacity of a wall 
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Figure 9.6: Thermal capacity of a wall. 

which agrees with the values suggested by the plot in Figure 9.6. 

EXERCISE 9.3 (Four moving vehicles) 

a. The resulting state-space model reads: :i: = Ax+ Eu, y = ex + Du with 

-k/ml 0 0 0 0 0 0 
1 0 -1 0 0 0 0 
0 0 -k/m2 0 0 0 0 

A 0 0 1 0 -1 0 0 (9.1) 
0 0 0 0 -k/m3 0 0 
0 0 0 0 1 0 -1 
0 0 0 0 0 0 -k/m4 

I/mI 0 0 0 
0 0 0 0 
0 l/m2 0 0 

B = 0 0 0 0 C=h , D = 074(9.2) 
0 0 l/m3 0 
0 0 0 0 
0 0 0 l/m4 

Notice that ho and Vo have disappeared from the equations. 

b. k=8; m1=5; m2=4; m3=3; m4=2; 



A=diag([-k/m10 -k/m2 0 -k/m3 0 -k/m4])+ ... 
% tridiagonal matrix 

diag([10 1 0 1 0],-1)+diag([0 -1 0 -1 0 -1],1); 
B=[1/m10 0 0 0 0 0 0 0 1/m2 0 0 ; 000 0 ; ... 

o 0 1/m3 0 ; 0 0 0 0 ; 000 1/m4]; 
C=eye(7); 
D=zeros(7,4); 
xo= [0 ; 1 ; 0 ; 1 ; 0 ; 1 ; 0]; 
t= [0: 0.1: 3] '; 
u=ones(size(t»*[6 12 20 24]; 
[y,x]=lsim(A,B,C,D,u,t,xO); 
plot(t,y(:,2:2:6»; % relative positions 
title('Relative positions for u1=6, u2=12, u3=20, u4=24 ' ); 
xlabel('time ' ), ylabel('relative positions ' ) 
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See plot in Figure 9.7: relative positions get negative: vehicle i + 1 passes 
vehicle i. 

Relative positions tor u1 =6, u2=12, u3=20, u4=24 

0.5 

o 

-1 

-1.5 

_2~------~--------~------~~-------L--------~------~ o 0.5 1.5 2 2.5 3 
time 

Figure 9.7: Four moving vehicles. 

EXERCISE 9.4 (Pole placement of four-vehicle system) 

k=8; m1=5; m2=4; m3=3; m4=2; 
A=diag([-k/m10 -k/m2 0 -k/m3 0 -k/m4])+ ... % tridiagonal matrix 
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diag([10 1 0 1 O],-l)+diag([O -1 0 -1 0 -1],1)j 
B=[l/ml 000 0 000 0 1/m2 0 0 j 0 0 0 0 j ... 

o 0 1/m3 0 j 000 0 j 000 1/m4]j 
C=eye(7) j 
D=zeros(7,4)j 
xO=[2 j 1 j 3 1 j 4 j 1 j 6]j 

i=sqrt(-l)j % in case i has been used as a counter anywhere 
p=[-1 -2 -3 -1+i*sqrt(7) -1-i*sqrt(7) -2+i*sqrt(6) -2-i*sqrt(6)]j 
F=pIace(A,B,p)j re poies to be placed 

t=0:0.06:6j 
u=zeros(length(t),4)j 
[y,x]=lsim«A-B*F),B,C,D,u,t,xO)j 

plot(t,y(:,2:2:6»j re relative positions 
titIe('relative positions of vehicles')j 
xlabel('time'), ylabel('relative positions') 

pause re Press a key to see speeds 

plot(t,y(: ,l:2:7»j re relative speeds 
title('relative speeds of vehicles')j 
xlabeI('time'), ylabel('relative speeds') 

See Figures 9.8 and 9.9 for plots of relative positions and speeds, respectively. 

EXERCISE 9.5 (Observer for four-vehicle system) 

a. The system is not observable: 

k=8 j ml=6 j m2=4 j m3=3 j m4=2 j 
A=diag([-k/ml 0 -k/m2 0 -k/m3 0 -k/m4])+ ... 

re tridiagonal matrix 
diag([10 1 0 1 O],-l)+diag([O -1 0 -1 0 -l],l)j 

C=eye(7)j 
Cv=C(1:2:7,:)j re speed measurements 
rank(obsv(A,Cv» 
ans= 

4 

The system is also not detectable: for every K the matrix A - KC has three 
poles equal to zero (hence not in the open left halfplane, as required). This 
can be seen by computing with MATLAB the decomposition as in (4.12) 
and (4.13): 
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relative positions of vehicles 
3 .5r-------~--------,_------_.~------_r--------~------_. 

3 

2.5 

-1 

_1.5L-______ ~ ________ ~ ______ ~ ________ _L ________ ~ ______ ~ 

o 2 3 4 5 6 
time 

Figure 9.8: Positions in system with feedback, poles at desired locations. 

[Abar,Bbar,Cbar,T,S]=obsvf(A,zeros(7,l),Cv); 
% the B-matrix is irrelevant 

Abar,Cbar 
Abar = 

0 0 0 0 1.0000 -1.0000 0 
0 0 0 -1.0000 1.0000 0 0 
0 0 0 0 0 -1.0000 1.0000 
0 0 0 -4.0000 0 0 0 
0 0 0 0 -2.6667 0 0 
0 0 0 0 0 -2.0000 0 
0 0 0 0 0 0 -1.6000 

Cbar = 
0 0 0 0 0 0 1 
0 0 0 0 0 1 0 
0 0 0 0 1 0 0 
0 0 0 1 0 0 0 

b. The system is observable: 

Cy=C(2:2:6,:); 
rank(obsv(A,Cy)) 
ans= 

7 

c. i=sqrt (-1) ; 

% position measurements 
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relative speeds ot vehicles 

j , 
e 

-20~------~--------~2~------~3~-------47-------~5~------~6 

time 

Figure 9.9: Speeds in system with feedback, poles at desired locations. 

p=[-3 -10+sqrt(7)*i -10-sqrt(7)*i -4 -20+sqrt(5)*i 
-20-sqrt(5)*i -3]; 

K=place(A',Cy',p)'; % duality 
place: ndigits= 17 

B=[1/m1 0 0 0 0 0 0 0 
o 0 11m3 0 0 0 0 0 

0=zeros(7,4); 
Oy;0(2:2:6,:); 
eO= [2 ; 1 ; 3 ; 1 ; 4 
t=0:0.OS:2; 

1 

o 11m2 0 0 ; 0 0 0 0 
0001/m4]; 

5] ; 
% position measurements 
% observation errors 

u=zeros(length(t) ,4); 
[z,e]=lsim((A-K*Cy),B,Cy,Oy,u,t,eO);% z is not needed 

plot(t,e); % observation errors 
title('errors in observed positions and speeds of vehicles'); 
xlabel('time'), ylabel('observation errors') 

n=zeros(length(t),l); 
for k=l:length(t) 

n(k)=norm(e(k,:)); 
end 
t(max(find(n>=O.OS))) 
ans= 

% for every time step 
% calculate 2-norm 

% last time that norm 
% of observation error 
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1.7500 % vector is too large 

See Figure 9.10 for the response of the system. 

errors in obs"rved positions and speeds of vehicles 
6~--~r---~r---~r---~-----'-----'-----'----~----~-----, 

0.6 0.8 1 
time 

1.2 1.4 1.6 1 .8 

Figure 9.10: Response of four-vehicle system: relative positions observed. 

EXERCISE 9.6 (From external description to state space) 

a. The system is equivalent to (s3 + 4s2 + 5s + 2)Y = (2s2 + 6s + 5)U, so 

num = [0 2 6 5]; 
den = [1 4 5 2]; 
printsysCnum,den); 
num/den = 

2 s·2 + 6 s + 5 

b. [R,P,K]=residueCnum,den) 
R = 

P = 

1.0000 
1.0000 
1 . 0000 

-2.0000 
-1.0000 

2 
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-1.0000 
K = 

o 
Notice that the pole at -1 has multiplicity 2. So the factorization is such 
that 

1 1 1 
H(s) = 8 + 2 + 8 + 1 + (8 + 1)2 . (9.3) 

See the course book (Exercise 6.4) for a flow diagram. 

c. Make a state space realization: 

[A,B,C,D]=tf2ss(num,den); 
printsys(A,B,C,D); 
a = 

xl 
xl -4.00000 
x2 1.00000 
x3 0 

b = 
ui 

xl 1.00000 
x2 0 
x3 0 

c = 
xl 

yl 2.00000 
d = 

ul 
yl 0 

d. Transfer function of the second system: 

A2=[0 1 0 ; 001 ; -2 -5 -4]; 
B2=[2 -2; 3]; 
C2=[1 0 0]; 

x2 
-5.00000 

o 
1.00000 

x2 
6.00000 

D2=0; 
[num2,den2]=ss2tf(A2,B2,C2,D2); 
printsys(num2,den2); 
num/den = 

2 s~2 + 6 s + 5 

x3 
-2.00000 

o 
o 

x3 
5.00000 

This is the same as before. So it is another state space description of the 
original system. 
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From the output equation it follows that Xl = y. The first two state 
equations show that X2 = ih - 2u = iJ - 2u and X3 = i 2 + 2u = ij -
2ü + 2u respectively. To show that the third state equation is correct we 
differentiate the last relation and use the differential equation: 

d
3

y 2" + 2' dt3 - U u 

(2ü + 6ü + 5u - 4ii - 5i! - 2y) - 2ü + 2it 

-2y - 5(iJ - 2u) - 4(ii - 2it + 2u) + 3u 

-2XI - 5X2 - 4X3 + 3u 

which accounts for the third state equation. 

EXERCISE 9.7 (Rocket) 

(9.4) 

(9.5) 

(9.6) 

(9.7) 

a. Denote the Laplace transforms of cp and r with <1>(s) and R(s) respectively. 
The block diagram (replacing all time signals by their Laplace transforms) 
leads to the following relation between <1>(s) and R(s): 

<1>(s) 

<1>(s) 

A 
KG(s)-Z(R(s) - <1>(s» , so 

s 
KAG(s)Js2 

1+KAG(s)Js2R(s) . 

(9.8) 

(9.9) 

The transfer function of the controlled system, H(s) = :f:l (denoting KA 
by p) can be written as 

20p(s + 1)2 
H(s) - 2 

- s4 + IOs3 + 20ps2 + 20ps + 5p 

b. The Routh-Hurwitz criterion applies to the denominator aos4 + als3 + a2s2 + 
a3s + a4 of H(s), with ao = 1, al = 10, a2 = 20p, a3 = 20p and a4 = 5p. 
Referring to the notation of § 4.1.2 of the course book the remaining non­
zero coefficients are: bI = 18p, b2 = 5p, Cl = 20p - 29

5 and dl = b2. To 
ensure asymptotic stability of the controlled system the values of ao, al, bI, 
Cl and dl must have the same (positive) sign. This results in two conditions 
on p: 18p > 0 and 20p - 2; > 0, which amounts to p > ;6 or K > 3:A' 

c. See Figure 9.11 for the plot, resulting from the following commands: 

K=[0,2.7,10,20,28.2,31.4,40,60,100,... % reference values 
0.4,1,1.8,4:2:26, 29,30,30.6,31.1, ... % and some further 
31.3,31.5,31.8,32.5,35,45,50,70:10:90]'; 

% illustrative values 
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N=size(K,1); 
A=0.05; 
den=[ones(N,1)*[1,10],A*K*[20,20,5]];% denomin. polynomials 

R=zeros(size(den,2)-1,N); 
for k=1:N 

R(:,k)=roots(den(k,:»; 
end % k Y. 

Y. poles 

plot(R(:,1: 9),'y+'), hold Y. reference values of K 
plot (R( : ,10 : N) , 'w. ') Y. all ot her values of K 
plot([-max(imag(R»*i,max(imag(R»*i] ,'r-') % imago axis 
title('root locus for rocket') 
xlabel('real part'), ylabel('imag part') 

10 

8 

6 

4 

2 

-2 

-4 

-6 

-8 

-10 
-10 

root locus for racket 
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•• + •••• + ••• + • • • ··t·· 

-6 

+ 

+ 

+ 

-4 
real part 

• •• +0 ...... 

:j: .-.--
• • • +0 ...... 

-2 o 

Figure 9.11: Location of closed-Ioop poles for varying gain K. 

2 

In the plot the imaginary axis is crossed for K somewhat greater than 2.7, 
in agreement with the value from h, 3:A = 2;, that must be surpassed for 
stability. 



Dutch translations of some 
phrases used 

game of goose 
least squares estimate 
white noise 
transfer matrix 
strictly proper rational function 
proper rational function 
pole 
zero 
factorization 
least common multiple 
transient behaviour 
gain 
low frequency filter 
controller 
track (a signal) 
toaster 
stabilizability 
pole-assignment theorem 
observer 
detectability 
roll angle 
lateral velocity 
lateral waves 
equilibrium point 
stabie 
controllabie 
reachability 
image 
observable 
nonobservable subspace 

ganzenbord 
kleinste kwadraten schatter 
witte ruis 
overdrachtsmatrix 
strikt eigenlijk 
eigenlijk 
pool (polen) 
nul (nullen) 
hier: breuksplitsen 
kleinste gemene veelvoud 
inschakelgedrag of inloopverschijnsel 
versterkingsfactor 
laagdoor laatfil ter 
regelaar 
het volgen van een signaal 
broodrooster . 
stabiliseer baar 
poolplaatsingsstelling 
waarnemer 
detecteerbaarheid 
rolhoek, de beweging om de lengteas van het schip 
dwarssnelheid 
dwarsgolven, golven die van opzij aankomen 
evenwichtspunt 
stabiel 
bestuurbaar 
bereikbaarheid 
beeld 
waarneembaar 
nietwaarneembare deelruimte 
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fundamental matrix 
transition matrix 
adjoint system 
impulse response matrix 
step response 
moving average 
conservation laws 
current 
torque 
moment of inertia 
cross product 
prey-predator 
advection 
diffusion 
linear mapping 
consumer expenditure 
government expenditure 
control 
automatic control 
optimal con trol 
filter theory 
yaw 
pitch 
helmsman 

MATHEMATICAL SYSTEMS THEORY 

fundamentaalmatrix 
overgangsmatrix 
geadjungeerd systeem 
impulsrespons(ie) matrix 
staprespons(ie) 
bewegend of voortschrijdend gemiddelde 
behoudswetten 
stroomsterkte 
moment 
traagheidsmoment 
uitwendig product 
prooi-roofdier model 
horizontale verplaatsing 
verspreiding of verstrooiing 
lineaire afbeelding 
consumptieve uitgaven 
nationale bestedingen 
regeling (en niet: controle of iets dergelijks) 
regeltechniek 
optimale besturingstheorie 
filtertheorie 
gieren 
stampen 
roerganger 
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A-invariance, 66 

adaptive control, 169 
adjoint system, 45 
admissible input function, 29, 145 
advection, 25 
algebraic multiplicity, 38 
algebraic Riccati equation, 164 
aliasing, 144 
alphabet, 157 
amplitude, 127 
analog computer, 115 
ARMA model, 143 
asymptotic stability, 53 
automatic control, 2 
automaton, 2, 157 
autonomous system, 149 
autopilot, 2 

backward delay operator, 138 
balanced realization, 168 
bandwidth, 128 
bang-bang control, 3 
basis transformation, 51 
behavioral model, 150 
behaviour, 150 
BIBO stability, 59 
bioreactor, 23 
Bode diagram, 128 

capacitor, 12 
Cauchy's theorem, 131 
causality, 50, 146 
Cayley-Hamilton,61 
characteristic polynomial, 38, 135 
closed-Ioop control, 79 
coil, 12 
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communication time, 161 
commuting matrices, 42 
compensator, 81, 95 
computer science, 2 
conservation, 9 
continuous-time system, 145 
control, 2 
control law, 81 
controllability, 60, 141 
controllability canonical form, 82, 114 
controllability Gramian, 168 
controllability matrix, 60 
controllability subspace, 61 
controllabie realization, 114 
controller, 129 
convolution theorem, 102 
cost function, 162 
covariance, 167 
cybernetics, 2 

damper, 19 
decibel, 128 
decoupling, 117, 121 
delay operator, 138, 154 
delta function, 46 
descriptor system, 156 
detectability, 93 
diagonal realization, 117 
diagonalizability, 38 
difference system, 133 
differential algebraic system, 156 
differential equation, 15 
differential game, 170 
differential system, 29 
differentiator, 115 
diffusion, 25 
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direct sum, 39 
discrete event system, 160 
discrete-time system, 133, 145 
distributed parameter system, 158 
disturbance rejection, 98 
dual space, 75 
duality, 75 
dyad, 44 

eigenvalue, 38 
eigenvector, 40 
electromagnetism, 11 
energy function, 57 
equilibrium point, 53 
equivalence of systems, 51, 152 
error equation, 91 
Euler-Lagrange, 15 
external description, 46, 145 

factorization, 109 
feedback, 79 
feedback connection, 105 
feedback control, 4, 79 
filter, 128 
filter theory, 2, 4, 166 
flexible beam, 159 
forward delay operator, 138 
Fourier transform, 126 
free response, 44 
frequency method, 125 
frequency response, 126 
fundament al matrix, 34 

gain, 128 
game of goose, 147 
gaussian process, 167 
generalized eigenvector, 40 
Gramian, 168 
group property, 35 

Rankel matrix, 77 
Rankel singular value, 169 
harmonic oscillation, 126 
heated bar, 17 
Reaviside function, 47 
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impulse response, 45, 136 
input, 1 
input space, 145 
input-output representation, 101 

. input-output stability, 59 
input/output function, 146 
internal description, 148 
interval polynomial, 58 
interval stability, 58 
invariant degree, 58 
inverted pendulum, 13 
isomorphic systems, 51 

Jordan form, 39 
Jury criterion, 135 

Kalman filter, 167 
kernel, 39 
Kharitonov polynomial, 58 
Kirchhoff's laws, 12 

Lagrangian, 15 
Laplace transform, 101 
lateral velocity, 100 
least squares estimate, 166 
Lie bracket, 155 
linear system, 146, 149 
linear-quadratic control problem, 163 
linearization, 29 
logarithmic diagram, 128 
logistic equation, 21 
Lorentz equation, 11 
low frequency filter, 128 
lumped system, 159 
Lyapunov equation, 58 
Lyapunov stability, 57 

management science, 2 
Markov parameter, 77 
mathematical systems theory, 2 
matrix exponential, 37 
Maxwell equation, 11 
McMillan degree, 122 
measurement function, 148 
mechanics, 10 
memoryless system, 147 



minimal realization, 52, 125 
mode, 44 
model reduction, 167 
moment of inert ia, 11 
monie, 108 
moving average, 49, 108, 134 

national economy, 26 
NAVSAT,4 
network, 161 
Newton's law, 10 
non-causal system, 130 
non-minimum phase, 109 
nonlinear system, 155 
nonobservable subspace, 76 
nonsingular polynomial matrix, 153 
null controllability, 60, 141 
Nyquist criterion, 131 
Nyquist diagram, 128 

observability, 71, 141 
observability Gramian, 168 
observability matrix, 72 
observer, 89, 166 
observer canonieal form, 117 
open-loop control, 79 
optimal control, 2, 4 
optimal control theory, 162 
ordinary differential equation, 15 
output, 1 
output feedback, 80 
output function, 148 
output space, 146 

parallel connection, 104 
parameter estimation, 165 
partial differential equation, 18 
partial state, 151 
phase, 127 
phenomenology, 9 
PID controller, 3 
plant, 129 
polar plot, 128 
pole, 103, 106, 108 
pole-assignment theorem, 81 

pollution, 24 
polynomial matrix, 151 
polynomial representation, 150 
population dynamies, 20 
positive-definite matrix, 57 
prey-predator, 21 
proper rational function, 106 
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rank condition, 63, 73 
rational function, 106 
reachability, 60, 141 
realization, 52 
realization theory, 77 
resistor, 12 
resolvente, 104 
Riecati differential equation, 164 
robust control, 170 
roll angle, 100 
Routh's criterion, 56 

sampling, 144 
sampling interval, 144 
sampling period, 133 
satellite model, 16 
semi-group property, 148 
sensitivity, 130 
separation principle, 89, 94 
series connection, 105 
Shannon's sampling theorem, 144 
shift operator, 146 
singular value decomposition, 153 
Smith form, 153 
spectral norm, 169 
spring, 19 
stability, 53, 134 
stabilizability, 79, 81 
stabie subspace, 55 
state evolution, 148 
state feedback, 80 
state space, 148 
static system, 147 
stationary response, 126, 137 
stationary system, 146 
step response, 45 
stochastic process, 166 
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stochastic system, 156 
strictly proper rational function, 106 
system, 1 
system function, 146 

thermodynamics, 10 
time axis, 145 
time constant, 109 
time-invariance, 30 
time-invariant system, 146, 149 
tracking, 130 
transfer function, 108 
transfer matrix, 102, 108, 137, 152 
transient behaviour, 126, 137 
transition matrix, 34, 134 
transportation time, 161 

uniform BIBO stability, 59 
unimodular polynomial matrix, 153 
unstable equilibrium, 53 
unstable subspace, 55 

Van der Monde, 124 
Volterra-Lotka, 22 

white noise, 166 
worst case design, 170 

z-transform, 136 
zero, 108 
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