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Summary

In this thesis, we present numerical techniques for analyzing vibro-acoustic problems
that emerge from the coupling of elastic structures with fluid domains. The main
analysis tool used for numerical modelling is the Finite Element Technique (FEM).
By using FEM, the goal of our research was to either improve the already available
techniques or propose new ones for problems involving this type of coupling. The
thesis is divided into two main topics/parts which can be followed independently.

The first part of the thesis focuses on developing eigenvalue solvers for the non-
symmetric coupled vibro-acoustic eigenvalue problems. Two iterative techniques are
investigated for this purpose as follows:

• For the first technique in Chapter 3, starting with the uncoupled modes of the
structural and fluid domains, these initial vector blocks are improved in an
iterative manner similar to the well known Subspace iteration technique. Each
iteration step builds a projection space enriched with the so-called correction
vectors. These correction vectors are composed of some vectors represented in
the space of the decoupled basis vectors, modal truncation vectors and static
residual vectors. Practical examples are provided to demonstrate the accuracy
of the technique.

• The second technique outlined in Chapter 4 builds on a transformation matrix
which is used to transform the original non-symmetric eigenvalue problem into
a symmetric one. However, the symmetric counter parts of the original non-
symmetric system stiffness or mass matrix become fully populated in closed
form which is of little practical use from a numerical efficiency point of view.
Nevertheless, it is shown that an efficient Lanczos type iteration scheme can be
built without explicitly constructing these matrices. By using the theoretical
three-term recurrence formulas, we show that a partial re-orthogonalization
scheme can be integrated in the iteration process to reduce the numerical cost
of the repeated orthogonalization operations. The developed solver, vibro-
Lanczos, is benchmarked against the well-known non-symmetric eigenvalue
solution techniques on different test cases. It is shown that the results are
highly accurate and can bring a CPU time saving on the order of 10% for
large target eigenvalue counts.

The second part of the thesis focuses on a Model Order Reduction (MOR) tech-
nique for coupled vibro-acoustic problems. To reduce the cost of simulation in
those problems, a Craig-Bampton (CB) based Component Mode Synthesis (CMS)
approach is detailed in this part as follows:

• Based on the transformation matrix used in Chapter 4 and starting with Chap-
ter 5, we present the development of an efficient CMS based approach for an-

xi



xii Summary

alyzing vibro-acoustic problems, namely, vibro-LsCB. We show that we can
create, analyze and perform the reduction on locally symmetric component
matrices. Efficient numerical solution schemes are outlined which emerge due
to the use of the transformation matrix. We show the details on component
coupling either in a primal or dual framework. Initial performance tests show
that the proposed technique can accurately predict the global system dynam-
ics.

• Chapter 6 extends the technique presented in Chapter 5 to systems where the
operator matrices used in the numerical operations become singular. These
singularities originate from the free-free components where no constraints are
applied on. We develop and show the mathematical details where we can
still end up with locally symmetric components in this case also. As a result,
the method presented in Chapter 5 is generalized within this chapter. The
accuracy of the technique is illusrated with a 2D-academic test problem.



Samenvatting

In dit proefschrift presenteren we numerieke technieken voor het analyseren van
vibro-akoestische problemen die ontstaan uit de koppeling van elastische structuren
met vloeistof domeinen. Het belangrijkste analyse instrument dat gebruikt wordt
voor numerieke modellering is de Eindige Elementen Techniek (FEM). Door FEM
te gebruiken is het doel van ons onderzoek om, of de al bestaande techniek te verbe-
teren, of nieuwe technieken voor te stellen voor problemen met dit type koppeling.
Het proefschrift is opgedeeld in twee hoofd onderwerpen/delen die onafhankelijk van
elkaar gelezen kunnen worden. Het eerste deel van het proefschrift richt zich op de
ontwikkeling van eigenwaarde oplossers voor niet-symmetrische gekoppelde vibro-
akoestische eigenwaarde problemen. Met dit doel worden twee iteratieve technieken
bestudeerd:

• Voor de eerste techniek in hoofdstuk 3, met als uitgangspunt de ongekoppelde
modes van de structurele en fluidische domeinen, worden deze initiële vector
blokken verbeterd op een iteratieve manier, net als de bekende Subspace Ite-
ration Techniek. Elke iteratiestap bouwt een projectieruimte op die verrijkt is
met de zogenaamde correctievectoren. Deze correctievectoren bestaan uit vec-
toren die uitgedrukt worden in de ruimte van de ongekoppelde basisvectoren,
modale truncatievectoren en statische residuvectoren. Praktische voorbeelden
worden gegeven om de nauwkeurigheid van de techniek aan te tonen.

• De tweede techniek, die in hoofdstuk 4 beschreven wordt, bouwt op een trans-
formatiematrix die gebruikt wordt om het originele niet-symmetrische eigen-
waarde probleem te transformeren in een symmetrisch probleem. Maar, de
symmetrische versie van de originele niet-symmetrische stijfheids- of massa-
matrix van het systeem wordt volledig gevuld in gesloten vorm, en is dus
praktisch weinig bruikbaar vanuit een oogpunt van numerieke efficiëntie. Des-
alniettemin, wordt aangetoond dat een efficiënte, Lanczos-type, iteratieme-
thode opgebouwd kan worden zonder expliciet deze matrices te construeren.
Door de theoretische drie-term ‘recurrence’ formules te gebruiken, tonen we
aan dat een gedeeltelijke re-orthogonalisatie methode geïntegreerd kan worden
in het iteratieproces, om de numerieke kosten van de herhalende orthogona-
lisatie stappen te reduceren. De ontwikkelde oplosser, vibro-Lanczos, wordt
gebenchmarkt tegen bekende niet-symmetrische eigenwaarde oplostechnieken
voor verschillende proefproblemen. Het wordt aangetoond dat de resultaten
zeer accuraat zijn en een computer tijdsbesparing van zo’n 10% kunnen geven
voor grote aantallen doeleigenwaardes.

Het tweede deel van het proefschrift richt zich op een Model Orde Reductie
(MOR) techniek voor gekoppelde vibro-akoestische problemen. Om de simulatie-

xiii



xiv Samenvatting

kosten in deze problemen te reduceren, wordt een Craig-Bampton (CB) gebaseerde
Component Mode Synthese (CMS) aanpak in dit deel als volgt beschreven:

• Op basis van de transformatiematrix die in hoofdstuk 4 gebruikt werd, en vanaf
hoofdstuk 5, presenteren we de ontwikkeling van een efficiënte CMS gebaseerde
aanpak voor het analyseren van vibro-akoestische problemen, namelijk, vibro-
LsCB. We tonen aan dat we creatie, analyse en reductie kunnen toepassen op
lokaal symmetrische component-matrices. Efficiënte numerieke oplosmethodes
worden beschreven, die ontstaan door het gebruik van de transformatiematrix.
We laten de details van component koppeling zien, of in een primaire of in
een duale opzet. Eerste prestatietests laten zien dat de voorgestelde techniek
accuraat de globale systeemdynamica kan voorspellen.

• Hoofdstuk 6 breidt de in hoofdstuk 5 gepresenteerde techniek uit naar syste-
men waar de operatiematrices, die gebruikt worden in de numerieke methode,
singulair worden. Deze singulariteiten ontstaan uit de ‘free-free’ componenten
waar geen beperkingen aan worden opgelegd. Ook in dit geval ontwikkelen en
tonen we de wiskundige details waar we nog kunnen uitkomen op lokaal sym-
metrische componenten. Als eindresultaat wordt de methode, die in hoofdstuk
5 geïntroduceerd werd, in dit hoofdstuk gegeneraliseerd. De accuratesse van
de techniek wordt geïllustreerd met een 2D academisch testprobleem.



1
Introduction

1.1. Background
Nobody wants to drive a car which has a lot of booming noise. Equally, nobody will
also prefer to be on a transatlantic flight spending hours with a similar distracting
noise, most from the engines. Eventually, no customer will be happy with the
rattling parts of a product that make some irritating sound. All together, these
characteristics contribute to the concept known as Noise, Vibration and Harshness
(NVH). In the last decades, the pressure to improve these combined characteristics
has increased substantially due to increased comfort requirements.

An example from automotive industry is as follows:

Vibration energy from an engine travels through the engine mounts, into the struc-
ture, and through the car seat into the driver. But energy from the same

source can take a similar path through the structure to become acous-

tic noise when structure and the internal fluid are coupled and, subse-

quently, this interaction reflects sound into the cabin. Optimizing these
factors is therefore of utmost importance for the overall experience of the vehicle
[28].

This short overview draws the attention to the importance of the prediction of
these qualities at early design stages. More importantly, the bold lines above bring
us to the focus of the dissertation, namely,

investigation of problems with structural-acoustic or vibro-acoustic coupling.

For problems involving structural-acoustic coupling, it is quite important to
predict the coupled dynamic response of structures with internal and/or external
fluid domains. Prediction of the acoustic response or pressure profile in the passenger
cabin of an automobile or of an aircraft is an important example that can help
engineers to improve the above mentioned qualities. Another example is the analysis
of exterior sound fields created by vibrating objects. In these examples, the structure
and the fluid are in strong interaction and, therefore, coupled. This mutual coupling
also has a strong influence on the dynamic properties of the systems and, most of
the time, can not be neglected. Eventually, these systems should be analyzed by
taking this coupling into account for realistic performance predictions.

1
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2 1. Introduction

Interface

Fluid

Structure

Pressure

Acceleration

Figure 1.1: Conceptual interaction between the structural and fluid domains

1.2. Problem statement and motivation
In this thesis, we mainly concentrate on structural-acoustic problems where elas-
tic structures are interacting with enclosed acoustic fluid cavities. A simplified
schematic representation of this type of coupling is depicted in Figure 1.1. In this
type of coupling, the pressure on the fluid side acts on the structural domain over
the interface. Similarly, again over the interface, the normal acceleration of the
structural domain is transmitted to the fluid domain. Systems including this cou-
pling is extensively investigated since the original article by Craggs [34] where it is
shown that the coupled system in displacement-pressure formulation results in non-
symmetric matrices with the coupling terms included. An extensive mathematical
exposition is also provided in [105].

However, from a modelling point of view, we can not end up with closed form
analytical solutions for most of these challenging problems. This is because of the
the complex shapes of the domains we work with and the associated boundary
conditions involved. Therefore, it is quite common to resort to approximate solution
techniques and methods. The most notable of these modelling approaches for the
structural-acoustic problems are the finite element method [78], [55], [17] and the
boundary element method [25], [26]. Boundary element method is generally used
for external pressure field predictions. It is a widely accepted practice to use the
finite element method for elastic structures interacting with enclosed cavities. We
follow this practice and use the finite element method in this thesis. We assume the
displacements and the pressure fluctuations due to this coupling is small so we use
the linear field assumptions in both of the domains.

The number of degrees of freedom (DOFs) of the finite element models, namely,
the size of the matrices, resulting from a structural-acoustic problem is likely to be
very large. Generally, the complexity of the domains and the increase in the upper
frequency limit are the reasons of the substantial increase in the number of DOFs
for a correct representation [138].

Generally, the resulting large matrices are used to perform,

• A frequency sweep analysis, where we have to solve a linear system of equa-
tions of the form Ax = b at different discrete frequencies with a fine enough
resolution to represent the Frequency Response Functions (FRFs). In this
analysis, A is a frequency-dependent dynamic stiffness matrix [138] to be fac-
torized for the solution of the linear system at each frequency step which is a
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costly numerical operation [62],

• An eigenvalue analysis to determine the major dynamic system parameters of
the coupled system representation.

The solution of these problems also require excessive amount of storage space even
if the matrices involved are kept in sparse format [134], [136]. Moreover, as shortly
mentioned above, the problems arising from structural-acoustic coupling result in
nonsymmetric matrices [105] which require nonsymmetric solvers during the above
mentioned numerical operations. Generally, numerical solution costs of system equa-
tions involving nonsymmetric matrices are higher than their symmetric counter-
parts [62].

Another challenge in analyzing systems with these large matrices becomes even
more important if the designers need to perform many simulation and optimization
cycles, which is most of the time the case. In this respect, investigations of model
order reduction (MOR) techniques are also important for this class of problems.
With these techniques, the initial model sizes can be substantially decreased and
the resulting systems can be analyzed quicker with an acceptable accuracy. Several
approaches exist in the structural dynamics field since 60s and 70s [37], [100], [132].
In these approximations, the complete problem domain is divided into smaller do-
mains and the reduction is performed independently on each of these domains,
namely, the component domains. Later on, these domains are coupled to approxi-
mate the global system dynamics [90]. This practice results in significant reductions
on the sizes of the matrices both on the component level and on the coupled system
level. Moreover, the analysis on these components can be performed in a parallel
nature as well with the best fitting methods. This approach has several advantages
over solving the complete problem representation. Namely, instead of operating
on the large system matrices of the complete problem, we perform the numerical
operations on smaller matrices which can reduce the computational costs and time
significantly.

To solve structural-acoustic problems, numerical analysts and engineers need
to develop computationally efficient and reliable solution techniques. Therefore,
improvement of the already existing methods is an active research area. And, in this
thesis, the main focus is on the development of new efficient solution and reduction
techniques for structural-acoustic problems.

1.3. Objectives and outline
Given the scope and motivation for the development of efficient numerical solution
techniques for structural-acoustic problems, the research objectives of this thesis
can be summarized as follows:

• Investigate the current eigenvalue solution techniques used for structural-acoustic
problems. Subsequently, improve these techniques and/or propose new numer-
ical solution techniques for these problems,

• Investigate the currently applied model order reduction(MOR) techniques and
develop new techniques for structural-acoustic problems,
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• Develop numerical analysis tools which can be used to analyze industrial scale
structural-acoustic problems.

To achieve the above mentioned goals, this thesis is divided into two parts.
Namely, the first part of the thesis focuses on developing eigenvalue solution tech-
niques for structural-acoustic problems and it constitutes the research aimed at
improving the already available solution techniques. This part constitutes Chapters
3 and 4. The second part of the thesis focuses on developing a component mode syn-
thesis1 approach for structural-acoustic problems. This part constitutes Chapters 5
and 6.

A brief outline of the contents is given as follows:
Chapter 2 introduces the main equations for the structural and acoustic do-

mains along with the coupling relations and conditions between these two domains.
The discretization process, which results in the nonsymmetric coupled system ma-
trices, is also outlined in this chapter. The equations and the theory introduced in
this chapter forms the basis of the thesis.

In Chapter 3, we detail the development of a Subspace like solver for the solu-
tion of the eigenvalue problems resulting from structural-acoustic problems. Start-
ing from the uncoupled mode shape vectors, an iterative scheme is detailed which
improves these initial vectors to end up with the coupled system eigenvalue/vector
approximations.

Chapter 4 covers the development of a new symmetric solution technique for
the eigenvalue problems arising from structural-acoustic coupling. This chapter also
includes short information on the available solution techniques and, subsequently,
the improved version of the symmetric solver is detailed and benchmarked against
the current solvers available in the literature.

Chapter 5 proposes a new Craig-Bampton type reduction technique for structural-
acoustic problems. This can also be viewed as an extension of the research presented
in Chapter 4. It is centralized around the idea of building symmetric reduced com-
ponent matrices in a numerically efficient manner.

Chapter 6 covers the extension of the technique presented in Chapter 5 for
components involving singularities which occur during the transformation of the
component matrices to symmetric formats. Moreover, a generalized primal assem-
bly framework is also presented for general substructuring applications for systems
involving structural-acoustic coupling.

Chapter 7 summarizes the conclusions of the research performed in this thesis
and outlines some research areas for possible future investigations.

1.4. Contributions of the thesis
In the view of the above mentioned objectives, we propose several scientific contri-
butions in this thesis which can be listed as follows:

1. An iterative correction algorithm based on the well-known Subspace iteration
technique is developed [148], [150].

1Substructuring
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2. For the original non-symmetric eigenvalue problem resulting from the coupled
structural-acoustic problems, we proposed a numerically efficient symmetric
Lanczos eigenvalue solver [151], namely, vibro-Lanczos. The solver also makes
use of a partial-orthogonalization scheme to decrease the numerical cost of the
full-orthogonalization operations used in Lanczos iterations.

3. A numerically efficient and general Craig-Bampton (CB) type reduction tech-
nique is proposed for vibro-acoustic problems, namely, vibro-LsCB. The tech-
nique is built around the central idea of creating symmetric reduced component
matrices and performing the operations on the component level with symmet-
ric solvers. Another journal manuscript is under preparation based on this
research.

4. Although not directly presented and used for structural-acoustic problems,
different MOR techniques are reviewed [23] and compared. These different
techniques mainly originate from the following fields: structural dynamics,
systems and control and mathematics. The resulting research is also presented
in Appendix A.

5. A powerful and easy to use numerical platform has been developed both in
MATLAB and C++ with functional and object-oriented programming ap-
proaches. This platform interfaces with the commerial finite element code
ANSYS to extract system and/or element matrices, node, connectivity infor-
mation from the finite element models built in ANSYS. It is also used to inter-
face the component related information used for model reduction approaches
developed in this thesis. As a result, the developed numerical platform is ca-
pable of analyzing both academic and industrial problems efficiently either in
MATLAB or in C++.





2
Vibro-acoustic Modelling

In this chapter, we investigate the analysis of interactions between flexible structural
domains which are in contact with enclosed fluid domains. Governing equations of
the two domains are presented along with the mathematical details of the interface
coupling. Later on, discretized forms of the coupled problem representation is derived
in a finite element framework. This chapter is intended to form a basis for the rest
of the thesis.

2.1. Introduction
Generally, the fluid surrounding a structure has an influence on the behaviour of
the structure and similarly the pressure waves inside the fluid domain is also influ-
enced by the displacement field of the structure. In general, it is best to analyze
this bidirectional interaction simultaneously. Nowadays, it is quite common to use
advanced computational tools in order to predict noise levels radiated from different
engineering structures such as fans or loudspeaker systems in free space. Moreover,
similar tools can also become quite useful for the predictions performed for closed
cavities which are interacting with flexible structural walls.

An overview and review of different numerical techniques for low frequency ap-
plications can be found in [11]. Namely, two main mathematical methods for mod-
elling acoustic and vibro-acoustic problems are discussed, namely, the finite element
method [64, 34, 123, 109] and the boundary element method [16, 26, 31]. Generally,
finite element method is preferred for internal acoustic problems, whereas bound-
ary element method is the preferred method for external radiation problems. An
overview and comparison of these methods from a numerical perspective is provided
in [40].

The formulation of coupled structural-acoustic problems using the finite element
method is described thoroughly in [105]. In the structural domain, the main vari-
able is the displacement. For the fluid domain, several different variables can be
used, namely, displacement, pressure and the fluid displacement potential. [30, 2]
are references where the fluid is represented in terms of displacement formulation.
Although the fluid does not carry the shear loads, normal modes with rotational
motion are introduced. Several techniques to make the eigenvalues of these rota-
tional modes equal to zero were proposed therein along with some techniques based
on reduced integration schemes.

By using the pressure formulation in the acoustic domain, the problem with the
non-physical modes can be circumvented. Pressure based finite element formulation

7
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is used in [34, 123] to solve the eigenvalue problems related to complex shaped
three dimensional cavities. The advantage of these two field formulations is that
the fluid variable, pressure, is a scalar. Therefore, each node of the finite element
model has only one degree of freedom in the fluid domain. Moreover, pressure is a
variable which can be measured for the validation of the numerical method being
used. Unfortunately, the resulting system of equations are non-symmetric. In effect,
solvers that can handle non-symmetric matrices must be used in order to perform
the solution of the system equations which is a drawback. However, some authors
proposed ways to create symmetric system matrices by using two different variables
in the fluid domain resulting in a three field representation with the displacement
variable of the structural domain. Namely, in the fluid domain, pressure and fluid
displacement potential [68] are used. However, this practice results in doubling the
number of degrees of freedom in the fluid domain which substantially increases the
numerical cost of the operations. In this thesis, we performed the investigations by
using the displacement-pressure formulation using the finite element method.

In this chapter, basic principles of vibro-acoustic modelling for interior problems
is introduced where the mutual interaction between the structure and the fluid is also
taken into account. First, the governing equations1 in the structural and acoustic
domains are outlined, respectively. Subsequently, the mathematical details of the
vibro-acoustic coupling conditions are provided. In order to solve these kinds of
problems computationally, the corresponding strong forms of the differential equa-
tions are transformed into their weak forms. Then, the weak form is discretised
with the finite element method leading to a coupled system of algebraic equations
which can be solved numerically. The mathematical details of the discretisation
process is also shortly derived in this chapter. This chapter is organized as follows:
Section 2.2 briefly outlines the structural equations and the finite element discretiza-
tion process for the structural domain. In a similar manner, Section 2.3 outlines the
same process performed over the acoustic domain. Section 2.4 briefly explains the
coupling conditions and provides some insight into the properties of the resulting
system equations.

2.2. Structural domain and discretization

With the assumption of small displacements and following the Newton’s second law
of motion, the differential equation2 of a structure under a body load bs is written
in matrix notation [116, 55] as follows:

∇T
s σs + bs = ρsü (2.1)

where u represents the displacement field vector, bs represents the body load vector.
The right hand side in (2.1) represents the inertia force of the structure with ρs as

1Strong forms of the equations.
2The balance equation
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the density of the material. Namely,

u =





ux

uy

uz



 , bs =





bx

by

bz



 (2.2)

The differential operator in (2.1) is given as,

∇s =












∂
∂x 0 0
0 ∂

∂y 0

0 0 ∂
∂z

∂
∂y

∂
∂x 0

∂
∂z 0 ∂

∂x

0 ∂
∂z

∂
∂y












(2.3)

In matrix notation, the stresses and strains are defined as follows:

σs =











σxx

σyy

σzz

σxy

σxz

σyz











, εs =











εxx

εyy

εzz

γxy

γxz

γyz











. (2.4)

with γxy = 2εxy, γxzz = 2εxz and γyz = 2εyz. With these definitions, the kinematic
relation between the strains and the displacements is written as

εs = ∇su (2.5)

Similarly, for an isotropic linear material, the strains and the stresses are related
with the constitutive equation, namely,

σs = Dsεs (2.6)

where Ds represents the constitutive matrix for an isotropic material [154].
To arrive at the discretized form of the equations, a weak form of the differential

equation is constructed by multiplying (2.1) by different test functions in the three
different directions in space. Namely, the arbitrary weight functions can be written
as v = [vx, vy, vz ]T.

One can multiply the first balance equation in (2.1) by the weight function,
vx, and integrate over the domain to arrive at the weak form of the differential
equation3, namely,

∫

Vs

vx (∇ · σ̂x + bx − ρsüx) dV = 0 (2.7)

3It is important to note that the balance equation in different directions can also be written with
the help of divergence and that property was used here.
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with σ̂x = [σxx, σxy, σxz]T. Namely, σ̂x is the one of the three traction vectors on
an infinitesimal element [154].

The first term in (2.7) can be transformed by using the Green-Gauss theorem [55]
resulting in

∫

Ss

vxσ̂T
x nsdS −

∫

Vs

(∇vx)
T

σ̂xdV +

∫

Vs

vxbxdv −
∫

Vs

vxρsüxdV = 0 (2.8)

where ns represents the normal vector pointing out from the structural domain
written as ns = [ns,x, ns,y, ns,z]T.

If we perform similar operations in the other directions and add up the resulting
three equations, we can write the weak form of the structural differential equations
in matrix format as follows, namely,

∫

Vs

(∇sv)
T
σsdV +

∫

Vs

vTρsüdV −
∫

Ss

vTtsdS −
∫

Vs

vTbdV = 0 (2.9)

It is important to note, when transforming from (2.8) to (2.9), the equilibrium
between the forces on the surfaces of the domain and the internal forces expressed
by the stress tensor requires that ts = Ssns. In this representation, the stress tensor
Ss is defined as

Ss =





σxx σxy σxz

σyx σyy σyz

σzx σzy σzz



 (2.10)

If the structural domain is discretized using suitable elements then the integra-
tions in (2.9) must be performed over the element domains and the contributions of
each element must be added to end up with the system matrices [17].

The approximation of the displacements and the weight functions over an element
is introduced respectively by using the shape functions

u = Nsus, vs = Nscs (2.11)

By using (2.5), the strains can be expressed as

εs = ∇sNsus (2.12)

Substituting (2.6) and (2.12) in (2.9), we can write the finite element formulation
for the structural domain as follows,

Msüs + Ksus = fs + fb (2.13)



2.3. Acoustic domain and discretization

2

11

where

Ks =
∑

e

∫

V
(e)

s

(∇sNs)
T

Ds∇sNsdV (2.14a)

, Ms =
∑

e

∫

V
(e)

s

ρsNT
s NsdV (2.14b)

fs =
∑

esf

∫

S
(e)

sf

NT
s tsdS (2.14c)

fb =
∑

e

∫

V
(e)

s

NT
s bdV (2.14d)

This approach is called the Galerkin discretization of the weak form [33]. In
a finite element framework, the integral expressions of the Galerkin weak-form,
provided in (2.9), are converted to integrals over the discretized element domains.
Subsequently, with a mapping between the local and global degrees of freedom, the
results of above integration operations, which are the element matrices, are then
assembled into the system matrices of the domain under consideration [55, 116].

In (2.14),
∑

e represents the assembly of the local element matrices or element
force vectors over the domain. Similarly,

∑

esf
represents the assembly over the

interface elements. Moreover, it is important to note that, for fs, we only have
to consider the elements where the traction vector ts is defined. In the context of
vibro-acoustic problems studied in this thesis, this interface is the surface between
the structural and acoustic domain, Ssf .

2.3. Acoustic domain and discretization
In this thesis, we assume an inviscid4, compressible and irrotational fluid which
undergoes small translations only. Moreover, linear stress-strain laws are assumed.
Fluid is an ideal gas without any mean flow5. In all the mathematical derivations,
perturbations associated with the fluid domain are very small so that their products
can be neglected during the mathematical operations.

In the current context, Helmholtz equation is used to describe the motion of the
acoustic domain [106]. The main variable is the excess pressure, p, which represents
the small fluctuations in pressure around the mean pressure of the medium. Namely,

∇2p− 1

c2

∂2p

∂t2
= 0 (2.15)

where c is the speed of sound in the fluid domain. Derivation of (2.15) can be per-
formed by using the linearized continuity and linearized Euler equations along with
the state of stress of an ideal gas. The details can be consulted in well documented
references [106, 88, 81]. In this thesis, we did not consider any external sources
in (2.15).

4No viscous effects are considered.
5There is no ambient flow.
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In order to develop the finite element formulation in the acoustic domain, (2.15)
is multiplied by a test function, vf , and integrated over the volume of the fluid,
namely,

∫

Vf

vf

(

∇2p− 1

c2

∂2p

∂t2

)

dV = 0 (2.16)

Since ∇2p = ∇ · (∇p) and by using the Green-Gauss theorem [55], we can write the
first term in (2.16) by using the matrix notation as follows,

∫

Vf

vf∇ · (∇p)dV =

∫

S

vf (∇p)Tnf dS −
∫

Vf

(∇vf )T(∇p)dV = 0 (2.17)

where the normal vector, nf , represents the normal that points out from the fluid
domain. Using (2.17), we can get to the weak form of the equations, namely,

∫

Vf

(∇vf )T(∇p)dV +
1

c2

∫

Vf

vf
∂2p

∂t2
dV −

∫

S

vf (∇p)Tnf dS = 0 (2.18)

Similar to the structural domain, when the fluid domain, Vf , is discretized,
acoustic pressure variable, p, and the arbitrary test function, vf , over an element
are written as follows, namely,

p = Nfpf , vf = Nfcf (2.19)

where pf contains the nodal pressures, and cf are the arbitrary nodal weight con-
stants.

Following the briefly outlined scheme and using the shape function representa-
tions of the field variable over the elements, namely (2.19), (2.18) can be put into
the discretized format, namely,

Mf p̈ + Kfp− ff = 0 (2.20)

where

Mf =
∑

e

1

c2

∫

V
(e)

f

NT
f Nf dV, (2.21a)

Kf =
∑

e

∫

V
(e)

f

(∇Nf )T(∇Nf )dV, (2.21b)

ff =
∑

eesf

∫

S
(e)

sf

NT
f n

T
f∇pdS. (2.21c)

In (2.21),
∑

e and
∑

esf
represent the assembly of the local element matrices

over the domain and over the interface, respectively. It is important to note that
the acoustic stiffness matrix, Kf , is related to the acoustic kinetic energy. Similarly,
the acoustic mass matrix, Mf is related to the acoustic potential energy [48]. (2.21c)
represents the interface coupling terms which provides the effect of the structure on
the fluid due to the pressure gradient on the interface. A similar coupling was also
considered for the structural domain resulting in a mutual interface coupling over
Ssf between the two domains.
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Ssf
Vf

nf

ns

p

∇p · nf = 0

∇2p− 1
c2

∂2p
∂t2 = 0

∇T
s σs + bs = ρsü

−∇p · nf = ρf
∂2uf

∂t2 · nf

Figure 2.1: Simple structure coupled to an acoustic domain on the interface Ssf

2.4. Coupling conditions, coupled equations and prop-

erties
In vibro-acoustic problems, the coupling between the structural and acoustic domain
is accomplished over the interface between the structure and the coupling fluid. In
most practical engineering problems, this bidirectional coupling can not be neglected
and must be taken into account. Simple mechanics dictates two conditions for this
coupling to hold on the interface. Namely, over the interface, the normal velocities on
the structural and acoustic domains must match. Second, the equilibrium relations
must hold over the interfaces.

A simple coupled problem including the structural and acoustic domains is de-
picted in Figure 2.1 with the coupling surface, Ssf . Additionally, the considered
boundary conditions are also shown in this figure. Pressure acting on the structural
domain is also shown in the same figure6. The corresponding normal vectors of
the coupling domains are also shown therein for clarity. It is important to note
that the structural normal vector, ns, points outwards from the structural domain.
Similarly, the normal vector of the acoustic domain also points outwards from the
fluid domain. This convention results in the following relation between the normal
vectors, namely,

nf = −ns (2.22)

The linearized Euler equation reads as

−∇p = ρf
∂vf

∂t
(2.23)

where vf is the velocity of the fluid particles and ρf represents the density of the
fluid that is in contact with the structural domain. If we use the continuity of
the velocities on the interface in the normal direction, namely, vs = vf , we can
write (2.23) as follows,

−∇p · nf = ρf
∂vs

∂t
· nf ≡ ρf

∂2us

∂t2
· nf (2.24)

6No other tractions apply on the structural domain except the pressure of the fluid domain
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(2.24) can be also be interpreted as a boundary condition for the Helmholtz equation
given in (2.15). Physically, the displacement or velocity represents the boundary
condition for the fluid domain.

Second condition results from the relation between the tractions on the inter-
face7, namely,

Ssns ≡ ts = −pns (2.25)

where ts represents the traction8 on the structural domain due to the acoustic
domain. This traction represents the boundary condition on the structural domain.
As a result, both of the coupling conditions (2.24) and (2.25) have to be satisfied in
the case of a coupled problem representation since the effect of the structure on the
fluid and vice versa can not be neglected.

In Sections 2.2 and 2.3, the discretization of the structural traction vector was
provided in (2.14c) and, similarly, the discretization of the source term was provided
in (2.21c). By using the conditions outlined for coupling, namely, (2.24) and (2.25),
we can convert (2.14c) as follows, namely,

fs =
∑

esf

∫

S
(e)

sf

NT
s tsdS

(2.22), (2.25)−→ fs =




∑

esf

∫

S
(e)

sf

NT
s nf NfdS





︸ ︷︷ ︸

Ksf

pf (2.26a)

fs =Ksfpf (2.26b)

Similarly, we can also rewrite (2.21c), namely,

ff =
∑

e

∫

S
(e)

sf

NT
f n

T
f∇pdS

(2.24)−→ ff = − ρf




∑

esf

∫

S
(e)

sf

NT
f n

T
f NsdS





︸ ︷︷ ︸

Mfs

üs

(2.27a)

ff = −Mfsüs (2.27b)

In these transformations, we also used the pressure and displacement field represen-
tations, namely, p = Nfpf and u = Nsus in (2.26a) and (2.27a), respectively.

In the light of the above discussion, we can combine the field equations provided
in (2.13) and (2.20) to end with the coupled system equations of the vibro-acoustic
problem, namely,

[
Ms 0

Mfs Mf

]

︸ ︷︷ ︸

Mc

[
üs

p̈f

]

+

[
Ks −Ksf

0 Kf

]

︸ ︷︷ ︸

Kc

[
us

pf

]

=

[
fb

0

]

(2.28)

7Due to Newtons’s third law of motion, namely, action and reaction principle
8pressure
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where Mc and Kc represent the coupled system mass and stiffness matrices of the
vibro-acoustic problem, respectively. Ksf and Msf in (2.28) represent the, gener-
ally, rectangular interface coupling blocks for the problem. Moreover, investigating
the final equations provided in (2.26a) and (2.27a) closer, we can also see that
Mfs = ρf KT

sf . We can also simplify (2.28) further by scaling the second block row
with ρf . Namely,

[
Ms 0

KT
sf Mf

]

︸ ︷︷ ︸

Mc

[
üs

p̈f

]

+

[
Ks −Ksf

0 Kf

]

︸ ︷︷ ︸

Kc

[
us

pf

]

=

[
fb

0

]

(2.29)

where Kf ← Kf/ρf and Mf ←Mf/ρf . It is important to note that in (2.29), the
source terms related to the acoustic partition is not there. However, if we would
like to perform a forced response analysis with the source terms, then we must also
perform the scaling on the source side as well. To conclude, (2.29) represents the
linearized, undamped coupled equations of motion of the vibro-acoustic systems to
be investigated in the context of this thesis.

By selecting displacement and pressure as our main variables in the structural
and fluid domains, respectively, we have shown that we end up with the nonsymmet-
ric coupled system in (2.29). This is a two field formulation which have (ms + mf )
degrees of freedom in total where ms and mf represent the size of the structural
and acoustic partitions, respectively. Some other approaches were proposed that
use the acoustic velocity potential as the field variable in the acoustic domain,
namely, [46],[140]. By using this choice, one can still end up with symmetric mass
and stiffness matrices in a two field representation which results in (ms + mf )
degrees of freedom in total. Unfortunately, the coupling conditions results in a
skew-symmetric coupling matrix which is considered as the damping matrix in this
approach. Moreover, as shortly mentioned in the introduction, several other meth-
ods to end up with symmetric system matrices also exist and documented in [105,
68]. A common down side of these approaches is the substantial increase in the total
number of degrees of freedom of the systems. Namely, the use of the air particle
displacement potential as mentioned in [68] results in a mixed formulation in the
acoustic domain which results in an increase in the total system size. As a result,
the size of the resulting symmetric matrices are of the order of (ms + 2mf) in com-
parison to the (ms + mf ) of the above mentioned size of the two field formulation.
Therefore, we base our selection of the displacement-pressure formulation on the
shortly outlined justifications.

Apart from the above mentioned points, it is good to add some additional com-
ments on the displacement-pressure formulation, namely,

• The system given in (2.29) is composed of two different physics of two differ-
ent orders, namely, the displacement and pressure. This practice results in
an overall system that is ill-conditioned which is a serious drawback for the
numerical operations to be performed. Therefore, scaling of the system ma-
trices are proposed by several authors [102] in the context of substructuring.
In our numerical tests, we generally applied a simple diagonal scaling on the
matrices.
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Figure 2.2: Computational platform

• Even if the coupled system equations are nonsymmetric, the matrices that
build up the coupled system are all symmetric except the off-diagonal coupling
blocks.

• Nonsymmetric eigenvalue problems might result in eigenvalues and eigenvec-
tors in complex conjugate pairs [91] in contrast to real symmetric eigenvalue
problems. However, it can be shown due to the relations between the off-
diagonal coupling blocks, (2.29) results in real eigenvalues and eigenvectors in
the absence of damping [161].

• To perform the modal decoupling operations similar to the ones performed
for the symmetric system matrices [63], we need the left eigenvectors of the
problem. Left eigenvectors, φl, originate from the from left eigenvalue problem
(
KT

c − ω2MT
c

)
φl = 0. By using the left eigenvectors and performing the mass

normalization, we can write

φT
l Mcφr = I (2.30a)

φT
l Kcφr = diag(ω2

i ) (2.30b)

where φr are the right eigenvectors originating from (2.29). Moreover, the left
and right eigenvectors of (2.29) are related as proven in Appendix E.

2.5. Computational platform
This short section describes the simulation platform used for the numerical tests
performed in this thesis. The operations performed with the platform is summarized
in the flowchart presented in Figure 2.2. The main component of the platform is
ANSYS [6] which is one of the commercial finite element codes in the market. The
input to the platform is the model geometry which can either be processed by
different CAD software or can be built up by the preprocessor of ANSYS itself.
The usual finite element modelling steps are carried out in ANSYS through APDL,
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namely, ANSYS Parametric Design Language. Besides, we mainly use ANSYS as
a preprocessor for finite element operations such as matrix assembly, application of
boundary conditions and etc. Subsequently, we extract the information from the
output binary files written by ANSYS with the help of developed interfaces. Namely,
we developed two interfaces in MATLAB (MathWorks, Natick, MA, USA) and in
C++ [145] which can handle the models prepared in ANSYS efficiently. Eventually,
we mostly used MATLAB as our main computational platform.

2.6. Summary
In this chapter, we presented the governing equations of the coupled vibro-acoustic
problem. Details of the discretization with finite element method was also shown
along with the coupling formulation. Moverover, a very brief overview on the com-
putational framework used throughout the thesis was also provided. This short
chapter forms a basis for the thesis.
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3
Iterative Reduced Correction

Algorithm, IRCA

In this chapter, a Subspace-like eigenvalue solver is investigated for the coupled
eigenvalue problems resulting from vibro-acoustics. A projection space similar to
the one used in the Subspace Iteration method is built up iteratively and used. This
basis includes the corrections from the mutually coupling physics. Moreover, it is
also enriched with extra residual vectors. By relating the inverse iteration step with a
symmetric scaling transformation along with the use of residual vectors, some proofs
on improving convergence are provided. The research presented in this chapter is
partially based on the conference articles [148, 150].

3.1. Introduction
In Chapter 2, we provided the derivation of the main equations that govern the vibro-
acoustic problems. We also mentioned that the problem can be written in different
formats by selecting different variables to represent acoustic domain. Solution of
the coupled problem representation is almost always the best option. Moreover, it
might be the only option whenever the impedances of the two coupling domains
match which eventually results in a strongly coupled problem. However, solution of
the fully coupled problem is generally time consuming. In addition, the numerical
conditioning of the coupled system matrices can introduce more severe challenges
for the solution techniques.

Due to the briefly outlined difficulties, cheaper indirect solution approaches were
proposed which are all based on the modal interaction models presented in [158], [48].
Generally in these methods, the structural nodal displacements are represented in
terms of a summation over the in vacuo normal modes of the structural domain.
In a similar manner, the nodal acoustic pressures are represented in terms of a
summation over the rigid wall acoustic pressure normal modes. But, as mentioned
shortly before, the coupling impedances on the interacting surfaces can match when
a heavy fluid is used. In this case, the use of the modal interaction model generally
fails to provide accurate estimates of the eigenvalues and eigenvectors.

In the literature, different techniques were studied and documented which use
the in vacuo normal modes of the structural domain and the rigid wall cavity modes
of the subsystems, namely, the structural and the fluid domains. These are called
the decoupled system modes in the presentation from now on. In [107], the authors
used the decoupled system modes and, later on, with some algebraic manipulations,

21
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formulated the eigenvalue and frequency response problems in a symmetric man-
ner. By using a relatively high number of decoupled mode vectors, they ended up
with results that have fair accuracy while air was used as the coupling fluid. [137]
also uses the decoupled system modes and outlines an algebraic approach to write
the system representation in a symmetric format by using either the displacement-
pressure(u−p) formulation or the displacement-fluid displacement potential(u−Ψ)
formulation. That author also used the relations between the left and right eigen-
vectors while building up the modal interaction model. The author reported fair
accuracy even by using a relatively high number of decoupled mode vectors from
the acoustic domain. Later, [152] proposed to enrich the modal interaction model
with pseudo-static correction vectors resulting from the structural and acoustic do-
mains, respectively. As a result, they reported significant improvements on the
system responses with the use of pseudo-static correction approach. [3, 4] combined
the approaches proposed in [137] and [152] in order to come up with a symmetric
representation for forced response calculations. [144] also starts from the decoupled
system modes. They proposed a technique that uses some residual vectors in or-
der to enrich the modal interaction model. In order to select important residual
vectors, a two level vector selection approach is used. First, they performed an
initial screening by using the off-diagonal coupling blocks of the coupled problem
representation. Subsequently, they used the results of the previous step to perform
a second selection by using some strain energy like norms. In this way, they tried
to select the best vectors that will eventually appear in the modal interaction basis.
To the authors knowledge, [24] proposed the only iterative technique that intends
to improve the decoupled system modes without any convergence proofs.

In this chapter, our aim is to outline the development of a Subspace like itera-
tive eigenvalue solution technique which improves the above mentioned decoupled
system modes substantially in order to accurately predict the dynamic response of
the fully coupled problems. This point is especially important for strongly coupled
problems where most of the briefly outlined decoupled projection approaches fail.
This chapter is organized as follows. In Section 3.2, we shortly outline the sym-
metric Subspace iteration technique to form a basis for the following discussions.
Section 3.3 provides the details of the developed technique. Namely, it provides
the mathematical details of the enrichment vector computations, projection and the
resulting form of the interaction problem. In Section 3.4, a connection between the
symmetric and nonsymmetric cases is established through a pre-multiplication ma-
trix and a rather simple convergence proof is provided. Section 3.5 provides some
practical considerations over the developed technique. Moderate sized academic test
cases are presented in Section 3.6. Some discussion and conclusions are provided in
Section 3.7.

3.2. Overview on Subspace iteration
Since the algorithm developed in this chapter is similar in nature to the Subspace
iteration technique, we would like to briefly outline the Subspace iteration technique
based on [63, 110] in order to form a basis for the following discussions [19].

Subspace iteration is useful in evaluating the dominant eigenvalues and eigen-
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vectors of large-order generalized linear eigenvalue problems. Transformation to a
standard linear eigenvalue problem format is not necessary and it can benefit from
the full sparsity of the stiffness and mass matrices of the problem at hand. The
process is iterative in nature and is mostly based on the power iteration method (or
the inverse iteration method) where, in this case, several vectors are simultaneously
iterated upon. It also uses the properties of the Rayleigh quotient in order to extract
the best approximates from a selected reduction basis.

The eigenvectors Φ of the generalized eigenvalue problem

KΦ = MΦΩ, (3.1)

span an n-dimensional space. In this case, (3.1) is simultaneously iterated, as in the
case of the inverse-iteration, with a set of p linearly independent vectors where p≪
n. Iterating over this p-dimensional subspace, the vectors are gradually improved so
that it will eventually span the pth-order subspace (associated with the p dominant
eigenvalues and eigenvectors) of the original n-dimensional space.

The iterative algorithm can be stated as follows. One starts from an initial block
basis, X0, which is of size n× p, and iterates over to improve the starting vectors in
the initial basis. In other words, it is a block generalization of the inverse iteration
method. The iteration equation is the same as the one in the inverse iteration but
one iterates over a block of vectors, namely,

KX̃k+1 = MXk. (3.2)

At this point one solves for X̃k+1 and form the interaction problem of the subspace
iteration, namely,

K̃ = X̃T
k+1KX̃k+1, (3.3)

M̃ = X̃T
k+1MX̃k+1, (3.4)

and subsequently solve the reduced eigenvalue problem of order p×p. This problem
is supposed to be small so that it can be solved with an eigenvalue solver that uses
direct solution techniques. One prominent candidate is the QR algorithm which
determines all the eigenvalues and eigenvectors of the reduced problem, namely,

K̃Vk+1 = M̃Vk+1Ω̃p. (3.5)

At the next step, the improved vectors are recovered by

Xk+1 = X̃k+1Vk+1. (3.6)

At the end of iteration steps, the convergence of the iterate vectors are checked
according to the error-measure criterion that is provided (assuming no rigid body
mode vectors are present) as

ǫ =
‖KXk − λkMXk‖

‖KXk‖
. (3.7)

As the number of iterations increase, the algorithm converges to the first p di-
mensional subspace of eigenvalues and eigenvectors. The steps of the algorithm is
summarized in Algorithm 3.1.
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Algorithm 3.1 Subspace iteration algorithm

Input matrices and tolerance, K, M and ǫ
Input initial block with a block size of p, X1

E = 1 and k = 0
while E ≥ ǫ do

// Inverse iteration and projection
Zk = MXk

X̃k+1 = K−1Zk

K̃ = X̃T
k+1KX̃k+1

M̃ = X̃T
k+1MX̃k+1

// Solution of the interaction problem and recovery
K̃Vk+1 = M̃Vk+1Ω̃p where Ω̃p = diag([λ1, λ2, . . . , λp])
Xk+1 = X̃k+1Vk+1

// Convergence check

E = max
k=1,...,p

( ‖KXk−λkMXk‖
‖KXk‖

)

end while

Output Xk+1 → Φp, Ω̃p → Ωp

3.3. Iterative reduced correction algorithm, IRCA
As pointed out in Section 3.2, Subspace iteration iterates over a block of vectors
simultaneously in order to come up with the eigenvalues and eigenvectors in the low
frequency band.

In this section, a similar algorithm will be presented for the solution of the
coupled eigenvalue problems arising in vibro-acoustic problems. The name of the
algorithm emerges from the idea that several correction and residual vectors are
computed by taking into account the mutual coupling effects between the coupling
physics. Our aim is to show that the correction vectors enriched with some residual
vectors help us to end up with a Subspace like correction algorithm. First, we briefly
outline the starting vectors in Section 3.3.1. Sections 3.3.2 and 3.3.3 provide the
details about the computations of enrichment vectors which are the main ingredients
of the projection subspace.

3.3.1. Modal interaction model and the starting basis

The starting basis used to initiate the complete iterative process is based on the
modal interaction model which is composed of two independent vector bases [48].
Namely, we start with the fully coupled problem representation presented in (2.29)
where we neglect the coupling between the structural and fluid domains to end with
the decoupled eigenvalue problems. To summarize,

• The first component of the complete basis is composed of the in vacuo modes
of the structural domain where the effect of the fluid domain is completely
neglected. These in vacuo structural modes are computed from the structural
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eigenvalue problem, namely,

(Ks − λsMs)φs = 0, (3.8)

• The second component of the basis is composed of the rigid wall acoustic
modes of the fluid domain. Similar to the above modes, the effect of the
structure is neglected. The rigid wall acoustic modes are also calculated by
solving the eigenvalue problem for the fluid domain alone, namely,

(Kf − λf Mf)φf = 0, (3.9)

In the current implementations, the algorithm does not extract the complete con-
verged set of modes of the structural and fluid domains in (3.8) and (3.9). Namely,
Lanczos eigenvalue extraction method generally requires, at least, 3n to 4n iterations
in order to build up a space that is rich enough to extract the first n eigenvectors
that are sought [63]. In order to reduce the computational cost, it is proposed to
perform a Lanczos run which consists a lower number of iterations than it would
be needed to find the exact converged modes. Namely, if n vectors are to be used
from either structural or fluid domains, then it is proposed to iterate n times which
is equal to the number of the selected vectors for the target domain. It should be
noted that these vectors are not the fully converged mode vectors of the Lanczos
eigenvalue extraction algorithm. In other words, they originate from the tridiago-
nal eigenvalue problem used at the end of the Lanczos run with a lower number of
iterations. These vectors are called the pseudo vectors in the rest of the discussion.

In the modal interaction model, the results of eigenvalue problems in (3.8)
and (3.9), φs and φf , are used for the representation of the main variables of the
fully coupled problem representation. Namely, the displacements, u, are formulated
in terms of a summation over the in vacuo structural modes,

u =

ns∑

m=1

φsηs = Φsηs. (3.10)

Similarly, the acoustic pressure variable of the fluid domain is represented as a
summation over the rigid wall acoustic normal modes,

p =

nf
∑

m=1

φf ηf = Φfηf . (3.11)

If the modal bases expressions from (3.10) and (3.11) are used to built up a pro-
jection space in a Rayleigh-Ritz sense, then the modal projection basis reads as,

Tm =

[
Φs 0

0 Φf

]

. (3.12)
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Projection of the coupled eigenvalue problem, (2.29), on this modal basis, Tm,
results in








[
Ωs −ΦT

s Ksf Φf

0 Ωf

]

︸ ︷︷ ︸

k̃

−λ̃

[
Is 0

ΦT
f KT

sf Φs If

]

︸ ︷︷ ︸

m̃








[
ũ

p̃

]

= 0 (3.13)

In order to find the starting vectors of the iterative process, we have to solve the
reduced eigenvalue problem in (3.13) and recover the physical vectors with the help
of a back transformation as follows

[
Φ̃s

Φ̃f

]

=

[
Φs 0

0 Φf

] [
ũ

p̃

]

(3.14)

It is important to emphasize that we start the iterative process outlined in this
Chapter by using a limited number of modes resulting from (3.14). Moreover, the
actual selection criteria will be outlined in Section 3.5.1 with more details. In
brief, by solving a reduced problem as given in (3.13), we compute a first rough
approximation of the coupled modes of our problem.

3.3.2. Correction vectors and their computations
Considering the coupled problem representation in (2.29) without the force terms,
one could separate the rows of that equation and write the equations as

(Ks − λMs)Cs = Ksfφf , (3.15)

(Kf − λMf )Cf = λKT
sfφs. (3.16)

Due to the non-symmetric nature of the problem, (3.15) and (3.16) are coupled
through the coupling blocks in the system mass and stiffness matrices. And these
two equations are the driving idea behind the correction computations. Namely,
to include the effect of mutually interacting physics as a force correction on its
counterpart. Following, with these force corrections, we would like to correct and
complement the missing information on the results of the modal interaction model
in an iterative sense.

One starts by using the initial vectors that were generated in Section 3.3.1.
Following, (3.15) and (3.16) are written, on a per mode basis, as

(
Ks − λ̃Ms

)
Cs = Ksf φ̃f , (3.17)

(
Kf − λ̃Mf

)
Cf = λ̃KT

sf φ̃s, (3.18)

where Cs and Cf represent the correction vectors. φ̃s and φ̃f represent the vectors
in (3.14), namely, in Φ̃s and Φ̃f , respectively. We can reasonably think that these
corrections might be good candidates to represent the missing counterparts of the
modal interaction model solutions. Namely, Cs could be thought of as a complement
for the φ̃f and Cf as a complement for the φ̃s. With this scheme, we intend to
improve the results of the modal interaction problem outlined in Section (3.3.1).
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There is an important computational point to note in (3.17) and (3.18). Namely,
the dynamic stiffness matrices given by (Ks− λ̃Ms) and (Kf − λ̃Mf) are frequency
dependent. And, subsequently, our intention is to update the frequencies at each
step of the iteration process. In correct mathematical terms, this practice will bring
the need to update dynamic stiffness matrices at each iteration which requires a
separate factorization on each iteration. This practice is definitely unacceptable
and will increase the computational costs unacceptably.

As mentioned above, the solution of equations (3.17) and (3.18) for each update
of the frequency array can rather be expensive and is not much of a practical use.
In order to partially circumvent this problem, we would like to use the expansion
of the correction vectors, Cs and Cf , in the space of the pseudo vectors Φs and
Φf . Although we know that the ingredients of the modal interaction model do not
satisfy the exact boundary conditions of the problem, they are the only available
information that we can use for the calculations that result from the problem physics
itself. Moreover, one step further was already taken where we used them to get to
some approximate coupled vectors through the use of the modal interaction problem
represented in (3.13). In addition to the expansion, we would like to also take into
account the modal truncation vectors that result from this expansion process [41].
Briefly speaking, we propose to use two vectors in order to represent the correction
vectors in either the structural or fluid domains. The details of these two approaches
are outlined next.

Expansion in the space of pseudo vectors

We can write the correction equations, (3.15) or (3.16), in the form of a general
linear system, namely,

(K− λM)C = f . (3.19)

As mentioned above, we represent the correction vector as a summation over either
the in vacuo structural modes or the rigid wall acoustic modes, for the structural
and the fluid domains, respectively. We can write the structural and fluid correction
vectors as,

Cs =

ns∑

m=1

Φs,mηm = Φsηs (3.20a)

Cf =

nf∑

m=1

Φf,mηm = Φfηf (3.20b)

respectively.

In (3.20a) and (3.20b), ns and nf represent the number of pseudo vectors used
in the expansion. We know that these pseudo vectors blocks, Φs and Φf , are
K- and M-orthogonal on the uncoupled system mass and stiffness matrices of the
corresponding physics. This fact makes the computations cheaper. Using the or-
thogonality properties of the pseudo vectors, the expansion equation for one mode
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reads as,

(λ⋆,m − λ) ηm = ΦT
⋆,mf , (3.21a)

ηm =
ΦT

⋆,mf

(λ⋆,m − λ)
(3.21b)

where λ⋆,m and Φ⋆,m represents the eigenvalues and the pseudo vectors found by
either (3.8) or (3.9). In brief, the expansion is computed for the structural and
acoustic domains independently in order to represent the correction vector, C, in
this space. Eventually, the correction vector is represented in the space of the pseudo
vectors as,

Cexp =

n∑

m=1

Φ⋆,m

ΦT
⋆,mf

(λ⋆,m − λ)
(3.22)

where, in (3.22), n represents the column size of the vector spaces Φs or Φf .

Modal truncation vectors

Since the pseudo vectors do not satisfy the interface conditions of the coupled vibro-
acoustic problem, in general, it might be necessary to keep a large number of vectors
in the expansion space [146, 152] which hinders the application of the modal inter-
action model to a large class of problems. This brings the need to find extra sources
for the improvement of the convergence of these kinds of methods.

At this point, we propose to add the residual vectors or Modal Truncation Vectors
(MTVs) associated to this forcing function [41, 42]. In order to shortly explain the
theory of modal truncation idea, we will start with a general undamped forced
response problem. Following the common notation used, we can write,

Mü + Ku = f . (3.23)

Following the common projection concepts of the model reduction literature where
the equation is expanded in the available modes (or the pseudo mode vectors) of
the system, namely, u = Φηm, one is able to write in block format,

ΦTMΦη̈ + ΦTKΦη = ΦTf . (3.24)

The MTV concept considers the omitted part of the spatial distribution of the
force, namely, the part that is not represented in the projected forcing term ΦTf in
(3.24). We advise the reader to consult the above references on MTVs for a further
discussion and the derivation of the equations therein. Following the mathematical
derivations used in [41], one could easily write the omitted part of the applied force
as

ft = f −MΦΦTf . (3.25)

where ft represents the truncated part of projected force vector, ΦTf . In other
words, the force is projected onto the orthogonal complement of the pseudo vector
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set. Eventually, these projected forces are used to produce extra static residual
enrichment vectors by solving,

KCmtv = ft, (3.26)

where Cmtv represents the static residual contribution of the truncated part of the
projected force, ΦTf .

Intermediate summary and remarks on the correction equations

As a recap, instead of solving the actual correction equations (3.15) or (3.16), we
intend to express the correction vectors, Cs or Cf , as a combination of two vectors.
Namely,

• The first vector is the vector found with the expansion relation, (3.22),

• The second vector is computed as a residual force correction from (3.26).

Instead of using the previously outlined process, we can also use iterative solution
techniques to solve the correction equations, an efficient solution scheme was also
developed and the related details can be found in [150]. Another important obser-
vation is on the computation of the MTVs with (3.26). The residual vectors, Cmtv,
are computed on a per physics basis and we already performed the factorization of
the system matrices for the initial Lanczos runs1. Therefore, we can use the avail-
able factorization information and only perform solutions to compute the residual
vectors.

3.3.3. Enrichment with residual vectors
We outlined the modal interaction model in Section 3.3.1 from which we computed
the initial vectors to start our iterative process. It is important to remember that
these starting vectors are only first rough approximations of the coupled system
modes. Although we got one step closer to the full coupled system modes with the
modal interaction model, especially, for strongly coupled problems, we still can not
find accurate representations of the actual coupled system modes. In other words,
the residuals resulting from the use of these initial vectors, Φ̃s and Φ̃f , will still be
large. On the other hand, the static response of these residual vectors can provide
some extra enrichment vectors when integrated into our projection space. Similar
ideas were also proposed before by several authors for enrichment purposes [24, 153,
144].

However, in all the above cited references, they used the uncoupled residuals in
their implementations. Namely, the residual vectors were computed for the struc-
tural and acoustic domains independently. This means that the coupling term,
Ksf , inside the coupled stiffness matrix were not used during the residual vector
computations. At this point, we propose to use a slightly improved residual vector
computation which also takes into account the coupling term, Ksf , with a little
extra cost due to the special topology of the coupled system stiffness matrix. By

1For extracting Φs and Φf
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investigating the coupled nonsymmetric stiffness matrix, Kc from (2.29), we can
observe the block zero in the lower left corner, with this property in the mind, it is
possible to write the coupled residual relation in blocks as follows:

[
Ks −Ksf

0 Kf

] [
XR,s

XR,f

]

=

[
Rs

Rf

]

, (3.27)

where, for a given block of approximate eigenvalues and eigenvectors, (Ω̃, Φ̃), the
block residuals for the structural and acoustic domains are written as follows:

Rs = KsΦ̃s −MsΦ̃sΩ̃−Ksf Φ̃f (3.28a)

Rf = Kf Φ̃f −Mf Φ̃f Ω̃−KT
sf Φ̃sΩ̃ (3.28b)

where Φ̃s and Φ̃f represent the structural and acoustic partitions of the approximate
vector block Φ̃.

Returning to (3.27), due to the large zero block in the second row, the solution
of this system can be performed in an efficient manner by using the independent
factorizations of the structural and acoustic stiffness matrices, namely,

KsXR,s −Ksf XR,f = Rs, (3.29a)

KfXR,f = Rf , (3.29b)

The only addition cost over the above mentioned references is the matrix vector
multiplication performed for Ksf XR,f and an addition to find the modified right
hand side in (3.29a) during the solution process. If a singularity exists on the fluid
side, then a pseudo inverse should be employed in the solutions for the fluid side,
namely, K+

f [63, 49]. Eventually, after performing the solutions for the residual
vectors in (3.29a) and (3.29b), XR,s and XR,f are the vector blocks that can be
integrated in the projection basis.

3.3.4. Projection space and the interaction problem
In sections 3.3.2 and 3.3.3, we outlined the main sources of the vectors that build
up the projection space, namely, the correction vector expansions along with MTVs
and the residual vector components. In this section, we are going to briefly outline
the projection space and the projection operations performed in order to end up
with a reduced system representation or the so called the interaction problem [63].

Projection matrix

The coupled problem representation was given in (2.29) which results in real eigen-
values and vectors. This fact was proven in [161]. Therein, the authors used the
relation between the off-diagonal coupling blocks in order to prove that the prob-
lem reveals real eigenvalues and eigenvectors. Namely, Mfs = ρKT

sf . Following the
same reasoning provided therein and projecting the problem onto a block diagonal
basis results in the same kind of relations for the reduced problem. As a result,
we can conclude that we are guaranteed to end up with a real eigenspace after the
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projection on a block diagonal basis. The general form of the block diagonal basis,
T, can be written as,

T =

[
Ψs 0

0 Ψf

]

(3.30)

Ψs and Ψf are mainly built with the enrichment vectors computed in Sections 3.3.1,
3.3.2 and 3.3.3, namely

Ψs =
[
Φ̃s Cexp,s Cmtv,s XR,s

]
, (3.31a)

Ψf =
[
Φ̃f Cexp,f Cmtv,f XR,f

]
. (3.31b)

These blocks, Ψs and Ψf , are repeatedly orthogonalized independently to avoid
numerical problems due to the appearance of collinear vectors. During the iterations,
some mode vectors converge in the earlier steps of the iteration procedure. In case
some converged modes are detected during the iteration process, correction vectors
are not computed for the converged vectors anymore.

Projection and the interaction problem

Considering a system without external excitation and projecting (2.29) on (3.30)
results in,

[
M̂s 0

M̂fs M̂f

]

︸ ︷︷ ︸

m̂

[
ˆ̈u
ˆ̈p

]

+

[
K̂s K̂sf

0 K̂f

]

︸ ︷︷ ︸

k̂

[
û

p̂

]

=

[
0

0

]

, (3.32)

where

M̂s = Ψs
TMsΨs, M̂f = Ψf

TMf Ψf , M̂fs = Ψf
TKT

sf Ψs, (3.33a)

K̂s = Ψs
TKf Ψf , K̂f = Ψf

TKf Ψf , K̂sf = −Ψs
TKsf Ψf . (3.33b)

From (3.32), the reduced eigenvalue problem or the interaction problem reads as:

(

k̂− λ̂m̂
)

φ̂ = 0 (3.34)

Later on, the recovery for the physical eigenvectors is accomplished with the back
transformation

Φ̃ = TΦ̂, Φ̂ = [φ̂1, φ̂2, ..., φ̂r] (3.35)

where r represents the size of the interaction problem.

3.3.5. Energy based convergence check
Structural error measures for the convergence check of certain modes are well devel-
oped and documented in the literature [17] and [15]. Error check on mode vectors
mentioned in [17] is summarized here for convenience. Namely, if φ̃ and λ̃s are
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one of the approximate eigenpairs of a structural system, the relative error measure
check is given by,

ǫ =
‖Ksφ̃− λ̃sMsφ̃‖

‖Ksφ̃‖
, (3.36)

where Ks and Ms are the structural stiffness and mass matrices, respectively. For
convergence, ǫ should be small, on the order of 10−8 or 10−9. Physically, this
makes sense since nominator in (3.36) gives the residual of the force and this force is
expected to be small in comparison to elastic forces that are created by the displace-
ment vector given in the nominator in the same equation. However, direct applica-
tion of this equation to a coupled vibro-acoustic problem will not result in sensible
values for the values of the convergence indicator ǫ. The reason is that (2.29) is com-
posed of two physics of very different orders, namely, the structural displacements,
u and fluid pressures, p. In applications, fluid pressures, p, are orders of smaller in
magnitude in comparison to that of the structural displacements, u.2 Mixing and
summing up of these terms in a common Euclidean norm as given in (3.36) results in
operations on expressions of very different order. This is not also a physically sound
approach because operations on a relatively heavier domain, namely, the structure,
are being mixed with a relatively lighter domain, namely, the fluid.

A next reasonable approach is to search for a convergence check on a per physics
basis. It is mentioned in the literature that the use of the Euclidean norm neither
takes into account the different scaling between different degrees of freedom, namely,
the translations and rotations for a structural problem, nor the differences on the
scaling of the participating physics. In this context, the latter is exactly the reason
of the problem for this type of application. Thus, it is proposed in [15, 14] to use
a strain energy norm or K-norm instead. For any arbitrary vector, x, this norm is
defined as

‖x‖K =
√
xTKx. (3.37)

It is also possible to define an M-norm as well.
The proposed approach here is inline with the ideas discussed in [15, 85]. Namely,

the use of the strain energy norm of the residuals per physics is suggested. The static
responses of the residuals might be computed over a general problem with a given
stiffness matrix K as

qR = K−1R, (3.38)

where qR represents the residual vector generated with the considered approximate
vector. In the context of a structural dynamics problem, the residual vector, R, is
written as,

R = Ksφ̃− λ̃Msφ̃, (3.39)

2Structural displacement vector, u, has also different components, such as translations and rota-
tions which might have different scaling in itself.
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where (λ̃, φ̃) together represent an approximate eigenpair. Convergence is achieved
if the ratio of the relative strain energy of the residual vector to the strain energy
of the corresponding vector, φ̃,

ǫsen =
‖qR‖K

‖φ̃‖K

, (3.40)

is below a certain tolerance limit ǫtol. Subscript sen in (3.40) represents the strain
energy. This error could be computed efficiently since the strain energy is repre-
sented by some matrix vector products, namely,

‖qR‖K =
√

qT
RKqR

(3.38)≡
√

qT
RKK−1R ≡

√

qT
RR. (3.41)

In the discussion here, φ̃ is one of the vectors present in the recovered vector block
after the solution of the interaction problem, namely, (3.35). Moreover, by use of
the projection space, T, and the orthogonality properties3 between the results of
the interaction problem, we can prove that the denominator in (3.40) can directly

be written as λ̂ which is a direct result of the interaction problem.

The briefly outlined scheme can also be used in a mono-physical problem. How-
ever, in the case of a coupled vibro-acoustic problem, if the approximate mode
vectors are computed through the interaction problem as given in (3.32) and, sub-
sequently, if we separate these vectors into structural and acoustic parts, they do
not satisfy the orthogonality relations with respect to the mass and stiffness matri-
ces of the structural and fluid domains anymore. Therefore, another approach that
considers the different scaling in different domains4 of the problem is necessary.
One possible solution to this challenge is to define the strain energy norms for the
structural and fluid parts separately. Namely,

ǫk
s,sen =

‖qk
R,s‖Ks

‖φ̃k
s‖Ks

, (3.42a)

ǫk
f,sen =

‖qk
R,f‖Kf

‖φ̃k
f‖Kf

. (3.42b)

(3.42a) represents the strain energy error measure for the structural part and (3.42b)
represents the strain energy error measure for the fluid part, respectively. In both (3.42a)
and (3.42b), k represents the mode number for which the partial error measures are
computed on.5 Subscripts s and f represent that these ratios are computed for
structural and fluid domains, respectively. Similarly, Ks and Kf represent the

structural and fluid stiffness matrices, respectively. φ̃s and φ̃f are the structural
and fluid parts of the recovered vectors computed by using the recovery process after
the interaction problem solution, namely, by (3.35).

3Stiffness and mass orthogonality between the vectors
4Namely, over the structural and acoustic dofs
5In the following discussions, k will be dropped for simplicity.
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By using (3.38) and (3.41), we can write (3.42a) and (3.42b) as follows:

ǫs,sen =
qR,sRs

φ̃T
s Ksφ̃s

, (3.43a)

ǫf,sen =
qR,fRf

φ̃T
f Kf φ̃f

. (3.43b)

In Section 3.3.3, we outlined the computation of the residual vectors as an extra
source of enrichment. These residuals can directly be used for the convergence check
calculations. Namely, XR,s and XR,f can directly be used in the convergence checks
by replacing them with qR,s and qR,f , respectively. In conclusion, the residual vec-
tors are used for two purposes. Namely, the first purpose is to enrich the projection
space for the subsequent iterations. And the second purpose is to perform an energy
based convergence check for mode vectors on a per physics basis. Eventually, the er-
ror measure estimation for the complete mode vector is performed with a geometric
mean which uses the strain energy norms, ǫs,sen and ǫf,sen [85], namely,

ǫ =
√

ǫs,senǫf,sen, (3.44)

which is computed for the mode vectors under consideration. Partial error norms
computed on the coupling domains, namely, (3.43a) and (3.43b), can also be of
different orders and the use of a geometric mean facilitates an efficient means to
average these partial error measures. If ǫ is smaller than a given tolerance then the
mode under consideration is marked as converged and the correction vectors for this
specific mode vector are not computed anymore. In the numerical tests performed,
the convergence tolerance was set to 10−8 which is referred to as ǫirca from now on.

3.4. Notes on coupled residual, convergence and re-

lation with Krylov vectors
The convergence of Subspace iteration is outlined in Appendix C.2 for symmetric
systems, but our problem is a generalized eigenvalue problem with nonsymmetric
matrices to which these proofs do not apply directly. However, several transforma-
tion matrices were presented before [52, 53] where a symmetric representation can
be constructed for vibro-acoustic problems. In [52], the author proposed two pre-
multiplication and two post-multiplication matrices from which symmetric systems
can be built. The transformation matrices and the resulting system matrices are
presented in detail in Appendix B.

As presented in Appendix B, the systems either end up with fully populated
symmetric stiffness or mass matrices in closed form and do not have a direct practical
use for numerical applications. However, they are still useful and can provide us
with a tool that we can use to show the relations between these residual vectors
and the Krylov vectors. Moreover, since there is a close relation and connection
with Krylov vectors used in Lanczos iterations, we believe that these vectors also
improve the convergence rate of the technique outlined in this Chapter. Namely, by
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using the pre-multiplication matrices presented in Appendix B here, namely as P,
the generalized eigenvalue problem reads as

PKcφ = λPMcφ −→ P (Kcφ = λMcφ) (3.45)

where Kc and Mc are the nonsymmetric system matrices of the original generalized
eigenvalue problem from (2.29).

Considering the inverse iteration relation for (3.45), we can realize that the
premultiplier matrix, P, does not have any effect on the resulting iteration vectors.
Mathematically, the inverse iteration step for the system in (3.45) is equivalent to

Kcφk+1 = Mcφk (3.46)

This implicitly means that, even if we use (3.46) with nonsymmetric system
matrices, we are still iterating in the same space of the vectors that would eventually
be found with the symmetric representation in (3.45).

As outlined in Section 3.3.3, one of the ingredients of the projection space is the
static response of the residual vectors from the previous step, namely,

qR = K−1
c

(

Kcφ̃− λ̂Mcφ̃
)

︸ ︷︷ ︸

R

≡
(

φ̃− λ̂K−1
c Mcφ̃

)

(3.47)

where λ̂ and φ̃ originate from the interaction problem with the recovery step in (3.35).

And, R is the residual vector for the eigenpair (λ̂, φ̃).
One can observe from (3.47) that qR has two components. Namely,

• The first component is φ̃, the direct result of the interaction problem,

• The second one is K−1
c Mcφ̃ multiplied with λ̂. This component lives in the

same space as the inverse iteration result for the next step as mentioned in
Algorithm 3.1. The results of the inverse iteration step are also known as the
Krylov vectors. Therefore, we can conclude that the coupled residual response
found with (3.47) implicitly includes components of Krylov vectors scaled by

λ̂. Besides, it is shown in Appendix C.2 that the convergence is mainly based
on the inverse iteration operation with which the contribution of the higher
order modes vanish in the limit. This fact is based on the expansion of the
vectors in the space of eigenvectors. Similarly, for the technique discussed
here, we are performing a similar iteration but the ingredients are not the
Krylov vectors directly but has components of Krylov vectors. Namely, they
are a linear combination of the results of the interaction problem, φ̃, and the
Krylov vectors, K−1

c Mcφ̃ scaled by λ̂. Due to their close relation to Krylov
vectors, we can expect an improvement in the convergence of the method by
using the above outlined coupled residual vectors in the projection matrix T.

Briefly, by using the coupled residual response, we are including vector components
which have close relations to real Krylov vectors. Moreover, we are iterating in a
richer space in addition to the expansion vectors and the modal truncation vectors.
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3.5. Additional practical considerations
3.5.1. Remarks on the target mode count and basis size
In order to start the iterations, we proposed to use the results of the modal inter-
action model. Namely, we started the iterative process with two sets of decoupled
vectors from the structural and fluid domains, respectively. For this initial step,
we advise to use an equal number of mode vectors from the structural and acoustic
domains, respectively. However, this is not strictly necessary since we can also select
the number of vectors to start the iterations with a simple criterion as follows:

n =
min(ns, nf )

c
. (3.48)

In (3.48), n represents the number of improved vectors to be used at the end of
the modal interaction step, namely, the number of recovered vectors used in (3.14).
Besides, ns represents the number of vectors computed for the structural domain
and, similarly, nf represent the number of vectors computed for the acoustic domain.
c is an integer number which independently sets the number of target modes to
be computed in the low frequency band for the iterative process. Our numerical
experience and tests show that we can select c as 3. This approach physically
makes sense due to the following reason which is closely related to the convergence
check and the number of vectors that converge during the iterations. Namely, as
the iterations advance, we start to detect convergence in mode vectors in the low
frequency band. Subsequently, we do not solve for the correction vectors for these
converged mode vectors anymore. The implication of this implementation is that
the number of the vectors in the projection space, T, decreases as the iterations
advance. In other words, we decrease the number of enrichment vectors that we use
to build the projection space. This is mainly performed to decrease the numerical
cost of the operations. Therefore, we can not expect convergence to a high number
of modes and we have to put a practical upper limit on the number of vectors that
we are searching in the low frequency band. This means that, although we start the
iterative process with a high number of vectors, in the course of the iterations, we
intend to decrease the number of vectors used to build up the projection space, T.

3.5.2. Convergence acceleration: use of buffer vectors
The convergence rate of Subspace Iteration depends on λi/λn+1 [63, 18], where n is
target mode count computed heuristically with (3.48). It is worth noting that, here,
the target mode count, n, replaces the target block size, p, of the original Subspace
Iteration6. Inline with [89], we propose to integrate some buffer vectors into the
reduction space, T, in order to accelerate the convergence slightly. Number of
buffer vectors is selected as 8 according to the criterion adapted from [89]. Namely,
a total number of iteration vectors of min(2p, p + 8) should be selected according
to the original criterion. However, in our technique, we modified this criterion to
decrease the additional number of improved vectors, Φ̃s and Φ̃f , which are directly
included in the projection space, T, (3.30).

6Namely, see Section 3.2
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In the light of the practical considerations and the previous theoretical discus-
sions, the complete set of steps is summarized in Algorithm 3.2.

Algorithm 3.2 Iterative reduced correction algorithm, Irca

1: Input ns and nf ⊲ pseudo vector sizes for structural and acoustic domains
2: Input convergence tolerance, ǫirca = 10−8

3: Set number of buffer vectors, b = 8
4: (Ks − λsMs)φs = 0 ⊲ Extract ns pseudo vectors, Φs

5: (Kf − λf Mf)φf = 0 ⊲ Extract nf pseudo vectors, Φf

6: Tm =

[
Φs 0

0 Φf

]

⊲ Create the initial projection space, Tm

7: k̃ = TT
mKcTm, m̃ = TT

mMcTm ⊲ Project the problem on Tm to get (3.13)
8: k̃Φ̃ = λ̃m̃Φ̃ ⊲ Solve the modal interaction problem

9: n =
min(ns,nf )

c ⊲ Compute the target mode count for c = 3

10:

[
Φ̃s

Φ̃f

]

=

[
Φs 0

0 Φf

] [
ũ

p̃

]

⊲ Recover the first n physical vectors

11: Rs = KsΦ̃s −MsΦ̃sΩ̃−Ksf Φ̃f ⊲ Compute the residuals for domains
12: Rf = Kf Φ̃f −Mf Φ̃f Ω̃−KT

sf Φ̃sΩ̃ ⊲ Ω̃ = diag(λ̃)

13:

[
XR,s

XR,f

]

=

[
Ks −Ksf

0 Kf

]−1 [
Rs

Rf

]

⊲ Compute the static residual responses

14: while ǫ > ǫirca do ⊲ Loop until convergence
15: Capp

s ≈ [Cexp,s Cmtv,s] ⊲ Compute correction approximations
16: C

app
f ≈ [Cexp,f Cmtv,f ]

17: Ψs = [Φ̃s Capp
s XR,s] ⊲ Build the projection space and orthogonalize

18: Ψf = [Φ̃f C
app
f XR,f ]

19: T =

[
Ψs 0

0 Ψf

]

20: k̃ = TTKcT, m̃ = TTMcT ⊲ Project the problem on T

21: k̃Φ̃ = λ̃m̃Φ̃ ⊲ Solve the interaction problem

22:

[
Φ̃s

Φ̃f

]

=

[
Ψs 0

0 Ψf

] [
Φ̃s

Φ̃f

]

⊲ Recover (n + b) vectors

23: Rs = KsΦ̃s −MsΦ̃sΩ̃−Ksf Φ̃f ⊲ Compute the residuals for domains
24: Rf = KfΦ̃f −Mf Φ̃f Ω̃−KT

sf Φ̃sΩ̃

25:

[
XR,s

XR,f

]

=

[
Ks −Ksf

0 Kf

]−1 [
Rs

Rf

]

⊲ Compute the residual responses

26: Check convergence by using (3.43a), (3.43b) and (3.44)
27: if Convergence achieved on some vectors then

28: Do not compute the correction vectors, in Capp
s and C

app
f , for these

29: else

30: Compute correction vectors for the rest of the target vectors
31: end if

32: end while
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parameter value
dimensions 0.9m×0.7m×0.4 m

shell thickness 0.002 m
E-modulus 71 GPa

Poisson’s ratio 0.3
shell density 2800 kg/m3

structural dofs 9132
fluid dofs 34776
total dofs 43908

x

y

z

0.9 m

0.7 m

0.4 m

Figure 3.1: Test model, parameters(left) and the meshed model with dimensions(right)

3.6. Numerical case studies
To test the ideas that were discussed in the theoretical analysis, a 3-dimensional
cavity model adapted from [152] was investigated. The finite element models were
generated in the commercial FE package ANSYS[6] which has the capability to model
the fluid-structure interaction and the associated coupling conditions. For numerical
tests, shell elements, SHELL181 in ANSYS, are coupled to three dimensional fluid
elements, FLUID30 of ANSYS. For this problem, the edges of the coupling elastic
shell surface(the largest face towards the reader in Figure 3.1) is simply supported to
simulate a more flexible structural domain in order to increase the level of coupling.
It is important to note that no prescribed pressure was imposed on the surfaces
of the domain. The coupled non-symmetric system stiffness and mass matrices
are then exported from ANSYS binary result files by the use of the interface which
is developed in C++ [145]. Subsequently, all the computations were performed in
MATLAB. Numerical tests were performed with two different fluids which fill the
cavity. The first fluid that is used in the tests is air and the second fluid used is
water. The density of air was selected as 1.215 kg/m3 along with a speed of sound
of 343 m/s. Density and the speed of sound for water were selected as 1000 kg/m3

and 1500 m/s, respectively.
For each of these different fluid configurations, the following results are provided

separately:

• Relative frequency errors computed with respect to the results of the commer-
cial FE code ANSYS, namely,

ǫω =
(ωIRCA − ωANSY S)

ωANSY S
(3.49)
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Figure 3.2: Errors on frequencies and eigenvectors, air filled cavity

• Accuracy measures of the computed eigenvectors with respect to the results
computed with ANSYS. In these comparisons, we intend to use the Modal
Assurance Criterion, MAC [47]. Namely, an error measure is computed by
using

ǫφ = 1−MAC ≡ 1− (φIRCA
TφANSY S)2

(φIRCA
TφIRCA)(φANSY S

TφANSY S)
(3.50)

where φIRCA represents the mode vectors computed by IRCA and, similarly,
φANSY S represents the mode vectors computed by ANSYS.

• The convergence indicators computed with (3.43a), (3.43b) and (3.44),

• The change in the column size of T, namely, the projection matrix,

3.6.1. Test case 1, air filled cavity
Generally, if air is used as the fluid filling the cavity, this practice results in a
weak coupling due to the relatively low stiffness of air in comparison to heavier
fluids like water. For these kinds of weakly coupled problems, a modal interaction
model might provide fair accuracy for the coupled system response for a very limited
number of low frequency modes. However, our aim is to show the performance
of the developed technique as an eigenvalue solver. Therefore, we investigate the
convergence properties and the accuracy of the method for different number of input
vectors. As mentioned in Section 3.3.1, these vectors result from the solution of the
two decoupled eigenvalue problems, namely, provided in (3.8) and (3.9).

The number of input vectors, namely, the in vacuo structural modes and the
ridig wall cavity modes were selected as 30 for this case. The number of target
modes computed with (3.48) is 10 for this test case.
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Figure 3.3: Convergence norms and change in basis size, air filled cavity

Figures 3.2a and 3.2b show the frequency and eigenvector errors with respect
to the result computed by the commercial code ANSYS. In these comparisons, the
first frequency is numerically always 0 due to the singularity of the acoustic stiffness
matrix therefore the comparisons start with the second mode. The error levels
for the selected target mode numbers are significantly small which shows that the
accuracy of the tested algorithm is quite acceptable for practical applications.

Figure 3.3a shows the error norms and their change during the iterations. The
bold green line in Figure 3.3a represent the selected convergence tolerance for the
numerical tests, namely, ǫirca = 1e− 8. Figure 3.3b show the change in the column
size of the projection basis, T, during the iterations.

3.6.2. Test case 2, water filled cavity
Similar to the air filled cavity case outlined above, results are also presented for the
cavity filled with water. Besides, the reason to use water in our tests is intentional.
Namely, water has a much higher density than air which results in an increased
coupling between the structure and the fluid. With this selection, the developed
method is also tested for strongly coupled problems.

For this case, we started with 50 initial vectors from the structural and fluid
domains. With our heuristic target mode selection criteria, (3.48), we aim to get
convergence on 16 modes. Similar to the previous case, we present the results for
the errors on the frequencies and on the eigenvectors, respectively, along with some
convergence related properties.

Figure 3.4a shows the relative errors of the computed frequencies which are again
significantly small. Figure 3.4b shows the error on the computed eigenvectors. Over-
all, it is important to note that the error levels shown in Figures 3.4a and 3.4b are
significantly small. Investigating Figure 3.5a, we can again observe the convergent
behavior of the method. However, in this case, the initial basis is not rich enough
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Figure 3.4: Errors on frequencies and eigenvectors, water filled cavity

to represent the coupling between the domains and it requires more iterations for
the algorithm to get convergence to the selected number of low frequency modes.
In comparison to the air filled cavity case, the total number of iterations increased
from 2 to 6. Basis size evaluation in Figure 3.5b is also different from that of the
air case. Namely, at first, the size of the basis increased in both of the tests cases.
But, for this test case, as we iterate, it started to decrease since corrections for the
converged mode vectors are not computed. This is also inline with the expected
behaviour.

3.7. Conclusions and discussion
In this chapter, we proposed an iterative algorithm, similar to Subspace iteration
technique, for the solution of the vibro-acoustic eigenvalue problems. Widely avail-
able practice in the literature is to use the uncoupled mode vectors from the coupling
domains and to project the problem on this basis in order to end up with a reduced
problem to approximate the coupled vectors. However, these uncoupled vectors do
not satisfy the boundary conditions on the coupling interfaces. Therefore, one gen-
erally needs a large set of these initial uncoupled vectors in the projection operations
to end up with a fair accuracy on the coupled results.

To cure these problems with the uncoupled mode vectors,

• We proposed to also start the iterations with the uncoupled(in-vacuo) struc-
tural and acoustic mode vectors. But, at each iteration, we improved the
starting vectors in a Rayleigh-Ritz sense similar to what is performed in Sub-
space iterations. In these iterations, some correction vectors were also used
which approximate the forced responses of the coupling effects from the other
domain. In addition, some static residual vectors were also used for the en-
richment of the projection space.
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Figure 3.5: Convergence norms and change in basis size, water filled cavity

• Based on a scaling matrix presented in [52] which helps to convert the original
nonsymmetric problem into a symmetric one, we show that the static response
of the coupled residuals implicitly include components of the Krylov vectors.
With our numerical experience, we have verified that the residuals vectors
improve the convergence of the technique significantly.

Although the technique is attractive and provides results with a good accuracy,
Subspace iteration like techniques discard the information generated in the previous
iteration steps and, therefore, the computational cost of the operations is higher
in comparison to Lanczos type Krylov Subspace based methods [63]. It is also
possible to come up with a iteration scheme that uses symmetric matrices by using
the transformation matrix provided in [52]. We have also investigated this option
and found out that a robust and symmetric Subspace iteration scheme can be built
which was not reported here. However, we have realized that efficient Lanczos
iterations (see next chapter) are possible and we did not investigate further Subspace
alike options. Therefore, a logical follow up and extension of this research will be
presented in the next chapter. Namely, chapter 4 addresses the above mentioned
deficiencies of the Subspace iteration technique and details an efficient iteration
scheme.



4
vibro-Lanczos, a Symmetric

Eigenvalue Solver for

Vibro-Acoustic Problems

In Chapter 3, we detailed the development of a Subspace-like eigenvalue solver for
vibro-acoustic problems. Subsequently, we also provided proofs on the convergence of
the method based on some transformation matrices provided in the literature[52]. By
using these transformation matrices, it is possible to write the original nonsymmetric
coupled system matrices in a symmetric format. This chapter discusses the develop-
ment of a symmetric eigenvalue solver for coupled vibroacoustic eigenvalue problems
based on the above mentioned transformation matrices. Therefore, the contents of
the chapter can be considered as an improvement over the results in Chapter 3.
Namely, original nonsymmetric system matrices are replaced by their symmetric
equivalents. And the resulting matrices are efficiently used in order to result in a
truly symmetric eigenvalue solver for the originally nonsymmetric eigenvalue prob-
lem. In order to further improve the numerical efficiency, a partial orthogonalization
scheme is also integrated during the numerical implementation. Eventually, the pro-
posed solver is compared with the well known nonsymmetric Lanczos and Arnoldi
methods. Results presented in this chapter were published in [151].

4.1. Introduction
Efficient solution of eigenvalue problems for vibro-acoustic systems is still an im-
portant problem for industrial design challenges. In this chapter, we are going to
consider the application of the Lanczos method on the nonsymmetric generalized
eigenvalue problem which emerges from the coupled vibro-acoustic systems as pre-
sented in Chapter 2, namely,

([
Ks −Ksf

0 Kf

]

− λ

[
Ms 0

KT
sf Mf

]) [
us

pf

]

=

[
0

0

]

−→ (K− λM)φ = 0 (4.1)

1 The ultimate goal in solving (4.1) is to find a large number of eigenvalues and eigen-
vectors efficiently for challenging industrial-sized problems. In (4.1), K and M are
large sparse matrices. In the current context, the computational challenge originates,

1Writing (4.1), the subscript c used in Kc and Mc defined in Chapter 2 is be dropped for conve-
nience.
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basically, from two important points. Firstly, in the classical displacement-pressure
(u − p) formulation, the operator matrices of the original problem represented in
(4.1), namely K and M are nonsymmetric [105]. Therefore, one has to resort to
solution methods for nonsymmetric systems. Secondly, the nature of the problem
necessitates the use of two different physics, namely, a structural domain is coupled
to a fluid domain over an interfacing surface. With the introduced coupling, the
resulting discretized system matrices include terms which are orders of magnitude
different resulting in ill-conditioned problems. In most of the practical engineering
applications, these scaling differences put severe restrictions on the use of iterative
solution techniques which could circumvent the factorization costs of large problems.

Prominent alternatives for the solution of the original nonsymmetric eigenvalue
problem are Arnoldi [10] and nonsymmetric Lanczos methods [136]. Moreover, a
specific implementation of the two-sided nonsymmetric Lanczos method for vibro-
acoustic problems was investigated in [125]. Arnoldi can be classified as an or-
thogonal projection method whereas nonsymmetric Lanczos method is an oblique
projection method where orthogonal projection methods are found to be performing
better from a conditioning point of view [38]. Following the line of nonsymmetric
solvers, a useful computational performance overview on the comparison of the non-
symmetric eigenvalue solvers for fluid-structure interaction problems is provided
in [9]. Basically, Arnoldi type methods suffer from the fact that, as the size of the
Krylov subspace grows, orthogonalization costs increase. In order to circumvent this
problem, several restarting schemes were proposed [92]. The main problem encoun-
tered in the nonsymmetric Lanczos methods is the possibility of break-down during
the biorthogonalization of the left and right Krylov basis vectors. Moreover, due to
the generation of two subspaces, namely, the left and right Krylov subspaces, these
methods are more expensive in comparison to the one-sided Arnoldi type methods.
Approaches to cure these break-down problems were proposed in [56]. It is worth
noting that symmetric methods do not suffer from the above mentioned problems
and a well known theory on error bound computations exists [38].

Some symmetric alternatives for the (u−p) formulation were proposed in the lit-
erature, namely, symmetrization techniques such as those proposed in [84, 52] exist.
However, direct use of these approaches is not practical due the high computational
cost of the operations with the resulting matrices. Other symmetric alternatives
which use the velocity potential as the unknown variable for the fluid part were
also developed [46, 115]. Another promising alternative leading to a symmetric
eigenvalue problem uses both the pressure and the displacement potentials as un-
knowns [105]. Although this formulation doubles the total degrees of freedom over
the fluid domain, the symmetric nature is still advantageous from a computational
perspective. This approach has already been integrated in commercial codes [147].

The aim of this chapter is to outline and detail a new symmetric Lanczos
type solution technique for vibro-acoustic eigenresponses which uses the common
displacement-pressure (u− p) formulation. This method makes use of the transfor-
mation matrices which is proposed and formulated in [52]. Implicitly, all the itera-
tions are completely performed with symmetric matrices. However, these symmetric
matrices are never formed and used explicitly. In this scheme, Lanczos process gen-
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erates the same iterates as the well known Arnoldi algorithm but the numerical
operations are arranged in a way that a reduced symmetric tridiagonal is formed.

We will consider completely closed volumes which are coupled to elastic struc-
tures through a coupling surface. These kinds of systems reveal a zero-frequency
constant pressure mode, which is a result of the singularity of the fluid stiffness
matrix, Kf

2. Extensive mathematical details are provided in [105] for these kinds
of systems and we directly refer and build upon the discussions provided therein.
It is important to emphasize that a closed volume problem is a general case for
acoustics. If some pressure boundary condition is imposed on the model, the above
mentioned acoustic ridid body mode is not present and the methods outlined here
can also be applied without modifications.

The accuracy benchmark of the results are performed against the results of the
Arnoldi algorithm. It is observed that relative errors on computed eigenvalues and
eigenvectors are small. In contrary to common implementations and research in the
field, our research shows that the eigenresponses of a vibro-acoustic system can be
predicted efficiently in a symmetric format with the presented approach.

The organization of this chapter is as follows. Section 4.2 provides an overview
on nonsymmetric solution techniques for vibro-acoustic eigenvalue problems. Sec-
tion 4.3 discusses possible paths in order to transform the problem into a symmetric
representation. Section 4.4 provides an overview on the symmetric Lanczos itera-
tions detailing the efficient inverse iteration steps along with the projections that
result in symmetry. In Section 4.4, we also discuss the details of the implemented
orthogonalization scheme along with the remarks on shifting and Sturm sequence
checks. Finally, the discussed concepts are tested on two model problems in Sec-
tion 4.5. Section 4.6 summarizes the main conclusions.

4.2. Nonsymmetric eigenvalue solvers for vibro-acoustic

problems
In this small section, we shortly introduce the two-sided Lanczos and Arnoldi meth-
ods in order to later outline the advantages of the proposed method with respect to
these two methods.

4.2.1. Two-sided Lanczos method
The two-sided Lanczos method is an iterative projection method for the nonsym-
metric eigenvalue problem represented in (4.1). Starting from two vectors, p1 6= 0
and q1 6= 0, and with the use of two matrix operators K−TMT and K−1M, it
generates two growing orthogonal Krylov bases, namely the left and the right bases.

The left basis spans [125, 133]

Kk(K−TMT,p1) = span{p1,
(
K−TMT

)
p1, . . . ,

(
K−TMT

)k−1
p1}

≡ span{Pk}
(4.2)

2By analogy with structures, we will call in what follows the constant pressure mode the rigid body

mode
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similarly the right basis spans

Kk(K−1M, q1) = span{q1,
(
K−1M

)
q1, . . . ,

(
K−1M

)k−1
q1}

≡ span{Qk}
(4.3)

Conceptually, at each step of the process, the nonsymmetric problem representa-
tion given by (4.1) is projected on these two subspaces, Pk and Qk to find a reduced
order problem from which the eigensolutions are computed. In addition, these two
sets of vectors are also M-biorthogonalized during the iteration process, namely, to
satisfy PT

k MQk = I.
Lanczos [32] shows that three-term recurrence relations hold for the left and

right iteration vectors, namely,

p̃k+1 = K−TMTpk − αkpk − δkpk−1 with δ1p0 = 0, (4.4)

q̃k+1 = K−1Mqk − αkqk − βkqk−1 with β1q0 = 0 (4.5)

By using the orthogonality relations between the left and right vectors, it can be
shown that

αk = pT
k MK−1Mqk (4.6)

δk+1 = |pT
k+1Mqk+1|1/2 (4.7)

βk+1 = δk+1sign(pT
k+1Mqk+1) (4.8)

Therefore, subsequent iterate vectors are found to be

pk+1 =
p̃k+1

δk+1
(4.9)

qk+1 =
q̃k+1

βk+1
(4.10)

In essence, by using the relations from (4.6) to (4.10), one is generating the or-
thogonalization coefficients for the Krylov sequences. The coefficients αk, δk+1 and
βk+1 build up the nonsymmetric tridiagonal matrix Tk column by column which
represents the reduced eigenvalue problem at step k, namely,

Tkη = λ̃kηk (4.11)

where the nonsymmetric tridiagonal matrix is written as

Tk =












α1 β2

δ2 α2 β3

δ3 α3

. . .

αk−1 βk

δk αk












(4.12)
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In (4.11), λ̃k represents the reciprocals of the approximated eigenvalues and similarly
Qkηk represent the right eigenvector approximations.

In order to iterate in the space of the elastic modes, the results of the inverse
iteration steps, namely, p̂k+1 = K−TMTpk and q̂k+1 = K−1Mqk, are explicitly
M-orthogonalized with respect to the left and right rigid mode vectors, φO

l and φO
r .

If the stiffness matrix of the system is singular then it is not possible to invert the
matrix and pseudo-inverses should be used [63].

Although, mathematically speaking, three-term recurrence relations necessitate
only the orthogonalization of the current iteration vector with respect to the two
previous ones, loss of orthogonality between the generated Lanczos vectors due to
finite precision arithmetic on a computer is a well known fact. In the course of
this chapter, a full orthogonalization scheme is followed to remedy this problem for
the two-sided solver. Namely, the current iteration vectors are explicitly made M-
orthogonal to the previous vectors by using the two-sided Modified Gram Schmidt
technique [120].

The convergence of the method can be controlled either with the norm of the
residual of the original eigenvalue problem after recovery [63] or with a very eco-
nomical residual norm provided in [118]. Namely, for the right eigenvectors, we
used

ǫ =
||K−1Mφ̃k − λ̃kφ̃k||

||φ̃k||
≡ |δk+1||ηk,i|

||φ̃k||
(4.13)

φ̃k and λ̃k represent the right eigenvector and the associated eigenvalue approxima-
tions for the kth mode, respectively. Recalling from (4.11), ηk represents the kth

right eigenvector of the nonsymmetric tridiagonal matrix and ηk,i is its last element.
In general, the convergence of the left and right eigenvectors should be monitored
simultaneously. However, it was proven in [161] that the left and the right vibro-
acoustic eigenvectors are related. In brief, we only monitored the convergence of
the right eigenvectors in the tests. It is possible to extend the process to operate
in blocks without any difficulties where the tridiagonal matrix Tk is generated in
a block fashion. In fact, it might not always be possible to M-biorthogonalize the
vectors due to break-down, namely, δk+1 = 0, then restarting is necessary with
new starting vectors p1 and q1 [120, 71]3. Possible strategies to cope with these
breakdown problems are proposed in [56, 159].

4.2.2. Arnoldi method
In contrast to the two-sided Lanczos solver, Arnoldi is an orthogonal projection
method which can be used to compute the eigenvalues and eigenvectors of nonsym-
metric matrices. In essence, it was introduced in order to transform a dense matrix
into Hessenberg form [10]. In this respect, for the computation of the eigenvalues
and eigenvectors of very large problems, a partial reduction to Hessenberg format
is accomplished during Arnoldi iterations.

In a manner similar to the two-sided Lanczos solver outlined previously, Arnoldi
iteration can also be viewed as a projection method onto successive Krylov sub-

3In the large number of numerical tests conducted, we did not experience any break-down problems.
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spaces. Namely, starting from the real nonsymmetric eigenvalue problem, (4.1),
and an initial vector q1 6= 0, Arnoldi iterations build a Krylov basis spanning
Kk(K−1M, q1) = span{q1, K−1Mq1, . . . , (K−1M)k−1q1} ≡ span{Qk}. In contrast
to the two-sided Lanczos iterations, a k-term recurrence is used in the iterations
where the general recurrence relation at step k is written as,

hk+1,kqk+1 = K−1Mqk − h1,kq1 − · · · − hk,kqk ≡ K−1Mqk −
k∑

p=1

hp,kqp

(4.14)

where the h-terms represent the coefficients of the Hessenberg matrix. From a dif-
ferent perspective, the h-terms can also be viewed as the orthogonality coefficients
resulting from an orthogonalization operation [136]. From (4.14), one can under-
stand that the components of all the previous vectors should be subtracted from the
result of the inverse iteration which is a serious drawback of Arnoldi type iteration
methods and several restarting schemes were proposed to alleviate this problem [92].
Moreover, an incomplete orthogonalization scheme for Arnoldi method was also pro-
posed [135]. The main idea is to perform the orthogonalization operations over a
limited number of previous vectors. However, results in [135] suggest that this imple-
mentation significantly increases the number of iterations with respect to a normal
Arnoldi implementation. Therefore, we did not use this approach during the tests
performed in this research.

Conceptually, (4.14) can also be written in a matrix form, namely,

K−1MQk = QkHk + hk+1,kqk+1e
T
k (4.15)

where ek is the unit vector at step k of the iteration process. And Hk is the upper
Hessenberg matrix written as

Hk =










h1,1 . . . h1,n

h2,1 h2,2 h2,n

. . .

hk,k−1 hk,k










(4.16)

At each step, (4.16) is used to find the Arnoldi eigenvalue and eigenvector esti-
mates of the system. Similar to the two-sided Lanczos solver outlined, the conver-
gence of the process is monitored with the residual error estimators [136] in a cheap
way. Namely, to compute the residual error estimate for mode k, we can use

ǫ =
||K−1Mφ̃k − λ̃kφ̃k||

||φ̃k||
≡
|hk+1,k||φHk

k,i |
||φHk

k ||
(4.17)

where φ̃k and λ̃k represent the eigenvector and reciprocal eigenvalue approximations,
respectively. We recover the eigenvector approximations with φ̃k = Qkφ

Hk

k where

Qk represent the L2-orthogonal Arnoldi vectors and φ
Hk

k is the kth eigenvector
of (4.16). L2-orthogonality is used to simplify the denominator in (4.17), namely,

||φ̃k|| =
√

φ
Hk

k

T
QT

k Qkφ
Hk

k ≡ ||φHk

k ||. Moreover, φHk

k,i is the last element of φHk

k .
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4.2.3. Exploiting the matrix topology for computations
In the implementations of the two-sided Lanczos and Arnoldi methods, we have to
perform the factorization of KT and K. However, by looking at the nonsymmetric
stiffness matrix of the problem defined in (4.1), we can easily realize a computation-
ally advantageous fact that both of these matrices have a large zero-block which is
quite useful in order to decrease the computational cost of the factorization opera-
tions. Namely, for the right basis, writing a simple linear system of equations with
K results in,

[
Ks −Ksf

0 Kf

] [
xs

xf

]

=

[
bs

bf

]

(4.18)

It is possible to separate the rows of (4.18) and come up with two one-way coupled
system of equations, namely,

Ksxs −Ksfxf = bs, (4.19)

Kfxf = bf , (4.20)

which can be solved with the independent factorizations of the individual stiffness
matrices of the participating physics, namely, Ks and Kf . With this scheme, it is
possible to circumvent the factorization of the full nonsymmetric stiffness matrix.
Moreover, the same principle equally applies when solving the linear systems with
KT. Therefore, the special topology of the system can be used to result in a very
efficient solution scheme for the problem at hand due to the independent block
factorizations. In the case of closed volumes, Kf is singular whereas Ks is generally
regular due to the application of proper boundary conditions. In these kinds of
problems, a pseudo inversion is necessary for solving (4.20) [49].

4.3. Symmetric forms of the nonsymmetric problem
Approaches to create symmetric representations of the nonsymmetric coupled vibro-
acoustic problem defined in equation (4.1) exist and these are outlined in [52] and [53]
which also support the explanations with a theorem provided in [118]. In the light
of these references, matrix scaling and eigenvector augmentation methods were used
respectively to end up with symmetric representations of the original nonsymmetric
coupled eigenvalue problem.

[52] presents four scaling matrices that could result in a symmetric represen-
tation of the original nonsymmetric problem. Namely, two pre-multiplier and two
post-multiplier matrices are shown that could result in a symmetric system rep-
resentation. The pre-multiplier matrices are denoted by κ1 and κ2, respectively.
Similarly, post-multiplier matrices are called τ1 and τ2

4, namely,

κ1 =

[
KsM−1

s 0

−KT
sf M−1

s I

]

, κ2 =

[
I Ksf K−1

f

0 Mf K−1
f

]

(4.21)

4It must be noted here that which of the transformations will be used later will depend on the
properties of the matrices used to develop the algorithms.
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τ1 =

[
K−1

s Ms K−1
s Ksf

0 I

]

, τ2 =

[
I 0

−M−1
f KT

sf M−1
f Kf

]

(4.22)

It is possible to use each of these transformation matrices in order to come up with
an efficient iteration scheme. By using either κ1 or κ2, we are not changing the space
of the iteration vectors since it is a pre-multiplication from the left. In contrast,
if τ1 is selected as a post-multiplier matrix, then the resulting vectors change their
corresponding basis, namely

[
φs

φf

]

= τ1

[
φ̃s

φf

]

(4.23)

In closed form, the system matrices built up with either κ1 or κ2 can be written
respectively as,

([
(KsM−1

s Ks −K−1
s M−1

s Ksf

−KT
sf M−1

s Ks (Kf + KT
sf M−1

s Ksf )

]

− λ

[
Ks 0

0 Mf

]) [
φs

φf

]

=

[
0

0

]

(4.24)

([
Ks 0

0 Mf

]

− λ

[
(Ms + Ksf K−1

f KT
sf ) Ksf K−1

f Mf

Mf K−1
f KT

sf Mf K−1
f Mf

]) [
φs

φf

]

=

[
0

0

]

(4.25)

Looking at (4.24) and (4.25), it is easy to realize that either the stiffness matrix
or the mass matrix become fully populated when κ1 or κ2 is used, respectively.
(4.24) and (4.25) are provided here for convenience in order to show the structure of
the resulting symmetric system matrices. Due to the fully populated nature of either
the stiffness or mass matrices, explicit construction and numerical implementation is
not a feasible approach. In Section 4.4, we are going to provide an analysis showing
that it is not necessary to set up neither of these forms explicitly.

4.4. Symmetric vibro-Lanczos algorithm
4.4.1. Overview of the symmetric Lanczos eigensolver
The generalized eigenvalue problem with symmetric and real system matrices is
written as

Ksymφsym = λMsymφsym (4.26)

Starting with an initial vector q1 6= 0, Lanczos iterations build up a Krylov basis
which spansKk(K−1

symMsym, q1) = span{q1, K−1
symMsymq1, . . . , (K−1

symMsym)k−1q1} ≡
span{Qk}. In exact arithmetic, due to the symmetric matrices, recursive orthogo-
nality relations apply and the main three-term recurrence relation can be written
as [136]

q̃k+1 = K−1
symMsymqk − αkqk − βkqk−1 (4.27)
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At each step of the iteration process, a new vector is generated with one inverse
iteration step and some additional vector operations. αk and βk−1 represent the
Msym-orthogonalization coefficients. By using (4.27), one is implicitly generating
the coefficients of a symmetric tridiagonal matrix column by column. With the
use of these orthogonalization coefficients, the original symmetric eigenvalue prob-
lem representation is transformed into a reduced symmetric tridiagonal eigenvalue
problem. As a result, at step k of the shortly outlined process, one ends up with

Tkη = λ̃kηk (4.28)

where the symmetric tridiagonal matrix is written as

Tk =












α1 β2

β2 α2 β3

β3 α3

. . .

αk−1 βk

βk αk












(4.29)

λ̃k represents the reciprocals of the approximated eigenvalues and Qkηk rep-
resent the eigenvector approximations. Similar to the nonsymmetric solvers, the
convergence of the method can be controlled either with the norm of the residual of
the original eigenvalue problem after recovery [63] or with a very economical resid-
ual norm provided in [118]. It is also possible to extend the symmetric version to
operate in blocks without any difficulties.

The procedure is summarized in Algorithm 4.1 starting from q̃1 6= 0. U rep-
resents the rigid body vector block if there are any. If no rigid body modes are
present, this step should be skipped. For numerical stability reasons, we used the
modified Gram-Schmidt algorithm (between lines 14 and 17). There is a subtle
point which needs further explanation in Algorithm 4.1. Namely, between lines 11
and 13, the result of the inverse iteration vector is orthogonalized with respect to
vectors qk and qk−1. Considering this fact, the full reorthogonalization given on line
14 should only extend up to vector qk−2. However, we observed that performing the
orthogonalization with qk and qk−1 once more during the full reorthogonalization
as shown in Algorithm 4.1 gives better results.

4.4.2. Symmetric Lanczos iterations for vibro-acoustics
The symmetric eigenvalue problem of vibro-acoustics was provided in (4.24) or (4.25)
in closed form. An efficient solution scheme is detailed here which is used to perform
the inverse iteration step of the Lanczos iterations for the symmetric version of the
eigenvalue problem.

In Arnoldi iterations or similarly for the right vectors of the two-sided Lanczos
iterations, a new vector is generated at the inverse iteration step, namely, q̂k+1 =
K−1Mqk. The same analysis is also valid for the system equations that are built
up with either κ1 or κ2. In the discussion, κ1 is used and the symmetric form of the
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Algorithm 4.1 Symmetric Lanczos algorithm

1: q̃1 6= 0

2: q̃1 = q̃1 −UUTMsymq̃1 ⊲ Filter the rigid body modes
3: z = Msymq̃1 ⊲ scale vector q̃1:qT

1 Mq1 = 1
4: d =

√
(q̃T

1 z), β1 = d
5: q1 = q̃1/d
6: Q← q1 ⊲ Add vector to Lanczos vector basis
7: for (k = 1, 2, ...) do ⊲ Loop until convergence
8: Ri

k = Msymqk ≡ z/d ⊲ Create inertial force
9: q̂k+1 = K−1

symRi
k ⊲ Inverse iteration step, if Ksym is singular, use K+

sym

10: q̂k+1 = q̂k+1 −UUTMsymq̂k+1 ⊲ Filter the rigid body modes
11: q̂k+1 = q̂k+1 − βkqk−1 ⊲ Apply the 3-term recurrence
12: αk = q̂T

k+1R
i
k

13: q̂k+1 = q̂k+1 − αkqk

14: for j = 1, ..., k do

15: a = Ri
j

T
q̂k+1

16: q̂k+1 = q̂k+1 − aqj

17: end for

18: z = Msymq̃k+1 ⊲ scale vector q̃k+1:qT
k+1Mqk+1 = 1

19: βk+1 =
√

(q̃T
k+1z) ≡ d

20: qk+1 = q̃k+1/βk+1

21: T← αk, βk+1 ⊲ Fill the tridiagonal matrix and compute error
22: if Converged then ⊲ Convergence check after some iterations
23: output eigenvalues/vectors and stop
24: end if

25: Q← qk+1 ⊲ Add new vector to Lanczos vector block
26: end for

inverse iteration equation is written as (line 8 and 9 in Algorithm 4.1),

κ1Kq̂k+1 = κ1Mqk (4.30)

Since κ1 is a regular pre-multiplication operator, we can conclude that the results
of the inverse iteration operations for Arnoldi, for the right vectors of the two-sided
Lanczos method and for the symmetric variant proposed here are the same. And
they all can be computed with the equations provided in (4.19) and (4.20).

In this respect, considering (4.19) and (4.20) while forming the inverse iteration
equation as q̂k+1 = K−1Mqk, we can write the fluid partition of the improved vector
independently from row 2 as,

q̂k+1,f = K−1
f

(
KT

sfqk,s + Mfqk,f

)
(4.31)

And, therefore, by using (4.19), it is possible to write the structural part of the
solution vector as

q̂k+1,s = K−1
s (Msqk,s + Ksf q̂k+1,f ) (4.32)
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In brief, the equations to be solved for the two uncoupled physics are summarized
as,

q̂k+1,f = K−1
f

(
KT

sfqk,s + Mfqk,f

)
(4.33)

q̂k+1,s = K−1
s (Msqk,s + Ksf q̂k+1,f ) (4.34)

A special treatment is necessary for the solution of (4.33) if the operator matrix
is singular. In those cases, the solution of (4.33) is only possible if the right hand
side vector is self-equilibrated [63]. Following the generation of the self-equilibrated
load, a constrained problem is solved with this self-equilibrated load vector. The
constrained problem is generated by deleting the last row and column in the singular
Kf to render it nonsingular. This constrained matrix is represented with Kf,11.
This concept is also referred to as inertia-relief in the field of substructuring [36].

The symmetric Lanczos process generates an Msym-orthogonal Lanczos vector
set where the vectors are explicitly multiplied by the mass matrix as shown on
lines 8 and 18 of Algorithm 4.1. However, Algorithm 4.1 is only given here in
order to provide an overview for the symmetric Lanczos algorithm and to stress
out the modifications for vibro-acoustic eigenvalue problems. In the context of this
chapter, we should mention that the inverse iteration steps, namely, lines 8 and 9,
are performed with the nonsymmetric matrices since they produce the same result,
namely, K−1Mqk. These equations were provided in (4.33) and (4.34).

With the symmetric system representation formed with κ1, the mass matrix of
the system is in block diagonal format which can be observed in (4.24). Namely,

Msym = κ1M ≡
[

Ks 0

0 Mf

]

(4.35)

Although the mass matrix built with κ2 transformation is dense, the mass matrix
built with κ1 is block diagonal. In this format, we can generate Msym-orthogonal
Lanczos vectors efficiently. We can summarize the important operational points as
follows:

• Inverse iteration is performed with K−1Mqk.

• In order to Msym-scale the vectors on lines 3 or 18, we use κ1M which is block
diagonal.

• The resulting matrix-vector multiplications performed during the Msym-scaling
operations are stored for the computation of αk coefficients. Later, these are
also used for the reorthogonalization operations.

Moreover, the norm inherent to the orthogonalization performed with respect
to Msym in the proposed approach performs a scaling and treats the pressure
and displacement variables in an energy-like norm. The L2-orthogonality of the
Arnoldi process mixes the pressure and displacement variables which could lead to
ill-conditioning during the orthogonalization process.

We can summarize the similarities and differences of Arnoldi and the symmetric
approach proposed here as follows:
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• The results of the inverse iteration steps for Arnoldi and the symmetric Lanc-
zos are the same due to the pre-multiplication operations. Hence both methods
generate the same same Krylov subspace.

• The vectors, qk, generated during the complete iteration cycle will be dif-
ferent because they satisfy different orthogonality relations. Namely, for the
symmetric approach, they satisfy Msym-orthogonality, whereas, for Arnoldi,
they are L2-orthogonal. However, the subspaces generated in both cases are
equivalent.

• For the Arnoldi algorithm, full orthogonalization is required. Whereas, a tri-
orthogonality relation exists for the symmetric Lanczos process, at least in
theory. This relation can be used in a partial reorthogonalization scheme
which is going to be the subject of Section 4.4.5.

• In the symmetric case, a symmetric reduced tridiagonal is formed since the
problem is projected onto a symmetric representation implicitly. In contrast,
Arnoldi generates an upper Hessenberg matrix whereas two-sided Lanczos al-
gorithm generates a nonsymmetric tridiagonal. Moreover, the transformation
to a symmetric representation brings no extra costs in comparison to Arnoldi.

4.4.3. Details on filtering rigid modes for the symmetric rep-

resentation
Computing the right and left rigid modes

To compute the right rigid mode of the system, one should solve

[
Ks −Ksf

0 Kf

] [
φRigid

s

φ
Rigid
f

]

=

[
0

0

]

(4.36)

For a closed volume, the stiffness matrix of the fluid side of the system is singular
which means that φ

Rigid
f corresponds to the null-space of Kf .

The set of all m independent solutions, ri, of Kf ,

Kfri = 0 i = 1, 2, ..., m, (4.37)

forms the null space of Kf .
If m null space vectors ri for a matrix Kf of dimension n × n exist, then in

(4.37), only n−m rows and columns are linearly independent. The null space of Kf

is, in this case, composed of only one vector which is the so-called rigid body mode
of the fluid domain exhibiting a uniform pressure at all nodes . One can assume to
partition the system in the light of this discussion as,

[
K11

f K12
f

K21
f K22

f

]

(4.38)

where K11
f represents the non-singular square matrix whose dimension is equal to

the rank of Kf which is in this case n−1. Mathematically speaking, K11
f is a matrix
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of size (n− 1)× (n− 1) and K12
f is a column vector of size (n− 1)× 1. Additionally,

K22
f is a matrix of size 1× 1 which is a scalar for this special setting. Therefore, the

null space is written as [49],

r1 = φ
Rigid
f ≡

[

−K11
f

−1
K12

f

1

]

(4.39)

Having found φ
Rigid
f , one could use (4.36) to compute the structural part of the

right rigid mode vector, namely,

φRigid
s = K−1

s Ksfφ
Rigid
f (4.40)

With this computational overview, the right rigid body mode vector is written as,

φO
r =

[

K−1
s Ksfφ

Rigid
f

φ
Rigid
f

]

(4.41)

To compute the left rigid mode vector, the system has to be transposed to solve for
the left rigid mode vector, namely, we have to solve

[
Ks 0

−KT
sf Kf

] [

φ̃Rigid
s

φ̃
Rigid
f

]

=

[
0

0

]

, (4.42)

where •̃ is used to represent the left rigid body mode vector. Using the block
structure of (4.42), one could write

Ksφ̃
Rigid
s = 0 (4.43)

−KT
sf φ̃

Rigid
s + Kf φ̃

Rigid
f = 0 (4.44)

resulting in

φO
l =

[

φ̃Rigid
s

φ̃
Rigid
f

]

≡
[

0

φ
Rigid
f

]

(4.45)

The rigid body vectors are scaled with respect to the mass matrix such that φO
l

T
MφO

r =
1.

Filtering the rigid mode

In order to iterate in the space of the elastic modes, the zero-frequency pseudo mode
vector has to be filtered out from the solution space. Since the iterations advance by
iterating over the right Krylov subspace of the original nonsymmetric problem, the
right pseudo-mode vector has to be filtered out from iteration vectors that result
from the inverse iteration step5. Namely,

q̂k+1 ← (I− φO
r φO

l

T
M)q̂k+1 ≡ (I− φO

r φO
r

T
Msym)q̂k+1 (4.46)

due to φO
l = κT

1 φ
O
r and Msym = κ1M. In (4.46), φO

l and φO
r represent the left and

right zero-frequency pseudo mode vectors, respectively.

5Similar filtering operations were also used in the implementations of the two-sided Lanczos and
Arnoldi methods.
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4.4.4. Convergence check
Similar to the outlined nonsymmetric alternatives, the convergence of the symmetric
method is also monitored with a relative residual error estimate [63],

ǫ =
||K−1Mφ̃k − λ̃kφ̃k||M

||φ̃k||M
≡

βi+1|φTk

k,i |
||φTk

k ||
(4.47)

where all the matrices are considered to be the symmetric in this case. Besides, φ̃k

and λ̃k represent the eigenvector and reciprocal eigenvalue approximations, respec-
tively. It is worth noting that the denominator in (4.47) was simplified by using
φ̃k = Qkφ

Tk

k and Msym-orthogonality among the Lanczos vectors, Qk. Namely,

||φ̃k||M =

√

φ
Tk

k

T
QT

k MQkφ
Tk

k ≡ ||φTk

k ||. φ
Tk

k represents the kth eigenvector of

the symmetric tridiagonal problem and φTk

k,i is its last element.

4.4.5. Cost reduction with partial or selective orthogonaliza-

tion
Due to the finite precision computations performed on a computer, the symmetric
Lanczos method is advised to be used with full reorthogonalization where theoreti-
cal three-term recurrence relations are not enough to keep the orthogonality among
the Lanczos vectors [62]. However, several partial and selective orthogonalization
schemes were proposed in the literature in order to decrease the cost of orthogonal-
ization operations during the symmetric Lanczos iterations [118, 142, 141]. Even
though the orthogonalization is incomplete in these procedures, accurate eigenvalues
and eigenvectors can be found.

A brief outline for these methods is provided next [119]:

• Selective: If q is the current Lanczos vector and K−1M is the operator, then
one has to orthogonalize K−1Mq against the two earlier Lanczos vectors. It
is also known that

– this is good enough provided the Krylov subspace has not yet captured
any eigenvector,

– if the Krylov subspace is big enough to contain a few eigenvectors, then
K−1Mq will have significant components in those eigenvectors. If eigen-
vectors are recovered by transforming to the physical space with Qkηk as
soon as convergence is detected then it might be much faster to orthog-
onalize against the converged eigenvectors rather than with respect to
all the Lanczos vectors. However, this practice brings the need to solve
the tridiagonal eigenvalue problem at each step. To decide on this, the
recurrence developed in [118] can be used.

• Partial: If the Krylov subspace is being constructed without computing eigen-
vectors as soon as convergence is detected, then selective reorthogonalization
is not an option. However, it is observed that the orthogonality is being lost in
a systematic way [142]. In [142], a recurrence relation is shown which predicts
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when orthogonality was lost at the
√

eps6. At that point the new Lanczos
iteration vector q are reorthogonalized against all previous ones. It was also
proven in [141] that if ‖I−QT MsymQ‖ <

√
eps then the resulting tridiagonal

matrix, Tk, computed with the symmetric Lanczos algorithm is correct up to
machine precision eps, although the Lanczos vectors themselves are not or-
thogonal to working precision. In conclusion, semi-orthogonality was reported
to be good enough for computations. However, in our numerical tests, we have
experienced that the

√
eps bound sometimes results in double frequencies for

ill-conditioned problems. Therefore, we have tightened for an order depend-
ing on the machine precision. Namely, in the machines that we performed our
tests

√
eps was on the order of 10−8 and we used an orthogonality tolerance

of 10−9 instead. This is also inline with the experience and informal analysis
performed in [118].

Although it was proven in Section 4.4 that Arnoldi and symmetric Lanczos iterate
in the same space, there is a subtle point that we can use advantageously in the case
of iterations with a symmetric system. Namely, in the Arnoldi method as outlined
in Section 4.2.2, all the orthogonality coefficients should be computed accurately in
order to represent the reduced upper Hessenberg matrix. Otherwise the computa-
tion of the eigenvalues and eigenvectors with the reduced upper Hessenberg matrix
will be affected and wrong results might emerge. Similar to Arnoldi, coefficients
that are used to form the reduced symmetric tridiagonal matrix are also the or-
thogonalization coefficients. But in the symmetric case, most of these orthogonality
coefficients should vanish in order to end up with a symmetric tridiagonal matrix
and this is explicitly forced with the full orthogonalization scheme. However, as out-
lined in [142], [110] and briefly above, we can keep the Lanczos vectors orthogonal
up to the order of 10−9 and still come up with accurate results in the symmetric
cases. In this work, partial reorthogonalization is used during the numerical tests.

This can be accomplished with a recurrence relation provided in [142, 110] (see
also Appendix D) and modified here for Msym-orthogonality, namely,

βk+1QT
k Msymqk+1 = (Tk − αkI)QT

k Msymqk − βkQT
k Msymqk−1, k ≥ 2

(4.48)

In (4.48), Tk is the symmetric tridiagonal formed at step k. MsymQk represents
the matrix-vector multiplications of the Lanczos vectors stored during the previous
iterations. Theoretically QT

k Msymqk+1 should be zero, but in finite arithmetic it
is not. The orthogonality error at step k + 1 (left-hand side of (4.48)) can be esti-
mated recursively (right-hand side of (4.48)), based on the previous orthogonality
coefficient vectors QT

k Msymqk and QT
k Msymqk−1. (4.48) is a result of the orig-

inal three-term recurrence formula devised in [142] which is used to monitor loss
of orthogonality among the Lanczos vectors. In the original theory [142], (4.48)
includes additional terms related to round-off errors, however, for our implemen-
tations, those terms were neglected. More mathematical details on the derivation
of (4.48) are presented in Appendix D.

6eps represents the machine precision which was approximately 2.22 × 10−16 during the tests.
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Moreover, [142] advises to perform a full reorthogonalization at steps k and
k + 1 if ‖QT

k Msymqk+1‖∞ > 10−9 at step k is satisfied. This practice is used in the
numerical implementations in this chapter to keep the coefficients at a small level
for the next few iteration cycles. Detailed proofs on (4.48) are provided in [142] for
L2-orthogonality.

The same kind of recurrence relations can also be written in the case of block
iterations [66] however the algebra becomes more complex than it is for the single
vector iterations. Therefore, in the course of the current research, block iterations
were not considered.

4.4.6. Implementation details for partial reorthogonalization
As outlined in Section 4.4.5, (4.48) is a cheap way to estimate the orthogonality
coefficient vector, QT

k Msymq̂k+1, which is used to monitor the loss of orthogonality
among Lanczos vectors without explicitly forming these products. In this small
section, we are going to show the implementation details of (4.48) used during the
numerical tests. As mentioned in Section 4.4.5, (4.48) is valid from step 2 of the
Lanczos process. For the implementation of the Lanczos process, we divided the
complete iteration cycle into two blocks. Namely, the first block consists of the first
iteration of the Lanczos iteration process where vectors QT

2 Msymq2 and QT
2 Msymq1

are initialized in order to provide the starting vectors for the recurrence provided
in (4.48). It is important to note that after the first iteration step we are sure
that Msym-orthogonality among Lanczos vectors, q2 and q1, is not lost since the
orthogonality was forced explicitly. Therefore, it is safe to explicitly write

QT
2 Msymq2 = [eps, 1]T, QT

2 Msymq1 = [1, eps]T (4.49)

where Q2 represents the block of Lanczos vectors, namely, Q2 = [q1, q2].
The second block of the iteration process starts at step 2 in (4.48) where the

Lanczos iterations advance as outlined before. During the iterations, loss of orthog-
onality is continuously monitored by using (4.48). Writing (4.48) explicitly for k = 2
gives

β3QT
2 Msymq3 = (T2 − α2I)QT

2 Msymq2 − β2QT
2 Msymq1 (4.50)

from which the orthogonality prediction vector QT
2 Msymq3 can be computed for

the new vector q3. In order to generalize and show the details on how we decide to
perform a reorthogonalization [110], we repeat (4.48) with some additional vector
notations, namely,

βk+1 QT
k Msymqk+1

︸ ︷︷ ︸

Xk

= (Tk − αkI) QT
k Msymqk

︸ ︷︷ ︸

Rk

−βk QT
k Msymqk−1

︸ ︷︷ ︸

Zk

(4.51)

Decision on reorthogonalization and the update of the vectors used in (4.51) are
performed by using the pseudo-code provided in Algorithm 4.2. E is a vector of
appropriate size having all its elements set to eps. As suggested in [142], if a need
for reorthogonalization is detected at step k then a full reorthogonalization is also
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Algorithm 4.2 Vector updates and reorthogonalization at step k

1: if ‖QT
k Msymqk+1‖∞ ≤ 10−9 then

2: No reorthogonalization, Rk+1 = [Xk, 1]T, Zk+1 = [Rk, eps]T

3: else

4: Full reorthogonalization, Rk+1 = [E , 1]T, Zk+1 = [Rk, eps]T

5: end if

performed at step k + 1. After this second reorthogonalization, the contents of the
vectors Rk and Zk are set as follows: Rk = [E , 1]T, Zk = [E∗, 1, eps]T where E∗ is
a vector similar to E with one less element.

In brief, by using (4.51), we can come up with cheap estimates of the orthogonal-
ity coefficients without explicitly computing them. Coefficient vectors used on the
right side of (4.51) are also updated cheaply as outlined in Algorithm 4.2. Moreover,
no extra matrix-vector multiplications are performed during these predictions.

4.4.7. Remarks on spectral transformation with symmetry
In order to accelerate convergence or to extract eigenvalues in a specific part of the
spectrum, shifting can be applied on the original problem [45]. By selecting a shift
value of σ, the original problem can be written as

(K− σM)φ = λ̂Mφ, λ̂ = λ− σ (4.52)

λ represents the original eigenvalues of the problem whereas λ̂ represents the shifted
ones. In the case of the nonsymmetric problem representation, the application of a
shift introduces an important difference. Namely, we can not represent the shifted
stiffness matrix of the system in a block diagonal fashion. However, the symmetry
relations still apply but the stiffness matrix includes terms on the off-diagonal blocks.
Mathematically speaking, the eigenvalue problem is written as,

κ1(K− σM)φ = λ̂κ1Mφ (4.53)

In a general sense, this puts a limitation on the presented method for shifting
since we can not use independent factorization of the Ks and Kf blocks. How-
ever, the inverse iterations can still be performed with a symmetric stiffness matrix.
Namely, we can write the inverse iteration relation as

[
(Ks − σMs) Ksf

σKT
sf (Kf − σMf )

] [
q̂k+1,s

q̂k+1,f

]

=

[
Ms 0

−KT
sf Mf

] [
qk,s

qk,f

]

(4.54)

It is possible to scale the second row in (4.54) by σ in order to end up with a
symmetric stiffness matrix, namely

[
(Ks − σMs) Ksf

KT
sf (

Kf

σ −Mf )

] [
q̂k+1,s

q̂k+1,f

]

=

[

Ms 0
−KT

sf

σ
Mf

σ

] [
qk,s

qk,f

]

(4.55)
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With (4.55), we can perform the factorization of a symmetric stiffness matrix and
use it for inverse iteration step. Besides, Msym-orthogonalization operations can
still be performed with the block diagonal symmetric mass matrix, κ1M.

In order to be sure that no eigenvalues are missed during the computations,
Sturm sequence checks should generally be employed [17]. This brings some extra
factorization costs on the problem and should be used with care. In the case of vibro-
acoustic eigenvalue problem, we can write the stiffness matrix of the shifted problem
in a symmetric format as shown in (4.55). Therefore, Sturm sequence checks can
be performed with a symmetric matrix which can save some factorization cost.

4.5. Numerical case studies
In order to analyze the numerical performance of the presented method, we per-
formed analyses on two vibro-acoustic models. The aim of the performed analy-
ses was to compare the accuracy of the implicitly symmetric solver, namely vibro-
Lanczos, to the well-known two-sided Lanczos and Arnoldi methods which were
briefly outlined in Sections 4.2.1 and 4.2.2.

Finite element models used in the numerical experiments were created in AN-
SYS by using the implemented fluid structure interface [6]. The structural part of
the models were meshed using quadrilateral shell elements, namely, SHELL63 in
ANSYS, which include both rotational and translational degrees of freedom. The
fluid part of the models were meshed using hexahedral FLUID30 elements which use
pressure variables as the main degrees of freedom. A special variant of FLUID30
elements were also used in order to represent the coupling between the structural
and fluid domains. Having set up the models and the properties, the coupled system
matrices were extracted by the use of the binary interface developed in C++ [145]
by the author. All the computations were programmed and performed in MATLAB
environment. An important ingredient of the Lanczos procedure is the linear solver
which is used to factorize the operator matrices and build up the Krylov basis. In
the numerical implementation, MA97 is used as a direct linear solver which is a
part of Harwell Subroutine Library [77]. In order to speed up the computations,
the MA97 interface was compiled with Intel compiler and the associated Intel Math
Kernel Library for optimized BLAS implementations [82, 83].

We performed a thorough performance analysis of the presented symmetric al-
gorithm. Namely, in the following two case study sections, the symmetric Lanczos
procedure is compared with the nonsymmetric solvers outlined in Sections 4.2.1 and
4.2.2. In all of the numerical experiments, the minimum iteration number was set
to 2 × neig + 10 where neig represents the target eigenvalue count. A convergence
tolerance of 10−10 was used on the relative residual error estimates provided in
(4.13), (4.17) and (4.47), respectively. We analyzed the performance of the pre-
sented method in the following points:

• The CPU times for the solution process were compared for the presented three
different methods

• In order to verify the correctness of the eigensolutions computed, we evaluate
an error measure comparing the eigenvalues of the symmetric solver and those



4.5. Numerical case studies

4

61

x
y

z

(a) Mesh of the 3D box

0.14

0.29
0.35

(b) Dimensions of the 3D box in [m]

Figure 4.1: 3D box model

found by the Arnoldi solver at convergence. We used the following error
criteria:

∆k
ω =

∣
∣ωk

sym − ωk
Arnoldi

∣
∣

ωk
Arnoldi

, k = 1, . . . , neig (4.56)

• Accuracy was also verified for the eigenvectors, considering Modal Assurance
Criteria (MAC [5]) values between corresponding mode shapes computed with
the symmetric Lanczos and with the Arnoldi algorithms. To represent an
error-like term (1-MAC) is used as a performance criteria. MAC between two
vectors, φk

sym and φk
Arnoldi, is computed as presented in (4.58),

∆k
MAC = 1−MAC(φk

sym,φk
Arnoldi) (4.57)

= 1−
(φk

sym
T
φk

Arnoldi)
2

(φk
sym

T
φk

sym)(φk
Arnoldi

T
φk

Arnoldi)
, k = 1, . . . , neig (4.58)

In the numerical tests and the comparisons reported to evaluate the performance
of vibro-Lanczos, we used the partial orthogonalization scheme presented in Sec-
tions 4.4.5 and 4.4.6.

4.5.1. Test case 1
The first model considered is a completely sealed 3-dimensional cubic cavity filled
with water which has a density of 1000 kg/m3 and the speed of sound in water is
taken as 1500 m/s. The top surface of this cavity is modelled as a simply supported
thin shell structure of 2 mm thickness, which is coupled to the fluid domain. The
rest of the walls of the fluid domain are considered rigid. The specific properties
of the elastic shell surface are as follows: density, 2800 kg/m3 , Young modulus, 70
GPa and poisson ratio, 0.3, respectively. A schematic representation of the model
with the finite element mesh is shown in Figure 4.1 along with the dimensions. The
model consists of 117740 elements resulting in 145331 degrees of freedom (dofs) in
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Figure 4.2: CPU Time for the three variants, 3D Box model

Table 4.1: CPU time saving of vibro-Lanczos compared to the two-sided Lanczos and the
Arnoldi method (3D Box)

neig
50 75 100 125 150

Two-sided Lanczos %44.34 %49.08 %51.95 %54.315 %56.54
Arnoldi %2.16 %5.02 %8.34 %10.15 %12.16

total. The structural part of the model consists of 23850 dofs. The structural stiff-
ness matrix has 1182884 nonzero (nnz) elements with a bandwidth of 412. The fluid
part of the system stiffness matrix consists of 121481 dofs. And it has 2425657 nnz
elements in a bandwidth of 3486.
By looking at the elapsed CPU times for the solution sequences (Figure 4.2), one

can observe that the two-sided Lanczos solver is almost twice as expensive as the
Arnoldi’s solution method. And it is the most expensive method of the three vari-
ants. The proposed symmetric solution approach can bring some important savings
when implemented with the partial reorthogonalization scheme. An overview on
the savings with respect to Arnoldi and the two-sided Lanczos solvers is provided
on Table 4.1. For large target eigenvalue counts like 100, 125 and 150, the saving of
the proposed symmetric approach over Arnoldi is around %10.

Maximum and minimum of the relative frequency errors computed with (4.56)
for the selected target eigenvalue count is provided in Figure 4.3. Besides, associ-
ated maximum errors (1-MAC) on the eigenvectors computed with (4.58) are also
provided on the same Figure. As also observed from Figure 4.3, the computed maxi-
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mum error levels are quite small signifying that they are in good agreement with the
results computed with the nonsymmetric Arnoldi solver. It is important to note that
the convergence of the presented methods is monitored with the relative residual
estimates provided in (4.13), (4.17) and (4.47) where the stopping tolerances were
set to 10−10. However, the literature in the field suggests that although the resid-
ual estimates are useful cheap estimates for convergence checks, they do not always
provide the true error levels on the eigenvalues as can be seen in Figure 4.3 [136].

4.5.2. Test case 2

The second model that is considered is a simplified model of a vehicle cavity where
the coupling fluid inside the domain is air. On this model, two surfaces, namely,
the windscreen and the roof of the cavity, are used as simply supported thin elastic
structures which are coupled with the fluid domain inside the cavity. The mentioned
elastic surfaces are modelled with thin shell elements of 1mm thickness. Similar to
the first test case, the rest of the walls of the fluid domain are considered rigid. The
properties of air is chosen as follows: density, 1.225 kg/m3, speed of sound 343.2
m/s. The properties of the elastic structural surfaces are as follows: density, 7860
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Figure 4.4: Simplified vehicle cavity

kg/m3, Youngs modulus, 210 GPa and poisson ratio, 0.3. The dimensions of the
section of the cavity are provided in Figure 4.4b in m and the depth of the cavity in
z direction is 0.75m. A snapshot of the generated mesh is provided in Figure 4.4a
along with the coordinate axis. The model consists of 283559 elements resulting in
a system with 316808 degrees of freedom.

Structural part of this model consists of 30290 dofs. And the associated stiffness
matrix has 1066492 nnz elements in a bandwidth of 639. The fluid part of the
stiffness matrix consists of 286518 dofs. And it has 7489298 nnz elements in a
bandwidth of 7040.

Examining the CPU time comparisons provided in Figure 4.5, we can conclude
that the elapsed CPU times show a similar trend to the analysis performed for the
previous test case. The detailed information on percentage savings with respect to
Arnoldi and two-sided Lanczos solvers is provided in Table 4.2. Similar savings to
the previous test case are also observed for this model. Msym-orthogonality among
the Lanczos vectors is continuously monitored with (4.48) for both of the numerical
examples. As outlined in Section 4.4.5, whenever ‖QT

k Msymqk+1‖∞ > 10−9, a full
reorthogonalization is performed at the current and the following iteration step.
In order to show the gain with the partial reorthogonalization scheme on this test
case, we compared the orthogonalization costs of the symmetric Lanczos with full
orthogonalization and partial reorthogonalization approaches. Theoretical reasoning
on the applicability of partial reorthogonalization was summarized in Section 4.4.5.
For these comparisons, we selected target eigenvalue counts 50 and 150.

We sketched a table where we show the detailed information on the performance
comparison of the outlined schemes. Namely, Table 4.3 provides an overview on the
performance of full and partial reorthogonalization schemes. IC in column 2 shows
the iteration counts to convergence for the selected target eigenvalue counts shown in
column 1. FS in column 3 shows the total number of full reorthogonalization steps
which should have been performed if it was implemented as a normal symmetric
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Table 4.2: CPU time saving of vibro-Lanczos compared to the two-sided Lanczos and the
Arnoldi method (simplified vehicle cavity)

neig
50 75 100 125 150

Two-sided Lanczos %37.83 %45.58 %48.9 %50.88 %52.77
Arnoldi %3.56 %6.02 %8.82 %10.01 %12.97
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Table 4.3: Partial reorthogonalization performance (simplified vehicle cavity)

neig IC FS PS CF[FLOPS] CP[FLOPS] % Saving

50 111 111 48 7.8771×109 3.7713×109 52.12
150 311 311 176 6.14814×1010 3.8402×1010 37.54

Lanczos process with full reorthogonalization 7. Whereas, PS in column 4 represents
the total number of partial reorthogonalization steps. CF in column 5 represents
the cost of floating point operations (FLOPS) for full reorthogonalization. Similarly,
CP in column 6 represents the FLOPS for partial reorthogonalization.

We point to Algorithm 4.1 in order to provide a brief outline on the computation
of FLOPS. Namely, the orthogonalization operations are performed on lines 15 and
16. Line 15 is a dot product where m multiplications and (m − 1) additions are
performed. Line 16 is composed of a vector scaling followed by a vector subtraction.
Operational cost related Line 16 is m multiplications plus m subtractions. And
these numbers are related to aqj and (q̂k+1− aqj), respectively. m is the size of the
vectors used in the orthogonalization operations which is 316808 for this case. In
total, (4m−1) FLOPS is performed in one step of the reorthogonalization iterations.
If the total iteration count is given by k then the total cost of reorthogonalization is
given by the sum of the orthogonalization costs per iteration which is

∑k
n=1(4m−1)n

FLOPS.
It is good to note that Arnoldi performs an explicit reorthogonalization at each

iteration where the costs are similar to column 5 in Table 4.3. However, with par-
tial reorthogonalization, we can see that considerable gains can be achieved for the
symmetric case by comparing columns 5 and 6 of the same table. Our numerical
experience also suggests that the frequency of partial reorthogonalization increases
for ill-conditioned problems significantly. Note however that, the reported frequen-
cies of partial reorthogonalization in [142] and [156] are lower than the ones we have
found in this study.

For this test case, we also compared the convergence of the first and last eigen-
values. Namely, we tried to represent the convergence by showing the relative errors
on the frequency values with respect to the values found by Arnoldi iterations. We
performed these checks at different iteration steps, k, by using the following global
error criterion

|ωi(Tk)− ωArnoldi
i |

ωArnoldi
i

, for i = 1, neig (4.59)

where ωArnoldi
i are the frequencies computed by Arnoldi and ωi(Tk) are the frequen-

cies computed with the symmetric tridiagonal of the proposed approach.

With (4.59), we plotted the resulting convergence behavior in Figures 4.6 and
4.7 for the first and last eigenvalues while solving for 50 and 150 eigenvalues, re-
spectively. We also verified that the convergence behavior shows a similar trend for

7Note that FS and IC are equal in the full reorthogonalization scheme.
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Figure 4.6: Convergence history of the symmetric solver for 50 eigenvalues (simplified vehicle
cavity)

50 100 150 200 250 300

10−12

10−10

10−8

10−6

10−4

10−2

100

Iteration count

R
el

a
ti

v
e

er
ro

r
w

it
h

(4
.5

9
)

first eigenvalue
last eigenvalue

Figure 4.7: Convergence history of the symmetric solver for 150 eigenvalues (simplified vehicle
cavity)
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the first test case. As we can observe from the convergence plots, the first eigen-
value converges in the earlier steps of iterations which is inline with the theoretical
expectation [136]. In contrast, the convergence of the last eigenvalue speeds up as
the number of iterations increase.

4.6. Summary and conclusions
In this chapter, we proposed a symmetric Lanczos method that efficiently com-
putes the solution for the vibro-acoustic eigenvalue problems. These problems can
be challenging due to the nonsymmetric system matrices and their ill-conditioned
nature. For the original problem representation, it is necessary to resort to non-
symmetric eigenvalue solution techniques. To our knowledge, an efficient symmetric
Lanczos implementation has not been proposed before for these systems using the
displacement-pressure formulation without adding extra variables like velocity po-
tential.

Although the closed form representation of the system matrices can become fully
populated depending on the transformation matrix used, it is shown that it is not
necessary to use the matrices in those formats. Namely, the numerical operations can
be arranged such that an efficient symmetric implementation is possible. Further, we
have shown that the proposed symmetric Lanczos solver and the Arnoldi algorithm
generate the same subspace to find the eigensolution of the considered problem. In
addition to its symmetric nature, several other advantages of the method can be
summarized as follows:

• The orthogonality between the basis vectors is ensured with respect to a sym-
metric mass matrix (thereby providing an inherent scaling), whereas Arnoldi
iterations produce the orthogonality with respect to an L2-norm. In such a
L2-norm pressure and displacement variables are mixed which could lead to
ill-conditioning during the orthogonalization process.

• For the symmetric Lanczos method, theoretical three-term recurrence relations
exist. Therefore, computational savings can be achieved by using either partial
or selective orthogonalization schemes.

• The method can bring important computational savings with respect to the
two-sided Lanczos solver. Moreover, for large target eigenvalue counts, the
savings of the method with respect to the Arnoldi solver is on the order 10%
in our examples.

Hence we can conclude that the proposed symmetric Lanczos algorithm for vibro-
acoustic problems can advantageously replace the commonly used non-symmetric
Lanczos or Arnoldi algorithms.
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5
Locally Symmetric

Craig-Bampton Approach for

Vibro-Acoustic Problems,

vibro-LsCB

In this chapter, we present and propose a new Craig-Bampton type component mode
synthesis technique for coupled structural-acoustic problems. In this technique, origi-
nal nonsymmetric component matrices originating from structural-acoustic coupling
are converted to symmetric forms in numerical operations. To build up the Craig-
Bampton projection space efficiently, operations are arranged and performed by using
symmetric components while these symmetric forms are never built explicitly. The
advantage of this new technique is that we can use symmetric solvers to calculate the
ingredients of the Craig-Bampton basis on the component level. By using the cur-
rent technique, we show that locally-symmetric Craig-Bampton matrices are built.
Moreover, the resulting reduced symmetric component matrices have the nice spar-
sity patterns resulting from a typical Craig-Bampton reduction. In the next step,
we demonstrate how we can assemble the reduced components with either primal or
dual coupling approaches where we also show their relations. Last, we performed
some numerical tests on two-dimensional test problems to show its accuracy and
reduction performance. An earlier version of the research presented in this chapter
was presented in [149]. A journal manuscript based on the this chapter is under
preparation.

5.1. Introduction
In computational modelling of real-world engineering problems, investigation of
model reduction techniques is still an active research area. The first techniques
were proposed in 60s and 70s, mainly, in the area of structural engineering. A re-
cent comparison and overview of different techniques in different fields was reviewed
in [23]. Pioneering work in this field is known as the Craig-Bampton technique [37]
which is an extension of the method proposed by Hurty earlier [79], [80] with fixed in-
terface dynamic modes. Rubin [132] and MacNeal [101] later proposed free-interface
versions by also including attachment modes in the reduction space. Finally, the
reduced components are assembled together for the prediction of global system dy-
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namics. An extensive overview of methods can be found in the relatively recent
source [35].

Extension of these methods to coupled vibro-acoustic problems were investigated
mainly for piping systems in [102], [75], [74]. Commonly, in these investigations,
the researchers used the Craig-Bamption reduction technique as the main method.
However, they omitted some important coupling terms in the representation of the
constraint modes whereas they still used the coupled fixed interface modes for the
dynamic characterization of the reduced problems. With this practice, it is not
possible to guarantee a statically complete representation. In spite of this deficiency,
they reported good accuracy on the results which is also, to some extent, validated
with measurements [75].

In this chapter, we are proposing an improved and efficient method extending
the above mentioned references. To start with, we also base our development on
the well-known Craig-Bampton technique but we also make use of the numerical
experience gained in Chapter 4. Namely, as a bi-product of our previous research,
we propose to extend the idea to create symmetric component matrices in an effi-
cient manner. In contrast to the above mentioned references, we do not omit any
terms while building up the projection space. And, therefore, we guarantee a stat-
ically complete representation. We show that we can build a sequence of efficient
computational steps to compute the ingredients of the Craig-Bampton projection
space with symmetric matrices. Due to the symmetry property, the reduced ma-
trices of the components also exhibit the nice sparsity patterns resulting from a
conventional Craig-Bampton reduction [63]. Although, on the component level, the
resulting reduced matrices turn out to be symmetric, we show that the resulting
global coupled system matrices are nonsymmetric. Namely, the transformation of
the component matrices to symmetric format requires an update of the compatibility
conditions. This practice results in using different left and right null spaces to couple
the reduced symmetric component matrices and therefore results in nonsymmetric
reduced global system matrices.

The outline of this chapter is as follows: in Section 5.2, we provide a general
overview on reduction and component mode synthesis. Section 5.3 provides the de-
tails of the Craig-Bampton reduction technique and its extension to vibro-acoustic
problems with a symmetric matrix perspective in the mind. We show the details
of component coupling in general and specifically for the current technique in Sec-
tion 5.4. Section 5.5 provides some details on the efficient numerical implementation
of the technique. We perform some numerical experiments in Section 5.6 to show
the results for the evaluation of the technique. Main conclusions are summarized in
Section 5.7.

5.2. General overview on Reduction and Compo-

nent Mode Synthesis

5.2.1. Dynamic model reduction by modal trunctation
In the analysis of complex systems, it is quite common to reduce the number of
degrees of freedom that are effectively used for the analysis. To accomplish this
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reduction, one needs a reduction basis which has a lower dimension than the original
degrees of freedom of the model used. One of the easiest and commonly accepted
practices is to select some of the low frequency modes of the system in order to build
up this set, namely,

x = Rη (5.1)

where η represents the transformed and significantly reduced set of coordinates in
the new space, which are also called the modal coordinates. The original set of
degrees of freedom, namely, x, is approximated with a lower dimensional subspace
of vectors found in the matrix, R. R is written explicitly as follows,

R =
[
φ1 . . . φm

]
, m≪ n (5.2)

In this representation, the vectors in R, namely, φm, are the first m eigenvectors of
the eigenvalue problem

(K− λmM)φm = 0 (5.3)

Besides, n represents the original problem size. The aim of this analysis is to be
able to represent the dynamic system response with a significant reduction in size.
In addition to the reduction in size, we have to also achieve a sufficient accuracy
level. However, we should mention that, with this selection, we have to use the full
(unreduced) system matrices, K and M, to solve for its eigenvectors first, which is
a serious drawback. However, practically, we would like to perform the reduction
without computing its eigenvectors(eigenmodes).

Considering the equation of motion of an undamped system representation,
namely,

Mẍ + Kx = F (5.4)

we can now replace, x, by the expression given in (5.1) to write

MRη̈ + KRx = F + r (5.5)

since the original vector of degrees of freedom, x, is approximated by using the
subspace spanned by the vectors in R, a force residual has to be introduced in (5.5).
Projecting the system in (5.5) onto R1 results in

RTMRη̈ + RTKRη = RTF + RTr (5.6)

At this point, we enforce the condition that the residual vanishes in the selected
space, R, namely, RTr = 0. It is important to note that applying a projection like
this always induces a force (equilibrium) error which is not directly visible in the
reduced representation. But we can compute this error a-posteriori by using the
approximate solution back in the full system representation.

1Multiplying the equation from left with RT
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With this assumption, we end up with the modally reduced problem of dimension
m:

Mmη̈ + Kmη = fm, where

Mm = RTMR

Km = RTKR

fm = RTF

(5.7)

After solving the reduced problem in (5.7), we can expand back to the physical
domain by using (5.1).

5.2.2. Component Mode Synthesis, a non-mathematical overview
Computing the modes of the full system is not very practical if one tries to reduce
the cost of finding a solution for the system. Another approach consists in dividing
the full problem into substructures/components and, subsequently, performing the
reduction by using a set of low frequency eigenmodes. This technique is an efficient
and well-known procedure to reduce the size of the system equations. Different
efficient reduction techniques were proposed by different researchers. These methods
mainly differ in the selection of the ingredients of the reduction basis, R. Namely,
R can be composed of some fixed interface modes along with some static constraint
modes leading to the well-known Craig-Bamptom method [37]. In some other class
of methods, the reduction basis, R, is built with some free-interface and attachment
modes which are known as free-interface methods [132],[101]

During the analysis of very large complex systems, we can divide the domain of
the considered complete model, Ωc, into some non-overlapping component domains,
Ωk, as shown in Figure 5.1.

With this representation, we are setting up some partial domains which we
can analyze independently. Each domain has its internal nodes leading to internal
degrees of freedom. Similarly, each domain has some interface nodes leading to some
inteface degrees of freedom. From this point on, variables related to the internals
of a component are going to be denoted with the subscript i. And the variables
related to the interfaces of a component are going to be denoted with the subscript

b. Moreover, we are going to use the i and b notations heavily on the component
level representations and during the theory discussed further on.

Component Mode Synthesis procedure involves 3 basic steps:

1. Division of the selected domain into components,

2. Definition of the ingredients of the reduction space, R, and reduction on the
component level,

3. Coupling (assembly) of the reduced component matrices to assemble the global
reduced system matrices. This step is achieved by enforcing the compatibility
and equilibrium conditions between the interfaces of the different components
used.

These steps are also summarized schematically in Figure 5.1.



5.3. Craig-Bampton reduction for vibro-acoustics

5

75

Ωc

Ω1

Ω2

Divide domain into components

Reduce at component level

Couple the reduced components

Interface nodes

Figure 5.1: Component Mode Synthesis steps on a simple domain, Ωc

5.3. Craig-Bampton reduction for vibro-acoustics
In this section, we will outline the details on how we can come up with reduced vibro-
acoustic component matrices by using the Craig-Bampton reduction technique [37]
which was originally developed for problems with symmetric component matrices.
In Section 5.3.1, we will briefly outline the Craig Bampton technique used for com-
ponent level reduction. As a follow up, in Section 5.3.2, we will outline some options
to compute symmetric vibro-acoustic component matrices. Computational details
on how to compute the ingredients of a CB basis will be outlined in Section 5.3.3.

5.3.1. Brief overview of Craig-Bampton approach
In this short subsection, we are going to provide a brief overview of the Craig-
Bampton (CB) approach for structural systems with displacement degrees of free-
dom only. The general transformation equation from physical coordinate space to
generalized component modal space reads as

u(s) = R(s)η(s) (5.8)

where R(s) represents the reduction basis, transformation matrix or a Ritz basis.
u(s) represents the displacement degrees of freedom of the component and η(s)

represents the generalized degrees of freedom. In (5.8), (s) superscript is used to
represent the component or substructure under consideration.

CB approach is an improved version of Guyan’s static condensation idea [72]
with fixed interface modes. The reduction basis is constructed by using the static
constraint modes and the fixed interface component modes. The first set is necessary
to facilitate the component coupling on the interfaces. It also guarantees that a
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statically complete representation is set up in the absence of dynamic contributions.
The second set of vectors, namely fixed interface modes, represent the internal
dynamics of the component when the interfaces of the component are fixed.

For the component under consideration, we are going to use the following parti-
tioned form of the general equation of motion,

[
Mbb Mbi

Mib Mii

](s) [
üb

üi

](s)

+

[
Kbb Kbi

Kib Kii

](s) [
ub

ui

](s)

=

[
fb

fi

](s)

+

[
gb

0

](s)

(5.9)

where subscript b represents the boundary degrees of freedom and subscript i rep-
resents the internal degrees of freedom of the component. Moreover, in (5.9), f

represents the external forces and g represents the interface force due to the neigh-
bouring components. From this point on, we will drop the (s) superscript from
the component equations as presented in (5.9). Note that the system partitioning
is done on the basis that the application points of the external forces are used as
the parts of the partition boundary. This is not a must but, in practice, leaves the
internal degrees of freedom excitation free.

Constraint modes are calculated by statically imposing a unit displacement on
the interface degrees of freedom one at a time while keeping the displacements of the
other interace degrees of freedom zero. It is also assumed that there are no reaction
forces internally, namely,

[
Kbb Kbi

Kib Kii

] [
Ib

Ψc

]

=

[
Rb

0

]

(5.10)

where Rb represents the unknown interface reactions. By using the second block
row, we can write the constraint mode matrix as follows,

Ψc = −K−1
ii Kib (5.11)

which results in the final expression for the constraint modes, namely,
[

Ib

Ψc

]

=

[
Ib

−K−1
ii Kib

]

(5.12)

Component fixed interface normal modes of the structure are obtained by re-
straining the boundary degrees of freedom. Namely, solving the undamped eigen-
value problem for the internal partition of the component matrices,

(Kii − λjMii) {φii}j = 0, j = 1, 2, ..., m (5.13)

where λj , {φii}j are the jth eigenvalue and the corresponding mode shape, respec-
tively. And m is the number of the normal modes selected for computations. Gener-
ally, fixed interface modes are selected according to an target frequency, fT . In this
respect, fixed interface modes with frequencies of up to two times the selected fre-
quency, fT , are kept in the CB basis. In a matrix representation, the fixed interface
modes read as,

[
Φii

]
=

[
{φii}1 {φii}2 . . . {φii}m

]
(5.14)
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The overall reduction basis, Rcb, for the component is written as,

[
ub

ui

]

=

[
Ib 0

Ψc Φii

]

︸ ︷︷ ︸

Rcb

[
ub

ηi

]

(5.15)

In the Craig-Bampton approach, as in (5.15), boundary degrees of freedom ub is
kept and used for component coupling. The internal degrees of freedom of the
component is now represented as a linear combination of fixed interface modes and
static constraint modes.

5.3.2. Options for symmetric vibro-acoustic component matri-

ces and its advantage
By following a similar notation to the one used in (5.9), we can write the equation
of motion for a vibro-acoustic component as follows,

Mcq̈ + Kcq = f + g (5.16)

where

Mc =

[
Ms 0

KT
sf Mf

]

(5.17a)

Kc =

[
Ks −Ksf

0 Kf

]

(5.17b)

are the vibro-acoustic component matrices and

q =

[
u

p

]

(5.17c)

represents the degrees of freedom of the component.

In (5.16), f represents the externally applied forces/sources on the component
and g represents the forces/fluxes2 that originate from the neighbouring compo-
nents.

For structural-acoustic problems, to end up with symmetric components matri-
ces in (5.16), we can use two approaches to scale the component equations repre-
sented with the original nonsymmetric component matrices. These will shortly be
outlined next. It is important to note that we used these matrices in Section 4.3
while explaining the details of the symmetric eigenvalue solver, namely, presented
in (4.21) and (4.22). At this point, we extend on the same approach but use the
transformation matrices that result in a block diagonal stiffness matrix.

2Since we are now working with components involving acoustics, acoustic sources and fluxes are
involved.
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1. Multiplying (5.16) from left with the scaling matrix, κ, namely,

κ =

[
I Ksf K−1

f

0 Mf K−1
f

]

(5.18)

In (5.18), we assumed that Kf is a regular invertible matrix.

2. In (5.16), applying a coordinate transformation for the original degrees of
freedom, q, namely by using,

[
u

p

]

=

[
K−1

s Ms K−1
s Ksf

0 I

] [
ũ

p

]

≡ τ q̃ (5.19)

where the transformation matrix τ is used for the transformation3. Similar to
κ-matrix above, in (5.19), we assume that Ks is invertible so that the numerical
operations can be performed without problems4. In the new coordinate space,
q̃, ũ has the meaning of acceleration. This is the acceleration for which the
related inertia would create as the static response together with the pressure
on the interface.

The tranformed symmetric equations of motions of the component can be written
for κ and τ cases, respectively, as follows

κMq̈ + κKq = κf + κg (5.20)

Mτ ¨̃q + Kτ q̃ = f + g (5.21)

In the subsequent discussions, systems written with κ and τ matrices are going to
be called κ-symmetric system and τ -symmetric system, respectively.

In the light of the ongoing discussion, we can write the symmetric forms of the
component matrices with κ and τ , respectively, as follows,

[
(Ms + Ksf K−1

f KT
sf ) Ksf K−1

f Mf

Mf K−1
f KT

sf Mf K−1
f Mf

]

︸ ︷︷ ︸

Msym

[
ü

p̈

]

+

[
Ks 0

0 Mf

]

︸ ︷︷ ︸

Ksym

[
u

p

]

= κ

[
fs

qf

]

(5.22)

[
MsK−1

s Ms MsK−1
s Ksf

KT
sf K−1

s Ms (Mf + KT
sf K−1

s Ksf )

]

︸ ︷︷ ︸

Msym

[
¨̃u

p̈

]

+

[
Ms 0

0 Kf

]

︸ ︷︷ ︸

Ksym

[
ũ

p

]

=

[
fs

qf

]

(5.23)

In (5.22) and (5.23), the stiffness matrices of the symmetric representations are in
block diagonal format and still keep their sparse structure. In contrast, the mass

3It must be noted that the transformation in (5.19) is a change of basis.
4However, this is not strictly necessary and is going to be generalized later for singular matrices
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matrices of both of the represetations are now fully populated and lost their sparse
nature. At first sight, this can be seen as a numerical disadvantage. However, in
Section 5.3.3, we are going to outline some practical ways to overcome this numerical
difficulty when we need to solve for the fixed interface modes of the components.

Additionally, this practice has one more advantage from the reduction perspec-
tive. Namely, since we created symmetric component matrices, we can use the same
projection matrix on the left and right while performing the reduction as presented
in (5.7). Looking from a different perspective, by using either κ or τ matrices, we
implicitly end up using different left and right projection spaces for the original non-
symmetric component matrices. Namely, by using τ , we can conceptually represent
the reduction on the component level as follows

RTMτR˜̈η + RTKτRη̃ = RTf + RTg (5.24)

In (5.24), τR can be interpreted as the right projection space for the original non-
symmetric system. Similarly, R can be seen as the left projection space. Eventually,
the component matrices are implicitly projected on different subspaces left and right.
With this practice, we still guarantee real eigenvalues for the original non-symmetric
component matrices because, eventually, the resulting reduced matrices will be sym-
metric. Some researchers used the same projection space on the left and right [75,
102]. However, they had to explicitly use a block diagonal decoupled projection
basis to retain the relations between the off-diagonal coupling blocks of the com-
ponent matrices5. Only in this way, they could still guarantee real eigenvalues on
the reduced problem. In comparison to these references, here, we present a more
natural approach by using a transformation matrix to retain the original properties
of the non-symmetric component matrices.

5.3.3. Ingredients of the reduction basis for vibro-acoustic com-

ponents, Rcb

Fixed interface modes

In general, the fixed-interface modes of a component, which has symmetric matrices,
can be computed with a symmetric Lanczos solver. The details can be found in [63,
151]. In order to solve for the internal modes or fixed interface modes of of any
components, we have to solve the symmetric eigenvalue problem, namely,

Ksym,iiφsym,ii = λsym,iiMsym,iiφii (5.25)

where Ksym and Msym represent the symmetric matrices of the component un-
der consideration. It is important to emphasize one point here. Namely, (5.25)
is not the symmetric form of the internal vibro-acoustic problem (κiiKii, κiiMii)
or (Kiiτii, Miiτii) but the partition of the matrices that correspond to the inter-
nal degrees of freedom of the symmetric vibro-acoustic problem of the component.
Mathematically speaking, these matrices can be written in pairs as ((κK)ii , (κM)ii)
or ((Kτ)ii , (Mτ)ii).

5We used a similar approach with a block diagonal projection space in Chapter 3 to retain the
properties of the original system matrices.
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While solving the eigenvalue problem in (5.25), there are two important costs to
pay. The details of these operations are outlined next, namely,

1. Factorization of Ksym,ii: We can write the internal partition of the stiffness
matrix, Ksym,ii, provided for the pre- and post-multiplication matrices, κ and
τ , respectively, as follows,

Kκ
sym,ii =

[
Ks,ii 0

0 Mf,ii

]

(5.26a)

Kτ
sym,ii =

[
Ms,ii 0

0 Kf,ii

]

(5.26b)

The advantage of using either of the above mentioned forms is their block-
diagonal structure. And this practice decreases the numerical cost of the
factorization.

2. Inverse iteration step for the Lanczos iterations: During the Lanczos
iterations, after the factorization is performed, we have to perform the solution
for the next iterate vector in the sequence, namely with,

x̃k+1
i = K−1

sym,iiMsym,iix
k
i (5.27)

where xk
i is the current iteration vector and x̃k+1

i is the next iteration vector
in the sequence. Moreover, for this step, we have to perform the matrix-
vector multiplication Msym,iix

k
i at step k of the iteration process. However,

as outlined before in Section 5.3.2 and in [151], it is not possible to compute
Msym,iix

k
i explicitly because of the fully-populated nature of the mass matrix.

In brief, we can perform the inverse iteration step of the Lanczos process
provided that we can also perform the matrix vector multiplication Msym,iix

k
i

efficiently.

An efficient way to compute Msym,iix
k
i

As outlined above, we can not explicitly compute and extract the internal partition
of the mass matrix for the calculations to be performed for the internal modes. The
aim of this subsection is to show that we can arrange the operations to compute
Msym,iix

k
i efficiently.

In Section 5.3.2, we outlined two options for creating symmetric component
matrices. For the following computations, we propose to use the post-multiplication
option, namely, τ . The reason of this approach can be understood after writing the
symmetric mass matrix explicitly with the help of τ matrix. Namely, the explicit
symmetric mass matrix reads as,

Msym = Mτ =

[
Ms 0

KT
sf Mf

] [
K−1

s 0

0 I

]

︸ ︷︷ ︸

Aτ

[
Ms Ksf

0 I

]

︸ ︷︷ ︸

Bτ

(5.28)
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In this representation, τ was written in the form of multiplication of two matrices,
namely, with Aτ and Bτ [52, 53, 51]. After presenting the multiplication explic-
itly, as in (5.28), we can come to the reason why we selected the τ option for the
operations. Namely, considering a dummy vector x̂ for the multiplication with the
expression in (5.28), we can write,

Msymx̂ =

[
Ms 0

KT
sf Mf

] [
K−1

s 0

0 I

] [
Ms Ksf

0 I

]

︸ ︷︷ ︸

τ=Aτ Bτ

[
x̂s

x̂f

]

(5.29)

While performing the multiplications from right to left in (5.29), we can observe
that, during the first two matrix-vector multiplications, the fluid side of the input
vector, x̂f , is not affected by the multiplication with τ matrix and is transferred
directly until the last matrix-vector multiplication with the coupled non-symmetric
component mass matrix. Therefore, on the fluid side, the number of matrix-vector
multiplications is minimized. This is mainly because of the identity matrices found
on the fluid rows in (5.29).

Looking at the pre-multiplication option with κ, the same reasoning leads to the
following relation,

Msymx̂ =

[
I Ksf

0 Mf

] [
I 0

0 K−1
f

]

︸ ︷︷ ︸

κ=AκBκ

[
Ms 0

KT
sf Mf

] [
x̂s

x̂f

]

(5.30)

In (5.30), we can not observe a similar partial direct transfer relation for the fluid
rows as it was for the τ case. To summarize, we can mention the following points
for the comparison between τ and κ usage, namely,

• As briefly mentioned above, by using κ, additional numerical operations must
be performed on the fluid partition. This is a disadvantage for problems with
large fluid domains which results in large matrices after the discretization
process.

• Besides, for closed cavities, the stiffness matrix representing the fluid side
of the problem becomes singular [114] and this problem appears on every
component having a fluid domain without any boundary conditions except the
interface boundary condition on the coupling surface. Therefore, we also have
to tackle this singularity problem for every component properly. It might also
be good to emphasize that when using τ for the solution of the fixed interface
modes by using (5.26b), we do not have the singularity problem. Because, for
the fluid side of the problem, the internal partition is used assuming that the
boundary pressure degrees of freedom are fixed, pb = 0.

• A similar singularity problem also appears for components that are not con-
strained on the structural side when τ matrix is used. However depending on
the partition and the speficic boundary conditions used on the partition, this
might not always result in a singular stiffness matrix on the structural side.
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In contrast, when κ is used for creating symmetric component matrices, this
singularity problem always exists for the fluid side. We are going to attack
this specific singularity problem related to τ matrix in detail in Chapter 6.

Having provided the above extra points, we can make some useful computational
arrangements in order to compute Msym,iix

k
i for the symmetric component matrix.

We are going to start the discussion from a simple matrix vector product to show
the big picture. Namely, assume for a moment that we can compute the symmeric
mass matrix, Msym, explicitly6 and partition it according to boundary and internal
degrees of freedom. Then, to find the matrix vector multiplication, Msym,iix

k
i , we

can write
[
rb

ri

]

=

[
Msym,bb Msym,bi

Msym,,ib Msym,ii

] [
xk

b

xk
i

]

(5.31)

and set the boundary partition of xk to 0, namely, xk
b = 0, to get to

[
rb

ri

]

=

[
Msym,bix

k
i

Msym,iix
k
i

]

(5.32)

Eventually, ri is the resulting vector, we are looking for.
Now, we have to adjust our computations for the actual case where we can not

explicitly compute Msym,iix
k
i as mentioned above in (5.31) and (5.32). Returning

to (5.28), we have shown that the symmetric matrix can be written as a multiplica-
tion of three matrices. And we will use this fact here in order to find Msym,iix

k
i at

step k with some additional operations. Namely, the operations can be summarized
as follows:

Msym,iix
k
i =

([
Ms 0

KT
sf Mf

] [
K−1

s 0

0 I

] [
Ms Ksf

0 I

] [
xk

s

xk
f

]

b=0

)

i

(5.33)

In (5.33), it is important to note that we did not perform any ordering on the ma-
trices which was performed for the conceptual representations in (5.31) or in (5.32).
Instead, we propose to set the boundary degrees of freedom for vector, xk, to zero
and perform the multiplication in this way. The subscript b=0 on the vector xk,
in (5.33), is used to show that the boundary degrees of freedom are set to zero.
After setting the related boundary degrees of freedom to zero, the rest of the mul-
tiplications are performed from right to left. Eventually, the degrees of freedom
that corresponds to the internal degrees of freedom are extracted from the resulting
vector. This is shown with the subscript i on the complete expression in (5.33).

Our aim was to compute Msym,iix
k
i and, to achieve this goal, we are not only

using the internal partitions of the component matrices but the full component ma-
trices as shown in (5.33) explicitly. The important point to note from a substruc-
turing perspective is that we are still using the component matrices and operations
are performed on the component level. This practice is still inline with the central
idea of operations on the component level coined in [37].

6Without considering the numerical efficiency issues
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Inverse iteration

Having found Msym,iix
k
i , we have to perform the inverse iteration with the block

diagonal stiffness to find the next iteration vector in the sequence. Namely, repeating
here (5.27),

x̃k+1 = K−1
sym,iiMsym,iix

k
i

where

Ksym,ii =

[
Ms,ii 0

0 Kf,ii

]

(5.34)

A particularly useful side of the block diagonal stiffness matrix in (5.34) is that
Kf,ii is not singular. Moreover, for realistic three dimensional problems, the fluid
part of these matrices is generally larger in size than their structural counterparts.
We can use this information in order to decrease the factorization costs by using
iterative solution techniques for systems involving Kf,ii. Namely, a hydrid-solver
can be developed to perform the inverse iteration step. Since Ksym,ii is a block
diagonal matrix, the structural and the fluid parts of the matrix can be factorized
independently for the following forward-backward solution steps. Moreover, our
previous experience shows that Kf,ii is suitable for iterative solution techniques,
such as the Preconditioned Conjugate Gradient method [76]. And the convergence
is quite fast in the number of iterations. Although, from a condition number point of
view, the above mentioned matrices are advantageous, during the inverse iteration
process of the Lanczos technique, we have to perform solutions for many right hand
side vectors which makes direct solvers a better candidate for the tests performed
here. Therefore, we did not use iterative solution techniques for the inverse iterations
performed with Kf,ii

7.

With the shortly outlined methods in this Section, we can efficiently compute
the fixed interface modes of the component by using the Lanczos technique [63].

Constraint modes

As briefly outlined in Section 5.3.1, the constraint modes of the component are
written as follows,

Ψc = −K−1
sym,iiKsym,ib (5.35)

where, in this case, we used the symmetric component stiffness matrix and the
related partitions of that matrix. The explicit form of the contraint modes can also
be written in a block diagonal format, namely, as follows,

Ψc =

[
Ψc,s

Ψc,f

]

≡
[−M−1

s,iiMs,ib 0

0 −K−1
f,iiKf,ib

]

(5.36)

7This is a possible future research topic for decreasing costs of the solvers in this component mode
synthesis technique
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Overall reduction basis

Having outlined the details of the calculation of the ingredients of the reduction basis
on a τ -symmetric system, we can shortly outline the order of degrees of freedom to
be used for the CB transformation and the overall reduction basis Rcb.

The degrees of freedom of a component used for a CB transfomation over a
vibro-acoustic component is written as follows,

q̃ =

[
q̃b

q̃i

]

≡







[
ũ

p

]

b[
ũ

p

]

i







(5.37)

It is important to note that, for the selection in (5.37), we keep both the structural
and fluid degrees of freedom on the interfaces and on the internal regions of the
components. We believe that this is a natural partitioning for, almost, all the vibro-
acoustic problems both in two and three dimensions. This approach is general for
any partitioning of the vibro-acoustic domain: part of the interface could be fully
structural or acoustical (then pb or ub would not exist), whereas another part could
be coinciding with any vibro-acoustic boundary.

Under the light of the ongoing discussion, we can write the overall reduction
basis explicitly as follows,







[
ũ

p

]

b[
ũ

p

]

i







=







I 0 0

0 I 0

−M−1
s,iiMs,ib 0 Φsym,ii,s

0 −K−1
f,iiKf,ib Φsym.ii,f













[
ũ

p

]

b[
ηũ,i

ηp,i

]






≡ Rcb

[
q̃b

ηi

]

(5.38)

or, more compactly,

q̃ = Rcbη̃, η̃ =

[
q̃b

ηi

]

(5.39)

where, in (5.38), ηũ,i and ηp,i represent the modal coordinates of the internal struc-
tural and fluid parititons after the CB transformation.

5.3.4. Reduced matrices and their structure

Stiffness matrix, k

The closed form of the reduced stiffness matrix after a Craig-Bampton type reduc-
tion for a system with symmetric matrices is written as [63],

k = RT
cb(Kτ)cbRcb ≡ RT

cbKsym,cbRcb ≡
[
kbb 0

0 Ωii

]

(5.40)

where Ksym,cb is the reordered form of the symmetric stiffness matrix, Kτ8. In (5.40),
Ωii represents the diagonal matrix of internal eigenvalues resulting from (5.25),

8Otherwise, it is not possible to multiply correct terms with each other in a CB representa-
tion/ordering.
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namely,

Ωii =






λ1
i

. . .

λm
i




 (5.41)

and m represents the selected number of internal modes for the component. kbb

represents the stiffness matrix which is statically condensed on the the interfaces of
the component and written as follows,

kbb = Ksym,bb −Ksym,biK
−1
sym,iiKsym,ib (5.42)

In order to find (5.42), we have to partition the block diagonal stiffness matrix
of the component provided in (5.26b), namely,

Ksym =







[
Ms 0

0 Kf

]

bb

[
Ms 0

0 Kf

]

bi[
Ms 0

0 Kf

]

ib

[
Ms 0

0 Kf

]

ii







(5.43)

Placing the appropriate matrices into the closed format representation of the reduced
stiffness matrix, namely in (5.42), we can write the boundary partition of the reduced
stiffness matrix of any component as

kbb =

[
Ms 0

0 Kf

]

bb

−
[
Ms 0

0 Kf

]

bi

[
Ms 0

0 Kf

]−1

ii

[
Ms 0

0 Kf

]

ib

(5.44)

which can be reduced to a block diagonal matrix, namely,

kbb =

[
Ms,bb −Ms,biM

−1
s,iiMs,ib 0

0 Kf,bb −Kf,biK
−1
f,iiKf,ib

]

(5.45)

or, equivalently into,

kbb =

[
Ms,bb + Ms,biΨc,s 0

0 Kf,bb + Kf,biΨc,f

]

(5.46)

by using the definitions of Ψc,s and Ψc,f from (5.35).
It is worth mentioning that kbb found with a normal Craig&Bampton transfor-

mation in (5.40) is a fully populated matrix. For vibroacoustic problems, however,
we can write kbb as a block diagonal matrix composed of two smaller fully populated
matrices as shown in (5.46).

Mass matrix, m

In contrast to the stiffness matrix, we do not have a special structure for the sym-
metric mass matrix of component. In order to end up with the symmetric reduced
mass matrix, we have to perform the projection written as

m = RT
cb(Mτ)cbRcb ≡ RT

cbMsym,cbRcb (5.47)
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Assuming that we can perform the above projection, we can write the closed form
representation of the reduced mass matrix [63] as follows, namely,

m =

[
mbb mbm

mmb I

]

(5.48)

with the fully populated matrices

mbb =Mbb −MbiKii
−1Kib

−KibKii
−1Mib + KbiKii

−1MiiKii
−1Kib

(5.49)

mmb = mbm
T ≡ Φii

T
(
Mib −MiiKii

−1Kib

)
(5.50)

However, the closed form of the symmetric mass matrix for the component was writ-
ten in (5.23) and it was also mentioned before that, from a numerical perspective,
it is not feasible to compute the closed form representation of the mass matrix due
to its fully populated nature. This, in turn, means that we can not extract the
related matrix partitions, Mbb, Mib and Mii, in (5.49) and in (5.50). As a first
impression, it might not seem possible to compute the reduced mass matrix in an
efficient manner. However, we can make use of the same trick we used to compute
Msym,iix

k
i in Section 5.3.3 along with a reordering on the rows of Rcb.

Namely, in a matrix multiplication operation written as C = ATBA, the result-
ing matrix, C, is not going to change if we can order the rows of matrix A9 and
also both the rows and columns of matrix B10 in the same order. In other words,
this order change does not affect the numerical values and the location of the terms
of the resulting matrix C. Namely,

C = ATBA ≡ ÃTB̃Ã (5.51)

where Ã and B̃ represent the reordered matrices. Therefore, we can use this simple
algebraic property to convert the order of rows in Rcb to perfom the multiplication
in (5.47). Namely, the matrices representing the symmetric mass matrix in (5.47)
is not ordered in this specific case but only Rcb has to be ordered. To perform
the reordering on rows of Rcb, we have to find the mapping between the degrees of
freedom in the CB order and the given (u−p) order over the components. Namely,
the list of the degrees of fredom in

q =

[
qb

qi

]

≡







[
u

p

]

b[
u

p

]

i







(5.52)

has be to re-ordered back to the list of degrees of freedom in

qup =

[
u

p

]

(5.53)

9which corresponds to Rcb in actual operation
10which corresponds to Mτ in actual operation
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In brief, we have to set up and use a proper mapping between the list of degrees of
freedom in q and qup. We are going to denote this specific mapping between the
order of degrees of freedom with q ↔ qup.

By using the mapping between qup and q, we can reorder the rows of Rcb to
(u− p) order over the component, namely,

Rcb
(q↔ qup)−−−−−−→

[
Rcb,u

Rcb,p

]

(5.54)

where Rcb,u represents the part of Rcb that matches with the structural degrees
of freedom of the component. Similarly, Rcb,p represents the part of Rcb that
corresponds to the fluid degrees of freedom.

After the ordering, we can write the explicit form of the reduced mass matrix
in (5.47), namely,

m =

[
Rcb,u

Rcb,p

]T [
Ms 0

KT
sf Mf

] [
K−1

s 0

0 I

] [
Ms Ksf

0 I

] [
Rcb,u

Rcb,p

]

(5.55)

Another interesting and important note for the computations in (5.55) is that
we can store some information and reuse this information later. Namely, the stored
information is going to be used during the coupling of component matrices as will
be explained in Section 5.5. To show this, we are going to perform the operations
in the following order:

• First perform the multiplication of the following matrix terms:
[
V1

V2

]

=

[
K−1

s 0

0 I

] [
Ms Ksf

0 I

] [
Rcb,u

Rcb,p

]

(5.56)

– While performing the operations, we can store the partial result in the
first multiplication from the right

a = MsRcb,u + Ksf Rcb,p (5.57)

• With this substitution given in (5.57), (5.56) can be written as,
[
V1

V2

]

=

[
K−1

s a

Rcb,p

]

(5.58)

• Next, perform the multiplication of the first two matrices in (5.55) by also
making use of (5.57), namely,

b =
[(

RT
cb,uMs + RT

cb,pKT
sf

)

RT
cb,pMf

]

≡
[
aT RT

cb,pMf

]
(5.59)

• Eventually, compute the resulting reduced mass matrix with (5.58) and (5.59)

m =
[
aT RT

cb,pMf

]

︸ ︷︷ ︸

b

[
V1

V2

]

≡ aTK−1
s a + RT

cb,pMf Rcb,p (5.60)

(5.60) has the same format as presented in (5.48) provided that the fixed interface
modes computed with the techniques outlined in Section 5.3.3 are mass normalized.
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5.4. Assembling reduced component matrices
In Section 5.3, we outlined the details on how we can end up with reduced symmetric
component matrices with all the computational details. In this section, we will show
how these reduced component matrices can be assembled together to compute the
global system dynamics. The general framework presented in this section is based
on [90]. The outline is as follows. In Section 5.4.1, we are going to outline the
general mathematical framework of component coupling. In Section 5.4.2, we are
going to show the effects of creating symmetric matrices on the compatibility and
equilibrium relations between the components. In Section 5.4.3, we are going to
provide the details of coupling reduced component matrices found in Section 5.3.

5.4.1. Component coupling with symmetric matrices

Coupling framework in the physical domain

In general when a physical domain is modelled with the finite element technique
and subsequently divided into components, the equation of motion of a component
s, which is in connection with other components, can be written as,

M(s)q̈(s) + K(s)q(s) = f (s) + g(s) (5.61)

where M(s) represents the symmetric mass matrix of the component, K(s) represents
the symmetric stiffness matrix of the component, q(s) represents the vector of some
physical degrees of freedom, f (s) and g(s) represent the external forces acting on
the component, if any, and the vector of interface forces that originate from the
neighbouring components, respectively.

Components interacting with other components can be coupled provided that
the two following conditions are met, namely,

1. Displacements at the interfaces of the components should match, which is the
compatibility condition,

2. Force equilibrium on the interfaces should be satisfied, which is the equilibrium
condition.

The general system of equations of motion of k components which are to be
coupled can written in a block diagonal format as

Mq̈ + Kq = f + g (5.62)

with

M = diag(M(1), . . . , M(k)) ≡






M(1)

. . .

M(k)




 (5.63)

K = diag(K(1), . . . , K(k)) (5.64)
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1 2

q
(1)
i

q
(2)
i

q
(1)
b q

(2)
b

g
(1)
b g

(2)
b

Figure 5.2: A simple domain divided into two components, no external forces

q =






q(1)

...
q(k)




 , f =






f (1)

...
f (k)




 , g =






g(1)

...
g(k)




 (5.65)

In the following two small subsections, we are going to shortly outline the dis-
placement and force compatibility requirements in order to couple components with
matching meshes. To explain the concepts, we are going to make use of the simple
model depicted in Figure 5.2. Figure 5.2 also depicts the degrees of freedom used
for the interfaces, qb, and the degrees of freedom internal to the component, namely,

qi. In the same figure, we can also see the connecting interface forces, namely, g
(1)
b

and g
(2)
b for component 1 and 2, respectively.

Compatibility condition and Boolean matrices

Compatibility condition requires that the displacements on the interfaces must be
equal. Investigating Figure 5.2, this condition can be easily written in the following
form, namely

q
(1)
b = q

(2)
b ←→ q

(1)
b − q

(2)
b = 0 (5.66)

Recalling the definition of q from (5.65), we can also partition the individual com-
ponents of that vector into internal and boundary degrees of freedom, namely

q(k) =

[

q
(k)
b

q
(k)
i

]

(5.67)

With this scheme, the complete set of degrees of freedom in Figure 5.2 can be written
as,

q =








q
(1)
b

q
(1)
i

q
(2)
b

q
(2)
i








(5.68)

By making use of the definition in (5.68), we can represent the compatibility condi-
tion presented in (5.66) with a signed Boolean matrix notation which is introduced
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in [90] leading to

[
I 0 −I 0

]








q
(1)
b

q
(1)
i

q
(2)
b

q
(2)
i








= 0⇐⇒ Bq = 0 (5.69)

where the identity blocks correspond to matching interface degrees of freedom. It
is also possible to present (5.69) as follows

[
B(1) B(2)

]
[
q(1)

q(2)

]

= 0 with B(1) =
[
I 0

]
, B(2) =

[
−I 0

]
(5.70)

By extending (5.70), we can generalize the signed Boolean compatibility condi-
tion (5.70) for k components as follows [35],

Bq =
[
B(1) . . . B(k)

]






q(1)

...
q(k)




 ≡ 0 (5.71)

Each B(k) in B is written as

B(k) =
[

B
(k)
b 0

]

(5.72)

where the zero block corresponds to the internal degrees of freedom and B
(k)
b cor-

responds to the boundary degrees of freedom.
It is important to note that (5.71) represents the constraints on the matching

degrees of freedom on the interfaces of the components. Namely, each row in the
compatibility matrix represents a constraint equation. Therefore, the row size of
the compatibility matrix is equal to the number of constraints on the degrees of
freedom. A more detailed presentation with a simple example is also given in the
Appendix of [90].

Another form of compatibility condition is closely related to the finite element
assembly procedure. Namely, it is represented as a mapping between the degrees of
freedom of the components and a unique set of degrees of freedom representing the
coupled or global system behavior. For the system in Figure 5.2, we can define this
mapping as follows:








q
(1)
b

q
(1)
i

q
(2)
b

q
(2)
i








=







I 0 0

0 I 0

I 0 0

0 0 I












q
(1)
b

q
(1)
i

q
(2)
i




←→ q = Lq̃ (5.73)

where q̃ represents the unique set of degrees of freedom of the coupled system11.
L represents the Boolean localization matrix. Similar matrices to the Localization

11It is important to reemphasize that there are no repetitions in this set.
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matrix are also used in finite element literature to perform the direct assembly
of element matrices into a global system matrix[55]. However, in the context of
component mode synthesis, these matrices are used to assemble components, in
other words super-elements, which are built up of many elements.

It is possible to device a useful relation between B and L. We can observe this
relation by using (5.73) in (5.71) which results in

BLq̃ = 0 =⇒
{

L = null(B)

BT = null(LT)
(5.74)

As a conclusion, L is the nullspace of B. L and B are used in the primal and dual
assembly approaches which are going to be discussed in the following sections.

Force equilibrium on the interfaces

Force equilibrium between the matching interface degrees of freedom is the second
condition for the assembly of components. Originating from Newton’s third law of
motion, it states that equal but opposite forces must act on the individual compo-
nents connecting to a common interface. Returning to Figure 5.2, we can define this
relation for the connecting interface line as follows:

g
(1)
b + g

(2)
b = 0 (5.75)

If we define the interface forces per component as follows

g(k) =

[

g
(k)
b

0

]

(5.76)

then the global interface force vector for the system in Figure 5.2 can be written as

g =

[
g(1)

g(2)

]

(5.77)

The force compatibility can also be extracted by multiplying the global interface
force vector g with the transpose of L and equating the result to 0, namely,

LTg = 0 −→





I 0 I 0

0 I 0 0

0 0 0 I











g
(1)
b

0

g
(2)
b

0







= 0 −→





g
(1)
b + g

(2)
b

0

0



 =





0

0

0



 (5.78)

where we can observe that the first row gives the force compatibility we search for.
The rest of the rows pertain to the internal degrees of freedom of the components
which do not contribute to the force compatibility on the interfaces but kept here
for completeness.

The global interface force vector g can also be written by considering a common
set of Lagrange multipliers, λ. Namely, these Lagrange multipliers represent the
intensity of the forces connecting the matching interface degrees of freedom. Since
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g
(1)
b and g

(2)
b must act in opposite directions, we can write the global interface force

vector with the help of the above defined Boolean compatibility matrix, B, namely,

g = −BTλ ≡







−λ
0

λ

0







(5.79)

It is important to note at this point that, by defining the interface forces with (5.79),
the interface equilibrium is automatically satisfied, namely,

LTg = 0 −→ −LTBTλ = 0 (5.80)

which is also proven once more by (5.74).
Equations (5.62), (5.71) and (5.78) represent the general format of the equations

which are going to be used for coupling different components, namely,

Mq̈ + Kq = f + g (5.81a)

Bq = 0 (5.81b)

LTg = 0 (5.81c)

Two different coupling procedures can be used in order to couple different com-
ponents. Namely, primal and dual assembly approaches can be employed [90]. In
the next two sections, we are going to outline these two approaches shortly.

Primal assembly in physical domain

Primal assembly approach works by transforming the dual set of degrees of free-
dom defined in (5.65) into a vector having a unique set of degrees of freedom by
using (5.73) and (5.78). In essence, it is similar to the finite element assembly of ele-
ment matrices. During this transformation, the interface forces are also eliminated.
Namely, we can write (5.81a)-(5.81c) as follows

ML¨̃q + KLq̃ = f + g (5.82)

LTg = 0 (5.83)

noting that, due to (5.74), (5.81b) always holds. Premultiplication of (5.82) by LT,
noting also LTg = 0 with which we cancel the internal connecting forces, results in
the primal assembled system of equations in the physical coordinate space,

M̃¨̃q + K̃q̃ = f̃ ←→







M̃ = LTML

K̃ = LTKL

f̃ = LTf

(5.84)

Dual assembly in physical domain

In a dual assembly framework, Lagrange multipliers, namely, the interface forces,
also become a part of the system equations. Namely, by integrating (5.79) into (5.81a)-
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(5.81c), we can write the dual representation of the problem as follows:

Mq̈ + Kq + BTλ = f (5.85a)

Bq = 0 (5.85b)

Note that in transforming (5.81a)-(5.81c) to (5.85a)-(5.85b), we make use of

LTg = −LTBTλ = 0 (5.86)

which is always satisfied due to the null space properties. (5.85a)-(5.85b) can be
recast into a matrix format as follows

[
M 0

0 0

] [
q̈

λ̈

]

+

[
K BT

B 0

] [
q

λ

]

=

[
f

0

]

(5.87)

Coupling of reduced component matrices

As outlined with details in Section 5.3, we can perform the reduction on the com-
ponent level by a reduction matrix. To extend this practice to more components
which have symmetric system matrices, a block diagonal basis filled with indepen-
dent component reduction bases is constructed. Namely,

q = Rη, (5.88)

with

q =








q(1)

q(2)

...

q(k)








, R =






R(1)

. . .

R(k)




 , η =








η(1)

η(2)

...

η(k)








(5.89)

In (5.89), q(k), R(k) and η(k) represent the physical degrees of freedom, reduction
basis and the generalized degrees of freedom of component k, respectively.

Substituting (5.88) in (5.81a), we find

MRη̈ + KRη = f + g + r (5.90)

Following the analysis performed in Section 5.2.1, we force the residual to be or-
thogonal to the selected basis, R, namely, RTr = 0. Then, the reduced decoupled
equations of motion of the components can be written as

RTMR
︸ ︷︷ ︸

Mm

η̈ + RTKR
︸ ︷︷ ︸

Km

η = RTf
︸ ︷︷ ︸

fm

+ RTg
︸ ︷︷ ︸

gm

(5.91)

where Mm and Km represent the matrices storing the non-assembled reduced com-
ponent matrices (or, modal matrices) in a block diagonal format. To couple these
reduced but decoupled system equations, we also need to impose the compatibility
and equilibrium requirements for the generalized coordinates.
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The compatibility equation in the generalized coordinates is written by substi-
tuting (5.88) in (5.81b) as

BRη = 0 ≡ Bmη = 0, with Bm = BR (5.92)

In analogy to the physical domain, to end up with a unique set of generalized coor-
dinate set, we also have to define the following transformation over the generalized
degrees of freedom, namely,

η = Lmξ (5.93)

where, after substituting (5.93) in (5.92), one can easily see that

Bmη ≡ BmLmξ = 0, (5.94)

which means that Lm must span the null space of Bm. If the interface degrees
of freedom of the component are kept as generalized degrees of freedom then Bm

is still a Boolean matrix, for instance, when a CB-type reduction basis is used as
in this research. After the above discussion, we can also write the following set of
equations for the generalized coordinates, which are analogous to (5.81a)-(5.81c),
namely,

Mmη̈ + Kmη = fm + gm (5.95a)

Bmη = 0 (5.95b)

LT
mgm = 0 (5.95c)

Primal assembly with reduced components

Substituting (5.93) in (5.95a)-(5.95c), we directly make use of the vector set ξ with
a unique set of interface degrees on freedom, namely,

MmLmξ̈ + KmLmξ = fm + gm (5.96a)

BmLmξ = 0 (5.96b)

LT
mgm = 0 (5.96c)

(5.96b) is automatically satisfied since Lm = null (Bm). Premultiplication of (5.96a)
with LT

m and noting that LT
mgm = 0 yields the primal assembled system for the

coupled structures as

mgξ̈ + kgξ = fg with







mg = LT
mMmLm

kg = LT
mKmLm

fg = LT
mfm

(5.97)

Dual assembly with reduced components

We can write the dually assembled system by imposing the interface equilibrium by
choosing the interface forces in generalized coordinates as follows,

gm = −BT
mλ (5.98)
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Figure 5.3: Interface variables on a 2D vibro-acoustic domain, g
(1)
b

, g
(2)
b

, q
(1)
b

, q
(2)
b

where λ corresponds to the force intensities. The force equilibrium is now always
satisfied due to (5.96c),

−LT
mBT

mλ = 0 (5.99)

The equations of motion of the dually assembled system in the generalized coordi-
nates can therefore be written as

[
Mm 0

0 0

] [
η̈

λ̈

]

+

[
Km BT

m

Bm 0

] [
η

λ

]

=

[
fm

0

]

(5.100)

5.4.2. Effect of symmetric reduced component matrices on as-

sembly
In Section 5.3, we provided the details of the reduction performed on symmetric
component matrices but did not explicitly mention the effect of creating reduced
symmetric component matrices on component coupling. Moreover, in Section 5.3.2,
we proposed two options that facilitate to write symmetric component matrices,
namely, either by using κ or τ . Also, in Section 5.3.3, we outlined some numerical
ways to come up with an efficient framework for the calculations to be performed.
Some important additional points will be outlined here to provide a basis to couple
the reduced component matrices while using τ -symmetric system matrices on the
component level. The common effect of the transformations performed either with
τ or κ is that they modify the interface variables. These interface variables are
also depicted in Figure 5.3 which shows two vibro-acoustic components with the
corresponding coupled fluid and structural domains, Ωf and Ωs, respectively.

Explicitly writing the equations of motion for the τ -symmetric system compo-
nents, we get

M(1)
c τ (1)¨̃q

(1)
+ K(1)

c τ (1)q̃(1) = f (1) + g(1) (5.101a)

M(2)
c τ (2)¨̃q

(2)
+ K(2)

c τ (2)q̃(2) = f (2) + g(2) (5.101b)
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It is important to note that, in (5.101a) and (5.101b), the main variables of the
component were transferred from q to q̃ according to the relation in (5.19). As a

result, the structural part of the interface variables q
(1)
b and q

(2)
b have to be updated.

However, with this transformation, the interface forces, g(1) and g(2), are not af-
fected. Therefore, with the transformations performed with τ , the first condition of
component coupling will be affected, namely, the compatibility condition12 between
the interface degrees of freedom.

Notes for κ-transformation

τ -symmetric system transformations affected the interface degrees of freedom, and,
in contrast, the κ-symmetric system transformations affect the interface forces.
Namely, we can write the κ-symmetric equations of motions for the two compo-
nents depicted in Figure 5.3 as follows

κ(1)M(1)
c q̈(1) + κ(1)K(1)

c q(1) = κ(1)f (1) + κ(1)g(1) (5.102a)

κ(2)M(2)
c q̈(2) + κ(2)K(2)

c q(2) = κ(2)f (2) + κ(2)g(2) (5.102b)

In (5.102a) and (5.102b), we can observe the effect of κ-transformation on the in-
terface forces, g(1) and g(2). Namely, the interface forces are modified with the
corresponding scaling matrix of the component under consideration, κ(1)g(1) and
κ(2)g(2). In otherwords, second condition for component coupling, mentioned in
Section 5.4.1, was affected by these transformations, namely, the force equilibrium
between the components on the interface.

5.4.3. Assembly of τ-symmetric reduced vibro-acoustic com-

ponent matrices
Having pointed out the effects of creating symmetric component matrices, namely,
the changes on the interface forces and on the interface degrees of freedom, we are
going to continue our discussions with τ -symmetric systems. Namely, the details
of the assembly of τ -symmetric reduced components is going to be explained next.
The reasons for selecting τ -symmetric systems were detailed in Section 5.3.3 from a
numerical perspective and the reduction is performed based on the developed theory
therein.

We can write the τ -symmetric equivalent of (5.81a)-(5.81c) by introducing q =
τ q̄ as follows,

Mτ ¨̃q + Kτ q̃ = f + g (5.103a)

Bτ q̃ = 0 (5.103b)

LTg = 0 (5.103c)

where

τ =






τ (1)

. . .

τ (k)




 , q̃ =






q̃(1)

...
q̃(k)




 (5.104)

12Matching of the interface degrees of freedom
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We have to note that, for the vibro-acoustic system, in (5.103a), M and K are
constructed with the nonsymmetric component matrices, Mc and Kc presented
in (5.17a) and (5.17b), respectively. Namely,

M =







M
(1)
c

. . .

M
(k)
c







, K =







K
(1)
c

. . .

K
(k)
c







(5.105)

Primal assembly of τ-symmetric reduced matrices

Having introduced the transformation to q̃, the CB transformation is applied on
these transformed set of degrees of freedom. Namely,

q̃ = Rcbη̃ ⇐⇒






q̃(1)

...

q̃(k)




 =







R
(1)
cb

. . .

R
(k)
cb












η̃(1)

...

η̃(k)




 (5.106)

Substituting (5.106) in (5.103a) and premultiplying the equation by RT
cb results in

mm
¨̃η + kmη̃ = fm + gm (5.107)

where

fm = RT
cbf , (5.108a)

gm = RT
cbg (5.108b)

mm = RT
cbMτRcb ≡






m(1)

. . .

m(k)




 (5.108c)

km = RT
cbKτRcb ≡






k(1)

. . .

k(k)




 (5.108d)

It is important to note that, while writing (5.110a), we enforce the condition that
RT

cbr = 0.
(5.110a) represents the system with the decoupled reduced component matrices

as shown in (5.108c) and (5.108d). fm and gm represent the modal external and
internal forces, respectively. These decoupled reduced component matrices have to
be coupled to end up with the reduced system level matrices of the problem in the
primal assembly framework.

Substituting (5.106) in (5.103b) and arranging, the modified compatibility rela-
tion reads as

BτRcbη̃ = 0 ≡ Bm,τ η̃ = 0, with Bm,τ = BτRcb (5.109)
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To conclude, with these transformations, we can write the modal τ -reduced system
equations as follows,

mm
¨̃η + kmη̃ = fm + gm (5.110a)

BτRcbη̃ = 0 (5.110b)

LT
mgm = 0. (5.110c)

To assemble the components in a primal way over these generalized coordinates,
we have to follow the same path that was used in Section 5.4.1. Namely, a Lo-
calization matrix must be constructed. This Localization matrix can be written as
follows,

η̃ = L̃mη̃g (5.111)

Using (5.111) in (5.110b) reads as,

BτRcbL̃mη̃g = 0 (5.112)

resulting in L̃m = null(BτRcb). Since we enforced symmetry with a transformation
matrix in (5.112), the null space, L̃m is not only computed with BRcb anymore
as outlined in Section 5.4.1. Namely, it has to be computed for the generalized
coordinates in the transformed coordinate space by using the modified compatibility
condition.

By using (5.111), we can write (5.110a) in the following form, namely,

mmL̃m
¨̃η

g
+ kmL̃mη̃g = fm + gm (5.113)

However, as stated originally for the primal assembly formulation in Section 5.4.1,
we can not directly premultiply (5.113) by L̃T

m since the interface forces will not
cancel with this practice, namely, L̃T

mgm 6= 0. And, therefore, it would not be pos-
sible to connect the component matrices without violating the force compatibility
requirement.

We can prove this by using the definition of the modal interface force vector
provided for the dual assembly case, (5.98). Namely,

L̃T
mgm ≡ −L̃T

mBT
mλ 6= 0 (5.114)

since, as outlined above, in (5.112), L̃m spans the null space of BτRcb but not
Bm. Eventually, the correct null space which facilitates the assembly of the internal
forces, which, as a result, cancels them is the null space of Bm, namely, Lm. This
is a logical result since the interface forces did not change with a transformation
performed with τ . Besides, the compatibility of interface forces/sources are still
represented with the modal compatibility of the original degrees of freedom of the
problem.

To summarize and conclude, to correctly assemble the τ -symmetric reduced com-
ponent matrices in a primal assembly framework, we need to use different left and
right null spaces, namely, Lm and L̃m, respectively. The right null space originates
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from the modified compatibility relations of the modified generalized coordinates.
In contrast, the left null space originates from the modal compatibility relations
between the interface forces/sources that were not modified.

Eventually, premultiplying (5.113) by LT
m results in the primal assembled system

resulting in the reduced global system equations, namely,

mg ¨̃η
g

+ kgη̃g = fg (5.115)

where

mg = LT
mRT

cbMτRcbL̃m (5.116a)

kg = LT
mRT

cbKτRcbL̃m (5.116b)

fg = LT
mRT

cbf (5.116c)

It is also important to note that the interface forces/fluxes vanish by the pre-
multiplication with LT

m, namely, LT
mBT

mλ = 0 .
After performing the primal assembly, it is important to note that, although,

mm and km are symmetric matrices, the global assembled matrices mg and kg

are nonsymmetric reduced system matrices which are assembled in the primal way.
Here, we end up with nonsymmetric matrices because of the multiplications with
different left and right null space matrices, Lm and L̃m

13. In addition, these matrices
are going to be fully populated.

Dual assembly of τ-symmetric reduced matrices

While performing the assembly in a dual way, the modified degrees of freedom on the
interfaces or the modified forces acting on the interface degrees of freedom exist for
each component independently. So there is no unification on the degrees of freedom.
Moreover, the interface forces are also not eliminated but appear as extra degrees of
freedom. In contrast to primal assembly, we have to emphasize the following points
for dually assembled problems, namely,

• Interface forces are kept as unknowns in the representation so they do not
have to cancel during the assembly process. Since they can be kept indepen-
dently in the dual assembly framework, they can also be modified as given in
Section 5.4.2, in case κ is used for the transformation operations,

• Coupled interface degrees are not unique after the assembly of the reduced
components so modified interface degrees of freedom could be used directly,

These points might also be considered as analog to coupling of components with
non-matching meshes on the interfaces where the interface variables do not match
explicitly, in a node to node sense.

13Intuitively, we also expect to keep the relations between the off-diagonal coupling blocks on these
reduced non-symmetric matrices, but we have not proven it yet. If our intuition is correct, vibro-
Lanczos can also be used on the reduced problem which might also bring considerable numerical
advantage for problems involving large interfaces.



5

100
5. Locally Symmetric Craig-Bampton Approach for Vibro-Acoustic Problems,

vibro-LsCB

For the vibroacoustic systems considered here, we can assemble two nonsymmet-
ric vibroacoustic components presented in Figure 5.3 in a dual way14. Namely,






M
(1)
c 0 0

0 M
(2)
c 0

0 0 0






︸ ︷︷ ︸

Mdual





q̈(1)

q̈(2)

λ



 +






K
(1)
c 0 B(1)T

0 K
(2)
c B(2)T

B(1) B(2) 0






︸ ︷︷ ︸

Kdual





q(1)

q(2)

λ



 =





f (1)

f (2)

0





︸ ︷︷ ︸

fdual

(5.117)

where, in this case, M
(s)
c and K

(s)
c represent the original non-symmetric vibroacous-

tic component matrices. λ represents the intensity of the interface forces for the
structural domain and the source terms for the acoustic domains acting on the com-
ponents. It is important to recall once more that, while writing (5.117), we made

use of g(s) = −B(s)T
λ. As mentioned in Section 5.4.3, B(1) and B(2) represent the

signed Boolean matrices that are used to explicitly write the component coupling
on the interfaces.

With the notations and variables introduced in Section 5.3 and thereafter, the
reduced system of equations can be explicitly written in a dual framework as

RTMdualτdualR
︸ ︷︷ ︸

mdual

¨̃η + RTKdualτdualR
︸ ︷︷ ︸

kdual

η̃ = RTf
︸ ︷︷ ︸

fdual

(5.118)

where τ defined in (5.104) must be updated to conform with the sizes of the matrices
used in the dual representation, namely,

τdual =





τ (1)

τ (2)

I



 (5.119)

The transformation on the dual coordinates can also be written in a similar fashion
to the previous discussions, namely,

qdual = Rdualη̃dual −→





q̃(1)

q̃(2)

λ










R
(1)
cb 0 0

0 R
(2)
cb 0

0 0 I










η̃(1)

η̃(2)

λ



 (5.120a)

With the outlined analysis, reduced matrices mdual and kdual is written for the dual
representation as follows,

kdual =







k(1) 0 B
(1)
m

T

0 k(2) B
(2)
m

T

B
(1)
m,τ B

(2)
m,τ 0







(5.121a)

mdual =





m(1) 0 0

0 m(2) 0

0 0 0



 (5.121b)

14Selection of two substructures is convenient for mathematical representations but the presented
theory can be extended to systems having more components without any difficulties.
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The reduced component matrices k(k) and m(k) in (5.121a) and (5.121b) were de-
fined in (5.40) and (5.60), respectively. By recalling the definition of the modified
compatibility relation from (5.109), the Boolean matrices for the modal coordinates
are written as follows:

B(k)
m

T
= R

(k)
cb

T
B(k)T

(5.122a)

B(k)
m,τ = B(k)τ (k)R

(k)
cb (5.122b)

It is important to note some points on the dually assembled system given in (5.121a)-
(5.121b). Looking at (5.121a) and (5.121b), we can observe that the upper left
blocks of these reduced matrices keep their symmetric nature in the dual assembly
framework because of the symmetric reduced matrices building these blocks. This
brings some advantages for the solution techniques to be used with dual formula-
tions. However, because of the duality of the interface degrees of freedom kept for
the reduced matrices, the size of the dual-assembled reduced problem is larger than
its primal-assembled counterpart.

Relations between the left and right null spaces from a dual perspective

There is a close relation between the primal and dual assembly options presented in
Section 5.4.3. Once more, by explicitly writing the dual-assembled reduced problem
for two vibroacoustic components, we can clarify these relations. Namely,

[
mm 0

0 0

] [
¨̃η

λ̈

]

+

[
km BT

m

Bm,τ 0

] [
η̃

λ

]

=

[
fm

0

]

(5.123)

with

mm =

[
m(1) 0

0 m(2)

]

(5.124a)

km =

[
k(1) 0

0 k(2)

]

(5.124b)

BT
m =

[

B
(1)
m

T

B
(2)
m

T

]

(5.124c)

Bm,τ =
[

B
(1)
m,τ B

(2)
m,τ

]

(5.124d)

We can separate the block rows of (5.123) and rewrite them as

mm
¨̃η + kmη̃ = fm −BT

mλ (5.125a)

Bm,τ η̃ = 0 (5.125b)

We can think (5.125a) and (5.125b) as the dual counterpart of (5.110a) and (5.110b),
respectively. From Section 5.4.3, we know that to perform a primal assembly, we
need to transform the degrees of freedom of the reduced components into a unique
set and also eliminate the modally reduced interface forces. Applying these require-
ments on (5.125a) and (5.125b), we can shift from a dually assembled problem to a
primal assembled system by
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• Finding the null space, L̃m, of Bm,τ , namely, L̃m = null(Bm,τ ), which per-
forms the transformation, η̃ = L̃mη̃g, and substituting this transformation
into (5.125a)

• Premultiplying (5.125a) with LT
m which is the null space of BT

m, namely, LT
m =

null(BT)

Eventually, we can conclude that we can convert the dual representation in (5.123)
to a primal assembled system. This shows that the primal and dual assembly ap-
proaches are equivalent for the τ -symmetric system representation.

5.5. Some notes on implementation and analysis of

assembled system
Having assembled the reduced component matrices, we have to perform the analysis
on this assembled reduced problem and recover the results back to the physical
domain. The details of these important steps are summarized below, namely,

• Information reuse for computing Bm,τ , definition of Bm,τ was provided
in (5.109). We can also write Bm,τ explicitly as follows:

Bm,τ =
[

B(1)τ (1)R
(1)
cb B(2)τ (2)R

(2)
cb . . . B(k)τ (k)R

(k)
cb

]

(5.126)

which is generalized for k components. Returning back to Section 5.3.4 for
the calculation of the reduced component matrices, we can observe that, to

compute the reduced symmetric matrices, we need to compute τ (k)R
(k)
cb . It is

interesting to note that these expressions also appear in (5.126). Therefore,
we can store some information from previous steps and make use of that
information to construct the blocks in (5.126). It is once more instructive to
recall that Bm,τ is necessary for the primal assembly process to compute L̃m.
Having pointed out this detail, we are mainly concerned with the calculations
performed for the mass matrix. Briefly, V defined in (5.56) is equivalent to

τ (k)R
(k)
cb for the component under consideration. To compute the individual

blocks in (5.126), V must also be multiplied from left with B(k). It is important
to recall that to perform the operations in a CB-scheme, we order our matrices
in predefined order. Namely, the Boolean compatibility matrices were defined
in (5.72) and we repeat that equation here for convenience, namely,

B(k) =
[

B
(k)
b 0

]

Depending on the coupling on the interfaces, B(k) can either become I or
−I or include both if the component has more than one interface. Moreover,
the block 0 was defined for the internal degrees of freedom. If we carefully
investigate V outlined in (5.56) once more, we notice that, for the operations
performed there, it was found in the u−p order of the component. To compute
the blocks in (5.126), we have to reorder the rows of V back to CB-order by
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using the mapping defined for the component as outlined in Section 5.3.4. By
using this convention and after reordering V, one of the blocks in (5.126) can
be explicitly written as follows,

B(k)τ (k)Rk
cb =

[

B
(k)
b 0

]
[

V
(k)
b

V
(k)
i

]

≡ B
(k)
b V

(k)
b (5.127)

To conclude, we can store V which was built during the computation of the
reduced mass matrix and use it for building the blocks in (5.126) without extra
numerical costs except reordering its rows.

• Computation of the null space, Lm and L̃m, as we outlined before we
have to compute the left and right null spaces, Lm and L̃m to assemble the
problem in a primal way and to compute these null spaces we use the QR
decomposition [62] as outlined in [27, 102]. It has been found out there that
this practice does not affect the condition number of the matrices involved
in the numerical operations. It is also important to note that for simple
problems, the null space can also be found by investigating the compatibility
matrix. In this practice, one needs to construct a null space matrix so that
its multiplication with the Boolean compatibility matrix results in a matrix
filled with zeros. However, by using QR decomposition, optimal conditioning
is achieved and the process is automated.

• Reduced system solution and recovery, after the assembly of the global
reduced system matrices presented in (5.115), we have to solve the undamped
eigenvalue problem to compute the approximate eigenvalues and eigenvectors.
Namely, with

(kg − λgmg) η̃g = 0 (5.128)

It is important to recall that kg and mg are nonsymmetric reduced system
matrices. λg represents the approximate eigenvalues found by using the re-
duced problem.
To obtain the physical mode shape approximations, we have to recover/expand
the reduced eigenvector approximations, η̃g, back to full domain. Since, we
used a transformation matrix, τ , we perform this recovery as follows:

q = τRcbL̃mη̃g (5.129)

In (5.129), each component is recovered independently where the resulting
vector q reads as,

q =








q(1)

q(2)

...

q(k)








, with q(k) =

[
u(k)

p(k)

]

(5.130)
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As a last step, the physical vector approximations of each component, q(k), are
mapped back onto the global system vector. Following the analysis presented
in Appendix E, we can conclude that q is an approximation to the right
eigenvectors of the original nonsymmetric problem.

• Information reuse for vector recovery: as it was outlined above for the
computation of Bm,τ , a similar kind of information reuse is also possible while
performing the recovery of the vectors back to the physical domain over a
component model. To explain this step, we have to use (5.129). Namely,
having solved the reduced eigenvalue problem in (5.128), we can use (5.111)
to find the block of generalized coordinates as defined in (5.106), namely,

η̃ = L̃mη̃g (5.131)

To go back to physical degrees of freedom then we have use (5.129), namely,
q = (τRcb) η̃, and use τRcb that was stored using the computations of the
mass matrix. Same practice was also employed in (5.127).

As a result, we reused the same information at two points. Namely, the first
point is to compute the blocks in (5.126) and the second point is to recover
the approximate physical domain vectors on the component level.

5.6. Numerical examples
In this section, we work with a two-dimensional example problem to assess the
developed reduction technique. We are going to present two versions of the same
model. Namely, we will use an academic model with a moderate size. Subsequently,
we are going to show the results on the same model with a finer mesh structure
resulting in more degrees of freedom. The two-dimensional domain is divided into
two components and the component level reductions were performed according to
the theory presented in Section 5.3. Having performed the reduction at the com-
ponent level, the reduced component matrices are assembled by using the primal
assembly outlined in Section 5.4.3 for τ -symmetric system representation. As also
outlined in Section 5.4.3, primal assembly results in nonsymmetric reduced global
nonsymmetric system matrices. The major interest here is on the accuracy of the
computed eigenvalues and the eigenvectors since these are of major importance in
computing the dynamic response of the coupled problems and structures.

The model considered is a two-dimensional cavity model that is coupled to a
structural beam domain. The model was constructed in ANSYS by using the im-
plemented fluid-structure interface. System matrices, node and element tables and
the definition of the degrees of freedom are extracted with the developed MAT-
LAB/C++ interface. The rest of the calculations were performed in MATLAB.
The information on the interface nodes between coupling components, which are
necessary for partitioning and correct coupling on the interfaces, were also extracted
from ANSYS in raw text file format.

For this case, the structural part was modelled with beam elements, namely
BEAM3 in ANSYS. BEAM3 elements have two translational and one rotational de-
grees of freedom. The beam that is coupled to the fluid domain is fully constrained
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Interface line

0.4m

0.3m 0.2m

Component 1 Component 2

Figure 5.4: 2D vibro-acoustic problem, beam(in bold) coupled to 2D rectangular fluid domain,
filled circles represent the fixed boundary conditions on the structure.

at the two ends. It must be noted that, for the composition of the problem we
deal here, the inversion of Ks included in the τ component transformation matrix
is not a problem due to the applied constraints on the structural side. The fluid do-
main was modelled with quadrilateral 2D acoustic fluid elements, namely, FLUID29,
which use pressure and the two translations in plane as the main degrees of freedom.
The interface coupling information between structural and acoustic elements is im-
plemented in FLUID29 element formulation in ANSYS. Apart from the coupling
interface with the beam, the rest of the walls of the model are considered to be rigid
walls. The model and the associated dimensions are provided in Figure 5.4. It is
important to note once more that the mesh used on the corresponding components
exactly match over the interface region. For the numerical experiments conducted,
we selected water as the fluid that fills the acoustic cavity. The related properties of
water is taken as follows: density, 1000 kg/m3, and speed of sound, 1500 m/s. The
properties of the structural beam is given as follows: density, 2700 kg/m3, Young’s
modulus, 71 GPa, and Poisson ratio 0.33, beam height, 5 mm and beam width, 50
mm.

To show the accuracy of the developed technique on the reduced system level,
we defined two performance estimators. The first one is on the calculated reduced
frequencies and the other one is on the recovered mode shape vectors. Namely,

• The error on the frequencies are calculated with respect to the frequencies
calculated by ANSYS, namely,

ǫω =
fred − fANSY S

fANSY S
(5.132)

where fred represents the reduced frequencies extracted with (5.128) and
fANSY S represents the frequencies calculated with ANSYS.

• The error on the mode shape vectors are calculated with an error measure
by using the MAC between the recovered vectors and the mode shape vectors
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computed with ANSYS. This error expression read as,

ǫφ = 1−MAC ≡= 1− |φT
recφANSY S |2

(φT
recφrec)(φT

ANSY SφANSY S)
(5.133)

where φrec represents the physically recovered vectors obtained with (5.129).

5.6.1. Test case 1: academic model
For the first test case, the model shown in Figure 5.4 is meshed with an element size
of 0.01 m resulting in 2238 coupled degrees of freedom in total. For this model, the
fluid domain has 2091 degrees of freedom which is associated with 147 structural
degrees of freedom. The number of interface degrees of freedom resulting from the
red interface line in Figure 5.4 is 44 for this test case. The overview on the degrees
of freedom of the components is provided in Table 5.1 for different fixed interface
mode numbers, m. The reduction ratios with respect to the full component sizes
are plotted in Figure 5.5.

Reduced component matrix sizes

Component Full size m = 10 m = 20 m = 30

1 1391 54 64 74
2 921 54 64 74

Table 5.1: Information on component level degrees of freedom
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Figure 5.5: Matrix size reduction on components

The results calculated with the error estimators in (5.132) and in (5.133) are
plotted in Figures 5.6 and 5.7, respectively. It can be observed from the error plots
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Figure 5.6: Errors on frequencies with respect to ANSYS frequencies
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Figure 5.7: Errors on mode shape vectors with respect to ANSYS mode shapes, 1-MAC
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that the accuracy of the developed reduction technique is quite high for the selected
different fixed interface mode counts.

5.6.2. Test case 2: pseudo industrial-sized model
In this section, we show the performance of the technique on a larger version of
the same model by decreasing the mesh size significantly. The mesh size used for
this model is 0.001 m resulting in 202398 degrees of freedom. The fluid side of
the model consists of 200901 degrees of freedom whereas the structural side of the
model consists of 1497 degrees of freedom. It is important to note that there is a big
difference in the number of degrees of freedom in the fluid and structural domains.
Namely, with the pursued two dimensional modelling, the fluid domain is a surface
extending over a large area in comparison to the structural domain, which is only
modelled as a line for this case.

The interface that divides the full model into components as shown in Figure 5.4
results in 404 interface degrees of freedom. These interface degrees of freedom are
kept on the reduced components for component coupling similar to the analysis
performed in Section 5.6.1. The overview on the degrees of freedom resulting from
the reduction performed is shown in Table 5.2. It is important to note that the
reduced components matrix sizes are calculated with the addition of internal mode
counts to the kept interface degrees of freedom, namely, as 404 + m, in Table 5.2.

Reduced component matrix sizes

Component Full size m = 10 m = 20 m = 30

1 121601 414 424 434
2 81201 414 424 434

Table 5.2: Information on component level degrees of freedom

The accuracy achieved with the reduced order model is also quite satisfactory on
this large model. We can observe the errors on the frequencies and the mode shapes
with respect to ANSYS computed counterparts in Figures 5.9 and 5.10, respectively.

5.7. Summary and conclusions
Based on the well-known Craig-Bampton reduction technique, we proposed a new
and numerically efficient reduction technique for coupled vibro-acoustic problems.
To the author’s knowledge, this technique was not found in the literature before.
The inherent nonsymmetry and the ill-conditioned nature of the coupled matrices
resulting from the discretization process makes these problems very challenging to
solve. Industrial problems in this field require a great deal of computational re-
sources. Moreover, especially if one needs to perform frequency sweeps for these
coupled problems to investigate the effect of different parameters, this cost can
become quite significant. Frequently, local changes and optimization tests can be
applied in some part of the design domain. But, this practice eventually requires a
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Figure 5.8: Matrix size reduction on components
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Figure 5.9: Errors on frequencies with respect to ANSYS frequencies
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Figure 5.10: Errors on mode shape vectors with respect to ANSYS mode shapes, 1-MAC

new eigenvalue analysis and has to be followed by a new frequency sweep to inves-
tigate the effects and/or sensitivity of these changes on the important performance
parameters.

The proposed technique offers a new way in reducing the complexity and the
computational cost for the above mentioned eigenvalue and frequency sweep anal-
ysis. Namely, by partitioning the complete analysis domain into components, one
can come up with substantial savings. Besides, different groups can work on differ-
ent parts of the vibro-acoustic design domain independently and make changes on
these component models without affecting the other groups. Eventually, if a design
change is performed on some of the components, only these components has to be
re-analyzed and reduced with the outlined technique. Subsequently, all the reduced
matrices of the components are coupled and the reduced problem is solved for the
approximation of its global dynamics with a fraction of the computational resources.

Several advantages of the proposed technique can be summarized as follows,
namely,

• With proper numerical arrangements on matrix-vector operations, the ingredi-
ents of the Craig-Bampton reduction basis can be computed with a symmetric
Lanczos type solver efficiently.

• The use of the symmetric transformation matrix automatically results in
proper left and right projection spaces for a Craig & Bampton (CB) type
reduction. One way to interpret this is that the symmetric matrices are re-
duced by using the same trial and test bases15. The other interpretation is

15For instance, in a Galerkin type projection.
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that, for the original non-symmetric component matrices, this practice results
in different but consistent test and trial bases due to the transformation matrix
used16,

• The symmetric reduced matrices computed with a CB type reduction have
some nice sparsity patterns. The technique proposed here also results in sym-
metric component matrices in the reduced format. And, therefore, the reduced
matrices computed with the proposed technique also have these nicely struc-
tured reduced matrices as a result of the operations performed on symmetric
systems,

• Although, on the component level, we can perform the operations with a
symmetric approach and end up with reduced symmetric matrices, it is shown
that the scaling operation performed results in a change in the compatibility
conditions. This change in the compatibility of interface variables necessitates
the use of different left and right null spaces to couple the component matrices
in a primal assembly framework as outlined with details. As a result, the
assembled global reduced matrices of the system are still nonsymmetric due
to the use of different left and right null spaces,

• Eventually, it is also shown that the major dynamic system parameters, namely,
the eigenvalues and eigenvectors can be calculated very accurately with the
proposed technique.

• Additionally, comparing the technique presented in this chapter with the ones
presented in [75, 102], we can list the following advantages:

– We do not omit any terms in the static representation and guarantee a
statically complete representation.

– Fixed interface modes are computed more accurately.

– In the above references, they use a decoupled block diagonal projection
space for reduction. Here, we perform a more natural projection by
the using the transformation matrix which is used to obtain symmetric
component matrices.

Therefore, we can conclude that the technique proposed in this chapter can
efficiently be used to perform component mode synthesis investigations for problems
involving vibro-acoustic coupling.

16Interpreted as a Petrov-Galerkin type projection.
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Extending vibro-LsCB for

Systems with Singularities

In Chapter 5, we presented a new Craig-Bampton type reduction technique for
structural-acoustic problems. In this chapter, we provide details for its extension
and generalization to systems that have singularities, namely, for components with-
out constraints. In combination with Chapter 5, the contents of this chapter is also
a part of the same journal manuscript under preparation.

6.1. Introduction
Up to this point, we always assumed that Ks is a regular invertible matrix. However,
in a more general vibro-acoustic system, some of the components might have no
constraints applied on them so that the structural stiffness matrix Ks becomes
singular. In this case, the transformation matrix τ can not be used directly for
creating symmetric component matrices. One possible example of this scenario is
depicted in Figure 6.1 where a two dimensional domain is divided into 3 components.
The bold lines in the figure represent the structural domains which are coupled to
the associated fluid domains. In Figure 6.1, we can see the constrained nodes on
components 1 and 3 but there are no constraints on component 2. Recalling the
transformation matrix, τ , namely,

[
u

p

]

=

[
K−1

s Ms K−1
s Ksf

0 I

]

︸ ︷︷ ︸

τ

[
ũ

p

]

(6.1)

we can clearly realize that there exists a singularity problem for component 2.
Namely, we are not able to use τ transformation matrix directly due to the singular

Constrained

Component 1

Fluid 1

Structure 1

Component 2

Fluid 2

Structure 2

Constrained

Component 3

Fluid 3

Structure 3

Figure 6.1: Structural-acoustic coupled domain with 3 components, free-free middle component
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nature of Ks since K−1
s does not exist mathematically for component 2 depicted in

Figure 6.1. In this short chapter, we will outline some algebraic manipulations in
order to circumvent this problem and represent the local symmetry in the space of
elastic models.

In Chapter 5, in Sections 5.3.2 and 5.3.3, we outlined the options to create
symmetric component matrices and the numerical details on performing operations
with these matrices. It must be noted that the theory presented in this chapter
can also be used to perform the equivalent operations when κ matrix is used for
component transformations and when the singularity of Kf has to be tackled.

6.2. Solution with singularities
Since we are going to deal with the solution of singular systems, we provide a short
overview here to represent the components used in the representation. Over the
structural part of the problem, the most general solution of a singular linear system
of equations

Ksxs = bs (6.2)

is written as [63]1,

xs = K+
s PT

s bs + Rsαs ≡ xgen + Rsαs (6.3)

where Ks is the stiffness matrix for the structural domain. In (6.3), K+
s represent

a generalized inverse obtained for instance as follows [63],

K+
s =

[
K−1

s,11 0

0 0

]

(6.4)

where Ks,11 is a nonsingular matrix whose dimension is equal to the rank of Ks,
namely Ks,11 is the largest nonsingular submatrix of the operator matrix, Ks.

PT
s bs represents a self-equilibrated load vector. In the case of a singular system

of equations, we can only find a solution with respect to the arbitrary rigid body
vector components only and only if the load vector is self-equilibrated [63].

By using (6.3), we can also write the purely elastic component of the solution
vector by making the rigid body mode vectors in Rs and the general solution vector
x Ms-orthogonal where Ms represents the mass matrix of the structural domain.
Namely, if we premultiply (6.3) by RT

s Ms, we can write,

RT
s Msxs = RT

s MsK+
s PT

s bs + RT
s MsRsαs (6.5)

Enforcing RT
s Msxs = 0, we can see that

αs = −RT
s MsK+

s PT
s bs (6.6)

1Assuming a solution exists
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where we assumed that the rigid body mode vectors are mass-normalized, namely,
RT

s MsRs = I. Using the definition in (6.6), we can write the general solution vector
in (6.3) only in the space of elastic modes as,

xe = K+
s PT

s bs + Rs

(
−RT

s MsK+
s PT

s bs

)
(6.7a)

≡
(
I−RsRT

s Ms

)
K+

s PT
s bs (6.7b)

≡ PsK+
s PT

s bs ≡ K⊕bs (6.7c)

where the projector Ps is mathematically defined as [49],

Ps =
(
I−Rs(RT

s MsRs)−1RT
s Ms

) RT
s MsRs=I−−−−−−−−→ Ps =

(
I−RsRT

s MS

)
(6.8)

xe in (6.7c) does not contain any components in the direction of the vectors
found in Rs

2. In other words, we are explicitly subtracting the components of Rs

to find only the elastic part of the solution vector in the Ms-orthogonal complement3

of the Rs-space.
In the light of the ongoing discussion, without changing the solution vector writ-

ten in (6.3), we can represent the solution vector as a sum of two vector components,
namely, one in the space of elastic modes and the other in the space of Rs. With
this practice, we can write,

xs = xe + Rsα̃s (6.9a)

= Psxs + Rsα̃s (6.9b)

where we can easily verify that xT
e MsRs = 0 meaning that xe vector is in the

Ms-orthogonal complement of Rs. In comparison to (6.3), the intensity of the Rs

component should be different than that of the solution provided in (6.3) because we
filtered out the components of Rs from the first component of the general solution
vector, namely, K+

s PT
s bs. For this case, in order to stress the difference with the

general solution provided in (6.3), the intensity of the rigid body mode vector is
represented with α̃s which is still undetermined.

(6.9b) shows that a solution with respect to the rigid body mode vectors found
in Rs can still be found for symmetric problems as soon as we construct a self-
equilibrated load with PT

s b.
Conceptually, we can visualize the geometric interpretation of the solution vec-

tor given in either (6.3) or (6.9b) by using a two-dimensional space. Namely, in
Figure 6.2, we present a problem which has only one null space vector which is the
green line in Figure 6.2. In other words, the green line spans the null space of the
considered operator matrix, Ks, for this conceptual case. The solution vector is
represented with the black vector as xs. It is clear from Figure 6.2 that we are rep-
resenting the resulting solution vector with different components in (6.3) or (6.9b),
respectively. And these vector sets are represented with the blue and red vectors
for (6.3) and (6.9b), respectively. It is once more important to stress out that the
intensity of the null space vector is undetermined in these representations.

2Here, Ms-orthogonality is assumed in all the orthogonality relations.
3Space that is Ms-orthogonal to vectors in Rs.
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x1

x2

xgen

Rsαs

xe

Rsα̃s

xs

Figure 6.2: Representation of the solution vector with different component vectors

6.3. Representation of symmetric component matri-

ces with singularities
As outlined in Section 6.2, even if singularities exist on the system level, we can still
find the components of the solution vectors with respect to the rigid body mode
vectors defined in Rs. Following the analysis of Section 6.2, for instance (6.9b), the
displacement variable4 ũ can be separated into two components, namely,

ũ = Psũ + Rsα̃s ≡ ˜̃u + Rsα̃s (6.10)

If we consider the degrees of freedom of the system or component, namely, ũ

and p, we can write the following transformation on the component level,

[
ũ

p

]

=

[
Ps 0 Rs

0 I 0

]




ũ

p

α̃s



↔ q̃ = Tsq̃t (6.11)

where q̃t represents the extended coordinates of the component under consideration.
As outlined above, by using (6.11), only the displacement degrees of freedom are
expanded into independent components, namely, in elastic and rigid body mode
vectors, whereas the pressure degrees of freedom, p, are not affected.

Since we can only find the solution of singular systems under special conditions
as outlined in Section 6.2, we first have to project the matrices on Ts to separate the
spaces explicitly and, subsequently, we can use the generalized inverses mentioned
in (6.7c) to find the components in the Ms-orthogonal space to Rs and also in the
space of Rs.

To accomplish this, we can rewrite the symmetric system matrices by using the

4Which is acceleration in this case.
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τ -transformation matrix, namely,

Ksym =

[
Ks −Ksf

0 Kf

]

︸ ︷︷ ︸

Kc

[
K−1

s 0

0 I

]

︸ ︷︷ ︸

τ1

[
Ms Ksf

0 I

]

︸ ︷︷ ︸

τ2

(6.12)

for stiffness matrix and

Msym =

[
Ms 0

KT
sf Mf

]

︸ ︷︷ ︸

Mc

[
K−1

s 0

0 I

]

︸ ︷︷ ︸

τ1

[
Ms Ksf

0 I

]

︸ ︷︷ ︸

τ2

(6.13)

for mass matrix.
While writing (6.12) and (6.13), we did not pay attention to singularity problem

over Ks. To tackle singular cases, we first project Kc, Mc and τ2 on Ts then we
can perform the inversion partially by using generalized inverse, K+

s , in the space
of elastic modes which are Ms-orthogonal to Rs. Namely,

Kls =

TT
s

︷ ︸︸ ︷




PT
s 0

0 I

RT
s 0





[
Ks −Ksf

0 Kf

]

︸ ︷︷ ︸

Kc

Ts
︷ ︸︸ ︷

[
I 0 Rs

0 I 0

]




Ps 0 0

0 I 0

0 0 I









K+
s 0 0

0 I 0

0 0 I









PT
s 0 0

0 I 0

0 0 I









I 0

0 I

RT
s 0





︸ ︷︷ ︸

TT
s

[
Ms Ksf

0 I

]

︸ ︷︷ ︸

τ2

[
Ps 0 Rs

0 I 0

]

︸ ︷︷ ︸

Ts

(6.14)

Mls =

TT
s

︷ ︸︸ ︷




PT
s 0

0 I

RT
s 0





[
Ms 0

KT
sf Mf

]

︸ ︷︷ ︸

Mc

Ts
︷ ︸︸ ︷

[
I 0 Rs

0 I 0

]




Ps 0 0

0 I 0

0 0 I









K+
s 0 0

0 I 0

0 0 I









PT
s 0 0

0 I 0

0 0 I









I 0

0 I

RT
s 0





︸ ︷︷ ︸

TT
s

[
Ms Ksf

0 I

]

︸ ︷︷ ︸

τ2

[
Ps 0 Rs

0 I 0

]

︸ ︷︷ ︸

Ts

(6.15)

Performing the multiplications in (6.14) and (6.15), we end up with the matrices
which have the local symmetry, namely,

Kls =





MsPs 0 0

0 Kf 0

0 −RT
s Ksf 0



 (6.16)
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Mls =






MsK⊕
s Ms MsK⊕

s Ksf 0

KT
sf K⊕

s Ms

(

Mf + KT
sf K⊕

s Ksf + KT
sf RsRT

s Ksf

)

KT
sf Rs

0 RT
s Ksf I






(6.17)

with

K⊕
s = PsK+

s PT
s (6.18)

In all the derivations, we also considered that the rigid body vectors are mass-
normalized, namely, RT

s MsRs = I. Kls and Mls represent the locally symmetric
component matrices in the extended coordinate space.

With the aforementioned properties, the locally symmetric component stiffness
matrix can be partitioned as follows

Kls =

[
Ksym 0

vk 0

]

(6.19)

where

Ksym =

[
Ms 0

0 Kf

]

, vk =
[
0 −RT

s Ksf

]
(6.20)

Similarly the component mass matrix reads as

Mls =

[
Msym vT

m

vm I

]

(6.21)

where

Msym =

[
MsK⊕

s Ms MsK⊕
s Ksf

KT
sf K⊕

s Ms

(

Mf + KT
sf K⊕

s Ksf + KT
sf RsRT

s Ksf

)

]

,

vm =
[
0 RT

s Ksf

]
≡ −vk

(6.22)

To find the symmetric component matrices presented in (6.19) and (6.21), we pro-
jected the necessary matrices on Ts. To complete the presentation on the equations
of motion of the component, we also have to project the external and interface
forces of the component onto the same space. This practice is the analog of equa-
tions presented in Chapter 5, Section 5.4.3. Without going into the details of the
compatibility presentation, we can write the equations of motion for component k
which has a singular Ks matrix as follows

M
(k)
ls

¨̃q
(k)

t + K
(k)
ls q̃

(k)
t = T(k)

s

T
f (k) + T(k)

s

T
g(k) (6.23)

It is important to note that (6.23) is an extension of equation (5.103a) for com-
ponents with singularities.
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6.3.1. Format of the reduced component matrices in the ex-

tended coordinates
In the form of (6.19) and (6.21), the symmetric parts of the matrices can be reduced
in a standard Craig&Bampton (CB) fashion. We can perform the regular projection
operations to come up with the reduced system matrices. However, there is an
additional point to pay attention to. Namely, we only have to perform the CB
reduction in the space of elastic modes and we do not change the system components
in the space of Rs. We can write the CB transformation in the extended coordinate
space as follows:

[
q̃

αs

]

=

[
Rcb 0

0 I

] [

ξ̃

αs

]

↔ q̃t = Rcb,tη̃t (6.24)

where q̃t represents the transformed coordinates shown in (6.11). It is important to
note that to perform the reduction on the component level, in (6.24), q̃t must be
ordered properly before projection. It is worth mentioning that, in (6.24), there is
no transformation for the rigid body mode vector intensities. In this practice, Rcb,t

represents the extended CB projection basis where the row size is increased by the
size of the null space of the singular operator, Ks.

In closed form, the reduction basis is similar to the one used for nonsingular
cases presented in Chapter 5 and reads as,

Rcb =

[
I 0

Φc Φii

]

(6.25)

with

Φc = −K−1
sym,iiKsym,ib (6.26)

Fixed interface modes, Φii, of the coupled components result from the solution
of the eigenvalue problem with Ksym,ii and Msym,ii as it was outlined before for
regular components.

Using the ordered forms of the matrices Kls and Mls
5, we can write the reduced

form of the component matrices as follows,

kt =

[
Rcb 0

0 I

]T [
Kcb

sym 0

vcb
k 0

] [
Rcb 0

0 I

]

=

[
RT

cbK
cb
symRcb 0

vcb
k Rcb 0

]

(6.27)

for the stiffness matrix and as

mt =

[
Rcb 0

0 I

]T [
Mcb

sym 0

vcb
m I

] [
Rcb 0

0 I

]

=

[

RT
cbM

cb
symRcb RT

cbv
cb
m

T

vcb
mRcb I

]

(6.28)

for the mass matrix.
kt and mt represent the reduced component matrices in the extended coordinate

space which is denoted with the t subscript. It is also worth mentioning that,

5To perform the projections, the orders must match.
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in (6.27) and (6.28), row and column sizes of vcb
mRcb and vcb

k Rcb equal the size
of the null space of the component stiffness matrix Ks. Eventually, the reduced
matrices of a component in the extended space includes the null space contributions
in addition to the normal reduction terms originating from the projection of the
component matrices on the component reduction basis, Rcb.

6.3.2. Effect of singularity transformations on compatibility re-

lations of reduced component matrices
Similar to the nonsingular cases, the transformation used in (6.11) also has an
effect on the compatibility relations for the components that have a singular Ks

matrix. (6.11) was used to project some associated matrices onto the space where
we could perform the solution with the help of the pseudo-inverse, namely, K⊕

S .

Recalling the discussion in Chapter 5, we already presented the general compat-
ibility relation as follows,

Bq = 0
q=τ q̃→ Bτ q̃ = 0 (6.29)

or, in matrix format,

[
B(1) B(2) · · · B(k)

]








τ (1)

τ (2)

. . .

τ (k)















q̃(1)

q̃(2)

...
q̃(k)








= 0 (6.30)

where B includes the Boolean matrices, B(k), storing the compatibility relations
between the components.

As we have shown in the introduction part of Section 6.3, we still can create a lo-
cally symmetric representation for components that have singularities, however, the
compatibility relation in (6.30) has to be rewritten by reconsidering the coordinate
transformations over the singular components, if any.

Namely, for components with singularities, we have to perform an additional
transformation on the Boolean matrices. This additional transformation is necessary
due to the explicit representation of the components of the solution vector in the
space of rigid body mode vectors and also in the space of elastic mode vectors
as it was presented explicitly in (6.11). Since the original variables of the system
have been transferred to the new space, namely, q̃t, we also have to represent the
compatibility relations in this new space. However, it is important to note that
we only have to perform this transformation on the components with singularities,
namely, for components with a singular Ks. For components with a non-singular Ks

operator, we do not need to perform this transformation and the theory presented
in Chapter 5 applies directly.

For simplicity and the ease of representations, let us assume that we are perform-
ing the component level reductions over the system presented in Figure 6.1 where
the middle component has the singularity issue. For this system, the modified com-
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patibility relations can be written in a matrix format as follows,

[

B(1) B(2)T
(2)
s B(3)

]





τ (1)

τ (2)⊕

τ (3)









q̃(1)

q̃
(2)
t

q̃(3)



 = 0 (6.31)

It is important to note that, in (6.31), for component 2, to perform the transforma-
tion operations with τ -matrices we have to write the relations in the new coordi-
nate space where the components were explicitly separated into two complementary
spaces as outlined before.

We can generalize the above compatibility transformation for a component with
singularities and present the closed form expression as,

B(k)T(k)
s τ (k)⊕

q̃
(k)
t = 0 (6.32)

where, for the specific component, τ (k)⊕
, by also referring to (6.14) or (6.15), can

be explicitly written as follows,

τ (k)⊕
=




K

(k)
s

+
0 0

0 I 0

0 0 I










P
(k)
s

T
0

0 I

R
(k)
s

T
0






︸ ︷︷ ︸

T
(k)
s

T

[
Ms Ksf

0 I

]

︸ ︷︷ ︸

τ2

[
Ps 0 Rs

0 I 0

]

︸ ︷︷ ︸

T
(k)
s

(6.33)

It is important to note that, in (6.33), to perform the operations, the matrices
should be ordered in the CB-order to be able to perform the multiplications in a
consistent manner with B(k). For the above presentation, numerical operations must
be performed with the correct order of the involving matrices and details on how
to perform these multiplications in an efficient manner were detailed in Chapter 5.
Therefore, similar numerical operations must also be followed during the operations
performed here.

Recalling the analysis outlined in Section 6.3.1 and the one in Chapter 5 for regu-
lar components, the reduced generalized form of the compatibility relation presented
in (6.31) reads as,

BtτtRcb,tη̃t = 0 (6.34)
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where

Bt =
[

B(1) B
(2)
t · · · B(k)

]

with B
(k)
t = B(k)T(k)

s (6.35a)

τt =








τ (1)

τ (2)⊕

. . .

τ (k)








, Rcb,t =









R
(1)
cb

R
(2)
cb,t

. . .

R
(k)
cb









(6.35b)

η̃t =








η̃(1)

η̃
(2)
t
...

η̃(k)








(6.35c)

In (6.35a), (6.35b) and (6.35c), subscript t is used to represent the components
with singularities. And the representation can be generalized for systems having
regular and singular components. Eventually, depending on the nature of the com-
ponents whether having singularities or not, the ingredients of the matrices provided
in (6.35a), (6.35b) and (6.35c) have to be arranged and used properly.

6.3.3. Generalized primal assembly

Having provided the effect of the singularity transformation on the compatibility
relations, we are going to shortly outline the details of the assembly of the reduced
component matrices in a primal way and generalize it. Theoretical framework of the
assembly process was provided before for regular components in Chapter 5 and the
discussion provided here is built based on the theory and notations used therein.

The modal τ -reduced system equations were written before in Chapter 5 for
components with regular Ks matrices as follows,

mm
¨̃η + kmη̃ = fm + gm (6.36a)

BτRcbη̃ = 0 (6.36b)

LT
mgm = 0. (6.36c)

where mm, km, fm and gm were presented in the modal coordinates also. Here, we
show the extension of this system of equations for systems with singularities.

Namely, for systems having the singularity issue, the reduced component mass
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and stiffness matrices can be generalized as follows,

mm,t = RT
cb,tMτtRcb,t ≡








m(1)

m
(2)
t

. . .

m(k)








(6.37a)

km,t = RT
cb,tKτtRcb,t ≡








k(1)

k
(2)
t

. . .

k(k)








(6.37b)

It is again important to note that, in (6.37a) and (6.37b), subscript t represents
the reduced components with singularities. M and K store the original nonsym-
metric coupled matrices of the components in a block diagonal format as presented
in (5.105). For the general representation, (6.36b) is transformed into (6.34). As a
last step, we have to transform (5.110c). In this transformation, we can make use
of the representation of the component level equations of motion given in (6.23).

Recalling the discussions on the relations between the Boolean matrices and the
interface forces, we wrote before in (5.79), namely,

g = −BTλ ≡ −









B(1)T

B(2)T

...

B(k)T









λ (6.38)

which can be extracted from a common set of interface forces/fluxes acting between
the components of the complete vibro-acoustic system.

However, as presented in (6.23), we need to perform the transformation also on
the interface forces/fluxes of a component which is necessary to tackle the singularity
issue correctly. Namely, assuming that component k has a singular Ks involved, the
transformed interface force/flux vector reads as,

g
(k)
t = T(k)

s

T
g(k) (6.39)

By using (6.38), the interface force/flux vector for component k can be written

as g(k) = −B(k)T
λ which filters the related entries from the common vector λ

(see (6.38)). Using this relation in (6.39), we can write the final form on the com-
ponent level as follows,

g
(k)
t = −T(k)

s

T
B(k)T

λ (6.40)

(6.40) represents the interface force/flux vector in extended coordinates as it was
presented in (6.11).
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Having set the basis for the transformations and following (5.79) and (5.108b)
from Chapter 5, the most general form of the modal interface force/flux vector can
be written as

gm,t = −RT
cb,tNsBTλ ≡ −









g
(1)
m

g
(2)
m,t
...

g
(k)
m









(6.41)

where

Ns =









I(1)

T
(2)
s

T

. . .

I(k)









(6.42)

and Rcb,t was also defined before in (6.33). And, in (6.41) and (6.42), we assumed
that component 2 has a singular stiffness matrix therefore the transformations must
be applied on this component. However, we can easily generalize the presentation
for a system having more components with singular stiffness matrices. For this,
proper projections must be applied for the components that has the problem with
the singularity of Ks.

To conclude, we can write the generalized system with the reduced component
matrices and the compatibility relations as,

mm,t
¨̃ηt + km,tη̃t = fm,t + gm,t (6.43a)

BNT
s τtRcb,tη̃t = 0 (6.43b)

LT
m,tgm,t = 0 (6.43c)

It is important to point out that (6.43a) to (6.43c) are counterparts of (5.110a)
to (5.110c).

Following the detailed discussion provided in Chapter 5 for the primal assembly
of the symmetric reduced system matrices, we follow the same path to perform
the assembly for the generalized system outlined in (6.43a) to (6.43c). Namely, we
construct a localization matrix [90] in the form of

η̃t = L̃m,tη̃
g
t (6.44)

where, again, it is important to note that L̃m,t transforms the interface degrees
of freedom of the reduced component matrices into a set where they are uniquely
defined. And, it is this practice that facilitates the component coupling on the
interfaces in a primal assembly framework. Similar to the analysis performed in
Section 5.4.1, we substitute (6.44) in (6.43b) to get

(
BNT

s τtRcb,t

)
L̃m,tη̃

g
t = 0 (6.45)
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Observing (6.45), we can easily note that L̃m,t = null(BNT
s τtRcb,t) which represents

the right null space that is used to assemble the reduced components in the extended
coordinate space.

Referring to Section 5.4.1, to complete the primal assembly of the components,
we also have to cancel the interface forces/fluxes, namely, gm,t in (6.43a). This
is already presented in (6.43c), and in order to find Lm,t, we have to recall the
definition in (6.41). Namely, rewriting (6.43c) by substituting (6.41) results in

−LT
m,t

(
RT

cb,tNsBT
)
λ = 0 (6.46)

From (6.46), we can also note that Lm,t = null
(

(RT
cb,tNsBT)T

)

.

As a result, substituting (6.44) in (6.43a) and premultiplying (6.43a) by LT
m,t,

we can find the primal assembled system equations in the extended coordinate space,
namely,

m
g
t
¨̃η

g

t + k
g
t η̃

g
t = f

g
t (6.47)

where

m
g
t = LT

m,tmm,tL̃m,t (6.48a)

k
g
t = LT

m,tkm,tL̃m,t (6.48b)

f
g
t = LT

m,tfm,t (6.48c)

Eventually, m
g
t and k

g
t represent the system level reduced nonsymmetric matrices

which are used to approximate the dynamic response of the full model.

6.4. Numerical example
In this section, we present a two-dimensional academic test case to assess the results
found with the generalized representation outlined above. The selected example is
similar to the model that is used in Section 5.6 but the dimensions are slightly
modified. Namely, a two-dimensional cavity is modelled where the fluid domain
is coupled to a structural beam. The finite element model is again constructed in
ANSYS by using the implemented structural-acoustic interface. System matrices,
node and element tables, the definition of the degrees of freedom, information on
the interfaces of the components are also extracted from ANSYS with the developed
interface. The length and height of the test domain are 1m and 0.4m, respectively.
Test domain is depicted in Figure 6.3. The component domains with the corre-
sponding dimensions are also shown in the same figure. Moreover, we also show the
component interfaces with the dashed lines in Figure 6.3.

The structural part is modelled with beam elements, namely, BEAM3 in ANSYS,
having two translational and one rotational degrees of freedom. Coupling beam is
fully constrained at the two ends. The fluid domain is modelled with quadrilat-
eral 2D acoustic fluid elements, namely, FLUID29, which use pressure and the two
translations in plane as the main degrees of freedom. The interface coupling infor-
mation between structural and acoustic elements is implemented in ANSYS. The
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rest of the walls of the model are considered to be rigid. We use matching meshes
on the interfaces of the components. For the numerical experiments conducted, we
selected water as the fluid that fills the acoustic cavity. The related properties of
water is taken as follows: density, 1000 kg/m3, and speed of sound, 1500 m/s. The
properties of the structural beam is given as follows: density, 2700 kg/m3, Young’s
modulus, 71 GPa, and Poisson ratio 0.33, beam height, 5 mm and beam width, 50
mm.

Structure

Fluid1

2

30.4m

0.3m 0.5m 0.2m

Figure 6.3: 2D structural-acoustic test domain

To show the accuracy of the reduced problem with the generalized technique
presented, we use the following error estimator which is similar to the one used in
Section 5.6, namely,

ǫω =
fred − ffull

ffull
(6.49)

where fred represents the reduced frequencies extracted from the reduced matrices
presented in (6.47) and ffull represents the frequencies calculated by using the full
coupled system matrices.

The model in Figure 6.3 is meshed with an element size of 0.02 m resulting in
1218 coupled degrees of freedom in total. For this model, the fluid domain has 1071
degrees of freedom. The structural beam part has 147 degrees of freedom. The
number of interface degrees of freedom resulting from the dashed interface lines in
Figure 6.3 is 24 for this model, in which 21 (the number of nodes in y direction) is the
number of acoustic degrees of freedom and 3 is the number of structural degrees of
freedom (translations in two directions, x and y, and a rotation dof). The overview
on the degrees of freedom of the components is provided in Table 6.1 for different
fixed interface mode numbers, m. We have to note that the reduced component
matrix size of component 2 is slightly increased due to the explicit separation of
the rigid body and elastic mode components as outlined in Section 6.3. Namely,
the middle component has 36 additional rows/columns in comparison to reduced
matrices of the other components.

6The column size of the null space of Ks on this component is 3.
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Reduced component matrix sizes

Component Full size m = 8 m = 16

1 381 32 40
2 624 59 67
3 261 32 40

Table 6.1: Information on component level degrees of freedom

5 10 15

10−8

10−7

10−6

10−5

10−4

10−3

Mode number

ǫ ω

Frequency errors for different fixed interface mode numbers, m

m = 8
m = 16

Figure 6.4: Error for different internal mode counts
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6.5. Summary and conclusions
In this chapter, we extended the method presented in Chapter 5 and generalized
the technique for components including singularities. Namely, the transformation
to symmetric format can not be performed explicitly due to the singularity of the
structural stiffness matrix, Ks, which is used in the transformation matrix τ .

Nevertheless, by using the generalized inverse concept, we show that it is possible
to represent the solution of a singular linear system of equations as a combination
of two components: one in the space of the rigid body vectors7 and the other
in the space of elastic modes. With this practice, we can still write the explicit
symmetric forms of the component matrices and perform the projections with these
matrices. Since we explicitly separate the solution vectors into two spaces, the
effect of this operation is also reflected on the structure of the symmetric component
matrices. Namely, the resulting matrices have two blocks where one of these blocks
is represented in the space of elastic modes and the other block is represented in the
space of rigid body vectors. Subsequently, similar to Chapter 5, we show that we
can perform a normal CB reduction by performing the projection on the symmetric
blocks of the component matrices. And the blocks represented in the space of rigid
body vectors are condensed in size.

Last, we show that the compatibility equations must also be arranged according
to the transformation to the extended coordinate space. In analogy with Chapter 5,
these modified interface compatibility relations are used to formulate a generalized
primal coupling approach for the reduced component matrices.

On an academic test case, the reduction performance and the accuracy of the
results found with the reduced problem are tested. It is shown that the relative
errors on the eigenvalues for different fixed interface mode counts is very small.
Although, the model used in this chapter is an academic model resulting in small
matrices, we can also conclude that substantial reduction can be achieved both on
the component and assembled system level.

7In otherwords, the vectors spanning the null space of Ks.
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Recommendations

7.1. Conclusions of the thesis
With the increase in the detail of the models used in engineering simulations, the
requirement for efficient simulation tools for large industrial finite element models
has increased substantially. This thesis addresses some contributions to the body of
the numerical solution techniques available in the literature. Namely, vibro-acoustic
problems are investigated in which a structural and acoustic domain are strongly
coupled. And the coupling between the domains can not be neglected for realistic
predictions most of the time. As stated in the introduction, the goal of the research
was

• To improve and/or propose new numerical solution techniques for the solution
of vibro-acoustic problems,

• To develop new model order reduction (MOR) techniques for vibro-acoustic
problems.

The research presented in detail in the main matter of the thesis outlines two
main contributions with these initially stated objectives: development of eigenvalue
solution techniques and development of model order reduction techniques. More-
over, a numerical platform for the implementation of these techniques is also pro-
posed where all the numerical tests were performed. Below, the details of these
contributions are outlined.

7.1.1. Developments on eigenvalue solution techniques
One of the main contributions addressed in this thesis is the developments on the
eigenvalue solution techniques for vibro-acoustic problems. The main conclusions
on this research are summarized below.

Chapter 3 sets out with a modal basis approach which is commonly used for
model reduction studies in the literature for weakly coupled problems. But, gen-
erally, this approach does not give good results for strongly coupled problems. To
alleviate the problems associated with strongly coupled problems, an iterative tech-
nique is proposed in Chapter 3. The proposed technique is based on Subspace
iteration technique used for symmetric eigenvalue problems. The proposed tech-
nique uses the above mentioned decoupled basis vectors as initial vectors to start

129
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with. In the course of the iterations, it is shown that the initial decoupled basis
vectors are substantially improved. To improve these vectors, at each iteration step,
the projection space is enriched with some dynamic correction vectors represented
in the space of the initial decoupled basis vectors, some modal truncation vectors
and with some static residual vectors computed with the coupled stiffness matrix.
By using a transformation matrix, we show that there is a relation between the
coupled residual vector and the original Krylov vectors. It is concluded that the
use of the residual vectors along with the other components of the reduction basis
brings a significant impact on the convergence of the technique, which is due to
the fact that the residual vectors include components of the original Krylov vectors
as a linear combination. Therefore, it is concluded that the developed technique
can be interpretted as an enriched Subspace iteration technique for vibro-acoustic
problems.

Chapter 4 addresses the first major scientific contribution of this thesis. Namely,
by following and building on the research line of Chapter 3, the Subspace iteration
variant presented therein is transformed to a Lanczos type eigenvalue solver oper-
ating on symmetric matrices. However, these symmetric matrices are never built
explicitly. This practice brings several advantages. The most important advantage
over the Subspace iteration variant of Chapter 3 is that the information generated in
the previous iteration steps is not discarded but used directly to build a better and
enlarging projection space. It is also concluded that the Krylov vectors generated
with the proposed symmetric variant span the same space as the ones generated with
the Arnoldi type eigenvalue solver. Another advantage is the build up of a sym-
metric tridiagonal matrix due to the repeated projections onto symmetric system
matrices. With this practice, the eigenvalue and eigenvector approaximations can
be calculated with a symmetric tridiagonal matrix. Based on the well-known three-
term recurrence relations found between the iteration vectors computed during a
Lanczos cycle, a numerical cost reduction scheme using partial reorthogonalization
is incorporated into the process. The performance of the developed technique is
compared with the Two-sided Lanczos solver and the Arnoldi eigenvalue solvers.
With the developed numerical framework, numerical performance tests were per-
formed on two 3D test cases by using different fluids. It is shown that the technique
gives highly accurate results. It is also shown that the integration of the partial
orthogonalization scheme further decreases the overall numerical cost of the oper-
ations for large target eigenvalue counts. Namely, the gain in CPU time is on the
order of 10% for large target eigenvalue counts.

7.1.2. Developments on model reduction techniques

For efficient simulation and optimization of systems including vibro-acoustic cou-
pling, model reduction techniques are valuable tools to decrease the computational
resources and the time used for the analysis. Therefore, in the second part of this
thesis, we mainly addressed this problem by developing a Craig & Bampton (CB)
type reduction technique for problems including vibro-acoustic coupling. As a re-
sult, Chapters 5 and 6, as a whole, outline the second major scientific contribution
of this thesis and the main research conclusions on the developed technique are
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summarized and outlined below.

In Chapter 4, the building blocks of an efficient eigenvalue solver for vibro-
acoustic problems is presented. The proposed model reduction technique presented
in Chapter 5 extends and builds on the main ideas presented in Chapter 4, namely,
creating symmetric reduced component matrices. These symmetric reduced matri-
ces are later on coupled with the other reduced component matrices for the ap-
proximation of the global system response. Although the computations can not be
carried out in closed form efficiently due to the fully populated nature of the sym-
metric mass matrix, we have shown that the computations can be arranged in an
efficient manner by only using simple ordering operations on the matrices involved.
And this practice is used to perform two critical operations. Namely, the first one
is the computation of the fixed interface modes of the component. The second one
is the computation of the reduced mass matrix by projecting the symmetric mass
matrix of the component on the CB basis. By using these arrangements, at first
place, we can compute the ingredients of the CB reduction basis efficiently. There
after, we show that we can also calculate the reduced mass matrix efficiently with-
out using the fully populated matrices explicitly. Besides, we also show that the
reduced symmetric stiffness matrix of the components has a special block diagonal
structure. To approximate the dynamic system response, the reduced components
must be coupled either in a primal or dual assembly framework. In this thesis, we
concentrate on the primal assembly. In the discussions, we show that the primal
assembly of the reduced symmetric components needs some attention due to the
modified compatibility relations. To accomplish the primal assembly of the reduced
component matrices, we provide the mathematical proofs that we need to use dif-
ferent left and right null spaces. Namely, use of different null spaces is necessary
because the selected transformation matrix τ results in a change in the interface
degrees of freedom and, therefore, the compatibility relations are also modified. In
contrast, it is also shown that the compatibility relations between the interface forces
are not affected by this transformation. The developed technique was tested with
two different 2D finite element models with a coarse and fine mesh, respectively.
On these moderate and large size1 problems, it is concluded that the accuracy of
the eigenvalues and eigenvectors computed with the proposed reduction technique
is quite high.

Depending on the division of the whole domain of into components and on the
boundary conditions applied on these components, Chapter 6 extends the technique
and generalizes it for components with singularities. Namely, for free-free compo-
nents, τ matrix results in a singularity since the inverse of the stiffness matrix of
the structure is not defined to perform the transformations to symmetric matrices.
However, by using the pseudo-inverse concept, it is shown that it is still possible
to perform the operations and come up with locally symmetric representations in
closed form. And this is accomplished by representing the main variables of the
problem in two spaces, namely, the space of elastic and rigid body modes. It is
shown that the symmetric part of the matrices can be used to find the CB basis as
a normal regular component without the singularity issue. The theory presented in

1In terms of the size of the matrices.
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Chapter 5 is generalized in Chapter 6 for components which are free-free2. Simi-
lar to Chapter 5, the compatibility equations are formulated and the mathematical
details of component coupling are outlined. On a 2D academic test case, we show
that the generalized technique results in highly accurate eigenvalues.

7.2. Recommendations for further investigations
Having outlined the main research contributions, we have to mention that there are
still several research topics which can potentially result in new contributions to the
field, namely:

• Damping is not explicitly considered in this thesis. Extension of the presented
research to systems including structural and/or fluid damping is a prominent
research area which can be built on the research presented in this thesis. More-
over, this research should possibly be supported by experimental validations
also.

• A natural extension of the research presented on vibro-acoustic component
mode synthesis, namely in Chapters 5 and 6, is the investigation of free-
interface methods. These methods keep the physical nature of the interfaces
and, therefore, they are better suited for further experimental validations.

• Increasing the number of components analyzed, the number of interface de-
grees of freedom also increases substantially. This increase will be even more
pronounced for 3D models where the number of kept interface degrees of free-
dom can become quite high. Therefore, as a follow up, investigation of interface
reduction techniques is highly recommended to further decrease the reduced
system size and the overall solution time.

• Main theme of the research in this thesis was on the calculation of dynamic re-
sponse parameters, namely, eigenvalues and eigenvectors, another area which
is equally important is the computation of the frequency response functions
(FRF) of vibro-acoustic systems. Therefore, by using the experience gained
in analyzing and comparing the different techniques from different application
fields, namely as presented in Appendix A, it is also recommended to investi-
gate model reduction techniques for approximating the input-output behaviour
on these systems.

• It was pointed out in Chapter 4 that the round-off related terms were neglected
for the analysis on partial re-orthogonalization relations. Therefore, it is rec-
ommended to extend the research presented therein by taking these terms into
account and investigate their effects on the convergence of the technique.

• In Chapter 5, for the solution of fixed interface modes of a component, it
was pointed out that hybrid eigenvalue solvers can be developed. Namely, to
circumvent factorization costs and to decrease the numerical cost further, it is

2Constraint-free
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highly recommended to investigate iterative solution techniques for the inverse
iteration step of the symmetric Lanczos process.





A
Model Reduction Techniques

in Different Application

Fields

In this chapter, we reviewed the most commonly used model reduction techniques
from different application fields, namely, structural dynamics, numerical mathe-
matics and systems and control community. We briefly outlined the mathematical
details of the popular reduction techniques in the above mentioned application ar-
eas. Subsequently, we provided a qualitative comparison over the different methods.
On a moderately sized industrial problem, we performed a comparison over these
model reduction methods from an input-output perspective. We also provided some
error measures depending on different input-output scenarios. The results presented
in this appendix was published in [23].

A.1. Introduction
An important tool in the design of complex high-tech systems is the numerical
simulation of predictive models. However, these dynamical models are typically
of high order, i.e. they are described by a large number of ordinary differential
equations. This results from either the inherent complexity of the system or the
discretization of partial differential equations. Model reduction can be used to find
a low-order model that approximates the behavior of the original high-order model,
where this low-order approximation facilitates both the computationally efficient
analysis and controller design for the system to induce desired behavior.

The earliest methods for model reduction belong to the field of structural dy-
namics, where the dynamic analysis of structures is of interest. Typical objectives
are the identification of eigenfrequencies or the computation of frequency response
functions. Besides the mode displacement reduction method and extensions thereof
(see e.g. [126, 63]), important techniques are given by component mode synthesis
techniques [80, 37], which started to emerge in the 1960s.

The model reduction problem has also been studied in the systems and control
community, where the analysis of dynamic systems and the design of feedback con-
trollers are of interest. Some of the most important contributions were made in the
1980s by the development of balanced truncation [104, 44] and optimal Hankel norm
approximation [65].
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Finally, numerically efficient methods for model reduction have been developed
in the field of numerical mathematics in the 1990s. Important techniques are
asymptotic waveform evaluation [124], Padé-via-Lanczos [50] and rational inter-
polation [67]. These methods are often applied in the design and analysis of large
electronic circuits.

Despite the fact that the above techniques essentially deal with the same problem
of model reduction, the results in the fields of structural dynamics, systems and
control and numerical mathematics have largely been developed independently. This
chapter aims at providing a thorough comparison between the model reduction
techniques from these three fields, facilitating the choice of a suitable reduction
procedure for a given reduction problem. To this end, the most popular methods
from the fields of structural dynamics, systems and control and mathematics will
be reviewed. Then, the properties of these techniques will be compared, where both
theoretical and numerical aspects will be discussed. In addition, these differences
and commonalities will be illustrated by means of application of the model reduction
techniques to a common example.

Reviews of model reduction techniques exist in literature. However, these reviews
mainly focus on methods from the individual fields, i.e. they focus on methods from
structural dynamics [36, 90], systems and control [69] or numerical mathematics [12,
58] only. Nonetheless, methods from systems and control and numerical mathemat-
ics are reviewed and compared in [8, 7, 61], where the comparison is mainly per-
formed by the application of the methods to examples. In the current chapter, we
will review the popular model reduction techniques from all the three fields men-
tioned above. Additionally, both a qualitative and quantitative comparison will be
provided. The focus of this chapter is on this comparison. And, therefore, its aim
is not to present a full comprehensive historical review of all the methods in these
three domains.

In this chapter, the scope will be limited to model-based reduction techniques
for linear time-invariant dynamical systems. Consequently, the data-based model
reduction technique of proper orthogonal decomposition [143, 22] will not be dis-
cussed. For an overview of proper orthogonal decomposition, see [94, 86]. Also,
reduction methods for nonlinear dynamical systems (see e.g. [127, 139]) fall outside
the scope of the discussions presented in this chapter.

The outline of this chapter is as follows. First, the most important model reduc-
tion techniques from the fields of structural dynamics, numerical mathematics and
systems and control will be reviewed in Section A.2. In Section A.3, a qualitative
comparison between these methods will be provided, focussing on both theoretical
and numerical aspects. This comparison will be illustrated by means of an exam-
ple problem in Section A.4, which further clarifies differences and commonalities
between methods. Finally, conclusions will be stated in Section A.5.

A.2. Review of model reduction techniques
In this section, popular model reduction techniques from different fields are dis-
cussed. In Section A.2.1, methods from structural dynamics are discussed, whereas
model reduction techniques from the fields of numerical mathematics and systems
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and control are discussed in Sections A.2.2 and A.2.3, respectively.

A.2.1. Mode displacement methods

In the field of structural dynamics, the design and performance evaluation of me-
chanical systems is of interest. Herein, the computation of deformations, internal
stresses or dynamic properties are subject of analysis. Even though the goal of
analysis might differ from one specific application to another, important objectives
are the prediction of regions with high stress, prediction of the eigenvalues (related
to resonance frequencies) and eigenvecttors (related to structural eigenmodes), the
computation of the system’s response to a certain excitation in time domain and
the fast computation of frequency response functions.

All of the above mentioned goals share a common property. Namely, the mod-
els used in the design must, generally, contain detailed information for the precise
description of the response properties of the structure. The mathematical models
are basically constructed in terms of partial differential equations. These equa-
tions might be solved exactly only for simple problems and one has to resort to
discretization-based approaches, such as the finite element method (FEM) or the
boundary element method (BEM). The techniques discussed in this section are typ-
ically used for FEM models, but the same concepts can be applied to BEM.

Model reduction methodologies are efficiently used in the structural field since
the 19th century. The most common methods are mode superposition methods
[126], in which a limited number of free vibration modes of the structure is used to
represent the displacement pattern [35]. There are also improvements of the original
mode superposition method by the addition of different vecttors to the expansion
procedure, such as the mode acceleration or modal truncation augmentation [126,
157]. Mode superposition methods are generally considered for the complete struc-
ture. However, it is common to partition the structure in some components, on
which model reduction is performed individually. Then, these reduced-order com-
ponent models are coupled to represent the global behavior. These methods are
all together named component mode synthesis techniques. These methods are ex-
tensions of common mode superposition methods to the partition level where the
forces on the partition boundaries replace the general forces on the whole structure.
In [79] and [80], Hurty provided a general method for component mode synthesis
techniques. Craig and Bampton, in [37], used the static deformation shapes of the
substructure with respect to its boundary displacements and enriched this space with
the internal dynamic mode shape vecttors to increase the accuracy. This method is
known as the fixed-interface reduction method because the modes of the system are
found while all the boundaries are fixed. Later on, the works of MacNeal [101] and
Rubin [132] extended these methods to a class of methods known as free-interface
methods. In these methods, the dynamic mode shape vecttors used in the basis are
computed without the application of any restraints on the component boundaries,
where in fixed-interface methods the boundary degrees of freedom are all fixed. For
an overview of dynamic substructuring methods, see e.g. [36, 90]. Moreover, an
automated approach towards substructuring is given by automated multilevel sub-
structuring (AMLS), see [21]. Finally, it is remarked that substructuring can also
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effectively exploit parallel computing.
Discretization-based methods, such as FEM, analyze complex engineering prob-

lems by constructing piece-wise approximation polynomials over the spatial domain
and solve for the unknown variables at specific locations of the discretization, known
as node points [122]. This representation might already be considered to be a model
order reduction process in itself. Namely, the displacement u(z, t), which is depen-
dent on the spatial variable z and time t, is represented by the finite expansion

u(z, t) =

N∑

j=1

Ψj(z)qj(t). (A.1)

Herein, Ψj(z) are linearly independent functions representing the displacement
shape of the structure, where it is noted that they satisfy the essential boundary
conditions of the problem. Next, qj(t) are the unknown functions of time, whereas
N represents the number of functions exploited in the representation. Since the
representation of a body consists of infinitely many points (and therefore infinitely
many degrees of freedom), the finite expansion (A.1) has already accomplished the
task of reducing the system to a finite number of degrees of freedom.

The discretization of the differential equations of the problem results in the
equations of motion of the system, which are typically of the following form:

Mq̈ + Kq = f , (A.2)

where M ∈ RN×N and K ∈ RN×N represent the mass and stiffness matrices,
respectively. Furthermore, q ∈ RN represents the unknown displacements of the
structure and f ∈ RN is the externally applied generalized force vecttor. Structural
systems possess, most of the time, light damping and the reduction typically is
based on the undamped system. Therefore, undamped systems of the form (A.2)
are considered in this section. However, it is stressed that this is only suitable when
the system is lightly damped and the eigenfrequencies are well separated [63].

In general, a detailed problem representation and the use of a high number of el-
ements in the discretization result in large matrices and, hence, in long computation
times. Model order reduction methods are used to efficiently reduce the system size
and, as a consequence, achieve acceptable computation times. Reduction methods
in structural dynamics may be classified into two classes, namely, methods related to
mode superposition and methods related to component mode synthesis techniques.
In this section, the context is limited to mode superposition methods, since they
apply to the full system. This enables a comparison with methods from the fields of
numerical mathematics and systems and control. More information on component
mode synthesis can be found in [36].

Mode superposition methods share the common property that they use a small
number of free vibration modes to represent the dynamics of the structure with
some reduced number of generalized degrees of freedom. With this selection, one
represents the solution vecttors as a summation of free vibration modes that form
a linearly independent set. This operation therefore reduces the system size to be
solved and could result in important computational gains. However, there are some
important points to note on the expansion procedures used in practice [117], namely:
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1. the used mode shape vecttors do not span the complete space;

2. the computation of eigenvecttors for large systems is very expensive and time
consuming;

3. the number of eigenmodes required for satisfactory accuracy is difficult to
estimate a priori, which limits the automatic selection of eigenmodes;

4. the eigenbasis ignores important information related to the specific loading
characteristics such that the computed eigenvecttors can be nearly orthogonal
to the applied loading and therefore do not participate significantly in the
solution.

Three different main variants can be considered which are often used in structural
dynamics community. These are the mode displacement method, mode acceleration
method and modal truncation augmentation method. The latter two methods are
enhancements of the mode displacement method with the addition of the contribu-
tion of the omitted parts in an expansion process.

Generally, these methods do not propose the computation of an error bound for
the response. Consequently, the success of the methods is established on the basis of
a posteriori error comparisons. Typically, either the errors on the eigenfrequencies
or the errors on the input-output representation are used to show the success of
the applied method. In the following sections, the mode displacement method, the
mode acceleration methods and the modal truncation augmentation method will be
treated in more detail.

Mode displacement method

The equation of motion of the structure (A.2) is recalled:

Mq̈ + Kq = f .

Then, the mode displacement method is based on the free vibration modes of the
structure, which can be found by using a time-harmonic representation for the dis-
placement of the unforced system (i.e. f = 0). This leads to the generalized eigen-
value problem

(
K− ω2

j M
)
φj = 0, (A.3)

where φj is the mode shape vecttor corresponding to the eigenfrequency ωj, with
j ∈ {1, . . . , N}. Using the expansion concept along with the mode shape vecttors
φj , the displacement can be represented as follows:

q =

N∑

j=1

φjηj , (A.4)

where it is recalled that N is the size of the system. Here, ηj is typically referred to
as a set of modal coordinates. It is a common practice to mass-normalize the mode
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shape vecttors, resulting in

φT
i Mφj = δij ,

φT
i Kφj = δijω2

j , (A.5)

where δij denotes the Kronecker delta. These orthogonality relations are used to de-
couple the coupled equations of motion (A.2). Using (A.5), the decoupled equations
are represented in modal coordinates as

η̈j + ω2
j ηj = φT

j f , j ∈ {1, . . . , N}. (A.6)

An important practical point on the expansion method is related to the compu-
tation of the expansion vecttors. The computation of the mode shape vecttors that
are used in the mode superposition methods can be an expensive task and, in prac-
tice, all the computational methods extract a limited number K of vecttors of the
eigenvalue problem. The general idea of the expansion procedure is to keep the first
K vecttors in the representation, that correspond to the lowest eigenfrequencies.
This results in a truncation, namely,

q =

K∑

j=1

φjηj +

N∑

jt=K+1

φjt
ηjt

︸ ︷︷ ︸

truncated

, (A.7)

where the indices j and jt represent the kept mode and the truncated mode indices,
respectively.

Since the displacement is represented as a linear combination of K linearly in-
dependent vecttors, it can also be given in matrix notation, leading to the approxi-
mation

q = Φη, Φ =
[
φ1 φ2 . . . φK

]
. (A.8)

Using (A.2) and (A.8) and projecting the resulting equations of motion on the
expansion basis Φ results in the following reduced-order dynamics

Mrη̈ + Krη = fr, (A.9)

where

Mr = ΦTMΦ = I, (A.10)

Kr = ΦTKΦ = diag{ω2
1 , . . . , ω2

K}, (A.11)

fr = ΦTf . (A.12)

In general, the analysts are interested in the response properties of the system for
the lower frequency range and therefore, the lowest modes are typically chosen. The
reason behind this selection is the fact that most structures are operated at low
frequencies.

The importance of a mode is mostly related to two concepts. First, the orthogo-
nality of the mode with respect to the excitation, as given by φT

j f , is of importance.
Secondly, the closeness of the eigenfrequency of the mode with respect to the exci-
tation spectrum is of interest.
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Mode acceleration method

The mode acceleration method is a computational variant of the static correction
method. The static correction method aims at taking into account the contribution
of the omitted modes. The driving idea of the static correction concept is to be
able to include the effects of the truncated modes statically into the summation
procedure. Namely, truncated modes have a static contribution on the response for
low frequencies. This results in an improvement for the response studies in the lower
frequency range. The response might be represented as before but with a correction
term qcor, such that

q = Φη + qcor. (A.13)

To obtain the static correction term qcor (with q̇cor = q̈cor = 0), the truncated
representation for the acceleration is substituted in the equation of motion (A.2),
leading to

M

K∑

j=1

φj η̈j + Kq = f . (A.14)

Then, the use of the (reduced-order) dynamics in modal coordinates (A.6) leads to

q = K−1



f −M

K∑

j=1

φj(φT
j f − ω2

j ηj)



 ,

=

K∑

j=1

φjηj +



K−1 −
K∑

j=1

φjφ
T
j

ω2
j



 f , (A.15)

where the relation imposed by the eigenvalue problem (A.3) is used in the latter step.
When comparing (A.15) to the truncation (A.7), it is observed that the correction
term is given as

qcor =



K−1 −
K∑

j=1

φjφ
T
j

ω2
j



f . (A.16)

It is noted that, by using all eigenmodes, the inverse of the stiffness matrix can be
represented as [63]

K−1 =

N∑

j=1

φjφ
T
j

ω2
j

, (A.17)

such that the use of (A.17) in (A.15) results in

q =

K∑

j=1

φjηj +

N∑

j=K+1

φjφ
T
j

ω2
j

f . (A.18)
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Even though this last form is not applicable in practice, since it requires the com-
putation of all model vecttors, it clearly shows that only the static contribution of
the omitted modes φj , j ∈ {K + 1, . . . , N}, is taken into account in the correction
term qcor.

Modal truncation augmentation method

The modal truncation augmentation method is an extension of the mode accelera-
tion method. Its main principle depends on the use of the static correction as an
additional direction for the truncation expansion [42, 128, 41]. Inclusion of the cor-
rection in a modal expansion results in the modal truncation augmentation method,
such that q is approximated as

q =

K∑

j=1

φjηj + qcorξ, (A.19)

where qcor is given by the mode acceleration method in (A.18) and ξ is an additional
coordinate in the reduced-order system. This correction vecttor is included in the
reduction basis, such that the new reduction basis reads

Ψ =
[

Φ qcor

]
. (A.20)

Here, it is noted that Ψ is generally M-orthogonalized.
Modal truncation augmentation methods are mostly used when there are mul-

tiple forcing vecttors acting on the system. Therefore, these correction vecttors are
not used a posteriori as in the mode acceleration method but they really become a
part of the reduction space.

There exist also further extensions of the common mode superposition methods
which include higher-order correction vecttors. These methods are outlined in [128]
and references therein. Further details can be found in Section A.3.3.

A.2.2. Krylov subspace based model order reduction
Krylov subspace based model order reduction (MOR) methods are methods which
reduce a system with many degrees of freedom (i.e. states) to a system with few(er)
degrees of freedom but with similar input-output behavior. Typical applications are
large electronic circuits with large linear subnetworks of components (see e.g. [113,
59]) and micro-electro-mechanical systems (MEMS). For an application in structural
vibrations, see e.g. [95]. The main purpose of Krylov methods is the construction of
an approximation of the system’s transfer function which (accurately enough) de-
scribes the dependence between the input and the output of the original system, e.g.
in some range of the (input) frequency domain. In particular, a so-called moment
expansion of the transfer function is considered and reduction focusses on matching
the first coefficient (moments) of this expansion. As this moment matching proce-
dure is related to projections on a Krylov subspace, it provides a computationally
cheap approach to model order reduction. Moreover, parallel computing can be
effectively exploited. The objective is the derivation of a smaller system with sim-
ilar input-output behavior and with similar properties such as stability, passivity
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or a special structure of the matrices in the model description. The quality of the
reduced-order approximation can be assessed by studying norms of the difference
between the outputs of the unreduced and reduced models applied for the same
inputs. Preservation of additional properties is of importance if the reduced system
has to exhibit some physical properties of the model; for instance, when the reduced
system has to be a (realizable) circuit consisting out of resistors, inductors and ca-
pacitors (a RLC network), just as the original system. So far, there have been no
proven a priori error-bounds for the Krylov based reduction techniques, see [73] for
more details and for alternative approaches to ensure a good (application domain
dependent) approximation.

The first reduction method involving the usage of the Krylov subspace, called
asymptotic waveform evaluation, was described in 1990, see [124]. However, the
main focus of this paper was on finding a Padé approximation of the transfer function
rather than on the construction of a Krylov subspace. Later, in 1995, in [50] a
method called Padé via Lanczos (PVL) was proposed and the relation between
the Padé approximation and Krylov subspace was shown. In 1998, a new reduction
technique, PRIMA, was introduced in [113], that uses the Arnoldi algorithm instead
of Lanczos to build the reduction bases. These and later developments of Krylov
based reduction techniques focus not only on the improvement of the accuracy of
the approximation, but also on the preservation of the properties of the system to
be reduced.

In this section, the basic ideas of model reduction by projection onto the Krylov
subspace are explained and the application of some common reduction techniques
based on Arnoldi and Lanczos algorithms (see e.g. [134] for more details) is briefly
discussed. Notation-wise, R represents the field of real numbers, whereas C repre-
sents the field of complex numbers.

Linear time-invariant state-space systems of the form

{
Eẋ = Ax + bu

y = cTx,
(A.21)

are considered, with E, A ∈ R
n×n, b, c ∈ R

n, the input variable u ∈ R, the output
variable y ∈ R and x ∈ Rn being a vector of the state variables. For the sake
of simplicity, SISO systems (with scalar input and scalar output) are considered.
However, the methods discussed in this section have been extended to multi-input-
multi-output (MIMO) cases (see e.g. [57]).

If the system (A.21) is transformed to the Laplace domain, then, for an arbitrary
s ∈ C, the dependence between its input and its output is given by a transfer function
H(s) defined as follows

H(s) = cT(sE−A)−1b. (A.22)

In this section, it is assumed that the pencil (sE −A) is regular, i.e. it is singular
only for a finite number of s ∈ C. For an arbitrary s0 ∈ C, the transfer function
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(A.22) may be rewritten in a polynomial form, using a so-called moment expansion:

H(s) =

∞∑

n=0

(−1)nMn(s0)(s− s0)n. (A.23)

Here, the coefficients Mn(s0), called moments of the transfer function, are calculated
using the Taylor expansion formula and given by

Mn(s0) = cT[(s0E−A)−1E]n(s0E−A)−1b. (A.24)

Expansion around s0 = ∞ is evaluated based on Laurent series, and the moments
then are called Markov parameters. These Markov parameters play an important
role in systems theory, see e.g. [8]. The accuracy of the moment expansion depends
on the choice of the expansion point s0. It is also possible to use a multipoint
expansion choosing multiple expansion points.

The goal of the Krylov subspace model order reduction is to find a projection-
based approximation of the original transfer function, that matches the first k mo-
ments of the original transfer function. In other words, the objective is to calculate
a reduced-order system with transfer function Ĥ(s), whose moment expansion is
given by

Ĥ(s) =

∞∑

n=0

(−1)nM̂n(s0)(s− s0)n, (A.25)

with

M̂n(s0) = Mn(s0), for n = 1, . . . , k, (A.26)

and Mn(s0) being the moments of the original transfer function defined in (A.24).
This is called the moment matching property of the reduction method.

In case of the reduction methods studied in this section, the reduced-order model
is calculated using a projection Π = VWT ∈ Rn×n, with V, W ∈ Rn×k being
biorthogonal matrices, i.e. WTV = I. Application of the projection Π to the
original system (A.21) gives

{
WTEV ˙̂x = WTAVx̂ + WTbu,

ŷ = cTVx̂,
(A.27)

where the reduced-order state vecttor x̂ ∈ R
k results from the state transformation

x ≈ Vx̂. (A.28)

The choice of the spaces V and W depends on the goal of the reduction procedure.
In case of the Krylov subspace based methods, the aim is to approximate the input-
output behavior of the system. This is done by matching the moments of the
original transfer function. This means that the reduced-order transfer function
corresponding to system (A.27), which results from applying matrices V and W to
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the original system matrices, has the property (A.26). To ensure the satisfaction
of the moment matching property (A.26), one can choose V and W such that
the columns of these matrices span so-called Krylov subspaces. The k-th Krylov
subspace induced by a matrix P and a vecttor r is defined as

Kk(P, r) = span{r, Pr, . . . , Pk−1r}. (A.29)

The choice of the generating matrix P and the starting vecttor r depends on the
value s0 around which the transfer function should be approximated. If the approx-
imation of the transfer function (A.22) around s0 = 0 is to be found, the matrices
V and W are chosen as follows:

V is a basis of Kk1 (A−1E, A−1b), (A.30)

W is a basis of Kk2 (A−TET, A−Tc). (A.31)

The sizes of the subspaces, k1 and k2, should assure that V and W are both of rank
k. If V and W are built in the way defined in (A.30-A.31), the model reduction
method is called a two-sided method. If only one of the projection matrices (V or
W) is built in that way, the method is called one-sided. Application of the two-sided
method results in a reduced model that matches the first 2k moments of the original
transfer function. In case of one-sided methods, k moments are matched.

The general proof of the moment matching property can be found in [67]. To
illustrate the idea behind this proof, the matching of the zeroth moment of the
system (A.21) for s0 = 0 is shown following [98]. According to the formula (A.24),
the zeroth moment for s0 = 0 is equal to

M0(0) = −cTA−1b. (A.32)

With V chosen as in (A.30) and the fact that A−1b belongs to the Krylov subspace
Kk1 (A−1E, A−1b), one can find a vecttor r0 such that Vr0 = A−1b. Then, using
the reduction procedure defined in (A.27), it can be shown that

M̂0(0) = −cTV(WTAV)−1WTb = −cTV(WTAV)−1WTAVr0

= −cTVr0 = −cTA−1b = M0(0). (A.33)

In case the approximation around s0 6= 0 or for s0 = ∞ is needed, the starting
matrix and vecttor for building the Krylov subspace have to be modified. One can
also build a subspace using different values of s0 at the same time. More details
on how to do this and suggestions for starting values for different s0 can be found
in [67].

Besides the difference in the number of moments matched, the choice to use
either one- or two-sided methods influences also some other properties of the reduced
system. Two-sided methods may lead to better approximations of the output y and
deliver a reduced-order model, whose input-output behavior does not depend on
the state space realization of the original model. In case of the one-sided techniques
with W = V and V defined as in (A.30), for certain original models, one can also
prove the preservation of the passivity property. For general models however, it is
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in general unclear whether matching twice as many moments justifies the additional
computational cost of using two-sided methods. Namely, moments only characterize
the transfer function in a small neighborhood of the expansion point and do generally
not capture global behavior.

The process of constructing the reduction matrices, V and W, is not straight-
forward and requires the use of special techniques. Because of round-off errors, the
vecttors building a Krylov subspace may quickly become linearly dependent. To
avoid this problem, one usually constructs an orthogonal basis of the appropriate
Krylov subspace. This can be achieved using e.g. Arnoldi or Lanczos algorithms
(explanation of these algorithms and implementation details are given in [134]). The
classical Arnoldi algorithm generates a set V of orthonormal vecttors, i.e.

VTV = I, (A.34)

that form a basis for a given Krylov subspace. The Lanczos algorithm finds two sets
of basis vecttors, V and W, that span an appropriate Krylov subspace and have
property

WTV = I. (A.35)

Two sets of basis vecttors V and W for Krylov subspaces may also be computed
using a two-sided Arnoldi algorithm (see [98]). In this case, both V and W are
orthonormal,

VTV = I, WTW = I. (A.36)

As a result, each of the above mentioned techniques generates a Krylov subspace.
The choice of the subspace depends on the type of algorithm and the expansion point
s0 around which the approximation is of interest. A more detailed explanation on
how to choose the proper subspaces can be found in [67].

The ideas of the Krylov subspace based reduction presented in this section can be
further modified, depending on e.g. the application or the specific criteria that the
reduced-order model should fulfill. In electronic circuit design, there exist methods
especially suited for reducing specific types of systems that exploit the characteris-
tic structure of the underlying matrices, see e.g. [13]. In case of coupled or inter-
connected systems, the goal may be to preserve the interpretation of the different
physical domains. More details on this topic can be found in [59, 155]. There exist
also modifications that aim at preserving other properties of the original system,
such as stability or passivity. In case of symmetric matrices, the algorithm SyPVL
was proposed in [60] that guarantees stability. A stability and passivity preserving
technique, PRIMA, is presented in [113].

A.2.3. Balanced truncation
The field of systems and control focusses on the analysis of dynamical systems and
design of feedback controllers for these systems. Herein, the objective of controller
design is to change the dynamics of the system to induce desired behavior. Typical
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examples are the stabilization of unstable systems, tracking of a reference trajectory
or the rejection of external disturbances on a system.

These control strategies are applied in a broad range of practical engineering
problems, such as control of mechanical or electrical systems. These applications
have in common that they deal with systems with inputs and outputs. Namely, a
dynamical system can often only be influenced by a limited number of actuators,
which are represented as inputs, and only a limited number of sensors (i.e. outputs)
is typically available in practical engineering systems. For these systems, it is thus
particularly relevant to have an accurate model for their input-output behavior.
Even though this model does not need to describe the global behavior of a system,
complex dynamics can still yield large models of orders up to O(103). To facilitate
controller design and/or analysis for these systems, model reduction is needed. Here,
it is noted that a controller needs to be implemented in real-time, which also requires
a controller realization of relatively low-order. Moreover, the use of these low-order
models as substitutes for the original model requires very accurate model reduction
techniques, where the preservation of relevant systems properties such as stability
is of great importance.

Model reduction procedures in the field of systems and control thus aim at
approximating the input-output behavior of a high-order model. The quality of the
reduced-order model can thus be assessed by comparing the outputs of the high-
order and reduced-order models for given inputs, where the magnitude of the output
error is measured using some signal norm.

Balanced truncation is the most popular method in systems and control address-
ing this model reduction problem. It mainly owes its popularity due to the fact that
it preserves stability of the high-order model and provides an error bound, which
gives a direct measure of the quality of the reduced-order model. The balanced
truncation method was first presented by Moore [104], where results of Mullis and
Robberts [108] were exploited. Later, the stability preservation property was found
by Pernebo and Silverman [121], whereas the error bound was derived by Enns [44]
and Glover [65].

Linear dynamical models with inputs and outputs in state-space form
{

ẋ = Ax + Bu

y = Cx + Du
(A.37)

are considered. Here, u ∈ Rm denotes the input whereas y ∈ Rp represents the
output. The internal state is given by x ∈ Rn and the system matrices are of
corresponding dimensions. Throughout this section, it is assumed that the model
(A.37) is asymptotically stable (i.e. all eigenvalues of A have negative real part)
and is a minimal realization, where the latter guarantees that all state components
contribute to the input-output behavior. The transfer function of (A.37) is given as

H(s) = C(sI−A)−1B + D, s ∈ C. (A.38)

In balanced truncation, a reduced-order model is obtained in two steps. First, a
so-called balanced realization is found, in which the states are ordered according to
their contribution to the input-output behavior. Second, a reduced-order model is
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obtained on the basis of this balanced realization by discarding the states with the
smallest influence.

In order to find the balanced realization, the input-output behavior of the system
(A.37) has to be quantified. To this end, the so-called controllability and observabil-
ity functions are defined. First, the controllability function Ec(x0) gives the smallest
input energy required to reach the state x0 from the zero state in infinite time, given
as

Ec(x0) = inf
u∈L2(−∞,0)

x(−∞)=0, x(0)=x0

∫ 0

−∞

‖u(t)‖2 dt, (A.39)

where L2(−∞, 0) denotes the space of square integrable functions, defined on the
domain (−∞, 0). Second, the observability function Eo(x0) is defined by

Eo(x0) =

∫ ∞

0

‖y(t)‖2 dt, x(0) = x0, u(t) = 0 ∀t ∈ [0,∞), (A.40)

and gives the future output energy of the system when released from an initial
condition x0 for zero input. It is well-known (see e.g. [104, 162]) that for linear
systems as in (A.37) the controllability and observability functions in (A.39) and
(A.43) can be written as the quadratic forms

Ec(x0) = xT
0 P−1x0, Eo(x0) = xT

0 Qx0, (A.41)

where P and Q are the controllability and observability Gramian, given by

P =

∫ ∞

0

eAtBBTeATt dt (A.42)

and

Q =

∫ ∞

0

eATtCTCeAt dt, (A.43)

respectively. From (A.42) and (A.43), it is easily observed that the controllability
and observability Gramians are only finite when the system is asymptotically stable,
which explains the assumption stated before. In addition, P and Q are symmetric
and positive definite, where the latter is guaranteed by the assumption that the
system (A.37) is minimal, i.e. controllable and observable. The controllability and
observability Gramian can be obtained as the unique positive definite solutions of
the respective Lyapunov equations (see e.g. [162])

AP + PAT + BBT = 0 (A.44)

and

ATQ + QA + CTC = 0, (A.45)
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which makes balanced truncation computationally feasible. Nonetheless, solving
the Lyapunov equations is computationally costly, such that balanced truncation is
limited to systems of orders up to O(103).

Since both the controllability and observability Gramian characterize the in- or
output energy associated to a state x0, they are dependent on the realization of the
system (A.37). Stated differently, a change of coordinates x̄ = Tx, with T ∈ R

n×n

a nonsingular matrix, results in a realization with system matrices

Ā = TAT−1, B̄ = TB, C̄ = CT−1, D̄ = D. (A.46)

Then, the new controllability and observability Gramians are given as

P̄ = TPTT, Q̄ = T−TQT−1. (A.47)

Nonetheless, the product of P̄ and Q̄ yields

P̄Q̄ = TPQT−1, (A.48)

indicating that the eigenvalues of the product of the controllability and observability
Gramian are independent of the set of coordinates and thus system invariants. These
eigenvalues equal the (squared) Hankel singular values σi [65], such that

σi =
√

λi(PQ), i = 1, . . . , n, (A.49)

where λi(X) denotes the i-th eigenvalue of the matrix X, ordered as λ1 ≥ λ2 ≥
. . . ≥ λn > 0.

At this point, it is recalled that the observability Gramian Q characterizes the
output energy associated to a given initial state x0 and thus provides a measure of
the importance of state components with respect to the output y. Hence, states
generating high output energy can be considered more important than states gener-
ating little output energy, since the former are easy to observe. On the other hand,
the controllability Gramian P gives a measure of the importance of state compo-
nents x0 with respect to the input u, in the sense that states that require little
input energy to reach are more relevant than states that require high input energy.
States that require little energy to reach are thus easy to control. Clearly, the com-
bination of the controllability and observability Gramians gives a characterization
of the importance of state components from an input-output perspective. However,
in an arbitrary coordinate system, a state x̄1

0 that requires little energy to reach
might also generate little output energy. On the other hand, a different state x̄2

0

might exist that requires a lot of energy to reach, but generates high output energy.
In this case, it is not easy to decide which of x̄1

0 and x̄2
0 is the most important com-

ponent from an input-output perspective. To facilitate this analysis, the balanced
realization is introduced. Namely, there exists a state-space realization such that
the corresponding controllability and observability Gramians are equal and diago-
nal, where the entries on the diagonal are given by the Hankel singular values [104]:

P̄ = Q̄ = Σ :=








σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σn








. (A.50)
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In addition, the Hankel singular values are ordered as σ1 ≥ σ2 ≥ · · · ≥ σn > 0. In
this balanced realization, the controllability and observability function are given as

Ec(x̄0) = x̄T
0 Σ−1x̄0, Eo(x̄0) = x̄T

0 Σx̄0. (A.51)

Now, the form (A.51) allows for a clear interpretation. Namely, the realization is
balanced in the sense that states that are easy to control are also easily observed.
In fact, due to the ordering of the Hankel singular values, the state x̄0 = e1 :=
[1, 0, · · · , 0]T requires the least energy to reach (Ec(e1) = σ−1

1 is small) and gives
the highest output energy (Eo(e1) = σ1 is large). Stated differently, this state is
easy to control and easy to observe. Hence, x̄0 = e1 has the largest contribution to
the input-output behavior of the system. On the other hand, the state x̄0 = en :=
[0, · · · , 0, 1]T is both difficult to control and difficult to observe, such that it has the
smallest contribution to the input-output behavior.

The coordinate transformation T to obtain the balanced realization can be ob-
tained on the basis of the controllability and observability Gramians (A.42-A.43).
Thereto, the Cholesky factor U of P is used, as well as the eigenvalue decomposition
of UTQU:

P = UUT, UTQU = KSKT. (A.52)

In the latter, it is noted that UTQU is a positive definite symmetric matrix, such
that the matrix of eigenvecttors K is orthonormal. Additionally, the eigenvalues are
real and, when ordered, are equal to the squared Hankel singular values such that
S = Σ2 with Σ as in (A.50). Then, the balancing transformation and its inverse
are given as

T = Σ
1
2 KTU−1, T−1 = UKΣ− 1

2 (A.53)

as can be checked by substitution of (A.53) in (A.47), while using the relations
(A.52). An overview of alternative algorithms to obtain the balanced realization
can be found in [8].

So far, a balanced realization is found, but no model reduction has been per-
formed yet. However, the balanced realization gives a representation in which the
states are ordered according to their contribution to the input-output behavior.
Hence, a reduced-order model of order k can be obtained by partitioning the state
x̄ of the balanced realization as x̄1 = [x̄1, . . . , x̄k]T ∈ Rk and x̄2 = [x̄k+1, . . . , x̄n]T ∈
Rn−k, such that x̄1 contains the state components with the largest influence on the
input-output behavior. When the system matrices are partitioned accordingly,

Σ =

[
Σ1 0

0 Σ2

]

, Ā =

[
Ā11 Ā12

Ā21 Ā22

]

, B̄ =

[
B̄1

B̄2

]

, C̄ =
[

C̄1 C̄2

]
, D̄ = D,

(A.54)

a reduced-order system can be obtained by truncation, i.e. by setting x̄2 = 0. The
resulting reduced-order model (with x̂ ∈ Rk an approximation of x̄1 ∈ Rk) is given



A.2. Review of model reduction techniques

A

151

by the state-space realization

{
˙̂x = Ā11x̂ + B̄1u,
ŷ = C̄1x̂ + D̄u.

(A.55)

Here, it can be observed that the reduced-order state-space system (A.55) is itself a
balanced realization, with the controllability and observability Gramians given by
Σ1 (see [121]). In addition, when Σ1 and Σ2 have no diagonal entries in common
(i.e. when σk > σk+1), the reduced-order system is asymptotically stable [121].

The reduced-order system thus preserves stability of the original model, and its
output ŷ serves as an approximation for the output of the high-order system y. The
quality of this approximation can be assessed by means of a bound on the error.
Namely, an error bound can be expressed in terms of the discarded Hankel singular
values [44, 65] as

‖H(s)− Ĥ(s)‖∞ ≤ 2

n∑

i=k+1

σi, (A.56)

where H(s) and Ĥ(s) are the transfer functions of the full-order system (A.37) and
the reduced-order system (A.55), respectively. Furthermore, ‖ · ‖∞ denotes the H∞

norm defined as

‖H(s)‖∞ = sup
ω∈R

σ̄(H(jω)), (A.57)

with σ̄(·) the largest singular value. The error bound (A.56) confirms the intuitive
idea that the states corresponding to the largest Hankel singular values are the
most important from the perspective of input-output behavior. Namely, a good
approximation (i.e. a low error bound) will be obtained when the Hankel singular
values in Σ2 are small. Since these Hankel singular values are only dependent on the
high-order model (A.37), they can be computed a priori and allow for control over
the reduction error by selection of the order k. Finally, it is noted that in (A.56)
it is assumed that all Hankel singular values are distinct. When Hankel singular
values with multiplicity larger than one occur, they only need to be counted once,
leading to a tighter bound (see e.g. [65]).

In the model reduction procedure presented here, a reduced-order system is
obtained by truncation (i.e. setting x̄2 = 0) of a balanced realization. An alter-
native approach is given by singular perturbation [54] of this realization. Herein,
it is assumed that the dynamics describing the evolution of x̄2 is very fast (and
asymptotically stable). Then, this dynamics can be assumed to be in its equilib-
rium position at all time, which is obtained by setting ˙̄x2 = 0 and solving for x̄2

as a function of x̄1 and u. Contrary to balanced truncation, the singular pertur-
bation approach guarantees that the steady-state gains of the high-order system
are matched in the reduced-order system. The reduced-order model is controllable,
observable, asymptotically stable and the error bound (A.56) also holds [96].

Balanced truncation aims at approximating a high-order system by selecting the
state components that have the largest contribution in the input-output behavior,
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according to the energy in the input and output signals. The entire frequency
range is considered in this approach. However, in many practical applications, a
good approximation is only required in a specific frequency range. To this end,
frequency-weighted balanced truncation can be used [44], which is an extension of
the method discussed in the previous paragraphs. In frequency-weighted balanced
truncation, the objective is to find a reduced-order system such that the error

‖Ho(s)(H(s)− Ĥ(s))Hi(s)‖∞ (A.58)

is small, where Hi(s) and Ho(s) denote the transfer functions of an input and output
frequency weight, respectively. These weights can be designed by the user to em-
phasize specific regions in the frequency domain. To obtain the frequency-weighted
reduced-order model, controllability and observability Gramians are computed on
the basis of the frequency weighted high-order system, which are simultaneously
diagonalized. Details can be found in [44].

When the original system is asymptotically stable, observable and controllable,
and only one-sided weighting is applied (i.e. either Hi(s) = I or Ho(s) = I), asymp-
totic stability of the reduced-order system is guaranteed. However, in the case of
general two-sided weighting, stability of the reduced-order approximant can not be
guaranteed. Nonetheless, when the reduced-order model is stable, an error bound
is given in [87].

In the preceding paragraphs, the standard balanced truncation technique for
asymptotically stable systems as well as an extension to frequency-weighted bal-
anced truncation is presented. Several extensions of balanced truncation exists.
For example, balanced truncation of the coprime factorization applies to unstable
systems [103, 112], whereas a method preserving passivity is given in [39, 111].

Besides these methods based on balanced truncation, a popular alternative is
optimal Hankel norm approximation [65], which is also based on the balanced re-
alization. For an overview of model reduction in systems and control, see e.g. [8,
69].

A.3. Qualitative comparison on model reduction meth-

ods
In this section, the methods as discussed in Section A.2 will be compared. First,
the common feature of projection is presented in Section A.3.1. Then, a general
comparison will be given in Section A.3.2. A close connection between moment
matching and modal truncation augmentation is discussed in Section A.3.3. Compu-
tational aspects and the preservation of properties will be discussed in Sections A.3.4
and A.3.5, respectively.

A.3.1. Projection
Before discussing differences between the methods from the fields of structural dy-
namics, numerical mathematics and systems and control, an important similarity is
discussed. Namely, the methods discussed in Section A.2 have in common that the
reduced-order models are obtained by projection. Here, the reduced-order model
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is obtained by application of the projection Π = VW
T to the original model. In

numerical mathematics, the projection matrices might be chosen as V = V and
W = W with V and W as in (A.30) and (A.31), respectively. This specific choice
ensures moment matching around s0 = 0. For balanced truncation, as used in
systems and control, the matrices V and W are given as the first k columns of
the transformation matrices T−1 and TT as in (A.53), respectively. Hence, they
project on the subspace of PQ corresponding to the largest Hankel singular val-
ues (see (A.48)), which yields the subspace with the largest contribution in the
input-output behavior. Similarly, in the mode superposition techniques in struc-
tural dynamics, the projection is given as Π = MΦΦT. Here, the projection basis
Φ forms a basis for the space spanned by the k most relevant eigenvecttors (see
(A.3)), which are typically chosen as the eigenvecttors corresponding to the lowest
eigenfrequencies. Here, it is noted that the state-space form is used in the fields
of numerical mathematics and systems and control, whereas a second-order form is
exploited in structural dynamics when no damping is present or when the damping
can be considered as small. More generally, for systems with non-modal viscous
damping, a similar reduction procedure can be used but then based on the complex
modes of the non-conservative system (see e.g. [63]).

A.3.2. General comparison
Besides the common feature of projection, the reduction techniques in Section A.2
have important differences, as listed below.

• First-order form versus second-order form

The most apparent distinction is the type of model under consideration. In the
field of structural dynamics, models of second-order form are usually studied,
whereas first-order models are examined in the fields of numerical mathematics
and systems and control. Even though the use of this symmetric second-order
form seems limiting, it is noted that the mechanical structures studied in
this field can indeed be modeled as second-order systems. In addition, these
mechanical structures typically have little damping, which motivates the use
of undamped vibration modes for model reduction. Here, it is noted that
the more general case of modal damping can be handled by such methods as
well. Nonetheless, due to the specific structure of these models, the model
reduction techniques from structural dynamics can in general not be applied
to other application domains. On the other hand, any model that can be
written in the first-order form can be handled by the reduction techniques
from numerical mathematics and systems and control, although asymptotic
stability is assumed in the latter.

• Input-output behavior versus global behavior

A second difference is given by the objective of the approximation. In numer-
ical mathematics and systems and control, a reduced-order model is sought
which approximates the input-output behavior of the original system. On
the other hand, this input-output behavior is of less relevance in the field of
structural dynamics, where the approximation of the global dynamics is of
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interest. Again, this results from the specific objectives in structural dynam-
ics. Namely, typical interest is in the identification of the regions where the
highest stresses or maximum displacements occur, whose locations are not
known beforehand. Hence, the modeling of the global dynamical behavior is
the main goal. However, extensions to mode superposition methods (see e.g.
Section A.2.1) provide techniques of incorporating the (static) influence of in-
put forces in the reduction basis, partially taking input-output behavior into
account.

In numerical mathematics and systems and control, the internal behavior of
the model is of little interest. In control design, the system behavior from
the control input to the measured outputs is of relevance and this directly
forms the basis for the model reduction procedure. In the analysis of large-
scale electrical circuits, where moment matching methods from the field of
numerical mathematics are typically applied, interest is in the reduction of
linear subcircuits. Here, its influence on the total circuit is described by the
inputs and outputs, such that the approximation of input-output behavior is of
interest. Nonetheless, input-output behavior is only truly taken into account in
the latter when two-sided projection techniques are used. Namely, when using
one-sided projection techniques, either the input matrix B or output matrix
C is discarded, such that the focus of the reduction is limited to the state-
to-output or input-to-state behavior, respectively. In this case, the number
of moments matched is independent of the choice of input or output matrix.
Nonetheless, the number of moments matched for a given reduction order k is
doubled in the two-sided case, when input-output behavior is fully taken into
account.

• Interpretation of reduction space

Model reduction techniques from structural dynamics are largely based on
physical properties of mechanical systems. Therefore, the reduction space
resulting from modal approximation has a useful engineering interpretation.
Namely, it consists of the modes of the system, which represent the typical
vibration pattern of a structure at a given eigenfrequency. The most im-
portant modes and the corresponding eigenfrequencies are preserved in the
reduced-order system. Since these modes are obtained via an eigenvalue de-
composition, the system in modal coordinates is in diagonal form, as discussed
in Section A.2.1. Here, it is recalled that this only holds when the system is
undamped or has proportional (Rayleigh) damping or modal damping. In
this diagonal form, the equations describing the dynamics of the modes are
uncoupled, which means that no error is introduced in the dynamics of the
modes that are kept in the reduced-order model. In fact, the reduction error is
due to the deletion of modes, rather than errors in the dynamics of the modes
themselves.

In the reduction techniques from numerical mathematics and systems and
control, the reduction space does not have a clear physical interpretation. Of
course, this is largely due to the fact that these procedures are not limited to
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mechanical systems and are based on system-theoretic properties instead, as
discussed in Section A.2.3.

• Global versus local approximation in frequency domain

The modal truncation and moment matching model reduction techniques
from structural dynamics and numerical mathematics have in common that
they can be considered as frequency-domain-based (or Laplace-domain-based)
techniques. Therefore, they give a good approximation in some part of the
frequency-domain only. This is directly apparent in the modal reduction tech-
niques from structural dynamics, where the modes as used in the reduced-order
model are selected by their corresponding eigenfrequency. Here, the modes are
typically selected from the lower end of the frequency spectrum. On the other
hand, moment matching in numerical mathematics is based on the Taylor se-
ries expansion of a transfer function at a specific point (or multiple points)
in Laplace domain. Since the moments around this expansion point form the
basis for the reduced-order model, this approximation can only be expected
to be accurate around the expansion point, leading to a local approximation
in frequency domain.

In balanced truncation, as used in systems and control, the behavior in fre-
quency domain does not form the basis of the model reduction procedure.
Instead, the transfer of energy from the input to the output is used as a
tool for model reduction, which can be considered as a time-domain approach.
Nonetheless, specific regions in frequency domain can be emphasized by the ex-
tension to frequency-weighted balanced truncation, as noted in Section A.2.3.
An important application of such techniques might be found in vibration prob-
lems, where the mesh is typically no longer valid for high frequencies.

• Automatic versus user-dependent model reduction

A final general difference can be found in the level of automation of the model
reduction techniques from the different fields. Here, only the balanced trunca-
tion method in systems and control is fully automatic when a requirement on
the quality of the reduced-order model is given. Namely, the existence of an
a priori error bound (A.56) allows for the automatic choice of the reduction
order. The methods from structural dynamics and numerical mathematics
lack such an error bound.

Even when the reduction order is chosen beforehand, the methods from struc-
tural dynamics and numerical mathematics are heuristic. That is, the mode
superposition techniques from structural dynamics are dependent on the fre-
quency range of interest, which needs to be specified a priori. Herein, typically
the modes corresponding to the lowest frequencies are chosen. Similarly, the
reduction procedure in the moment matching techniques from numerical math-
ematics is dependent on the choice of expansion points. However, the influence
of this choice on the properties of the reduced-order system is largely an open
problem and very few guidelines for this selection exists. Therefore, these
expansion points are typically chosen as s0 = 0 or s0 = ∞. Of course, the
computational procedure in mode superposition and moment matching is fully
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automatic as soon as a choice is specified for the frequency range of interest
and the expansion point, respectively.

A.3.3. Moment matching and model truncation augmentation
A close link exists between modal truncation augmentation techniques used in struc-
tural dynamics (Section A.2.1) and the moment matching methods (Section A.2.2).
This can be understood by considering the series expansion of the (non-damped)
structural equations (A.2) in the Laplace domain for s2 as

q = (K + s2M)−1f =

∞∑

i=0

(
(K + s2

0M)−1M
)i

(K + s2
0M)−1f(s2 − s2

0)i, (A.59)

where s0 is a chosen expansion point. Clearly this expansion is similar to the moment
matching expansion (A.23) except that here it is written for the second-order form.
The reduction basis suggested by this expansion is the Krylov series

Kk

(
(K + s2

0M)−1M, (K + s2
0M)−1f

)
(A.60)

In the modal truncation augmentation approach the reduction basis consists of
some eigenmodes of the system and modal truncation corrections as described in
(A.20). Recalling the definition (A.16) of the correction vecttors, it can be seen that
the reduction basis (A.20) for the modal truncation augmentation is

span
{[

Φ qcor

]}
= span

{[
Φ K−1f

]}
, (A.61)

indicating that it includes the zero-order expansion term around s0 = 0. Thus, it
conserves the zero-order moment of the second-order problem around s0 = 0, which
is a direct consequence of the fact that the reduction basis includes the exact static
solution. Through a similar reasoning one could say that substructuring methods
that include the interface static modes (like the Craig-Bampton, the Rubin/MacNeal
and the Dual Craig-Bamtpon methods) are matching the zero-order moments for
the interface forces.

The modal truncation augmentation form presented in Section A.2.1 includes
only the zeroth-order correction as indicated by the basis (A.61). Higher-order cor-
rections as suggested in the Krylov sequence (A.60) can also be included in the
reduction space as proposed in [43, 157, 93, 1, 97, 128], which guarantees match-
ing higher-orders moments and thus leads to an approach similar to the moment
matching technique. Higher-order correction modes have also been used in the con-
text of substructuring and mode component synthesis [42, 130, 131]. Note that the
high-order corrections for structural problems can be obtained as a by-product of
the Lanczos algorithm used to compute the eigenmodes [129] and that one can also
consider quasi-static corrections (i.e. for s0 6= 0) in case one is interested in a specific
frequency range [160].

It is important to observe that the modal truncation augmentation uses a re-
duction basis that, in addition to the moments, also includes true eigenmodes of
the system. In that sense this method differs from the usual moment matching
techniques and it accounts both for the global behavior of the system (through its
eigenmodes) and for input-specific components (through the moments).
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A.3.4. Computational aspects

A general comparison of properties of model reduction techniques from the fields of
structural dynamics, numerical mathematics and systems and control was given in
Section A.3.2. Computational aspects are addressed in the current section.

From a computational point of view, the methods from systems and control have
the highest cost. In these methods, the computational complexity is mainly due to
the solution of two Lyapunov equations (see (A.44) and (A.45)), which are of the size
of the original high-order model. This seriously hinders the applicability of balanced
truncation to systems of very high order. Moreover, a full coordinate transformation
has to be computed, before reduction can be performed by means of truncation. As a
result, the total computational cost associated to balanced truncation is high. Some
approaches aiming at the reduction of this cost are given by [20] and [70], where
iterative methods are discussed for the computation of (low-rank approximations)
of the Gramians.

The computational cost for reduction techniques from the fields of structural
dynamics and numerical mathematics is significantly lower. First, these methods do
not require the computation of a full coordinate transformation. Instead, only the
reduction space is computed, which is given by only k basis vecttors. Furthermore,
the computations are less costly since the matrix operations that are required are
relatively cheap when compared to those needed for the solution of Lyapunov equa-
tions. In the mode displacement techniques from structural dynamics, only the most
important eigenvalues and eigenvecttors need to be computed. Since the frequency
domain of interest is typically known beforehand, efficient iterative methods can be
used to find the eigenfrequencies in this range. Here, it is stressed that model reduc-
tion is often used as a tool for the fast computation of frequency response functions,
which requires such efficient numerical techniques. The Krylov-subspace based mo-
ment matching techniques from numerical mathematics also have a small numerical
cost. Namely, the application of the Arnoldi or Lanczos methods only requires the
solutions of linear sets of equations or matrix-vecttor multiplications. Therefore,
moment matching methods by Krylov subspaces can be applied to systems of very
high order. Here, it is noted that the cost of two-sided moment matching methods
are twice as high as the cost of one-sided methods, as two sets of basis vectors need
to be obtained in the former.

Even though the application of balanced truncation seems limited from a com-
putational point of view, it is remarked that the perception of "high-order" differs in
the three different fields. Especially, models of very low order (i.e. O(100−101)) are
of interest in the field of systems and control. This is mainly due to the fact that
controllers have to be implemented in real-time, which provides a limit on the order
of the controller. Furthermore, low-order controllers are preferred because of their
limited complexity. Hence, even though the computation of Lyapunov equations
limits the applicability of balanced truncation to systems of order O(103), it still
provides a solution to relevant model reduction problems in practice. On the other
hand, the models describing mechanical structures in the field of structural dynam-
ics typically result from finite element procedures, leading to models of orders up to
O(106). Similarly, the moment matching techniques from numerical mathematics
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typically find application in the analysis of large-scale electrical circuits, leading to
models of order up to O(106). From these applications, the need for numerically
efficient model reduction procedures is clear.

A.3.5. Preservation of properties
In model reduction, the objective is the construction of a reduced-order model that
gives a good approximation of the original high-order model. Herein, it is of crucial
importance that the reduced-order model preserves some properties of the original
system, among which stability is the most important. If the high-order system is
asymptotically stable, balanced truncation (see Section A.2.3) indeed preserves this
property, which is due to the fact that the (diagonal) Gramians act as Lyapunov
equations. The moment matching techniques from Section A.2.2 do not satisfy such
a property, such that stability of the reduced-order model can not be guaranteed
in general. Nonetheless, methods exist that preserve stability for classes of linear
systems (see e.g. [113]).

In the mode superposition techniques outlined in Section A.2.1, stability of the
reduced-order model can not be guaranteed when the original high-order system
exhibits general damping. However, in the important cases of undamped systems or
systems with positive definite symmetric damping matrix (which includes the cases
of proportional (Rayleigh) and modal damping), the stability properties are indeed
preserved. In fact, since the reduced-order model is based on the computation
of the undamped vibration modes, reduction of an undamped system leads to an
undamped reduced-order system, where the most important eigenfrequencies are
preserved. Stated differently, the pole locations of the most important poles remain
unchanged. This property does in general not hold for balanced truncation and
moment matching techniques. It is remarked that, in structural dynamics, one of the
main objectives for model reduction is the fast computation of frequency response
functions rather than performing time simulations. In this case, the preservation of
stability properties is of less importance.

Furthermore, it is obvious that modal superposition techniques preserve the
second-order form in the reduced-order model. Nonetheless, this is an important
feature in the field of structural dynamics since it implies that the kinematic relation
between displacement and velocity is preserved. This does not hold for balanced
truncation and moment matching, even if the models stem from a second-order
form. However, extensions of balanced truncation and moment matching aiming at
the preservation of a second-order form exist, see e.g. [29].

Next, it is remarked that the existence of an error bound, as discussed in Sec-
tion A.3.2, is closely related to stability preservation. Namely, a bound on the
difference of solutions from the high-order and reduced-order systems can only be
expected to exist when both systems are stable, making stability a prerequisite for
the existence of an error bound.

Finally, it is often important to preserve other system properties besides stability.
Herein, passivity and bounded realness are the most notable. Even though the
methods as discussed in Section A.2 do not generally preserve these properties, it is
noted that extensions exist that do. For the different fields, some references to the
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Figure A.1: Actuation frame model

literature are given in the corresponding parts in Section A.2.

A.4. Illustrative example
To illustrate the differences between methods as discussed in Section A.3, the model
reduction procedures of Section A.2 are applied to a common benchmark example.
Herein, focus is on the properties of the reduced-order models rather than compu-
tational aspects, as the implementations of the reduction techniques are not opti-
mized for computational speed. The benchmark example is chosen from the domain
of structural dynamics, to allow for application of all model reduction techniques
discussed in Section A.2. More specifically, the structure as depicted in Figure A.1
is considered, which represents an actuation frame as applied in high-precision ma-
chine components. The frame is made out of steel. Here, a piezo-electric actuator is
used to control the displacement in ex-direction of the top bar as depicted in the left
panel of Figure A.1. The machine component (without the actuator) is discretized
using a finite element approach, leading to a model of the form

Mq̈ + Dq̇ + Kq = b̃1u1 + b̃2u2, (A.62)

y1 = c̃T
1 q, (A.63)

y2 = c̃T
2 q, (A.64)

where q ∈ RN is the vecttor of the displacements and rotations of the nodes, with
N = 8730, and M and K represent the mass- and stiffness matrices, respectively,
resulting from the finite-element discretization1. In (A.62), the input u1 represents
the actuator force (in ex-direction), whereas u2 is a disturbance in ez-direction (b̃1

and b̃2 are the generalised force direction related to the forces u1 and u2, respec-
tively). Moreover, the outputs y1 and y2 give the displacement of certain corner
points of the actuator frame as depicted in the right panel of Figure A.1, and c̃T

1

1The matrices are available for interested readers. Please contact one of the authors.
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and c̃T
2 represent the corresponding output matrices. Finally, the actuator frame is

lightly damped, which is modeled using Rayleigh damping in the damping matrix
D.

Due to the high order of the model (A.62), model reduction is required to enable
efficient time-simulations of the model. Herein, the objective of reduction is to
obtain a reduced-order model which accurately captures the input-output behavior
from input u1 to output y1.

In order to apply model reduction techniques from the fields of numerical mathe-
matics and systems and control, the actuation frame model (A.62) has to be written
in state-space form. By choosing the state vecttor as xT = [qT q̇T], the dynamics
is given by

ẋ = Ax + b1u1 + b2u2, (A.65)

yi = cT
i x, i ∈ {1, 2}, (A.66)

where it is noted that x ∈ R
n with n = 2N = 17460. The system matrices in

(A.65-A.66) read

A =

[
0 I

−M−1K −M−1D

]

, bi =

[
0

M−1b̃i

]

, ci =

[
c̃i

0

]

, i ∈ {1, 2}.

(A.67)

Alternatively, the moment matching methods discussed in Section A.2.2 can also be
applied using system descriptions of the form

Eẋ = Ax + b1u1 + b2u2, (A.68)

yi = cT
i x, i ∈ {1, 2}, (A.69)

with matrices

E =

[
I 0

0 M

]

, A =

[
0 I

−K −D

]

, bi =

[
0

b̃i

]

, i ∈ {1, 2}, (A.70)

which avoids the need for inversion of the matrix M. In this form, the output
vecttors ci remain unchanged. Furthermore, since the matrices M, D and K are
symmetric

The model reduction techniques from Section A.2 are applied to this example.
From the field of structural dynamics, the mode displacement method is used. Here,
it is recalled that this method is based on the undamped system (i.e. the projection
basis is computed for D = 0) and the location of the inputs and outputs (i.e.
knowledge on b̃i and c̃i) is not taken into account. Nonetheless, the (static) influence
of the locations of the inputs can be taken into account by the extensions given by
mode acceleration and modal truncation augmentation (see Section A.2.1). On the
other hand, model reduction with respect to input u1 and output y1 is performed
using moment matching and balanced truncation. Since these methods are based
on the state-space form (A.65) (or (A.68)), damping can be included. In moment
matching, the expansion point is chosen as s0 = 0 and a one-sided projection is used,
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based on the input only (see (A.30)). In reduction, the reduced-order size of the
first-order models k is chosen as 2K, with K the number of modes taken into account
in the mode displacement methods. This choice is motivated by the fact that the
representation of a second-order model in first-order form doubles the number of
equations. Hereby, the reduced-order models in first-order and second-order form
have comparable complexity. Choosing K = 10 (k = 20) leads to the frequency
response functions, with input u1 and output y1, as depicted in Figures A.2 and A.3.
Here, H11 and Ĥ11 denote the transfer functions from input u1 to output y1 of the
high-order and reduced-order models, respectively.

From Figure A.2 it is clear that all reduction methods provide a good reduced-
order model for the frequency range up to about 104Hz. For higher frequencies,
the balanced truncation (BT) method yields a better improvement than the mode
displacement method (MD) and the moment matching technique (MM). This can
be understood be recalling that the moment matching method chooses the eigen-
vecttors corresponding to the K lowest eigenfrequencies as a reduction basis, where
the deflection shapes corresponding to the first three eigenvecttors are depicted in
Figure A.4. On the other hand, balanced truncation takes the location of the input
and output into account. From Figure A.4 it can be seen that the first mode is
a pure bending mode, leading to displacements in ez-direction. Thus, this mode
does not influence the input-output behavior from input u1 to output y1, as they
are both taken in ex-direction. A similar statement can be made about the third
mode and some other higher modes. As a result, these modes are not included
in the reduction basis for balanced truncation and modes corresponding to higher
frequencies are taken instead, explaining the better result (when compared to the
mode displacement technique) for high frequencies. Finally, the moment matching
technique (MM) gives a good approximation at low frequencies, which originates
from the choice of the expansion point as s0 = 0. Therefore, the lowest resonance
peaks are accurately captured, where it is recalled that the location of the input u1

is taken into account in the construction of the reduced-order model. Consequently,
the non-exited modes do not appear in reduced-order model obtained by moment
matching. The performance of the moment matching technique is particularly ap-
parent in the error graph in Figure A.3, where it gives the best approximation for
low frequencies. However, moment matching gives the largestH∞ norm of the error
system, see Figure A.3. The lowest norm is obtained by balanced truncation, due
to the good match for higher frequencies as discussed before.

To illustrate the influence of the locations of the inputs and outputs on the
reduced-order model, the frequency response functions for input u2 and output y2 are
depicted in Figure A.5, whereas the corresponding error is given in Figure A.6. Here,
the same reduction bases were used as in Figure A.2. Hence, the input u2 and output
y2 are not taken into account in the model reduction procedure. Since the mode
displacement method is based on the global dynamics rather than specific inputs and
outputs, it also gives a good approximation for these new inputs. On the contrary,
the reduced-order models obtained by balanced truncation and moment matching
are dependent on the inputs and outputs taken into account in the reduction, where
it is recalled that reduction was based on input u1 and output y1. Therefore, they
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Figure A.2: Comparison of the modal displacement method (MD), balanced truncation (BT)
and moment matching (MM) for reduction to K = 10 (k = 20): magnitude of the frequency

response function for input u1 and output y1.
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Figure A.4: Deflection shapes of the first three modes with eigenfrequencies 1.20 · 103, 2.66 · 103

and 2.83 · 103Hz.

do not give a good approximation for the input-output behavior from input u2 to
output y2, as is clear from the large errors in Figure A.6. As an example, the
first mode (see Figure A.4), which was not important for the input-output behavior
from input u1 to output y1 as in Figure A.2, forms an important resonance peak
in Figure A.5 and is not captured by either balanced truncation or the moment
matching technique.

Finally, stability of the reduced-order models is checked. Since the truss frame
system exhibits modal damping, the reduced-order model obtained by the mode
displacement technique is guaranteed to be stable. Stability is also guaranteed in the
case of balanced truncation. For moment matching, stability can not be guaranteed
a priori. In fact, for k = 20, the reduced-order model obtained by moment matching
is unstable, as follows from an a posteriori check.

A.5. Conclusions
In this appendix chapter, an overview and comparison of popular model reduction
methods from the fields of structural dynamics, numerical mathematics and sys-
tems and control are provided. A detailed review is given on mode displacement
techniques, moment matching methods and balanced truncation, whereas important
extensions are outlined briefly.

The differences and similarities between presented methods are discussed, both
qualitatively and quantitatively. Here, an important difference is the fact that the
global dynamics is taken into account in the mode displacement methods, whereas
moment matching and balanced truncation aim at the approximation of input-
output behavior. Moreover, the computational cost of the methods differs, which
limits the application of balanced truncation to systems of moderate size. On the
other hand, balanced truncation has an a priori error bound, which is not the case for
the mode displacement and moment matching techniques. Also, balanced trunca-
tion and the mode displacement method preserve stability of the high-order model,
whereas stability is not guaranteed when applying moment matching.

The overview of the differences and commonalities between the different reduc-
tion methods facilitates the choice of the reduction technique with the desirable
properties for a given reduction problem.
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Figure A.5: Comparison of the modal displacement method (MD), balanced truncation (BT)
and moment matching (MM) for reduction to K = 10 (k = 20): magnitude of the frequency

response function for input u2 and output y2. For balanced truncation and moment matching,
the reduced-order model is based on input u1 and output y1.
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Finally, these differences are illustrated by means of application of the different
methods to a common benchmark example.





B
Pre- and Post-multiplication

Matrices for Creating

Symmetric Vibro-acoustic

Matrices

In this appendix, the pre- and post-multiplication matrices which can be used to
end up with symmetric system matrices is outlined based on [52]. In [52], two
pre- and two post-multiplication matrices were presented. We briefly outline these
matrices for convenience below for the presentation. Namely, we first present the
pre-multiplication matrices and then we present the post-multiplication matrices
along with the resulting symmetric matrices.

B.1. Pre-multiplication matrices
The first pre-multiplication matrix resulting in a symmetric format is

κ1 =

[
KsM−1

s 0

−KT
sf M−1

s I

]

(B.1)

and premultiplying (2.29) with κ1, the symmetric matrices read as,

Msym =

[
Ks 0

0 Mf

]

, Ksym =

[
KsM−1

s Ks −KsM−1
s Ksf

KT
sf M−1

s Ks (Kf + KT
sf M−1

s Ksf )

]

(B.2)

The second pre-multiplication matrix resulting in a symmetric format is

κ2 =

[
I Ksf K−1

f

0 Mf K−1
f

]

(B.3)

and premultiplying (2.29) with κ2, the symmetric matrices read as,

Msym =

[
(Ms + Ksf K−1

f KT
sf ) Ksf K−1

f Mf

Mf K−1
f KT

sf MfK−1
f Mf

]

, Ksym =

[
Ks 0

0 Mf

]

(B.4)
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B.2. Post-multiplication matrices
The first post-multiplication matrix resulting in a symmetric format is written as,

τ1 =

[
K−1

s Ms K−1
s Ksf

0 I

]

(B.5)

and post-multiplying (2.29) with τ1, the symmetric matrices read as,

Msym =

[
MsK−1

s Ms MsK−1
s Ksf

KT
sf K−1

s Ms (Mf + KT
sf K−1

s Ksf )

]

, Ksym =

[
Ms 0

0 Kf

]

(B.6)

It is important to note that the transformations with the post-multipliers result in
a change of basis where the main variables of the domain are transformed to a new
set. This was also shortly outlined in (4.23).

The second post-multiplication matrix resulting in a symmetric format is written
as,

τ2 =

[
I 0

−M−1
f KT

sf M−1
f Kf

]

(B.7)

and post-multiplying (2.29) with τ2, the symmetric matrices read as,

Msym =

[
Ms 0

0 Kf

]

, Ksym =

[
(Ks + Ksf M−1

f KT
sf ) −Ksf M−1

f Kf

−KfM−1
f KT

sf Kf M−1
f Kf

]

(B.8)



C
Convergence Proofs on

Subspace Iteration

In this part, we would like to provide the mathematical convergence proofs behind
the inverse iteration and the Subspace iteration. The presentation is mainly based
on [63],[110],[18].

C.1. Refresher on inverse iteration and its conver-

gence
The generalized eigenvalue problem is given as

(K− λM)X = 0. (C.1)

To solve the eigenvalue problem in a power iteration like scheme, one can con-
vert (C.1)into standard eigenvalue problem, namely,

(K−1M)X =
1

λ
X −→ AX = λ̃X, (C.2)

with λ̃ = 1/λ and A = K−1M which is the dynamic matrix.
With this transformation, one could conceptually1 use the power iteration with

the dynamic matrix. Power iteration locates the maximum of the eigenvalues of the
system in an absolute sense therefore we can understand that the above transfor-
mation, (C.2), helps to find the lowest eigenvalue of the original problem due to the
reciprocal relation λ̃ = 1/λ. With a small arrangement, the power iterations can
be put in a more efficient framework where the dynamic matrix, K−1M, is never
formed explicitly. Namely, for step k, the operations are performed in two steps,

yk = Mqk (C.3a)

qk+1 = K−1yk (C.3b)

where qk+1 represents the next iteration vector in the sequence. And, this practice
is called the inverse iteration approach and detailed in[63],[110].

Since the eigenvectors X of (C.1) form an orthogonal set of linearly independent
vectors, any vector v which is not a null-vector, can be represented as a linear

1Since it is not practically possible to construct K−1M due to its fully populated nature
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combination of the eigenvectors of the problem, namely,

v = X1η1 + X2η2 + X3η3 + · · ·+ Xmηm −→ v = Xη, (C.4)

where m represents the column size of the original matrices K and M. Taking a
closer look at (C.3b), one can write that in the format of successive linear solves,
namely,

Kqk+1 = Mqk, (C.5)

If one writes (C.5) for k = 1, it reads as

Kq2 = Mq1, (C.6)

by using the fact that q2 and q1 can be represented in the space of the eigenvectors,
namely,

q1 = Xη1, q2 = Xη2, (C.7)

and substituting these expressions for q1 and q2 in (C.6) and premultiplying by XT,
the equation reads as

XTKXη2 = XTMXη1. (C.8)

Assuming that the modes are mass normalized, namely,

XTKX = Ω ≡ diag(λ1, λ2, ..., λk), XTMX = I. (C.9)

(C.8) can be written as,

η2 = Ω−1η1, (C.10)

Repeating the process for k=2, results in η3 = Ω−1η2 ≡ Ω−2η1, and, for higher
modes, this recursion results in,

qk+1 = XΩ−kη1, η1 = [η1
1 , η1

2 , ..., η1
m] (C.11)

Since Ω is a diagonal matrix due to the orthogonality properties of the eigenvectors,
(C.11) can be expanded and arranged as,

qk+1 =
1

λk
1

[X1η1
1 + X2η2

1(
λ1

λ2
)k + · · ·+ Xkηm

1 (
λ1

λm
)k], (C.12)

assuming that c1 6= 0 and the eigenvalues are distinct, as k increases, (λ1

λi
)k → 0,

then we are left with

qk+1 =
X1η1

1

λk
1

+ small-order terms, (C.13)

which indicates that, in the limit, qk+1 converges to a multiple of X1 which is the
fundamental eigenvector of the original problem.
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C.2. Convergence of Subspace iteration
With the inverse iteration technique outlined in Section C.1, we are iterating with
only one vector at a time. And to find higher order modes, at each iteration, we
have to start from scratch discarding the information generated in the previous
steps. Subspace iteration can be thought as an improvement on the original inverse
iteration scheme in which the iterations are performed in blocks. In order to prove
the convergence of Subspace iteration, as for the case of inverse iteration, we start
with the block version of (C.3b), namely, (3.2).

We can start by rewriting the eigenvector block as follows,

X = [X1 X2] , (C.14)

and similarly this could also be done for Ω, namely

Ω = diag(Ω1, Ω2) (C.15)

where X1 is an n× p block matrix and X2 is an n× (n− p) block matrix. Similarly,
Ω1 is a p × p diagonal matrix and Ω2 is an (n − p) × (n − p) diagonal matrix.
Using (C.14) and (C.15), the generalized eigenvalue problem can be written as,

K [X1 X2] = M [X1 X2]

[
Ω1 0

0 Ω2

]

, (C.16)

resulting in the submatrix equations

KX1 = MX1Ω1, (C.17)

KX2 = MX2Ω2. (C.18)

In the Subspace iteration method, we iterate simultaneously on p trial vectors with

KQk+1 = MQk (C.19)

which is the block analog of (C.3b). Similar to the expansion performed for the
inverse iterations, the trial vectors, Qk, might be represented as a linear combination
of the eigenvectors, namely,

Qk = X1η1 + X2η2, (C.20)

where η1 and η2 are the coefficient matrices of order p×p and (n−p)×p. Substituting
(C.20) in (C.19) and writing it explicitly for step k = 1 gives

KQ2 = M (X1η1 + X2η2) −→ Q2 = K−1MX1η1 + K−1MX2η2, (C.21)

by using (C.17) and (C.18), (C.21) can be written generally as,

Q2 = X1Ω−1
1 η1 + X2Ω−1

2 η2, (C.22)

Using the inverse iteration relation of the Subspace algorithm repeatedly results in
a general expression for the next set of iteration vectors at step k, namely,

Xk+1 = X1Ω−k
1 η1 + X2Ω−k

2 η2, (C.23)
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Due to the repeated application of the inverse iteration relation, the second term in
(C.23), will decrease much faster in comparison to the first term. Thus if k increases
sufficiently, we can safely write

Xk+1 ≃ X1Ω−k
1 η1, (C.24)

indicating that the contribution of the vectors in X2 vanishes as a result of the
inverse iteration relation used in the Subspace iteration algorithm.

The next cycle in the Subspace iteration is the solution of the p × p reduced
eigenvalue problem. This is a direct result of the minimization of the p simultaneous
Rayleigh quotients with a set of assumed admissible displacement functions. In
the case of Subspace iteration, these functions are represented in the space of the
computed vectors X̃k+1 as,

Vk+1 = Xk+1Ek+1, (C.25)

where the p×p matrix, Ek+1 contains the Ritz coordinates when combined as linear
combination with the vectors in Xk+1 will minimize the Rayleigh quotient[110].

To conclude, the convergence behaviour of the Subspace iteration depends mainly
on two facts, namely,

1. Representation of the main variables in the space of the orthogonal eigenvec-
tors and the use of their K and M-orthogonality properties.

2. The use of the inverse iteration relation, which by the use of the orthogonality
properties of the modes, is a proof for the convergence of the method.



D
Proofs on 3-term Recurrence

Relations for Partial

Reorthogonalization

The analysis presented in this appendix is mainly based on [110],[118],[142].

Base of the recurrence relation

Starting from the relation provided in blocks at step i of the Lanczos process, namely,

K−1MQi −QiTi = βi+1qi+1e
T
i (D.1)

Multiplying (D.1) from left by ei, we can write

K−1MQiei −QiTiei = βi+1qi+1 (D.2)

At this point, we can multiply (D.2) by QT
i M from left in order to write,

QT
i MK−1MQiei −QT

i MQiTiei = βi+1QT
i Mqi+1 (D.3)

At this point, we can reshape (D.1) into

K−1MQi = QiTi + βi+1qi+1e
T
i (D.4)

Taking the transpose of (D.5), we can write,

(K−1MQi)
T = QT

i MK−T ≡ eiq
T
i+1βi+1 + TT

i QT
i (D.5)

By carefully looking at (D.3), it is possible to use (D.5) in that relation. Specifically,
we have to replace 1QT

i MK−1 by (D.5) resulting in

(eiq
T
i+1βi+1 + TT

i QT
i )MQiei −QT

i MQiTiei = βi+1QT
i Mqi+1Tiei (D.6)

resulting in2

TiQ
T
i MQiei + βi+1eiq

T
i+1MQiei −QT

i MQiTiei = βi+1QT
i Mqi+1 (D.7)

by grouping related terms, we can write (D.7) in a different format as follows:

(TiQ
T
i + βi+1eiq

T
i+1)MQiei −QT

i MQiTiei = βi+1QT
i Mqi+1 (D.8)

(D.8) is the main equation that we are going to use in order to express the recurrence
relation for the partial orthogonalization operations.

1Due to the symmetry of K, tranpose operation has no effect.
2Since Ti is also symmetric
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Use of the three-term recurrence to derive the partial reorthogonalization

relations

Going back to (D.2) and writing that in another format as,

QiTiei = K−1MQiei − βi+1qi+1 (D.9)

considering qi = Qiei in (D.2) with the three-term recurrence relation

βi+1qi+1 = K−1Mqi − αiqi − βiqi−1 (D.10)

or

K−1Mqi = βi+1qi+1 + αiqi + βiqi−1 (D.11)

Using (D.11), we can write (D.9) as follows:

QiTiei = αiqi + βiqi−1 (D.12)

Derivation of the complete relation

We can now substitute (D.12) in the second term on the left side of the equality in
(D.8), namely,

(TiQ
T
i + βi+1eiq

T
i+1)MQiei −QT

i M(αiqi + βiqi−1) = βi+1QT
i Mqi+1

(D.13)

which can also be written as

(TiQ
T
i + βi+1eiq

T
i+1)MQiei − αiQ

T
i Mqi − βiQ

T
i Mqi−1 = βi+1QT

i Mqi+1

(D.14)

By grouping the first and third terms on the left side in (D.14), we can write

βi+1(QT
i Mqi+1 − eiq

T
i+1Mqi) = (Ti − αiI)QT

i Mqi − βiQ
T
i Mqi−1 (D.15)

which is valid for i ≥ 2.



E
Relation of Left and Right

Eigenvector with τ

By using τ from (5.19), we can write the symmetric vibro-acoustic eigenvalue prob-
lem and define its eigenvectors by

(Kc − ω2Mc)τφsym = 0←→ (Kc − ω2Mc)φR = 0 (E.1)

Investigating (E.1), we can conclude the following algebraic result on the right eigen-
vectors originating from the original nonsymmetric eigenvalue problem. Namely, the
right eigenvectors read as,

φR = τφsym (E.2)

The left eigenvector of this problem is, by symmetry, identical to φsym, namely
φL = φsym. Expanding (E.2) by using the definition of τ , we can write

φR = τφsym ←→ φR = τ

[
φs,L

φf,L

]

≡
[
K−1

s Msφs,L + K−1
s Ksfφf,L

φf,L

]

(E.3)

The left eigenvalue problem can be written as

(
KT

c − ω2MT
c

)
φL = 0→

([
Ks 0

−KT
sf Kf

]

− ω2

[
Ms Ksf

0 Mf

]) [
φs,L

φf,L

]

= 0

(E.4)

The first line in (E.4) yields

φs,L = ω2
(
K−1

s Msφs,L + K−1
s Ksfφf,L

)
(E.5)

Substituting this relation in (E.3) one finds

φR =

[
1

ω2 φs,L

φf,L

]

or φL =

[
ω2φs,R

φf,R

]

(E.6)

which is inline with the proofs in [99] and [161].
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