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Abstract  

In this paper, micromechanical simulations are employed to evaluate the performance of 
the Tsai-Wu and Hashin failure criteria for fiber-reinforced composites, especially in 

stress states whose experimental reproduction is complicated. Micromechanical 
responses are generated using a finite element model of a representative volume element 
(RVE), in which only the matrix material experiences damage and the fibers are assumed 

to be elastic. Micromechanical simulations of basic load cases are used to calibrate 
macrolevel criteria. Finally, the response of the micromodel and macromodels is 

compared for various load combinations. Despite a good agreement between Tsai-Wu 
criterion predictions and micromodel results in a wide range of stress states, some stress 
combinations are highlighted for which the strength is not predicted accurately. 

Additionally, accuracy of the Hashin criterion suffers from ignoring the influence of 
stress in fiber direction on matrix failure.  

Keywords 

Polymer composites, Matrix failure, Micromechanics, Failure criteria. 

 



Introduction 

Micromechanical models can be used as a powerful tool for performing virtual 
mechanical tests. Different loading scenarios that are not easily tested in physical 
experiments can be simulated for a representative volume element (RVE) of the 

microstructure. In an RVE, the actual failure and deformation mechanisms of composite 
materials can be simulated considering appropriate constitutive models for different 

phases including fiber, matrix and interface, with a limited number of inputs for each 
phase. For example, micromechanical models have been widely used to generate failure 
envelopes. Totry et al.1 employed micromechanical simulations to extract the failure 

locus of fiber-reinforced composites under transverse compression and out-of-plane 
shear. Analyses were conducted by simulation of a three-dimensional representative 

volume element containing fiber, matrix and interface. There was a good agreement 
between the failure envelopes from micromechanical simulations with those of Puck2,3 
and LaRC4 failure formulations.  

Using the same assumptions, Totry et al.5 developed a failure envelope for 
AS4/PEEK composite under transverse compression and longitudinal shear. The validity 

of the micromechanical results was examined by comparing these results with the 
predictions of Puck’s and LaRC’s criteria. The results showed that the Puck criterion 
estimates failure with adequate accuracy in combined stress states where failure is 

governed by the matrix material. Moreover, Totry et al.6 used micromechanical 
simulations to investigate the effect of the loading path on the failure envelope of 

unidirectional fiber reinforced composites under transverse compression and shear. The 
results showed that failure envelopes were independent of the loading path.  

Naya et al.7 employed a computational micromechanics framework to predict ply 

properties and investigate the effect of microstructure on the homogenized behavior of 
composites. The failure envelope of unidirectional fiber reinforced composites in 

longitudinal shear/transverse compression was extracted, considering environmental 
effects such as humidity and temperature. The results showed that the experimentally 
observed shear hardening in transverse compression loading is due to the friction between 

fiber and matrix. It was also concluded that some of the available failure criteria3, 16 need 
to be improved to be able to consider the fiber/matrix interface strength and interface 

friction appropriately. 

Recently, the performance of an orthotropic plasticity model for fiber reinforced 
composites was investigated by comparing the results of this macro-plasticity model with 

those obtained using computational micromechanics8. The results showed that some 
simplifications in the macro-model such as ignoring the effect of stress in fiber direction 

on matrix plasticity and using a single constant Poisson’s ratio are not justified. 

Currently, different failure criteria are available to interpolate strength in general 
stress space from a limited set of basic strength values9-13. Most of these models are 

phenomenological, i.e. they are inspired by experimental observations and provide 
relations that allow for accurate fitting of known data sets. Micromechanics allows for 

evaluating the accuracy of these failure criteria under stress combinations that are not 



easily achieved in experiments.  While earlier studies based on micromechanical 
simulations focused on the classical stress combinations to validate the concept, the 

research presented in this paper uses micromechanical simulations to examine the 
validity of available failure theories for less standard stress combinations. 

In this work, a detailed comparison is made between predictions of failure 
estimated by two classical macro-mechanical failure criteria (Tsai-Wu9 and Hashin10) and 
micromechanical simulations. Firstly, the micromodel is built as a statistical 

representative volume element with random fiber distribution. In the micromodel, a 
consistent pressure-dependent damage model by the authors14 is adopted for the matrix 

material. Fibers are assumed to be elastic and isotropic and perfect bonding between 
fibers and matrix is assumed. Secondly, the micromodel is utilized to generate inputs for 
the macromodels by implementing five virtual mechanical tests. Finally, by comparing 

the failure envelopes from micromechanics with those of Tsai-Wu and Hashin, 
limitations of the two failure criteria are identified.  

Failure criteria formulations 

Failure criteria in composite lamina can be classified in two main groups, namely: 

interactive and mode-dependent failure criteria. Interactive criteria are formulated as a 
single polynomial or tensorial expression in terms of the material strengths. Although the 
anisotropic nature of the composites considering different strength coefficients in 

different directions is taken into account, the non-homogenous nature of the composite is 
disregarded in the sense that one smooth failure envelope is assumed. Mode-dependent 

criteria distinguish between different failure modes of fiber failure and matrix failure with 
separate criteria for the different modes. The mathematical expressions of these criteria 
are developed in terms of the material strengths.   

In this study, the two most popular failure criteria, namely, Tsai-Wu and Hashin 
failure criteria are used as representative for the categories of interactive and mode-

dependent criteria, respectively. These models have been selected because they provide 
reasonable predictions of damage initiation in composites for various stress 
combinations.  

Tsai-Wu failure criterion 
The most general failure criterion for composite materials is the tensor polynomial 

criterion proposed by Tsai and Wu9. This criterion may be expressed in tensor notation 
as: 

1 iijiij FF   (1) 

where Voigt notation is used for the stress. ijF  and iF  are a second order tensor and a 

vector containing the strength values of the material. 

Considering the symmetries of the transversely isotropic materials and also the 

fact that failure of the material is insensitive to the change of sign in shear stresses, Eq. 
(1) for these materials can be simplified as: 
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In which different parameters are defined as: 
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where 
TX  and CX  are the tensile and compressive longitudinal strengths, respectively, 

TY  and CY  denote the tensile and compressive transverse strengths, 
BTY  is the biaxial 

strength and 
TS  and 

LS are the transverse and longitudinal shear strengths, respectively. 

Hashin failure criterion 
In 1980, Hashin10 proposed a matrix failure criterion based on the Mohr-Coulomb 

hypothesis where the fracture will only be influenced by the stresses acting on its plane. 
This formulation has been developed based on the assumption that failure occurs due to 
the interaction between different stress components acting on a fracture plane parallel to 

the fibers. The criterion for matrix tensile failure is defined as: 

1)(
1

)(
1

)(
1 22

13

2

1223322

2

232

2

33222
 

LTT SSY
 

(4) 

The Hashin criterion is simple, although its accuracy is limited15, 16.  

Micromechanical simulations 

Creation of failure envelopes corresponding to these macroscopic failure criteria requires 

some strength parameters as inputs which can be obtained from experimental 
measurements. In this work, micromechanical simulations of RVEs are used to extract 

inputs for these criteria. In the micromodel, glass fibers are assumed to be elastic and 
isotropic with Young’s modulus of 74000 MPa and Poisson’s ratio of 0.217. A consistent 
pressure-dependent damage model14 is adopted to simulate the matrix material behavior. 

In this model, the constitutive behavior of the matrix material is governed by: 
ed εCσ 0)1(   (5) 

with 0C being the elastic stiffness tensor and d being the damage parameter defined as: 
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where 0 and f  are the uniaxial strain values that correspond to onset and completion of 

the softening failure process, respectively. The equivalent strain eq is a scalar measure 

derived from the strain tensor and defined as: 
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(8) 

in which, E  and   are the Young's modulus and the Poisson's ratio and tX  and cX  

denote to the tensile and compressive strengths, respectively. 

Damage grows when the following criterion is met: 

0 eq  (9) 

where  is a scalar measure of the largest previously reached equivalent strain level that 
controls the evolution of the damage surface. For further details of the damage model, the 

reader is referred to the paper where it has been introduced14. A user material subroutine 
(UMAT) for Abaqus has been implemented in FORTRAN to implement this damage 

model. The material properties for the epoxy matrix are reported in Table 1.  
 

Table 1. Material properties of epoxy resin18 

Parameter Value 

Young’s Modulus ( E ) 3760 MPa 

Poisson’s ratio ( ) 0.39 

Tensile strength ( tX ) 93 MPa 

Compressive strength ( cX ) 124 MPa 

Mode I fracture toughness 0.09 N/mm 

RVE size study 

For micromechanical analysis of composites, a representative volume element 
should be constructed such that the homogenized behavior of RVE represents the 
macroscopic behavior of the composite. Many different studies considering various 

formulations for each phase have been conducted to determine the suitable size of RVE 
in different loading conditions. Recently, a statistical study into the influence of the RVE 

size on the elasto/plastic response was performed with a large number of different RVEs 



of different sizes by van der Meer8. It was shown that an RVE including 25 fibers is 
adequate to represent the macroscopic material under longitudinal shear and transverse 

tension loadings. To investigate whether this RVE size is also suitable when damage is 
included, various RVEs including 25, 36, 49 and 64 fibers were considered and five 

different fiber realizations for each one were constructed. Glass fibers with a diameter of 
5 m  were randomly distributed inside the periodic RVE with a fiber volume fraction of 

60%. Linear wedge elements were used to discretize the models. Figure 1 shows five 
different realizations and their finite element discretization for RVEs including 25 fibers. 
Periodic boundary conditions were applied to the RVEs following van der Meer8. These 

boundary conditions were imposed as linear multipoint constraint equations for each 
nodal pair using a python script.  

 

 

 

 

 

 

 

 

 

Finally, the homogenized stress-strain curves were obtained using the following 
definitions for averaged stresses and strains over the RVE volume 
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which were implemented via a python script in the post-processing mode in Abaqus. A 
statistical study is performed into the influence of RVE size on different strength values 

by performing virtual tests for four different RVE sizes from 25 fibers to 64 fibers with 
five different realizations for each RVE size. The mean and standard deviation of the 

resulting strength values are plotted in Figure 2. It can be seen that the average strength 
for the different load cases is approximately constant and does not change when the RVE 

Figure 1. Five realizations of a fiber distribution with 25 fibers and their finite 
element discretization. 

 



size increases. Therefore, the composite strength in basic load cases is considered to be 
equal to the average from five RVEs with 25 fibers. However, it was found that for 

combined loading, the variation in the response increased (Figure 3). For this reason, for 
cases where the interaction between three different stress components is studied, the 

results are extracted from simulations of two RVEs with 64 fibers.  

 

Figure 2. Mean and standard deviation of tensile, compressive, longitudinal shear and 

transverse shear strengths for 5 realizations for various RVE sizes.  

 

Figure 3. Mean and standard deviation of maximum longitudinal shear stress for 5 
realizations for various RVE sizes in combined loading including longitudinal tension 

and longitudinal shear in two different planes. 



Results 

Five basic load cases (uniaxial and biaxial tension, uniaxial compression, and transverse 

and longitudinal shear) are applied to the RVEs and the relevant strength values are 
computed. Next, the response of the macroscopic models is compared with those of the 

micromodel for a wide range of stress combinations. Simulations are carried out with 
different displacement ratios corresponding to different loading combinations. The failure 
envelopes corresponding to the micromodel are extracted based on the assumption that 

under different stress states the failure occurs when the maximum homogenized normal 
or shear stress in the RVE is attained. For example, to extract the failure envelope in 

1213    stress space, the homogenized 
1213    curves extracted by applying different 

1213 /  ratios on an RVE were obtained and plotted in Figure 4(a). Following 

literature5,6, the failure point is identified by finding the maximum value in one of the 

stress components, in this case  the maximum 
12  value. Figure 4(b) represents the 

damage distribution in the micromodel at the peak under this load combination for 

1/ 1213  . 

 

(a) 



 

(b) 

Figure 4. (a) Mechanical response of the composite under biaxial deformation in the 

1312   stress space. (b) Damage distribution in the micromodel at the peak under 

1312    combined loading for 1/ 1213  . 

Since in the micromodel no damage is considered for the fibers, only matrix 
failure will be observed. Consequently, in combined loadings including loading in fiber 

direction, failure envelopes will remain open. 

Calibration  

The strength parameters computed using micromechanical simulations of five RVEs 

including 25 fibers are summarized as: 2.94TY MPa, 155CY MPa, 63TS MPa, 

7.55LS MPa. 

In the Tsai-Wu criterion in some kinds of loadings the longitudinal strengths are 

also needed as inputs. However, these values cannot be computed through the current 
micromodel because the fiber failure is not included. Therefore, these values are 

extracted from available data in the literature. The longitudinal tensile and compressive 
strengths are set equal to 1280 Mpa and 800 MPa17, respectively. 

 Matrix-dominated stress combinations 

Longitudinal shear/longitudinal shear envelope  
In this section, the interaction between longitudinal shear stresses in different planes is 

studied. In Figure 5 the failure envelope in 1312    plane is visualized. The values are 

obtained by averaging from two different realizations. It can be seen that the Tsai-Wu 
and Hashin failure criteria are completely coincident in this plane. There is a very good 

match between the micromechanical results with the macro ones which means that the 
interaction between these two stress components is well captured using the macro failure 
criteria. 



 

Figure 5. Stress envelope for combined longitudinal shear in two different planes. 

Longitudinal shear/transverse tension  
To investigate the interaction between longitudinal shear and transverse tension, two 
different load combinations are considered: one where the shear and tension act in the 

same plane and one where they act in two different planes (see Figure 6).  
 

 

 

Figure 6. Combination of transverse normal stress with longitudinal shear stress applied 
(a) in the same plane, (b) in two different planes. 

Micromodel results corresponding to these load combinations are plotted in 

Figure 7. The results show that by applying transverse tension and longitudinal shear at 
the same plane, failure occurs faster than applying these loads in different planes. These 

observations can be explained by looking at the microscopic failure mechanisms. In the 
load case of Figure 6(b), the microscopic shear stress concentrations are not located at the 



same position as the microscopic tensile stress concentration. As a consequence, little 
interaction between the different macroscopic stresses is found. The distinction between 

the two load cases in Figure 7 cannot be found in the macroscopic failure criteria.  

 

Figure 7. Stress envelopes for different combinations of longitudinal shear stresses with 

transverse normal stress. 

Transverse biaxial tension envelope in presence of longitudinal shear  
Next, a combination of three different stress components is investigated. A constant 

longitudinal shear stress 12  is applied along with increasing transverse loads 22  and  

33  achieved by applying increasing displacements on the corner nodes with fixed ratio

3322 / . The results for this load combination are shown in Figure 8 in which the point 

corresponding to maximum 22  is considered as the failure point for each displacement 

ratio. In this figure, for low ratios of shear stresses ( 2.0,0/12 LS ), Tsai-Wu and 

micromodel have the same predictions of the failure stress and the curves are symmetric 

with respect to the 03322   axis. It should be noted that for calculation of the Tsai-

Wu criterion under combined 22  and 33 stresses, the biaxial transverse strength of the 

composite determined by micromechanical simulation is substituted into Eq. (3). For 

higher values of LS/12 , the Tsai-Wu failure envelope keeps its symmetry. However, the 

micromodel does not. A higher failure stress is found in the region in which 2233   . 

The micromodel predicts that interaction between 12  and 33  is limited, in contrast with 

interaction between 12  and 22 . These results are in line with the previous observations 

in section 4.2.2. 

The high discrepancy between Hashin estimation of the stress envelope from 
micromechanics is related to the fact that the biaxial tensile strength does not appear in 



the criterion formulation. Therefore, the Hashin failure envelope has less freedom to be 
fitted with the micromodel results in this plane. Considering the point of failure where

3322   , Eq. (4) yields: 

224 TT

TT
BT

YS

SY
Y


  

(11) 

For the considered material, Eq. (11) results in 92.70BTY MPa, which is significantly 

different from the micromechanics prediction of 4.100BTY MPa. 

 

Figure 8. Failure surface of the composite subjected to biaxial transverse tension and 

longitudinal shear (
LSK /12 ). 

Effect of stress in fiber direction on failure 

In mode-dependent failure criteria such as Hashin in which the fiber and matrix failure 
modes are separated, the stress in the fiber direction does not have any influence on the 

failure stress in the matrix failure modes. However, loading in fiber direction does affect 
the stress state in the matrix and can therefore be expected to have some effect on the 
matrix failure behavior. To investigate this effect, micromechanical simulations are 

performed for two different loading combinations: longitudinal shear and fiber tension 
and transverse tension and fiber tension. The simulations have been done for these stress 

combinations in presence of various constant values for other stress components.  

Longitudinal tension/longitudinal shear envelope  
By simplifying the Tsai-Wu criterion in longitudinal tension/longitudinal shear loading, it 

can be seen that the maximum longitudinal shear stress is defined as a quadratic function 

of 11 , while in the Hashin criterion, the maximum longitudinal shear stress is 

independent of the stress in fiber direction. 



To extract micromechanics-based failure envelopes simulations were carried out 

with a fixed ratio of the shear displacement 
12 to the normal displacement 

11  for 

different constant values of
13 . The resulting envelopes are shown in Figure 9. All 

curves related to the Hashin criterion are straight lines as the shear response is completely 

independent of the longitudinal stress, while micromechanical results show a clear 
influence of longitudinal stress on the shear strength. It can be seen that the presence of 

tensile stress in fiber direction reduces the longitudinal shear strength. By contrast, there 
is a good match between the stress envelope from micromechanics and the Tsai-Wu 
failure criterion.  

 

Figure 9. Variation of longitudinal shear strength with respect to the longitudinal axial 
tension for various

LSK /13 ratios.  

Longitudinal tension/longitudinal shear envelope in presence of transverse 

shear 
Figure 10 shows the failure envelopes corresponding to the Tsai-Wu and Hashin criteria 

in comparison with micromechanical results in 11 , 12 and 23  loading . It can be seen 

that the variation of longitudinal shear strength with fiber tensile loading for various 

TS/23  ratios follows the same trends as the previous load combination. 



 

Figure 10. Stress envelope for combined longitudinal shear and fiber tension loadings for 

various
TSK /23  ratios. 

Longitudinal tension/longitudinal shear envelope in presence of transverse 
tension 
For a multi-axial stress combination including longitudinal/transverse tension and 

longitudinal shear stress, Eq. (2) becomes: 

12 2

1255221112222

2

2222111

2

1111   FFFFFF  (12) 

In Eq. (12), 12F determines the interaction between normal stresses in fiber direction and in 

transverse direction. In order to find this parameter, it is necessary to use a biaxial test 

involving both 11  and 22 . Different values for 12F  have been proposed in literature19-22 . 

Among those values, the best fit between micromodel results and the Tsai-Wu envelope 

was obtained for 12F =0. Therefore, 12F is set equal to zero for the following visualization.  

Figure 11 shows the failure envelopes relating 12  with 11  for different values 

of the normal stress 22 . It is observed that by increasing transverse tensile loading, the 

longitudinal shear strength decreases considerably. This observation is physically 

expected. Considering that 12  and 22  have the same action plane, the presence of 22  

will accelerate failure due to 12 . Again, a significant influence of 11  on matrix failure 

is found in the simulations, which is in agreement with the Tsai-Wu criterion but not with 
the Hashin criterion.  

 



 

Figure 11. Longitudinal shear strength as a function of  
11  for different values of 

normal stress ratios (
TYK /22 ). 

Longitudinal/transverse tension envelope in presence of transverse shear 
Additional simulations are performed for a combination of 

11 and 
22  at constant 23 . 

The results shown in Figure 12 are similar to those for longitudinal shear in combination 
with longitudinal tension and transverse shear (Figure 10). 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. 
1122    Failure envelope accompanied with transverse shear stress (

TSK /23 ). 



 

Again, stress in fiber direction accelerates matrix failure. The presence of transverse shear 
stress results in a shrinkage of the stress envelope.    

Conclusion  

In this paper, computational micromechanics was employed to examine the performance 
of macroscopic failure criteria in several multi-axial stress states. The failure criteria were 

calibrated with the results of RVEs including 25 elastic fibers and a pressure-dependent 
damaging matrix in four basic virtual mechanical tests. Various stress combinations were 

applied to the RVE using periodic boundary conditions and the failure envelopes from 
micromechanics were compared with those of the Tsai-Wu and Hashin failure criteria. 
Considering the failure envelopes obtained for longitudinal shear/longitudinal tension and 

also transverse tension/longitudinal tension, it was found that the stress in fiber direction 
has a significant effect on the predicted failure load. Although this effect is taken into 

account in the Tsai-Wu criterion, it is left out of consideration in the Hashin criterion. 
Other failure-mode based failure criteria (Puck2,3, LaRC4 and Camanho11)  suffer the 
same shortcomings as Hashin for the presented stress combinations. 

A significant difference was found between the predictions of the two 
macroscopic failure criteria and micromodel response in combined loadings including 

transverse tension and longitudinal shear. According to the micromodel, the interaction 
between these two stress components depends on whether they are in the same plane or 
not. The failure criteria do not support making this distinction. 

In biaxial transverse tensile loading, there was a good correlation between the 
failure envelopes from micromechanics and that of Tsai-Wu, whereas, because of the 

absence of the biaxial transverse strength in the Hashin criterion, an improper estimation 
of the failure in biaxial transverse stress space was observed.  
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