Distributed Residual Deep
Reinforcement Learning for Load
Frequency Control

-2
(7]
Q

=

|_
Q
O
c

Q
O

wn

[
(@)
—
Q

-
(7]
T

Delf
U De I ft Uﬁivtersity of
I Technology Delft Center for Systems and Control

Distributed Residual Deep
Reinforcement Learning for Load
Frequency Control

MASTER OF SCIENCE THESIS

For the degree of Master of Science in Systems and Control at Delft
University of Technology

L.D. Steenhoff

July 26, 2025

Faculty of Mechanical Engineering (ME) - Delft University of Technology

a Delft Center for
Delft Systems and Control
e University of
Technology

Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.

Abstract

The increasing integration of renewable energy sources into power systems, characterized
by their variability and inherent lack of inertia, presents significant challenges for the load
frequency control problem, as large frequency fluctuations can cause equipment damage or
even blackouts. Additionally, the large geographical size and complexity of today’s power
systems require a multi-agent control strategy that is scalable and computationally efficient
for real-time control.

This thesis proposes two novel control structures that integrate decentralized Model Predictive
Control (MPC) with residual reinforcement learning based on the Deep Deterministic Policy
Gradient (DDPG) algorithm. In the first structure, each area is controlled by a decentralized
MPC, and a centralized coordinating residual DDPG layer is added on top. In the second
structure, the decentralized MPC layer is combined with a distributed coordinating residual
DDPG layer. The second structure is more scalable, but limits every DDPG controller to
partial system observability. To effectively test and evaluate the novel control strategies, the
European Economic Area Electricity Network Benchmark (EEA-ENB) is used.

Both structures share four key ideas: 1) Due to the coupling of areas in the EEA-ENB, the
resulting power system is unstable, making it difficult to train the DDPG agent. To overcome
this, the decentralized MPC layer enforces baseline stability, enabling the DDPG agent to
learn a residual input to improve coordination between areas. 2) The coordinating DDPG
layer is trained offline, shifting the computational burden away from online control. 3) By
providing a meaningful baseline, decentralized MPC removes the need for the DDPG agent
to learn entirely from scratch, which increases the sample efficiency. 4) The baseline allows
the DDPG agent to learn in a smaller action space, which reduces exploration difficulties and
improves the accuracy.

The proposed structures are compared against the centralized MPC, distributed MPC based
on the alternating direction method of multipliers, and decentralized MPC in a four- and
six-area case study. Simulation results demonstrate that the coordinating residual input from
the centralized or distributed DDPG layer significantly reduces the performance gap between
decentralized MPC and the optimal centralized MPC solution. The centralized DDPG layer
reduces the gap by 69.0% in the four-area case and 76.3% in the six-area case, while the

Master of Science Thesis L.D. Steenhoff

distributed variant achieves reductions of 49.5% and 87.3%, respectively. Although the per-
formance of the developed control structures does not fully match that of distributed MPC,
the computational cost is at least 15 times lower. The distributed DDPG variant requires
longer offline training time compared to the centralized DDPG method, but improves the
scalability. To fully validate their performance and scalability, future work should implement
the control structures on the entire EEA-ENB network.

L.D. Steenhoff Master of Science Thesis

Table of Contents

Acknowledgements vii

1 Introduction 1
1-1 Background and motivation 1
1-2 Objective e 3
1-3 Outline o 3

2 Load frequency control problem 5
2-1 European Economic Area Electricity Network Benchmark (EEA-ENB) 5
2-1-1 System dynamics 7

2-1-2 Constraints 8

2-1-3 Control objective and computational efficiency indicators 8

2-1-4 Area coupling and instability00 9

2-2 Analysis of control methods for EEA-ENB 10
2-2-1 Centralized MPC 10

2-2-2 Decentralized Pl control 11

2-2-3 Decentralized MPC 11

2-2-4 Distributed MPC-ADMM 11

2-3 Summary 12

3 Residual deep reinforcement learning 15
3-1 Fundamentals of reinforcement learning L. 15
3-2 Deep Deterministic Policy Gradient (DDPG) 18
3-3 Residual reinforcement learning oL 20
3-4 Multi-agent reinforcement learning L Lo 21
3-5 Summary . .. 22

Master of Science Thesis L.D. Steenhoff

iv Table of Contents
4 Integrating decentralized MPC with residual DDPG 23
4-1 Decentralized MPC + centralized DDPG 24
4-1-1 Control phase framework 24

4-1-2 Training phase framework oo 25

4-1-3 Centralized DDPG components 26

4-2 Decentralized MPC + distributed DDPG 29
4-2-1 Control phase framework 30

4-2-2 Training phase framework 31

4-2-3 Distributed DDPG components 32

4-3 Summary 33

5 Case study: Four- and six-area system in EEA-ENB 35
5-1 Simulation setups 35
5-1-1 Four- and six-area systems 36

5-1-2 Externalsignals 37

5-1-3 Hardware and software L 38

5-2 Implementation of control strategies 38
5-2-1 Existing control structures L L L 39

5-2-2 Decentralized MPC + centralized DDPG. 40

5-2-3 Decentralized MPC + distributed DDPG 44

5-3 Results 44
5-3-1 Existing control structures 45

5-3-2 Decentralized MPC + centralized DDPG. 46

5-3-3 Decentralized MPC + distributed DDPG 48

5-3-4 Comparison between control strategies 49

B5-4 Summary 53

6 Conclusions and recommendations 55
6-1 Conclusions 55
6-2 Contributionso 56
6-3 Discussion and recommendations for future research 56

A Appendix 59
A-1 Pseudocode 59
A-1-1 ADMM . . L 59

A-1-2 DDPG 60

A-2 Additional figures 61
A-2-1 Controlinputs 61

A-2-2 Angle deviations L 62

A-2-3 Frequency deviations Lo 63

A-2-4 ESS charge 64

A-2-5 Power exchange over the tie-lines. 65

A-2-6 Dispatchable power 66

L.D. Steenhoff Master of Science Thesis

Table of Contents

\%

B Paper 67
Bibliography 75
Glossary 79
List of Acronyms L 79

List of Symbols 79

Master of Science Thesis

L.D. Steenhoff

vi

Table of Contents

L.D. Steenhoff

Master of Science Thesis

Acknowledgements

This thesis marks the conclusion of my Master’s program in Systems and Control at the
Technical University of Delft. Through discussions with my supervisors, Prof. Dr. Ir. Bart
de Schutter and Ph.D. candidate Ir. Alessandro Riccardi, I was guided towards this research
topic. My interest in the energy transition and machine learning, both highly relevant subjects
today, played a key role in shaping this direction. The energy transition presents significant
challenges, while machine learning offers promising solutions to many of these issues. The in-
tersection of these two fields inspired me to explore how advanced technologies can contribute
to solving the pressing problems faced in the shift toward sustainable energy.

First of all, I would like to thank my supervisors for their support during this thesis. Their
guidance greatly contributed to the improvement of my academic skills and enabled me to
complete a piece of work that reflects the progress I have made during my time in Delft.
The meetings with Prof. de Schutter were pivotal moments in the development of this thesis.
Furthermore, I am especially grateful to Alessandro, with whom I had in-depth discussions in
the weekly meetings. He always had many insightful ideas for me to explore, and I sincerely
thank him for the valuable and thorough feedback he provided throughout my work.

Additionally, I am truly grateful to the people around me, and I would like to thank my family,
friends, housemates, and my girlfriend for their continuous support and encouragement. In
particular, the coffee breaks with my mother often helped me approach academic and personal
challenges from a different perspective.

Delft, University of Technology L.D. Steenhoff
July 26, 2025

Master of Science Thesis L.D. Steenhoff

viii Acknowledgements

L.D. Steenhoff Master of Science Thesis

Chapter 1

Introduction

This chapter introduces the topic of this thesis, which is load frequency control in inter-
connected power systems. The general background on load frequency control as well as the
motivation for this thesis are discussed in Section 1-1. Next, the objective of this thesis is
stated in Section 1-2, and finally, the outline of the thesis is discussed in Section 1-3.

1-1 Background and motivation

Many fundamental changes have been introduced in power networks in the last decades,
such as the increasing scale of the electricity grid, the shift towards a deregulated energy
market, and the accelerated deployment of Renewable Energy Sources (RESs) [35]. The
resulting network becomes more complex, necessitating novel control strategies for its effective
operation. Omne of the primary control objectives to address in energy networks is Load
Frequency Control (LFC), which consists of maintaining a constant operating frequency of
the power network by ensuring that the generated power matches the electrical load at all
times [6].

The frequency of the electricity network is directly related to the rotational speed of the
generators supplying the electrical power. Therefore, LFC aims to manage the speed of the
turbine-generator units while satisfying the power demand. When an imbalance occurs, a
governing mechanism detects the deviations in machine speed and adjusts the generator’s
input valve to regulate power output. This enables the generator to either accelerate or
decelerate, ensuring that the frequency remains at the nominal value, which is 50 Hz in
the European Economic Area [6]. Large deviations from the nominal value can lead to
equipment damage, degraded load performance, overloaded transmission lines, or even large-
scale cascading blackouts [35].

Maintaining a constant operating frequency is becoming increasingly challenging due to recent
shifts in energy generation. As electricity demand continues to rise [16], increasing power
production is essential. RESs present numerous advantages, including lower carbon emissions,
widespread availability, and environmental sustainability. Additionally, the levelized cost of

Master of Science Thesis L.D. Steenhoff

2 Introduction

electricity for new solar and wind farms is now lower than that of new conventional thermal
power plants (e.g., coal, gas, or nuclear) [19]. The International Energy Agency [2], responsible
for promoting energy security, economic growth, and environmental sustainability globally,
has reported consistent growth in global renewable energy production over the past 20 years,
a trend expected to continue [17].

However, there are two main challenges associated with RESs in comparison with traditional
fossil-fuel-based generators. First, photovoltaic panels and wind farms, which make up a sig-
nificant portion of RESs, heavily depend on weather conditions, making their output variable
and less predictable [18]. This makes it more difficult to balance the generated power and the
consumed load. Second, RESs lack inherent inertia. Traditional power plants rely on turbines
with large rotating masses, providing inertia to the electricity grid. This helps maintain grid
stability during disturbances by offering immediate kinetic energy. In contrast, photovoltaic
and wind farms cannot contribute to this inertia directly [6,44,45].

In addition to the challenges introduced by RESs, modern power systems face several other
pressing issues that affect LFC. In the European Union, the electricity grid is now highly
interconnected between countries, forming a large-scale, integrated power system [1]. This
expands the scope of the LFC task, which must now regulate not only the frequency deviations
within individual countries but also the power exchanges between them, necessitating control
structures capable of effective multi-area coordination [6,31]. In addition, the power system
demands real-time control, meaning that control actions must be computed and executed
within the timing requirements of the system. To achieve this, scalable, non-centralized
control approaches are essential to reduce the computational burden [5].

Recently, data-driven approaches, such as Reinforcement Learning (RL) [43], have gained in-
creasing attention from researchers for the control of complex systems, like LFC [12,28]. RL
is a model-free framework, where an agent learns a control law (policy) through interaction
with the environment, using feedback in the form of rewards. This approach enables the
development of control policies that generalize across a wide range of RES scenarios. Fur-
thermore, some RL algorithms support offline training, allowing these policies to be learned
entirely from simulated or historical data before being deployed. Because the policy is trained
and tested without interacting with the real system during learning, potential risks from un-
stable or unsafe behavior are avoided. Once trained, the policy can be executed using simple
forward mathematical operations, which are computationally efficient and thus suitable for
real-time operation.

Beyond the single-agent setting, the field of multi-agent RL has also gained momentum,
offering promising non-centralized frameworks for the control of networked systems [8, 13].
Multi-agent RL is an extension of reinforcement learning in which multiple agents learn to
make decisions based on local observations, while interacting within a shared environment
under cooperative, competitive, or mixed settings. It has already been widely applied to
LFC in multi-area power systems [28, 38,46], demonstrating the cooperative minimization of
frequency deviations under RES variations.

However, there are also several limitations compared to state-of-the-art controllers such as
Model Predictive Control (MPC). Specifically, (multi-agent) RL lacks guarantees for stability
and safety, cannot inherently handle operational constraints, and often relies on substantial
amounts of training data [43]. The author of [28] concludes that RL is not intended to fully
replace conventional model-based LFC techniques, but rather serves as an effective alterna-

L.D. Steenhoff Master of Science Thesis

1-2 Objective 3

tive for specific tasks. Therefore, this thesis aims to combine well-known advanced control
principles with the learning capability of RL, leveraging the strengths of both frameworks.

1-2 Objective

Given the challenges outlined in the previous section, there is a growing need for novel con-
trol strategies to address the demands of LFC in modern power systems. An effective control
framework must be capable of handling the increasing integration of RESs, while also provid-
ing scalability and computational efficiency to support real-time operation in the large-scale
electricity network. Additionally, the control structure must be able to satisfy operational
constraints to limit the frequency deviations. Based on these requirements, the objective of
this thesis is formulated as follows:

Develop a scalable multi-agent control framework for real-time load frequency
control to optimize system performance, while ensuring the satisfaction of
operational constraints.

1-3 OQutline

In this thesis, two novel control structures are developed for the LFC problem in intercon-
nected power systems. The first structure combines decentralized MPC with centralized RL,
and the second structure combines decentralized MPC with distributed RL. These control
structures are tested on a benchmark in two case studies. To guide the reader through this
development and evaluation process, this section outlines the structure of the thesis.

In Chapter 2, the European Economic Area Electricity Network Benchmark (EEA-ENB) is
introduced, which is developed to assess multi-agent control strategies for the LFC problem.
This chapter describes the benchmark’s topology, dynamics, operational constraints, and
control objectives, followed by presenting the existing control strategies used for comparison.

Chapter 3 lays the theoretical foundation for the proposed approaches. It begins with an
introduction to Reinforcement Learning (RL) and the selected algorithm, Deep Deterministic
Policy Gradient (DDPG). Additionally, the Residual Reinforcement Learning concept is
explained, which is used by both novel control structures. The second control structure
extends the architecture to a multi-agent setting, requiring a brief overview of multi-agent
reinforcement learning.

Chapter 4 presents the complete architectures of the two control structures. This includes a
detailed explanation of their learning and execution frameworks, describing how each layer
operates during training and deployment.

Chapter 5 applies the proposed control structures to two case studies based on segments of the
EEA-ENB network. It outlines the simulation setups and implementation details for both the
proposed and reference control strategies. The performance of all controllers is subsequently
analyzed and compared in terms of control effectiveness and computational efficiency.

Finally, Chapter 6 revisits the research objectives defined in Section 1-2, summarizes the key
contributions of the thesis, and discusses limitations as well as directions for future research.

Master of Science Thesis L.D. Steenhoff

4 Introduction

L.D. Steenhoff Master of Science Thesis

Chapter 2

Load frequency control problem

This chapter provides a detailed overview of the European Economic Area Electricity Network
Benchmark used in this thesis to develop two novel multi-agent RL-based control structures
for the LFC problem. The benchmarks network topology, system dynamics, constraints,
and the two control objectives will be discussed in Section 2-1. In addition, several control
architectures applied to this system, including centralized MPC, decentralized PI control,
decentralized MPC, and distributed MPC based on the Alternating Direction Method of
Multipliers (ADMM), will be analyzed in Section 2-2. For each control method, the corre-
sponding limitations are identified.

2-1 European Economic Area Electricity Network Benchmark (EEA-
ENB)

To assess multi-agent control strategies for the LFC problem, the EEA-ENB has been devel-
oped [36]. This benchmark provides topological information, real-world electrical data, and a
mathematical model of interconnected electrical areas (countries) in the European Economic
Area consisting of 26 countries. The electrical power sources, loads, and renewable sources
are aggregated for each of these countries, and therefore each electrical area can be repre-
sented as an equivalent electrical machine, as shown in Figure 2-2. Furthermore, neighboring
countries are connected by transmission lines or tie-lines. The resulting network topology of
the EEA-ENB is illustrated in Figure 2-1.

This network of connected dynamical machines can be represented by the graph G = (V,€).
Here, the set of M nodes V = {A;,..., Ay} corresponds to the electrical areas A; in the
topology, with ¢ denoting the area index. If nodes A; and A; are adjacent, they are connected
by an undirected edge €;; = €j; = (A;, Aj) € £ CV x V, allowing for bidirectional power flow.
Moreover, the neighborhood, denoted by N; = {A; € V | (A;, A;) € £}, is the set of all nodes
connected to area A;.

Master of Science Thesis L.D. Steenhoff

6 Load frequency control problem

x10

4.5

4.0

Figure 2-1: Topology of the EEA-ENB, where each node represents a country, labeled with
its corresponding 1SO code. Coordinates are specified using the ETRS89 LAEA [10] reference
system. The edges of the graph denote the tie-lines that connect the equivalent electrical areas,
with their transparency indicating the strength of the coupling effect, which is inversely related
to the geographical distance between the electrical areas.

Area l Agjforj €

Apload
w; = [Afire"] APl_laad
i

Z T, (A6; — A8))

Rotating Mass
AS;
Af;
Equivalent electrical machine x = €
t disp
______________________________ 4
ptie
i

Figure 2-2: Equivalent electrical machine and ESS representing the electrical area A;.

L.D. Steenhoff Master of Science Thesis

2-1 European Economic Area Electricity Network Benchmark (EEA-ENB) 7

2-1-1 System dynamics

The linearized LFC system of the i-th area consists of 5 states, 3 control inputs, and 2 external
signals, which are denoted respectively by:

Ad;
dis
Afz AP@ P Apload
T; = €;) Uy = PZ‘ES&C) Wi = Sren (2-1)
F)Z_tie PESS,d A'P'L
Pdisp !

7

Here, Ad; [deg] is the deviation of the machine angle w.r.t. the nominal angle dp; = 30 [deg],
Af; [Hz] is the deviation of the frequency w.r.t. the nominal frequency fy = 50 [Hz], e;
[GWs] is the energy stored in the ESS, P!® [GW] is the energy exchange over the tie-lines
away from the ¢-th area, and PidiSp [GW] is the dispatchable power allocation. The control
inputs are the variation in dispatchable power AP,LdiSp [GW/s], and the charging PZ»ESS’C [GW]
or discharging of the ESS PZ-ESS’d [GW]. The two external signals are the variation in load
request AP°*d [GW/s] and the variation in renewable energy generation AP [GW/s].
These are measurable quantities of which the benchmark provides a 10-day time series of
real-world data, as well as the day-ahead forecasts. In this thesis, only the measured values
are used, thereby assuming a perfect forecast. This assumption is reasonable during the initial
phase of developing a control strategy. Further extensions can be developed to address the
mismatch between measurements and forecasts, but these are outside the scope of the current
work.

A sampling time 7 of 2.5 [s] is used for the simulations, where the discrete-time index is
denoted by k. The dynamics associated with the i-th area A; of the equivalent electrical
machine are provided by the system of linear discrete-time difference equations reported in
the following;:

ASi(k+1) = Asi(k) + 2rAfi(k) (2-2)
Afilk+1) = (1 -) Afilk) + Kpi——gik) (2-3)
ei(k+1) =ei(k) +7 <anFSS’C<k> - ZPFSS%)) (2-4)
Pi(k + 1) = Pie(k) + TAP(k) (2-5)
PP (k + 1) = PP (k) + AP (k), (2-6)

with:

gi(k) = APIP (k) — AP (k) + AP[*™ ()

— APIE(k) = PP (k) + B (k) (2-7)
API(k) = 3 Tis(Adi(k) — Ad; (k)), (2:8)
JEN;

Master of Science Thesis L.D. Steenhoff

8 Load frequency control problem

. GW Hzxs
where T;; in Tog 18 the gain associated with the tie-line connecting area i and j; Kp; in [*&7]

is the gain of the rotating mass dynamics; and 7g; in [s] is the time constant of the rotating
mass dynamics. Furthermore, nf and Ufl are the charging and discharging efficiencies of the
ESS.

In state-space form, the overall interconnected system is represented by the following equation:

x(k+1) = Ax(k) + Bu(k) + Kw(k), (2-9)
T T T
where x = {m? xL] ,u = |u{ - UX/[} ,and w = [wlT w&} are the aug-

mented states, control inputs, and external signals of the M areas, respectively. Here, A is
composed of blocks on the diagonal representing each area’s own dynamics, and off-diagonal
terms for the tie-line couplings between areas. The input matrix B is block-diagonal with
each block mapping local input wu; directly into subsystem ¢. Similarly, the external signal
matrix K is block-diagonal, mapping the local signal w; into subsystem .

2-1-2 Constraints

All areas have to satisfy the following state constraints. The electrical angle d; is required to
stay within 26.5 < ¢; < 33.5. With dp; = 30 [deg|, this means that the angle deviation is
bounded by —3.5 < AJ; < 3.5. The frequency deviation must satisfy —0.04 < Af; < 0.04, to
ensure that the frequency f; remains within the acceptable range of the nominal frequency
fio = 50 [Hz]. Furthermore, the total ESS capacity of area i is assumed to be equal to the
total dispatchable capacity PidiSp’max7 which varies for each area. These state constraints for
area ¢ can be summarized in the following equation:

—-3.5 Ad; 3.5
—0.04 Af; 0.04
0 < e; ’ < Rdisgmax (2‘ 10)
0 P.diSp Pdisp,max
i i

Note that there is no constraint on the total energy exchange over the tie-lines. The control
input of each area has to stay between the following bounds:

—Apdispmax] FAPIPY A plispmax
% [i

ESS,c disp,max
0 <|P < AP

0 .PZ-ESS’d ARdlsp,max

, (2-11)

where APidiSp’maX is selected such that the total dispatchable power, or ESS capacity can be

allocated over one hour: g
isp,max
APdisp,max — Pz (2—12)
¢ #steps per hour

2-1-3 Control objective and computational efficiency indicators

The different control strategies are evaluated against a control objective and two computa-
tional efficiency indicators. The control objective consists of four components: 1) The main

L.D. Steenhoff Master of Science Thesis

2-1 European Economic Area Electricity Network Benchmark (EEA-ENB) 9

control objective is to regulate the frequency deviation Af; to zero from the nominal value
fio = 50 [Hz] for each electrical area. 2) To ensure preservation of the machine efficiencies,
the angle should remain as close as possible to the nominal value dp; = 30 [deg] for each
electrical area. 3) To ensure preservation of the ESS efficiency, the energy charge e; of each
electrical area needs to be minimized. 4) To reduce the allocation of resources and smooth
the dynamics in response to the control actions, the control effort u”u needs to be minimized.

The total energy exchange over the tie-lines and dispatchable power allocation will not be
penalized, although this can theoretically be taken into account in the control objective. All
components of the control objective can be captured in the following infinite-horizon cost
function:

(k)" Qx(k) +u(k — 1) Ru(k - 1)] (2-13)

HM8

where Q = blkdiag(Q, ... ,QM) and R = blkdiag(R1,...,Ry). Since all electrical areas
have the same control objective, the weighting matrices are identical:

QRi=Q and R; =R Vic {1,...,M}, (2—14)
with:
100 0 0 O O
0O 10 0 0 O 1 0 0
Q=10 0 1 0 O and R=1]0 1 0 (2-15)
0 0 0 0 O 0 01
0 0 0 0 O

The computational efficiency indicators are both related to the computing costs of the control
inputs. The first indicator assesses whether real-time control is possible, since real-time
control is only feasible if the control input is computed within the sampling time 7 = 2.5 [s].
It should be noted that in decentralized or distributed control structures, parallel computation
of the controllers is possible. In such structures, the longest computational time of the parallel
controllers is measured.

The second indicator quantifies the overall computational burden of the control architecture.
First, the cumulative computational time over the simulation horizon is calculated for all
controllers in the architecture. Then, these values are summed to obtain the total core
computational time indicator.

2-1-4 Area coupling and instability

A challenge of the control of the EEA-ENB arises from the instability of the system. An
isolated area is inherently stable, meaning all eigenvalues of the A matrix lie within the unit
circle. However, when two or more areas are interconnected, the system becomes unstable.
This instability arises from the coupling effect, detailed in Eq. (2-8). According to this relation,
power exchange between two areas is driven by a difference in the deviation of the machine
angle.

Furthermore, the gain T;; associated with this tie-line power exchange is related to the geo-
graphical distance d;; between two connected areas ¢ and j by T;; = di This relationship
ij

Master of Science Thesis L.D. Steenhoff

10 Load frequency control problem

implies that two geographically close countries have a higher gain, leading to stronger cou-
pling effects and are therefore more unstable. This is relevant as some control structures
cannot stabilize all segments of the EEA-ENB topology. That some connections are more
unstable can be demonstrated by showing that the largest absolute eigenvalue, the spectral
radius p(A), of the system moves further away from the unit circle as the distance between
two areas decreases. For example, consider two system segments of the EEA-ENB, one with
only the geographically far connection, the Netherlands (NL) - Ireland (IE), and another with
only the geographically close connection, the Netherlands - Belgium (BE). The spectral radii
are P(ANL,IE) ~ 1.03 and P(ANL,BE) ~ 1.31, implying that P(ANL,BE) > P(ANL,IE)- Since
the tie-line gain 7;; is the only parameter that changed, as all other parameters are identical
across the countries, the increase in spectral radius is caused by the shorter geographical
distance.

2-2 Analysis of control methods for EEA-ENB

This section will discuss four different controllers that can be used for comparison. It includes
centralized MPC, decentralized PI, decentralized MPC, and distributed MPC with ADMM.
Furthermore, it will highlight the advantages and limitations of each control approach.

2-2-1 Centralized MPC

In [36], a centralized MPC (CMPC) scheme is implemented for the EEA-ENB. In this frame-
work, a single MPC agent has access to complete information about all subsystems and is
therefore able to formulate a single optimization problem to calculate the control inputs for
every area. At each time step k the following optimization problem is solved:

N
min > x" (j1k)Qx(jlk) +u' (j - 1/k)Ru(j - 1|k)

j=1
st. x(k+1) = Ax(k) + Bu(k) + Kw(k) VA, €V (2-16)
x(0|k) = x(k) VA, €V
state constraints (2-10) VA, €V
input constraints (2-11) VA; €V,
-
where N denotes the prediction horizon, and 4 = [uT(O|k‘) co ul (N - l\k)} represents

the sequence of predicted control inputs. After the optimization problem in Eq. (2-16) is
solved, only u(0|k) is applied to the system. In [36], the day-ahead forecast is used to make
the trajectory predictions. In this thesis, the centralized MPC implementation assumes that
future signals of w(k) are known, which results in an optimally controlled networked LFC
system.

One major drawback of this method is the significant computational time required to solve
the optimization problem, as the complexity of CMPC will grow with the number of areas [3].
In [36], the computation took 206 hours, 15 minutes, and 24 seconds to complete a 24-hour
simulation including all 26 areas in the EEA-ENB, indicating that real-time implementation
is impractical.

L.D. Steenhoff Master of Science Thesis

2-2 Analysis of control methods for EEA-ENB 11

2-2-2 Decentralized Pl control

PID controllers have been widely implemented for the LFC problem [4,35]. A general ben-
efit of PID controllers is their ease of implementation. However, the EEA-ENB requires the
control of multiple areas, each of which has a multi-input, multi-output nature. Therefore,
extensive gain tuning is necessary for optimal performance or even stabilizing the system. A
second limitation of PID controllers is that they are unable to guarantee constraint satisfac-
tion. Lastly, the decentralized framework is not ideal for the control of networked EEA-ENB,
since the PI controllers cannot coordinate their control inputs [5].

2-2-3 Decentralized MPC

An alternative control structure is decentralized MPC (dAMPC), where each dMPC controller
computes the optimal local control input by minimizing a cost function while satisfying its
constraints. As discussed in Section 2-1-1, it is assumed that perfect knowledge about fu-
ture disturbances is available. At each time step k, all MPC controllers solve the following
optimization problem:

N
min 3" a] (GIRQui(Ik) + uf (7 — 1K) Rug(j — 1/k)
7 j=1

s.t. mz(k + 1) = Azxz(k) + Bzu,(k) + szz(k)

(2-17)
i(0[k) = (k)
state constraints (2-10)
input constraints (2-11),
T
where u; = [uZT(O\k) oo uf (N — 1|k)} . This approach ensures that the input and state

constraints are satisfied. Furthermore, dMPC is suitable for real-time control, as the compu-
tation time at each time step remains below the time-step 7 of 2.5 seconds. This is primarily
due to the small size of each area’s optimization problem and the ability to solve these prob-
lems in parallel by the individual areas. In addition to its practical advantages, dMPC can
also offer theoretical guarantees. A theorem provided by [3] can verify global asymptotic
stability of the overall closed-loop system.

However, in dMPC, the predicted trajectories are not entirely correct due to partial state
and input information. The missing information for dAMPC controller ¢ is the exchange over
the tie-lines APe(k) for the entire prediction horizon. Like decentralized PI, this results in
uncoordinated control inputs, and consequently, a suboptimal performance [3].

2-2-4 Distributed MPC-ADMM

This section analyzes a distributed MPC approach coordinated through the Alternating Di-
rection Method of Multipliers (ADMM) consensus algorithm, referred to as DMPC-ADMM
[7,37,42]. The consensus ADMM algorithm is a distributed optimization technique widely
used in interconnected control systems. It solves consensus problems in the form of Eq. (2-18),
aiming to reach consensus about the control inputs by the distributed control agents. The

Master of Science Thesis L.D. Steenhoff

12 Load frequency control problem

term f;(x;) denotes the local objective function. The variable z is introduced as the common
global variable to make sure all agents agree on the local variables x;.

N
minimize Z fi(x:)
i=1

(2-18)
subject to x;, —z=0, ¢=1,...,N.

The ADMM update equations can be derived directly from the augmented Lagrangian, which
introduces the dual variables y; and penalty parameter 3. To reach a consensus on the local
variables x;, the agents iteratively: 1) Compute x; based on their own objective and those of
neighboring agents, 2) communicate x; with their neighbors, and 3) update the variables z and
y;. This iterative process continues until convergence is achieved or a predefined maximum
number of iterations is reached. The corresponding pseudocode is provided in Appendix
A-1-1.

By rewriting the MPC optimization problem to the form of Eq. (2-18), the integration between
MPC and ADMM is made possible [42]. Now local variable x; contains copies of the states and
inputs from the local and neighborhood A subsystems. Furthermore, a mapping matrix E is
introduced to relate the global variable z to x;. This results in the following DMPC-ADMM
update equations:

it i argin (fiG) + 0060 - B + Sl - BB) . 219)
1 I 1
+1 . _ I+1 l
= ; <xi + 53/@-) , (2-20)
=g+ BT - B, (2-21)

where [denotes the iteration counter.

In [37], this DMPC-ADMM algorithm is applied to the EEA-ENB, and the total cost differs
only marginally from the optimal CMPC solution in Section 2-2-1. Furthermore, the opti-
mization problems are reduced in size and, like in AMPC, can be solved in parallel. As a
result, they can be solved significantly faster than in the CMPC case.

However, eliminating the iterative consensus algorithm might lead to even faster results. For
example, RL agents can learn control policies through interaction with the system, allowing
them to make near-instantaneous decisions based on pre-trained policies [43]. This ability
to directly map observations to actions has the potential to greatly accelerate coordination.
The following chapter introduces the fundamentals of RL, laying the groundwork for the
development of an RL-based coordination algorithm that will replace the ADMM layer by
modifying the control action computed through a dMPC procedure.

2-3 Summary

This chapter presented the control-oriented benchmark EEA-ENB developed for assessing
multi-agent control strategies in the context of the LFC problem in interconnected power
systems. It outlined the benchmark’s topology, system dynamics, constraints, and control

L.D. Steenhoff Master of Science Thesis

2-3 Summary 13

objectives. Furthermore, it examined the inherent system instability and its correlation with
the geographical distance between neighboring countries.

Four control approaches were analyzed: CMPC, decentralized PI control, dMPC, and DMPC-
ADMM. CMPC provides the optimal state and input trajectory but is computationally
intensive and therefore unsuitable for real-time control. Decentralized PI controllers offer
simplicity, but face limitations in coordination, tuning, and constraint satisfaction. Decen-
tralized MPC provides constraint satisfaction and closed-loop stability guarantees, but also
lacks global coordination at the expense of performance. Distributed MPC-ADMM solves the
coordination problem and almost achieves the level of performance as CMPC while reducing
the computational burden.

The chapter concluded by highlighting the potential to replace the iterative ADMM consensus
process in DMPC-ADMM with a faster RL-based approach.

Master of Science Thesis L.D. Steenhoff

14 Load frequency control problem

L.D. Steenhoff Master of Science Thesis

Chapter 3

Residual deep reinforcement learning

The primary motivation for exploring RL is its potential to replace the iterative consensus
algorithm of the distributed control strategy DMPC-ADMM. RL will be deployed as a coor-
dinating extension to a dMPC control structure, improving the performance significantly. By
shifting the computational burden to an offline training phase, RL enables this improvement
with negligible additional computation during online control.

This chapter provides the necessary background on RL for this control implementation. The
chapter begins by introducing the fundamentals of RL in Section 3-1. Next, the chosen
Deep RL algorithm, Deep Deterministic Policy Gradient (DDPG), is reviewed in detail along
with the motivation why this algorithm was selected in Section 3-2. Lastly, the concepts of
Residual Reinforcement Learning (RRL) in Section 3-3 and multi-agent RL in Section 3-4 are
discussed.

3-1 Fundamentals of reinforcement learning

The essence of RL is solving a discrete-time optimal control problem through an iterative
learning process [9,43]. A controller (referred to as “agent” in machine learning!) will learn
to make decisions by interacting with the system (environment) and retrieving feedback in
the form of rewards or penalties, to converge to the optimal control law. These interactions
are typically modeled as a Markov Decision Process.

Markov decision process

A Markov Decision Process provides the mathematical framework for modeling sequential
decision-making tasks, where at discrete time steps k = 0,1, 2, ... a controller interacts with
a system [9,43]. In Figure 3-1, this interaction is schematically presented. At a time step k,

! Although RL roots lie in the machine learning field, where terminology can diverge from that of control
theory, this thesis will use control-theoretic conventions, like in [9].

Master of Science Thesis L.D. Steenhoff

16 Residual deep reinforcement learning

.

Controller

- @@ @ @ .
state, reward input

Xies Tk Uy

.
System
Xk+1)

Tie+1

Figure 3-1: The interaction between the controller and the system in a Markov Decision Process

the system is in state z; € X and on that basis input u; € U is selected by the controller?.
This input results in a reward rp.1 € R and a change in state to xx11. The sequence of
interactions is called the trajectory. In the EEA-ENB, the state transition to xjy; follows
the state-space dynamics in Eq. (2-9). The reward 741 that is received by this transition
is determined by the reward function p(zy,ug,xg+1), which should be designed such that it
reflects the control objective. The controller aims to maximize the cumulative rewards over
time, known as the return GGp. The infinite-horizon return is often defined as the sum of
future discounted rewards:

Gr =Y 7Vres, (3-1)
k=0

where v € [0,1] is the discount factor determining the future present value of the rewards.

Policy

The action ug of the controller is chosen by its policy w, which may be deterministic or
stochastic. A policy can have many different forms, including a tabular mapping, a polynomial
function, or a Deep Neural Network (DNN). When a DNN is used, the policy is typically
represented as a function my, where the set of parameters 6 denotes the trainable weights
and biases of the network. The objective of RL is to learn the optimal set of parameters 6
such that the resulting policy 7y maximizes the expected return over the selected simulation
horizon. This optimal policy is denoted by 7*.

Value functions

Value functions are used to estimate the expected return of a state or state-action pair and
help guide the decision-making process of the controller by quantifying the desirability of
states and inputs in terms of expected future rewards [43]. There are two primary types
of value functions in Markov Decision Processes. The first one is the state-value function
V7™ (x) that estimates the expected return when starting from state = and following policy 7
thereafter. It is defined as:

VT(2) = Egrmf(z,u,) {Z R o(x,u, x')} (3-2)
k=0

2To improve readability, the time step k will be denoted using a subscript instead of parentheses, as was
done in chapter 2.

L.D. Steenhoff Master of Science Thesis

3-1 Fundamentals of reinforcement learning 17

where a generic next state is denoted by the prime notation z’. The second one is the action-
value function or Q-function @, (z,u). This function estimates the expected return when
starting from state x, taking input u, and then following policy :

Qﬂ-('% u) = Ex’wf(:c,u,-) {Z ,O(.%', u, 1'/) + 7V7r(x/)} (3'3)

k=0

The optimal policy 7* will result in the optimal value functions V*(z) and Q*(x,u). Since the
optimal policy 7* can be directly obtained from the optimal action-value function Q*(z,u),
whereas using V* requires a model [9], the action-value function will be used in the remainder
of this section.

Bellman Equations

The value of a state can intuitively be seen as the reward for being in that state, plus the
value of the state where you land next as a consequence of the taken action [43]. This results
in a recursive relationship, as the current value depends on the value in the next time step,
which is effectively captured by the Bellman equation. For the action-value function, the
Bellman equation is given by:

Qﬂ—(l') u) = Ez’wf(z,u,-) {0(377 u, .73/) + VQW(‘T/7 ﬂ-(xl))} (3_4)

This equation represents the value of taking action w in state x as the immediate reward
plus the discounted value of the future action-state pair. From this, the Bellman optimality
equation can be derived according to the procedure in [9]:

Q*(JJ, u) = Ex/wf(:r;,u7~) {p(l’, u, ml) + H}ﬁ‘x Q*(x,v 7r(x,))} (3_5)

The Bellman equations are incorporated directly into various RL algorithms in which they
are used to update value functions, policies, or both.

Learning methods

Different learning methods have been developed to learn the optimal policy 7* in the litera-
ture, as is possible to see in [9,43]. RL algorithms can be either model-based, which either
use a model or learn a model of the system, or model-free, which learn directly from inter-
action data. Model-free methods are commonly categorized into value-based, policy-based,
and actor-critic approaches. Value-based methods learn value functions and derive policies by
selecting actions that maximize these values. A common method to update the action-value
function Q(x,u) is temporal-difference (TD) learning, which relies on the temporal-difference
error § between the current estimate and a one-step lookahead [9]:

0 =rge1+ 7 max Q(zpy1,u) — Q(ag, ug)- (3-6)
For example, the Q-learning algorithm updates the Q-function as follows:
Q(xlﬁuk) — Q(xlmuk) +a57 (3_7)

Master of Science Thesis L.D. Steenhoff

18 Residual deep reinforcement learning

where « € (0, 1] is the learning rate. This rule incrementally updates the Q-value toward the
Bellman optimality equation in Eq. (3-5)

To ensure convergence, exploration of the state-action space is essential. Since most policies
are deterministic, randomness is added using strategies like the e-greedy policy, which selects
a random action with probability e. This balances exploration of new state-action pairs with
exploitation of the current value estimates, as discussed in [43].

Alternatively to value-based methods, policy-based methods directly optimize the parameters
of a policy my to maximize expected return. This is typically done using the gradient ascent
method, where the policy parameters are updated in the direction of the gradient of the
expected return with respect to . Actor-critic methods combine both approaches, where the
actor updates the policy and the critic estimates a value function to guide learning.

In addition to the model-based and model-free distinction, RL methods differ in how they
interact with the system. Online learning updates the policy continuously through real-time
interaction, while offline learning trains the policy from a fixed dataset or by interacting with
a model of the system. Once trained, the policy is deployed in an online execution phase to
select actions based on the current state. Furthermore, learning algorithms can be divided
into on-policy and off-policy methods. On-policy methods learn from actions taken by the
current policy, while off-policy methods learn from actions taken by a different policy or past
experiences.

RL methods offer numerous advantages, though these benefits vary depending on the specific
approach. In general, RL methods can balance short-term sacrifices for long-term gains. Fur-
thermore, model-free methods do not require an explicit model of the system, unlike MPC.
Additionally, online methods can adapt their policy in systems that change over time, while
offline methods can shift the computational complexity to a pre-deployment phase, enabling
real-time control in complex systems [30]. However, compared to the control strategies dis-
cussed in Section 2-2, RL algorithms have some drawbacks, such as the lack of stability and
safety guarantees, unable to handle constraints, and the need for large amounts of training
data.

3-2 Deep Deterministic Policy Gradient (DDPG)

Among the various RL algorithms, this thesis implements the DDPG algorithm [22,32], which
is a combination of the deterministic policy gradient algorithm [39] and the Deep Q-learning
algorithm [26,27]. This integration allows the policy to produce actions in a continuous action
space, rather than being limited to discrete actions. DDPG is an off-policy algorithm, which
is essential in systems like the EEA-ENB, where external disturbances introduce significant
variability over time. Off-policy learning enables the policy to generalize across different dis-
turbance scenarios rather than overfitting to the most recent conditions. Another advantage
of DDPG is its ability to train offline and deploy the learned deterministic policy for online
control. Finally, DDPG is relatively simple to implement compared to other algorithms that
share these characteristics [9].

The DDPG learning framework for a single agent is depicted in Figure 3-2, outlining the
interaction between the actor, the critic, the system, and the experience replay buffer. Both
the actor and critic consist of an online and a target DNN, denoted by m(x) and my,,,, ()

L.D. Steenhoff Master of Science Thesis

3-2 Deep Deterministic Policy Gradient (DDPG) 19

. . .

; Actor P Critic
Policy gradient Gradient descent
. : H H X, U
Ui+ noise : Duy t Q¥ i)
: Online Network : Online Network
Updat : : Update T t Loss
ate : : arge .
P : : L function
%‘ Target action %‘ Target
Target Network Target Network :

.

Random sample

Observe and store (X, Uy, Tk, Xk 41, d)

Replay buffer

Figure 3-2: The Deep Deterministic Policy Gradient framework

for the actor, and Qy(z,u) and Qg,,,, (v,u) for the critic, respectively. The replay buffer is
denoted by D.

The interaction between the components proceeds as follows. A training episode starts with
the actor’s online network generating a control input based on the initial system state xg.
The system transitions to the next state z1, and a corresponding reward ry is received®. The
transition (xg,ug,rg, Tx+1,d) is stored in the experience replay buffer D, where d denotes
whether the transition terminates the episode. This data collection process continues until
the buffer contains more transitions than the predefined batch size |B|. Once this threshold
is exceeded, the actor and critic update their respective DNNs at each time step by sampling
a batch, denoted by B, of randomly selected transitions from the experience replay buffer. In
this way, the replay buffer enables off-policy learning and reduces sample correlation, which
benefits DNN optimization. Reusing past interactions also makes the DDPG algorithm more
sample-efficient [9,22].

The critic network Q4 (z,u) aims to approximate the optimal action-value function, Q*(z,),
by minimizing the following loss function, called the mean squared Bellman equation:

L(6,D) = Byt ayop [(%(% w) = (1 +7(1 = Qs (@' w@mgu’))))z] . (38)

where the target value Qg,,., (2, 7o, (2")) is calculated using the critics target network and
the target actor network 7y, (¢'). After sampling a batch of transitions, the critic network
is updated by one step of gradient descent. The introduction of target networks ensures
that the “target” value of the mean squared Bellman equation is not computed by the same
parameters as the online networks, which is essential for stable learning [22]. The online actor

3Here, 71, denotes the reward for the transition to zxy1, following [22], unlike the 74,1 convention in
Section 3-1 and [43]. The ri convention is used for the remainder of this thesis.

Master of Science Thesis L.D. Steenhoff

20 Residual deep reinforcement learning

k+1-k Upgsek
. > Base controller
L x Uy Xk+1 Tk
— K Upase,k System
1 u k
: »| Residual RL controller ——=

-~

Xk+1 Tk

Figure 3-3: Learning structure with a baseline controller and a RRL controller. The dashed line
indicates that the RRL controller may use the baseline input, depending on the implementation.

network mg(z) is updated through gradient ascent, using the following policy gradient:

1
VQE Z Q¢($,7T9(CL‘)). (3—9)

zeB

This gradient update encourages the actor to choose actions that maximize the Q-value
estimated by the critic, effectively learning an optimal policy. Lastly, the target networks
are updated using Polyak averaging [33]:

¢£arg — P¢targ + (1 - p)¢ (3_10)
‘éarg A petarg + (1 - p)ea (3'11)

where p is a constant between 0 and 1. The complete DDPG pseudocode for training is given
in Algorithm 3 in Appendix A-1-2.

During the training phase, exploration noise N is added to the selected action u; by the
online actor network my(x) to ensure sufficient exploration of the action space. Furthermore,
since states and inputs in control systems often differ in scale or fall outside practical ranges,
scaling is necessary for effective training of the DNNs [22,25].

After completing the offline training, the algorithm can be deployed for online control. Dur-
ing deployment, only the trained online actor network is used, and the exploration noise is
removed, such that a deterministic policy is executed.

3-3 Residual reinforcement learning

In this section, the concept of Residual Reinforcement Learning (RRL) is introduced [21,
23,40]. The main idea is to learn a residual policy on top of a base policy provided by an
arbitrary controller. The resulting control input is the sum of the base policy and the residual
policy:

7Tbase(xk) + 7Tres(mk) = Ubase,k T Ures kb = Uk (3_12)
The base policy Thase can be any existing controller, such as an MPC controller. The goal of
the RL algorithm is then to find the optimal residual policy 7}, = T — Tpage- The learning

structure of RRL is depicted in Figure 3-3, where the RRL controller learns alongside the
base controller.

L.D. Steenhoff Master of Science Thesis

3-4 Multi-agent reinforcement learning 21

Unlike the implementation in [21], the approach in [23] incorporates the base control input
Upase,k directly into the input of the RRL controller when computing the residual control
input ures i, as indicated by the dashed line in Figure 3-3. This eliminates the need for the
RRL controller to infer the base controller’s action from system observations, a task that
would otherwise complicate the learning process. One way to achieve this is by constructing
an augmented state of the form: z,ue 1 = [:EII ugase’k}—r

In RRL algorithms that use a replay buffer, only the residual action) is stored as the
action. The total action wug is not stored because the base policy mpage is fixed and known,
and the learning algorithm must only optimize the residual policy mes. The RRL training
method is summarized in Algorithm 1.

The RRL method benefits from the robustness and stability properties of the base controller
[21]. Tt also significantly improves data efficiency by avoiding the need to learn the full policy
from scratch [40]. Assuming that the base policy Tpase is already close to 7*, the action space
for the RRL algorithm can be reduced. This offers two additional advantages: 1) it reduces
exploration challenges, and 2) it improves actor accuracy due to smaller approximation errors
in the critic [23].

Algorithm 1 Residual reinforcement learning

1: for number of episodes do

2 Reset environment

3 for k in max steps do

4 Ubase,k = Thase (Tk) > Get base action
5: Ures,k = Tres(Tky Ubase,k) + N > Get residual RL action
6 Uk = Ubase,k T Ures,k > Sum base and residual action
7 Tra1 = Azy + Bug > Apply ui and observe next state xj4q
8 Taugk = [ZL‘Z ubTasek}T > Augment the state with the base action
9: D < D U (Taug k> Ures, ks Tk Lht1, d) > Store transition in replay buffer D
10: if D > Batch size then
11: Sample transitions
12: Update RL algorithm
13: end if
14: end for
15: end for

3-4 Multi-agent reinforcement learning

Finally, multi-agent reinforcement learning is discussed in this chapter. This is relevant
for the second novel control structure, where distributed RRL is deployed. To effectively
model multi-agent reinforcement learning, the traditional Markov Decision Process needs to
be extended to be applied to a multi-agent setting, which is called the Stochastic Game [8,29].
In the EEA-ENB, the Stochastic Game is fully cooperative, because the agents share the
same goal. In other scenarios, it can be fully competitive or a mixed game that is neither
fully cooperative nor fully competitive. Three additional challenges arise in the Stochastic

Master of Science Thesis L.D. Steenhoff

22 Residual deep reinforcement learning

Game of the EEA-ENB, including the nonstationarity problem, partial observability, and the
exploration-exploitation trade-off.

The problem of nonstationarity arises in multi-agent settings because each agent not only
observes the outcomes of its own actions but also continuously adapts to the behaviors of
other agents. The interconnected learning processes among agents make the system itself
change over time, as each agent’s adaptation reshapes the collective dynamics. Consequently,
any policy that seems effective at one moment may quickly become outdated, as the actions
of other agents alter the potential rewards and, thereby, the optimal strategies. This constant
evolution of interactions and strategies fuels the nonstationarity problem, making it challeng-
ing for agents to maintain effective policies in the multiagent system consistently [8,29].

Furthermore, distributed RL agents have only partial observability of the system. When
interacting with the system, agents lack complete state information and must make the best
possible decisions based on limited observations [29].

Finally, the balance between exploration and exploitation becomes more complex, as agents
must explore not only the system but also the behaviors of other agents. Therefore, more
exploration is necessary, which could destabilize the learning process of other agents [8].

3-5 Summary

This chapter began by introducing the fundamental concepts of Deep RL, outlining key
components including the Markov Decision Process framework, policies, value functions, and
the Bellman equations. It proceeded to discuss different learning methods, such as value-
based, policy-based, and actor-critic structures, as well as the concepts of exploration and off-
policy learning. Furthermore, the advantages and limitations of RL were briefly mentioned.

Moreover, the chapter discussed the selected Deep RL algorithm, DDPG, in detail. DDPG can
handle continuous action spaces, train offline, and is suitable for systems with nonstationary
signals, making it a suitable choice for this thesis. The actor-critic architecture, experience
replay, and target network updates were all described to illustrate how DDPG learns an
optimal control policy. The online actor network represents the learned policy and, once
training is complete, can be deployed independently for online control.

Furthermore, the concept of RRL was introduced. RRL extends an existing base controller
by learning a residual policy on top, with the total control input given by the sum wu; =
Thase (Tk) + Tres(2g). This approach leverages the desirable control properties of the base
controller and improves data efficiency, as the RL algorithm does not need to learn the policy
from scratch. Furthermore, it allows RL to learn in a smaller action space, which reduces
exploration challenges and increases actor accuracy.

Finally, this chapter addresses the additional challenges posed by multi-agent reinforcement
learning, including nonstationarity, partial observability, and the exploration-exploitation
trade-off.

The next chapter will demonstrate how an RRL layer can be implemented using the DDPG
algorithm to coordinate the actions of a dMPC layer. It will cover two approaches: a central-
ized RRL layer and a distributed RRL layer.

L.D. Steenhoff Master of Science Thesis

Chapter 4

Integrating decentralized MPC with
residual DDPG

Among the control structures discussed in Section 2, CMPC is infeasible due to its long com-
putation time. Decentralized PI control is computationally efficient but cannot guarantee
constraint satisfaction, requires extensive manual tuning, and lacks coordination between ar-
eas. The dMPC structure addresses the first two limitations but still cannot coordinate actions
across areas. Although DMPC-ADMM introduces coordination through iterative consensus,
it is computationally demanding due to repeated communication and optimization steps.
These limitations motivate the search for a control architecture that enables coordination
with reduced computational costs.

One promising direction is to incorporate RL-based methods. However, the implementation
of a single DDPG-based controller is unsuitable for the EEA-ENB, since the coupling between
two or more electrical areas results in an unstable system, as described in Section 2-1-4. The
actor of the DDPG algorithm adds exploration noise to the control input during the training
phase. In unstable systems, this noise can cause the state trajectory to diverge rapidly, making
the implementation of the DDPG algorithm impractical for unstable systems, as also noted
in [9,14].

Alternative RL algorithms, such as on-policy algorithms, may perform better in unstable
systems [9]. On-policy methods update their parameters based on the current policy, and can
thus adjust if the state is driven to the constraints. For real-time control of the EEA-ENB,
offline learning is preferred, such that the computational cost is shifted from the online control
phase to the offline learning phase. Furthermore, a general policy is needed that is suitable
for all variations of the external signals over time. However, the problem with on-policy
algorithms is that they are prone to overfitting to the most recent conditions, and are therefore
unsuitable for offline learning in systems with external signals that change over time [43].

To address these issues, this chapter presents two RRL structures integrating dMPC and
residual DDPG. To the best of our knowledge, the resulting control structures have not
been previously proposed or investigated in the existing literature. Both structures consist

Master of Science Thesis L.D. Steenhoff

24 Integrating decentralized MPC with residual DDPG

of two layers, where the dMPC baseline layer is designed to stabilize the system, and the
DDPG layer learns a coordinating residual control input on top of this baseline. In the
first structure, the second layer consists of a single centralized residual DDPG agent. In
the second structure, the second layer comprises multiple distributed residual DDPG agents.
Throughout this thesis, the decentralized MPC combined with a centralized DDPG layer is
referred to as AMPC+CDDPG, and the decentralized MPC with distributed DDPG is denoted
as dAMPC+DDDPG. The dMPC+CDDPG architecture is described in detail in Section 4-1
and the dAMPC+DDDPG approach is presented in Section 4-2.

4-1 Decentralized MPC + centralized DDPG

The first controller consists of a dMPC layer and a CDDPG layer. This section will first elabo-
rate on the general framework in the online control phase and the offline training phase. Then,
details about this framework will be discussed, including the reward design, the architectures
of the DNN, and the DNN input and output processing steps.

4-1-1 Control phase framework

In Figure 4-1, the closed-loop system during the online control phase is depicted. For the first
layer, a dMPC is deployed, where each dMPC controller i controls area A;. This stabilizes
the system*, which is essential for the learning of the centralized residual DDPG algorithm.
Furthermore, dMPC offers faster computation compared to CMPC, due to the splitting of the
optimization problem into smaller subproblems and the parallel solving ability, as discussed
in Section 2-2-3. Accordingly, the dMPC policy can serve as the base policy for the RRL
algorithm, defined as:

Thase(2(k)) = wMPC(x(k)) = ut™MPC(k), (4-1)

where wIMPC denotes the joint policy of the local control policies W?MPC. The joint AMPC
policy produces the augmented dMPC base control input ud™MPC_ The key limitation of
dMPC is the lack of coordination between individual control inputs, which leads to suboptimal
performance [24]. To address this, a centralized residual DDPG algorithm is introduced to

learn a corrective control signal that coordinates the decentralized inputs. This residual policy
is defined as the CDDPG policy:

Tres(2(k)) = wOPPPE (x(k)) = uPPPE (k) (4-2)
This policy corresponds to the pre-trained online actor neural network, the training procedure
of which will be discussed in the following section.

The control loop proceeds as follows. At time step k, each dMPC solves its respective op-
timization problem, defined in Eq. (2-17), using only the local state z;(k) and the external
signals w;(k), ..., w;(k + N — 1). The resulting local control inputs udMFC (k) are aggregated
to form the global dMPC input:

udMPC (1) — [U?Mpc(k) u%/l[\/IPC(k)} (4-3)

4This result is found by empirical testing. Formal network stabilization using dMPC can be verified using [3],
but this is outside the scope of this thesis.

L.D. Steenhoff Master of Science Thesis

4-1 Decentralized MPC + centralized DDPG 25

X W w
[—
dMPC
wi — (DDP
= = 3 u P ut G/D = Networked =
X; dMPC, 1 CDDPG oystem

Figure 4-1: The dMPC with CDDPG structure during the online control phase.

as illustrated by the black bar in Figure 4-1. This input, along with the global system state
x(k), the current external signal w(k), and future external signals, is provided as input to
the CDDPG actor DNN. The selection of these future signals is motivated in Section 4-1-3.
Based on this information, the CDDPG actor computes a residual control input u¢PPPG,
which aims to coordinate the dMPC actions across all M areas. This can, for example, be
done by ensuring that the deviations in machine angles AJ; of every area are equal to limit
the power exchange over the tie-lines. The final control input applied to the system is the
sum of both components:

u(k) = u™PC(k) + u®PPPE (k) (4-4)

The system then evolves according to the state-space dynamics in Eq. (2-9), and the procedure
repeats at the next time step.

4-1-2 Training phase framework

This section describes how the CDDPG’s online actor DNN, which corresponds to the cen-
tralized RRL policy, is trained. The RRL agent learns through interaction with the system,
following a control loop that closely resembles the one presented in the previous section. The
key addition in the training phase is the inclusion of a reward signal r provided by the system,
which is added to Figure 4-1, resulting in Figure 4-2. The received rewards are used to update
the parameters of both the actor and critic networks, guiding the policy 7 PPPG toward the
optimal residual policy, defined as wCPPPG" = g* _ xdMPC Gipce only a single DDPG agent
is trained, the training framework described in Section 3-2 does not require any modifications.
However, a few component details need to be specified, such that the implementation works
for the EEA-ENB. These are detailed in the following section.

There are three additional benefits to this RRL training framework, besides stabilizing the
system. A notable advantage of employing the uncoordinated dMPC as a baseline is that it
provides control inputs that are acceptable suboptimal approximations of the CMPC inputs.
As outlined in Section 3-3, this eliminates the need for the DDPG algorithm to learn the
control policy from scratch, thereby significantly enhancing sample efficiency. Moreover,
the DDPG algorithm can operate within a reduced action space, which reduces exploration
difficulties and improves the accuracy. The reduced action space will be defined in Section 4-
1-3

Master of Science Thesis L.D. Steenhoff

26 Integrating decentralized MPC with residual DDPG

X wr w
] |
I — Iy
dMPC
Wi _— :
l = < | udMPC uCDDP‘GG'\ = Networked al
X; dMPC, 1 CDDPG oystemn

Figure 4-2: The dMPC with CDDPG structure during the offline learning phase.

Furthermore, by training the DDPG algorithm offline, the computational burden is shifted
to the training phase. During control, only the deterministic online actor DNN is executed
to compute the residual control inputs. This adds a negligible amount of computational cost,
as the forward pass through a trained DNN can be performed efficiently. This characteristic
is particularly relevant to the performance on the two computational efficiency indicators,
defined in Section 2-1-3.

4-1-3 Centralized DDPG components

This section details several key components of the CDDPG algorithm, tailored to meet the
specific requirements of the interconnected LFC system. First, the design of the reward
function is discussed, followed by the definition of the augmented CDDPG state. Next, the
transition saved in the replay buffer, the network architectures, and the input and output
scaling procedures of the DNNs are described.

Reward function

The design of the reward function is a crucial step in the RL process, offering many degrees of
freedom [15]. Importantly, the reward function should accurately reflect the control objective,
specified in Section 2-1-3. A common and intuitive approach is to define the reward as the
negative of the stage cost in Eq. (2-13). Then the reward is typically scaled by some positive
scalar value &, preventing the magnitude of the rewards from becoming excessively large
or small, which can hinder the training efficiency [14]. This results in the following reward
function:

r(k) =6 — (x(k+1)Qx(k + 1) + u(k)Ru(k)) (4-5)
This reward function avoids general pitfalls, such as reward sparsity or reward hacking [15].
Augmented DDPG state
The state zp in the DDPG algorithm, as shown in Algorithm 3, should be interpreted as
the observation the agent receives. This observation is the input for the actor DNNs, and

together with the online actor output, it is the input for the critics DNNs. Generally, the more

L.D. Steenhoff Master of Science Thesis

4-1 Decentralized MPC + centralized DDPG 27

information is included within the state, the more accurate the Deep RL controller will be.
Additional information that is available for the CDDPG agent includes the perfect knowledge
of future external signals and the computed base input from the dMPC. The state can be
augmented with this additional information, resulting in the following vector:

x(k)
w(k)
Xaug(k) = | w(k+1) (4-6)

w(k+5)
udMPC(k,)

Whereas the dMPC utilizes external signals across the prediction horizon, typically longer
than 15 time steps, the CDDPG agent is provided with only three selected external signals.
This design choice prevents the external signals from dominating the augmented state repre-
sentation and thereby overshadowing the other observations. Specifically, the agent receives
the current external signal w(k), the signal at the next time step w(k + 1), and a signal
further ahead at w(k + 5). The inclusion of w(k + 5) offers the agent some foresight beyond
the immediate future, without significantly increasing the augmented state dimension.

Following the implementation of [23], the base control input is also included. This information
is essential for the CDDPG agent, as it defines the baseline behavior upon which the residual
policy is intended to improve. If the base action isn’t included, the policy would have to
implicitly infer it from the system response, which significantly complicates the learning task.

In conclusion, for each area, the augmented state vector consists of 5 system states, 6 external
signals, and 3 dMPC inputs, resulting in a state dimension of 14.

Replay buffer

The CDDPG algorithm stores transitions in the form (xy, ug, 7, Tx+1,d) in the replay buffer,
as discussed in Section 3-2. In the AMPC+CDDPG algorithm, the tuple is modified to:

(Xaug(k), uGRPPER), r(k), X auglh+1), d), (4-7)

where the prime notation on x’sug(k) denotes the normalized augmented state, and the
subscript clip in ucclgDPG(k) denotes the clipped CDDPG control input, which will both be
explained in subsection Input and output scaling of the actor network later in this section.

It should be noted that constructing the augmented next state Xaug(k+1) requires computing
the dMPC input ud™PC(k 4+ 1) at the subsequent time step. Since the future external
signals and system state are known during simulation and the dMPC is deterministic, this
computation is feasible. This approach differs from the RRL pseudocode presented in [23],
where only the next system state is stored, and not the baseline control input. Consequently,
it is convenient to store the computed dMPC input for the next time step during training.

Neural network architectures

The CDDPG agent consists of four fully connected DNNs: an online actor, a target actor,
an online critic, and a target critic. The architectures of the online networks and their

Master of Science Thesis L.D. Steenhoff

28 Integrating decentralized MPC with residual DDPG

. CDDPG
X Residual | ¥

scale

CDDPG

uclip

Xaug Norm. x’“"!] Actor
[1,1] DNN

+ Noise clip(-,-1,1)

Replay
buffer

Figure 4-3: Input and output processing steps for the online actor DNN

corresponding target networks are identical in terms of structure and activation functions.
The target networks are updated using Polyak averaging, as described in Section 3-2.

The input dimension of the actor network matches the augmented state defined in the previous
section. Its output dimension corresponds to the control input u(k). The input dimension of
the critic DNN equals the combined dimension of the augmented state and the actor output.
It returns a scalar value representing the estimated Q-value. The number of hidden layers
and the size of those hidden layers are hyperparameters that depend on the case study and
will be specified in Chapter 5.

A sigmoid function is used as the activation function for all hidden layers in the actor and
critic DNNs. The output layer in each network does not employ any activation function
and therefore remains linear. While the Rectified Linear Unit (ReLU) is commonly used as
the activation function for the hidden layers in DDPG implementations, it sets all negative
inputs to zero. This is problematic for inputs such as frequency deviations, which can be
both positive and negative. As a result, ReLLU leads to information loss, potentially degrading
the smoothness of the actor’s control output and reducing the accuracy of the critic’s value
estimates. A sigmoid function does not have this problem, as it preserves both positive and
negative input values.

Input and output scaling of the actor network

To effectively train the actor DNN of the CDDPG algorithm, both its input and its output
must be properly scaled. The full sequence of steps applied before and after the actor DNN
is shown in Figure 4-3. Before entering the DNN, Xy is normalized. After the forward pass,
Gaussian noise is added to the output, which is then clipped (saturated) to the range [—1,1]
and scaled by a residual factor.

Scaling the input Xayg is essential because its components have small but different magnitudes.
For example, in simulations, Ad; is typically on the order of 1074, Af; around 107¢, and Pf®
ranges between 0 and 10. As discussed in the original DDPG paper [22], two methods can
be used for input scaling: batch normalization [20] and manual scaling. However, batch
normalization is only practical for online learning scenarios. Since the DDPG algorithm is
trained offline, manual normalization is applied. As shown in [25], the inputs to a DNN are
typically normalized to the range [—1, 1] using the following transformation:

2 aug ~— “aug,min
(X g Xaug,) -1 (4-8)

/
X aug =
Xaug,max — Xaug,min

The vectors Xaug,min and Xaug,max define the lower and upper bounds for each component of
the augmented state vector Xaug. While the system state x(k) and the control input u™¥PC(k)

L.D. Steenhoff Master of Science Thesis

4-2 Decentralized MPC + distributed DDPG 29

CDDPG
clip

! X qug
e

CDDPG

u,

’ CDDPG
Critic Q(x au_q!uclip

Xaug Norm. *'qug clip
E— Augment
[-1,1] ¢ DNN

Figure 4-4: Input processing steps for the online critic DNN

are subject to known constraints, these theoretical bounds are too conservative for effective
normalization, as they are rarely reached in practice. Therefore, an empirical approach is
adopted: before training, the system is simulated using only the dMPC, and the observed
minimum and maximum values of each component are recorded. Since the perfect forecast
of the external signals is available, the minimum and maximum can be directly computed for
those values. This method avoids manual scaling, which is highly impractical for the large
EEA-ENB system.

The actor output should result in the residual control input u¢PPPEG After the Gaussian
noise is added and the output is clipped to [—1,1], the output is scaled to a percentage of
the maximum dMPC control input u¥™PC€(k) observed in a purely dMPC simulation. This
percentage is called the residual percentage parameter throughout this thesis. The CDDPG
control input is scaled to a percentage of the dMPC for two reasons. First of all, if the
potential CDDPG action is comparable in magnitude to that of dMPC, then it can greatly
alter the overall control input and render the closed-loop system unstable. Secondly, it is not
necessary, as the dMPC policy is already a good enough approximation of the optimal policy.

The residual action space is then defined by the clipping mechanism, the prior observed
dMPC control inputs, and the residual percentage parameter. The latter can be determined
by looking at the difference in control input of a dMPC and a CMPC.

Input scaling of the critic network

Similar to the actor DNN, the input of the critic’s DNN requires scaling, for which the
complete process is depicted in Figure 4-4. The input consists of the concatenation of the
normalized augmented state and the clipped actor output before applying the residual scale.

As depicted in Figure 4-3, the value of uSPPPG s saved in the replay buffer, rather than the

clip
final scaled residual input uPPPG | ag the latter would be too small for the network to learn

from effectively. Note that the output of the critic DNN does not require any scaling.

4-2 Decentralized MPC + distributed DDPG

The second control structure developed in this thesis replaces the centralized residual DDPG
layer with a distributed residual DDPG layer (DDDPG), while keeping the dMPC as the base-
line controller. The core principles of the residual architecture remain unchanged: the dMPC
layer stabilizes the system, enabling off-policy learning. The additional learning advantages
are still applicable, which include removing the need to learn from scratch and learning in a
reduced action space.

Master of Science Thesis L.D. Steenhoff

30 Integrating decentralized MPC with residual DDPG

Each area A; is now subjected to a dMPC controller and a DDDPG controller. The dMPC
controller has only state and external signal visibility from its local subsystem. The DDDPG
agent can observe the system information from itself and its direct neighbors. Based on that
information, each DDDPG agent computes a local corrective control input that should coor-
dinate the local system state with that of the neighboring agents. The goal is for the agents to
operate cooperatively in order to minimize the global cost function defined in Section 2-1-3.

The main motivation for this structure is improved scalability. In the residual CDDPG setup,
applying the controller to all 26 countries in the EEA-ENB would result in an augmented
state Xaug with a dimension of 14 x 26 = 364, and control input uCPPPG (dimension of
3 x 26 = 78. The single CDDPG agent would be required to learn a complex actor neural
network. By limiting the observation space of the agents to only the direct neighbors, their
optimization problem remains small, which would require a less complex DNN. In that case,
the most demanding DNNs are for Germany’s DDDPG agent, which has 10 neighboring
agents. Including its local observation, this results in an input dimension of 11 x 14 = 154.
The output layer only needs to produce the agent’s 3 local control inputs.

Furthermore, the distributed structure potentially allows for the insertion of new agents into
the system, improving the scalability even more [8]. If a country is added to the electricity
network, a single new agent could be trained for that area while keeping the previously trained
agents, except the direct neighbors, unchanged. This is significantly easier than retraining
the CDDPG agent in a real-world environment.

Finally, the DDDPG agents, like the dMPC controllers, can compute their actions in parallel.
This parallelization reduces the overall computation time at each time step since less complex
DNNs are employed. However, because each DDDPG agent requires the dMPC baseline
control inputs from its direct neighbors, the parallel computation must wait until these inputs
are available, in addition to the local dAMPC inputs.

In this section, first, the online control framework will be described, followed by the structure
of the training phase. Then, the DDDPG components that change compared to the CDDPG
structure are discussed in detail.

4-2-1 Control phase framework

Similar to the CDDPG structure, a base input U?MPC is first computed by a dMPC layer.
Then the residual control inputs uPDDPG will be computed by a DDDPG for each area, which
requires the states, external signals, and dMPC inputs from itself and its neighborhood. In
Figure 4-5, the closed-loop system of the AMPC+DDDPG is depicted. The tilde notation

above the state Z;, input ﬂ?MPC, and external signals w; indicates that each vector includes
the information from local area i and its neighbors:

T;= [:BZ', Z;j | Vj c M] (4—9)

GdMPC _ [U?MPC’ u;iMPC ‘ Vj € Nz] (4-10)

Finally, the base input and the residual input can be summed and inserted into the system.

DDDPG (4_12)

— dMPC]

Us

L.D. Steenhoff Master of Science Thesis

4-2 Decentralized MPC + distributed DDPG 31

Xi w;
w
 —
Wi _— uflMPC ﬁldMPC ug)DDPG "
— 3 X
X dMPC, —t DDDPG; s Networked
L 4
] 1 system
Figure 4-5: The dMPC with residual DDDPG structure during the online control phase.
X; Wi 1
L L I :L w
 e—
w;_— u;iMPC] ﬁlqMPc ué)DDPG w .
X+ dMPC, S = y DDDPG, ©'= Networked
:] 1 system

Figure 4-6: The dMPC with DDDPG structure during the offline training phase.

4-2-2 Training phase framework

In contrast to the single CDDPG agent, the DDDPG approach involves training M agents
independently. The distributed learning method performed in this thesis has similarities with
the implementation in [11]. The interaction during the training phase is illustrated in Figure 4-
6. Compared to the control phase shown in Figure 4-5, the key addition is the addition of
the reward signals r;, which are provided by the system to each individual DDDPG agent.
These rewards allow each agent to independently learn its control policy based on local system
information. This policy is denoted by WPDDPG, and the distributed agents collectively define
the joint residual policy wPPPPG Ideally, the agents learn their local policies such that the
resulting joint policy approximates the optimal residual policy: aDDDPG™ _ px _ 7dMPC,
To achieve this, at each time step k, all DDDPG agents sequentially update their parameters

based on batches of transitions sampled from the agent’s own replay buffer.

In multi-agent reinforcement learning, several additional challenges arise, as outlined in Sec-
tion 3-4. These include nonstationarity, partial observability, and a more complex exploration-
exploitation trade-off. The nonstationarity problem and the exploration-exploitation trade-off
are mitigated by learning within a reduced residual action space, as this narrows the range
of possible behaviors. However, these challenges are not fully eliminated.

By limiting each agent’s input to local and neighboring information, the agents are subjected
to partial observability. However, this trade-off is essential to achieving scalability in the
learning and control architecture. The distributed structure will provide the agent with the
information that will directly influence the dynamics of the local state. Therefore, the agent

Master of Science Thesis L.D. Steenhoff

32 Integrating decentralized MPC with residual DDPG

can learn the actions that are optimal for its local state. However, with sufficient training,
agents are expected to learn behaviors that are not only optimal for their local area but also
beneficial for the system as a whole.

4-2-3 Distributed DDPG components

In this section, the components of the DDDPG learning algorithm that are modified due to its
distributed implementation are discussed. These include the reward function, the augmented
DDDPG state, the replay buffer, and the DNN architectures, all of which must be adapted
for each DDDPG agent. In contrast, the normalization procedure applied to the augmented
state before inserting it into the DNNs remains the same as in the CDDPG case, as discussed
in Section 4-1-3. Likewise, the processing of the online actor DNN output remains unchanged
from those described in Section 4-1-3.

Reward functions

Instead of a single reward function for the CDDPG case, M reward functions r; are required
for the distributed learning structure. These reward functions should cooperatively reflect the
global goal from Section 2-1-3. A design choice has to be made whether to include the state
of the neighboring areas in the reward function. In [11], the reward function only accounts for
the local state, which is therefore also applied in this thesis. For area A;, the reward function
becomes:

T’z(k) =0 % — (xl(k + I)szUﬁ + 1) + uz(k)Ruz(k)) , (4—13)

where 6; is the reward scale of area A;, and @ and R are defined as in Eq. (2-15). A
disadvantage of the split reward function is that additional manual tuning is necessary for
each reward scale parameter &;.

Augmented DDPG states

The augmented states used by the DDDPG agents follow the same structural format as in
the CDDPG case. However, instead of incorporating the full system state x(k), external
signal w(k), and base input ud™MPC (k) each agent includes only its local and neighboring
components. This represents the information available to agent i for computing the local
residual control input U?DDPG. The augmented state Z,ug; for agent ¢ is defined as:

zi(k)
w; (k)
Faugi(k) = |Wi(k+ 1) (4-14)
w;(k +5)
adMPC (k)

For the same reason as in the centralized case, only the external signals of the current, next,
and 5 steps ahead are included in the DDDPG observations. The size of the augmented
state now depends on the number of neighboring agents. Since each area contributes 14
observations, the total dimension of the augmented state for agent ¢ is given by:

dim (Fauga (k) = 14 % (14 [Ni]) (4-15)

L.D. Steenhoff Master of Science Thesis

4-3 Summary 33

with |V;| the size of the neighborhood.

Replay buffer

The transition, which is saved in each agent’s replay buffer, is the following tuple:

(Zhugi(k), uBSTC (), ri(k), Fpug(k+1), d), (4-16)

aug,i clip,i

/

aug,i(k) denotes the normalized augmented state Zaug,;(k), and ulPPPG (k) denotes

clip,i
the clipped DDDPG control input before it is scaled by the residual scale to u?DDPG(k).
Similar to the CDDPG case, the subsequent dMPC control input should be computed to

construct the augmented next state fgug7i(k +1).

where the T

Neural network architectures

Since the dimension of the augmented state varies for each DDDPG agent, as discussed in the
previous section, the number of inputs to the actor and critic DNNs also differs. Consequently,
the network sizes should scale with the number of direct neighbors. This introduces an
additional tuning requirement, which can be addressed by specifying the network size as a
function of the number of neighboring agents. Furthermore, the dimension of the actor output
DNN is equal for all DDDPG agents, as it corresponds to the local control input dimension.

4-3 Summary

This chapter introduced two novel control architectures that integrate dMPC with RRL based
on the DDPG algorithm to enable scalable and coordinated control of the EEA-ENB. The
primary motivation for the development of this structure is twofold: to eliminate the com-
putationally intensive iterative consensus required in DMPC-ADMM, and to address the
impracticality of using a single DDPG controller in unstable systems. The dMPC stabilizes
the system, while the DDPG controller(s) compute a corrective and coordinating control in-
put. By moving the computationally costly training process to an offline phase, this setup
enables efficient online control.

The first architecture combines dMPC with a single residual CDDPG agent. While the
dMPC controllers use only local information, the CDDPG agent observes the full system.
The second architecture replaces the CDDPG agent with multiple residual DDDPG agents,
each observing only local and neighboring system information, thereby improving scalability.

The goal of both learning structures is to approximate the optimal residual policy mwCPDPG™ _
% — gdMPC 1 4 ~DDDPG* _ .+ _ ~dMPC

Both structures benefit from improved learning efficiency, as they do not require learning the
entire control policy from scratch. Additionally, learning in a reduced residual action space
simplifies exploration and enhances the actor’s accuracy.

To apply DDPG effectively in the EEA-ENB, key components must be tailored: the reward
function(s), augmented state(s), and neural network architectures. Input normalization and

Master of Science Thesis L.D. Steenhoff

34 Integrating decentralized MPC with residual DDPG

output processing are necessary due to the small and varying magnitudes of system states
and inputs.

In the next chapter, the proposed control structures are evaluated against CMPC, DMPC-
ADMM, and dMPC, using four- and six-area EEA-ENB case studies.

L.D. Steenhoff Master of Science Thesis

Chapter 5

Case study: Four- and six-area system
in EEA-ENB

In this chapter, the two novel control strategies, dMPC+CDDPG and dMPC+DDDPG,
are tested on two case studies and compared to the existing control strategies presented in
Section 2-2. The simulation setups of the two case studies are discussed in Section 5-1. The
implementation details of the existing control strategies and the novel control strategies are
presented in Section 5-2. Finally, the obtained results are reviewed in Section 5-3.

5-1 Simulation setups

The EEA-ENB, shown in Section 2, can be used to analyze different multi-agent control
strategies. Due to the limited resources and time, this thesis will focus on a four-area system
and a six-area system to demonstrate the effectiveness of the two novel control strategies. By
presenting the results of two networks of different sizes, preliminary conclusions can be drawn
about the scalability of the control strategies.

The control strategies are simulated over a 1-day horizon. Using the sampling time of 2.5 [s],
this results in N9 = 34560 time steps of control simulation. The values of system parameters
are reported in Table 5-1. The tie-line lengths d;; that define the tie-line gains Tj; will be
provided in Section 77.

In both case studies, five different control structures were simulated and compared. These
include the two novel control structures and three existing control structures: CMPC, DMPC-
ADMM, and dMPC. Although decentralized PI is mentioned in Section 2, it will not be used

T N o Ky, noond Ty
Hzxs 1 1GW
25[s] 34560 25[s] 0.05[%%:] 09 09 L [4Y]

Table 5-1: Parameters in the EEA-ENB.

Master of Science Thesis L.D. Steenhoff

36 Case study: Four- and six-area system in EEA-ENB

DK DE NL SE # Neighbors PIP™[GW]

7

DK 0 0 5.44 10.22 2 7.660
DE 0 0 4.98 13.41 2 87.408
NL | 544 498 0 0 2 23.595
SE | 10.22 13.41 0 0 2 31.600

Table 5-2: Symmetric matrix of tie-line lengths d;; in 10% [km] between countries (4-area case),
with number of neighbors and the maximum dispatchable capacity per country.

as a comparison case, due to its lack of coordination, constraint satisfaction, and stability
guarantees. While the stability for both the four- and six-area case studies can be achieved
through a simple feedback loop from frequency deviation to APZ-dISp, this neglects the ESS
in every area completely. To include the ESS and stabilize the system, extensive tuning is
required, which was not achieved in this thesis.

Furthermore, in this section, the topology of the two case studies, the external disturbances,
and the hardware and software configurations are discussed.

5-1-1 Four- and six-area systems

Figure 5-1 depicts the topologies of the two case studies. The four-area configuration is
shown on the left, while the six-area configuration is shown on the right. These countries
are chosen such that the dMPC can stabilize the system and the DDPG structures can
improve it. As proven in Section 2-1-4, geographically close countries are more unstable. The
connection between the Netherlands and Belgium, for example, cannot be stabilized by the
dMPC implemented in this thesis. This link and other short links are therefore avoided in
the case studies.

Four-area system

The four-area case study considers the following countries: Denmark (DK), Germany (DE),
the Netherlands (NL), and Sweden (SE). The topology is depicted in Figure 5-1a. While in
the actual EEA-ENB topology, DK and DE are connected, this tie-line is removed for the case
study. This adjustment ensures that distributed control strategies can be tested effectively.
Since distributed controllers share states from neighboring areas, this avoids a situation where
DK and DE are connected to all areas, effectively making their agents centralized controllers.

The Euclidean distances d;; between the geographical centroids of two neighboring countries
are reported in Table 5-2, where unconnected countries are indicated by the value 0. Further-
more, the table specifies the number of neighbors and the maximum dispatchable capacity
per country.

Six-area system

For the six-area case study, Norway (NO) and Poland (PL) are added to the four-area system.
Similar to the four-area topology, a tie-line from the EEA-ENB network must be removed to

L.D. Steenhoff Master of Science Thesis

5-1 Simulation setups 37

5.5x10°

5.0

4.5

a0

38 0 4z 44 16 73 30

(a) Four-area topology (b) Six-area topology

Figure 5-1: (a) Four-area topology and (b) six-area topology of the EEA-ENB network. Each
node represents a country, labeled with its corresponding ISO code. Coordinates are specified
using the ETRS89 LAEA reference system. The edges of the graph denote the tie-lines that
connect the equivalent electrical areas, with their transparency indicating the strength of the
interaction.

prevent Germany from being directly connected to all other countries. Rather than removing
only the single tie-line required for this, an additional tie-line is also removed to further reduce
the system’s connectivity and observability of distributed control strategies. Specifically, the
connections DE-NO and DE-SE are removed from the network in EEA-ENB. Note that,
compared to the four-area case study, the tie-line connecting DK and DE is used in the six-
area case study. The geographical distances, the number of neighbors per country, and the
maximum dispatchable capacity per country are reported in Table 5-3.

5-1-2 External signals

As described in Section 2-1-1, each area is subjected to two external signals: the load change
APPad] and the renewable power change APM". Each country has a different electricity
profile, for which the benchmark provides the measured and forecast data. The benchmark
acquired quarterly (or hourly if quarterly was unavailable) data from the ENTSO-E electricity
platform and linearly interpolated the data to the sampling time 7. This results in external

Master of Science Thesis L.D. Steenhoff

38 Case study: Four- and six-area system in EEA-ENB

DK DE NL NO PL SE # Neighbors PYP™[GW]

7

DK 0 5.03 5.44 11.56 0 10.22 4 7.660
DE | 5.03 0 4.98 0 9.06 0 3 87.408
NL | 5.44 4.98 0 16.99 0 0 3 23.595
NO | 11.56 0 16.99 0 0 2.28 3 27.353
PL 0 9.06 0 0 0 10.93 2 33.752
SE | 10.22 0 0 2.28 10.93 0 3 31.600

Table 5-3: Symmetric matrix of tie-line lengths d;; in 10% [km] between countries (6-area case),
with number of neighbors and maximum dispatchable capacity per country.

signal increments that change every quarter hour, i.e., 360 simulation steps.

In this thesis, only the measured data is used, which is assumed to be available for future
time steps. This effectively implies the use of a perfect forecast, eliminating uncertainty in
the prediction of external signals. Although a 10-day dataset is available, only the first day
is used for comparing different control strategies.

To introduce variability between the training and testing external signals, Gaussian noise
with a standard deviation of 1% of the maximum value of the external signal is added to the
data from the first day. The noisy data will be used for the offline training phase, while the
different control strategies are tested and evaluated on the noise-free data. This ensures that
the training and testing sets are not strictly identical, which helps reduce overfitting in the
RL controller(s).

The measured load and renewable power, along with their corresponding incremental profiles,
are presented in Figure 5-2 for all countries used in this thesis. During the training and testing
simulations, only the incremental data AP°* and APF" will be used.

5-1-3 Hardware and software

All simulations presented in this thesis were executed on the DelftBlue high-performance
computing cluster. Using this system ensured isolated and reproducible runs, free from inter-
ference by external processes. This enabled valid comparisons of computational time between
control structures, without the necessity of re-running simulations several times for average
results in computation time. In fact, the difference in computation times between different
runs of the same simulation is negligible in this cluster computing environment.

Each simulation was run on a GPU-enabled node of DelftBlue Phase 1 equipped with an
NVIDIA Tesla V100S-PCIE-32GB GPU (32 GB VRAM), using CUDA version 11.6. The
deep learning models were implemented in Python 3.10.13 using PyTorch 2.1.0. For solving
the MPC optimization problems, the Gurobi Optimizer version 12.0.0 was employed.

5-2 Implementation of control strategies

In this section, the implementation details of the existing controllers are presented in Section 5-
2-1. The dMPC+CDDPG and dMPC+DDDPG implementation approaches are described in

L.D. Steenhoff Master of Science Thesis

5-2 Implementation of control strategies

39

Pjead [GW]

Pren [GW]

50
0.0010 1

N
o

S
API°3d [GW/s]
L

w
o
L

N
vl

External signals

0.0005 A

0.0000 + T

—0.0005 - Uer

—0.0010 4

10 A_‘_’____,—__—f—’/—\

0 4 8 12 16 20 24 0 4 8 12 16 20

Hours Hours
(a) Load request (b) Load request variation

0.0015 +

0.0010 4

0.0005 1

N
o
L

0.0000

APeN [GW/s]

—0.0005 A

-
o
L

—0.0010 1

W 0.0015 4

T T T T T T T T T T
0 4 8 12 16 20 24 0 4 8 12 16 20

Hours Hours
(c) Renewable generation (d) Renewable generation variation
— DK — DE — NL —— NO PL — SE

Figure 5-2: The measured external signals for Denmark, Germany, the Netherlands, Norway,

Poland, and Sweden. On the left, the nominal data, and on the right, the incremental data.

Section 5-2-2 and Section 5-2-3.

5-2-1 Existing control structures

The implementations of CMPC and DMPC-ADMM were provided by the author of [36] and

24

required only minor adaptations to be applied to the four- and six-area case studies examined
in this thesis. In Table 5-4, the selected hyperparameters are listed. The prediction horizon
is set to 30 for all MPC controllers to ensure that the transient behavior of the system is
captured. The ADMM tolerance parameter € is chosen as 0.001 to achieve accurate results;
however, it can be increased to accelerate convergence at the expense of solution quality. The
implementation of the dMPC can be obtained by removing the distributed observability and
ADMM iterations from the implementation of DMPC-ADMM.

Master of Science Thesis

L.D. Steenhoff

40 Case study: Four- and six-area system in EEA-ENB

Hyperparameter Value
Prediction horizon N 30
ADMM penalty parameter 3 0.01
ADMM tolerance € 0.001

Table 5-4: Hyperparameters CMPC, DMPC-ADMM, and dMPC

5-2-2 Decentralized MPC + centralized DDPG

Although several DDPG implementations are available online, such as the Stable Baselines
implementation [34], the algorithm used in this thesis was implemented from scratch. This
approach facilitated the integration of RRL with dAMPC, tailored specifically to the require-
ments of the EEA-ENB.

Because DDPG cannot inherently guarantee constraint satisfaction, an input saturation func-
tion is applied to the control signal before it is passed to the system. This section details the
implementation of this function.

Furthermore, a challenge of the DDPG algorithm is its sensitivity to hyperparameters [14],
of which there are many. This section primarily outlines the chosen hyperparameters and
the reasoning behind them. The hyperparameters are categorized into three groups: fixed
parameters, the residual percentage parameter, and parameters that require additional tuning
based on the network size.

Constraints saturation of combined input

In contrast to MPC, reinforcement learning methods like DDPG do not have an internal
mechanism to ensure that the system’s state and input constraints defined by Eq. (2-10) and
Eq. (2-11) are satisfied. Consequently, the combined input ud™¥PC€ (k) 4 uPPPG (k) does not
automatically adhere to these constraints, where uPPPE (k) represents both u¢PPPG (k) and
uDDDPG(k). In this thesis, an input saturation function, depicted in Figure 5-3, is applied
to the combined input before it is inserted into the system®. This function limits the control
input so that it remains within the predefined bounds. However, the input saturation function
should also take into account the state constraint, as the control structure cannot modify the
states directly. In the following sections, the upper bound umax and lower bound uyj, are
defined for the three control inputs of every area. Although possible, in these formulations,
the state constraints on the angle deviation Ad; and the frequency deviation Af; are not
considered, since these states operate within a safe margin from their constraint boundaries.
Future work should incorporate these and the other constraints in a more formal and robust
manner.

5Note that some state constraints, such as those on the frequency deviation and machine angle deviation,
lie far from the optimal operating point. The implementation of solely the DDPG would still be impractical
as it would initially drive the states to the constraints, where it then has to learn from transitions near or
at those limits. Although it may eventually learn to stabilize the system, this approach would be highly
sample-inefficient and considerably less accurate compared to leveraging the stabilization property of dAMPC

L.D. Steenhoff Master of Science Thesis

5-2 Implementation of control strategies 41

Umax|----

udMPC + uDDPG

WUnin

Figure 5-3: Input saturation function that ensures satisfaction of the state and input constraints
by clipping the combined control input u™PC (k) 4+ uPPPSG (k) before applying it to the system.

Using equation Eq. (2-6) and Eq. (2-11) the dispatchable power variation input APZ-diSP con-
straints can be defined as:

(2 3

AP (k) > max (—APSP M, pEP () (5-2)

7

Af)idiSp(k') < min (APidisp, max7 Pdisp, max Pdlsp(k)) (5_1)

For the ESS charging and discharging constraints, it must be considered that the battery can
charge and discharge simultaneously. As a result, the upper bounds of the control inputs
PZ-ESS’C(k:) and PiESS’d(k:) are interdependent. To avoid an iterative procedure for determining
these bounds, the upper limit for the charging input is defined under the assumption of no
discharging, i.e., PiESS’d(k‘) = (0. This simplification is conservative, but not an issue, as the

energy capacity is not reached in near-optimal solutions. Based on Eq. (2-4) and Eq. (2-11),
the ESS charging input PiESS’C(k) is thus constrained as follows:

) Pdisp, max ; k
0< HESS’C(k) < min <]:,_dlsp7 max [(& ()> (5_3)

2 ? T nlc
Now, for the ESS discharging input PiESS’d(k:), the previously saturated charging control input
PiESS’C(k:) can be taken into account when defining the discharging input constraints. These
are given by:

)

0< PESS’d(k) < mi Pdisp7 max 77? 61(]{) c dPESS,C 4
=05 S min |) f*'m n; B (k) (5-4)

Fixed DDPG hyperparameters

The found DDPG hyperparameters that stay the same for both case studies and both novel
controllers are reported in Table 5-5. Only a single episode was required to achieve effective
training of the DDPG DNNs. This episode was limited to 28800 time steps, shorter than the
full day length of N9 = 34560, to exclude a sharp spike in the incremental renewable energy
generation AP" for DE and DK that occurs in the final quarter-hour. Empirical testing
confirmed that this reduced training horizon was sufficient for the performance improvement
over the dMPC simulation.

Master of Science Thesis L.D. Steenhoff

42 Case study: Four- and six-area system in EEA-ENB

DDPG Hyperparameter Value
Number of episodes 1
Steps per episode 28800
Batch size |B| 258
Replay buffer size |D| 106
Discount factor ~ 0.95
Polyak averaging coefficient p 0.005
Learning rate actor 0.0001
Learning rate critic 0.001
Mean exploration noise 0.0

Standard deviation exploration noise N' 0.4

Table 5-5: Fixed hyperparameters used in both the dMPC+CDDPG and dMPC+DDDPG struc-
tures for both case studies.

Key hyperparameters, including the batch size |B|, replay buffer size |D|, discount factor =,
Polyak averaging coefficient p, and the learning rates for the actor and critic networks, were
selected through a combination of literature guidance [14] and manual tuning. To encourage
sufficient exploration of the continuous state-action space during training, Gaussian noise
with a mean of 0.0 and a standard deviation of 0.4 was added to the output of the online
actor network. This level of noise remained constant throughout the entire training phase.
Given that the actor outputs were typically bounded within the range [—1, 1], this level of
noise introduced adequate variability without destabilizing the learning process.

Residual percentage parameter

Since the AMPC already provides acceptable suboptimal approximations of the CMPC ac-
tions, the DDPG agent(s) only need to produce small residual actions to improve the co-
ordination. To control the magnitude of these residuals, a residual percentage parameter is
introduced in Section 4-1-3. This parameter is crucial: if the residual percentage is set too
low, the DDPG agent(s) cannot meaningfully improve the control performance. Conversely,
if it is set too high, the enlarged action space reduces the precision of the actor network and
increases the exploration burden during training.

To guide the selection of this parameter, Figure 5-4 shows the difference in control inputs, cal-
culated by subtracting the dMPC inputs from the CMPC inputs. These differences have been
normalized by the maximum dMPC input and multiplied by 100 to convert to percentages.
The results indicate that, to match the performance of the CMPC, the residual percentage
parameter would need to be up to ~ 85 % for both case studies. However, through empirical
testing, it was determined that setting the residual percentage to just 20 % for the four-area
case and 30 % for the six-area case yields a favorable trade-off between actor accuracy and
improved performance. Although this configuration limits the DDPG agent’s capacity to fully
replicate the optimal CMPC solution, it still enables substantial performance gains through
improved coordination.

L.D. Steenhoff Master of Science Thesis

5-2 Implementation of control strategies 43

Required residual percentage Required residual percentage

Residual
APYISP [%]
Residual
Pdisp [94]
°

Apo
|
3

Residual
PESSC [%]
Residual
ESS,c [%]
S

p
g

Residual
PESS.d [95]
Residual

Time [hours]

— DK — DE — NL — SE — DK — DE — NL — NO PL — SE
(a) Four-area case (b) Six-area case

Figure 5-4: dMPC inputs subtracted from the CMPC inputs, scaled by the maximum of the
dMPC inputs and converted to percentages. This figure helps to choose a suitable residual
percentage for the DDPG agent(s).

Hyperparameters dependent on network size

Five hyperparameters require additional tuning depending on the system size: the number of
hidden layers and neurons per layer for both the actor and critic DNNs, the reward scale &,
the tie-line scale, and the residual percentage (as discussed in the previous subsection). The
selected values are reported in Table 5-6.

While the number of layers remains unchanged between the four- and six-area cases, it is
reasonable to assume that larger and more complex systems will require deeper networks.
Notably, the number of neurons per layer doubled with the addition of only two areas, in-
dicating scalability challenges for this CDDPG structure. Extending the system to the full
EEA-ENB network would demand significantly larger neural architectures. The reward scale
6 must also be adjusted when applying this control structure to different configurations.
Interestingly, reward (and cost) magnitude remains relatively stable between the four- and
six-area cases, likely due to Germany’s dominant contribution in both and the underlying
network topologies. However, this consistency is unlikely to persist in larger networks.

An adjustment to the normalization in Eq. (4-8) is required for the total tie-line power ex-
change state PM®. The augmented state in the DDPG algorithm is normalized using the
maximum values obtained from a purely dMPC run. While these values generally approxi-
mate the maximum values encountered during the dMPC+CDDPG training simulations, this
is not the case for P, Specifically, the tie-line power flows tend to exceed those observed in
the dAMPC simulation. To ensure proper normalization of the total tie-line power exchange
state, Pz-tle’ "N Xaug,max and Pitle’ "IN Xaug,min are manually set to 3 [GW] and —3 [GW]
in the four-area case, and to 6 [GW] and —6 [GW] in the six-area case.

Master of Science Thesis L.D. Steenhoff

44 Case study: Four- and six-area system in EEA-ENB

Hyperparameter Four-area Six-area
Hidden layers 5 5)
Neurons per layer 1024 2048
Reward scale & 5 x 108 5 x 106
Residual percentage 20 % 30 %

Table 5-6: Hyperparameters adjusted based on the system size for the dMPC+CDDPG control
structure in the four- and six-area case studies. The specified number of hidden layers and number
of neurons per layer apply to both the actor and critic DNNs.

Country DK DE NL SE
Number of neighbors 2 2 2 2
Hidden layers 5 5) 5
Neurons per layer 1024 1024 1024 1024
Reward scales &; 1.5x10% 1.3x 107 9x 107 1.5x 10%
Residual percentage 20 % 20 % 20 % 20 %

Table 5-7: Hyperparameters adjusted based on the system size for the dMPC+DDDPG control
structure in the four-area case study. The specified number of hidden layers and number of
neurons per layer apply to both the actor and critic DNNs.

5-2-3 Decentralized MPC + distributed DDPG

Similar to the CDDPG, the DDDPG implementation is also developed entirely from scratch.
Moreover, it adopts the same hyperparameters reported in the Fized DDPG hyperparameters
and Residual percentage parameters subsections of Section 5-2-2. The hyperparameters that
require additional tuning based on the network topology are presented in Table 5-7 for the
four-area case and in Table 5-8 for the six-area case.

The key difference in the distributed case is that multiple DNN structures and corresponding
reward scaling factors 6; must be defined. The number of neurons per layer is selected based
on the number of neighbors: agents with 2 or 3 neighbors use 1024 neurons per layer, while
agents with 4 neighbors use 1536. The values for ; are determined through trial and error.
Since each agent’s reward depends solely on its local state and control input, the reward
scales identified in the four-area case remain applicable in the six-area case. Additionally, for
training, the power exchange tie-line limits Pitle’ % and Pitle’ ™ needed to be increased to

20 [GW] and —20 [GW] in the six-area case.

5-3 Results

In this section, the results of the different control structures are discussed and evaluated
against the objective function and computational efficiency indicators defined in Section 2-
1-3. For the computation time per time step, the mean over the N9 time steps is used as
a representative value. Since the underlying MPC optimization problems are approximately
equal in size throughout the simulation, and the DDPG agent(s) only perform a forward pass

L.D. Steenhoff Master of Science Thesis

5-3 Results 45

Country DK DE NL NO PL SE
Number of neighbors 4 3 3 3 2 3
Hidden layers) 5) 5))
Neurons per layer 1536 1024 1024 1024 1024 1024
Reward scale 1.5x10% 1.3x10"7 9x107 1.5x10® 1.5x10% 1.5x 10%
Residual percentage 30 % 30 % 30 % 30 % 30 % 30 %

Table 5-8: Hyperparameters adjusted based on the system size for the dMPC+DDDPG control
structure in the six-area case study. The specified number of hidden layers and number of neurons
per layer apply to both the actor and critic DNNs.

through the actor DNN, the mean computation time per step serves as a reliable indicator of
the feasibility for real-time control.

First, the results of the existing control structures from Section 2-2 (excluding decentralized
PI, as discussed earlier in this chapter) are presented in Section 5-3-1. Subsequently, the
results of the two novel control structures are presented in Section 5-3-2 and Section 5-3-3.
Due to the stochastic nature of the DDPG algorithm, its performance can vary between runs.
To enable a fair comparison, both novel control structures are evaluated using the same fixed
set of five seeds, numbered 1 to 5. Finally, the different control structures are compared in
Section 5-3-4.

5-3-1 Existing control structures

In this section, the results of the existing controllers, which include CMPC, DMPC-ADMM,
and dMPC, are discussed shortly. The computation times are reported in the hh:mm:ss
format.

CMPC

The CMPC results in the optimal solution, achieving the lowest cumulative cost of 1.4787 x
1072 in the four-area case and 1.4008 x 1072 in the six-area case. The corresponding com-
putation times were 05:18:55 and 08:56:56, resulting in average computation times per step
of 0.554 [s] and 0.928 [s], respectively, which remain below the sampling time of 7 = 2.5 [s].
However, when applied to the full EEA-ENB network of 26 countries, the mean computation
time per step increases significantly to 21.48 [s], as reported in [36]. Since this exceeds the
sampling time, the structure cannot be deployed in real-time.

DMPC-ADMM

The DMPC-ADMM controller achieves cumulative costs of 1.4829 x 10~2 in the four-area case
and 1.4020 x 10~2 in the six-area case. While the total core computation times are 19:49:06
and 48:28:39, parallel computation reduces the total online computation times to 04:57:16

and 08:04:47, respectively. This corresponds to mean computation times per step of 0.516 [s]
and 0.842 [s].

Master of Science Thesis L.D. Steenhoff

46 Case study: Four- and six-area system in EEA-ENB

Case study Best Average Worst Standard dMPC
deviation

Four-area 1.6415%x 1072 1.6634x1072 1.7155x1072 2.62 x 10~* 2.0042 x 1072

Six-area 2.4601x1072 4.7167x1072 7.6368x10~2 1.89 x 1072 5.8646 x 102

Table 5-9: Cumulative cost analysis of the dMPC+CDDPG method over 5 seeds versus the
dMPC.

Decentralized MPC

The simulation of the dMPC controller yields cumulative costs of 2.0042 x 102 for the four-
area case and 5.8646 x 1072 for the six-area case. While the total core computation times are
01:07:52 and 02:00:59, parallel execution reduces the online computation times to 00:16:58
and 00:20:10, corresponding to mean computation times per step of 0.029 [s] and 0.035 [s],
respectively. Since the optimization problems are approximately equal in size across all areas,
scaling to a larger EEA-ENB network is expected to result in similar online and per-step
computation times.

5-3-2 Decentralized MPC + centralized DDPG

Table 5-9 reports the cumulative costs for the best run, average across runs, worst run,
and standard deviation, alongside the results for the baseline AMPC. In the four-area case,
the best run of AMPC+CDDPG improves upon dMPC by reducing the cumulative cost
from 2.0042 x 1072 to 1.6415 x 1072. In the six-area case, the improvement is even more
substantial, with a reduction from 5.8646 x 1072 to 2.4601 x 10~2. In both scenarios, the
average cumulative cost across the five seeds is also lower than that of dMPC.

It is worth noting that the standard deviation is significantly higher in the six-area case, which
may suggest that coordination becomes more challenging in larger networks. Alternatively,
this variability might stem from suboptimal hyperparameter settings, as the algorithm is
known to be sensitive to these. For instance, only increasing the number of neurons per layer
to 3072 in the six-area case caused the residual input to degrade performance on average.

The online computation times, mean computation times per step, core computation times,
and offline computation times are highly consistent across the five seeds. For instance, the
four areas online computation time ranges from 00:16:59 to 00:17:16, resulting in a mean
computation time per step between 0.029 and 0.030 seconds. Similarly, the online core time
varies only slightly, from 01:07:06 to 01:08:11, and the offline computation time ranges from
00:58:46 to 00:59:22. This demonstrates two important points: the computation time variance
of the AIMPC+CDDPG structure is low, and the use of the DelftBlue server allows for reliable,
consistent comparisons based on run-time performance. The computation times for the six-
area case are also consistent across seeds, with averages of 00:19:00 for online time, 0.033
seconds per step, 01:52:12 for core time, and 01:32:38 for offline time. The following sections
provide a detailed analysis of the training rewards and residual control inputs of the best-
performing runs.

L.D. Steenhoff Master of Science Thesis

5-3 Results 47

Rewards dMPC+CDDPG Rewards dMPC+CDDPG

-20

|
w
s

Reward [-]
4

-l
Reward [-]

1
S
S

|
o
S

|
-y
3

|
N
S

0 4 8 12 16 20 0 4 8 12 16 20
Time [hours] Time [hours]

(a) Four-area case (b) Six-area case

Figure 5-5: Decentralized MPC + centralized DDPG training rewards

Training rewards

The reward signals during training are shown in Figure 5-5. Ideally, for most RL algorithms,
the reward curve should exhibit a clear convergence over time, indicating stable learning.
However, in this case, convergence cannot be observed due to the nonstationary nature of
the environment, the presence of exploration noise, and the fact that training occurs within a
single episode. As a result, it becomes challenging to determine when the CDDPG algorithm
has sufficiently converged. Currently, this can only be assessed through trial and error. In
both case studies, a clear drop in reward appears shortly after the replay buffer contains
enough transitions and the CDDPG begins updating. This suggests that the first updates
temporarily reduce performance, but the effect is quickly corrected after a few training steps
as the controller adapts.

Control inputs

To further analyze the benefits of the CDDPG controller, its influence on the control inputs
is compared to that of the baseline dMPC. In Figure 5-6, the dMPC input, the CDDPG
input, and the combined input are depicted for the Netherlands. The Netherlands is shown
as a representative example to maintain clarity in presentation, as similar trends are observed
across the other countries.

For the variation in dispatchable power APf\iIi]fp, the coordinating CDDPG controller increases
the control input until approximately 17 hours, after which it reduces it. This behavior mirrors
the difference observed between the CMPC and dMPC controllers in Figure 5-4, suggesting
that the CDDPG controller has learned an appropriate corrective policy.

Furthermore, the residual input for APﬁi}fp fluctuates within the allowable residual action
space rather than saturating at its limits, indicating that a residual percentage of 20 % is
sufficient for effective coordination. However, this is not the case for the residual inputs
corresponding to charging and discharging, which predominantly operate at the bounds of
the residual space. While this might suggest that increasing the residual percentage could

Master of Science Thesis L.D. Steenhoff

48 Case study: Four- and six-area system in EEA-ENB

Control inputs for NL: Baseline dMPC, residual CDDPG and combined

Dispatchable power

0.0004 1
o
§ 0.0002
O
— 0.0000
a
g2
[y —0.0002
<
—0.0004 4
0 4 8 12 1‘6 20 24
Time [hours]
leos Charging ESS
=
S
o
Ao
wz
a
Time [hours]
leos Discharging ESS
=
=4
°
a
Ao
w=
a’

Time [hours]

—— dMPC —— CDDPG —— Combined

Figure 5-6: Control inputs for the Netherlands in the four-area case study, comparing the baseline
dMPC, the residual CDDPG, and the combined signal.

enhance performance, empirical results show the opposite: a higher residual bound reduces
the accuracy of the actor network, ultimately degrading overall performance.

Another notable observation from Figure 5-6 is that, since simultaneous charging and dis-
charging are permitted, both the charging and discharging inputs are almost always greater
than zero. Since the system lacks an explicit mechanism for energy dissipation, this control
strategy leverages efficiency losses from simultaneous charging and discharging to shed excess
electricity.

5-3-3 Decentralized MPC + distributed DDPG

In Table 5-10, the cumulative costs for the AMPC+DDDPG controller are presented. For both
cases, the best, average, and worst runs outperform the baseline AMPC. This improvement
is accompanied by a low standard deviation across seeds. Notably, the performance gain is
significantly larger in the six-area case.

For the four-area case, the online computation time ranges from 00:17:59 to 00:19:29, resulting
in a mean computation time per step range of 0.031 to 0.034. The online core computation
times range from 01:11:58 to 01:17:58, and the offline computation time range of 1:49:15

L.D. Steenhoff Master of Science Thesis

5-3 Results 49

Case study Best Average Worst Standard dMPC
deviation

Four-area 1.7445%x 1072 1.7881x 1072 1.8489x1072 3.70 x 10~* 2.0042 x 1072

Six-area 1.9659x 1072 2.3107x1072 2.7911x102 3.12x 1073 5.8646 x 102

Table 5-10: Cumulative cost analysis of the dMPC+DDDPG method over 5 seeds versus the
dMPC.

to 1:54:00. The spread of computation times is marginally wider than those observed in the
dMPC+CDDPG simulations. For the six-area case, the computation times are also consistent
across seeds. On average, the online computation time is 00:20:44, corresponding to a mean
time per step of 0.036 seconds. The average core computation time is 02:04:25, and the offline
computation time averages 03:36:03.

The figure in Appendix A-2-1 depicts the split baseline and residual control inputs for the
Netherlands, like in Section 5-3-2. The two approaches show similar results; therefore, the
conclusions in that section are also applicable here. One additional feature visible in this
figure is the enforcement of constraint satisfaction by modifying the system, as explained in
Section 4-1-3. During the simulation, the combined base and residual charging and discharging
control input becomes negative at certain moments. Since this is infeasible due to the input
constraint, the system sets the control input to zero in those cases.

The multi-agent reinforcement learning challenges described in Section 3-4 do not appear
to have negatively impacted the results. If nonstationarity had posed a significant problem,
one would expect higher variance across the runs. However, both case studies exhibit low
standard deviations and consistently improve the baseline dMPC performance across all seeds,
indicating that training remained stable despite the distributed setting. Furthermore, adding
Gaussian noise with a standard deviation of 0.4 proved to be sufficient for exploration and
exploitation during training. Finally, the results indicate that access to only neighborhood
information is adequate for the DDDPG agents to learn effective residual control policies.

The training rewards for each country are shown in Figure 5-7 for both case studies. As with
the dAMPC+CDDPG method, it is not always clear whether training has fully converged.
Moreover, since the reward magnitude is heavily influenced by the scaling parameter &;, it
is not possible to directly compare the performance of individual DDDPG agents based on
reward values.

5-3-4 Comparison between control strategies

In this section, the five control structures are compared with respect to the cost function
and the computational efficiency indicators. These evaluations will be done using Table 5-11,
Table 5-12, and Figure 5-8. The tables report the best-performing runs for AMPC+CDDPG
and dMPC+DDDPG, which is justified since the controllers are trained offline, allowing for
the selection of the most effective parameter configurations for deployment. This section
concludes by analyzing differences in state trajectories among all control structures for both
case studies.

Master of Science Thesis L.D. Steenhoff

50

Case study: Four- and six-area system in EEA-ENB

Rewards dMPC+DDDPG

Reward [-]

Reward [-]

8 20

12
Time [hours]
DE — NL

SE

(a) Four-area case

Rewards dMPC+DDDPG

|
A
°
3

|
o
&
)

-200

—250

-300

8 12
Time [hours]

NL — NO PL

(b) Six-area case

Figure 5-7: Decentralized MPC + distributed DDPG training rewards

Method four-area Cost % from Comp. Mean comp. Core time Comp.
optimal time online time [s] online time offline

CMPC 1.4787 x 1072 0.00 05:18:55 0.554 05:18:55 -

DMPC-ADMM 1.4829 x 1072 0.28 04:57:16 0.516 19:49:06 -

dMPC 2.0042 x 1072 35.55 00:16:58 0.029 01:07:52 -

dMPC+CDDPG 1.6415 x 1072 11.01 00:16:59 0.029 01:07:06 01:30:06

dMPC+DDDPG 1.7445 x 1072 17.97 00:17:59 0.031 01:11:58 01:49:15

Table 5-11: Cumulative cost and time comparison for the different control structures in the
four-area case study. Time is given in hh:mm:ss.

Method six-area Cost % from Comp. Mean comp. Core time Comp.
optimal time online time 3] online time offline

CMPC 1.4008 x 1072 0.00 08:56:56 0.932 08:56:56 -

DMPC-ADMM 1.4020 x 1072 0.09 08:04:47 0.842 48:28:39 -

dMPC 5.8646 x 1072 318.66 00:20:10 0.035 02:00:59 -

dMPC+CDDPG 2.4601 x 1072 75.62 00:19:09 0.033 01:53:01 01:32:39

dMPC+DDDPG 1.9659 x 1072 40.34 00:20:45 0.036 02:04:35 03:35:39

Table 5-12: Cumulative cost and time comparison for the different control structures in the
six-area case study. Time is given in hh:mm:ss.

Existing control structures

CMPC provides the optimal control solution, as it leverages all available information over the
prediction horizon. The performance of the other control strategies can be evaluated by how
much their solutions deviate, in percentage, from this optimum. This is shown in the % from
optimal columns of the two comparison tables. For both case studies, the CMPC method has
the highest mean computation time per time step. As discussed in Section 5-3-1, it is also
known to be too slow for real-time control of the entire EEA-ENB network.

The DMPC-ADMM method is slightly faster than CMPC in terms of mean computation
time, while achieving nearly the same performance. In the four-area case, the deviation from

L.D. Steenhoff Master of Science Thesis

5-3 Results 51

Cumulative Cost Comparison - 4 Areas

0.0200 - =—— CMPC

--- DMPC-ADMM

001751 —— dMPC

—— Best dMPC+CDDPG
Spread dMPC+CDDPG

—— Best dMPC+DDDPG
Spread dMPC+DDDPG

0.0150 4

0.0125 4

0.0100 4

Cumulative Cost [-]

0.0075 4

0.0050 4

0.0025 4

0.0000 T
0 4 8 12 16 20 24
Time [hours]

(@) Four-area case

008 Cumulative Cost Comparison - 6 Areas

— CMPC

--- DMPC-ADMM

—— dMPC

—— Best dMPC+CDDPG
Spread dMPC+CDDPG

—— Best dMPC+DDDPG
Spread dMPC+DDDPG

0.07 4

0.06

o

=}

G
L

0.04 -

Cumulative Cost [-]
g

0.02 4

0.01 1

T
4 8 12 16 20 24
Time [hours]

(b) Six-area case

Figure 5-8: The plots show the cumulative cost in both case studies for five control strategies:
CMPC, DMPC-ADMM, dMPC, dMPC+CDDPG, and dMPC+DDDPG. The shaded regions
represent the performance spread (minimum to maximum cumulative cost) across 5 fixed seeds
for the two novel methods. The solid lines denote the best-performing seed for the two novel
methods based on the final cumulative cost.

Master of Science Thesis L.D. Steenhoff

52 Case study: Four- and six-area system in EEA-ENB

the CMPC solution is only 0.28%, and in the six-area case, just 0.09%. As the number of
areas increases, the computational advantage of DMPC-ADMM becomes more significant,
since the size of the CMPC optimization problem scales with the full system. In contrast,
DMPC-ADMM allows for parallel computation, making its total computation time dependent
only on the most connected node. However, the total core computation time is much longer:
19:49:06 compared to 05:18:55 in the four-area case, and 48:28:39 compared to 08:56:56 in
the six-area case.

Decentralized MPC performs poorly due to the lack of coordination between areas. The need
for coordination becomes more evident in the six-area case study, where the cumulative cost of
CMPC remains comparable to the four-area case, but the performance of AMPC deteriorates
significantly. In the four-area case, the cost is 35.55%. above the optimal, compared to
318.66%. in the six-area case. This suggests that the need for coordination increases as the
number of areas grows. However, this method offers significantly lower computation times
compared to CMPC and DMPC-ADMM. The mean computation time per step is reduced to
just 0.029 seconds for the four-area case and 0.035 seconds for the six-area case. Moreover, as
discussed in Section 5-3-1, this time per step remains approximately constant as the network
size increases.

Novel control structures

As shown in Section 5-3-2 and Section 5-3-3, adding a coordinating DDPG layer can substan-
tially improve performance. In the four-area case, the % from optimal cost is reduced from
35.55% with standalone dMPC to 11.01% with the dMPC+CDDPG structure, corresponding
to a 69.03% reduction in the performance gap. Similarly, the IMPC+DDDPG configuration
reduces the % from optimal to 17.97%, yielding a 49.45% improvement. Since the computa-
tional burden of the DDPG layers is shifted to the offline phase, both structures introduce
only a minimal increase in computation time during the online control phase. The core com-
putation time of the dAMPC+CDDPG is even slightly lower than that of dMPC; however,
this is not expected to hold on average. It is also worth noting that both novel control struc-
tures remain faster than CMPC and DMPC-ADMM when the offline computation time is
included. This suggests that an online RRL coordination layer is also worth investigating in
future work.

For the six-area case study, the dAMPC+CDDPG structure improves the baseline dMPC
performance significantly, decreasing the % from optimal from 318.66% to 75.62%. This cor-
responds to a reduction in the performance gap of 76.27%. The dMPC+DDDPG structure
yields an even greater improvement, reducing the % from optimal to 40.34%, which corre-
sponds to an 87.34% reduction in performance gap. The distributed variant performs better
than the centralized one, despite the additional challenges of multi-agent reinforcement learn-
ing. Given that the CDDPG has full observability of the system, it would be expected to
achieve superior performance, as observed in the four-area case. This could imply that the
hyperparameters for the CDDPG controller might not yet be fully optimized. The computa-
tion time per time step remains similar to that of the baseline dMPC, which is at least 15
times lower than those of CMPC and DMPC-ADMM.

An additional advantage of the AMPC+DDDPG structure over AMPC+CDDPG is its scala-
bility, thanks to the distributed nature of the coordinating layer. However, this comes at the

L.D. Steenhoff Master of Science Thesis

5-4 Summary 53

cost of training more DDDPG agents, which leads to longer training times. For the four-area
case, the offline computation time increases only slightly from 01:30:06 to 01:49:15, whereas
for the six-area case, the increase is more substantial, from 01:32:39 to 03:35:39.

State trajectories comparison

In Appendix A-2, the trajectories of the five system states are presented for both case studies
and all control structures. As expected, the results for CMPC and DMPC-ADMM are identi-
cal across all states in both scenarios. Moreover, all control strategies operate well within the
state constraints. The trajectories of the angle and frequency deviations for both novel con-
trol structures remain sufficiently small, confirming that the implementation of a saturation
function for these states is indeed unnecessary.

As shown in the figure in Appendix A-2-2, the angle deviation under the uncoordinated dMPC
exhibits a higher magnitude compared to CMPC and DMPC-ADMM. Both proposed coor-
dination strategies CDDPG and DDDPG reduce this deviation, with the AIMPC+DDDPG
approach achieving the most significant improvement in the six-area case study.

The figure in Appendix A-2-3 shows the frequency deviation trajectories. For this state, the
dMPC trajectories appear identical to those of CMPC and DMPC-ADMM. Although adding
a CDDPG or DDDPG layer slightly increases frequency deviations, it’s a minor trade-off to
reduce overall costs.

The figure in Appendix A-2-5 presents the total tie-line power exchange state Pl-tie. It indi-
cates that substantial tie-line exchanges, as seen for Germany under the CMPC solution, are
not inherently problematic, provided they support overall system balance and performance.
In the six-area case, the results of the dMPC appear visually similar to those of CMPC,
but as explained in this section, the performance is way worse. In the four-area case, the
dMPC+CDDPG method regulates the direction of the tie-line flows like CMPC, but does
it completely differently in the six-area case. The dMPC+DDDPG approach shows tie-line
states consistently diverging in both case studies.

5-4 Summary

This chapter evaluated the performance of two novel control strategies, dMPC+CDDPG
and dMPC+DDDPG, on a four-area and a six-area case study of the EEA-ENB. These
strategies were compared against three existing control structures: CMPC, DMPC-ADMM,
and dMPC. First, the implementation details were presented, including the use of input
saturation functions to ensure constraint satisfaction for the novel control structures, as well
as the selection of hyperparameters.

The CMPC controller computes the lowest optimal cumulative cost but at the expense of
high computation times, making it infeasible for real-time control in the EEA-ENB. The
DMPC-ADMM approach achieved identical performance with lower per-step computation
time through parallelization, but it required a substantial total core computation time. In
contrast, dMPC offered minimal computational time but suffered from significantly degraded
performance due to the lack of coordination. The deviation from the optimal CMPC cost was

Master of Science Thesis L.D. Steenhoff

54 Case study: Four- and six-area system in EEA-ENB

35.55% in the four-area case and 318.66% in the six-area case, highlighting that increasing
network size demands greater coordination.

Both proposed novel control structures showed significant improvements over the dMPC base-
line, despite operating within an action space limited to 20% of that of AMPC in the four-area
case and 30% in the six-area case. These cost reductions were achieved while maintaining
comparable computation times. The dMPC+CDDPG approach reduced the optimality gap
between dMPC and CMPC by 69.03% in the four-area case and by 76.27% in the six-area
case. The AMPC+DDDPG method achieved improvements of 49.45% and 87.34% in the four-
and six-area cases, respectively.

The dMPC+CDDPG scalability is limited due to the increasing complexity of the DNNs with
respect to system size. This limitation is addressed in the dMPC+DDDPG method, which
requires longer training time due to the multi-agent setup. This approach showed stable
training across seeds, despite the challenges of multi-agent training. Furthermore, analysis of
the control inputs of both novel approaches confirmed that the RL agents learned effective
residual control policies.

L.D. Steenhoff Master of Science Thesis

Chapter 6

Conclusions and recommendations

This chapter reflects on the work presented in this thesis. In Section 6-1, the initial research
objective is revisited and evaluated to what extent it has been achieved. In Section 6-2, the
contributions to the current literature are highlighted. In Section 6-3, the limitations of the
present implementations are discussed, and recommendations for future research are provided.

6-1 Conclusions

In Section 1, the goal of this thesis was formulated as follows:

Develop a scalable multi-agent control framework for real-time load frequency
control to optimize system performance, while ensuring the satisfaction of
operational constraints.

In this work, two novel Residual Reinforcement Learning (RRL) control structures have been
developed. The first combines decentralized MPC with centralized DDPG (dAMPC+CDDPG),
and the second, more scalable variant, combines decentralized MPC with distributed DDPG
(dMPC+DDDPG). These control structures have been tested on a four- and six-area case
study in the EEA-ENB against the CMPC, DMPC-ADMM, and dMPC structures. Chal-
lenges of the case study include inherent system instability and the presence of time-varying
external signals.

Although the cost performance of AMPC+CDDPG and dMPC+DDDPG do not match that
of CMPC or DMPC-ADMM, both represent a clear improvement over the dMPC baseline,
while retaining the same convenient computational speed. Through coordination, the CDDPG
layer reduces the performance gap between dMPC and the optimal CMPC solution by 69.03%
in the four-area case and by 76.27% in the six-area case. For the DDDPG variant, these
improvements are 49.45% and 87.34% for the four- and six-area cases, respectively.

The addition of a pre-trained CDDPG or DDDPG layer to the dMPC introduces only a
negligible increase in computation time. Across the case studies, the average computation

Master of Science Thesis L.D. Steenhoff

56 Conclusions and recommendations

time per control step ranges from 0.029 to 0.035 seconds, which remains well below the
sampling interval of 2.5 seconds used in the EEA-ENB. This confirms the feasibility of real-
time control, which is expected to remain possible when scaled to the full network, since the
dMPC computations can be executed in parallel. Notably, these computation times are at
least 15 times faster than those observed for the CMPC and DMPC-ADMM approaches.

The operational constraints are satisfied using an input saturation function, which is a prag-
matic but suboptimal solution. This limitation will be further discussed in Section 6-3. In
conclusion, the integration of a residual DDPG layer with AMPC, whether centralized or dis-
tributed, significantly enhances the performance of dAMPC, offering an attractive compromise
between control performance and computational efficiency.

6-2 Contributions

In this work, an implementation using Residual Reinforcement Learning is demonstrated,
highlighting how existing control knowledge can be effectively combined with RL to enhance
system performance. This concept has been applied in numerous domains across various
applications. However, the implementations of dAMPC+CDDPG and dMPC+DDDPG are
novel and, to the best of the author’s knowledge, contribute to the current literature in the
following aspects:

e Implementation of both centralized and distributed RRL for the coordination of decen-
tralized agents in a networked LFC problem.

e Implementation of RRL with a baseline layer that primarily aims to stabilize a net-
worked system, such that offline, off-policy learning is more efficient. In this work,
dMPC layer stabilizes the network, and a CDDPG or DDDPG layer improves the per-
formance.

6-3 Discussion and recommendations for future research

Despite the promising results, there are also some limitations of the current implementa-
tions of the AMPC+CDDPG and dMPC+DDDPG frameworks. This section presents these

limitations and proposes potential directions for future research to address them.

First of all, actual offline training through direct interaction with the real interconnected
electricity grid is not feasible, due to safety and operational constraints. Possible options are
training using historical data [43] or interactions in high-fidelity simulators [47].

Furthermore, one drawback of incorporating the DDPG layers is the loss of the inherent
constraint satisfaction guarantees provided by the original AMPC framework. In this thesis,
constraint satisfaction is maintained through the use of input saturation functions, as de-
scribed in Section 5-2-2. A more conservative, yet robust alternative involves modifying the
dMPC dynamics to incorporate the residual action space explicitly. This allows the dMPC to
account for the effect on the dynamics of the residual input when satisfying the constraints.

Additionally, for the novel approaches, the dMPC layer must stabilize the system to enable the
CDDPG or DDDPG layer to effectively improve the performance. However, due to strong

L.D. Steenhoff Master of Science Thesis

6-3 Discussion and recommendations for future research 57

coupling between geographically close countries, this condition is not always satisfied. A
potential solution is to aggregate the electrical machines of the closely connected countries
into a single equivalent machine by combining their power loads and renewable generation.
This removes the tie-lines with high coupling gains, which could enable dMPC to stabilize
the networked system. Another drawback of introducing the DDPG layer is that it removes
the theoretical stability guarantees provided by dMPC in networked systems. Future work
should investigate how the stability can still be guaranteed.

During the offline training phase, noisy external signals are introduced to prevent overfitting
of the DDPG parameters. Nevertheless, the overall trend between the training data and the
online control signals remains consistent. To improve the generalization of the learned DNN,
training on data from a different day would be desirable. However, this poses a challenge in
offline RL due to the distributional shift problem, where discrepancies between the training
and deployment data distributions can significantly degrade performance. To address this,
fast online RL methods that can adapt to changing environments in real time may also be
explored. Furthermore, instead of assuming a perfect forecast of the external signals as is
done in this work, the actual forecast provided by the EEA-ENB should be utilized.

Without significantly altering the current implementation of the dAMPC+DDDPG framework,
future work could explore parallelizing the offline training process. By training each DDDPG
agent independently and simultaneously, the total training time could be reduced proportion-
ally to the number of agents. This approach becomes particularly advantageous when scaling
the control architecture to the full EEA-ENB network.

The DDPG algorithm is highly sensitive to its numerous hyperparameters, which can signifi-
cantly affect performance [14]. Insufficient tuning is a probable reason why dMPC+CDDPG
performed worse than dMPC+DDDPG in the six-area case. A possible remedy is to apply
automated hyperparameter optimization techniques, such as Bayesian optimization [41], to
reduce manual trial and error.

Due to time and resource limitations, the novel control structures were not tested on the full
EEA-ENB network. To fully validate their effectiveness and scalability, future work should
extend the evaluation to the entire system.

Master of Science Thesis L.D. Steenhoff

58

Conclusions and recommendations

L.D. Steenhoff

Master of Science Thesis

Appendix A

Appendix

A-1 Pseudocode

A-1-1 ADMM

Algorithm 2 Alternating Direction Method of Multipliers [7,42]

1: Vi in parallel:

2: initialize y =0, 2 =0

3: repeat

4: for each ¢ do

5: x!T1 = arg miny, Lip(xi, 2Lyt

6: communicate xﬁ“ to all 7 € N

7 = M (x L)

s: yi =yl (T -)

9: end for
10: until convergence or maximum iterations are reached

Master of Science Thesis L.D. Steenhoff

60

Appendix

A-1-2 DDPG

Algorithm 3 Deep Deterministic Policy Gradient [32]

1: Input: initialize policy parameters 6, Q-function parameters ¢, empty replay buffer D
2: Set target parameters equal to online parameters Oiarg < 0, Grarg < ¢
3: for number of episodes do

4: Reset environment
5 for k in max steps do
6: Observe state xy and select input ug = pg(xg) + N
7 Postprocess uy,
8 Apply ug to the system
9: Observe next state xy41, reward 7, and done signal d
10: Store (x, ug, Tk, Tk+1,d) in replay buffer D
11: if 41 is terminal then
12: Break
13: end if
14: if D > Batch size then
15: Randomly sample a batch of transitions, B = {(z,u,r,2’,d)} from D
16: Compute targets
y(r, .CL‘/, d) =7+ 7(1 - d)Q¢targ ($,7 Hbgarg (l‘,))
17: Update Q-function by one step of gradient descent using
1 2
vqﬁ@ Z (Q(}S(xvu) - y(r, J},,d))
(z,u,r,x’,d)EB
18: Update policy by one step of gradient ascent using
1
Vors Y Qola, po(z))
|B
zeB

19: Update target networks with

(Z%arg <~ p¢targ + (1 - p)(b

Qilsarg A petarg + (1 - p)0
20: end if
21: end for
22: end for

L.D. Steenhoff Master of Science Thesis

A-2 Additional figures 61

A-2 Additional figures

A-2-1 Control inputs

Control inputs for NL: Baseline dMPC, residual DDDPG and combined

Dispatchable power

0.0004 1

0.0002 +

0.0000 +

—0.0002 4

APSP [GW/s]

—0.0004

0 4 8 12 16 20 24
Time [hours]

Charging ESS

PR [GW]

0 4 8 12 16 20 24
Time [hours]

Discharging ESS

le-5

P> IGWI

Time [hours]

—— dMPC —— DDDPG —— Combined

Figure A-1: Control inputs for the Netherlands in the four-area case study, comparing the baseline
dMPC, the residual DDDPG, and the combined signal.

Master of Science Thesis L.D. Steenhoff

62

Appendix

A-2-2 Angle deviations

le-4 Four-area: CMPC

Six-area: CMPC

Ab; [deg]

0 4 8 12 16 20 24 0 4 8 12 16 20 24
Time [hours] Time [hours]
le—4 Four-area: DMPC-ADMM le—4 Six-area: DMPC-ADMM
24 24
—_ 1
o
[
3 04 ot - e =
')
g 1
—2 24
0 4 8 12 16 20 24 0 4 8 12 16 20 24
Time [hours] Time [hours]
le—4 Four-area: dMPC le—4 Six-area: dMPC

Ab; [deg]

0 4 8 12 16
Time [hours]
le—4 Four-area: dMPC+CDDPG

Time [hours]
Six-area: dMPC+CDDPG

Ab; [deg]

0 4 8 12 16
Time [hours]
le—4 Four-area: dMPC+DDDPG

8 12 16 20 24
Time [hours]

Six-area: dMPC+DDDPG

Ab; [deg]

Time [hours]

Figure A-2: The plots depict the angle deviation in [deg] for all control structures and both case

studies.

L.D. Steenhoff

Master of Science Thesis

63

A-2 Additional figures

A-2-3 Frequency deviations

Six-area: CMPC

le—-6

Four-area: CMPC

le—-6

24

24

24

24

Ll lmll. | 11T IJL_..III“A 1 I‘

Il ”I”'l'll ""|“|'|I |I|II|I “ LM |' ||| | T l|'|||' I'“II L '||'”' L]

7”.“]”.!”[m llﬂll“.”l_llll “ A

16 20

12

Time [hours]
Six-area: DMPC-ADMM

le—6

7”.“.!!|.Jul o lJl“l“ J”Illl “ e .l|!.| N} lmll. |.|Jl| . IumJJJ“:.JlJJ

” ”|”'PII'”I”|F|I|”I”I|‘II T rlw’l (M |P|P’|1“|| LI} llrlr L}

12 16 20

Time [hours]
Six-area: dMPC

le—6

l|.|ll|l.l.u ...III”.“ lllnll ” Lol Ill [I.“ll AUl _.1|||Ih|| |
|I'i||i|'i'|' "'lillllll Illl[ll II LLAR | I"l|' I T I|'|||' |’|I|| ny "|I|I|' L] 1

12 16 20
Time [hours]

Six-area: dMPC+CDDPG

8

le-6

12 16 20

Time [hours]
Six-area: dMPC+DDDPG

le—6

“:lllll:'l“lu“ll“llh “IIIJI “ 1, ,l:.':.l|l.|’nl..il||“ ||||” ..l||'“l|||!|.|| Il
it -

1
0
-1

1
0
-1

1
0
-1

24

2
1
0
-1

l|.|Jl||.I||. ..,.IJ|IJ|| |||.Ih || Wl I.,|||.| ettt Ll uJ_ml.h.Jl ||

12 20 24

Time [hours]
Four-area: DMPC-ADMM

le-6

I|.|Jl||.|m|I|I||| |||.Il| || el I..|||.| et Ll IJ_IJIlIlh: 1[1|

12 20 24

Time [hours]
Four-area: dMPC

le—-6

Time [hours]
Four-area: dMPC+CDDPG

24

20

12

le-6

.||l||.||l|'.!.||||||||,||1||h || TARTR ||.|I|.l |.I..I|5|“| |!|III et .!nL
II'I|'I|""I' |'|I|‘||I||I'|I || T | |’|||n |..|. ‘l'” Tt n]|||-|. I‘

J. | I|

12 20 24

Time [hours]
Four-area: dMPC+DDDPG

le—6

Jl”lthu.n|”|J||d|hlllnh |||h|” Ihlnl”l”.lJlH .u||H|L|L | J

2

1
0
-1

N
z
=
3

-2

2

1
0
-1

N
z
=
3

-2

2

1
0
-1

N
==
=
S

-2

2

1
0
-1

N
==
=
S

-2

2
1
0
-1

N
z
=
<

-2

16 20 24

12
Time [hours]

24

20

1‘2
Time [hours]

DE NL — NO PL SE

DK

Figure A-3: The plots depict the frequency deviation in [Hz] for all control structures and both

case studies.

L.D. Steenhoff

Master of Science Thesis

64 Appendix

A-2-4 ESS charge

le—4 Four-area: CMPC le—4 Six-area: CMPC
549 5
44 4
g 34 3
A
d: 24 2

I A N N Y T A T |

0 8 12 16 20 4 0 4 12 16 20 24
Time [hours] Time [hours]
le—4 Four-area: DMPC-ADMM le—4 Six-area: DMPC-ADMM
549 5
44 4
g 34 3
e
& 24 2

|||LI...I|1[|[;[|,..IlL..L.l LJLlll A 1 LlLI..,u||||_L|_,,I._..LII..._.l |..|L|_l

0 12 16 20 24 0 12 16 4
Time [hours] Time [hours]
le—4 Four-area: dMPC le—4 Six-area: dMPC
549 5
44 4
g 34 3
A
21 2
m tU
14 1
o J_ngJ‘JJ.i |l | 1 L.LAJJ_I o 1 LJL‘L | |J| |\J|L LJ [| Il
0 4 8 12 16 20 24 0 4 8 12 16 20 24
Time [hours] Time [hours]
le—4 Four-area: dMPC+CDDPG le—4 Six-area: dMPC+CDDPG
549 5
44 4

d o BRA el |
0 4 8 12 16 20 24 0 4 8 12 16 20 24
Time [hours] Time [hours]
le—4 Four-area: dMPC+DDDPG le—4 Six-area: dMPC+DDDPG
549 5
44 4
é‘ 34 3
[©)
2 2
[
0 == - - r\l‘-A - ; |- 0 bt - ; - + -
0 4 8 12 16 20 24 0 4 8 12 16 20 24
Time [hours] Time [hours]
— DK — DE — NL — NO PL — SE

Figure A-4: The plots depict the charge of the ESS in [GWs] for all control structures and both
case studies.

L.D. Steenhoff Master of Science Thesis

A-2 Additional figures 65

A-2-5 Power exchange over the tie-lines

Four-area: CMPC Six-area: CMPC
6 6
4 4
E 2 2 //,_7\
L 0 = -
o
a2 -2
-4 -4
—6 -6
0 4 8 12 16 20 24 0 4 8 12 16 20 24
Time [hours] Time [hours]
Four-area: DMPC-ADMM Six-area: DMPC-ADMM
6 6
4 4
z 2 2 /_/7\
g 0 e e
@
"E’: -2 -2
-4 -4
—6 -6
0 4 8 12 16 20 24 0 4 8 12 16 20 24
Time [hours] Time [hours]
Four-area: dMPC Six-area: dMPC
6 6
4 4
s : : — e —
9 0 D
@
a2 -2
-4 -4
—6 -6
0 4 8 12 16 20 24 0 4 8 12 16 20 24
Time [hours] Time [hours]
Four-area: dMPC+CDDPG Six-area: dMPC+CDDPG
6 6
4 4
E 2 2
S o
2
- N
-4 -4
-6 -6
0 4 8 12 16 20 24 0 4 8 12 16 20 24
Time [hours] Time [hours]
Four-area: dMPC+DDDPG Six-area: dMPC+DDDPG
6 6
4 4
E 2 2
I
S 0
o
-2 -2
-4 -4
-6 T T T T T -6 T T T T T
0 4 8 12 16 20 24 0 4 8 12 16 20 24
Time [hours] Time [hours]
— DK — DE — NL — NO PL — SE

Figure A-5: The plots depict the power exchange over the tie-lines in [GW] for all control
structures and both case studies. A positive value indicates that power is flowing away from the
country.

Master of Science Thesis L.D. Steenhoff

66

Appendix

A-2-6 Dispatchable power

Four-area: CMPC

Six-area: CMPC

354 35
301 30
254 25

20

PP [GW]

10—/%//\ 10

15

—_

f\

0 0 4 8 12 16 20 24 ° 0 4 8 12 16 20 24
Time [hours] Time [hours]
s Four-area: DMPC-ADMM i Six-area: DMPC-ADMM
30 30
254 25
20

PP [GW]

10—_—_/’_“___/\ 10

15

)

—/——’/”—_/_\

0 0
0 4 8 12 16 20 24 0 4 8 12 16 20 24
Time [hours] Time [hours]
Four-area: dMPC Six-area: dMPC

3549 35

304 30
= 251 25
=
QO 204 20
— —\
& 151 15 —
5.
Q 10

0 0 4 8 12 16 20 24 ° 0 4 8 12 16 20 24
Time [hours] Time [hours]
s Four-area: dMPC+CDDPG . Six-area: dMPC+CDDPG
3041 30
254 25
20

PP [GW]

15

10—__d_m’/\ 10

0 4 8 12 16 20 24 0 4 8 12 16 20 24
Time [hours] Time [hours]
s Four-area: dMPC+DDDPG s Six-area: dMPC+DDDPG
5 5
304 30
254 25
20

PP [GW]

15

10———-’/_/,/_, 10

0 4 8 1‘2 16
Time [hours]

— DK

0 4 8 12 16 20 24

Time [hours]

DE — NL — NO PL — SE

Figure A-6: The plots depict the dispatchable power allocation in [GW] for all control structures

and both case studies.

L.D. Steenhoff

Master of Science Thesis

Appendix B

Paper

Master of Science Thesis L.D. Steenhoff

IEEE

= CSS IEEE CONTROL SYSTEMS LETTERS, VOL. XX, NO. XX, XXXX 2017

Distributed Residual Deep Reinforcement
Learning for Load Frequency Control

Loek Steenhoff, Alessandro Riccardi, and Bart De Schutter Fellow, IEEE

Abstract— This paper introduces two residual reinforce-
ment learning frameworks for multi-agent load frequency
control. The large-scale nature of the power system com-
plicates real-time control. Furthermore, the system used
in this paper is unstable due to inter-area coupling, which
makes reinforcement learning difficult. In both approaches,
a decentralized model predictive control structure is de-
ployed as a stabilizing baseline layer. To improve the co-
ordination, the first approach deploys a centralized resid-
ual reinforcement learning layer, and the second approach
deploys a distributed residual reinforcement learning layer.
By providing a good enough approximation of the optimal
policy, the baseline layer increases sample efficiency, re-
duces exploration difficulties, and improves the accuracy
of the residual reinforcement learning controller. To further
reduce online computational cost, the residual reinforce-
ment learning algorithm is trained offline. The simulation
results demonstrate that the addition of a coordinating
layer significantly improves the performance, while adding
a negligible amount of computation time.

Index Terms—Load Frequency Control, Residual Rein-
forcement Learning, Model Predictive Control, Multi-Agent
Reinforcement Learning.

[. INTRODUCTION

One of the primary control objectives in modern power
systems is Load Frequency Control (LFC), which aims to
maintain a constant operating frequency by balancing power
generation and demand at all times [1]. In recent decades,
however, structural changes have increased the complexity of
the grid, necessitating more advanced control strategies.

For example, the widespread integration of Renewable
Energy Sources (RESs), such as photovoltaic panels and
wind farms, poses a challenge due to their weather-dependent
and therefore less predictable output [2]. Moreover, unlike
conventional plants, RESs lack rotational inertia and cannot
directly support grid stability [1].

Furthermore, the electricity grid is now highly intercon-
nected between countries, forming a large-scale, integrated
power system [3]. This expands the scope of the LFC task,
which must now regulate not only the frequency deviations
within individual countries but also the power exchanges be-
tween them, necessitating control structures capable of effec-
tive multi-area coordination [1], [4]. Finally, the power system
demands real-time control, meaning that control actions must
be computed and executed within the timing requirements of
the system.

A. Related Work

Centralized Model Predictive Control (MPC) is a state-
of-the-art technique that can compute optimal control ac-
tions while satisfying system constraints. However, centralized
MPC is computationally intensive and generally unsuitable for
real-time applications in large-scale systems [5]. To reduce
the computational burden, more scalable, non-centralized ap-
proaches are needed [6].

One such approach is decentralized MPC (dMPC), where
each controller operates based on local information and con-
trols only its own area [7]. While this reduces computation
significantly, it lacks coordination among areas, often leading
to suboptimal global performance. Distributed MPC methods,
such as those based on the Alternating Direction Method of
Multipliers (ADMM), enable limited communication between
neighboring controllers and can coordinate actions across
areas [8]. However, the iterative nature of the ADMM-based
optimization makes these methods still computationally de-
manding and potentially unsuitable for real-time control.

Recently, data-driven approaches, such as Reinforcement
Learning (RL) [9], have gained increasing attention from
researchers for the control of complex systems, such as LFC
[10], [11]. In RL, the agent learns a control law (policy)
through interaction with the environment, using feedback in
the form of rewards. This approach has also been extended
to multi-area LFC systems, where multi-agent RL has shown
promising results by cooperatively minimizing frequency de-
viations under RES variability [10], [12], [13].

For real-time control of large-scale LFC, it is possible
to train the policy offline, so that online execution requires
only simple forward computations to determine the control
action. Offline reinforcement learning achieves this by learning
from historical data or by interacting with a model of the
environment. Since the policy is developed without interacting
with the real system, offline training also avoids the risks
associated with unstable or unsafe behavior during learning
[14].

Nonetheless, purely RL approaches face challenges in un-
stable systems, as exploration noise can quickly cause the
system state to diverge [15]. In such cases, relying solely on an
RL-based controller is often impractical. The author of [10]
concludes that RL is not intended to fully replace conven-
tional model-based LFC techniques, but rather serves as an
effective alternative for specific tasks. This motivated the im-
plementation of a hybrid approach that combines well-known

IEEE CONTROL SYSTEMS LETTERS, VOL. XX, NO. XX, XXXX 2017

advanced control principles with the learning capability of
RL, leveraging the strengths of both frameworks. Specifically,
using the concept of Residual Reinforcement Learning (RRL),
a decentralized MPC is deployed for system stabilization,
and an RL controller computes a residual action to improve
the coordination across electrical areas in a computationally
efficient manner.

B. Contributions

In this work, two novel Residual Reinforcement Learning
(RRL) control structures are proposed. The first one com-
bines decentralized MPC with a centralized Deep Determinis-
tic Policy Gradient (AIMPC+CDDPG) algorithm. The second
structure combines decentralized MPC with distributed DDPG
(dAMPC+DDDPG). To the best of the author’s knowledge, this
work contributes to the current literature in the following
aspects:

o Implementation of RRL with a baseline layer that pri-
marily aims to stabilize a networked system, such that
offline, off-policy learning is more efficient. In this work,
the dMPC layer stabilizes the network, and a CDDPG or
DDDPG layer improves the performance.

o Implementation of both centralized and distributed RRL
for the coordination of decentralized agents in a net-
worked LFC problem.

Il. BACKGROUND

This section introduces the background on networked LFC,
the associated control objective, and residual reinforcement
learning. For general background on RL, we refer to [9].

A. Multi-Area Load Frequency Control

A network of connected LFC subsystems can be repre-
sented by the graph G = (V,£). Here, the set of M nodes
YV = A, ..., Ay corresponds to the electrical areas in the
topology, with ¢ denoting the area index. If nodes .4; and
A; are adjacent, they are connected by an undirected edge
€ = €j; = (Ai, Aj) € £ CV x V, allowing for bidirectional
power flow. Moreover, the neighborhood, denoted by N; =
A; € V| (A, Aj) € €, is the set of all nodes connected to
area A;.

The discrete-time dynamics of a linearized interconnected
system can be represented by the following equation:

x(k+ 1) = Ax(k) + Bu(k) + Kw(k), (D)
whereXZ[xlT JIL]T,UZ[UI UL]T,and
w o= [w - wT]T are the au

=] M gmented states, control

inputs, and external signals of the M areas, respectively.
In LFC, the external signals generally consist of the load
and renewable energy generation, which are exogenous inputs
that directly influence the frequency dynamics. The matrix
A is composed of blocks on the diagonal representing each
area’s own dynamics, and off-diagonal terms for the tie-line
couplings between areas. The input matrix B is block-diagonal
with each block mapping local input u; directly into subsystem
1. Similarly, the external signal matrix K is block-diagonal,
mapping the local signal w; into subsystem 1.

B. Control Objective

In discrete-time control systems, the control objective gen-
erally consists of minimizing a cost function over a finite or
infinite horizon with respect to a reference trajectory x™!. This
cost function is given in Eq. 2.

=3 (It
k=1

where Q = blkdiag(Q1, .. .
blkdiag(Ry, ..., Ru).

Furthermore, in large interconnected systems, computational
efficiency is a critical factor in the deployment of control
strategies. Therefore, in addition to minimizing the control
cost, we also evaluate the structures on two computational
efficiency indicators, both of which relate to the effort required
to compute the control inputs. The first indicator assesses
whether real-time control is possible, as real-time control
is only feasible if the control input is computed within the
system’s sampling time. It is worth noting that in decentralized
or distributed control structures, parallel computation of the
controllers is possible. In such structures, the longest compu-
tational time of the parallel controllers is measured.

The second indicator quantifies the overall computational
burden of the control architecture. First, the cumulative com-
putational time over the simulation horizon is calculated for all
controllers in the architecture. Then, these values are summed
to obtain the total core computational time indicator.

x“(0)g + lu®)z], @

,Qn) and R =

C. Residual Reinforcement Learning

In this section, the concept of RRL is introduced [16]—
[18]. The main idea is to learn a residual policy on top of a
base policy provided by an arbitrary controller. The resulting
control input is the sum of the base policy and the residual
policy:

7T'base(x(k;)) + 7Tres(x(k)) = ubase(k) + ures(k) = u(k); 3)

where the base policy 7,5 can be any existing controller. This
allows the RRL method to leverage the properties of the base
controller, such as robustness or stability [16]. The goal of
the RL algorithm is then to find the optimal residual policy
Th, = T — Tpase- This method significantly improves data
efficiency by avoiding the need for RL to learn the full policy
from scratch [18]. Furthermore, assuming that the base policy
is already close to the optimal policy, the action space for
the RRL algorithm can be reduced. This offers two additional
advantages: 1) it reduces exploration challenges, and 2) it
improves actor accuracy due to smaller approximation errors
in the critic [17].

Since the control inputs are computed sequentially, the
residual policy can take the baseline action as an input. This
information is essential for the RL agent, as it defines the
baseline behavior upon which the residual policy is intended
to improve. If the base action is not included, the policy would
have to implicitly infer it from the system response, which
significantly complicates the learning task.

In RRL algorithms that use a replay buffer, only the residual
action (k) is stored as the action. The total action u(k) is

LOEK STEENHOFF et al.: DISTRIBUTED RESIDUAL DEEP REINFORCEMENT LEARNING FOR LOAD FREQUENCY CONTROL (AUGUST 2025) 3

not stored because the base policy mpase 1S fixed and known,
and the learning algorithm must only optimize the residual
policy 7ryes.

[1l. APPROACH

This paper proposes two control structures to perform offline
learning in unstable systems with changing external signals
using RRL. Both structures consist of two layers, where the
first baseline layer is designed to stabilize the system, and the
second layer learns a coordinating residual control input on top
of this baseline. In this work, a decentralized MPC (dMPC) is
used as a stabilizing baseline layer. For the RRL, the Deep
Deterministic Policy Gradient (DDPG) algorithm has been
selected, which is an off-policy Actor-Critic algorithm that
allows offline learning [19]. In the first structure, the RRL layer
consists of a single centralized residual DDPG agent, referred
to as dAMPC+CDDPG. In the second structure, the RRL layer
comprises multiple distributed residual DDPG agents, referred
to as dMPC+DDDPG.

A. Decentralized MPC + Centralized DDPG

In Fig. 1, the closed-loop system during the offline learning
phase is depicted. For the first layer, a stabilizing dMPC! is
deployed, where each dMPC controller ¢ controls subsystem
A;. The key limitation of dMPC is the lack of coordination
between individual control inputs, which leads to suboptimal
performance [20]. To address this, in the first structure, a
centralized residual DDPG algorithm is introduced to learn
a corrective control signal that coordinates the decentralized
inputs. Since only a single DDPG agent is trained, the training
procedures of [19] require only minor modifications.

The training loop proceeds as follows. At time step k, each
dMPC solves its respective optimization problem using only
the local state ;(k) and the external signals w;(k), ..., w;(k+
N —1), where N denotes the prediction horizon. The resulting
local control inputs ud™MPC(k) are aggregated to form the
global dMPC input u™F€ (k) = [ufMFC(k) ufyFC(k)],
as illustrated by the black bar in Fig. 1. This input, along
with the global system state x(k), current and future external
signals, is provided as input to the CDDPG actor network.
These components are concatenated to form the augmented
observation state:

x(k)
w (k)
ey = | @
w(L—1)
udMPC (k)

The external signal horizon length L can be chosen based
on the dynamics of the system. However, selecting a value
that is too large may cause the external signals to dominate
the augmented representation, potentially overshadowing the
influence of the state and baseline action. Based on this
information, the CDDPG computes a residual control input

I'This result can be found by empirical testing. Formal network stabilization
using dMPC can be verified using [7], but this is out of the scope of this paper.

u®PPPG The final control input applied to the system is the
sum of both components:

u(k) _ udMPC(k) + uCDDPG(k) (5)

The system then transitions to the next state and produces a
scalar reward r(k). This reward is the negative cost from 2 at
the current time step k times a scalar value to scale the reward
to a range in which the CDDPG agent learns efficiently [15].
The following transition is saved in the replay buffer:

(xSPPPE (), uCPPPO (k) p(k), xSPPPC(k 4 1), d), (6)

aug aug
which is used by the CDDPG algorithm to update its pa-
rameters. It should be noted that constructing the augmented
next state XEIRD,DPG(/@ + 1) requires computing the dMPC input
u™PC (L 4+ 1) at the subsequent time step. Since the future
external signals and system state are known during simulation
and the dMPC is deterministic, this computation is feasible.
Consequently, it is convenient to store the computed dMPC
input for the next time step during training.

During the online control phase, only the pre-trained actor
network of the CDDPG algorithm is used. This policy can
be executed using simple, computationally efficient forward
mathematical operations.

B. Decentralized MPC + Distributed DDPG

The second control structure replaces the centralized resid-
uval DDPG layer with a residual distributed DDPG layer,
while keeping the dMPC as the baseline controller. The core
principles of the residual architecture remain unchanged: the
dMPC layer stabilizes the system, enabling offline and off-
policy learning. The additional learning advantages are still
applicable, which include improved sample efficiency and
actor accuracy. The main motivation for this structure is
improved scalability compared to the CDDPG variant. The
single CDDPG agent would be required to learn a complex
actor neural network, as the dimension of XSIZDPG scales
linearly with the number of electrical areas. By limiting the
observation space of the agents to only the direct neighbors,
their optimization problem remains small, which would require
a less complex actor network.

In Fig. 2, the closed-loop system of the training and control
(without dashed lines) phase for AIMPC+DDDPG is depicted.
Each area A; is now subjected to a dMPC controller and a
DDDPG controller. Similar to the CDDPG structure, a base
input udMPC€ is first computed by a dMPC layer. The DDDPG
agents, which can only observe the system information from
themselves and their direct neighbors, compute a local cor-
rective residual control input that should coordinate the local
system state with that of the neighboring states. The goal is for
the agents to operate cooperatively to minimize the global cost
function 2. Each DDDPG agent requires the states, external
signals, and dMPC inputs from itself and its neighborhood,
which is indicated by the tilde notation above the state z;,

input 4dMPC, and external signals w;:
Ti =[wi, 7; | Vj € Ni] @)
FIMPC _ [IMPC(IMPC | i ¢ A] ®)
w; = [w;, w; | Vj € Ny 9)

IEEE CONTROL SYSTEMS LETTERS, VOL. XX, NO. XX, XXXX 2017

X r w

| | 1 |

[e— v v R

dMPC
Wi _— Uu; CDDPG
X dMPC, 1 CDDPG etworke
System
Fig. 1. The dMPC with CDDPG control structure. The dashed line for the reward indicates that the information is used only during offline training,

and not during online control.

Xi w; T
I— = - W
— l R e e e S|
 — limn - nT
Wi: ufiMPC ﬁ;iMPC uiDDDPG ul
y System

Fig. 2. The dMPC with DDDPG control structure. The dashed lines for the rewards indicate that the information is used only during offline training,

and not during online control.

The base input and the residual input for each area ¢ can be
summed and inserted into the system.

dMPC DDDPG
U; = Uy + u;

(10)

While transitioning to the next state, the system provides each
DDDPG agent with a local reward dependent on the local
performance:

ri(k) = =6 (|l (k) — 250G, + lwi(B)1Z,) A1)

where &; is the local reward scale factor. These rewards allow
each agent to independently learn its control policy based on
local system information. This policy is denoted by 7PPPPG,
and the distributed agents collectively define the joint residual
policy wPPPPG Tdeally, the agents learn their local policies
such that the resulting joint policy approximates the optimal
residual policy: wPPPPG" — 7+ _ 7dMPC Ty achieve this, at
each time step k, all DDDPG agents sequentially update their
parameters based on batches of transitions sampled from the
agent’s own replay buffer. These transitions have the form:
(oG (K), upPPPo(k), ri(k), ZoarC(k+1), d), (12)

aug,i aug,i

where JEBEB-PG(/{) follows the structure of 4, but includes only

local and neighborhood information. Similarly to the CDDPG
execution, only the trained actor networks are used for the
online control.

IV. CASE STUDY

In this section, the LFC benchmark is explained, where the
novel control structures are tested. The simulation results are

presented, showing the advantages of the proposed architecture
with respect to conventional MPC and distributed MPC based
on the ADMM consensus method.

A. Benchmark Description

To assess the performance and computational complexity of
the novel control structures, we use the European Economic
Area Electricity Benchmark (EEA-ENB) [5]. The countries of
the EEA are represented as interconnected electrical areas, for
which the benchmark provides topological information, real-
world electrical data, and a mathematical model. The electrical
power sources, loads, and renewable sources are aggregated
per electrical area, which therefore can be modelled as an
equivalent electrical machine. Neighboring areas are connected
by tie-lines, which allow bidirectional power flow.

The linearized LFC system of the ¢-th area consists of the

T
5 states x; = [A5i Af; e Pfe Pid‘SP} , the 3 control

. T
inputs u; = {A pid“P PiEss’C Pfss’d} , and the 2 external

signals w; = [AP}P AP{‘“’“]T. Here, AJ; [deg] is the
variation of the machine angle with respect to the nominal
angle &y, = 30 [deg], and Af; [Hz] is the variation of the
frequency with respect to the nominal frequency fo = 50 [Hz].
e; [GWs] is the energy stored in the ESS, P;ie [GW] is the total
energy exchange over the tie-lines to the i-th area, and P
[GW] is the dispatchable power allocation. The control inputs
are the variation in dispatchable power APY [GW/s], and
the ESS charging power PF5%¢ [GW] or discharging power

2
PZ-ESS’d [GW]. The two external signals are the variation in

LOEK STEENHOFF et al.: DISTRIBUTED RESIDUAL DEEP REINFORCEMENT LEARNING FOR LOAD FREQUENCY CONTROL (AUGUST 2025) 5

load request AP* [GW/s] and the variation in renewable
energy generation AP [GW/s].

A sampling time 7 of 2.5 [s] is used for the simulations,
where the discrete-time index is denoted by k. The dynamics
associated with the i-th area A4; of the equivalent electrical
machine are provided by the system of linear discrete-time
difference equations reported in the following:

Ad,(k + 1) = A(s@(k) + TZWAfi(k) (13)
Afilh+1) = (1 -) AF(R) + Ky gi() (14)
TR,i TR,i
ik +1) = es(h) + 7 (¢ PESS< 1) dPFSS’d(k))
' (15)
P(k +1) = Pj(k) + TAP{ (k) (16)
P3Pk 4+ 1) = PP (k) + 7 AP (k), (17)
with:
gi(k) = AP (k) — AP (k) + AP (k)
- Ap.ﬁe(k) - PESS’C(k) + PES9(k) (18)
APf(k) = Y Ty;(A — A§;(K)), (19)
JEN;
GW

where T;; in deg is the gain associated with the tie-line

connecting area ¢ and j; K, in [HGZ\?\,S] is the gain of the
rotating mass dynamics; and 7 ; in [s] is the time constant of
the rotating mass dynamics. Furthermore, n¢ and n¢ are the
charging and discharging efficiencies of the ESS. A challenge
to the control of the EEA-ENB arises from the instability of
the system due to the inter-area coupling.

All areas must satisfy the following constraints. The an-
gle deviation and frequency deviation states are bounded by
—3.5 < Aj; < 3.5 and —0.04 < Af; < 0.04, respectively.
Furthermore, the total ESS capacity of area 7 is assumed to
equal the total dispatchable capacity PU*"™*, which varies
by area. The dispatchable power control input is bounded by
—APZ-d 1Spmax - APid < APid P “and the charging and
discharging inputs by 0 < PFSS¢, pESSS < ApIP™X | yhere
APIP™ s selected such that the total dispatchable power
or ESS capacity can be allocated over one hour. To enforce
these constraints, saturation functions on the combined control
input have been implemented.

B. Experimental Set-Ups

This paper focuses on a four-area system and a six-area
system. The four-area case study considers a circular topology
with the following countries: Denmark (DK), Germany (DE),
the Netherlands (NL), and Sweden (SE). In the actual EEA-
ENB topology, DK and DE are connected. However, this
would result in some distributed controllers having the same
observability as centralized controllers. For the six-area case
study, Norway (NO) and Poland (PL) are added to the four-
area system. For the same reason as the four-area case, con-
nections DE-NO and DE-SE are removed from the network,
and connection DK-DE is restored.

This paper uses the measured data for AP!°* and APr",
and assumes to have a perfect forecast. To introduce variability
between the training and testing external signals, Gaussian
noise with a standard deviation of 1% of the maximum value
of the external signal is added to the data.

All simulations presented in this work were executed on
the DelftBlue high-performance computing cluster. Using this
system ensured isolated and reproducible runs, free from inter-
ference by external processes. This enabled valid comparisons
of computational time between control structures, without the
necessity of re-running simulations several times for average
results in computation time.

C. Simulation Results

The novel control structures are tested against a dMPC, a
Centralized MPC (CMPC), and an ADMM-based Distributed
MPC (DMPC-ADMM) with respect to the cost function and
the computational efficiency indicators. These evaluations will
be done using Table I and Table II. The tables report the
best-performing runs over 5 seeds for dAMPC+CDDPG and
dMPC+DDDPG, which is justified since the controllers are
trained offline, allowing for the selection of the most effective
parameter configurations for deployment.

CMPC yields the optimal control solution by leveraging full
system information over the prediction horizon. The perfor-
mance of alternative strategies is expressed as their percentage
deviation from this optimum, shown in the % from optimal
columns. DMPC-ADMM achieves nearly optimal performance
with slightly lower computation time. However, as the number
of areas increases, this time advantage grows due to paral-
lelization. The need for coordination of the dMPC becomes
especially evident in the six-area case, where its performance
drops sharply while CMPC remains consistent. Nevertheless,
dMPC offers much lower and scalable computation times,
remaining nearly constant with increasing system size.

In the four-area case, the addition of a coordinating DDPG
layer reduces the performance gap between dMPC and the
optimal CMPC by 69.03% for the dMPC+CDDPG structure
and by 49.45% for the dMPC+DDDPG configuration. Since
the computational burden of the DDPG layers is shifted to
the offline phase, both structures introduce only a minimal
increase in computation time during the online control phase.
The core computation time of the dMPC+CDDPG is even
slightly lower than that of dMPC; however, this is not expected
to hold on average. It is also worth noting that both novel
control structures remain faster than CMPC and DMPC-
ADMM when the offline computation time is included. This
suggests that an online RL coordination layer is also possible
for real-time control.

For the six-area case study, the reductions in performance
gap are even greater: 76.27% for the IMPC+CDDPG structure
and 87.34% for the IMPC+DDDPG structure. The distributed
variant performs better than the centralized one, despite addi-
tional challenges of multi-agent reinforcement learning. Given
that the CDDPG has full observability of the system, it would
be expected to achieve superior performance, as observed in
the four-area case. This could imply that the hyperparameters

IEEE CONTROL SYSTEMS LETTERS, VOL. XX, NO. XX, XXXX 2017

Method four-area Cost % from optimal ~ Comp. time online =~ Mean comp. time [s] Core time online Comp. time offline

CMPC 1.4787 x 10~2 0.00 05:18:55 0.554 05:18:55 -

DMPC-ADMM 1.4829 x 10~2 0.28 04:57:16 0.516 19:49:06 -

dMPC 2.0042 x 1072 35.55 00:16:58 0.029 01:07:52 -

dMPC+CDDPG 1.6415 x 10~2 11.01 00:16:59 0.029 01:07:06 01:30:06

dMPC+DDDPG 1.7445 x 102 17.97 00:17:59 0.031 01:11:58 01:49:15
TABLE |

CUMULATIVE COST AND TIME COMPARISON FOR THE DIFFERENT CONTROL STRUCTURES IN THE FOUR-AREA CASE STUDY. TIME IS GIVEN IN

hh:mm:ss.

Method six-area Cost % from optimal ~ Comp. time online ~ Mean comp. time [s] Core time online =~ Comp. time offline

CMPC 1.4008 x 1072 0.00 08:56:56 0.932 08:56:56 -

DMPC-ADMM 1.4020 x 10~2 0.09 08:04:47 0.842 48:28:39 -

dMPC 5.8646 x 1072 318.66 00:20:10 0.035 02:00:59 -

dMPC+CDDPG 2.4601 x 10~2 75.62 00:19:09 0.033 01:53:01 01:32:39

dMPC+DDDPG ~ 1.9659 x 10—2 40.34 00:20:45 0.036 02:04:35 03:35:39
TABLE I

CUMULATIVE COST AND TIME COMPARISON FOR THE DIFFERENT CONTROL STRUCTURES IN THE SIX-AREA CASE STUDY. TIME IS GIVEN IN

hh:mm:ss.

for the CDDPG controller might not yet be fully optimized.
The computation time per time step and core computation time
remain similar to those of the baseline dMPC, much lower than
those of CMPC and DMPC-ADMM.

V. CONCLUSION AND FUTURE WORK

In this work, two novel RRL control structures have
been developed, combining stabilizing dMPC with a coor-
dinating centralized or distributed DDPG layer. These struc-
tures are tested on a four- and six-area case study in the
EEA-ENB, which has inherent system instability and time-
varying external signals. Although the cost performances of
dMPC+CDDPG and dMPC+DDDPG do not match that of
CMPC or DMPC-ADMM, both represent a clear improvement
over the dMPC baseline, while retaining the same convenient
computational speed for real-time control. These computation
times are at least 15 times faster than those observed for the
CMPC and DMPC-ADMM approaches. Future work should
investigate the satisfaction of constraints without an input
saturation function, which is a pragmatic but suboptimal
solution.

REFERENCES

[1]
[2]

H. Bevrani, Robust power system frequency control. Springer, 2014.
International Energy Agency (IEA), “World energy outlook 2023,”
https://www.iea.org/reports/world-energy-outlook-2023, 2023.
“European network of transmission system operators for electricity
(entso-e),” https://www.entsoe.eu/.

A. Nurudeen, S. Lawal, and A. Beli, “Load frequency control strate-
gies in multi-area power systems: A comprehensive review,” Energies,
vol. 57, pp. 1-19, 2022.

A. Riccardi, L. Laurenti, and B. De Schutter, “A benchmark for the
application of distributed control techniques to the electricity network of
the european economic area,” in Control Systems Benchmarks. Spinger,
2025, pp. 9-28.

A. Bemporad, M. Heemels, and Johansson, Networked control systems.
Springer, 2010.

A. Alessio, D. Barcelli, and A. Bemporad, “Decentralized model predic-
tive control of dynamically coupled linear systems,” Journal of Process
Control, vol. 21, pp. 705-714, 2011.

[3]

[5]

[6]
[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

T. H. Summers and J. Lygeros, “Distributed model predictive consensus
via the Alternating Direction Method of Multipliers,” in 50th Annual
Allerton Conference on Communication, Control, and Computing, 2012,
pp. 79-84.

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction,
2nd ed. The MIT Press, 2018.

R. Muduli, D. Jena, and T. Moger, “A survey on load frequency control
using reinforcement learning-based data-driven controller,” Applied Soft
Computing, vol. 166, pp. 1-26, 2024.

X. Gong, X. Wang, and B. Cao, “On data-driven modeling and control in
modern power grids stability: Survey and perspective,” Applied Energy,
vol. 350, pp. 1-18, 2023.

Z. Yan and Y. Xu, “A multi-agent deep reinforcement learning method
for cooperative load frequency control of a multi-area power system,”
IEEE Transactions on Power Systems, vol. 35, pp. 4599-4608, 2020.
S. Rozada, D. Apostolopoulou, and E. Alonso, “Deep multi-agent rein-
forcement learning for cost efficient distributed load frequency control,”
IET Energy Systems Integration, vol. 3, pp. 327-343, 2020.

L. Shi, R. Dadashi, Y. Chi, P. Castro, and M. Geist, “Offline rein-
forcement learning with on-policy g-function regularization,” in Machine
Learning and Knowledge Discovery in Databases: Research Track, vol.
14172. Springer Nature Switzerland, 2023, pp. 455-471.

P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,
“Deep reinforcement learning that matters,” The Association for the
Advancement of Artificial Intelligence Press, vol. 392, pp. 3207-3214,
2019.

T. Johannink, S. Bahl, A. Nair, J. Luo, A. Kumar, M. Loskyll, J. Ojea,
E. Solowjow, and S. Levine, “Residual reinforcement learning for robot
control,” in 2019 International Conference on Robotics and Automation.
IEEE, 2019, pp. 6023-6029.

Q. Liu, Y. Guo, L. Deng, H. Liu, D. Li, and H. Sun, “Residual
deep reinforcement learning for inverter-based volt-var control,” IEEE
Transactions on Sustainable Energy, vol. 16, pp. 269-283, 2024.

T. Silver, K. Allen, J. Tenenbaum, and L. Kaelbling, “Residual policy
learning,” DOI: https://doi.org/10.48550/arXiv.1812.06298, 2019.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” DOI: https://doi.org/10.48550/arXiv.1509.02971, 2019.

J. M. Maciejowski, Predictive Control with Constraints. Pearson
Education, 2001.

74

Paper

L.D. Steenhoff

Master of Science Thesis

[1]

[12]

Bibliography

European network of transmission system operators for electricity (entso-e). https:
//www.entsoe.eu/.

International Energy Agency (IEA). https://www.iea.org/.

A. Alessio, D. Barcelli, and A. Bemporad. Decentralized model predictive control of
dynamically coupled linear systems. Journal of Process Control, 21:705-714, 2011.

K. J. Astrom and R. M. Murray. Feedback systems: An introduction for scientists and
engineers. Princeton University Press, 2008.

A. Bemporad, M. Heemels, and Johansson. Networked control systems. Springer, 2010.
H. Bevrani. Robust power system frequency control. Springer, 2014.

S. Boyd. Distributed optimization and statistical learning via the alternating direction
method of multipliers. Foundations and Trends in Machine Learning, 3:1-122, 2010.

L. Busoniu, R. Babuska, and B. De Schutter. A comprehensive survey of multiagent
reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews, 38:156-172, 2008.

L. Busoniu, T. De Bruin, D. Toli¢, J. Kober, and I. Palunko. Reinforcement learning

for control: Performance, stability, and deep approximators. Annual Reviews in Control,
46:8-28, 2018.

EPSG. ETRS89-extended / LAEA Europe. https://epsg.i0/3035, 2021.

Z. Fan, W. Zhang, and W. Liu. Multi-agent deep reinforcement learning-based dis-
tributed optimal generation control of DC microgrids. IEEE Transactions on Smart
Grid, 14:3337-3351, 2023.

X. Gong, X. Wang, and B. Cao. On data-driven modeling and control in modern power
grids stability: Survey and perspective. Applied Energy, 350:1-18, 2023.

Master of Science Thesis L.D. Steenhoff

https://www.entsoe.eu/
https://www.entsoe.eu/
https://www.iea.org/
https://epsg.io/3035

76

Bibliography

[13]

[14]

[15]

[21]

22]

J. K. Gupta, M. Egorov, and M. Kochenderfer. Cooperative multi-agent control using
deep reinforcement learning. Autonomous Agents and Multiagent Systems, 10642:66—83,
2017.

P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger. Deep re-
inforcement learning that matters. The Association for the Advancement of Artificial
Intelligence Press, 392:3207-3214, 2019.

S. Ibrahim, M. Mostafa, A. Jnadi, H. Salloum, and P. Osinenko. Comprehensive overview
of reward engineering and shaping in advancing reinforcement learning applications.

IEEE Access, 12:175473-175500, 2024.

International Energy Agency (IEA). Electricity 2024: Analysis and forecast to 2026.
https://www.iea.org/reports/electricity-2024, 2024.

International Energy Agency (IEA). Renewables 2023: Analysis and forecasts to 2028.
https://www.iea.org/reports/renewables-2023, 2024.

International Energy Agency (IEA). World energy outlook 2023. https://www.iea.
org/reports/world-energy-outlook-2023, 2023.

International Renewable Energy Agency (IRENA). Renewable power generation costs
in 2021. https://www.irena.org/, 2022.

S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift. Proceedings of the 32nd International Conference on
International Conference on Machine Learning, 37:448-456.

T. Johannink, S. Bahl, A. Nair, J. Luo, A. Kumar, M. Loskyll, J. Ojea, E. Solowjow,
and S. Levine. Residual reinforcement learning for robot control. In 2019 International
Conference on Robotics and Automation, pages 6023—-6029. IEEE, 2019.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra. Continuous control with deep reinforcement learning. DOI: https://doi.
org/10.48550/arXiv.1509.02971, 2019.

Q. Liu, Y. Guo, L. Deng, H. Liu, D. Li, and H. Sun. Residual deep reinforcement
learning for inverter-based volt-var control. IEEE Transactions on Sustainable Energy,
16:269-283, 2024.

J. M. Maciejowski. Predictive Control with Constraints. Pearson Education, 2001.

E. Masero, S. Ruiz-Moreno, J. Frejo, J. Maestre, and E. Camacho. A fast implementation
of coalitional model predictive controllers based on machine learning: Application to solar
power plants. Engineering Applications of Artificial Intelligence, 118:1-10, 2023.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Ried-
miller. Playing atari with deep reinforcement learning. DOI: https://doi.org/10.
48550/arXiv.1312.5602, 2013.

L.D. Steenhoff Master of Science Thesis

https://www.iea.org/reports/electricity-2024
https://www.iea.org/reports/renewables-2023
https://www.iea.org/reports/world-energy-outlook-2023
https://www.iea.org/reports/world-energy-outlook-2023
https://www.irena.org/
https://doi.org/10.48550/arXiv.1509.02971
https://doi.org/10.48550/arXiv.1509.02971
https://doi.org/10.48550/arXiv.1312.5602
https://doi.org/10.48550/arXiv.1312.5602

7

[27]

[35]

[36]

[37]

[38]

[39]

[40]

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,
I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-
level control through deep reinforcement learning. Nature, 518:529-533, 2015.

R. Muduli, D. Jena, and T. Moger. A survey on load frequency control using reinforce-
ment learning-based data-driven controller. Applied Soft Computing, 166:1-26, 2024.

T. T. Nguyen, N. D. Nguyen, and S. Nahavandi. Deep reinforcement learning for multi-
agent systems: A review of challenges, solutions, and applications. IEEE Transactions
on Cybernetics, 50:3826-3839, 2020.

R. Nian, J. Liu, and B. Huang. A review on reinforcement learning: Introduction and
applications in industrial process control. Computers & Chemical Engineering, 139:1-30,
2020.

A. Nurudeen, S. Lawal, and A. Beli. Load frequency control strategies in multi-area
power systems: A comprehensive review. Energies, 57:1-19, 2022.

OpenAl. Spinning up in deep reinforcement learning. https://spinningup.openai.
com, 2018.

B. Polyak and A. Juditsky. Acceleration of stochastic approximation by averaging. SIAM
Journal on Control and Optimization, 30:838-855, 1992.

A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann. Stable-
Baselines3: Reliable reinforcement learning implementations. Journal of Machine Learn-
ing Research, 22:1-8, 2021.

M. Ranjan and R. Shankar. A literature survey on load frequency control consider-
ing renewable energy integration in power system: Recent trends and future prospects.
Journal of Energy Storage, 45:436-453, 2022.

A. Riccardi, L. Laurenti, and B. De Schutter. A benchmark for the application of
distributed control techniques to the electricity network of the european economic area.
In Control Systems Benchmarks, pages 9-28. Spinger, 2025.

A. Riccardi, L. Laurenti, and B. De Schutter. A generalized partitioning strategy for
distributed control. In 63nd IEEE Conference on Decision and Control, pages 6134-6141,
2024.

S. Rozada, D. Apostolopoulou, and E. Alonso. Deep multi-agent reinforcement learning
for cost efficient distributed load frequency control. IET Energy Systems Integration,
3:327-343, 2020.

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic
policy gradient algorithms. In International conference on machine learning, pages 387—
395, 2014.

T. Silver, K. Allen, J. Tenenbaum, and L. Kaelbling. Residual policy learning. DOI:
https://doi.org/10.48550/arXiv.1812.06298, 2019.

Master of Science Thesis L.D. Steenhoff

https://spinningup.openai.com
https://spinningup.openai.com
https://doi.org/10.48550/arXiv.1812.06298

78

Bibliography

[41]

[42]

[43]

[44]

[45]

J. Snoek, H. Larochelle, and R. Adams. Practical bayesian optimization of machine
learning algorithms. In Proceedings of the 26th International Conference on Neural In-
formation Processing Systems, volume 2, pages 2951-2959, 2012.

T. H. Summers and J. Lygeros. Distributed model predictive consensus via the Alter-
nating Direction Method of Multipliers. In 50th Annual Allerton Conference on Com-
munication, Control, and Computing, pages 79-84, 2012.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. The MIT Press,
2nd edition, 2018.

U. Tamrakar, D. Galipeau, R. Tonkoski, and I. Tamrakar. Improving transient stability
of photovoltaic-hydro microgrids using virtual synchronous machines. In 2015 IEEE
Eindhoven PowerTech, volume 13, pages 1-6, 2015.

Z. Wu, W. Gao, T. Gao, W. Yan, H. Zhang, S. Yan, and X. Wang. State-of-the-art
review on frequency response of wind power plants in power systems. Journal of Modern
Power Systems and Clean Energy, 6:1-16, 2018.

Z. Yan and Y. Xu. A multi-agent deep reinforcement learning method for cooperative
load frequency control of a multi-area power system. I[IEEE Transactions on Power
Systems, 35:4599-4608, 2020.

F. Zhen, T. Zhenghong, and L. Wenxin. Online multi-agent deep reinforcement learning
platform for distributed real-time dynamic control of power systems. Neural Computing
and Applications, pages 1-14, 2025.

L.D. Steenhoff Master of Science Thesis

List of Acronyms

ADMM
CDDPG
CMPC
DDDPG
DDPG
DMPC
dMPC
DNN
EEA-ENB
ESS
LFC
MPC
RES

RL

RRL

Alternating Direction Method of Multipliers
Centralized Deep Deterministic Policy Gradient
Centralized Model Predictive Control
Distributed Deep Deterministic Policy Gradient
Deep Deterministic Policy Gradient
Distributed Model Predictive Control
Decentralized Model Predictive Control

Deep Neural Network

European Economic Area Electricity Network Benchmark
Energy System Storage

Load Frequency Control

Model Predictive Control

Renewable Energy Source

Reinforcement Learning

Residual Reinforcement Learning

List of Symbols

CDDPG*
CDDPG
dMPC

Ab;

303 3 ™

Penalty parameter of ADMM

Optimal DDPG residual policy

Residual policy of DDPG

Joint AMPC policy of the local control policies

Deviation in machine angle of area i [deg]

Master of Science Thesis

Glossary

L.D. Steenhoff

80 Glossary
&; Electrical angle of area 7

d0,i Nominal electrical angle of area 4

Af; Deviation in frequency of area i [Hz]

Apfp Variation in dispatchable power of area i [GW /5]
APidiSp’maX Maximum dispatchable power allocation

Aplead Variation in load request of area i [GW/s]

AVZEe Variation in renewable energy generation of area i [GW /]
0§ Charging efficiency of the ESS in area ¢

77? Discharging efficiency of the ESS in area ¢

~ Discount factor

o Reward scale for CDDPG

G Reward scale of area i for DDDPG

s Policy

* Optimal policy

Tes Optimal residual policy

rPPDPG Policy of DDDPG agent i

Ty Policy with trainable parameters 6

W?MPC Policy of dAMPC agent ¢

Thase Base policy of RRL

Thyarg (L) DDPG target actor DNN

mo(x) DDPG online actor DNN

P Polyak averaging parameter

T Sampling time [s]

TR,i Time constant of rotating mass dynamics of area i in [s]
0 Policy parameters

€ij Edge between nodes A; and A;

A State matrix of augmented system

B Input matrix of augmented system

K External signal matrix of augmented system

Q State cost matrix

R Input cost matrix

u Augmented input vector

uCPDPG Residual control input of CDDPG

ndMPC Augmented dMPC base control input

uSgDPG Clipped augmented residual control input of CDDPG
w Augmented external signal vector

b'4 Augmented state vector

Xaug Augmented CDDPG observation vector

A; Electrical area i

D Replay buffer

L.D. Steenhoff

Master of Science Thesis

81

Set of edges

Graph of the network
Exploration noise
Neighborhood of area 4
Reward space

Action space

Set of nodes

State space

=
3
Q

Augmented dMPC input vector including local and neighborhood inputs

EENTI I =Qm

Augmented external signal vector including local and neighborhood signals

§1

Augmented state vector including local and neighborhood states

ug,i Augmented DDDPG observation vector of agent 4

S

Batch of transition samples

Termination of the training episode

Qo

S
<.

Geographical distance between areas A; and A;
e Energy stored in the ESS of area i [GWs]

fi Frequency of area i

fio Nominal frequency of area i in [Hz|

Gy, Return at time k

] Index of areas and agents

Index of the discrete time step

i
k
K, ; Gain of the rotating mass of areas i in [H£<5]

l Index of ADMM iteration
M Number of areas

N Prediction horizon MPC
Nday

Time steps in a day

paisp Dispatchable power allocation of area i [GW]
PiESS’C Charging power of the ESS in area i [GW]
P,L.ESS’d Discharging power of the ESS of area i [GW]
pfie Energy exchange over tie-lines of area i [GW]
PZ.diSp AX - Total dispatchable capacity of area i
Q*(x,u) Optimal action value function

Qéarg (£, u) DDPG target critic DNN
Qs(z,u) DDPG online critic DNN

Qr(x,u) Action value function under policy

r Reward for CDDPG agent

T4 Reward of area i for DDDPG agent

T;j Tie-line gain connecting area ¢ and j in g—;g
u?DDPG Residual control input by DDDPG agent ¢
ugMPC Base control input of dMPC of area ¢

Master of Science Thesis L.D. Steenhoff

82 Glossary
U Control input at time k in RL notation

Ubase, k Base control input at time &

Ures, k Residual control input at time k

V*(x) Optimal state value function

V7 (z) State-value function under policy 7

x’ Generic next state

Tk System state at time k£ in RL notation

Yi Dual variable of ADMM of area 4

z Common global variable of ADMM

L.D. Steenhoff

Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	Acknowledgements

	Main Matter
	Introduction
	Background and motivation
	Objective
	Outline

	Load frequency control problem
	European Economic Area Electricity Network Benchmark (EEA-ENB)
	System dynamics
	Constraints
	Control objective and computational efficiency indicators
	Area coupling and instability

	Analysis of control methods for EEA-ENB
	Centralized MPC
	Decentralized PI control
	Decentralized MPC
	Distributed MPC-ADMM

	Summary

	Residual deep reinforcement learning
	Fundamentals of reinforcement learning
	Deep Deterministic Policy Gradient (DDPG)
	Residual reinforcement learning
	Multi-agent reinforcement learning
	Summary

	Integrating decentralized MPC with residual DDPG
	Decentralized MPC + centralized DDPG
	Control phase framework
	Training phase framework
	Centralized DDPG components

	Decentralized MPC + distributed DDPG
	Control phase framework
	Training phase framework
	Distributed DDPG components

	Summary

	Case study: Four- and six-area system in EEA-ENB
	Simulation setups
	Four- and six-area systems
	External signals
	Hardware and software

	Implementation of control strategies
	Existing control structures
	Decentralized MPC + centralized DDPG
	Decentralized MPC + distributed DDPG

	Results
	Existing control structures
	Decentralized MPC + centralized DDPG
	Decentralized MPC + distributed DDPG
	Comparison between control strategies

	Summary

	Conclusions and recommendations
	Conclusions
	Contributions
	Discussion and recommendations for future research

	Appendices
	Appendix
	Pseudocode
	ADMM
	DDPG

	Additional figures
	Control inputs
	Angle deviations
	Frequency deviations
	ESS charge
	Power exchange over the tie-lines
	Dispatchable power

	Paper

	Back Matter
	Bibliography
	Glossary
	List of Acronyms
	List of Symbols

