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Abstract—We present a three-dimensional scheme that can be
used to compute a vertical radar profile from reflection data
measured at the surface. This is done by first constructing a
focusing wavefield, which focuses at the chosen location in the
subsurface that is then the virtual receiver location for the
vertical radar profile Green’s function. Because the up- and
downgoig parts of the Green’s function are retrieved separately,
these are very useful for imaging and inversion. We show with
a numerical example that the method works well in a two-
dimensional configuration.

Index Terms—virtual source, virtual receiver, interferometry,
autofocusing, 3D GPR.

I. INTRODUCTION

For scalar acoustic waves it has been shown that a virtual
receiver can be placed in the subsurface and the corresponding
Green’s function can be retrieved without having a physical
source or receiver at that location and without the need to
have a detailed model of the medium between the acquisition
surface and the position of the virtual receiver [1], [2]. Creating
vertical profile data has been performed before to improve
interpretation [3], but this has been a model-driven method,
which does need detailed information on the overburden.

Here we present a three-dimensional electromagnetic
scheme similar to the acoustic schemes of [4], [5], but now
for the general case of the vector electromagnetic wave-
field. The electromagnetic scheme can be applied to a three-
dimensional heterogeneous medium where the medium can
be characterised by the electric permittivity and magnetic
permeability values that vary smoothly in all directions. We
assume that two horizontal components of the electric field are
recorded on a horizontal planar surface. We formally split the
recorded wavefield into up- and downgoing wavefields at the
receiver level and at the focusing depth level. We then define
a focusing wavefield that focuses at a particular location in
the subsurface. Both the upgoing and downgoing parts of the
focusing wavefield can be found from the measured reflection
data and an estimate of the direct arrival from the surface
source point to the subsurface focusing point. This leads to
Green’s function retrieval corresponding to a virtual vertical
radar profile for any point in the subsurface. A 2D numerical
example illustrates the Green’s function retrieval scheme.

II. EM THEORY

The representations are derived in the frequency domain,
but are valid in the time domain. To this end, we define
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Fig. 1. Configuration for one-way reciprocity theorems.

the time-Fourier transform of a space-time dependent vector-
quantity as û(x, ω) =

∫∞
t=0

exp(−jωt)u(x, t)dt, where j is
the imaginary unit, ω denotes angular frequency, and x is
the position vector in three-dimensional space. In the space-
frequency domain the electromagnetic field vector û is given
by ût(x, ω) = (Êt(x, ω), Ĥt(x, ω)), with Ê(x, ω) and
Ĥ(x, ω) being the electric and magnetic field vectors and the
superscript t denotes transposition.

Here we give the reciprocity relations pertaining to a specific
domain in three-dimensional space, which is bounded by
two planar surfaces that extend horizontally to infinity, see
Figure 1. The domain D is bounded at the top by the boundary
∂D1 at depth level x3;1, at the bottom by the boundary ∂Di at
depth level x3;i, and at the side by a cylindrical boundary. Each
boundary has a unique outward pointing unit normal vector n.
A reciprocity theorem in general interrelates two independent
states, labeled A and B, in one and the same domain, but the
fields, sources and the medium parameters in the two states
need not be the same [6], [7]. The heterogeneities are not
restricted to occur only inside the domain D, but may extend
over all space. In our derivations here we assume all medium
parameters inside D to be the same in both states and we
assume that all sources are outside the domain D. The global
form of the reciprocity theorem of the time-convolution type
is given by [8]∫

∂D1

(ût
1;Aû2;B − ût

2;Aû1;B)d
2x

=

∫
∂Di

(ût
1;Aû2;B − ût

2;Aû1;B)d
2x, (1)

where the new vectors û1 and û2 contain horizontal com-
ponents of the electric and magnetic fields given by û1 =
(Ê1, Ê2)

t and û2 = (Ĥ2,−Ĥ1)
t. For the reciprocity theorem



of the time-correlation type we will additionally assume that
the medium inside D is lossless and then it is in global form
given by [8]∫

∂D1

(û†1;Aû2;B + û†2;Aû1;B)d
2x

=

∫
∂Di

(û†1;Aû2;B + û†2;Aû1;B)d
2x, (2)

where the superscript † means complex conjugation and trans-
position. At either side of both depth levels of the planar
boundaries of D we can write the horizontal components of
the electric field as up- and downgoing wavefields according
to

û1 = û+
1 + û−1 , (3)

where û+
1 denotes the downgoing and û−1 denotes the upgoing

electric field components. The horizontal components of the
magnetic field vector can be written in terms of the up- and
downgoing electric fields as [9]

û2 = M̂−1∂3(û
+
1 + û−1 ), (4)

where the spatial derivatives with respect to coordinate xk,
with k = 1, 2, 3 are written as ∂k and with the operator matrix
M̂ given by

M̂ =

(
−ζ + ∂1η

−1∂1 ∂1η
−1∂2

∂2η
−1∂1 −ζ + ∂2η

−1∂2

)
, (5)

where η = jωε and ζ = jωµ. Notice that M̂ t = M̂ .
Following a procedure similar to the one given in Appendix
C in [10] we assume that the permeability and permittivity at
the depth levels x3;1 and x3;i have zero vertical derivative and
are continuously differentiable in horizontal direction, then we
can rewrite equations (1) and (2) using equations (3) and (4)
as

−
∫
∂D1

[
(û+

1;A)
tM̂−1∂3û

−
1;B + (û−1;A)

tM̂−1∂3û
+
1;B

]
d2x

=

∫
∂Di

[
(M̂−1∂3û

−
1;A)

tû+
1;B + (M̂−1∂3û

+
1;A)

tû−1;B

]
d2x,

(6)

and

−
∫
∂D1

[
(û+

1;A)
†M̂−1∂3û

+
1;B + (û+

1;A)
†M̂−1∂3û

+
1;B

]
d2x

=

∫
∂Di

[
(M̂−1∂3û

+
1;A)

†û+
1;B + (M̂−1∂3û

+
1;A)

†û+
1;B

]
d2x.

(7)

In equation (7) an additional approximation is made by ignor-
ing evanescent waves at depth levels x3;1 and x3;i.

III. GREEN’S FUNCTION REPRESENTATIONS FOR
VERTICAL RADAR PROFILE

Since it is our goal to retrieve the vertical radar profile from
the reflection response measured at the surface we derive here
Green’s function representations for vertical radar profiles in
terms of the surface reflection response. We use equations (6)
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Fig. 2. The focusing wavefield f±
1 at the different depth levels.

and (7) and define the two states as follows. State A is chosen
as a focusing electric wavefield in the medium that in D is
the same as the actual medium in which the measurements
are carried out, but that is reflection-free outside D. It has
a downgoing wavefield above depth level x3;1 such that it
focuses at depth level x3;i. Since we work with vector fields
we introduce two realisations and for each realisation we have
the two horizontal electric field components in the vector û1.
Hence, at depth level x3;1 the electric field in state A is a
focusing field given by

û±1;A(x1, ω) = f̂±1 (x1,x
′
i, ω), (8)

where f̂+
1 is a 2×2 downgoing wavefield matrix and the first

argument denotes that x1 is a point at the receiver level and
the second argument x′i is a point at the focusing level. The
focusing condition at depth level x3;i is given as

∂3û
+
1;A(xi, ω) = −

1

2
M̂(xH , ω)δ(xH − x′H), (9)

where xH demotes the horizontal components of the position
vector x and the focusing condition states that the electric
wavefield focuses at xi = x′i, see Figure 2. For depth levels
x3 > x3;i the wavefield propagates down and no upward
traveling wavefield exists, hence ∂3û

−
1;A(xi, ω) = 0, where

0 is the 2× 2 zero matrix.
For state B we choose the actual state of the measurement

and we assume two sources are used separately yielding again
a 2 × 2 matrix for the electric field. We assume the source
wavefield is located at depth level x3;1 and the field can then
be written as

∂3û
+
1;B(x1, ω) = −

1

2
M̂(xH , ω)δ(xH − x′H), (10)

∂3û
−
1;B(x1, ω) =

1

2
M̂(xH , ω)R̂(x1,x

′
1, ω), (11)

where R̂(x1,x
′
1, ω) denotes the 2×2 matrix electric field earth

reflection response measured at x1 generated by a source at
x′1. At depth level x3;i the electric field is the desired Green’s
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Fig. 3. The actual wavefield consists of a downgoing source wavefield and
its corresponding reflection response R at the depth level x3;1 and the up-
and downgoing parts of the Green’s function at depth level x3;i.

function for a receiver located at level x3;i and generated by
the source at x′1. It is given by

û±1;B(xi, ω) = Ĝ±(xi,x
′
1, ω), (12)

see Figure 3.
Substituting these wavefields in equations (6) and (7) yields∫
∂D1

[f̂+
1 (x

′
1,xi, ω)]

tR̂(x′1,x1, ω)dx
′
H − [f̂−1 (x1,xi, ω)]

t

= Ĝ−(xi,x1, ω), (13)

−
∫
∂D1

[f̂−1 (x
′
1,xi, ω)]

†R̂(x′1,x1, ω)dx
′
H + [f̂+

1 (x1,xi, ω)]
†

= Ĝ+(xi,x1, ω), (14)

where we dropped the primes on xi, and interchanged them
for x1 such that now the integration variable is primed.
Equations (13) and (14) represent the upgoing and downgoing
electric field at a receiver location xi, generated by an electric
source at x1, in terms of the measured electric reflection
response and the up- and downgoing focusing wavefield f̂±1
that focuses at the receiver point xi. At this point both
the focusing wavefield and the vertical radar profile Green’s
functions are unknown. In the nest section we show how
the focusing wavefield can be retrieved from the reflection
response, after which the Green’s functions can be computed.

IV. GREEN’S FUNCTION RETRIEVAL

As outlined in [4], [5] for scalar wavefileds these cou-
pled equations in the time domain can be evaluated in a
time-window where the focusing wavefield is non-zero while
the Green’s function is. The time domain Green’s func-
tion G(xi,x1, t) has a first arrival that can be received at
xi when the wavefield is generated at x1 at time instant
td(xi,x1), which is the smallest time for the wavefeld to
travel through D and arrive at xi. Hence for t < td(xi,x1)
G(xi,x1, t) = 0. The focusing functions are non-zero on the

interval −td(xi,x1) < t < td(xi,x1) and we can evaluate
the time domain equivalents of equations (13) and (14) in this
interval as∫
∂D1

∫ t

−td(xi,x′
1)

[f+
1 (x

′
1,xi, t

′)]tR(x′1,x1, t− t′)dt′d2x′H

= [f−1 (x1,xi, t)]
t (15)∫

∂D1

∫ t

−td(xi,x′
1)

[f−1 (x
′
1,xi,−t′)]tR(x′1,x1, t− t′)dt′d2x′H

= [f+
1 (x1,xi,−t)]t. (16)

We observe here that the time instant t = td(xi,x
′
1) is

necessary to evaluate the integrals. The upgoing part of the
focusing wavefield is zero at this instant but the downgoing
field is not. The downgoing focusing wavefield at the boundary
∂D1 is the inverse of the transmission response because that is
the wavefield that will produce a focus at the boundary ∂Di.
Let us denote this wavefield as T−1d (xi,x1, t) and split the
downgoing focusing wavefield up in a direct part and a coda
given by

f+
1 (x1,xi, t) = T−1d (xi,x1, t) + f+

1;c(x1,xi, t), (17)

where f+
1;c(x1,xi, t) = 0 for |t| ≥ td(xi,x1) and denotes

the coda of the downgoing wavefield. With this definition
equations (15) and (16) are rewritten as∫

∂D1

∫ t

−td(xi,x′
1)

[f+
1;c(x

′
1,xi, t

′)]tR(x′1,x1, t− t′)dt′d2x′H

+ [f−1;0(x1,xi, t)]
t = [f−1 (x1,xi, t)]

t, (18)∫
∂D1

∫ t

−td(xi,x′
1)

[f−1 (x
′
1,xi,−t′)]tR(x′1,x1, t− t′)dt′d2x′H

= [f+
1;c(x1,xi,−t)]t, (19)

where

[f−1;0(x1,xi, t)]
t =∫

∂D1

∫ t

−td(xi,x′
1)

[T−1d (xi,x
′
1, t
′)]tR(x′1,x1, t− t′)dt′d2x′H .

(20)

Equations (18) and (19) are two coupled Marchenko type
equations that can be solved for the up- and downgoing focus-
ing wavefield from the measured surface reflection response
and an estimate of the inverse of the direct arrival from the
surface to the focus point [5]. Once the focusing functions
have been computed, equations (13) and (14) can be used to
obtain the up-and downgoing parts of the Green’s function. In
the next section we give a two-dimensional example.

V. NUMERICAL EXAMPLE

To demonstrate the effectiveness of the method in com-
puting the focusing and subsequently retrieving the Green’s
functions we have performed a two-dimensional modelling
test. The model is shown in Figure 4 and has vertical and
lateral variations in ε. The model size is 40 m in length
and 6 m in depth. We have used 501 sources and receivers
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Fig. 4. The 2D model with relative values of the epsilon distribution.
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Fig. 5. The retrieved Green’s function (red dashed lines) over the directly
modeled Green’s function (black solid lines).

equally spaced 10 cm above the first reflector. The data was
modeled using an FDTD code and a Ricker wavelet with center
frequency of 250 MHz was used. Equations (18) and (19) were
solved using a smoothed background model to compute the
space-time curves to determine the window in which to solve
for the focusing functions for a receiver point at 3.9 m below
the source level. Then we computed the Green’s function and
we show results for a receiver in the center for all sources
along the original source line.

The retrieved Green’s function is shown in red dashed lines
on top of the direct modeled Green’s function shown in black
solid lines in Figure 5. It can be seen that for small offsets
the Green’s function is reasonably well retrieved. The first
reflection has some amplitude errors even at small offsets, but
the errors become quite large for large offsets. The reason is
that the spectral bandwidth of the measured data is restricted
due to the fact that both sources and receivers are in the air,

which has the highest velocity in the model. The first and
second layers below the air have the highest values for the
electric permittivity and this reduces the spectral bandwidth
of the recorded data. It can also be observed that the second
to fourth events are quite well retrieved up to large offsets.
This is because they are the reflection from the bottom of
the fourth layer, which is a low-velocity layer, and multiple
reflections which have a reduced spectral bandwidth.

VI. CONCLUSION

We have shown the theory and a numerical example to
retrieve the Green’s function of a virtual receiver located at a
chosen position in the subsurface and a source at the original
receiver plane without needing detailed information about the
medium between the surface and virtual receiver level. The
example shows that the theory works well within the spectral
bandwidth of the measured data. Effects of noise, errors in
the estimate of the first arrival, and losses in the subsurface
remain to be investigated.
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