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I
Introduction

The European Air Transport Network and its underlying Air Traffic Management system are a jewel of
modern engineering and the epitome of European collaboration: they are vast, complex, and they never stop.
One of their key resources is always in plain sight, yet it is barely thought of as a resource: air is free and,
seemingly, plentiful. However, a closer look reveals that the intense demand for airspace makes it a scarce
and increasingly important public good.

European airspace is a shared resource and, as such, is vulnerable to excessive or unfair use, either through
free-riding by participants or subtle methods to capture disproportionately large allotments [60]. Starting
from this observation, this research is in part rooted in my deep commitment to a future, better society
in which resources are equitably used, and those who benefit from them do so in a transparent manner.
The first point I explored was whether European airspace is utilized in a fair way, by defining a precise and
representative trajectory deviation measure. The second task was to define a method to categorize airline
types, and compare flight path deviations between these types The categorization exercise was necessary
given that the current mainstream labels defining business models (flag carrier, low-cost operator, etc.) were
in fact coined decades ago and may no longer be representative. To classify airline types, first I defined the
features to extract from the available data. Besides the obvious operational ones, some more recent papers
introduced Complex Network metrics in the airline environment, which I also integrated. Then, to translate
these metrics into a classification, I employed Unsupervised Machine Learning. In hindsight, the airline
clustering played into my personal curiosity and inclination towards understanding economics and behaviour
stemming from economic decisions, making this research particularly exciting for me. To summarize, this
research addresses the following questions:

1. How can deviations between the planned and actual flight trajectories be measured in a precise manner?

2. Do some airline types deviate more than others? By how much?

3. How can airline types be categorized in groups based on objective indicators?

This report answers the questions mainly through the scientific article in part II: Sections 1 and 2
introduce the three topics (airline clustering, horizontal and vertical deviations) and provide background
for trajectory deviations, airline business models and airline features, both operational and stemming from
Complex Network Theory.

Next, Section 3 describes the trajectory data that was used, and provides some context: the number
of flights and the requirements for each analysis, and the airspace limits of the European Civil Aviation
Conference Airspace that defined the area of the study.

Section 4 presents the Unsupervised Machine Learning method by which the airline groups have been
defined. It is an ensemble method, meaning that the same data was clustered several times, either by
different algorithms, or by the same algorithms with different parameters. Having defined 10 features for
each airline, and with the final number of clusters identified and imposed in the objective function, two
preliminary representative sets of clusters are identified. The tiebreak is decided by a number of internal
clustering indices that assess data compactness and cohesiveness of the data points within each group. An
outline of the clustering methodology which answers the third research question is shown in Figure 1.

Section 5 defines the two deviation metrics and answers the first two research questions, along with a
part of the literature survey: the horizontal efficiency (𝐸፡) and the novel Flight Level Adherence Index for
Realized trajectories (FAIR). The FAIR is a novel index, that provides a precise measure of the amount of
vertical deviations during the cruise phase of a flight. 𝐸፡ being a known index, the focus is mainly on the
different analyses, while for the FAIR, both the method to calculate it and the results are presented.

Section 6 concludes the scientific article with ideas about the potential use of the new index, that promote
the equitable use of airspace. Following the scientific article, the Literature Review is presented in III. Here, a
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Figure 1: The Clustering Ensemble workflow

slightly more in-depth approach with regards to Complex Network Theory was taken, in order to understand
how much of it is useful to define airline features.

Finally, the annexes in Part IV contain additional results from all three analyses done in the first part.
The average efficiency and FAIR for each airline, along with the individual features are presented, providing
a closer look at the behaviour of individual airlines.
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Abstract

Airlines plan the trajectory of their flights in advance. However, this plan is not always followed since,
during the actual flight, aircraft deviate either horizontally by rerouting, or vertically by choosing a different
Flight Level (FL). The issue arises when some airlines frequently deviate from their flight plans frequently,
to the disadvantage of other airspace users. In this paper we analyse aircraft en-route trajectory deviations
for clusters of European airlines. We focus on two metrics: vertical flight level deviation, and horizontal
deviation. We analyze these deviations for clusters of airlines operating in the European Civil Aviation
Conference (ECAC) airspace in 2017. The airline clusters are obtained using unsupervised machine learning
algorithms with operational and Complex Network features. The results show that major Low-Cost Carriers
(LCCs) deviate on average, per flight, 34% more vertically than major Network Carriers, while Network
Carriers (NC) have on average, more efficient horizontal trajectories. However, NCs show a larger fraction
of flights with equally planned and realized efficiency, which points to less horizontal deviations overall. The
findings reflect a general, network-wide horizontal inefficiency in trajectory planning, and that LCCs deviate
horizontally a larger percentage of their flights. Moreover, they manage to use the available Flight Levels
consistently to their advantage. This research could be used for future policy-making on a fair and equitable
routes and slot allocation.

Keywords: flight plan deviations, flight efficiency, airline clustering, unsupervised Machine Learning

1. Introduction

To accommodate the increasing demand of flights in the ECAC airspace Unit [1], flights are planned
several days before the actual day of flight execution [2]. Due to prediction inaccuracies and delays, the
situation is different on the day of operations than planned, prompting some aircraft operators to request
and fly different routes and/or cruise Flight Levels on the day of operations. The issue arises when some
aircraft operators frequently request direct routes or do not adhere to their planned FL [3][4]. The downstream
effects are potentially disruptive, causing other delays, capacity issues and network-wide inefficiencies. Thus
it is important to investigate whether some airlines deviate from their planned trajectories. To uncover
the potential differences between airlines, this research clusters airlines, with a focus on major European
Low-Cost and Network Carriers.

The goal of this paper is twofold: first, we cluster airlines based on operational and network features
using unsupervised machine learning algorithms. Second, we compare the en-route horizontal and vertical
trajectory deviations between these established groups. The horizontal deviations are compared by means of
horizontal efficiency, and the vertical deviations by means of a novel index: the Flight Level Adherence Index
for Realized trajectory (FAIR) during cruise. Finally, we provide a spatio-temporal analysis of deviations by
these two metrics, i.e. hourly and daily flight plan deviations in the ECAC airspace.

The remainder of this paper is structured as follows: Section 2 presents the literature review on deviations
and airline classifications, Section 3 describes the trajectory data that was used, Section 4 presents the detailed
clustering methodology and the resulting groups of airlines, Section 5 presents the horizontal and vertical
trajectory deviation analyses, and Section 6 concludes the research paper.
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2. Literature review

The performance of a trajectory is quantified by a number of horizontal and vertical trajectory efficiency
metrics [5]. They measure the performance with respect to the time and fuel used, and have been the
subject of plethora of research: at network level [6][7] or flight-centric, and during specific phases of flight
[8][9]. Deviations, however, have received considerably less attention, especially during the en-route phase
of flight. One study assesses the horizontal deviations from planned trajectories during the entire flight
from the perspective of the German network of navigation points. The authors emphasize the relationship
between the day-night cycle and patterns of deviation, and find that aircraft deviate at a larger angle-to-
destination when they are closer to the departing airport [10]. Another similar study analyses the network
of Italian navigation points and studies the statistical regularities of spatio-temporal deviations from the
planned flight-plan [11]. EUROCONTROL’s Performance Review Unit [12] proposes a number of vertical
efficiency indicators. However, the en-route deviation metric has several drawbacks [13]: it is applicable per
Origin-Destination (OD) pair instead of individual flight, under-estimates deviations and uses an aggregated
reference trajectory from other OD pairs instead of the planned trajectory. To the best of our knowledge,
there are no vertical deviation metrics geared specifically to the cruise phase, and no other research has
compared en-route deviations between groups of different airline types.

The second focus of this paper is classification of airlines in groups, based on their business models.
Throughout this paper, the focus converges towards Low-Cost Carriers and Network Carriers, due to their
inherent differences in strategy. Starting with the pioneering Southwest Airlines[14], the LCC business model
has disrupted the air transportation market [15]. But as the market has changed over time, so have the
airlines: 33 of the 43 airlines commencing operations between 1992 and 2002 had filed for bankruptcy by
2013 [16], leaving the rest to adapt in order to survive. This hybridization process has been increasing,
with LCCs adopting some features of full-service network airlines [17] and network carriers adopting similar
behaviour as LCCs.

Perhaps the most coherent and well-explained airline characterization can be extrapolated from the work
of Belobaba et al. [18], that details to the level of fleet and route network development strategy. Other studies
have looked at the airports served [19][20], or specifically at the LLC competition strategy [21][22]. Our study
classifies 99 European airlines in 8 groups by considering their operational and complex network (CN) metrics.
A complex network is a network that has non-trivial topological characteristics, i.e. do not occur in random
graphs. These can be, among others, specific degree, clustering and betweenness distributions, and the
presence of communities or small-world properties.

The CN paradigm has been widely used to model real-world systems [23], such as the internet [24] or
terrestrial transportation systems [25][26], the spread of infectious diseases [27], or social networks [28]. In
ATM it is particularly useful as it sheds light on passenger mobility and reflects the characteristics typical
to the airline business model [29] or market segment [30]. Many scientific articles have also characterized
different networks within the ATM system: the network of navigation points and air routes [31] or the
networks of airports [32][33][34][35]. For an overview on the Complex Network metrics in ATM, the reader
is invited to consult [36].

3. Data Description

For our analysis, we consider the approximately 10.6 million flights managed by the EUROCONTROL
Network Manager in 2017 in the ECAC airspace [1]. The data was obtained from the Demand Data Repository
(DDR2) [37].

We consider 2 types of commercial trajectories: the last Filed Tactical Flight Model (FTFM), referred
to as the M1 trajectory, and the Current Tactical Flight Model (CTFM), referred to as M3 trajectory. The
FTFM contains points and airspace volume profiles [38], generated when the flight is planned. The CTFM
has a similar structure, but contains the actual flown flight profile. Both contain actual points defined in
3 dimensions with an associated time-stamp and speed. The geographical limits considered for this paper
are presented in Figure 1. The parts of trajectories outside the perimeter have been discarded, such that
the analysis will reflect only ECAC-wide behaviour. Moreover, each analysis (airline clustering, horizontal
and vertical trajectory), presented different data requirements. The resulting datasets and their associated
requirements can be consulted in Table 1.
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Figure 1: ECAC upper airspace under consideration in this paper.

Nr. of flights Requirements

ECAC flights 10.600.000 Approximate number of total flights in 2017

Clustering Methodology 3.129.561 5 months data: January, March, May, August, October 2017

Horizontal efficiency 6.206.277 Flights reaching ≥FL245 with ≥ 5 data points

Vertical (FAIR) 5.721.123 An FTFM with ≥ 3 data points in level flight at a primary FL

Table 1: Total number of flights considered for each analysis and the filtering used.

4. Airline Clustering Methodology

In this section, airlines are clustered in groups by an Unsupervised Machine Learning (UML) process by
10 airline features: four operational and six Complex Network features. The UML approach is used in many
applications, such as classifying unstructured text and images i.e. online reviews, reports [39]; classifying
indoor objects [40] or identifying cars from a moving target [41]. To the best of our knowledge, it has not been
used to classify airlines until now. The UML approach has two main advantages over qualitative methods,
or methods that only looks at one aspect (geographical location of destinations, ticket price a.o): first, it is
based on objective features, eliminating the bias of qualitative methods. Second, it does not need a training
data set, i.e. there is no reference set of groups that the algorithm strives to replicate. Finally, it incorporates
information from multiple aspects (operations, fleet compositions and network metrics).

Airline business models are heavily influenced by the geographic location of their destinations and by
their schedules. To show how context influences the clustering results, Section 4.1 presents an example in
which the features of two known Low-Cost Carriers are compared with those of two major European Network
Carriers for the two cases presented in Table 2. Case 2 is used only to underline the effect of context, while

Description

Case 1 Intercontinental flights, weekends included

Case 2 ECAC flights, weekends included

Table 2: The two cases and their associated descriptions, considered in the analysis

Case 1 is used alone for the remainder of this paper as it includes intercontinental flights and without them,
Network Carriers results would be skewed.

This section is organized as follows: airline features are defined in Section 4.1 followed by a case study
on the feature differences between two LCCs and two NCs in Section 4.2. Section 4.3 presents the data
pre-processing steps: the unsupervised feature ranking, dimensionality reduction and Z-scoring. The unsu-
pervised feature ranking is complemented by a supervised feature ranking in an attempt to further reduce the
dimension of the dataset. Section 4.4 presents the methodology to determine the optimal number of airline
clusters. The clustering ensemble together with its generative algorithms and consensus function are briefly
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described in Section 4.5. The two preliminary clustering results are compared by internal indices to decide
on the final one in Section 4.6. The final airline clusters are presented in Section 4.7.

4.1. Airline Features

Airline features are quantified indicators of airline business models and relate to their network of des-
tinations and to their operations. To compute the features, a model for a generic airline is proposed. We
model the global Air Traffic Network (ATN) as an undirected graph G(WA, E), where the nodes represent
the global airports (WA) and the edges (E) represent the flights between OD pairs. The graph is mapped
with a binary adjacency matrix X|N |§|N|, where xjr = 1 if there is an edge connecting node j with node r, i.e.
if a flight connects the two airports. It is undirected as the direction of flights is not taken into consideration,
and unweighted as all edges are assigned unit weight, irrespective of the number of flights flown on that
particular OD pair.

Complex network metrics

The first complex network metric is the number of airport nodes nA. An airport belongs to the set of an
airline’s airports A, if and only if at least one flight fi ∈ F belonging to the airline that departs to or arrives
from the airport in question:

aij ∈ A ⇐⇒
n
∑

r=1

ajr ≥ 1, ∀fi ∈ F . (1)

where F is the set of flights. The second metric is the total number of links in nL. From the adjacency
matrix X , we conclude that:

nL =

nA
∑

j=1

nA
∑

r=1

xjr

2
, j 6= r, ∀j, r ∈ A (2)

The third network metric is the average degree k of a network, defined by the number of nodes each node is
connected to. The average degree for a network is simply k = nl

na
. The fourth network metric is the average

clustering coefficient C ∈ [0, 1], which provides a measure of how well-connected the neighbours of a node are
between themselves. Full graphs have C = 1. For an entire network, it is defined as:

C =

nA
∑

j=1

2Ej

kj(kj − 1)(nA)
, ∀j ∈ A (3)

where Ej is the number of connections between the neighbours of airport node j, and kj is the number of
nodes connected to node j, or its degree. The fifth complex network metric is the average strength S of an
airline network. It is the weighted version of the degree:

S =

nA
∑

j=1

nA
∑

r=1

xjrwjr

nA

, ∀j, r ∈ A, j 6= r (4)

where wjr is the weight or the number of flights between airport j and airport r. In this paper we consider
the out-strength i.e. only the departures from an airport. Finally, the average path length L of a network
indicates how easily reachable a node is, starting from any other node in the same network. Considering all
links of unit length in a graph, we define djr as the shortest path between airport j and airport r. Thus the
average path length for a network is:

L =

nA
∑

j=1

nA
∑

r=1

djr
nA(nA − 1)

, ∀j, r ∈ A, j 6= r (5)
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Operational metrics

The first operational metric is the total number of commercial flights that take off from any given airport
and arrive at any given airport:

nF =

nA
∑

j=1

nA
∑

r=1

xjrwjr, ∀j, r ∈ A, j 6= r (6)

The second operational feature is the total number of aircraft types nK in a fleet, defined simply as nK =
|K|,∀ack ∈ AC. Similarly, the fleet size nAC is the sum of all aircraft in an airline’s fleet:

nAC = |AC| =

nK
∑

k=1

ack, ack, ∀k ∈ K (7)

The final operational feature is the average daily aircraft utilization for an airline U, calculated in block time
units BT. Block time refers to the total operating time since brakes are released, i.e. Actual Off-Block Time
(AOBT) at the departing airport, until the aircraft is fully parked again at the destination, with brakes
active:

BTc,d = ttaxiarr
+ tflight + ttaxidep , ∀c ∈ AC, ∀d ∈ Zc (8)

wher Zc is the set of days aircraft c has flown. BTc,d is defined for a particular aircraft c in a particular day
d and includes the total flight time, taxiing in and taxiing out. Due to data limitations, a modified BT is
used which does not take into account the taxi on arrival:

BT ′ = BT − ttaxiarr
= ttaxidep + tFlight (9)

Let Fd,c be the set of flights during day d for aircraft c, Fd,c ⊂ F and nFd,j
= |Fd,c| the number of the flights

during day d ∈ Zc for any aircraft c ∈ AC. The average daily utilization per one aircraft becomes:

BT ′
d,c =

nFd,c
∑

i=1

BT ′
i

nFd,c

, ∀d ∈ Zc, ∀fi ∈ Fd,c, (10)

Thus the average utilization for an entire fleet is:

U =

nAC
∑

c=1

ndays
∑

d=1

BT ′
c,d

nd · nAC

, ∀d ∈ Zc, ∀c ∈ AC (11)

4.2. Case study: airline characterization by network and operational features

We present a comparison between two traditionally-known LCCs and two NCs by their complex network
and operational features. This comparison underlines why the specific airline features have been chosen, and
how they differentiate between the two airline types. To emphasize the importance of context, the features
are compared with a variant of features obtained from a reduced dataset, that considers flights departing and
arriving within the ECAC airspace only.

Complex Network metrics

We start with the CN metrics in Table 3. The first major difference is in the size of the airline networks:
LCCs operate a large point-to-point (P2P) network and consider each pair of Origin-Destination (OD) as a
separate market, while NCs operate an overall smaller Network of interrelated OD pairs, with one or more
hubs, commonly referred to as ’Hub&spoke’ (H&S) [18].

The second major difference is in the average degree, which is evident from the difference in topology
in Figures 2.a and 2.b: Ryanair’s network is spread across multiple destinations which are connected by a
higher number flights, while KLM’s flights are focused on its hub, EHAM.
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Feature Case 1 Case 2

KLM Lufhansa EasyJet Ryanair KLM Lufthansa EasyJet Ryanair

nL 215 450 1.120 1.982 139 322 1.086 1.898

nA 188 249 172 222 113 163 166 213

k 2,29 3,61 13,02 17,86 2,46 3,95 13,08 17,82

L 2,19 2,26 2,17 2,15 2,3 2,3 2,17 2,15

C 0,16 0,49 0,51 0,51 0,24 0,55 0,51 0,52

S 586,68 875,23 1.318,11 1.394,11 747,27 1.097,39 1.340,45 1.419,08

Table 3: CN metrics comparison between two ’traditional’ LCCs and two NCs. The evident differences in S, nL, nA for NCs
stem from the lack of transcontinental flights which have been filtered in Case 2.

(2.a) Ryanair circular network graph (2.b) KLM circular network graph

Figure 2: Airline network displayed as a circular graph for flights in August 2017: the airports are nodes and are linked if at
least one flight connected the OD pair.

The difference in clustering coefficient is easily deduced from the same graphs: there are few triangles
formed in KLM’s network, as most flights happen between the hub and another airport. Ryanair’s P2P
network on the other hand, has a much higher clustering coefficient as two neighbours of a node are connected
by more flights. The high value for Lufthansa’s C compared to KLM’s is given by the existence of its 2 hubs,
EDDM and EDDF, and the connections resulting thereof.

Finally, the average strength provides insight into the average frequency of departures at an airport.
Although the averages themselves provide some information, it is also worthwhile to compare the strength
survival function Surv = 1 − CDF where CDF is the Cumulative Distribution Function. The survival
function shows the probability to find an airport with a specific strength, among the airports of each airline’s
network.

First we observe that roughly 80% of the distributions follow an exponential curve, indicated by the
straight line on the semilog plot. Starting from the upper left corner of Figure 3, a few remarks are in order:
Ryanair and EasyJet have different strategies for low-strength airports: 18% of EasyJet’s airports exhibit 10
or less departures, while the same low frequencies represent only 5% for Ryanair. Both CDFs exhibit similar
shapes, although EasyJet’s distribution is consistently lower than Ryanair’s, except for the high-strength
airports (top 20%), where they overlap. On the NCs side, the german carrier spreads its strength more, while
the dutch one focuses most of its strength between airports with [102; 103] departures. The LCCs on the
other hand spread 80% of their strength over two orders of magnitude.

The comparison above clearly shows major differences in network features between traditionally-known
Low-Cost and Flag Carriers and confirm the validity of the chosen features. However, these differences may
be obvious only in the cases where airlines exhibit all characteristics of a certain business model, and not
when they have a hybrid business model. Therefore, operational metrics are included to complete the picture.
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Figure 3: Airline strength survival plot. Each point represents the number of departures at one airport: the ordinate indicates
the chances of finding an airport with an equal or greater (or smaller) frequency of departures, while the abscissa gives an
indication on the magnitude of the number of movements. Major hubs with departures and arrivals with an order of magnitude
higher are highlighted by the box in lower right corner (EHAM, EDDF, EDDM). Their position in the survival function is
expected, as 99% of the rest of airports have a lower number of departures.

Operational metrics

Table 4 shows the average values of operational features used in the clustering in Section 4.5. The average
utilisation shows that when considering long-haul operations, Network Carriers have an edge over the LCCs;
however when focusing on European operations only, Ryanair and EasyJet maintain their initial utilisation,
while both KLM and Lufhansa drop by 40%. It is worth noticing that in Case 1, long-haul flights make up
15−20% of total flights for NCs. Finally, the fleet composition and size confirm that Ryanair has the biggest
and most homogeneous fleet in Europe, while both Lufthansa and KLM have 4− 5 times more aircraft types
in their fleets.

Feature Case 1 Case 2

KLM Lufhansa EasyJet Ryanair KLM Lufthansa EasyJet Ryanair

U 12,6 11,48 10,36 10,57 7,15 6,95 10,10 10,36

nF 107.351 217.932 225.396 306.676 84.442 178.874 221.174 299.425

nAC 190 355 288 413 133 286 288 413

nK 19 20 5 3 16 18 5 3

Table 4: Operational airline features for operations considering intercontinental flights, weekends included (Case 1) and European
flights, weekends included (Case 2).

4.3. Data pre-processing

In this section we present the two steps of data pre-processing: reducing the data set dimensionality and
z-scoring. The first step reduces computational time and permits visualisation, while the latter scales the
data distribution to unit norm and renders it comparable. The size of data sets can be reduced by two
methods: by discarding features that are irrelevant or already represented by others, or by merging features
with the Principal Component Analysis (PCA) into a smaller number of components.

We first attempt to reduce the data set by identifying the features that are overly represented. We do this
by first assessing the feature correlation: the values in the correlation heatmap shown in Figure 4.a which
are close to 0 indicate a feature that brings variance in the data, while values close to ±1 point to features
that do not add much variance.

The resulting correlations are to be expected: the number of links, number of airport nodes, number
of flights and fleet size are are interrelated. Next, we rank the features in the order of their importance.
Two approaches are proposed: supervised (SFR) and unsupervised feature ranking (UFR). The three UFR
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methods used are: the Laplacian Score (LS) [42], a filtering method based on Laplacian Eigenmaps [43] and
Locality Preserving Projection [44] and two Spectral Analysis (SPEC) [45] methods. Despite the lack of
consistent results, they are included in this paper to be compared with the SFR rankings, as the latter makes
use of the existing labels and provides trustworthy results. SFR employs the Mutual Information (MI), on
which we will detail later on in (Eq. 16 and Eq. D.1). In feature ranking, MI values indicate how much
each feature is influencing the resulting clustering. MI’s main advantage is that it is normalized and that it
captures non-linear relationships.

(4.a) Feature Correlation heatmap. Lighter correla-
tions indicate a higher correlation. The matrix is al-
most a positive manifold.

(4.b) Percentage of variance explained by PCA. 93%
variance retained with 5 components.

Rank
Unsupervised Feature Ranking Supervised Feature Ranking

Spectral -1 Spectral 0 Laplace Mutual Information Score

1 Average strength Nr. of links Aircraft types Fleet size 0,77

2 Nr. of nodes Average path Fleet size Nr. of links 0,67

3 Average clustering Nr. of nodes Average path Total flights 0,63

4 Average path Fleet size Average clustering Average degree 0,57

5 Aircraft types Average clustering Average utilization Nr. of nodes 0,56

6 Average utilization Aircraft types Total flights Average utilization 0,5

7 Nr. of links Average strength Nr. of links Aircraft types 0,46

8 Average degree Average utilization Nr. of nodes Average strength 0,40

9 Fleet size Total flights Average strength Average path 0,39

10 Total flights Average degree Average degree Average clustering 0,36

Table 5: UFR and SFR feature ranking results. Different rankings for all UFR methods indicate that none of them would have
been close to the correct ranking. The Mutual Information (MI) score in the last column indicates how much each SFR result
influenced the final clustering in Table 10. MI values are normalized ∈ [0, 1].

Table 5 shows all 4 feature ranking results. The last column shows the mutual information score for the
supervised feature ranking. Since the MI ∈ [0.36, 0.77], it has been deemed that all features influence the final
clustering a considerate amount. Thus none were discarded and the Principal Component Analysis (PCA)
was used to reduce the data dimension. Noteworthy are the lower scores of the network features, except the
average degree. This might occur due to the inherent lower values compared to other operational features,
such as the number of flights.

Z-score. Principal Component Analysis

Z-scoring is a common practice in Machine learning workflows and it is particularly useful when clustering
by features with different scales. It is always the preliminary step, before reducing the data set dimensionality
and in essence, makes features comparable:
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Z =
x− µ

σ
(12)

where x is the feature value.
The second method used is the PCA. It reduces the dimensions (number of features) by choosing features

with higher variance and combining them in a smaller number of components, while retaining as much relative
variance as possible. A cumulative variance between 80 and 95% ensures a minimum fidelity with the original
dataset. In this case, 5 components retain roughly 93% variance, as shown in Figure 4.b. Grouping airlines
in different clusters was done on the resulting five Principal Components.

4.4. Determining the number of clusters

A common issue in unsupervised ML is determining the ’right’ number of clusters. As there are no existing
class labels to train the algorithm on, the actual number of classes is unknown. To circumvent this issue,
three solutions are proposed: K-means majority voting scheme [46], Gap Statistics (GS) [47] and Consensus
Index (CI) [48][49].

Out of all, only the Consensus Index methodology has provided consistent and relevant results. The
Majority Voting method performed the worst, with no relevant results all-together i.e. the optimal num-
ber of clusters increased with the increase of clusters considered. The second method was the GS. It was
implemented by editing an existing application [50]. GS works by comparing ’the change of within-cluster
dispersion with that expected under an appropriate reference null distribution’. According to the GS method
and the maximum values in Figure 5, the optimum number of clusters is two. This was deemed to small for
the amount of airlines present in the data set, however the smaller peaks for K = 7, 8 point to a potentially
robust clustering sub-structure.

Cluster Count

G
a
p
 V

a
lu

e

Figure 5: Gap Statistic results corresponding to two random uniform reference distribution. The maximum values point to the
’optimal’ number of clusters.

4.4.1. Consensus Index methodology

The Consensus Index (CI) method draws its utility from two popular measures: the Adjusted Rand Index
(ARI)[51] and the Adjusted Mutual Information (AMI)[52]. The main idea behind the Consensus Index (CI)
is that a robust data structure is uncovered in the data set by comparing the clusterings 1 generated from
multiple, random data (sub)sets. The underlying hypothesis is that with the correct number of clusters Ktrue

imposed on the data, ’the discrepancy between the clusterings obtained [...] should be minimized, meaning
that the cluster structure discovered is robust.’ [48]. Given a value of K and a set of B clustering solutions
UK = {U1,U2, . . . ,UB} , each with K clusters, the Consensus Index (CI) of UK is:

1A clustering refers to a solution to the cluster problem and is composed of a number of clusters, or groups.
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CI (UK) =
∑

i<j

AM (Ui,Uj) (13)

with AM being any suitable ’Adjusted Measure’. The optimal clustering number K* is chosen as the one
that maximizes the CI:

K∗ = maxCI (UK)

K = 2 . . .Kmax

(14)

meaning that, similar to the GS method, a peak in the CI plot points to the optimal number of clusters.
The first AM is the Adjusted Rand Index (ARI) [49]: it is a pair-counting method that quantifies the

agreement level between clustering results of different clusters, i.e. if data points in the clusterings belong to
the same group or not. The ARI is the adjusted-for-chance form of the Rand Index [53], and is defined as:

ARI(U,V) =
2 (N00N11 −N01N10)

(N00 +N01) (N01 +N11) + (N00 +N10) (N10 +N11)
(15)

where each element in Eq. 15 refers to the number of events of that type. The four types of events are
described in the right side of Table 6). The relationship between two clusters is described by a contingency
table, shown in the left side of Table 6.

U\V V1 V2 . . . VC Sums Event Definition

U1 n11 n12 . . . n1C a1 N11 same clustering U and V

U2 n21 n22 . . . n2C a2 N10 same clustering U but not V
...

...
. . .

...
...

... N01 same clustering V but not U

UR nR1 nR2 . . . nRC aR N00 different clustering U and V

Sums b1 b2 . . . bC
∑

ij nij= N

Table 6: Left: Contingency Table nij = |U ∩ V |. Right: Event types considered for pair counting.

The second measure is the Adjusted Mutual Information (AMI) [49], an Information Theoretic based
measure. In essence, MI(U,V) indicates how much can be deduced of cluster U by looking at cluster V. AMI
is mathematically defined by joint, conditional and simple entropy H, which are derived from the marginal
distributions from the left side of Table 6:

AMI(U,V) =
MI(U,V)− E{MI(T )|a, b}

√

H(U)H(V)− E{MI(T )|a, b}
(16)

where entropy is defined as :

H(U) = −
R
∑

i=1

ai
N

log
ai
N

(17)

4.4.2. Consensus Index methodology steps

The applied CI methodology is summarized below (K is the resulting cluster numbers):

1. Pre-processing: airlines with fewer than 10 flights each month or a fleet consisting of four aircraft or
less are discarded.

2. Standardization: Z-scoring each feature.

3. Cluster generation: for each cluster number K ∈ [2, 14], we randomly sub-sample 90% of the original
data set. With this new data set, we perform a (KMeans++)-type clustering, 200 times. This results
in a set of 200 solutions (group labels).

4. Consensus Index: for each K, we assess the agreement between all 200 clusterings defined previously,
by computing the AMI and ARI values.
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5. Stability Assessment: due to the stochastic nature of the sub-sampling approach, the process is
repeated. 200 · 199 = 39, 800 values for both indices per K are calculated and averaged, leading to
39, 800 · 13 = 517, 400 iterations for each round of sampling for each measure. There are two measures
and the process has been repeated twice, thus: 517, 000 · 4 = 2, 068 · 106 iterations were done in total.

6. The maximum value of the CI in Figure 6 indicates the ’optimal’ number of clusters.

Figure 6: Consensus Index results. Due to the stochastic nature of the sub-sampling, both measures have been calculated twice.
The maximum peaks represent the number of clusters for which the clustering is deemed more robust and thus, optimal. 3/4
measures point to K∗ = 8

Figure 6 shows 3/4 measures with maximum values at K = 8 and one with K = 6. Thus the final number
of clusters is K∗ = 8. This result is also in line with what was hinted by the first round of the Gap Statistics
results in Figure 5.

4.5. Clustering Ensembles

This section presents the clustering ensembles, which are a better alternative to individual clustering
algorithms, because of their improved stability, robustness and accuracy. The strength of this method
lies in the multiple algorithms that generate individual partitions, which are then integrated in one final,
representative clustering. This last step is commonly referred to as a consensus or objective function. In
total, 17 individual partitions have been obtained by six different algorithms, each with varying parameters2.
Except HDBSCAN, all runs have been performed withK∗ = 8 imposed on the data. The Clustering Ensemble
was built by editing the OpenEnsemble library [54], which integrates most of scikit-learn [55] algorithms and
independent algorithms, such as HDBSCAN. [56]. The ensemble consists of: one run with K-means ++ [57]
with n jobs=1, one run of Gaussian Mixture Models (GMMs) [58], one run of Birch [59], two runs of Spectral
Clustering, one with Euclidian (l2) and one with Manhattan (l1) distance; four HDBSCAN runs, each with
one of the following pairs of min sample and min cluster size: (2, 2),(3, 2),(5, 2),(2, 3); and finally eight runs
of Hierarchical Agglomerative Clustering (HAC): a combination of the two distances (l1 and l2) and four
linkage types: Ward’s, average, complete and single. The linkage defines how the distance between clusters
is computed. The last three linkages are presented in Figure 7. One other type, Ward’s linkage [60] is used,
which merges groups at each step while minimizing a cost index, defined as: C = SS12 − (SS1 +SS2), where
SS12 is the error sum of squares of the newly-formed cluster, and the other terms are the error sums of
squares of the previous, separate clusters.

4.5.1. Consensus Function

The main challenge posed by clustering ensembles is to find the objective function that uncovers the ’best’
or representative partition [61]. A suitable option is the HAC algorithm. The HAC algorithm has two main
parameters: the ’cut’ and the linkage type. The ’cut’ parameter is particularly useful because we can freeze
the solution tree at a given number of clusters. More on this in the next section. Regarding the linkage type,

2Where no parameters are mentioned, the default settings were used
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Figure 7: Linkage types a)single, b)complete, c)average, d)
centroid [62].

Clustering Linkage Cut

ΓA Average 0.5

ΓW Ward 1.05

Table 7: Preliminary Clustering results and the associated
parameters.

the average and Ward linkage types are suitable because they use information from all the points within a
cluster, and not just an extremity. This leads to an overall more robust and cohesive cluster.

4.6. Initial clustering results.

This section presents the two initial clusterings obtained with the clustering ensemble and the process of
selecting the final clustering, based on a number of internal clustering indices. Internal indices are used to
assess the clustering structure without external information and assess the cluster cohesiveness, compactness,
density and separation. [63].

At this point in the workflow, the desired final number of clusters is known (8) and a total of 17 individual
clusterings have been obtained. We reverse engineer the HAC algorithm by looking which combination of
’cut’ and linkage parameter yield results with K = 8. To generate the representative cluster, the HAC is
iteratively employed with cuts ranging from 0 to 4 in 0.01 increments. 800 possible results are obtained, out
of which only two have K = 8 clusters: ΓW and ΓA. The two results are compared by internal indices in
Table 8. The final clustering is ΓA, as it scores better on 10/13 indices.

Minimum Maximum

Aspect
Compactness, separation,

density
Cohesion, dispersion

Mean

dispersion
Separation

See

description

Validation

Indices
Sdbw1 Sdbw2 Sdbw3 DB XB P. Bis CH D1 D2 D3 BH modif. H Coph. corr.*

ΓA 0,59 0,56 0,49 1,04 0,63 0,26 -1,04 35,36 0,02 0,09 0,59 2,44 14,58 0,85

ΓW 0,64 0,63 0,55 1,6 3,57 0,17 -0,8 22,14 0,025 0,14 0,34 2,5 13,4 0,62

Table 8: Internal validation indices. The first row points to the desirable value. In green are the best values for the given indexa.

aDB:Davies-Bouldin; XB: Xie-Beni; P.Bis: Point Biserial; CH: Calinski-Harabasz; D-Dunn Family Indices; BH: Ball-Hall;
modif.H: modified Hubert statistic. Coph. corr: Cophenetic Correlation

Two indices are briefly analysed: the cophenetic correlation coefficient provides a normalized measure on
the similarity between the initial, unclustered points’ pairwise distances, and the distance between the groups
in which they end up in. ΓA has a cophenetic correlation of 85%, which indicates a strong resemblance to
the initial data. The second index is the average silhouette score, which assesses cluster cohesiveness. In
addition, each cluster silhouette profile in Figure 8 shows an individual coefficient: if data points in the
cluster are cohesive with the rest of the cluster, they have a positive score. ΓA displays only one large part of
cluster 7 with a negative score, while others groups have few points in the negative area. On the other hand,
ΓW provides more evenly distributed clusters, but its average silhouette score is lower. Three out of seven
clusters have a considerable number of points with a negative score, suggesting that these points would fit
better in a different cluster.

4.7. Final Clustering results

This section presents the final clustering results. i.e. the airline groups as used in the second part of
the paper. Figure 9 shows the process: the HAC algorithm is employed as the consensus function on the
ensemble’s co-occurrence matrix. The co-occurrence matrix is a square matrix whose entries aij are the
fraction of each airline i co-occurring in the same group as airline j : aij = x

17 . The resulting groups can be
observed in different colours on the dendrogram on the left, which also shows the internal structure of the
dataset.
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(8.a) ΓA silhouettes
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(8.b) ΓW silhouettes

Figure 8: Average silhouette per clustering and silhouettes for each cluster (airline group). −1 is the worst score, 1 is the best.
Values of or close to 0 indicate overlapping clusters.

The dendrogram reflects the co-occurrence matrix and vice-versa. The groups in the dendrogram (same
colour) are mirrored by the light areas along the matrix’s main diagonal, while the different hues in the matrix
correspond to each airlines’ similarity to the other airlines. The similarity is also reflected by the length of
the horizontal lines in the dendrogram. The vertical lines, or plateaus, indicate a newly formed group. The
’cut’ is the distance above which clusters are no longer merged and thus, dictates the final clusters. The same
dendrogram with airline names can be better visualised in full in Appendix A. Its colours correspond to the
final airline groups in Table 10.
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Figure 9: The clustering ensemble co-occurrence matrix with a similarity band below, and the associated dendrogram on the
left. Each unit square in the matrix represents the fraction of times airlines i and j were in the same group. The lighter an area,
the higher the number of times two airlines co-occurred in the clustering ensemble. The co-occurrence matrix also confirms the
hints from the Gap Statistics results in Figure 5: 2− 3 initial groups can be identified, one of them rather large, with a vague
contour.

Next, we reflect on the results by cross-comparing Table 9 and the airline groups’ feature values. Individual
airline features can be found in Annex Appendix A Group 1 components seem to fit together: they show a
medium-small network with a low C and a rather low average utilization, typical for small regional or feeder
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airline types. Group 2 has also coherent components and consists mostly of traditionally-known flag carriers
carriers (except Air Europa). We notice a much larger network and average number of flights compared to the
previous group and a heterogeneous fleet. Group 3 is the largest group and contains almost half of the airlines
in the dataset, which account for less than 10% of the total flights. Perhaps due to low feature values, it is a
mixed group of airlines with smaller fleet, fewer and less connected destinations. Some traditionally-known
flag carriers appear here, too: Czech, Croatia, Moldova, Air Serbia, Tarom, Luxair, Bulgaria, Aegean, a.o.,
most likely because of considerably less flights than those in Group 2, but three to four times more than
those in Group 1. Laudamotion, Transavia FR appear here, due to a much lower average aircraft utilization
and half the average degree compared to other LCCs in the Groups 5 and 7. Group 4 is a ’clean’ group, with
no surprise members among the medium LCCs and holiday charters. Group 5 is a mixed group: Alitalia and
SAS show similar features as some larger LCCs and regional airlines such as Air Berlin and Hop!: a large,
highly clustered network flown by a hundreds of aircraft and double-digits aircraft types. Group 6 is also a
mix of long-haul carriers, regional airlines and subsidiaries that operate the smallest networks in the data
set. Finally, Groups 7 and 8 represent the major European Flag and Low-Cost Carriers. and account for
over 40% of all flights in the dataset, thus are the main focus of the trajectory deviations in Section 5.

Airline

Groups
nL nA U nF nAC nK k L S C

1 144 74 3 3766 24 6 3,61 2,84 67 0,28

2 142 105 10 41134 84 13 2,73 2,1 396 0,25

3 94 54 7 8737 27 5 3,3 2,18 178 0,35

4 394 116 10 29371 57 6 6,65 2,25 283 0,5

5 400 135 8 70802 163 13 5,89 2,22 548 0,5

6 18 16 7 4074 25 3 2,25 1,9 283 0,2

7 373 227 12 149510 303 21 3,18 2,17 678 0,32

8 1551 197 10 266020 350 4 15,44 2,16 1356 0,51

Table 9: Average group airline feature values for the clustering methodology. These are the average features that are included
in the five Principal Components on which the clustering has been done.

Group Airlines Count

1 CityJet, Adria Airline, Eastern Airways, Sun Air of Scandinavia, Twin Jet 5

2
Air Europa, Austrian Airlines, Ukraine International Airlines, Brussels Airlines, Air Baltic,

Aer Lingus, Finnair, Iberia Airlines, LOT Polish Airlines, Swiss Air Lines, TAP Portugal
11

3

Aigle Azur, Adria Airways, Aegean Airlines, Air Malta, Air Nostrum, Air Serbia, Aurigny

Air Services, Astra Airlines Regional, Blue Islands, Belair Airlines, Blue Air, Blue

Panorama Airlines, Braathens, Regional Airlines, Air Corsica, BA CityFlyer, Czech Airlines,

Croatia Airlines, Edelweiss Air, Ellinair, Cobalt, Fly One, Atlantic Airways, Sky Wings

Airlines, Iberia Express, Icelandair, Meridiana, AlbaStar, Luxair, Loganair, Bulgaria Air,

Montenegro Airlines, Air Moldova, Laudamotion, NextJet, Olympic Air, Helvetic Airways,

People’s Vienna, Primera Air Scandinavia, Tarom, Malmö Aviation, Sky Express, Stobart

Air, Sunexpress DE, Sunexpress TK, Tunisair, Thomas Cook, Transavia NL, Transavia FR

48

4
Condor Flugdienst, Jet2.com, Germania, Germanwings, TUIFly, Monarch Airlines, Neos,

Pegasus, TUI Airways, Volotea, Widerøe, Wizz Air
12

5
Alitalia, Flybe, Air Berlin, Eurowings, Hop!, Norwegian Air Shuttle, Scandinavian Airlines,

Vueling Airlines
7

6
Albawings, Bergen Air Transport, Dreamjet, Air Dolomiti, Air VIP,

British Airways Shuttle, Siavia, Virgin Atlantic Airways, XL Airways
9

7 Air France, British Airways, Lufthansa, KLM, Turkish Airlines 5

8 EasyJet, Ryanair 2

Table 10: The final list of airline groups resulting from the unsupervised clustering ensemble.
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5. Horizontal and vertical trajectory deviations

In this section we present the en-route trajectory analysis results. First, we present the horizontal effi-
ciency results per groups and a spatio-temporal analysis in Section 5.1. Then, the vertical deviations are
characterized by the novel Flight Level Adherence Index for Realized trajectories (FAIR) in Section 5.2. Each
section presents first a high-level overview of all groups, followed by a comparison between the Low-Cost and
Network Carriers in Groups 7 and 8. More results per individual airline are presented in Appendix B.

5.1. Horizontal trajectory efficiency

Tne horizontal efficiency (Ei) is defined for a flight i and is the ratio between the Great Circle distance
(GC) i.e. the shortest path between two points along an ellipsoid, and the actual length of the trajectory:

Ei =
dGC(wi,1, wi,n)

n−1
∑

j=1

d(wi,j , wi,j+1)

, ∀fi ∈ F , ∀wi,j ∈ Wi (18)

Efficiency is derived for the en-route phase considering only navigation points above FL 245, to reduce the
variations in trajectories which normally occur due to vectoring or busy traffic at lower flight levels. First,
groups are compared by means of efficiency difference δE,i, followed by an hourly and daily analysis. Finally,
the trajectories corresponding to a set of efficiency outliers are presented.

The efficiency difference δE,i is the difference between the planned and realized efficiency of the same
flight i :

δE,i =











δ+E,i, if E(M3) > E(M1)

δ−E,i, if E(M3) < E(M1)

δ0E,i, if E(M3) = E(M1)

, ∀fi ∈ F (19)

Table 11 presents the numbers and percentages of flights for each group. Group 8 (LCCs) stands out as
the group with the highest fraction of flights whose realized efficiency is higher than its planned efficiency.
By contrast, Network Carriers in Group 7 exhibit approximately 10% less flights with positive δE .

Airline group 1 2 3 4 5 6 7 8

Total 20.773 846.670 699.247 690.387 1.084.764 78.011 1.612.942 1.173.483

δ−E 97.73 339.589 270.214 271.599 501.368 42.641 664.754 462.283

δ+E 109.39 494.525 419.221 368.660 578.569 31.611 801.646 710.762

δ0E 61 12.556 9.812 50.128 4.827 3.759 146.542 438

δ−E% 47 40 39 39 46 55 41 39

δ+E% 53 58 60 53 53 41 50 61

δ0E% 0 2 1 8 1 4 9 0

Table 11: Number and percentage of flights per group by efficiency difference E(M1) − E(M3). Percentage values have been
rounded up to the nearest integer.

Next, we show the average hourly and daily efficiency for all groups in Figures 10.a and 10.b. The overall
weekly and hourly trends can be easily observed and have been determined by means of averaging all efficiency
values:

Eµ,x =
n
∑

i=1

Ei

n
, x = {hour, day}, (20)

where n is the total number of flights during either the day or hour in question. Daily efficiency averages
for groups show the planned and realized efficiency almost constant throughout the week, with the planned
trajectory efficiency consistently higher relative to the realized efficiency. This is expected, as each flight is
planned on the best available planned route, while the actual trajectory gets deviated and takes on average,
1% longer. The hourly planned efficiency show an additional trend: flights departing during early morning
or late night have a higher efficiency (both planned and realized) than the flights departing at other hours
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during the day. The trend can be attributable to the increase in traffic during those hours, and is similar to
other results, [10], although the horizontal efficiency was computed along the entire trajectory, and not only
for the en-route phase, as in the current study. For detailed hourly M3 efficiency values, the reader is invited

(10.a) Daily M1 and M3 average efficiency per groups (10.b) Hourly M1 and M3 average efficiency per groups

Figure 10: Hourly and daily average efficiency values for the en-route phase of flights throughout the entire year of 2017. The
dotted lines represent the daily and hourly overall trends, obtained by averaging the groups averages.

to consult Table 12. The other hourly M3 and daily M1 and M3 efficiency averages and standard deviations
are presented in Appendix B.

Group 1 2 3 4 5 6 7 8

Hour µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ

0 0,991 0,008 0,963 0,06 0,984 0,015 0,983 0,024 0,974 0,039 0,988 0,01 0,984 0,017 0,983 0,028

1 0,987 0,012 0,976 0,044 0,986 0,013 0,98 0,024 0,988 0,011 0,989 0,01 0,984 0,013 0,983 0,015

2 1 0,974 0,054 0,985 0,014 0,975 0,03 0,986 0,02 0,989 0,009 0,984 0,024 0,99 0,008

3 0,995 0,006 0,986 0,024 0,982 0,019 0,977 0,027 0,985 0,021 0,989 0,008 0,983 0,02 0,981 0,016

4 0,987 0,014 0,983 0,02 0,982 0,022 0,981 0,023 0,984 0,021 0,981 0,023 0,982 0,02 0,978 0,02

5 0,978 0,024 0,98 0,027 0,981 0,02 0,979 0,024 0,983 0,022 0,983 0,019 0,981 0,021 0,977 0,021

6 0,981 0,02 0,981 0,019 0,98 0,022 0,979 0,024 0,983 0,021 0,98 0,025 0,98 0,02 0,978 0,021

7 0,98 0,025 0,977 0,028 0,979 0,021 0,978 0,023 0,983 0,022 0,982 0,019 0,98 0,021 0,975 0,022

8 0,97 0,033 0,979 0,024 0,979 0,02 0,979 0,024 0,981 0,021 0,982 0,016 0,979 0,025 0,974 0,024

9 0,972 0,032 0,98 0,024 0,98 0,021 0,977 0,027 0,98 0,022 0,982 0,017 0,981 0,019 0,974 0,022

10 0,98 0,025 0,981 0,022 0,982 0,018 0,978 0,021 0,98 0,022 0,982 0,019 0,979 0,021 0,976 0,022

11 0,971 0,029 0,98 0,022 0,98 0,022 0,977 0,025 0,981 0,022 0,982 0,019 0,979 0,023 0,975 0,022

12 0,976 0,027 0,981 0,026 0,981 0,02 0,979 0,023 0,982 0,021 0,984 0,015 0,981 0,019 0,974 0,023

13 0,974 0,032 0,981 0,024 0,981 0,018 0,98 0,022 0,981 0,023 0,982 0,018 0,98 0,02 0,976 0,021

14 0,981 0,023 0,981 0,021 0,98 0,02 0,979 0,022 0,983 0,022 0,979 0,023 0,98 0,02 0,976 0,022

15 0,979 0,021 0,983 0,021 0,981 0,022 0,98 0,022 0,984 0,021 0,983 0,02 0,982 0,019 0,978 0,021

16 0,98 0,022 0,981 0,026 0,982 0,02 0,979 0,023 0,983 0,023 0,984 0,019 0,981 0,022 0,979 0,02

17 0,98 0,021 0,978 0,031 0,981 0,02 0,98 0,021 0,985 0,02 0,98 0,02 0,982 0,02 0,979 0,022

18 0,981 0,019 0,978 0,034 0,98 0,021 0,979 0,025 0,984 0,02 0,98 0,021 0,982 0,019 0,978 0,023

19 0,98 0,021 0,979 0,028 0,98 0,02 0,981 0,02 0,985 0,019 0,979 0,02 0,981 0,02 0,979 0,019

20 0,979 0,021 0,982 0,028 0,981 0,019 0,98 0,024 0,986 0,016 0,986 0,013 0,982 0,019 0,982 0,017

21 0,975 0,023 0,985 0,02 0,982 0,017 0,982 0,018 0,984 0,017 0,985 0,012 0,985 0,015 0,982 0,017

22 0,981 0,014 0,983 0,035 0,982 0,016 0,982 0,019 0,98 0,021 0,987 0,013 0,985 0,013 0,982 0,017

23 0,991 0,011 0,967 0,063 0,982 0,015 0,98 0,025 0,978 0,019 0,988 0,012 0,983 0,018 0,979 0,025

Table 12: Variance and average realized (M3) efficiency for every hour per airline group.

We now turn our focus on groups 7 and 8. In Figure 10.a we observe that Groups 7 and 8 have slightly
higher average efficiency during the weekends, even though the overall trend is constant during the week when
taking into account all groups. Moreover, NCs have consistently higher daily and hourly average realized
and planned efficiency. Figure 11 compares the realized efficiency more in-depth: per hour between Groups 7
and 8. The generic trend seen in Figure 10.b is visible here, too, with flights deviating more during daytime

and less in the night and early morning. On average, Group 8 shows a lower efficiency than group 7,
except during a few hours during the night and early morning. One reason for this might be the more straight
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Figure 11: Hourly M3 efficiency comparison between groups 7 and 8. The horizontal edges of the boxes represent the interquartile
range and the median values, and the dots represent the average values.

parts of oceanic trajectories included in the analysis, which mostly NCs fly. Next, we use the independent
t-test [64] to compare the underlying distribution that yields the averages in Table 12. The t-test is a
hypothesis testing method that aims at testing the null hypothesis that two distributions are similar, and the
independent version allows testing samples with different number of components. Table 13 shows that only
groups 3, 5 and 7 exhibit similar efficiency distributions. This is a reasonable conclusion, as both Groups 3
and 5 consist of a number of traditionally-known Flag Carriers, but with a smaller fleet than the Network
Carriers in group 7. Figures B.20.b and B.20.a show the pairwise t-test values between all airlines, ordered
by the group they belong to. No conclusion can be drawn directly from the individual airline t-tests.

Group 1 2 3 4 5 6 7 8

1 1 0 0 0 0 0,01 0 0

2 0 1 0,01 0 0 0 0 0

3 0 0,01 1 0 0,11 0 0,3 0

4 0 0 0 1 0 0 0 0

5 0 0 0,11 0 1 0 0,44 0

6 0,01 0 0 0 0 1 0 0

7 0 0 0,3 0 0,44 0 1 0

8 0 0 0 0 0 0 0 1

Table 13: T-tests for M3 efficiency per airline groups.

Finally, a number of realized efficiency outliers have been observed and are given additional consideration.
In this case, outliers are realized efficiency values Er ∈ (0, 0.7]. First, we identify the flights with realized
efficiency in said interval. Out of that particular dataset, we discard those flights that have also planned
efficiency Ep = (0, 0.7]. Therefore only flights that were planned to have an increased efficiency, but failed
to do so, are analysed. The process is easily visualised by the histograms in Figure 12.a and Figure 12.b.
An example of trajectories with the lowest efficiency bracket are displayed in Figure 13. The U-shaped
trajectories reflect flights that were forced to deviate from their planned flight plan, and possibly causing
further deviations to other airspace users.
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(12.a) Histogram with flights Er < 0.7 (12.b) Histogram with flights Er < 0.7 and Ep > 0.7

Figure 13: Flights in the realized efficiency bracket (0, 0.1]. All trajectories are above FL 245

Table 14 shows the number of flights with unplanned low efficiency per group and for each efficiency
bracket. Interesting to observe that, although NCs in group 7 have an overall higher average realized efficiency,
they have roughly 3 times more flights with outlier efficiency. Some of the trajectories may be linked to
adverse weather over the Alps, which has prompted the neighbouring FABEC ANSPs to implement new
ATC procedures [65]. Finally, Figure 13 provides an overview of all deviated trajectories in the ECAC area,
in the lowest efficiency bracket. For the rest of efficiency brackets, the reader is invited to consult Appendix
B.

Group (0.0, 0.1] (0.1, 0.2] (0.2, 0.3] (0.3, 0.4] (0.4, 0.5] (0.5, 0.6] (0.6, 0.7] Total

1 0 0 1 0 0 0 0 1

2 14 6 3 3 6 29 367 428

3 6 8 8 5 5 7 30 69

4 7 10 2 4 4 17 33 77

5 11 14 6 12 10 23 29 105

6 1 0 0 0 1 0 0 2

7 11 17 14 13 10 18 107 190

8 9 4 4 2 2 14 30 65

Table 14: Number of flights per M3 efficiency bracket for each group. Only those flights with a planned efficiency higher than
0.7 are included.

In this section we have confirmed the hourly efficiency patterns of efficiency increase during early morning
and late night due to the lower flight counts; that Network Carriers are overall more efficient than LCCs, and
that both groups see an increase of efficiency in the weekends. Finally, although only a small fraction of the
total flights in 2017, unplanned U-shaped trajectories above FL 250 have to a possible network-wide planning
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inefficiency and a sub-optimal trajectory management. These findings pave the way towards understanding
whether problematic departure slots exist or could be used as a measure of assessing the effectiveness of new
ATC procedures.

5.2. Vertical trajectory deviations

In this section we present the method by which the novel Flight Level Adherence Index for Realized
trajectories (FAIR) has been obtained and a comparative analysis between two groups of airlines obtained
in Section 4: Low-Cost Carriers and Network Carriers. The Flight Level Adherence Index for Realized
trajectory (FAIR) indicates, on average, how much the true flight trajectory has deviated from its planned
flight level during the cruise phase. In essence, it is the average vertical deviation ∆z at all waypoints
wr

ij(x, y, z), along the entire cruise phase ∀fi ∈ F . The realized cruise flight phase is defined relative to the
planned cruise, which begins at the planned Top of Climb (TOCp) and ends at the planned Top of Descent
(TODp). By considering the entire length of the trajectory in defining the metric, we renounce the need of a
proxy measure to characterize deviations i.e. 100 ft x 10 minutes. The method is summarized next, followed
by a detailed step-wise approach.

5.3. FAIR Methodology

Let wij(x, y, z) be the jth waypoint of the ith flight fi ∈ F . We denote wp
ij the waypoints belonging to

the planned trajectory fp
i of flight i, and wr

ik ∈ fr
i the navigation points in the realized trajectory fr

i of the
same flight i:

wp
i,j ∈ fp

i , ∀w
p
j ∈ W p

i , ∀f
p
i ∈ F (21)

wr
i,k ∈ fr

i , ∀w
r
k ∈ W r

i , ∀f
r
i ∈ F (22)

A point wr
ik(x, y, z) has a corresponding, closest point wr′

ik(x
′, y′, z′) with wr′

ik ∈ fp
i . The spatial coordinates of

each point wr
ij are defined as xr

ik, y
r
ik, z

r
ik, and for their associated, projected points wr′

ij , in a similar manner.
Once the points are synchronized, i.e. each point on the M3 trajectory has a corresponding, closest point on
the M1 trajectory, the area aij under the vertical differences of each jth vertical component is defined, and
then integrated by trapezoid rule:

∫ b

a

f(x)dx ≈ (b− a) ·
f(a) + f(b)

2
(23)

Thus we replace x with the absolute difference between the vertical components between the M3 trajectory
waypoints and their ’pairs’, ∆(z) = |zrik − zr

′

i,k|. The intervals to integrate over are equivalent to the distance
along the trajectory for each point, dark:

ai,k =

∫ dar
k+1

dar
k

f [∆(z)]dx ≈ (dark − dark+1) ·
f(dark+1) + f(dark)

2
(24)

Thus, the FAIRi becomes the sum of all such segments, divided by the total length of the trajectory:

FAIRi =

n−1
∑

k=1

ai,k
dari,n

(25)

Note that zrik is the vertical component of the kth actual vertical point, while zr
′

ik is the vertical component
of its pair, ’projected’ on the planned trajectory. All vertical components have been transformed in meters
and corrected for altitude, as explained in Table F.22. Figure 14 shows a visual representation of the FAIR
methodology.
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Figure 14: The FAIR method. Step 1 shows the horizontal point projections, step 2 the corresponding absolute vertical
differences, step 3 the deviation area and step 4 the final step to obtain the FAIR.

5.4. The FAIR steps

1. Identification of TOC/Dp by determining the first and last segments of level flight. A level segment
s is defined by at least 3 consecutive waypoints with identical altitude (z). Each starting level segment
spi,j and final level segment lpi,j corresponds to a waypoint wp

i,j that is taken as its reference:

∃spi,j ⇐⇒ zpi,j = zpi,j+1 = zpi,j+2 (26)

∃lpi,j ⇐⇒ zpi,j = zpi,j−1 = zpi,j−2 (27)

where spi,j ∈ Si and lpi,j ∈ Li. Li and Si are the sets of levelled segments of flight fi. The first and last
waypoint of the cruise phase are identified: wp

i,1 = argminj{s
p
i,j} and wp

i,n = argmaxj{l
p
i,j}. The rest

of the planned waypoints, before and after the identified TOC/Dp, are discarded, to limit the index
to the planned cruise phase. If no level segments in the planned trajectories are identified, the entire
trajectory is discarded.

2. Identification of realized (TOC/Dr) by finding the closest points to the TOC/Dp. After trimming
the M1 trajectory in the previous step, we denote TOCp = wp

i,1 and TODp = wp
i,n. The corresponding

wp′

i,1 and wp′

i,n are identified by projecting the initial planned points on the actual trajectory. The closest
M3 point is not necessarily an already existing point wr

i,k, but can be any point on the trajectory line.
Put differently, the points are found at the intersection between the M3 trajectory and a segment whose
length is the minimum length dk,min between a point wr

k and the planned trajectory:

dp1 =
√

(xp
i,k − xp′

i,k)
2 + (ypi,k − yp

′

i,k)
2 (28)
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If more than one closest point is identified, only the first point in the direction of flight is retained.

3. Identification of realized points on the planned trajectory is done similarly with step 2, except
we project points from the realized trajectory onto the planned trajectory. After this step, points on
both trajectories are ’synchronised’ i.e. each planned point has a realized, closest counterpart, so their
vertical components can be compared.

4. Obtain the vertical component of the new points by linear interpolation. Each wr
i,k point

can be defined by its vertical component zri,k and its distance along the trajectory dark (referenced to

the TOCr). The projected points, which belong to the M1 trajectory (wr′

i,j) are characterized by the

same components and will always appear between two planned points: ∃j s.t. wr′

i,k ∈ [wp
i,j , w

p
i,j+1], ∀j.

Thus, we obtain the vertical component of the projected point by linear interpolation:

zr
′

k =
(dr

′

k − dpj )(z
p
j − zpj+1)

(dpj+1 − dpj )
+ zpj+1 (29)

Figure 15: Z-component interpolation example. The x-axis represents the distance along the trajectory, while the
y-axis represents the FL in meters.

5. Definition of the total deviation area Ai along the realized trajectory, as described by Eq. 24 by
summing deviations from all intervals.

6. Division of the obtained area by the length of the realized trajectory: by this last step, the
length of the trajectory is incorporated in the index.

5.5. FAIR Results

This section presents the FAIR results, starting with a high-level view on the average FAIR per flight for
each airline group, the total impact at network level and FAIR distributions. The second part focuses on
the comparison between major European Low-Cost Carriers (Group 8) and Network Carriers (Group 7). We
present an analysis of vertical deviations for each flight level and an analysis of FAIR per hour. We notice
that LCCs deviate considerably more than the NCs, the opposite of the efficiency results in Section 5.1.

First, Table 15 presents the average FAIR per groups identified by the clustering methodology presented
in Section 4 and listed in Table 10. Groups 2 and 8 display the highest average FAIR values, while NCs in
group 7 exhibit the 3rd lowest FAIR. This means that, on average, per flight, LCCs deviate 38% more than
Network Carriers present in Group 7. However, it is noteworthy that Group 2, which also consists of mainly
Network Carriers, exhibits FAIR values similar to the LCCs. The total impact on the network is however,
much to have an idea on the network-wide impact each airline type has, the FAIR values must be correlated
with the total area of deviations. It gives an indication on the magnitude of the total deviation that also
takes into account the average cruise phase (in km) and the total number of flights for each airline:

Ag = FAIRµ,g · Fµ,g · lµ,cr, g ∈ [1, 8] (30)

where the double subscript refers to the average values within a group. i.e:

FAIRµ,g =
n
∑

i=1

FAIRi

n
, n = total flights in a group (31)

Table 15 shows that the major LCCs in Europe deviate on average, per flight 34% more than major NCs
in Group 7. On the other hand, smaller NCs in Group 2 show a 2.5% larger FAIR, on average, compared to
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Group 1 2 3 4 5 6 7 8

Average FAIR(m) 635 854 803 794 832 551 551 832

Total flights 16648 783918 645826 629946 1027827 71683 1544967 1032561

Average cruise [km] 361258 903720 1004111 1129634 690861 968992 943920 866640

Total deviation area 3,82E+12 6,05E+14 5,21E+14 5,65E+14 5,91E+14 3,82E+13 8,04E+14 7,45E+14

Average flights 3329 71265 13454 52495 128478 7964 308993 516280

Total average deviation area 7,63806E+11 5,5E+13 1,08E+13 4,71E+13 7,38E+13 4,25E+12 1,61E+14 3,72E+14

Table 15: The average FAIR per flight, for each group. The total deviation area is the product of all rows beforehand and
gives an indication on the magnitude of the total area of deviations per groups of airlines, across the entire European ATM
network.The last row points to a similar measure, but for the average number of flights for an airline within each group.

Group 8. The total deviation area gives a more precise sense of the impact of each group by multiplying the
FAIR with the number of flights and the average cruise length. However, the number of airlines within each
group differs, so to capture this effect, the last two rows indicate the average number of flights for an airline
within each group, and consequently what impact the average airline within each group, has. Figure E.26
provides more details on the differences between flight numbers. Finally it is clear that the LCCs have nearly
a 50% higher impact network-wide than NCs, partially because of the high frequency of flights, but also
because of a much higher FAIR per flight. Such differences between groups are also visible when comparing
the FAIR value distributions, shown by the violin plots in Figure 16.a.
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Figure 16: a)Probability density functions in the shape of violin plots for all groups. The interquartile range is defined between
the extremes of the thicker, black lines, while the median value is marked by a white dot. b) An overview on the FAIR per
flight level, coupled with the number of flights planned to cruise at that particular FL. The planned FL is identified as the most
common FL in the en-route phase of the M1 trajectory. On the right side, the corresponding total number of flights per group
which planned to cruise at that particular FL are shown. Only flights planned at primary cruise levels have been included, i.e.
flights at FL251 have been discarded.
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5.6. Case study and discussion

We turn our focus again at Groups 7 and 8. At a first glance, the probability density of group 7 stands out
because of its higher width in the area of lower FAIR values, indicating there is a higher probability of flights
adhering to their Flight Level. It is the only group that shows such behaviour, reinforcing the difference
between the Network Carriers in Group 7 and the rest of the groups.

The primary ordinate in Figure 16.b references the most common FL in the planned trajectory i.e. the
cruise level, while the right axis illustrates the average number of planned flights at that respective cruise
FL. LCCs deviate more on average per flight, and this behaviour is consistent for all flight levels. The two
groups share some similarities: a trend in increasing FAIR with the increase in FL, and higher FAIR values
for odd FL compared to even FLs. Such difference might point to the impact of the ’hemispherical rule’,
as eastbound flights eastbound are assigned odd FLs, and westbound even FLs. This is easily explained for
group 7 as most NCs operate transoceanic flights that deviate less when flying westbound on the oceanic
tracks, but need to adjust their trajectories when entering the busy EU airspace, eastbound. The LCCs, on
the other hand, might be exhibiting more deviations on odd FLs simply as a reaction to the high amount of
traffic already present at those FLs. Finally, high and unexpected values for the uppermost FLs underline
that, on average, LCCs halt their climb on average 2000 meters (80 FLs) sooner, when planning to cruise
between FL 410−450. However, their impact on the network is insignificant, as only a few flights are planned
to cruise that high.

The secondary vertical axis in Figure 16.b depicts the total number of flights planned to cruise at each
FL. Here, we notice that LCCs focus the majority of their cruise FLs between FL 370 − 380 most likely
because of a more narrow range of optimal cruise level due to a significant lower diversity in their fleet, as
seen also in Table 4. The NCs on the other hand, spread their optimal cruise levels in a different manner,
most likely due to a more heterogeneous aircraft fleet.

Figure 17: Boxplots showing the hourly FAIR values for groups 7 and 8 (outliers are not shown). The dots represent the
averages.

The temporal aspect of FAIR is analysed next. Figure 17 shows the FAIR hourly boxplot for LCCs and
NCs with higher values overall for LCCs. Similarly to the efficiency results in Figure 11, this plot points to
the fact that vertical deviations follow an hourly pattern easily attributed to the amount of aircraft already
airborne or preparing to depart at that time. In the case of FAIR, however, the higher values of Group 8
show that LCCs deviate consistently more than their NC counterparts.
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6. Conclusion

In this paper, we have shown that Low-Cost airlines deviate more than Network Carriers in the vertical
plane and have a larger fraction of flights with a negative efficiency difference i.e. their actual efficiency is
higher than the planned one, pointing to more deviations from the planned route in the interest of the aircraft
operator. On the other hand, Network carriers have on average, more efficient trajectories in the horizontal
plane. The vertical deviations have been assessed by means of a novel deviation metric, the Flight Level
Adherence Index for Realized trajectory (FAIR). FAIR provides a precise measure of vertical deviations
during the cruise phase, and its flight-centric approach makes it a good candidate for assessing both the
individual performance of a trajectory, and the impact each aircraft operator has on the network. This would
allow in turn an objective measure by which airline deviation ’behaviour’ is monitored or taken action upon,
if needed. Future research into this area can correlate the reasons for deviations, i.e. ATCO request vs.
pilot request (weather, safety), with data stemming from other sources(weather radar); or can develop the
FAIR further to look specifically at YoYo flights [4]. Another interesting avenue is to use the FAIR to assess
whether the change in route charges [2] had an effect on planning practices and thus, on deviations. The
other focus in this paper, the Unsupervised Airline Clustering, provides a framework to objectively cluster
airlines in groups and to assess whether the current marketing narrative is reflected in the actual business
model. It is the first use of Unsupervised Machine Learning on airline clustering, and proves also that both
operational and Complex Network metrics are relevant indicators of airline business models.

In conclusion, this research represents a closer step to the fair and equal use of the EU airspace and
furthers with one step the precise performance-based assessment of aircraft operators trajectories. Such
assessment will be of utmost importance when the ’first-come first-served’ rule in trajectory planning will
evolve, and a measure to gauge the credibility of airlines to fly their desired routes will be critical.
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1
Introduction

The Air Traffic Network is an intricate and complex system, comprised of airports, navigation points, air
traffic control, aircraft and many technical systems supporting the delivery of a safe and efficient service to its
customers. In such a vast enterprise, characterized by dynamic interactions and unforeseen events, deviations
from the planned trajectory occur often. Until now, the network has been able to support the increase in
traffic and has shown remarkable resilience to the events causing deviations. However, traffic is expected to
grow and order to accommodate the extra capacity, the Single European Sky (SES) initiative was launched
in 2004, together with its research-oriented body, SESAR. Under the umbrella of SESAR and Air Navigation
Service Providers (ANSPs), operational experts together with research bodies are working towards enabling
a three-fold increase in capacity, however this increase can be rendered useless if aircraft do not stick to their
planned trajectory.

A deviation can be defined as an aircraft not following its intended flight path. Deviations are closely
linked to airspace capacity and delays, and can occur due to a multitude of factors. In November 2018 it has
been reported that roughly 11% of delays are caused by weather EUROCONTROL [27]. Particularly in the
en-route phase, there has been an increase of more than 125% in weather driven delays. These are highly
linked to en-route deviations, however at the level of the entire Air Traffic Management (ATM) system, one
must take into account that not all of them are caused by deviations, as some of them occur on ground, at
airports.

(1.1.a) Average daily traffic year-to-date as reported in
November 2018

(1.1.b) Reasons for En-route ATFM delays in November
2018

Figure 1.1: Network Performance: traffic and en-route ATFM delays. EUROCONTROL [27]

Capacity is at large, influenced by a number of factors, however the focus of this report will be on
deviations and indirectly, on delays. Deviations occur during flights almost all the time, be it due to other
traffic, air traffic control, Air Traffic Flow measures (ATFM) and in some cases, weather. The deviations are
considered as is and, even if their operational effect at network level translates to delays, they are merely a
symptom and a metric for the management of the network.
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Weather is at large, unpredictable, although notable advancements have been made in modelling and
predicting weather events especially for the ATM industry Rubnich and DeLaura [58], DeLaura et al. [23],
Hauf et al. [39]. A report EUROCONTROL [26] captures European stakeholders strategy on severe weather
avoidance, as well as a summary of the available resources and the impacts of each actor involved in ATM.
Moreover, it includes the results of a survey sent to the Member States which clearly states the risks added
by the increase of adverse weather events, specifically, for the en-route and TMA ATC the most relevant
weather hazards are: severe turbulence, lightning and in-flight icing. Typically, these hazards are associated
with the existence and the development of convective weather. Typical procedures identified to cope with
these situations provide sub-optimal trajectories and contribute to ATC workload increase and are further
detailed in section 4.1.

This report presents a literature review of the analysis on LCC and NC approach on deviations and
possibly dealing with small-to medium severe weather events in Europe, using Complex Network Theory and
operational metrics. The remainder of this report is organized as follows: Chapter 2 presents the data to be
used in the project: the types of information obtained from EUROCONTROL’s Demand Data Repository
and the weather data used to validate the results obtained in the first stage of the thesis. It also presents the
weather phenomena most relevant to the Air transportation industry. Chapter 3 delves into Complex Network
Theory and describes some of the basic theories in graph network and percolation, highlighting their use in
Air Transportation. A subsection deals also with Agent-Based Modelling techniques and some platforms
supporting such modelling. Chapter 4 describes the various airline types and some of their particularities,
followed by a detailed analysis on trajectory deviation. This chapter underlines some of the key research
advancements until now and highlights the most relevant metrics and methodologies in flight deviations.
Chapter 5 draws the conclusion of this Literature Study.



2
Data Description

2.1. Flight Trajectory data
Data expected to be used is stored in an online repository owned by EUROCONTROL called the Demand
Data Repository 2 (DDR2). Historical traffic can be downloaded from here for research purposes. At the
moment of writing this report, flight data type of ALLFT+ covering the whole year of 2017 have been
obtained.

ALLFT+ data contains information on the M1 planned, M2 ATFM regulated and M3 realized trajectories.
Below a sample of such data fields relevant for the thesis project, with additional explanations.

Origin Destination Aircraft ID Operator Aircraft type IFPS ID AIRAC M1 Points M1 Profile
LSZH EDDC SWR918 SWR F100 AA63375970 425 67 Table 2.2

Table 2.1: DDR2 ALLFT+ Planned Trajectory (M1) data sample.

Table 2.2 below details the content of the M1 point profiles relevant to analyse the trajectories. The first
row contains the actual data, whereas the second one explains the content above.

20170508164700 LSZH DEGES2W 14 0 A 472729N0083253E
yyyymmddhhmmss Navpoint Sector FL Speed[kts] Navpoint type latlong

Table 2.2: Mኻ point profile detailed

2.2. Weather data
Two major sources of weather data have been investigated, the first one being the European Centre for
Medium-Range Weather Forecasts (ECMWF),which offers extensive weather data ensembles and forecasts.
These cover vast surfaces and contain a high number of data related to pressure, moisture, temperature and
others. However, there are some challenges in processing the data, since it is in GRIB and NETCdf file
format, which are a binary file format that can be read using either UNIX -based programming languages
or dedicated weather analysis and data manipulation software such as METView. The second, source is the
European Severe Weather Database (ESWD) that contains weather reported by National Agencies as well
as volunteers. It is easier to read however the weather data is most likely reported at ground level, with no
indication of altitude.
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3
Complex Network Theory

Complex Networks Theory deals with today’s intricate and large systems, allowing us to understand previ-
ously unknown ways our world behaves. Examples of such networks are the Internet, the World Wide Web,
the roads in a country, even a cell, the human organism or the navigation points making up the ATM infras-
tructure. This chapter dives into the mathematical background of such networks, known as graph theory,
and then proceeds to define some of the useful Complex Network properties and also presents interesting or
well-known types of networks and their use. Finally, the discussion takes on how communities can emerge in
networks, and how they can be identified, both in more traditional ways and in novel ways (i.e.: modularity
- based detection).

A review by Albert* and Barabási [3] on the statistical mechanics of complex networks makes a good
starting point for the literature review on this section. The research commences by making a case for the 3
main model types:

• Random graphs

• Scale-free networks, having to the so-called "hub" property of a network in which some nodes play a
particular role. These exhibit a deviation from the Poisson distribution one would expect from the
random network, usually in the form of a power-law tail or an exponential behaviour. (Barabassi,
Albert 1999)

• Models with the small-world property, which are defined by networks with nodes of high degree and a
short average path length

A number of empirically analyzed networks present give ground to the following comparisons, some of
which are worth mentioning. For example, a network of high-energy particle where the nodes are the particles
and the edges are the physical relationship between them, developed in the mid ᖣ90𝑠 by Newman , appears
with an almost perfect power law distribution, which in practice is nearly impossible. Food Networks elicit
high clustering, with Montoya and Solé [48] showing that the degree distribution follows a power law with an
unusually small exponent, leaving room to challenging their findings, as the distribution might be considered
exponential (perhaps also due to the low number of nodes in their analysis). Thus becomes important that
the analysed network has sufficient data points; for example in this case the nodes are the species and the
edges represent one of predator - prey relationships.

Language presents itself as a particular network. One unpublished study by Yook, Jeong and Barabassi
considers words as nodes, connected to their synonyms by links. The resulting network unveils a major
cluster of words forming the heart of the network, with a few of the words that that do not have synonyms.
Such networks can be found also in other areas of interest. Cook et al. [21] identifies a similar topology
in the delay causality of airport, where a supercluster of airports consisting of most delays "forced" into
one another, emerges, with few airports not heavily impacted. Figure 3.1 shows how such supercluster is
organized.
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Figure 3.1: Supercluster example of airports delay causality. Cook et al. [21]

3.1. Graph Theory
A graph is made up of vertices, nodes, or points which are connected by edges, arcs, or lines. A graph may
be undirected or directed, meaning that there is no direction defined on the edges between two points or the
relationship between the two nodes is applicable in both directions.

Graph theory was first developed by the work of Leonhardt Euler, who thought about small, usually highly
regulated graphs in his work in the 18፭፡ century. A few hundreds of years later, graph theory has evolved, as
the mathematical backbone of the ever - expanding networks. A particular interest has been gauged towards
the study of random graphs - as most complex networks seemed arbitrary without the proper instruments to
investigate them. In their work, Albert* and Barabási [3] refer to a number of real-life networks and review a
number of concepts, among them the inception of random graphs and their most appealing features as found
out by Erdős and Rènyi [24].

The model developed by Erdős and Rènyi [24] remains the basis for any random graph: defining a random
graph with N nodes and n edges out of the potential N(N-1)/2 edges that can form. The probability space
is made up of 𝐶፧ፍ(ፍ−ኻ)/ኼ) equiprobable realizations. The greatest discovery of the authors was how swift and
unannounced some properties may appear in the graph, depending on whether the connection probability
P(N) rises slower or faster compared to a critical probability 𝑃፜(𝑁) while 𝑁 → ∞. Many properties in random
graphs are not N-independent,however, as proven by Erdős and Rènyi [24] , the average degree of a graph
has a critical value independent of the graph size:

< 𝑘 >= 2𝑛/𝑁 = 𝑝(𝑁 − 1) = 𝑝𝑁, (3.1)

with 𝑝 the probability of the edges to exist between any two nodes.

3.2. Random subgraphs and random graph evolution
In this section,the main types of structures are presented and mathematically defined: trees and cycles. As
their names suggests, cycles consists of subgraphs whit the average degree of 2, as each node is connected
with the next node only by one edge. Trees on the other hand, cannot form cycles by definitions and have
an average degree of 2 − 2𝑘 with k number of edges.
The most important aspect of random graphs are the critical probabilities. These are probabilities that edges
exist and mark the sudden change of topology of random graphs. If we consider 𝑍 = −𝑘/𝑙 with k nodes and l
number of edges, therefore p ~𝑁ፙ Depending on the number of edges and nodes, various critical probabilities
have been outlined, as defined in the table below:
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Z Subgraph characteristics
−∞ Inexistent Graph
−2 Separate edges start to appear, forming random, individual lines
−

ኽኼ Trees of order 2 start appearing, with higher orders as z moves closer to −1
−1 Trees of all orders are present, and at the same time cycles appear
−

ኼኽ Complete cycles of order 4 start appearing; as Z gets closer to 0, higher order complete cycles appear
> 0 Most nodes belong to cycles and trees. Every new edge means one less cluster. Super-tree is forming1 Graph changes behaviour abruptly. 𝑁ኼ/ኽ nodes belong to one giant, complex structure
> 1 Smaller, disconnected trees connect to the larger, already existing structure

Table 3.1: Random Graph evolution with increase of ፙ = −ᑜᑝ Erdős and Rènyi [25].

Generalizing, the critical probability of having specific structures translates into:

• Tree of order k: 𝑝፜(𝑁) = 𝑐𝑁−፤/(፤−ኻ) (3.2)

• Cycle of order k: 𝑝፜(𝑁) = 𝑐𝑁−ኻ (3.3)

• Complete subgraph of order k: 𝑝፜(𝑁) = 𝑐𝑁(፤−ኼ)/(፤−ኻ) (3.4)

3.3. Complex Network properties
3.3.1. Degrees and degree distributions
The degree of a node reflects the number of edges or links connected to it. In a directed graph, the in-degree
represents the number of edges arriving at the node and the out-degree represents the number of edges going
out. Studying degree distributions allows a quick and precise analysis of the graph. It offers important insights
about the heterogeneity of the network and highlights functionality aspects of specific nodes(i.e. hubs), as
explained in section 3.6 on scale-free networks and section 3.5 on networks with small-world property. Most
common distributions are presented in Table 3.2 below:

Distribution Definition Description

Poisson 𝑃(𝑥) = 𝑒−᎘ ᎙ᒐ፱!
Discrete; Characterizes random graphs degree distribution , with𝜆 the average number of events / interval,
e being Euler’s number;
x taking values 0, 1, 2... and
x! is the factorial of x

Power law 𝑃(𝑥) = 𝐶𝑥−ᎎ Not found in empirical scale-free networks, rather in
theoretical scale-free networks, where:𝛼 is the scaling factor, usually 2 < 𝛼 < 3
x is the variable of interest
C is a constant

Power law
w/ exponential
cutoff

𝑃(𝑥) = 𝑥−ᎎ𝑒−᎘፱ Usually found in real-life scale -free networks, where𝛼 is the scaling factor𝜆 is the average value,
x is the variable of interest.

Table 3.2: Most encountered degree distributions in Complex Network Theory. Clauset et al. [20]

If we are to consider the degree, for any given navigation point 𝑛𝑎𝑣።, its degree can be written as𝑑𝑒𝑔፧ፚ፯ᑚ =∑𝑘 ∈ 𝐾𝑙።፤ , (3.5)
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where 𝑙።፤ is any link connecting the navigation point 𝑖 with its neighbours. Power law distributions have
been intensely studied in recent years as they offer a model to study the dynamics of scale-free networks, i.e.
networks whose characteristics do not scale up with an increase in time span or with the addition of nodes.
Power laws characterize networks in that just a few nodes have large amounts of connections, whereas the
vast majority of nodes exhibit a low amount of links. Some examples are the link distribution of the World
Wide Web Clauset et al. [20] or the degree distribution of the outgoing calls of the AT&T service provider
Faloutsos et al. [28], class hierarchy in programming by Wheeldon and Counsell [68] are just a few of the
examples of empirical networks exhibiting such characteristics. Some types of power-law distributions are
particularly interesting for developing search algorythms by using the nodes with higher degree connectivity,
as explained in Adamic et al. [1]. This has lately become a relevant issue, especially with the change in
electronic networks architecture and peer-to-peer file sharing. A more traditional and well-known study on
power-law distributions is related to the dynamics of the networks, or how the underlying distribution of the
graph ultimately becomes characterized by a power law.

The underlying principle at the basis of forming a power law distribution is the preferential attachment
, known also as the rich getting richer principle or informally, the ’Yule Distribution’. In essence, the
preferential attachment law posits that nodes with higher number of links tend to increase their degrees
faster than the ones with less number of connected edges. Similar to power law distributions, Gibrat’s law
or ’Gibrat’s rule of proportionate growth’ is another example of log-linear distribution used in growth rate
analysis. It is commonly associated with Zipf’s Law - which states that in some processes, sets, or more
commonly corpuses of natural languages, the frequency of words is inversely proportional to their rank in
the frequency table Sen and Wang [61]. More details on power laws and scale-free networks is presented
in section 3.6, whereas a visual representation of such power law in comparison with the classical Gaussian
distribution or "Bell Curve" is shown in Figure 3.2 below.

Figure 3.2: Example Power law distribution and Gaussian distribution. Barabási [6]

The Poisson distribution is one of the most common probability distributions. It is of discrete type and
counts how many events happen in a given time-frame or fixed environment, given that the events occur
arbitrarily and are independent, i.e. they do not depend on each other Erdős and Rènyi [25]. It is at the
basis of the random graph theory Erdős and Rènyi [25], and considers that graph links (connections) can
occur with a certain probability 𝑝 which, for some particular value ranges, generates specific and highly
predictable types of graphs.

3.3.2. Node strength
The strength of a node in a network represents the sum of the weights of all the links connected to it. By
looking at an Air Route Network, the strength of some nodes can highlight potential hubs, with higher values
meaning more traffic. For example, Kai-Quan et al. [43] show that for the Chinese Air Route Network, the
distribution of routes is rather homogeneous, as only a few routes connect each two points, and the routes
are spread in order to cover most of the Chinese Territory. When looking at the traffic passing through these
routes, we find that a high fraction of traffic passes through only a few routes: a clear example on how degree
distribution can offer a different type of information compared to strength distribution. Another relevant
example on node strength analysis is mentioned in Barrat et al. [8], where a network of scientists (nodes)
and the number of collaborations (weighted edges) can offer at a glance the entire scientific productivity of
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an author.

3.3.3. Clustering Coefficient
The clustering coefficient of a node 𝑖 with 𝑘። connections to its adjacent 𝑘 nodes in a complex network is
given by the following formula: 𝐶። = 2𝐸።𝑘።(𝑘ኻ − 1) , (3.6)

where 𝐸። is the actual number of edges present between all the number of nodes linked to the original node𝑘። Albert* and Barabási [3] An example of specific clustering coefficients is a situation in which in a group
of nodes, are all connected between themselves, such as triangles or ’cliques’ - forming a so-called maximal
complete subgraph. Another common clustering coefficient variant found in literature and proposed by Watts
and Strogatz [67] is given by: 𝐶ᖣ = 3 x number of triangles

number of triples
, (3.7)

where triples are composed of 3 nodes with 2 links. This definition is linked to the concept of "fraction
of transitive triples", highly studied in sociology. The clustering correlation of a network is found out by
averaging all the coefficients of all nodes. Therefore, for random graphs, the network clustering coefficient is
given by its 𝑝, or the probability that a link exists between two nodes:𝐶፫ፚ፧፝ = 𝑝 = ⟨𝑘⟩𝑁 , (3.8)

It is a common metric among social network studies and has been used in various studies involving
physical or food networks. Empirical (or real) networks usually exhibit high clustering correlations and also
form communities, a form o clustering identified also in the study of the air navigation infrastructure,further
detailed in Section 3.8

3.3.4. Average path length
The average path length is a network indicator of how many steps are needed on average, to reach any
point in the network, starting at a random location. One of the most famous applications of this concepts is
Stuart’s Milgram ’Six degrees of separation’ which postulates that on average, a person needs to go through6 people and their connections to reach almost anyone in the United States.

The average path length is defined in Eq. 3.9. For the sake of clarity, we give also the definition of a path,
i.e. a set of vertices and links passed through when going from an initial vertice to a final vertice without
passing twice through the same vertice. 𝑙ፆ = 1𝑛 ⋅ (𝑛 − 1) ⋅∑።≠፣ 𝑑(𝑣። , 𝑣፣), (3.9)

where, 𝑑(𝑣ኻ, 𝑣ኼ) denotes the shortest distance between the two vertices of a graph 𝐺, with 𝑣ኻ, 𝑣ኼ ∈ 𝑉. We
consider 𝑑(𝑣ኻ, 𝑣ኼ) = 0 if 𝑣ኼ has no link to 𝑣ኻ to 𝑣ኼ i.e. it cannot be reached. The average path length is one
of the 3 most important network topology characteristics, together with degree distribution and clustering
coefficient. It is a measure of efficiency in a network, and internet networks are primarily build with this
condition in mind, as it reduces costs and speeds up any operations carried throughout the network.Albert
and Barabási [2] A visual representation of the concept is given in section 3.5, where the Walter- Strogatz
model that made it famous is also shown.

3.3.5. Connectedness and diameter
The diameter of the graph is defined as the maximal distance between any pairs of its nodes, or , in simpler
terms, the longest shortest path between any two nodes in a network. Connectedness is also a topological
feature in graphs, and refers to the fact that each vertex or node is connected with a link. A much stronger
characteristic is path connectedness, which intuitively refers to the fact that there is a way to get to each
vertex in the graph. The Air Traffic Management network is a path connected network.
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3.3.6. Centrality measures
There are several measures of centrality useful to identify nodes with various functions in a network. One of
them is betweenness-centrality , which measures the number of times a node acts as a bridge along the shortest
path between two other nodes. First introduced by Linton Freeman as a measure for quantifying the control
of a human on the communication between other humans in a social network, it also highlights the important
nodes in the exchange of any type of information exchange. Fig 3.3 depicts the betweenness-centrality of a
small graph.

Figure 3.3: Betweenness-centrality increase from red to dark blue hue. Author: Claudio Rocchini

Eq. 3.10 defines the mathematical formalism to compute the betweenness-centrality:𝐶ፁ(𝑣) = ∑፬≠፯≠፭∈ፕ 𝜎፬፭(𝑣)𝜎፬፭ , (3.10)

where 𝜎፬፭ represents the total number of shortest paths from node s to node t and 𝜎፬፭(𝑣) is the number of
those paths that pass through node v. There are other types of centrality measures existing in literature,
such as, closeness centrality, which measures the extent to which a node is close to all other nodes along the
shortest path. It reflects the node’s accessibility in a given network and can be viewed as the inverse of the
average shortest path from that particular node to all nodes in the network Wang et al. [66]:𝐶ፂ(𝑖) = 𝑛 − 1∑፯ᑛ∈ፕ,።≠፣ 𝑑።፣ (3.11)

Degree centrality refers to the number of edges that a node shares with others, and thus symbolizes the
importance of the node in a network. Depending on the degrees of the nodes it connects to, it can be either
assortative or disassortative, meaning it tends to connect to nodes that have either high or low degrees,
analysis used by several authors to reflect geographical, economic and political implications. Bagler [5];
Kai-Quan et al. [43]; Wang et al. [66]:

𝐶ፃ(𝑖) = ፧∑፣=ኻ 𝑎።፣ (3.12)

Another centrality measure geared towards Air Transport Networks can be defined relative to the Origin-
Destination pair as in Monechi et al. [47], taking into consideration only the nodes that are passed by travelling
from an Origin to a Destination: 𝐵ፎፃ። = ∑፣≠፤≠።𝜎፤፣ ∣𝑖∣/𝜎፤፣𝑂𝐷፤፣ (3.13)
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This adaptation allows to compute centrality for nodes actually used by specific O-D pairs and not of the
entire network.

Finally, random-walks betweenness centrality (RWBC) is an adaptation of centrality measure defined by
Newman [50] which generalizes the usual betweenness centrality considering other paths beside the shortest
ones as relevant. This betweenness centrality is defined as:𝐵ፑፖ። = ∑፣≠፤≠። 𝑟፣፤(𝑖) (3.14)

where 𝑟፣፤(𝑖) is the probability that a walk originating in vertex 𝑣፣ and ending in vertex (node) 𝑣፤ passes
through node i. This version might be useful to address centrality for specific en-route air navigation points.

3.3.7. Graph spectra
The graph spectra can be used to obtain many characteristics of a graph as it is made of the sets of eigenvalues
of the adjacency matrix. The Adjacency Matrix of a graph is a square matrix with values of 1 if a link exists
between the nodes on the two matrix sides, or 0 if there aren’t. Albert* and Barabási [3]. Spectral density
is written as:

𝜌(𝜆) = 1𝑁Σፍ፣=ኻ𝛿(𝜆 − 𝜆፣) (3.15)

The 𝑘𝑡ℎ spectral moment gives information about the networks topological structure, with the first
moments in a graph offering statistical information on degree distribution for example:

• First moment - Mean of the degree distribution

• Second moment - Variance of the degree distribution

• Third moment - Skewness of the distribution

• Fourth moment - Kurtosis of the distribution

The more popular statistical instruments, mean and variance, are defined as the expected value and the
expected squared deviation from the mean in a random variable, respectively. The skewness is defined as the
asymmetry of the distribution with respect to its mean, so if the ’fatter’ tail is to the left of the mean towards
the x-axis, it is called ’positive’ - skewed, and negative it is to the right. Finally , kurtosis is a measure of
the arching of a distribution - simpler put, it is a property of the shape of the tails of a distribution.

3.4. Generating function
The Generating function formalism is defined as the function at the basis of the of the probability distribution
for the degree of a network, for example. It is usually in the form of a power function, 𝑥፧, and is particularly
useful because the coefficient of an element gives the probability of having a node with the degree equal to
the power of the considered element (Albert* and Barabási [3]).

3.5. Small-world networks
The small-world property is usually found in the real-world networks, as they exhibit a high degree of
clustering and a short average path. The Watts-Strogatz model Watts and Strogatz [67] posited that while
rewiring a regular lattice to become a random graph, a small-world network appears: the local clustering is
preserved and it takes a few links to reach any node from any other node, as seen in Figure 3.4 below.

Small-worlds can be grouped under three types as Amaral et al. [4] proposes (Scale-free, broad-scale and
single-scale), whereas Kai-Quan et al. [43], Barabási and Albert [7] and others consider them as a single class
or even a property on its own. Small worlds are found also in other instances, for example the network of
collaborating actors, but also in the World Airport Network, as detailed more in Section 3.8.
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Figure 3.4: Example of regular lattice randomization with small-world instances. Watts and Strogatz [67]

3.6. Scale-free networks
Scale-free networks are a type of network with at least one characteristic, usually the degree distribution or
node strength distribution, following a type of power law. They have attracted much research interest lately
as several real-life networks or distributions follow such power-laws, where a few nodes are responsible for the
major part of the information flow in the network. Examples include biological networks Jeong et al. [41],
[64], wealth distribution in the world and the Internet. These networks have a few particular characteristics,
such as a high degree of decentralization and highly resilient. However, error tolerance comes at a high price,
as they are extremely vulnerable to attacks. This stems from the fact that the removal of important nodes
will lead to a serious decrease in network capabilities.

At the basis of the scale-free concept is the power-law distribution (Eq.3.16) which emerges as a property
of the network following the ’preferential attachment’, better described as the probability that nodes with
already higher degrees have a higher chance of getting new connections.𝑃(𝑘)~𝑘᎐ , (3.16)

with usually 𝛾 ∈ (2, 3), denoting the level of curvature that the power law describes.

3.7. Percolation Theory
Percolation theory refers to networks rather than graphs, and is primarily concerned by the probability of
a certain network to percolate, that is, the network to connect into one large cluster. However, several
properties apply to regular lattice as they apply to graphs, the reason being that , as Albert* and Barabási
[3] clearly explains, the infinite-dimensional limit (𝑑 → ∞) is the meeting point of the graphs and lattices. As
several properties hold for percolation in such infinite dimension, it is possible to use them in graph theory
as well.
The percolation theory has multiple applications in natural and engineering sciences, having been developed
by Broadbent and Hammersley [16] as a method of analysing crystals and dealing with random media, it is
now used in hydrology and analysis and modelling of porous media such as soil Berkowitz and Balberg [10],
landscape and coastline analysis. Percolation can be associated also with fractal structures, as they exhibit
a large, connected cluster, which develops after a certain critical critical percolation probability is attained.
This is commonly referred to as phase transition and is yet another field where percolation theory is highly
used. Such transitions can, for example, change the chemical structure of elements or physical topology,
marking the birth of new elements as further elaborated in Berkowitz and Balberg [10]. One novel use in
traffic systems of percolation is proposed by Shang et al. [62] with an ABM model consisting of 2 layers ,
on of virtual (cyber) nature and one of physical nature. The model uses percolation theory as the basis for
information sharing between car drivers in a network, and calculates the total cost of travel function of the
time it takes for the network to converge. The paper concludes that a high, positive correlation between
the percolation rate and the convergence time is a clear indication of the utility of information -sharing in
clusters , with agents having a local overview on the situations.
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Figure 3.5: Percolation example of a 2d lattice network. Chen et al. [18]

3.8. Complexity Science in Air Transport
All concepts applicable in Complex Network Theory mentioned in Chapter 3 have been applied in ATM or
in air transport operations with various different purposes. A network is defined by links and nodes and thus
can be built in several ways, by considering airports as nodes,connected by non-stop flights Bagler [5], Cook
et al. [21]. Other studies consider the network made of navigation points and air routes Kai-Quan et al. [43].
Irrespective of the choice of network elements, Network Science is a useful paradigm to assess the current
network topology and its performance but also the evolution in time, identifying trends and bottlenecks.
This section presents first how has Complex Network Theory been used by studying multiple real networks
and their topology, by well known indices (degree distributions, betweenness, average path length, clustering
coefficients, and others. In addition, a separate subsection is focusing on the dynamics of the networks or
comparisons between air transport networks and between different modes of transportation. The known CNT
KPIs of real ATM networks are presented and compared to the same KPIs of a random model in order to
understand the attributes of the real-world system.

Topological aspects of the network are a much researched avenue in ATM and network science. Topology
can be physical or logical: The first one refers to how the layout of the nodes and links is done, whereas the
second one refers to how data is carried around the network. In the case of ATM studies, logical topology
can be considered as aircraft flow across nodes (be they airports or nodes). For example, from the physical
topology perspective, the literature shows that the European ATM network can be characterized as a scale-
free, small world network with communities at multiple scales Amaral et al. [4];Guimera and Amaral [31];
Guimera et al. [32]. Research in ATM has been carried out at national Bagler [5];Han et al. [36], local-regional
Han et al. [37] or at the level of entire regions Guimera and Amaral [31],Guimera et al. [32]).

One example of national networks by Guida and Funaro [30] investigates the topology of the Italian
Airport Network, considering the nodes as airports, linked by non-stop flights.The out-degree of a node,
i.e., an airport, is defined as the number of trajectories departing from this airport to all other airports
in the Italian airspace. Based on this network representation, the authors computed and showed that the
node distribution and the the correlation of degrees and ’betweenness’, follow a Double Pareto Law, fitted
by two different exponents. However, the authors fail to completely align the Italian Network with all the
characteristics of a small-world network: there is no conclusion on whether the average path length of the
IAN is characteristic for small-worlds, and the resulting clustering coefficients are notably lower than those
of random networks, whereas real world networks exhibit considerable higher clustering Coefficients due to
the natural tendency to form communities Gurtner et al. [33].

Kai-Quan et al. [43] on the other hand, provide a consistent analysis of the Chinese Air Route Network
(CARN) in comparison with the Chinese Airport Network (CAN): the first network consists of air navigation
waypoints connected by air routes, whereas the second one is defined by airports connected by non-stop
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flights. It provides a complete analysis by a one-to-one topological comparison of both transport structures
and highlights the critical waypoints in the air Route Network, the exponential distribution of the degrees,
low clustering coefficient, large shortest path length in the Chinese Air Route Network (CARN) as well as the
traffic distribution and the traffic increase patterns in East and West China. Moreover, it goes in depth by
cross-comparing degree-degree correlations, concluding that CARN tends to resemble more a regular lattice
whereas CAN is surely a small-world network due to its higher clustering and lower average path (in this case
being 2, a value which does not surprise, as most passengers fly a 2-flight trip. The traffic aspect has been
analysed in a time window of 8 years (2002−2010) and sheds light on different aspects of air transportation
in China by analysing and comparing the Air Route Segments with the Airline routes, as well as by looking at
the traffic flowing through each waypoint. The authors find that traffic flow through waypoints spans 4 orders
of magnitude and despite the rather homogeneous topology of CARN, and highlight a linear degree-strength
correlation of the waypoints with a few exceptions, for which operational and geographical arguments clearly
explain why they do not fit.

Bagler [5] finds out that Airport Network of India (ANI) also exhibits the small-world property, when
considering airports as vertices and direct flights as the connections. The article does a fine analysis of in-out
degree correlations of airports and reinforces the disassortative mixing of the higher degree nodes with the
lower degree ones, while also emphasizing the connections between the higher ranking nodes as a byproduct
of airport manager decisions. This fact is also apparent by the analysis of the clustering coefficient and the
weighted clustering coefficient reinforcing the ’rich-club’ phenomenon. One interesting aspect of the ANI
is that most nodes can be reached from any other node using just one layover, as 78% of the nodes are
connected by a path of 2. Using the cyclic nature of flights and an approach oriented towards ’transport’
with the support of complex network theory, Li and Cai [45] investigate the degree variation across days or
weeks, with the nodes being airports in China, linked by non-stop flights. A remarkable discovery is that a
significant positive correlation has been found between the frequency of the flights between two nodes and
the degrees of said nodes. Upon a closer look the, authors seem to have confused the calculations of diameter
and average shortest path, reporting the value of the latter for both KPIs.

To begin with, Zanin and Lillo [71] describe the metrics and the topology of a network shedding light
on various business strategies adopted by low-cost of network carriers. Such business choices are thought to
have a direct impact on passenger mobility analysis and on the network evolution in time, while the former
adapts and is changing the latter.

Woolley-Meza et al. [69] perform an initial, comparative study between the Global Cargo Ship Network
(GCSN) and the World Airport Network (WAN) both at global and a few local sites. An interesting feature
of the paper is displayed below in Figure 3.6: the logarithm of the shortest path from specific airports or
harbours to all other points in the network shows that the closest points are always the ones with higher flux
or traffic (blue), whereas the furthest ones are the ones with less traffic (flux in the case of GCSN and air
traffic in the case of WAN.

Figure 3.6: Shortest path trees for Atlanta airport and Shanghai harbour. Woolley-Meza et al. [69]

Pien et al. [53] ropose a new index, the Relative Area Index (RAI), to assess more consistently the
robustness of the European Air Traffic Network, consisting of Airports and airspaces, being one of the few
that integrate the two in a network representation. The authors define a robustness index by calculating the



3.9. Agent-Based Modelling in ATM 55

influence of nodal capacity-reductions on network capacity, based on lagrangian exponents is rounded up by
a quantitative analysis of the network topology, highlighting its apparent hierarchy, and a degree-strength
correlation analysis considered a weighted network.

One paper that deserves a separate mention is investigating the Air Transport Network by considering
countries as nodes, and aggregate the flights from one country to another into one link with weights depending
on the number of flights between the countries.Wandelt and Sun [65] It investigates the evolution of traffic
during 9 years by looking at ticket data and performs a topological and functional assessment of the network.
Countries are assessed based on their criticality in the overall global network, with complex network KPIs such
as degree and density correlated with GDP, Country Area, population, GDP, GNI per capita, life expectancy,
and CO2 emission. In addition, the authors describe 3 different kinds of betweenes: hops, distance-based
and passenger-based betweeness, concluding that the hops-betweeneess is highly correlated to the distance
based betweeness. Other aspects worth mentioning are the MDS (Minimum Dominating Set), defined for a
network with the set of nodes N, as a set of nodes S with 𝑆 ⊆ 𝑁 such that for each 𝑛 ∈ 𝑁 we have 𝑛 ∈ 𝑆 or n
is a neighbor of at least one 𝑠 ∈ 𝑆. The MDS is the dominating set with the smallest size Nacher and Akutsu
[49], in other words, the smallest set of nodes controlling the network or adjacent to the nodes controlling
the network. For scale-free networks, usually this amounts to 20% of the nodes.

Another particular approach is taken by Bongiorno et al. [13], who carry out a network study of the central
-south-west European countries over an AIRAC cycle, in which network topological aspects are analysed and
compared. The proposed network consists of navigation points and the flights connecting them, and yields
an exponential function for its degree distribution with a rather heterogeneous waypoints distribution. Such
heterogeneity stems from geographical peculiarities but also from individual nations choices: for example in
France there are a higher number of waypoints, thus reducing the local complexity and but chooses to route
traffic on a much smaller number of waypoints, whereas in UK the traffic spread is more balanced across the
entire airspace. The unique aspect of the article is that it is able to link the network topology to the flight
efficiency and hence the strategic choices that airlines take when choosing to fly a specific route.

Table 3.3 displays a summary of the topology aspects of different networks, how these networks were
constructed and how they were analysed. A short explanation of the meaning of the columns is given in the
table descrition. The last column contains specific analyses or aspects, that were not found in other papers
mentioned in the table.

Table 3.4 shows the main Complex Network KPIs measured in some of the surveyed literature. As ex-
pected, average shortest path and clustering are two of the most studied metrics. What comes as a surprise is
the apparent absence of average degree measure - however some articles mentioned in Table 3.3 do highlight
the degree distributions, showing that degree is still largely employed to characterize a network.
Another noteworthy aspect is the networks themselves: a large portion consists of airports, with air naviga-
tion points representing a small fraction of the studies.

3.9. Agent-Based Modelling in ATM
Agent-Based Modelling (ABM) has become one of the most robust modelling paradigms of complex systems.
In most aspects, it can compete with equation-based modelling , being particularly useful to capture the
emerging behaviour of a system. Agent-based modelling is considering individual agents that can interact
with their peers and with the environment, being a particular useful modelling paradigm for socio-technical
systems, such as the ATM or in general in Air Transportation systems.

A few examples of ABM being used in the Air Transportation System is that of a decentralized taxi model
proposed by Udluft [63] to implement, analyze, and evaluate a decentralized control approach in the context
of taxiing aircraft . Because it is unclear if the emergent behavior of decentralized control will result in safe
and efficient operations, the amount of information to be shared with the local agents or in this case, ATCOs,
on the state of the runways and the taxiways is critical. The author demonstrates that a decentralized control
for aircraft taxiing operation can result in stable operations.

Janssen et al. [40] Perform an analysis on Schiphol Airport to assess the trade-off between security and
efficiency, considering an external attack in one of the terminals. Besides emergent properties, ABM allows
for heterogeneity at multiple levels, including agent types, their actions and interactions, in order to model
realistic operations.
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Multi-agent systems have been extensively used also in Safety Analyses in ATM, Blom et al. [11] developing
a Multi-Agent Dynamic Risk Modelling framework called TOPAZ, encompassing Agent-based Modelling,
Human performance modelling, Petri Net modelling syntax, rare event Monte Carlo (MC) simulation and
Sensitivity and Bias and uncertainty analysis. Using the petri nets as methodology and the Monte-Carlo
simulation for rare events, this variant of ABM proposes hazard identification for safety assessment by taking
into consideration the multitude of options in ATM operations design.

ABM covers several facets of the ATM operations, one of them being En-route ATC: Bongiorno et al.
[12] have developed an ABM capable of simulating Air Traffic using real trajectory data over a portion of
the entire ECAC area. Besides showing the capabilities of the model and the reliable statistical analysis
produced, the same authors propose an initial Agent Based-model to simulate and study the ’directs’ given
by ATCOs in the En-route phase of fligths - all while ensuring a conflict-free trajectory Bongiorno et al. [15].

This is to show that ABM is used as a modelling paradigm to go one step further than equation-based
modelling, in order to capture emergent behaviour, model information exchange and investigate resilience
principle in socio-technical environments such as the Air Traffic Management system.
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Network Nodes Links Topology (distr.) Correlation Coeff. Specifics Ref.

China
1.Arpts
2.Wpts

1.Flights
2.RT segment

Degree
Clustering
Avg path
Betweeness
Diameter
Edge length
Min max edge*

degree-degree
degree-strength
degree-clustering
degree-betweeneess
air segment - flight leg
betweeness - strength
traffic evolution - economic,
geographic, political

Mixing
Temporal analysis (weekly,
seasonal and yearly)
Geographical disparity

[43]

India Arpts Flights

Unweighted:
Degree
Avg. path
Weighted (cdf):
Strength*
Clustering Coeff.

Degree k- avg strength
of vertice w/ degree k;
Weighted C - Unweighted C

Mixing
Scaling
Correl.

hierarchicy
truncated scale-free
degree distribution

[5]

China Arpts Flights

In-out degree
(Un-directed)
Directed:
Flight weight
Clustering Coeff
Connectivity
Density
Efficiency

Subcluster diameter -
connection density
Weight - degree
Degree - degree

Mixing
Double pareto
law fitting

[45]

Italy Arpts
Flights
1 week

Degree (cdf)𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑒𝑠𝑠፫ፚ፧፝ degree-centrality -
Double Pareto law fitting
Seasonal comparisons

[30]

EU
countries

Wpts Flights

Nr of nodes*
Avg degree*
Max degree*
Avg, max strength*

Traffic - Fork Pearson

Efficiency (traj./ grand circle)
Predictability (negative delay [sec/km])
Analysis on deviations at
waypoint network level

[33]

World Arpts Flights

Degree
Betweeness
Norm. Betweeness
Clustering

Betweeness - Connectedness -

Multi-community analysis
(within-community degree
and participation factors: 7
different roles for nodes)

[55]

Austria Arpts Flights

Avg degree*
Nr. flights*
Flight weight expon.*
Clustering coeff.
Degree (weekly)
In/out flights

Degree-degree
Flights- weight distributions
In-out degree
Out degree - out degree
exponent

Mixing
Airline perspective,
network subset

[36]

Table 3.3: Table with main topology aspects of various papers. Columns ኼ and ኽ explain the meaning of nodes and links. In column ኾ, starred * elements represent a value,
not a distribution. Column ኿ refers to different coefficients used to characterize the correlations.
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Network Period Nodes/Links
Avg.
Degree

C 𝐶_𝑟𝑎𝑛𝑑 L 𝐿_𝑟𝑎𝑛𝑑 D 𝐷_𝑟𝑎𝑛𝑑 Connect. Eff. Ref.

Chinese
Air Route Network 2002-2010 1013/1586 3,13 0,08 - 14,08 - 39 - - - [43]
China 2002-2010 147/1055 14,35 0,79 - 2,2 - 4 - - - [43]
China 1 Week 128/1165 14 0,733 0,6 2,067 - 2,067* - 0,1433 0.484 [45]
India(unweighted) - 79/442 5,77 0,6574 0,00731 2,2593 2,493 4 - - - [5]
India 12/2010 84/13909(f) - 0,645 0,18 2,17 2,55 - - - - [59]
Italy 1.06.2005 - 31.05.2006 42/310 - 0,09 0,16 - - - - - - [30]
Italy 16.7.2005-14.8.2005 42/310 - 0,1 0,17 1,987 3,74 - - - - [54]
Italy - 33/105 - 0,418 - 1,92 - - - - - [72]
WAN 1.11.2000- 31.10.2001 3883/27,051 - 0,62 0,049 4,4 - - - - - [55]
WAN 11/2002 3880/18810 - - - 4,37 - - - - - [8]
Austrian Airline - 134/9560(f) 1,3 0,206 0,01 d - 2,383 18,67 - - [36]
US - 215/116725(f) - 0,618 0,065 1,403 - - - - - [46]
US 10/2005 - 12/2005 272/6566 - 0,73 0,19 1,9 1,8 - - - - [70]
Spain - 35/123 - 0,738 - 1,84 - - - - - [72]

Table 3.4: Table containing quantitative aspects of surveyed literature. All networks assume airports as nodes and direct flights as existing links, except those with an
additional(f) in Column ኽ who refer to number of flights in the network (traffic). Columns ኿ and ዀ show the Clustering Coefficient at entire network level, with the randomized

counter parts. Columns ዁,ዂ and ዃ,ኻኺ do the same for average path length and network diameter
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Trajectory Deviations

4.1. Flight Deviations
En-route flight delays added up to an average of 340 minutes per day last year in November in some FIRs,
with central EU FIRs such as Maastricht or Karlsruhe experiencing usually such issue. Avoiding en-route
weather plays an important role in the amount of delay experienced by the airspace users, as shown in
subpicture 1.1.b below.

(4.1.a) November 2018 En-route delay reasons compared
with previous year (4.1.b) Top 20 FIRs with weather delay november 2018

Figure 4.1: En-route weather ATFM delay statistics EUROCONTROL [27]

Following suit, the research community has mainly investigated delays as a whole Rebollo and Balakr-
ishnan [56] or how do they propagate through the network Jetzki [42]. Comparably little research effort has
been put into understanding the effects of weather at European level for the ATM en-route delays.

One of the research papers found focusing specifically on this topic is that of Bongiorno et al. [14],
which perform an in-depth analysis on the flight deviations in the German Airspace during an AIRAC cycle.
Deviations are considered from the realized trajectory compared with the filed flight plan by assessing whether
the aircraft has flown through the air navigation route point ( or simply referred to as waypoint).The statistical
approach underlies traffic deviations characteristics, such as an inclination for introducing deviations during
night-time compared to day-time, and in lower traffic situations. Furthermore, these deviations seem to
occur more frequently and at larger angle-to-destination closer to the departure airport. The metric used to
measure the said deviations is called "di-fork" (directional fork), and is a development of the "fork" Bongiorno
et al. [13]. The di-fork takes into consideration the traffic direction and is defined as:𝐹ጂ፭(𝑃) = 𝑑𝐹ጂ፭(𝑃)/𝑝𝐹ጂ፭(𝑃) (4.1)

where 𝑝𝐹ጂ፭(𝑃) is the number of flights passing through P as observed in the planned flight trajectories
and 𝑑𝐹ጂ፭(𝑃) the number of flights passing through P, as observed in the realized flight trajectories, and
missing the next navigation point as indicated in the corresponding planned flight trajectory. The authors
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provide a rigorous analysis of flight deviations by referring to the waypoints network and the di-fork by
characterizing pairs of points between which aircraft are most likely not to follow their planned trajectory
spatially and temporally. One of the conclusions is that deviations frequently occur close to the beginning
of the flight trajectory, thus indicating that they might not occur to recover from accumulated en-route
delay but rather due to ATC action to speed flights up, especially if the trajectory is has started with a
high angle-to-destination value.Additionally, an intra-day deviation pattern is proven due to the variation
in traffic levels, but it is also dependant on the particular airspace structure and operational procedures in
place.//

A survey EUROCONTROL [26] lists the identified operational weather avoidance strategies with their
associated impact on sector capacity and the associated risks.

(4.2.a) Strategy A/B: No Regulation/STAM: Avoidance
Delay

(4.2.b) Strategy C/D: No regulation/STAM: Capacity
Delay

(4.2.c) Strategy C/D: Regulation/STAM: Avoidance Delay (4.2.d) Strategy E: Optimised Avoidance Delay

Figure 4.2: En-route weather avoidance strategies EUROCONTROL [26]

The survey analysed a spectrum of available and used strategies for en-route and TMA ATC severe
weather impact management. The strategies are differentiated depending on the timeliness of notification
and communication, its potential/actual impact on ATC operations and the application of flow measures.
STAMs (Short-term ATCFM Measures) is a collaborative procedure which allows flight management positions
(FMPs) across different sectors to identify hotspots that need to be regulated with more time in advance:

• Strategy A: lack of communication with other ATC units or the Network Manager about the forecasted/
reported severe weather and related impact; traffic flow measures or STAM are not implemented; severe
weather risk is managed locally at tactical ATC level.

• Strategy B: systematic communication with other ATC units or the Network Manager about the fore-
casted/reported severe weather and the related impact; traffic flow measures or STAM are not imple-
mented; severe weather risk is managed locally at tactical ATC level.

• Strategy C: lack of communication at network level (with other ATC units or the Network Manager)
about the forecasted/reported severe weather and related impact; implementation of traffic flow mea-
sures or STAM in addition to tactical ATC mitigation measures.

• Strategy D: systematic communication at network level (with other ATC units or the Network Man-
ager) about the forecasted/reported severe weather and related impact; implementation of traffic flow
measures or STAM in addition to tactical ATC mitigation measures.
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• Strategy E (an upgrade of Strategy D): systematic communication at network level about the forecasted/
reported severe weather; implementation of traffic flow measures or STAM.Based on a collaborative
decision making process, the in-flight weather avoidance of specific flights may be optimised.

4.2. Weather in ATM
The survey cited in section 4.1 by EUROCONTROL [26] carried out in 2013 determined that for the en-route
and TMA Air Transport Control, airspace users rate as the most relevant weather hazards severe turbulence,
lightning and in-flight icing. Such hazards are usually associated with the existence and the development
of convective weather. Figures 1.1.a and 1.1.b highlight another characteristic of weather: its randomness
and high degree of unpredictability, which yearly generate hundreds of thousands of minutes in delay and
loss of revenue. One key factor that affects ATM is uncertainty, which is an inherent property of real-world
socio-technical complex systems.Rivas et al. [57]

The analysis of weather uncertainty has been addressed by many authors, using different methods. For
instance, Nilim et al. [51] consider a trajectory-based air traffic management scenario to minimize delays
under weather uncertainty. In this publication, weather processes are modeled as stationary Markov chains.
Pepper et al. [52] present a method, based on Bayesian decision networks, for taking into account uncertain
weather information in air traffic flow management. Its focus is on convective weather with coverage and
probability data taken from the US Aviation Weather forecast, however little information is given on the
data source. Clarke et al. [19] develop a methodology to study airspace capacity in the presence of weather
uncertainty, which in turn stems from the 1−6 hour National Convective Weather Forecast (NCWF). Zheng
and Zhao [73] develop a statistical model of wind uncertainties and apply it to stochastic trajectory prediction
in the case of straight, level flight trajectories.

4.2.1. Convective events analysis and modelling
DeLaura and Evans [22] NASA Study dealing with convective storms over two large US sectors. Hauf et al.
[38] DIVMET : modelling trajectories with sever weather information. In table 4.1 below, Gelhardt et al. [29]
present the weather severity levels with associated parameter thresholds. Such data are a good indication
for the data extraction from the ECMWF (European Centre for Medium-Range Weather Forecasts). Details
on such data are described in more detail in section 2.2

Category Attributes

Heavy Rain >37 dBZ (30 or 35 also encountered in literature, without lightning

Warning Level 1
(light)

thunderstorm with wind gusts up to 40 kt

Warning level 2
(moderate)

thunderstorm with wind gusts up to 55 kt and/or heavy
rain (15-25 mm/h)

Warning level 3
(heavy)

- thunderstorm with wind gusts more than 56 kt,
optionally heavy rain
- thunderstorm with hail
- thunderstorm with heavy rain (25-40 mm/h)

Warning level 4
(extreme)

- thunderstorm with wind gusts more than 56 kt and
heavy rain, optionally hail
- thunderstorm with extrem heavy rain
(more than 40 mm/h), optionally hail

Table 4.1: Different weather severity thresholds Gelhardt et al. [29]
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Hydrostatic equilibrium describes the atmospheric state in which the upward directed pressure gradient
force (the decrease of pressure with height) is balanced by the downward-directed gravitational pull of the
Earth. On average the Earths atmosphere is always close to hydrostatic equilibrium. This has been used to
approximate the Euler equations underlying weather prediction models and successfully applied in NWP and
climate prediction. Non-hydrostatic dynamical effects start to become important below horizontal scales of
about 10km.

4.2.2. Alpine Weather Operations
Air Navigation Service Providers are tackling operations during severe weather: DFS, Austrocontrol, ENAV
and Skyguide have formed a consortium and have devised strategic re-routing procedures in case of severe
weather affecting the geographical area around the Alps. The partners devised the new procedures with
the aim of reducing delays at Munich airport, stabilizing the network and air traffic flows, reducing the
workload in the Karlsruhe Upper Area Control Center (UAC), and increasing safety under adverse weather
conditions. Areas of uncertainty remain, however. The atmospheric variables with the most effect on aviation
and ATM are driven by smaller scales of atmospheric motion, i.e. fronts, rapidly developing cyclones and,
most importantly, by thunderstorms and the effect of mountains and coasts.

The number of thunderstorms in the Alps has grown over the last years, and the first six months of
2018 weather affected traffic to Munich airport on 17 days, compared with 16 days for the whole of 2017.
As adverse weather often occurs unexpectedly, controllers routinely have routed inbound flights to Munich
airport to the upper airspace controlled by the Karlsruhe UAC at short notice. The flights increased the
complexity in already overloaded sectors. Under the new procedures, controllers working in Padova, Vienna,
or Zurich distribute the traffic to three additional fixed routings via airspace controlled by Karlsruhe, Zurich,
or Vienna. In addition, the procedures include defined descent areas to ensure a smooth inbound flow to
Munich airport, while a new automated data exchange increases predictability.

4.3. Airline Types
The most defining characteristic of airlines nowadays is their business strategy, which can be divided roughly
in two major categories: Low-Cost Carriers (LCCs) and Network Carriers, also known as Network Carriers
(NC). NCs use a network of connected flights and make use of hubs to use economies of scale, reduce
maintenance and crew costs , rather than LCCs who operate usually on short -to -medium routes and consider
individual Oirigin-Destination (O-D) as separate markets Belobaba et al. [9]. A visual representation of a
point-to-point network (left) and a hub-and-spoke (right) can be seen in Figure 4.3 below. A list of European
LCCs is presented in Appendix A.

Figure 4.3: Point-to-point Network (left) and Hub-and-spoke network model (right). AEኾኾኼኽ TU Delft

LCCs may also implement different flight management strategies during sever weather situations in order
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to optimize the route at the expense of passenger comfort; whereas the NCs are expected to value passenger
confort more than the cost -saving associated with a shorter flight time with few minutes.

4.4. Deviation KPIs
Another similar article by the some of the previous authors comes from 2016, Gurtner et al. [35]. The
author’s secondary focus is in fact on traffic complexity and safety, analysing the Free-route scenario and
developing new metrics for measuring ATC complexity and potential conflicts. By measuring complexity, the
paper touches also on trajectory deviations, mentioning the geometric efficiency of the trajectory, and the
maximum angle of deviation between the planned and modified trajectory as two parameters relevant for the
management of flight trajectories. Some previously developed complexity metrics that could be adapted to
the scope of this study are presented in Table 4.2 in section 4.4.

Some of the already developed metrics for air traffic complexity are presented in Table 4.2 below, adapted
for the analysis of deviations. The fourth column contains information for which point of view the metrics
will be useful.

Code Short Description Unit Source

C1 Density AC/hour/sector [17]
C2 Geometric Trajectory efficiency (Planned/actual) also per segment Ratio [17]
C3 Angle-to destination Degrees [35]
C4 Number of AC with Heading changes of angles greater than 15 degrees Count [44]
C5 di-Fork Count [14]
C6 Angle between last planned and first deviated segment Degrees [14]

.

Table 4.2: Deviation metrics derived from the original table in Gurtner et al. [35]. The respective table provides a summary
from the metrics found by the authors in literature, mainly from Chatterji and Sridhar [17], Laudeman et al. [44], Gurtner

et al. [34], C11 Di-fork is an original metric developed by the authors in Bongiorno et al. [14]

Novel metrics that capture the behaviour of airlines related to the deviations, together with complex
network concepts applied to specific components of the network are presented in Table 4.3. The third column
coding refers to the metric description applicability:

• D - Deviation characterization

• U - User Characterization

• N - Network characterization

Below, the details on the mathematical definition on the computation of the KPIs presented Table 4.3
and Table 4.2 are shown.

KPI 1 refers to the number of aircraft flying in a given sector, and can be defined as

𝐶1 = ∫ ፭Ꮄ፭Ꮃ
ፅፋᑞᑒᑩ∑ፅፋᑞᑚᑟ 𝐴𝐶ፅፋᑩ፬፞፜፭ᑚ , (4.2)

with 𝐴𝐶ፅፋᑩ፬፞፜፭ᑚ the unit variable referring to an aircraft flying at a given 𝐹𝐿፱ in a sector(𝑠𝑒𝑐𝑡።) with limits𝐹𝐿፦።፧, 𝐹𝐿፦ፚ፱ in a given period 𝑇 ∈ (𝑡ኻ, 𝑡ኼ).
𝐶2 = 𝐸። = 𝑙።𝑙፧፯፩። , (4.3)
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Code Short Description Unit Applicable

C7 Beginning and ending points of the deviation x,y,z D
C8 Volume/surface of deviations 𝑁𝑀ኽ D,U
C9 Number and size of vertical deviations at a node count U,N
C10 Number and size of horizontal deviations at a node count U,N
C11 Temporal efficiency count U
C12 Deviation as a percentage of the entire flight path count D,U
C13 Horizontal distance from A/C to weather event at the point of deviation NM U
C14 Correlation: number of planned and deviated trajectories at a node count N
C15 Correlation: number of planned and deviated trajectories in a sector count N

Table 4.3: Possible novel deviation metrics.

where C2 refers to the efficiency of a single flight 𝑖 between Origin of flight 𝑖, denoted 𝑂። and destination of
flight 𝑖, denoted 𝐷። and is computed using 𝑙።, defined as the grand circle between OD. The 𝑙፧፯፩። is defined as
the trajectory of flight 𝑖 (planned or flown) consisting of navigation points, with 𝐸። ∈ (0, 1]

𝐶3 = 𝛼።፣ =< (𝑃፣ , 𝑃፣+ኻ), (4.4)

where we define the angle-to-destination for each flight 𝑓። we calculate the angle between the segment con-
sisting of the current navigation point 𝑃፣ and next point 𝑃፣+ኻ and the segment connecting 𝑃፣ with destination𝐷። 𝐶4 =∑𝐴𝐶፡፝፠ , if hdg ≥ 15° (4.5)

Where C4 represents the sum of aircraft with heading changes greater than 15°
𝐶5 = 𝑑𝑖 − 𝑓𝑜𝑟𝑘፭Ꮃ ,፭Ꮄ፣,፣+ኻ = 𝑓ፏᑛ − 𝑓ፏᑛ+Ꮃ𝑓ፏᑛ , (4.6)

where the di-fork for a given time-frame (𝑡ኻ, 𝑡ኼ) and for a given segment (𝑃፣ , 𝑃፣+ኻ) is calculated as the ratio
between the difference of flights that have flown past by both navpoints and flights that have flown past the
first but not the second, and the number of total flights that have flown through both.𝐶6 = 𝛼፝፞፯፧ፚ፯ᑚ , (4.7)

where the deviation angle at a specific navigation point 𝑛𝑎𝑣። between last planned segment 𝑠፧ፚ፯ᑚ and next
deviated segment 𝑠፝፞፯፧ፚ፯ᑚ+Ꮃ is computed.𝐶7 = 𝑑𝑒𝑣።፟ᑚ = (𝑛𝑎𝑣። , ..., 𝑛𝑎𝑣፣ , 𝑡ኻ, 𝑡ኼ, 𝑑𝑎𝑡𝑒), (4.8)

Each deviation for each flight 𝑓። is characterized by a tuple consisting of the start and end navigation points
as well as the navigation points in between, the date, the start time and end time of the deviation.𝐶8 = ∫ ፧ፚ፯ᑚ+ᑜ፧ፚ፯ᑚ 𝐹፬ , (4.9)

where function F is a function of surface. C8 is the cumulative displacement along a deviation with respect
to a reference trajectory, with 𝑛𝑎𝑣። and 𝑛𝑎𝑣።+፤ being the beginning and the end of the deviation in terms of
crossed navigation points. In other terms, the additional airspace volume or surface that has been used in
addition to the flown volumes according to the flight plan.𝐶9 = ∫ ፧ፚ፯።ᑚ+ᑜ፧ፚ፯ᑚ 𝑉፬ , (4.10)
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where V is a function of the distance from the reference trajectory at each navigation point in the vertical
plane, with C9 the cumulative vertical deviations at a given segment.𝐶10 = ∫ ፧ፚ፯።ᑚ+ᑜ፧ፚ፯ᑚ 𝐻፬ , (4.11)

where V is a function of the distance from the reference trajectory at each navigation point in the
horizontal plane, with C10 the cumulative horizontal deviation at a given segment.𝐶11 = 𝐸𝑡። = 𝑡ፚ𝑡፩ , (4.12)

where the temporal efficiency of a flight 𝑓። is given by actual duration of flight divided by planned duration
of flight

𝐶12 = 𝑑𝑒𝑣። = 𝐶8𝑓። , (4.13)

where 𝐶12 is the deviation of a flight seen as a fraction of that flight, both planned and realized.𝐶13 = 𝑑(𝑝𝑜𝑠ኻ, 𝑝𝑜𝑠ኼ), (4.14)

where 𝑝𝑜𝑠ኻ = (𝑥, 𝑦, 𝑧)። of 𝐴𝐶። and in a similar way, 𝑝𝑜𝑠ኼ = (𝑥, 𝑦, 𝑧)፣ of weather event j, signifying the distance
at which the first deviation occurred with respect to the position of the weather event.𝐶14 = 𝜌𝐹ᖣ፧ፚ፯ᑚ , 𝐹፧ፚ፯ᑚ , (4.15)

where it refers to the correlation of the planned and deviated trajectories at a given navpoint, and where the
sum of planned and deviated trajectories from at a specific navigation point 𝑛𝑎𝑣።, are:𝐹 =∑። 𝑓። (4.16)

𝐹ᖣ =∑። 𝑓ᖣ። (4.17)

Some of the KPIs to be used in this MSc. Thesis stem directly from Complex Network Theory and will be
instrumental in analysing the variations at entire Network level, or for a particular area of nodes. A list with
the KPIs can be observed in Table 4.4 with an indication of the type of analysis they might be used for. The
mathematical definition and a more detailed explanations on the concepts of Complex Network Theory are
presented in the sections of Chapter 3. As shown in Kai-Quan et al. [43] and further in Chapter 4, insights
on Air Traffic Networks are obtained by analysis of correlation between Complex Network metrics.

Code Short Description Deviations Network
CX1 Clustering Coefficient Distribution Y Y
CX2 Degree Distribution Y Y
CX3 Strength distribution Y Y
CX4 Betweeness distribution N Y
CX5 Average path length distribution N Y
CX6 Betweeness-centrality distribution Y N

Table 4.4: Complexity Network metrics, surveyed from Albert* and Barabási [3] and Erdős and Rènyi [24]
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Code Short Metric Description daily weekly per season
CP1 (Cumulative) Number and size of vertical deviations yes yes yes
CP2 (Cumulative) Number and size of horizontal deviations yes yes yes
CP3 C1 and C2 depending on geography yes yes yes
CP4 Geometric Trajectory efficiency yes yes yes
CP5 Temporal Trajectory efficiency yes yes yes
CP6 Angle-to-destination yes yes yes
CP7 Number of A/C with heading changes greater than 15 degrees yes yes yes
CP8 Deviation segment length yes yes yes
CP9 Trajectory characterization(min, max and average length) yes yes yes
CP10 Deviation length as a percentage of the trajectory yes yes yes

Table 4.5: Deviation metrics for the initial characterization of Airlines. Columns ኽ, ኾ, ኿ mention if they will have a Probability
Distribution Function attributed over various time scales. Column ኽ will show the PDF for 24h to distinguish day and night

variation, column ኾ will presend the probabilities every day of the week to show weekend variations and finally the last column
will integrate season variability.

Table 4.5 shows the planned metrics to be used as a way of behaviour definition for the major 2 types of
airlines: Low-Cost Carriers (LCC), Network Carriers (NC). Other types of airlines might be added for the
study, such as Cargo (C) and Feeder airlines (F).



5
Research Questions

Deviations from planned trajectory occur often as they are normal to some extent, however such deviations
have not been extensively characterized and their effect on airspace capacity has not been fully understood.
After writing this Literature Review report, the main research question can be constructed in the following
way:

How can the differences between the Planned trajectory and Realized trajectory of European Low-Cost
and Non-Low Cost carriers be quantified and characterized, assuming Air Traffic Control Officers (ATCOs)
manage the trajectories in a similar fashion?

The research question can be structured into several sub-questions:

• How do the planned and realized trajectories compare considering the type of airline but also geograph-
ical and temporal aspects?

• How can deviations be defined considering the differences between the planned and realized trajectory?

• How can the aircraft trajectory deviations between be computed and characterized using a network
representation of the European Air Navigation Points?

• How to define new metrics and adapt existing ones to characterize trajectory deviations?

• Can trajectory deviations due to weather be distinguished from other types of deviations? If so, how
can they be characterized?Is the statistical profile different than the ones not caused by weather?
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A
Airline Clustering

Group Name 𝑛ፋ 𝑛ፀ 𝑈 𝑛ፅ 𝑛ፀፂ 𝑛ፊ 𝑘 𝐿 𝑆 𝐶
1 CityJet 207 111 3,13 5216 45 8 3,73 2,86 49,21 0,35
1 Chalair Aviation 42 29 2,34 629 12 4 2,90 2,57 82,89 0,23
1 Adria Airline 43 30 2,67 1410 11 3 2,87 2,64 50,36 0,33
1 Eastern Airways 288 99 3,92 10435 39 9 5,82 2,67 108,71 0,36
1 Sun Air of Scandinavia 224 131 3,75 4208 20 7 3,42 3,21 34,49 0,24
1 Twin Jet 61 42 3,32 698 17 4 2,90 3,09 76,68 0,18
2 Air Europa 192 96 11,34 34723 71 13 3,94 2,43 385,89 0,23
2 Austrian Airlines 188 144 8,90 55103 100 11 2,61 2,08 390,84 0,28
2 Ukraine Airlines 107 78 9,53 23630 53 10 2,74 2,06 306,95 0,27
2 Brussels Airlines 135 126 7,77 35815 105 12 2,14 2,01 298,47 0,14
2 Air Baltic 97 76 8,23 20320 43 13 2,53 2,09 270,93 0,18
2 Aer Lingus 123 82 11,00 31849 60 10 3,00 2,01 388,41 0,29
2 Finnair 154 136 9,60 49364 102 12 2,26 2,04 362,99 0,13
2 Iberia Airlines 131 111 14,00 40779 87 9 2,36 2,03 374,21 0,25
2 LOT Polish Airlines 116 92 9,65 44817 78 18 2,52 2,14 498,00 0,22
2 Swiss Air Lines 146 114 10,65 62640 123 16 2,56 2,15 554,39 0,28
2 TAP Portugal 171 102 12,56 53439 99 16 3,35 2,02 529,56 0,48
3 Aigle Azur 111 57 6,56 7021 27 7 3,89 2,31 127,71 0,40
3 Adria Airways 216 120 5,41 8583 28 9 3,60 2,33 71,53 0,45
3 Aegean Airlines 175 105 7,09 21204 59 7 3,33 2,15 209,98 0,27
3 Air Malta 58 54 8,15 5745 15 5 2,15 2,00 110,50 0,19
3 Air Nostrum 271 94 6,93 32113 45 5 5,67 2,30 345,32 0,43
3 Air Serbia 84 81 9,25 13725 21 6 2,07 2,00 169,44 0,10
3 Aurigny Air Services 24 20 3,79 6241 13 7 2,40 1,87 312,10 0,37
3 Astra Airlines Regional 74 49 5,46 2842 5 3 3,02 2,19 58,00 0,42
3 Blue Islands 28 23 3,59 4174 6 3 2,43 2,19 208,70 0,26
3 Belair Airlines 11 11 5,60 146 15 3 2,00 2,35 14,60 0,19
3 Blue Air 143 68 9,07 15769 29 5 4,21 2,35 235,36 0,44
3 Blue Panorama Airlines 107 57 8,98 4129 20 6 3,75 2,37 75,07 0,33
3 Braathens Regional Airlines 26 16 3,97 9476 43 9 3,25 2,01 592,25 0,49
3 Air Corsica 52 29 1,50 81 12 4 3,59 1,97 104,24 0,47
3 BA CityFlyer 94 52 6,60 15474 28 6 3,62 2,24 297,60 0,31
3 Czech Airlines 75 59 6,86 13793 48 7 2,54 1,99 233,78 0,33
3 Croatia Airlines 92 55 7,27 11706 17 5 3,35 2,35 234,12 0,32
3 Edelweiss Air 61 60 7,14 4524 37 5 2,00 2,00 75,43 0,04
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Group Name 𝑛ፋ 𝑛ፀ 𝑈 𝑛ፅ 𝑛ፀፂ 𝑛ፊ 𝑘 𝐿 𝑆 𝐶
3 Ellinair 76 63 5,52 1691 10 6 2,41 2,11 27,27 0,20
3 Cobalt 26 25 8,07 2437 8 2 2,08 2,13 101,54 0,16
3 Fly One 23 21 6,59 1433 14 4 2,19 1,89 71,70 0,22
3 Atlantic Airways 59 39 5,79 1575 5 3 3,03 2,28 40,38 0,42
3 Sky Wings Airlines 55 48 7,24 1396 9 3 2,29 2,07 29,70 0,31
3 Iberia Express 60 49 8,76 13968 24 2 2,45 2,06 297,19 0,26
3 Icelandair 56 47 6,65 7066 32 3 2,38 2,26 153,61 0,23
3 Meridiana 169 76 8,83 8649 26 8 4,45 2,38 121,83 0,40
3 AlbaStar 22 16 4,85 98 8 2 2,48 2,51 4,90 0,57
3 Luxair 211 129 8,53 12735 17 3 3,27 2,16 101,08 0,41
3 Loganair 86 36 5,30 7815 23 10 4,78 2,19 536,06 0,48
3 Bulgaria Air 49 36 8,04 4684 15 6 2,72 2,02 130,11 0,26
3 Montenegro Airlines 41 29 4,15 2847 10 4 2,83 2,03 98,17 0,45
3 Air Moldova 36 31 7,29 4857 19 5 2,32 1,98 167,48 0,25
3 Laudamotion 276 99 8,55 16648 117 11 5,49 2,54 175,28 0,33
3 NextJet 70 34 4,85 6729 22 5 4,12 2,27 203,91 0,41
3 Olympic Air 62 35 2,87 23161 62 6 3,54 1,99 702,12 0,53
3 Helvetic Airways 67 54 4,49 430 13 3 2,48 2,19 8,11 0,33
3 People’s Vienna 41 31 3,82 1303 8 3 2,65 2,24 43,43 0,43
3 Primera Air 93 45 7,78 1688 19 5 4,13 2,23 38,39 0,49
3 Tarom 56 41 8,76 15065 23 7 2,73 2,04 367,54 0,32
3 Malmö Aviation (Braathens) 180 73 4,26 9753 37 7 4,93 2,38 137,37 0,53
3 Sky Express 74 38 5,34 6214 8 7 3,89 2,17 168,03 0,49
3 Stobart Air 62 39 6,20 14107 32 10 3,18 2,37 361,72 0,31
3 Sunexpress DE 145 47 9,83 3937 17 5 6,17 2,30 85,61 0,35
3 Sunexpress TK 152 62 9,83 20338 49 3 4,90 2,14 328,03 0,42
3 Thomas Cook 52 42 7,64 2040 43 4 2,48 1,98 49,78 0,37
3 Transavia NL 230 122 9,76 24339 62 5 3,77 2,24 204,58 0,44
3 Transavia France 159 88 7,24 14716 54 8 3,61 2,07 175,26 0,40
4 Condor Flugdienst 302 121 11,86 16538 74 10 4,99 2,17 143,81 0,39
4 Jet2.com 359 84 9,51 24386 77 6 8,55 2,07 301,22 0,55
4 Germania 645 171 10,31 11480 31 5 7,54 2,48 67,56 0,53
4 Germanwings 335 125 6,60 36545 92 3 5,36 2,16 292,38 0,59
4 TUIFly 499 152 10,03 14741 54 10 6,57 2,23 104,57 0,49
4 Monarch Airlines 150 58 10,59 13034 36 4 5,17 2,07 224,76 0,61
4 Neos 238 95 12,17 3445 13 5 5,01 2,24 37,48 0,52
4 Pegasus 296 121 10,61 66518 81 5 4,89 2,11 554,36 0,43
4 TUI Airways 650 140 13,78 27430 66 9 9,07 2,19 197,42 0,54
4 Volotea 322 103 8,83 16964 29 4 6,25 2,60 169,75 0,33
4 Widerøe 232 61 7,79 52597 41 4 7,61 2,30 862,25 0,67
4 Wizz Air 696 158 12,17 68770 86 2 8,81 2,36 440,90 0,32
5 Alitalia 229 121 9,14 83067 134 11 3,79 2,03 698,06 0,49
5 Flybe 346 98 6,14 66256 113 13 7,06 2,26 690,27 0,59
5 Air Berlin 327 115 7,99 59155 216 15 5,61 2,28 510,00 0,50
5 Eurowings 408 154 7,20 45669 176 9 5,30 2,28 296,56 0,45
5 Hop! 263 84 2,48 6543 153 20 6,26 2,33 376,44 0,46
5 Norwegian Air Shuttle 663 178 10,64 91038 182 11 7,45 2,30 520,26 0,55
5 Scandinavian Airlines 526 179 8,81 133969 205 19 5,88 2,19 761,23 0,58
5 Vueling Airlines 437 151 8,82 80715 127 8 5,79 2,08 534,58 0,41
6 Albawings 13 14 3,08 794 8 4 1,86 1,86 66,17 0,00
6 Bergen Air Transport 6 6 1,79 117 1 1 2,00 1,73 19,50 0,25
6 Dreamjet 10 8 15,00 504 3 2 2,50 1,64 63,00 0,46
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Group Name 𝑛ፋ 𝑛ፀ 𝑈 𝑛ፅ 𝑛ፀፂ 𝑛ፊ 𝑘 𝐿 𝑆 𝐶
6 Air Dolomiti 10 11 4,66 5052 11 2 1,82 1,96 459,27 0,00
6 Hahn Air 14 12 1,52 95 3 2 2,33 2,12 7,92 0,17
6 British Airways Shuttle 15 11 3,23 16679 148 5 2,73 1,98 1516,27 0,54
6 Siavia 8 6 4,74 562 3 1 2,25 1,47 80,29 0,00
6 Virgin Atlantic Airways 52 41 17,99 11629 40 4 2,54 2,29 298,21 0,24
6 XL Airways 35 31 15,28 1236 9 3 2,26 2,04 44,14 0,11
7 Air France 263 193 10,86 106979 305 31 2,73 2,09 680,74 0,28
7 British Airways 334 217 11,85 113440 311 18 3,06 2,28 522,82 0,28
7 Lufthansa 450 249 11,49 217921 355 20 3,61 2,26 875,23 0,49
7 KLM 215 188 12,60 107340 190 19 2,29 2,19 586,62 0,16
7 Turkish Airlines 604 286 11,84 201871 353 17 4,22 2,02 726,29 0,41
8 EasyJet 1120 172 10,36 225365 288 5 13,02 2,17 1318,11 0,51
8 Ryanair 1982 222 10,57 306676 413 3 17,86 2,15 1394,11 0,51

Table A.1: All airline features. Intercontinental flights and weekends included.

Ac
Types

Avg
Clustering

Avg
Degree

Avg
Path

Links Nodes
Avg
Strength

dailyAvg
Util[hrs]

Fleet
size

totalFlights
Monthly

PC-1 0,22 0,24 0,35 0,11 0,38 0,38 0,35 0,22 0,39 0,4
PC-2 0,43 -0,21 -0,39 -0,52 -0,27 -0,16 0,4 0,04 0,26 0,16
PC-3 -0,6 0,04 0,26 -0,65 0,24 -0,22 0,09 0,09 -0,05 0,15
PC-4 0,06 0,54 -0,03 0,01 -0,27 -0,14 0,15 0,69 -0,26 -0,21
PC-5 0,2 0,7 0,11 -0,21 -0,06 -0,1 -0,05 -0,6 0,1 -0,15

Table A.2: PC features correlation. ECAC flights, weekends included. An example of the amount of correlation between each
of the ኻኺ features and the resulting ኿ principal components.
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Figure A.1: Left: Clustering dendrogram of the final result with average linkage and a cut at ኺ.኿. Right: Clustering
dendrogram with Ward Linkage and a cut at ኻ.ኺ኿.



B
Efficiency

Group 1 2 3 4 5 6 7 8

Hour 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎
0 0,97 0,0018 0,96 0,0035 0,98 0,0005 0,98 0,001 0,97 0,0014 0,99 0,0001 0,98 0,0004 0,97 0,0027
1 0,98 0,0009 0,97 0,0025 0,98 0,0004 0,98 0,0007 0,98 0,0004 0,99 0,0001 0,98 0,0003 0,98 0,0004
2 0,97 0,0002 0,97 0,0027 0,98 0,0004 0,97 0,0012 0,98 0,0006 0,99 0,0001 0,98 0,0004 0,97 0,0007
3 0,97 0,0008 0,98 0,0008 0,97 0,0009 0,97 0,0009 0,98 0,0007 0,99 0,0003 0,98 0,0006 0,98 0,0003
4 0,94 0,0005 0,98 0,0007 0,97 0,0008 0,98 0,0007 0,97 0,0008 0,98 0,0006 0,98 0,0006 0,97 0,0007
5 0,96 0,0012 0,97 0,0007 0,97 0,0008 0,97 0,0008 0,97 0,0008 0,98 0,0004 0,97 0,0007 0,97 0,0007
6 0,97 0,001 0,97 0,0007 0,97 0,0008 0,97 0,0008 0,98 0,0008 0,97 0,0014 0,97 0,0007 0,97 0,0008
7 0,97 0,0009 0,97 0,001 0,97 0,0008 0,97 0,0007 0,97 0,0009 0,98 0,0005 0,97 0,0008 0,97 0,0009
8 0,97 0,0014 0,97 0,0008 0,97 0,0007 0,97 0,0007 0,97 0,0008 0,98 0,0003 0,97 0,0008 0,96 0,0009
9 0,96 0,0013 0,97 0,0008 0,97 0,0006 0,97 0,0009 0,97 0,0009 0,98 0,0004 0,97 0,0006 0,96 0,0008
10 0,97 0,0012 0,97 0,0007 0,97 0,0006 0,97 0,0007 0,97 0,0009 0,98 0,0004 0,97 0,0007 0,97 0,001
11 0,96 0,0015 0,97 0,0008 0,97 0,0008 0,97 0,0009 0,97 0,0009 0,98 0,0004 0,97 0,0007 0,96 0,0009
12 0,96 0,0013 0,97 0,0009 0,97 0,0007 0,97 0,0007 0,97 0,0008 0,98 0,0003 0,97 0,0007 0,96 0,0011
13 0,97 0,0012 0,97 0,0008 0,97 0,0007 0,97 0,0006 0,97 0,0009 0,98 0,0004 0,97 0,0007 0,97 0,0009
14 0,97 0,0009 0,97 0,0008 0,97 0,0007 0,97 0,0007 0,98 0,0009 0,98 0,0004 0,97 0,0007 0,97 0,0009
15 0,96 0,0011 0,97 0,0007 0,97 0,0009 0,97 0,0007 0,98 0,0009 0,98 0,0005 0,97 0,0007 0,97 0,0009
16 0,96 0,0012 0,97 0,0009 0,97 0,0008 0,97 0,0007 0,98 0,0009 0,98 0,0006 0,97 0,0007 0,97 0,0008
17 0,96 0,0009 0,97 0,0011 0,97 0,0008 0,97 0,0007 0,98 0,0008 0,98 0,0005 0,97 0,0007 0,97 0,0008
18 0,97 0,0008 0,97 0,0013 0,97 0,0009 0,97 0,0008 0,98 0,0008 0,97 0,0014 0,97 0,0007 0,97 0,0007
19 0,97 0,0006 0,97 0,0013 0,97 0,0009 0,97 0,0007 0,98 0,0007 0,98 0,0009 0,97 0,0007 0,97 0,0007
20 0,97 0,0006 0,97 0,0009 0,97 0,0007 0,97 0,0008 0,98 0,0006 0,98 0,0003 0,98 0,0005 0,97 0,0006
21 0,97 0,0006 0,98 0,0007 0,97 0,0008 0,98 0,0006 0,98 0,0006 0,98 0,0002 0,98 0,0004 0,97 0,0006
22 0,96 0,0015 0,98 0,0015 0,97 0,0006 0,98 0,0008 0,97 0,0007 0,99 0,0003 0,98 0,0002 0,97 0,0007
23 0,96 0,0019 0,97 0,0032 0,98 0,0004 0,97 0,0012 0,97 0,0005 0,99 0,0002 0,98 0,0004 0,97 0,0009

Table B.1: Variance and average planned (Mኻ)efficiency for every hour per airline group.

Group 1 2 3 4 5 6 7 8

Day 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎
Mon 0,966 0,035 0,972 0,032 0,971 0,027 0,972 0,028 0,974 0,03 0,98 0,024 0,974 0,025 0,966 0,029
Tue 0,966 0,034 0,971 0,035 0,971 0,029 0,973 0,027 0,975 0,029 0,981 0,023 0,974 0,026 0,966 0,029
Wed 0,965 0,033 0,972 0,032 0,972 0,028 0,973 0,028 0,974 0,029 0,982 0,023 0,974 0,027 0,966 0,029
Thu 0,966 0,033 0,972 0,032 0,972 0,027 0,973 0,028 0,974 0,029 0,981 0,022 0,975 0,026 0,967 0,028
Fri 0,966 0,034 0,972 0,033 0,971 0,027 0,972 0,028 0,974 0,03 0,981 0,023 0,975 0,025 0,967 0,029
Sat 0,956 0,038 0,973 0,031 0,973 0,024 0,974 0,025 0,973 0,027 0,983 0,018 0,977 0,023 0,969 0,025
Sun 0,959 0,037 0,973 0,03 0,973 0,025 0,974 0,027 0,976 0,027 0,982 0,021 0,976 0,024 0,969 0,026

Table B.2: Variance and average of planned (Mኻ) efficiency for every day per airline group

83



84 B. Efficiency

Groups 1 2 3 4 5 6 7 8

Day 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎
Mon 0,978 0,026 0,981 0,026 0,981 0,019 0,979 0,023 0,983 0,022 0,982 0,019 0,981 0,02 0,977 0,022
Tue 0,979 0,023 0,979 0,031 0,98 0,022 0,979 0,024 0,983 0,021 0,982 0,019 0,98 0,021 0,976 0,023
Wed 0,978 0,025 0,98 0,027 0,981 0,02 0,979 0,024 0,983 0,021 0,983 0,019 0,981 0,022 0,976 0,022
Thu 0,978 0,024 0,98 0,027 0,981 0,02 0,979 0,024 0,983 0,022 0,983 0,019 0,981 0,021 0,977 0,022
Fri 0,98 0,024 0,98 0,028 0,981 0,02 0,979 0,024 0,983 0,021 0,983 0,019 0,981 0,02 0,977 0,021
Sat 0,976 0,025 0,981 0,027 0,981 0,019 0,98 0,022 0,982 0,022 0,985 0,015 0,982 0,019 0,979 0,019
Sun 0,979 0,023 0,981 0,025 0,982 0,02 0,98 0,023 0,984 0,02 0,984 0,017 0,982 0,019 0,979 0,02

Table B.3: Variance and average of realized (Mኽ) efficiency for every day per airline group
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(B.1.d) Groups ዁-ዂ
Figure B.1: Mኽ efficiency comparison between groups.

(B.2.a) M1 efficiency T-test
between all operators

(B.2.b) M3 efficiency T-test
between all operators

Red means p-value > 0.05, thus we accept the null hypothesis that the distributions are similar. White
means they are different. The appearance of vertical and horizontal red lines is explained by operators with

few flights, leading to an apparent similarity with most other airlines.If only airlines within each group
would have similar efficiency distributions, then the plots would be red only along the secondary diagonal,

and would form a chain of squares. We see, however, that this is not the case.

Figure B.2: Efficiency T-tests between all operators. Left (M1) and right (M3).
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(B.3.a) Group 1 (B.3.b) Group 2

(B.3.c) Group 3 (B.3.d) Group 4

(B.3.e) Group 5 (B.3.f) Group 6

(B.3.g) Group 7 (B.3.h) Group 8

Figure B.3: Mኻ and Mኽ efficiency comparison per groups of airlines per hour. All eight groups are presented here.
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(B.4.a) Efficiency bracket (ኺ.ኻ, ኺ.ኼ]

(B.4.b) Efficiency bracket (ኺ.ኼ, ኺ.ኽ]
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(B.5.a) Efficiency bracket (ኺ.ኽ, ኺ.ኾ]

(B.5.b) Efficiency bracket (ኺ.ኾ, ኺ.኿]
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(B.6.a) Efficiency bracket (ኺ.኿, ኺ.ዀ]

(B.6.b) Efficiency bracket (ኺ.ዀ, ኺ.዁]
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Name Code
𝐸፡ FAIR𝛿−ፄ 𝛿+ፄ 𝛿ኺፄ 𝛿−ፄ% 𝛿+ፄ% 𝛿ኺፄ% Flights 𝐸፡ 𝑐𝑟𝑢𝑖𝑠𝑒[𝑘𝑚] 𝐹𝐴𝐼𝑅 Flights

1 BCY 3064 3053 10 0,5 0,5 0 6127 0,82 419192 347 4084
1 DWT 376 582 1 0,39 0,61 0 959 0,83 542414 585 882
1 EZE 3119 2956 40 0,51 0,48 0,01 6115 0,83 275725 668 5259
1 SUS 3209 4327 9 0,43 0,57 0 7545 0,83 369180 801 6390
1 TJT 5 20 1 0,19 0,77 0,04 26 0,81 446172 15 33
2 AEA 22764 36610 464 0,38 0,61 0,01 59838 0,81 835711 737 56018
2 AUA 39440 58737 941 0,4 0,59 0,01 99118 0,82 758752 750 92279
2 AUI 21192 36578 290 0,37 0,63 0 58060 0,83 1025744 977 54521
2 BEL 24615 46317 1693 0,34 0,64 0,02 72625 0,81 790404 741 68077
2 BTI 15939 15303 1290 0,49 0,47 0,04 32532 0,81 758180 628 29568
2 EIN 30114 40136 1035 0,42 0,56 0,02 71285 0,87 932066 782 62117
2 FIN 44929 33522 676 0,57 0,42 0,01 79127 0,82 923109 1231 73170
2 IBE 32974 51209 2359 0,38 0,59 0,03 86542 0,9 885443 706 83093
2 LOT 29223 45277 164 0,39 0,61 0 74664 0,82 806411 1293 70334
2 SWR 45332 67345 2336 0,39 0,59 0,02 115013 0,47 904069 654 99922
2 TAP 33067 63491 1308 0,34 0,65 0,01 97866 0,83 1195863 877 94819
3 AAF 4458 11352 75 0,28 0,71 0,01 15885 0,82 884413 506 15342
3 ADR 7463 10333 12 0,42 0,58 0 17808 0,8 458253 597 15874
3 AEE 18371 30291 69 0,38 0,62 0 48731 0,83 1242407 868 46707
3 AMC 4792 6897 2 0,41 0,59 0 11691 0,99 1141822 1234 11543
3 ANE 14753 23790 34 0,38 0,62 0 38577 0,98 387613 637 34628
3 ASL 8681 11270 17 0,43 0,56 0,01 19968 0,82 861539 839 18749
3 AZI 253 743 6 0,25 0,74 0,01 1002 0,87 1151970 729 878
3 BCI 46 188 0 0,2 0,8 0 234 0,83 1381205 696 206
3 BHP 14140 23616 16 0,37 0,63 0 37772 0,89 1054433 1138 32932
3 BMS 2637 7561 121 0,26 0,73 0,01 10319 0,81 803920 816 9606
3 BPA 269 326 6 0,45 0,54 0,01 601 0,79 434492 598 527
3 BRX 40 96 2 0,29 0,7 0,01 138 0,81 490401 578 6193
3 CCM 12974 17140 26 0,43 0,57 0 30140 0,81 468928 945 28513
3 CFE 7261 10854 10 0,4 0,6 0 18125 0,83 728414 1112 17686
3 CSA 7151 8344 11 0,46 0,54 0 15506 0,8 527158 631 12799
3 CTN 4182 6379 174 0,39 0,59 0,02 10735 0,81 1628198 640 9758
3 EDW 1221 3983 24 0,23 0,76 0,01 5228 0,84 1149355 874 5056
3 ELB 2545 2910 6 0,47 0,53 0 5461 0,8 1363060 1008 4992
3 FCB 1518 2206 5 0,41 0,59 0 3729 0,81 840544 927 3653
3 FIA 1453 2043 152 0,4 0,56 0,04 3648 0,9 946181 1042 3404
3 FLI 1480 1709 1 0,46 0,54 0 3190 0,8 1196165 867 2832
3 GSW 12875 19760 9 0,39 0,61 0 32644 0,79 966282 783 30184
3 IBS 7166 9803 16 0,42 0,58 0 16985 0,84 1642018 619 16341
3 ICE 6782 12097 210 0,36 0,63 0,01 19089 0,8 820956 640 16711
3 ISS 651 2479 8 0,21 0,79 0 3138 0,81 1143711 732 2854
3 LAV 3613 7213 6 0,33 0,67 0 10832 0,85 965643 518 10026
3 LGL 1828 1582 6 0,54 0,46 0 3416 0,83 195008 424 3132
3 LOG 4567 7566 42 0,38 0,62 0 12175 0,82 945907 982 11428
3 LZB 2628 3873 3 0,4 0,6 0 6504 0,79 556355 676 4314
3 MGX 3735 7883 29 0,32 0,68 0 11647 0,8 996491 1001 11433
3 MLD 12672 26732 73 0,32 0,68 0 39477 0,8 1297399 772 37544
3 NLY 880 239 4 0,78 0,21 0,01 1123 0,97 230261 260 979
3 NTJ 7244 6461 13 0,53 0,47 0 13718 0,83 120656 573 8968
3 OAL 315 620 2 0,34 0,66 0 937 0,82 1009486 870 832
3 OAW 1136 1283 1 0,47 0,53 0 2420 0,83 336116 1119 1399
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3 PEV 1126 3042 3 0,27 0,73 0 4171 0,83 2070775 815 3826
3 PRI 6493 13934 16 0,32 0,68 0 20443 0,84 1027108 1195 19227
3 ROT 12752 4561 25 0,74 0,26 0 17338 0,8 272211 465 10741
3 SCW 1060 1098 2 0,49 0,51 0 2160 0,96 558141 938 1952
3 SEH 3908 5543 60 0,41 0,58 0,01 9511 0,79 2081279 751 9123
3 STK 20640 20873 7635 0,42 0,42 0,16 49148 0,83 1381400 518 44703
3 SXD 10194 16009 782 0,38 0,59 0,03 26985 0,82 846284 509 26540
3 SXS 1220 3263 0 0,27 0,73 0 4483 0,85 1882605 953 4280
3 TAR 19158 38425 31 0,33 0,67 0 57614 0,84 1285592 1103 54455
3 TCW 11881 22845 67 0,34 0,66 0 34793 0,82 1107929 697 32949
4 TRA 13723 24005 1237 0,35 0,62 0,03 38965 0,84 2012134 799 36792
4 TVF 23870 33366 31 0,42 0,58 0 57267 0,81 1668281 885 52299
4 CFG 8262 17700 55 0,32 0,68 0 26017 0,74 1823660 1071 24398
4 EXS 30300 35317 23 0,46 0,54 0 65640 0,85 506718 782 59689
4 GMI 9516 22649 324 0,29 0,7 0,01 32489 0,99 1551969 901 30001
4 GWI 10131 18443 15 0,35 0,65 0 28589 0,87 1491424 967 27381
4 JAF 2380 4958 200 0,32 0,66 0,02 7538 0,82 1575954 702 7174
4 MON 65097 49213 46267 0,41 0,31 0,28 160577 0,81 656379 236 141805
4 NOS 23559 36919 1758 0,38 0,59 0,03 62236 0,81 1925528 822 58038
4 PGT 17308 25881 37 0,4 0,6 0 43226 0,8 559713 669 38977
4 TOM 2638 2601 50 0,5 0,49 0,01 5289 0,83 395194 21 4201
4 VOE 64815 97608 131 0,4 0,6 0 162554 0,8 995896 1244 149191
5 WIF 68740 110683 1127 0,38 0,61 0,01 180550 0,82 583039 1045 170220
5 WZZ 34463 20860 51 0,62 0,38 0 55374 0,84 357775 295 48368
5 AZA 37284 46726 1423 0,44 0,55 0,01 85433 0,79 770466 610 76885
5 BEE 49708 61492 411 0,45 0,55 0 111611 0,81 625155 855 103022
5 BER 5308 8674 29 0,38 0,62 0 14011 0,79 312611 600 47579
5 EWG 93512 107511 436 0,46 0,53 0,01 201459 0,84 1085827 884 182703
5 HOP 143946 119449 1150 0,54 0,45 0,01 264545 0,91 619715 839 238279
5 NAX 68407 103174 200 0,4 0,6 0 171781 0,81 677802 856 160771
6 SAS 504 1320 3 0,28 0,72 0 1827 0,78 425401 824 1563
6 VLG 2 10 1 0,15 0,77 0,08 13 0,8 241613 91 10
6 AWT 542 534 140 0,45 0,44 0,11 1216 0,83 2497105 179 1214
6 BGT 5612 6481 3 0,46 0,54 0 12096 0,83 172838 637 10256
6 DJT 36 196 0 0,16 0,84 0 232 0,83 665893 978 211
6 DLA 23021 8349 5 0,73 0,27 0 31375 0,82 179406 648 28146
6 SHT 442 1075 8 0,29 0,7 0,01 1525 0,98 500314 1051 1343
6 VIR 11415 12058 3457 0,42 0,45 0,13 26930 0,8 2037003 410 26184
6 XLF 1067 1588 142 0,4 0,6 0 2797 0,79 1738007 312 2756
7 AFR 89604 145789 10688 0,36 0,59 0,05 246081 0,79 962413 467 261088
7 BAW 99841 134810 9749 0,41 0,55 0,04 244400 0,84 1337956 644 235092
7 DLH 183461 237689 9330 0,43 0,55 0,02 430480 0,8 829887 691 399787
7 KLM 92330 116370 7153 0,43 0,54 0,03 215853 0,82 886719 892 202584
7 THY 199518 166988 109622 0,42 0,35 0,23 476128 0,9 853676 271 446416
8 EZY 203180 288585 218 0,41 0,59 0 491983 0,81 783893 739 444430
8 RYR 259103 422177 220 0,38 0,62 0 681500 0,89 929170 903 588131

Table B.4: Individual airline efficiency and FAIR values. Both ’flights’ columns refer to the total flights in ኼኺኻ዁ used in each
analysis.
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Figure C.1: Mኽ hourly FAIR comparison between groups.Note the slightly different axes.
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D
Additional trajectory analysis results

This annex provides context for the horizontal efficiency and FAIR results. It emphasizes two points: first,
that the vertical and horizontal indices are comparable across groups, and second, that the variation of the
number of flights between the average airlines within each group is significant.

Figure D.1 presents an overview of the total flights flown in 2017 and used to assess the horizontal
efficiency: the total number of flights are fairly equally distributed between groups, except for groups 1 and6 which had completed a number of flights with an order of magnitude lower than the rest. The average
number of flights within each group, i.e. the average of average, unveils a greater disparity between the

average airline of each group ∣𝐹0፦,፠∣ = ∣ፅᑞ,ᑘ∣፧ , where n is the number of airlines in each group, and ∣𝐹፦,፠∣ is the
cardinality of the set of flights of group g in month m.

(D.1.a) Daily average flights per group (D.1.b) Daily average flights per average airline

(D.1.c) Monthly average flights per group
(D.1.d) Monthly average flights per average

airline

Figure D.1: Daily (first row) and monthly (second row) flights exhibit a peak during Fridays, Sundays and Mondays, and
during summer months. Besides showing weekly and monthly trends, the images in the left and right columns show that,
although most airline groups (ዀ/ዂ) fly similar number of flights, the average airline within each group behaves differently.
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E
Mutual Information

This appendix provides more background on Mutual Information and Entropy H.The equations below cor-
respond to: entropy, joint entropy, conditional entropy, and mutual information.

𝐻(U) = − ፑ∑።=ኻ 𝑎።𝑁 log
𝑎።𝑁

𝐻(U,V) = − ፑ∑።=ኻ ፂ∑፣=ኻ 𝑛።፣𝑁 log
𝑛።፣𝑁

𝐻(U∣V) = − ፑ∑።=ኻ ፂ∑፣=ኻ 𝑛።፣𝑁 log
𝑛።፣/𝑁𝑏፣/𝑁

𝑀𝐼(U,V) = ፑ∑።=ኻ ፂ∑፣=ኻ 𝑛።፣𝑁 log
𝑛።፣/𝑁𝑎።𝑏፣/𝑁ኼ

(E.1)

From a communication theory point of view, the above quantities can be defined as follows: 𝐻(U)
is the average rate at which U produces information and can be imagined as a bit or ’chunk’. In this
case, the information is the labels in cluster U. Then 𝐻(U∣V) denotes the average size of information
’chunk’ needed to transmit each label in U if V is already known. This naturally leads to the definition of𝑀𝐼(U,V) = 𝐻(U)−𝐻(U∣V). MI indicates how much the knowledge of V helps us to reduce the number of bits
needed to encode labels in U. Clearly, the higher the MI, the more useful the information in V. The reverse
also holds true 𝑀𝐼(U,V) = 𝐻(V) −𝐻(V∣U). [49]

In addition, the Adjusted Mutual Information (Eq. 16) has all three desirable properties of clustering
comparison metrics:

• Metric property - the metric property conforms to our intuition of distance [66];
• Normalization property - the values of the index should lie either in [−1, 1] or [0, 1];
• Constant baseline property - for a similarity index to be relevant, its expected value between randomly

sampled clusterings should always be constant, irrespective of the number of clusters.
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F
Metric Altitude Reference

True track from 000○ to 179○ True track from 180○ to 359○

IFR Flights VFR Flights IFR Flights VFR Flights

FL m ft FL m ft FL m ft FL m ft

010 300 1000 020 600 2000
030 900 3000 035 1050 3500 040 1200 4000 045 1350 4500
050 1500 5000 055 1700 5500 060 1850 6000 065 2000 6500
070 2150 7000 075 2300 7500 080 2450 8000 085 2600 8500
090 2750 9000 095 2900 9500 100 3050 10000 105 3200 10500
110 3350 11000 115 3500 11500 120 3650 12000 125 3800 12500
130 3950 13000 135 4100 13500 140 4250 14000 145 4400 14500
150 4550 15000 155 4700 15500 160 4900 16000 165 5050 16500
170 5200 17000 175 5350 17500 180 5500 18000 185 5650 18500
190 5800 19000 195 5950 19500 200 6100 20000 205 6250 20500
210 6400 21000 215 6550 21500 220 6700 22000 225 6850 22500
230 7000 23000 235 7150 23500 240 7300 24000 245 7450 24500
250 7600 25000 255 7750 25500 260 7900 26000 265 8100 26500
270 8250 27000 - - - 280 8550 28000 -
290 8850 29000 - - - 300 9150 30000 - - -
310 9450 31000 - - - 320 9750 32000 - - -
330 10050 33000 - - - 340 10350 34000 - - -
350 10650 35000 - - - 360 10950 36000 - - -
370 11300 37000 - - - 380 11600 38000 - - -
390 11900 39000 - - - 400 12200 40000 - - -
410 12500 41000 - - - 430 13100 43000 - - -
450 13700 45000 - - - 470 14350 47000 - - -
490 14950 49000 - - - 510 15550 51000 - - -

Table F.1: Metric Altitude Reference table. Source: Skybrary. This table shows the function by which the unit transformation
of vertical deviation has been transformed from Flight Levels (FL) which are measured in feet, to meters.
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