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Abstract— It has been previously demonstrated that applying 

an aberrating mask for 2D compressive imaging using a low 

number of sensors (elements) can significantly improve image 

resolution, as evaluated via the point spread function. Here we 

investigate the potential to apply a similar approach for 3D flow 

monitoring. We conducted a 3D k-Wave simulation using a 5x5 

sensor array coupled to a physical coding mask, performing B-

mode and power Doppler imaging on a 3D carotid artery flow 

model. An approximately three times smaller lateral PSF was 

achieved at the cost of increased background clutter level and 

slightly increased axial PSF. A better definition of the vessel 

border and finer flow speckle were observed in power Doppler 

imaging. Our results suggest that 3D compressive imaging using a 

very low sensor count of 25 with spatial coding mask has the 

potential to monitor 3D carotid artery flow.  

Keywords— Compressive imaging, matched filtering, 3D image 

reconstruction, carotid artery, simulation 

I. INTRODUCTION 

The carotid artery (CA) is highly accessible for noninvasive 
ultrasound examination and valuable for cardiovascular health 
diagnostics or monitoring; e.g., information on blood velocities, 
wall pulsatility, pulse wave velocity (PWV), and development 
of atherosclerosis can be assessed [1]. Examination of the 
complex 3D structure of the CA currently must be performed by 
a skilled ultrasonographer. For functional monitoring purposes 
and assessment by unskilled personnel, we aim at a simple, 
wearable solution with a low number of sensors but inherent 3D 
capabilities. 

Developments in compressive sensing [2] have shown that 
important information can often be extracted with a surprisingly 
low number of sensors and observations, seemingly surpassing 
assumed Nyquist sampling rates. In previous work [3], we have 
shown that 3D ultrasound image reconstruction is even possible 
with a single sensor equipped with an aberration mask that 
provides a spatial coding of the ultrasound field and a model-
based reconstruction approach. Furthermore, we have evaluated 
the possibility of 2D imaging intended for the CA with a low 
number of sensors with masks [4] and demonstrated 

experimentally that a reasonable B-mode image quality could be 
achieved with only 10 to 12 sensors. 

In the current study, we show numerically that an analogous 
approach can also be applied for 3D imaging and flow sensing 
of the CA. We simulate a 2D array with a very low number of 
large elements and an aberration mask. The capability of this 
array to form volumetric B-mode and power Doppler images, 
with and without the aberration mask, is evaluated on in-silico 

 

Fig. 1. a) System scheme of compressive imaging with coding mask, with 
signal path of one transmit/receive sensor pair; b) 5x5 matrix coding mask 

pattern 
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phantoms: a point scatterers model and a CA-like flow model. 
Images are reconstructed using a model-based reconstruction 
approach, and the impact of the aberration mask on the image 
quality is evaluated. 

II. METHODS 

A. Transducer and mask 

The transducer modeled was a 5x5 square sensor array with 
a 2x2 mm element pitch and a center frequency of 5 MHz. Since 
the sensor pitch was almost 7 wavelengths (λ~0.3 mm), the 
imaging region was heavily spatially undersampled. The 
aperture of 10x10mm was small for carotid imaging but 
sufficient for proof of principle and was kept limited due to time 
and memory constraints. All simulations were carried out using 
the k-Wave toolbox [5]. The simulation setup is shown in Table 
I. The grid spacing was set to 1/4 wavelength. The coding mask 
covering the array was formed from layers of two materials with 
differing sound speeds. The materials chosen were TPX and 
Silicone rubber, the acoustic properties of which are shown in 
Table I. The thickness of the two layers is locally varied to 
generate a spatially varying time delay to the field transmitted 
by each element. This generates chaotic aberrations and 
increases the divergence of the element fields (Fig. 1a). Thus, 
the overlap between different sensors' acoustic fields is enlarged, 
and the generated coded acoustic fields result in a unique pulse-
echo response from each spatial position/imaging voxel. The 
map of thickness variation (Fig. 1b) was randomly generated to 
cover a delay range corresponding to 8 wavelengths and then 
spatially smoothed to keep local gradients smaller than 54° to 
avoid internal reflections at the interface.  

B. In-silico models 

Two in-silico models were constructed to evaluate the 
device capabilities: a point scatterer model and a flow model. 
In the point scatterer model (Fig. 2a), 27 scatterers (1 scatterer 
per voxel) were firstly evenly distributed in a 10x10x10 mm3 
volume centered on the array at a depth of 15 mm and then 
randomly offset in a small range (<0.4 mm) in each dimension 
to get some position variability. The background medium 
properties were set to be similar to those of water (1000 kg/m3, 
1540 m/s), while the scatterer density was twice as high (2000 
kg/m3). In the flow model (Fig. 3a), which mimics the anatomy 

of the carotid artery, a 5 mm diameter cylindrical structure was 
positioned at 15 mm depth in the azimuth direction of the sensor 
array and tilted 10° in the elevation and depth direction. The 
medium properties inside the cylinder were set to those of blood 

(1060 kg/m3, 1584 m/s), both with a Gaussian variance (�� = 
0.1) to generate weak backscatter. Outside of the cylinder, the 
medium properties were set to those of human tissue (1000 

kg/m3, 1540 m/s), both with a larger Gaussian variance �� = 
1.4). Starting from the initial random distribution, blood 
scatterers moved under a parabolic flow velocity pattern with a 
peak velocity of 0.5 m/s. For each volume, new medium 
properties of each grid voxel were calculated by linear 
interpolation from the displaced scatterers' properties. 

C. System model 

A linear model was adopted to describe this imaging system: � = � ∙ �, where y represents the vector of RF signals of each 
sensor (element + mask), x represents the scattering intensity at 
each position in the volumetric region of interest (ROI), and A 
is a large matrix containing the pulse-echo impulse responses for 
each voxel in the ROI for each transmission-reception element 
pair. The received sensor RF signal is modeled as a sum of 
impulse responses originating from the scatterers inside the 
simulated ROI. In this study, we simulated a synthetic aperture 
transmission scheme for which each element was sequentially 
excited, and the back-scattered echoes were recorded across all 
elements. This was chosen to maximize the information the 
array could acquire. The model for this synthetic aperture 
transmission scheme was thus structured as follows: 

This publication is part of the project TOUCAN (with project number 
17208) of the OTP research programme which is financed by the Dutch 
Research Council (NWO). 

Fig. 2. Point scatterers model reconstruction, shown as maximum 
intensity projections. a) spatial distribution of scatterers (ground truth) 
marked by red dots; b) Reconstructed volume projections without the 
mask (35 dB); c) Reconstructed volume projections with the mask (35 

dB) 

TABLE I. PARAMETERS OF K-WAVE SIMULATION 

Parameters 
Nx 

(dx) [mm] 

Ny 

(dy) [mm] 

Nz 

(dz) [mm] 

Nt 

(dt) [us] 

Grid definition 
10 

(0.077) 
10 

(0.077) 
26 

(0.077) 
39 

(0.017) 

 

Medium 

Point scatterers 

model 

Flow 

model 
Mask 

background scatterers tissue blood TPX 
silicone 

rubber 

Speed of sound 

(std) [m/s] 

1540 
(-) 

1540 
(-) 

1540 
(1.4) 

1584 
(0.1) 

2190 
(-) 

884 
(-) 

Density 

(std) [kg/m^3] 

1000 
(-) 

2000 
(-) 

1000 
(1.4) 

1060 
(0.1) 

830 
(-) 

1520 
(-) 

Attenuation 

[dB/MHz/cm] 
0.0022 1.2 10.1 
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Each pair of transmitting and receiving sensors has its unique 
submatrix ��t
, 
r
, where t refers to the transmitting sensor, r to 

the receiving sensor, and N is the number of sensors. Using the 
reciprocity theorem, the ��t
,
r
  matrix was derived by 

convoluting the transmitting and receiving sensors' forward 
fields. For the numerical studies reported here, these forward 
fields were directly obtained from the k-Wave simulation. For a 
physical transducer with a mask, these forward fields would be 
calibrated experimentally. � is considered to be time-invariant. 
Note that the vector x corresponding to the scatterer intensity of 
all pixels in the ROI can be time-varying (e.g., in the case of 
flow or tissue motion), and the corresponding sensor signals y 
represent x at this time point.  

D. Reconstruction method 

Image reconstruction concerns deriving the scatterer 
distribution x in the ROI from the measured element signals y, 
so theoretically, the reconstruction problem is a pseudo-inverse 
problem of the forward system linear model: �� = �� ∙ �. Since N� ≪ �n� × n� × n��, the problem is extremely ill-posed and, 

therefore, intractable for a regular matrix inversion method. We 
applied a matched filtering method instead, where �� , the 
Hermitian matrix of � was used as a substitution for �� [6]: 

���� = � ���� ,!
� 
�� ,!
� �2

#

!

#

 
 

where each sensor signal �� ,!
 was reconstructed individually 

and accumulated into the final ���� , In this study ����  was 

directly used as the estimate of the B-mode image. The estimate ��  might be further improved by a regression-based iterative 
reconstruction method like LSQR, as we have shown in our 
previous work [4]. 

E. Evaluation 

In this simulation study, the transducer was driven by a 5 
MHz 4 cycles Gaussian pulse with a PRF of 20 kHz, and we 
investigated the imaging ability of this system with and without 
the spatial coding mask. The sensor signals corresponding to the 
in-silico models being imaged by the array could have been 
generated in k-Wave, but this proved to be impractical (would 
require 31,250 separate time-consuming simulations). 
Therefore, the sensor signals were generated here by applying 
the forward model � = � ∙ � , where the �  matrix was 
developed from k-Wave sensor pair responses, and x contained 
the medium acoustic impedance (product of density and speed 
of sound) for the aforementioned point scatterer or flow model. 
We verified for a number of exemplary cases (point scatterers, 
tissue sample distributions) that these model-generated sensor 
signals were highly similar to the k-Wave simulated signals, 
even though our forward model ignores multiple-scattering 
effects. With respect to signal generation for the time-varying 
flow model, we just needed to update x volume by volume.  

After generating the sets of sensor signals for our synthetic 
transmit aperture scheme, the corresponding volumetric B-mode 
image ���� was reconstructed as described in equation 2.  

The B-mode image of the point scatterers model was used to 
evaluate spatial resolution by analyzing the 27 3D point spread 
functions (PSF). Except for visually checking the maximum 
intensity projection in all three dimensions (azimuth, elevation, 
and depth), every PSF's full width at half maximum (FWHM) in 
3D was also measured. Moreover, the average intensity of PSFs 
(in the FWHM region) was compared to the average intensity of 

⎝
⎜⎛

��1
, 
1�⋮��t 
, 
r
⋮��N 
, 
N�⎠
⎟⎞ =

⎝
⎜⎜
⎛

��1 
, 
1��1,1
,
1
 ⋯ ��1
, 
1��n-, n� 
,
n��
⋱⋮ ��t
, 
r
�x
,
y, z
 ⋮⋱��N 
, 
N��1
,
1,1
 ⋯ ��N 
, 
N��n-, n� 
,
n��⎠

⎟⎟
⎞

⎝
⎜⎛

��1,1
,
1
⋮��x, y
,
z
⋮��n-, n� 
,
n��⎠
⎟⎞ �1
 

 
Fig. 3. Flow model reconstruction, shown as cross-sectional images along longitudinal and transversal planes. a) ground truth velocity in volume with 
ROIs for blood to tissue contrast ratio and cross-sectional velocity images on the right; b~e) cross-sectional B-mode images without and with mask; f~i) 
cross-sectional power Doppler images without and with mask 
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the background to calculate the contrast ratio (CRSB). Regarding 
the flow model, 50 volumes were reconstructed. The static tissue 
and clutter signal in the B-mode was filtered out by subtracting 
the mean in slow time, and from the resulting time-varying 
signals, a PDI was formed. Two cross sections along the 
longitudinal and transversal direction of the vessel were visually 
compared (Fig. 3), and two (2x2x2 mm3) cubic regions at 15 mm 
depth inside and outside the vessel lumen were selected to 
calculate the blood to tissue contrast ratio (CRBT).  

III. RESULTS  

A. Scatterers model 

Fig. 2 shows the results of the volumetric reconstructions of 
the point scatterers model without and with the use of a mask 
during imaging as a maximum intensity projection (MIP) along 
three spatial axes with an intensity range of 35 dB. The spatial 
distribution of scatterers (ground truth) is shown in Fig. 2a. As 
shown in Fig. 2b, without the coding mask, the scatterers were 
barely distinguishable and badly localized in the 
azimuth/elevation MIP (Fig. 2b top image). In the depth 
direction, the scatterers were still separable. These observations 
are understandable as without a mask; each sensor works as a 
single large element generating a narrow vertical A-line, hardly 
transmitting or receiving energy to/from other spatial locations 
and elements. The 3D reconstruction, therefore, will resemble a 
spatial interpolation of 25 individual A-lines. 

When using the coding mask (Fig. 2c), both azimuth and 
elevation PSF were clearly improved. The azimuth FWHM 
improved from 1.57± 0.2 to 0.55± 0.09 mm and elevation from 
1.55± 0.18 to 0.54± 0.08. In the depth direction, the FWHM 
became slightly larger (from 0.53± 0.05 to 0.65± 0.05 mm). 

At the same time, we see a rise of the background clutter 
level as a side effect of the matched-filtering reconstructions, but 
not to the level that it obscures scatterer responses. The results 
confirmed the expected improvement of the PSF at the cost of 
degradation of CRSB (11.13 to 8.27 dB). 

B. Flow model  

In the flow model, we performed reconstructions for both 
volumetric B-mode and PDI (Fig. 3). The ground-truth 3D flow 
velocity map is shown in Fig. 3a, with 2D cross sections in a 
longitudinal and transversal plane to the right. The same planes 
for the B-mode and PDI reconstructions without and with the 
mask are shown in Fig. 3b-i. In the longitudinal views of the B-
mode image, the boundary between blood flow and tissue 
became sharper and more distinguishable when using the mask 
(Fig. 3c vs. 3b); however, the CRBT deteriorates (-3.17 to 0.22 
dB). These results are in line with those seen in the point 
scatterer model. This CRBT degradation also explains why the 
lumen is poorly separable in the transversal image (Fig. 3e). We 
observe an enhanced flow pattern in the PDI for the 
reconstruction with the mask (Fig. 3g, 3i). Notably, in the 

transversal view, a distinct circular boundary of the flow pattern 
was reconstructed, which is only slightly affected by the 
background clutter. Furthermore, the resolution of flow speckles 
also seems improved. The improved PSF and finer flow speckle 
may benefit analysis methods such as flow speckle tracking. 

IV. DISCUSSION 

The current study was limited in several aspects. In this 
simulation, we only checked the B-mode and PDI imaging 
performance; other imaging methods, such as color flow 
Doppler, can also be of interest and will be studied further. 
Furthermore, a regression-based iterative reconstruction method 
such as LSQR could improve the reconstruction quality further, 
as was demonstrated in our previous study [4]. Also, we will test 
if the finer speckle structure of power Doppler imaging with the 
mask will allow for flow speckle tracking. Besides, these 
simulations were performed for a limited aperture size. For a 
realistic device for CA imaging, a 4-10 times larger aperture area 
could be used. Due to the large element size, this would still have 
a manageable number of channels. In the next stage of the 
project, we will implement this approach experimentally using 
a real 2D transducer of the same frequency and element pitch 
and larger aperture manufactured by Vermon S.A., Tours, 
France, in combination with a physical mask. 

V. CONCLUSION 

Our results suggest that 3D compressive imaging using a 
very low sensor count of 25 with a spatial coding mask can 
potentially image the carotid artery in 3D and monitor 3D 
carotid artery flow.  
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