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Chapter 1

Introduction

From the Central Dogma of molecular Biology [1], we know how the genetic information passes

from different levels, that of DNA transcribed into RNA, that is then translated into protein. So,

the actual products that a living organism produces, are the proteins and thus the translation,

the process of synthesizing those proteins, is of high significance. That is because a better

understanding and manipulation of this process has significant affect in various fields. Just

imagine the consequences of the fine tuning of gene regulation in personalized medicine. Or the

use of it in the field of biotechnology and synthetic biology.

Figure 1.1: Central Dogma of molecular Biology. DNA transcribes to RNA, and RNA
translates to protein. From [2]

Let us focus at the cytoplasmic mature mRNA, Figure 1.2. As it is known from the literature

[3–7], the 5’ Untranslated Region, known as 5’UTR, of mRNA although is not translated itself,

may contain elements, that influence the gene expression. As 5’UTR, is named the region just
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in front of the coding sequence, which is the part of mRNA that is translated into protein, and

towards the 5 prime end.

Figure 1.2: mRNA structure

However, the exact role of the 5’UTR is unknown or not confirmed. The same counts for its

regulatory elements, so it is of high interest to be discovered. In this research, we studied the

impact of the 5’UTR sequences on translation. This is done by generating various features

describing the 5’UTR. Those features are then used as input in regression and classification

models, that have the Translation Initiation Rates as target. What we define as Translation

Initiation Rate is the speed (or rate), at which the protein production, from mRNA, occurs.

The reason why it is of such importance, is dual. To begin with, it is very useful to be able

to predict the initiation rates for new sequences and consequently be able to synthesize new

sequences with high initiation rate [3, 5, 6]. Additionally, it is important to understand which

of the elements, located in the 5’ UTR, influence the translation initiation rates and thus the

translation.

Aim of this research is detecting those features from the 5’ UTR of yeast’s mRNA, that lead to

higher translation initiation rates. In order to achieve this, data mining and machine learning

techniques were used to build predictive models. In the following chapters, we describe related

research, that has motivated this topic and supplied us with data. As a next step we get a better

insight in the data, as well as in the various features that were extracted from the 5’UTR region,

and that feed our models. Next we present the feature importance and correlation visualization

techniques used in this research. Following, we elaborate about our predictive modeling that

includes regression and classification models and as a next step we evaluate the results of our

models. Finally, we conclude with the results and the discussion.



Chapter 2

Related Research

This research is motivated by the work of Gritsenko et al. [8]. In this paper, is described the

prediction of translation initiation rates with the use of Ribosome Profiling. RP is a sequencing-

based technique [9], that allows us to have snapshots of the locations and the activity of the

ribosomes, while they perform the translation. More specifically, they describe a way to use the

RP data, that has been used for the per-codon translation elongation and per-gene translation

initiation rates. For that, they use the TASEP, Totally Asymmetric Exclusion Process, a sim-

ple dynamic model of translation. This method was introduced in 1970, by Frank Spitzer, in

Interaction of Markov Processes [10].

In this model, the translation of mRNA by the ribosome is modeled as a one-dimensional process,

in which the ribosome is attracted to the mRNA (initiation rate), and every codon specifies how

effective the translation step is (elongation rate). The process of the translation following the

TASEP manner, can be depicted in the Figure 2.1. The aforementioned process can be achieved

by the division of every coding sequence per gene into segments. Ribo-seq reads, R[l,r], and

mRNA-seq reads, M[l,r] are mapped to these segments.

Figure 2.1: In the above image, is shown the TASEP methodology as applied by Gritsenko
et al. [8]. In TASEP, mRNAs are modeled as one-dimensional lattices of Sg sites, codons, and

ribosomes, as particles occupying L sites (where L = 3 in the figure).
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As a next step, they calculate the ribosome density ω[l, r], where l and r are the starting and

ending positioning of the segment, respectively. Where the definition of ω[l, r], is:

ω[l, r] =
dRibo[l,r]

dmRNA[l,r]

=

R[l,r]

L[l,r]NR

M[l,r]

L[l,r]NM

(2.1)

R[l,r], describes the number of ribo-seqs in a segment, normalized by the total number of ribo

reads aligned to all coding sequences. Similarly, M[l,r] represents the mRNA-seq reads.

Figure 2.2: Schematic overview of the approach inferring translation kinetics from RP data,
as it is proposed by Gritsenko et al. [8]

The TASEP model is fitted to these ribosome density profiles, with the use of a Genetic Algo-

rithm, GA. A more elaborate scheme is shown in Figure 2.2.

Our research has also been motivated by the work of Ciandrini et al. [11]. Here again, there is use

of genome-wide experimental data of ribosomal density on mRNAs for Saccharomyces Cerevisiae

to translation initiation rates. That is succeeded with the use of a stochastic model, that describes

the ribosome traffic dynamics during translation elongation. According to Ciandrini et al., the

presence of secondary structures, on the mRNA sequences, inhibits the ribosome to easily bind on

the 5’ leader composition. That prompted us to the derivation of the Minimum Free Energy as a

feature in our research. In the work of Ciandrini et al., is also stated that the codon arrangement

seems to play a significant role in the determination of the translational efficiency. Following

the same assumption, we wonder whether there is a correlation between our target, which is

the translation initiation rates, and a sequential pattern within the 5’UTR. Lastly, they have

observed a correlation between the length of the Open Reading Frame, ORF, and the translation

initiation rates. Thus, we have included the length into our features as well.



Chapter 3

Experimental Setup

The aim of this research is to provide a better insight, into the relations, and possible causalities,

between the 5 prime untranslated regions and the translation initiation rates of those genes. In

other words, we are interested to see whether there is any information in the 5’ UTR sequences

and whether this information correlates to the rate that the sequence is translated. Using the

Extract, Transform and Load, ETL, paradigm, and a wide variation of data mining and machine

learning techniques the relations within the data are explored.

In Section 3.1 the data sets provided and additional data sets used, are explained into detail.

In the next section, Section 3.2, can be found the feature extraction from the DNA sequences.

Those features are explored in Section 3.3, with the use of exploratory data mining. Further

data mining experiments, are explained in Section 3.4, where the prediction of the target, the

Translation Initiation Rates, is discussed. The evaluation of our methods is discussed in Section

3.5.

3.1 Data

For the completion of this research, we have gathered data from multiple resources.

We have based our research on the genome of Saccharomyces Cerevisiae and that is because

yeast, although a simple eykariotic organism, has many essential cellular processes very similar

to the human genome [12, 13]. Therefore, by studying the yeast genome we are a step closer to

understanding the human genome. Additionally, yeast was the first eykariotic organism to have

its genome sequenced [14]. This leads us to a plethora of data and research material to access

and double validate our research.

The names of the genes and their initiation rates are based on two different data sets. The first

one, is that of Gritsenko et al. [8] and the second one is the one of Ciandrini et al. [11]. Since our

research is focused on the 5 prime untranslated region, that is located before the actual coding

sequence, we retrieved those regions as well. This data is coming from Nagalakshmi et al. [15]

and Yassour et al. [16]. In which the starting, as well as the ending position, of the 5’UTR are

6
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defined. The 5’UTR sequence was subsequently derived from the Yeast Genome database [17].

In our experimental setup the initiation rates gathered are used as the target of our models.

It should be noted that these initiation rates are coming from stochastic models, which include

noise and imprecisions and thus make our prediction task harder.

For the calculation of the Minimum Free Energy, there was use of the RNAfold tool, available

by the ViennaRNA kit [18]. Additionally, Gene Annotation, for the reference to theresponse to

stress annotation, was derived from the Gene Ontology [19, 20] database.

Following, additional data were added in the Gritsenko et al. dataset [8]. This includes the

average mRNA reads, the average Ribosome reads, the Fitness and the number of Segments per

gene. Those values were used by Gritsenko et al. in order to derive the translation initiation

rates in their research [8]. In our research we include them as features in order to verify the

propriety of our experimental approach.

Our data contains both features and target values, the translation initiation rates. In order to

perform data mining and predictive modeling activities, preprocessing and features extraction

are necessary. While the data contain mostly DNA sequences, most data mining and machine

learning algorithms work with numerical and categorical data.

3.2 Features Extraction

Aim of this research is to predict translation initiation rates from the 5’UTR sequences. However,

we cannot just simply feed our predictor with these sequences. That is because the 5’UTR

sequences are not of similar length. Furthermore, 5’UTR sequences are not aligned to each

other. Thus, as a first step, we extract generic features from those sequences and those features

are then used to train our models. Following, are described the features that were used in our

work.

Length : The first feature, that was taken into account, is the length of the sequence. We

thought of the length, because according to the literature [5, 11], genes with short coding

sequence tend to get translated more often than the longer ones. Maybe such a negative

correlation could be seen for the length of the 5’UTR as well. We have concluded to the

same assumption about length, during the calculation of the Conditional Entropy as well.

See Figure 4.10. For the calculation of the length are used the last 100bp upstream and

the first 40bp of the coding sequence. In other words, the length of a sequence can be

of maximum 140 base pairs. We do not use the whole size of the 5’UTR, as it might be

expected, that is due to our attempt to normalize our data. Additionally, the Ribosomal

Binding Site, RBS, is likely to be located approximately 8bp before the starting codon

according to N. Malys [21].

When a ribosome docks on the mRNA to begin the translation, it searches for a particular pattern

on the upstream sequence, where it can land [6]. This particular piece of sequence is called RBS.

While we are searching for this pattern in the upstream sequences, as well for patterns that
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enhance the docking of the ribosome on the mRNA, we came up with the following features,

that are based on the actual content of each sequence. Those features are: the Frequency of

Base Pairs, the Frequency of 2-mers and the Frequency of 3-mers.

Base Pair Frequency : For the calculation of these features, is used the aggregation of As

found in each sequence, divided by the actual length of that sequence. In a similar manner

is calculated the frequency of Ts, Gs and Cs.∑
b

length
, b ∈ A, T,G,C (3.1)

2-mers Frequency : These are 16 features, that represent the frequency of occurrence of every

possible combination using two base pairs; for example AA, AT, AG and so on. For the

calculation is used the number of counts divided by length-1.∑
b

length− 1
, b ∈ AA,AT,AG,AC, ..., CC (3.2)

3-mers Frequency : In a similar manner, those 64 features represent combinations of three

base pairs; like AAA, AAT, ATA and so on. The features show the frequencies of the

3-mers, which is the number of counts divided by length-2.∑
b

length− 2
, b ∈ AAA,ATA, .., CCC (3.3)

From those 84 features we would like to see a correlation between a pattern of bases and

the translation initiation rates.

While trying to infer to features related to translation rates, we are seeking our answers in what

is known in biology. Where we find, that translation responses seem to be strongly influenced by

the gene function. Subsequently, we focus our interest in the genes with the biological process

response to stress. As it is known, genes that are involved in the Response to Stress, get translated

more often than others, as they get higher priority [22–24]. Thus, we were motivated to use stress

as a feature in our algorithm. We would like to see a strong correlation among genes, that are

related to stress and the translation initiation rates.

Stress : According to Gene Ontology [19, 20], Response to Stress is “any process that results

in a change in state or activity of a cell or an organism (in terms of movement, secretion,

enzyme production, gene expression, etc.) as a result of a disturbance in organismal or

cellular homeostasis, usually, but not necessarily, exogenous (e.g. temperature, humidity,

ionizing radiation)”. In order to proceed to the generation of this feature, we used the

Gene Ontology Annotation. With the use of the AmiGo on-line database [19, 20], we were

able to find all the descendants of the term Response to Stress, (GO:0006950). We used

the aggregation of terms associated to each gene to create our feature. In other words,

the value of a gene for this feature is a positive natural number, that indicates how many

terms related to Stress, a gene has.
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Due to secondary structures that are created in the 5’ region, is harder for the ribosome to bind

on the RBS, and this leads to low translation initiation rates. For that reason we considered

the Minimum Free Energy, MFE, as a feature. The lower the free energy is, the more tight and

stable the secondary structure of the mRNA is. In others words, in order to achieve frequent

gene translations, we need weak structures [4, 11]. What we aim with this feature, is to see a

positive correlation between genes weakly folded and the translation initiation rates.

MFE : For the calculation of the MFE, is used RNAfold, available by the ViennaRNA kit [18].

In order to proceed to the actual calculation, is used the whole length of the sequence as

it is used for the calculation of the length. In other words, for each sequence are used the

last 100bp upstream and the first 40bp of the coding sequence.

3.3 Exploratory Data Mining

In order to get a better idea about how helpful our features are, as well as how well they associate

individually or together against the translation initiation rates, we followed two strategies. These

strategies are: a) inspection of the correlation between the feature values and the initiation rates,

and b) data visualization by reduction of the dimensionality.

Feature Importance and Correlations

While aiming to observe how informative the individual features are, we considered their cor-

relation with the translation initiation rates. For the feature correlation calculation, we have

used the Pearson product-moment correlation coefficient, also known as Pearson’s r [25], and the

Spearman’s rank correlation coefficient, known as Spearman’s ρ [26]. The Pearson’s r method

describes the linear relationship between two true values. Whereas the Spearman’s ρ method,

uses ranks and evaluates how well the relationship of two variables can be described by a mono-

tonic function. Because of the different approach the two methods use, for the calculation of

the correlation, it has been decided that both methods should be used in this research, as their

combination leads to better understanding of the data. Feature importances are calculated by

looking at the ordering of the features, that each regressor tree of the Random Forest uses, in

order to split the target efficiently. The more a feature is used for this division, at the beginning

of a regression tree, the more influence this feature has on the final outcome and thus this feature

is of higher importance.

For the calculation of the feature importance we have used the attribute feature importances

given by the library sklearn.ensemble.RandomForestRegressor [27]. According to which, is eval-

uated the importance of a variable Xm for predicting Y . This is achieved by adding up the

weighted impurity, decreases p(t)∆i(st, t) for all nodes t, where Xm is used, averaged over all

NT trees in the forest:
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Imp(Xm) =
1

NT

∑
T

∑
t∈T :υ(st)=Xm

p(t)∆i(st, t) (3.4)

Where p(t) is the proportion of Nt/n of samples reaching t. υ(st) is the variable used in the split

st. This measure is also known as Gini importance or Mean Decrease Impurity, (MDI) [28, 29].

Visualization Techniques

To gain insight into the datasets, visualization techniques for high dimensional data sets were

used. With the use of Multidimensional Scaling, MDS [30], the multidimensional data can be

scaled to a 2D projection and then visualized as plot using a distance measure, such as the

Manhattan distance. In order to feed the MDS, we have first calculated the Distance Matrix for

each dataset. The Distance Matrix has been calculated with the use of the Manhattan distance,

which is simply the summation of the absolute pairwise difference.

d(a, b) =

m∑
f=1

|af − bf | (3.5)

Where a and b are two different samples, so two sequences among n sequences in our data. f

represents the feature in a dataset of m features. The end result is a similarity matrix n · n.

The resulting 2D plot, that can be seen in Figure 4.4, tells us how similar our samples are. In

other words, we can see how close they lie together in this 2D space. This can give us an insight

into the separability of the data. The target of our dataset, the translation initiation rates, can

be used to color the final scatter plot to visualize the distribution of the initiation rates among

the different records.

Other algorithms to visualize high dimensional data sets are Andrews’ Curves (Figures: 4.6a

and 4.6b), RadViz plots (Figures: 4.7a and 4.7b) and Lag plots (Figures: 4.5a and 4.5b). An-

drews’ Curves, are similar to Parallel Coordinates plots [31], but they differ in that they show

more smooth behavior and therefore are usually easier to interpreet. In Andrews’ Curves, each

sequence of length l in the dataset is transformed into a polynomial of degree n, with the values

of the record as coefficients.

3.4 Predictive Modeling

Predicting or estimating, the exact values of the Translation Initiation Rates, from the features

gathered, as described in Section 3.2, is the primary goal of this research. However, the prediction

of the translation initiation rates given the 5’UTR sequences is not a trivial task. Especially,

when the given data is output of a stochastic model. The prediction of the translation initiation

rates, can be seen as a Regression problem, where we predict the exact initiation rate, given

the features per record. On the other hand, in case we want to know whether the translation



11

initiation rate of a sequence is relatively high or low, the task can be seen as a Classification

problem.

In this section, we elaborate on the predictive models used in our various experiments and the way

we have measured the quality of these experiments. For higher reliability in our results, we have

used a 5 fold Cross Validation with an additional separate validation set. For the preprocessing

of the feature values, has been used a Standard Scaler, before applying the regression model.

The Standard Scaler standardizes every feature separately, by removing the mean and scaling

to unit variance.

3.4.1 Regression Methods

A wide variety of regression methods and their parameters were utilized, in order to see how well

the target could be predicted. The regression algorithms used are explained below.

Random Forest Regressor

One of the models that has been used, is the Random Forest Regressor. An outline of this

algorithm is given in Algorithm 1. Briefly, this method picks up, in every iteration, a random

selection of features and creates decision trees as many as the variable n estimators is set. In

a regression decision tree, we fit a regression model to the target variable, by using each of the

independent variables. Then for each independent variable, the data is split at several split

points. At each split point, the Mean Squared Error, MSE, is calculated, between the predicted

value and the actual value [27, 32]. The definition of the MSE can be found in Section 3.5.2.

The variable resulting in minimum MSE is selected for the node. Then this process is recursively

continued, till either a) all leaves contain one value, or b) one of the stopping criteria is met,

such as maximum depth. In the end, we end up with n variables, where n equals the n estimator

predicted values. In order to arrive at a final estimate, the regressor takes the average value and

calculates the coefficient of determination against the test and the validation set. The definition

of the coefficient of determination can be found in Section 3.5.2.
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avgRibreads <= -0.1293
mse = 0.9861

samples = 2178
value = 0.0043

noOfSegments <= -0.3296
mse = 0.6828

samples = 1364
value = -0.45

True

avgRibreads <= -0.0365
mse = 0.5688
samples = 814
value = 0.7657

False

avgmRNAreads <= -0.2138
mse = 0.6153
samples = 904
value = -0.6616

avgmRNAreads <= -0.1819
mse = 0.5545
samples = 460

value = -0.0343

avgRibreads <= -0.1769
mse = 0.76

samples = 87
value = 0.2672

avgRibreads <= -0.1652
mse = 0.4983
samples = 817
value = -0.7605

mse = 0.4664
samples = 64

value = -0.0899

mse = 0.2346
samples = 23

value = 1.2609

mse = 0.3845
samples = 552
value = -0.9573

mse = 0.4864
samples = 265
value = -0.3505

avgRibreads <= -0.1629
mse = 0.4476
samples = 134
value = 0.6054

avgmRNAreads <= -0.1003
mse = 0.3611
samples = 326
value = -0.2972

mse = 0.3048
samples = 76

value = 0.2688

mse = 0.2918
samples = 58

value = 1.0464

mse = 0.3185
samples = 281
value = -0.199

mse = 0.1919
samples = 45

value = -0.9099

avgmRNAreads <= -0.111
mse = 0.4572
samples = 420
value = 0.4403

avgRibreads <= 0.3408
mse = 0.4545
samples = 394
value = 1.1126

avgmRNAreads <= -0.1539
mse = 0.4402
samples = 156
value = 0.8935

avgRibreads <= -0.1075
mse = 0.2742
samples = 264
value = 0.1725

mse = 0.4808
samples = 40

value = 1.4792

mse = 0.2671
samples = 116
value = 0.6915

mse = 0.2009
samples = 71

value = -0.1896

mse = 0.2352
samples = 193
value = 0.3058

avgmRNAreads <= 0.017
mse = 0.4438
samples = 291
value = 0.9695

avgmRNAreads <= 0.3381
mse = 0.2635
samples = 103
value = 1.5167

mse = 0.2813
samples = 108
value = 1.3776

mse = 0.3834
samples = 183
value = 0.7287

mse = 0.1371
samples = 14

value = 2.0737

mse = 0.227
samples = 89
value = 1.429

Figure 3.1: Decision Regression Tree computed for Gritsenko et al. dataset [8]. max depth=4

Algorithm 1 Random Forest for Regression as defined by T. Hastie et al. [33]

1. For b=1 to B:

(a) Draw a bootstrap sample Z* of size N from the training data.

(b) Grow a random forest tree Tb to the bootstrapped data, by recursively repeating the

following steps for each terminal node of the tree, until the minimum size nmin is

reached.

i. Select m’ variables at random from the p variables.

ii. Pick the best variable/split-point among the m.

iii. Spit the node into two daughter nodes.

2. Output the ensemble of trees {Tb}B1.

To make a prediction at a new point x :

Regression : f(x) = 1
B

∑B
b=1 Tb(x)

Decision Tree Regressor

The Decision Tree regressor is a very similar method to the random forest regressor, only that in

this case we have only one tree, instead of a forest. In a decision tree, at every node we split the

data into smaller subsets. Please refer to Figure 3.1. To begin with, for every feature we find all

possible split points (thresholds). For each threshold and feature combination, is calculated the

MSE against the target value and is selected the split with the minimum error. Then the selected

feature and threshold combination is used to split the dataset, and the feature and threshold

combination is saved in the node. Now depending on whether the target values are bigger or

smaller than the threshold, the data either belongs to the right or left child respectively. This

is an iterative process, that stops when the algorithm meets one of the following criteria. Those

criteria are a) the max depth, b) the min samples leaf and c) the node consists of only one value.

Predicting an unseen record is done by following a path through this tree, until we arrive at a

leaf node. The prediction is then the mean of the target values assigned to this leaf node.
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SVM

Support Vector Machine Regression [34], is a regression method, that tries to fit a hyperplane

on the data. In order to achieve this, the SVM places the hyperplane among the data in such a

way that the margin between the plane and the data is optimized. SVM is a linear regressor. By

using kernels, the method can be applied on non-linear data as well. The kernel can be set as a

parameter and is found that, in our case, the Radial basis function kernel, RBF kernel, performs

best. The RBF kernel fits simple models in a region local to the target point x0. The RBF

kernel is defined by the following formula:

K(a, b) = exp

(
−‖ a− b ‖

2

2σ2

)
(3.6)

Where a and b are gene samples in our data. In our experiments we used the implementation

given by scikit-learn [35] with the RBF kernel and empirically optimized parameters.

Kriging

Gaussian process regression also known as Kriging [36], is a popular regression method often used

in geostatistics. Under the right assumptions, Kriging gives the Best Unbiased Linear Predictor.

It computes not only the predicted mean, but also provides a prediction error also known as

the Kriging variance. A major downside of Kriging, is that the execution time is O(n3) in the

number of records and the memory complexity is O(n2). Kriging also uses a kernel like Support

Vector Machine. The standard kernel used is the Gaussian squared exponential kernel and is

defined as:

KSE(a, b) = σ2 exp

(
−γd(

a

l
,
b

l
)

)2

(3.7)

Where l is a length-scale parameter either of length one or the number of dimensions m, of

the input dataset. This parameter can either be set or is estimated by means of the maximum

likelihood procedure of the Kriging model. The implementation used in our experiments comes

from the scikit learn package version 0.17 [35], using the default parameters.

LASSO

LASSO is the abbreviation for the Least Absolute Shrinkage and Selection Operator, which is

a regression method, that aims in shrinking the feature coefficients, while reducing the model

complexity. The latter occurs because LASSO picks randomly a feature among those with the

highest correlation and reduces the coefficients of the rest to zero. The features with coefficient

equal to zero are excluded, performing thus a feature selection. LASSO minimizes the function

as given in Equation 3.8, where α can be tuned by the user. Setting α to one, is equivalent to

an ordinary least square.

min
w

1

2n
‖ Xw − y ‖22 +α ‖ w ‖1 (3.8)
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Where y is the real translation initiation values, that we try to predict. ‖ w ‖1 is the l1-norm

(Manhattan distance) of the parameter vector, w.

3.4.2 Classification Methods

Since, predicting the exact value of the Initiation Rates seems to be a difficult task, we also

chose to perform Classification, in order to see whether the data are separable in two classes.

Those classes are the Low or High translation initiation rates. For the training data set, we

obtained these labels by dichotomizing the translation initiation rates. All translation initiation

rate values above the mean value, across all genes, are considered as High; whereas those with

values below the mean are considered to be Low. Thus, we have two classes, label − 1 and

label − 0, respectively.

In order to perform the classification, there were two different kinds of experiments performed.

In the first, we split the dataset into two classes using the mean initiation rate as boundary.

And in the second, only the extreme values for the translation initiation rates were taken into

account.

Using the auto-sklearn class [37], many classifiers and machine learning pipelines can be run, in

order to optimize the AUC score. Please refer to the Quality Metrics section about the AUC,

Section 3.5.2. The final predictor and ROC curves are shown and discussed in Section 4.2.

For the classification task, mainly a Gradient Boosting Classifier and a Support Vector Clas-

sifier, SVC, were used. The parameters of the Gradient Boosting Classifier are learned by

using the Auto-sklearn optimizer. The parameters used for the Gradient Boosting Classifier

are: n estimators=392, learning rate=0.062, max depth=3, random state=0, max features=3,

loss=‘deviance’, min samples leaf=7, min samples split=7.

The SVC was used with the default parameters, with the aim to see whether a Support Vector

Machine could obtain better results. The default parameters are the following: C=1.0, ker-

nel=‘rbf’, degree=3, gamma=‘auto’, coef0=0.0, shrinking=True, probability=False, tol=0.001,

cache size=200, verbose=False, max iter=-1.

Gradient Boosting Classifier

The Gradient Boosting Classifier is a prediction method, that forms an ensemble of decision

trees using a forward stage-wise way. At each stage, a base model, which is an ensemble of

classification trees, is fit to the residual of the current model. Where the residual is the gradient

of the binomial deviance loss function. In other words, in every iteration the target is the

binomial deviance of the target (0 - 1) and the prediction output of the current model. The

binomial deviance is defined as:

yP − log(1 + eP ) (3.9)

Where P is log odds, log
(
P (c)
P (¬c)

)
, of a sample belonging to a class c.
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Support Vector Classifier

The Support Vector Classifier, SVC, is searching for the hyperplane, that creates the biggest

margin between training points for the classes 0 and 1. SVC is using only a subset of the

training data and that is because the cost function that is used for this model, does not care

about training points that lie beyond the margin. The optimization problem capturing this

concept is the following: maxβ,β0,‖β‖=1M is subject to

yi(x
T
i β + β0) ≥M, i = 1, ..n (3.10)

Where xTβ+β0 is the hyperplane, xTi is a transposed sequence (data point), β is the unit vector

and when β0 = 0 this hyperplane passes from the origin. ‖ β ‖= 1 and the maximal margin of

width is 2M = 2/‖ β ‖.

3.5 Evaluation

For the evaluation of the models, used in this research, we used a train-test procedure and quality

metrics, that are explained below.

3.5.1 Train-Test Procedure

In order to have more reliable results and avoid the overfitting of the regression models we have

trained the models using a five-fold cross validation. Where one fold is used as the test data,

which is used to tune the model parameters. The reason why we chose for cross validation is

because re-sampling leads to better estimation of the accuracy of the model.

Before applying the cross validation, we have separated a 10% of the complete data in order to

form the validation set. The validation set is used as a last step, in order to evaluate the learned

models on the validation dataset and get a final objective idea of how well the models perform

on unseen data.

3.5.2 Quality Metrics

For the validation of the trained predictive models, several quality indicators were used.

Coefficient of Determination : The coefficient of determination is a very common perfor-

mance measurement. Is denoted as R2 score and is defined as

R2 = 1−
∑n
i=1 (yi − pi)2∑n
i=1 (yi − ȳ)2

(3.11)

Where yi denotes the target value and pi the predicted value. ȳ is defined as the mean of

the target values. Subsequently, the best value for the R2 error, would be equal to one.
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Mean Absolute Error : The Mean Absolute Error, MAE, shows the error made by the pre-

dictor in estimating the target. Thus, the lower the MAE is, the better. Note that this

measurement is depending on the range of the target data.

MAE =
1

n

n∑
i=1

|pi − yi| (3.12)

Where the mean absolute error is the average of the absolute errors |pi − yi|. While, pi is

the prediction and yi is the true value.

Mean Squared Error : The MSE computes the mean square error, a risk metric corresponding

to the expected value of the absolute error loss or l1-norm loss.

MSE(y, p) =
1

n

n∑
i=1

(yi − pi)2 (3.13)

Where yi is the true value and pi is the predicted value of the i-th sample.

Classification Accuracy : For the Classification task, the main quality indicator used, is the

percentage of accurately predicted cases. For example, if the dataset contains two classes

and fifty percent of the records is assigned in the one class, then an accuracy of fifty percent

means, that our prediction is as good as random. While an accuracy, of a hundred percent

means a perfect prediction. This measurement is simple and can be misleading in cases

where the dataset is skewed, like in the case where we do not have the same number of

samples for all classes.

Area Under Curve & Receiver Operating Characteristic : A more precise quality indi-

cator can be obtained with the use of the Receiver Operating Characteristic, ROC, curve.

This curve shows the trade-off between correctly classified records of the “positive” class,

versus incorrectly classified records as the positive class. Using the probabilities predicted

by a classifier this curve can be calculated, in order to give an indication of the overall

precision of the classifier. Since the ROC curve is a two dimensional curve, it is difficult

to compare different classifiers based on this metric. Due to this fact, the Area Under the

Curve, AUC, is commonly used to measure the propriety of the predictor. By the opti-

mization of the AUC score, we gain the optimization of the predictor. The optimal value

of the AUC metric is one, while 0.5 means that the predictor predicts randomly.



Chapter 4

Results

In the following section, the results from the regression as well as for the classification task are

shown. Following those results, are described additional experiments, in Section 4.3. Finally, in

Section 4.4, the results of our data exploration are shown and discussed.

4.1 Regression Results

Gritsenko

For the Gritsenko dataset, many different regression algorithms were used on the data, in order

to see the prediction results that could be retrieved. A wide variety of parameters were explored

for those models. However, only the empirically best parameters are presented in the tables

below.

For all the experiments we have tried on Gritsenko’s dataset, we apply two different scenarios.

At first we apply all the features that were generated in our research and those are: the length,

A’s, T’s, G’s, C’s frequencies, Dimer’s and Trimer’s frequencies as well Stress and MFE. And as

a second experiment include four additional features, the values of which were used by Gritsenko

et al. in order to derive the translation initiation rates in their research [8]. Those extra four

features are: the average mRNA reads, the average Ribosome reads, the Fitness and the number

of Segments per gene. The reason we include them in our research is in order to validate the

propriety of our experimental approach.

The coefficient of determination, R2 score, for both the test and validation data are shown in

the tables below.

17
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Table 4.1: Results per fold on Gritsenko’s data [8] using all features excluding the following
four features: Avg. norm. mRNA read count, Avg. norm. Ribosome read count, Fitness,

Number of Segments

Algorithm Fold Test R2 Validation R2 Parameters

Random Forest 1 0.01138582 0.0216924 n estimators=100

Random Forest 2 0.03516566 0.04285264 n estimators=100

Random Forest 3 0.03906075 0.04998809 n estimators=100

Random Forest 4 0.0342417 0.0076032 n estimators=100

Random Forest 5 0.02319767 0.05236511 n estimators=100

Regression Tree 1 -0.03375269 0.02029835 Max depth=4

Regression Tree 2 0.00163356 -0.04590142 Max depth=4

Regression Tree 3 -0.06398509 -0.03655098 Max depth=4

Regression Tree 4 -0.00696978 -0.00525878 Max depth=4

Regression Tree 5 -0.04896083 -0.02816244 Max depth=4

Kriging 1 0.00917133 -0.01011966 Default

Kriging 2 0.01825115 -0.00742969 Default

Kriging 3 0.00511215 -0.01858246 Default

Kriging 4 0.01193798 -0.00499815 Default

Kriging 5 -0.01039905 -0.01619794 Default

SVM 1 0.01981213 -0.07325528 Default

SVM 2 -0.02912333 -0.05892615 Default

SVM 3 0.03677134 -0.08058316 Default

SVM 4 -0.01363057 -0.05508755 Default

SVM 5 -0.00783102 -0.05535512 Default

LASSO 1 -0.00483726 -0.00073398 Default

LASSO 2 -0.00147557 -0.00229592 Default

LASSO 3 -0.00518079 -0.00070988 Default

LASSO 4 -0.00831358 -0.00332039 Default

LASSO 5 -0.00018453 -0.00186482 Default
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Table 4.2: Results per fold on Gritsenko’s data [8] using all features including the following
four features: Avg. norm. mRNA read count, Avg. norm. Ribosome read count, Fitness,

Number of Segments

Algorithm Fold Test R2 Validation R2 Parameters

Random Forest 1 0.82954783 0.84565613 n estimators=100

Random Forest 2 0.81386788 0.84247368 n estimators=100

Random Forest 3 0.84122053 0.83436637 n estimators=100

Random Forest 4 0.83710895 0.84661551 n estimators=100

Random Forest 5 0.85066029 0.83289239 n estimators=100

Regression Tree 1 0.63966753 0.61078938 Max depth=4

Regression Tree 2 0.57592482 0.61693205 Max depth=4

Regression Tree 3 0.5905166 0.6157789 Max depth=4

Regression Tree 4 0.62258875 0.60604124 Max depth=4

Regression Tree 5 0.68141824 0.65150359 Max depth=4

Kriging 1 0.18656065 0.27656157 Default

Kriging 2 0.25894087 0.26877001 Default

Kriging 3 0.2381838 0.29261151 Default

Kriging 4 0.17664955 0.27367013 Default

Kriging 5 0.24141091 0.29874874 Default

SVM 1 0.30533241 0.34264988 Default

SVM 2 0.33272437 0.36323715 Default

SVM 3 0.20991707 0.33277265 Default

SVM 4 0.31840021 0.33531972 Default

SVM 5 0.26967266 0.33360603 Default

LASSO 1 0.24298908 0.28598520 Default

LASSO 2 0.28090668 0.28560219 Default

LASSO 3 0.30414779 0.28491968 Default

LASSO 4 0.32140461 0.28447393 Default

LASSO 5 0.26054854 0.28749306 Default

Table 4.3: Succinct results Gritsenko’s data [8] for the features Sequence Length, Stress,
MFE, A’s,T’s,G’s,C’s frequencies, Dimers’s and Trimers’s frequencies.

Algorithm AVG Test R2 Test Std. Val. Avg. R2 Val. Std. MAE train MAE Test

Random forest 0.03 0.01 0.03 0.01 0.3000 0.7587

Regression Tree 0.03 0.02 0.02 0.02 0.7772 0.8003

Kriging 0.01 0.01 0.01 0.01 1.8836e-15 0.8136

SVM 0.00 0.02 0.06 0.01 0.4919 0.8018

LASSO -0.003 0.00 -0.002 0.00 0.8062 0.8391
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Table 4.4: Succinct results Gritsenko’s data [8] using the above features and including the
four following features: Avg. norm. mRNA read count, Avg. norm. Ribosome read count,

Fitness, Number of Segments

Algorithm AVG Test R2 Test Std. Val. Avg. R2 Val. Std. MAE train MAE Test

Random forest 0.83 0.01 0.84 0.01 0.1158 0.2964

Regression Tree 0.62 0.04 0.62 0.02 0.4491 0.4394

Kriging 0.22 0.03 0.28 0.01 4.0710e-15 0.6820

SVM 0.29 0.04 0.34 0.01 0.3630 0.6909

LASSO 0.28 0.03 0.28 0.00 0.6780 0.6615

From Table 4.1, it can be observed that for all models and parameter combinations, both test and

validation score are quite not satisfactory. Generally, we can observe that the Random Forest

algorithm, seems to have the best performance. In order to evaluate that our approach is sound,

we repeated the experiments including four additional features, that we know for sure that the

initiation rates are depending on them. These additional features are: Average mRNA Read,

Average Ribosome Reads, Fitness and the Number of Segments. As it would be expected, in

the Table 4.2 one can see that the R2 scores are very much improved in relation to the previous

results. Unfortunately, the prediction of the translation initiation rates seems to be very hard, if

not impossible, when these features are not present. The Random Forest model shows the most

promising results in the executed experiments, with an R2 score of up to 0.84 including the four

additional features and an R2 score of 0.03 excluding these features.

Ciandrini

For the Ciandrini dataset, the same experiment is repeated using the same models and parame-

ters.

From Table 4.5 it can be observed, that also predicting the initiation rates for this dataset seems

to be a very hard task. Similarly to the Gritsenko experiments, Random Forests seem to be the

most promising model to use for the Ciandrini data too.

Since predicting the exact initiation rates is shown to be a very hard task, perhaps predicting

the extreme cases can be done instead. In order to check whether we can obtain, at least, an

indication of the extreme (low and high) initiation rates, as a next step, is performed the task

of predicting whether the target is low or high. Turning, thus, the problem into a Classification

task.

4.2 Classification Results

The chosen classification model, is the Gradient Boosting Classifier. This model is chosen by

Auto-sklearn [37], after the fine tuning of various models and parameters.
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(a) (b)

(c)

(d) (e)

Figure 4.1: (A) Preprocessing of the regression problem into a classification problem by
applying a binary class label to the records. Here is shown the Gritsenko [8] dataset without
the inclusion of the four extra features. Target values below the mean are assigned class label-
0 and values above the mean are assigned class label-1. (B) ROC curve calculated for the
Gritsenko [8] dataset, with the use of autosklearn.classification[37] and more specifically the
Gradient Boosting Classifier. (C) ROC curve calculated for the Gritsenko [8] dataset, with the
use of autosklearn.classification[37]. The difference with (B), is that in this case, there were
added four extra features. Those features are the: Average mRNA Reads, Average Ribosome
Reads, Fitness and Number of Segments. (D) Similar to (A) and (E) is similar to (B) but in

this case, they are calculated for the Ciandrini [11] dataset.
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Table 4.5: Results per fold on Ciandrini’s data [11] for the features Sequence Length, Stress,
MFE, A’s,T’s,G’s,C’s frequencies, Dimers’s and Trimers’s frequencies.

Algorithm Fold Test R2 Validation R2 Parameters
Random Forest 1 0.04317389 0.0008724 n estimators=100
Random Forest 2 0.00188718 0.01239863 n estimators=100
Random Forest 3 0.02114724 0.0122576 n estimators=100
Random Forest 4 0.00606485 0.01120197 n estimators=100
Random Forest 5 0.02844071 -0.00136179 n estimators=100
Regression Tree 1 -0.01924838 0.00653142 Max depth=4
Regression Tree 2 0.08662839 0.02060814 Max depth=4
Regression Tree 3 -0.03605583 -0.09009538 Max depth=4
Regression Tree 4 -0.03914204 -0.00059705 Max depth=4
Regression Tree 5 -0.00720636 -0.00761121 Max depth=4
Kriging 1 0.01654896 0.01535292 Default
Kriging 2 0.01149844 0.01925918 Default
Kriging 3 0.01865919 0.02440714 Default
Kriging 4 0.00160740 0.02440714 Default
Kriging 5 0.00160740 0.03156701 Default
SVM 1 -0.06814349 -0.05674336 Default
SVM 2 -0.02694341 -0.04992307 Default
SVM 3 -0.00599307 -0.06808839 Default
SVM 4 -0.0274114 -0.02092128 Default
SVM 5 -0.03866553 -0.06018205 Default
LASSO 1 -0.00267240 0.00085043 Default
LASSO 2 0.000755587 0.00107102 Default
LASSO 3 0.000181063 -0.0013816 Default
LASSO 4 0.000972333 0.00033517 Default
LASSO 5 -0.00351892 -0.0026633 Default

The classifier produces the ROC curves, that are shown in the figures 4.1e, 4.1b, 4.1c, after

fitting on the data. In this case, there were two different kinds of experiments performed. In

the first, the dataset is split into two classes using the mean initiation rate as boundary. This

is shown in Figures 4.1a and 4.1d. What can be seen in those figures is the log values of the

translation initiation rates sorted, depicted with blue color. The green line shows the mean value

of our target. And with the red color can be seen the transformed classification target. All the

initiation rates with a value below that of the mean, is assigned to the class label-0 and those

with a higher value, are assigned to label-1. In the Figures 4.1b, 4.1e, one can see the ROC

curve calculated for the Gritsenko and Ciandrini data sets, respectively. In those figures, the

red dashed line shows a base line random classifier. The blue line shows the ROC curve of the

Gradient Boosting Classifier. The area under curve score, AUC, is given in the legend. It can

be observed that for both data sets, the calculated ROC is very close to the base line. We can

make a degree of distinction between the low and high initiation rates, but there are still many

false positives. Similarly to previous experiments, in order to validate whether our results are

correct, we have included the extra four features for the Gritsenko database. The results of this

experiment can be seen in the Figure 4.1c, where it can be observed that the AUC score has

been improved from 0.59 to 0.81.

In the second experiment, only the extreme values for the translation initiation rates were taken

into account. In Figures 4.2a and 4.2c we can again see the sorted logarithmic values of the

translation initiation rates depicted with the blue line. The red line shows the upper threshold,
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(a) (b)

(c) (d)

Figure 4.2: (A) Preprocessing of the regression problem into a classification problem but
now by removing the targets around the mean value, taking only the extreme cases into
account. (B) ROC curve calculated using only the dataset with the extremes as visualized on
the left for the Gritsenko dataset. (C) Similar as (A), but this time for the Ciandrini dataset.

Respectively, (D) is similar to (B).

which is set to µ+ σ
2 . The lower threshold, depicted by the green line, is set to µ− σ

2 . Samples

with initiation rates below the lower threshold are assigned to label-0, whereas those with values

higher than the upper threshold are assigned to label-1. The samples with values in between, are

omitted. The ROC curves of this second type of experiment are shown in Figures 4.2b and 4.2d

for the Gritsenko and Ciandrini dataset respectively. One would observe, in those figures, that

the classification accuracy is slightly improved for both data sets. Especially, for the Gritsenko

dataset, an improvement can be clearly observed. Concluding thus, that extreme initiation rates

can be easier distinguished.

4.3 Additional Experiments

As an additional attempt to increase the performance of the classifiers, Principal Component

Analysis, (PCA) is used to see whether reducing the dimensionality of the data sets can improve

the performance. In Figures 4.3a, 4.3b, 4.3c and 4.3d, the AUC score of the trained predictor is

plotted on the y axis against the number of PCA components on the x axis. Principal Component

Analysis, is a statistical procedure that is used to emphasize variation and bring out the strong
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patterns in a dataset. Is like one is willing to take a photo of our data, and tries to find the

best angle to make this photo, so that he can retrieve enough information about the nature of

the data, without taking photos from each side of them. Thus, PCA is used as a dimensionality

reduction method, selecting the features that best describe our data.

(a) (b)

(c) (d)

Figure 4.3: (A) AUC scores for different PCA preprocessing settings using a Gradient Boost-
ing Classifier for the Gritsenko dataset. (B) Similar to (A), but in this case using the Support
Vector Classifier. (C) AUC scores for different PCA preprocessing settings using a Gradient
Boosting Classifier for the Ciandrini dataset. (D) Again the AUC score for the Ciandrini data,

but this time using the Support Vector Classifier. )

It can be observed from the Figures 4.3a and 4.3c, that no matter the number of the principal

components included in the experiment, the performance remains almost the same. However, for

the Support Vector CLassifier the accuracy is slightly increasing when the number of principal

components increases. This can be seen in Figures 4.3b and 4.3d. Something more that we could

observe, is that the Gradient Boosting Classifier performs slightly better than Support Vector

Classifier. Unfortunately, the use of PCA in our experiments does not improve the performance

opposed to our aforementioned results.

4.4 Data Exploration

In order to further investigate why the regression and classification results from the experiments

are so low, extensive data exploration is performed. In this section, using various data exploration
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methods explained in Section 3.3, we reason about the separability of the translation initiation

rates. That is because we would like to explain the difficulty of the prediction task for data

resulting from stochastic models.

The figures referenced in this section, can be found in Chapter 6: Appendix A. In the Figures 6.1

and 6.2, is shown the feature correlation between the different features and the target. From Fig-

ure 6.2 one can observe that, as expected, the features Average mRNA Reads, Average Ribosome

Reads, Fitness and Number of Segments show high correlation with the target. Unfortunately,

none of the other features seem to show any linear correlation with the target. Which is surpris-

ing since, at least a correlation between the target and the length of the 5’UTR was expected,

according to Ciandrini et al [11].

In Figures 6.7 and 6.8 are shown the feature importances, as calculated by the random forest

regressor trained on the Gritsenko data set. The feature importances calculated from a random

forest model show the same pattern as the correlations mentioned before, while ATG seems to

be the most important feature in Figure 6.7. Figure 6.8 shows to us, that by including the four

additional features the feature importances change dramatically.

While having a look at the features, that we have gathered, and the translation initiation rates,

from a different point of view, we have plot them in a clever fashion. Especially since both the

Gritsenko and the Ciandrini data sets, have more than 3000 records and more than 90 features.

In order to better visualize this data, we can make use of several plotting algorithms for high

dimensional data sets.

In the Figures 4.4a, 4.4b and 4.4c, with darker color are shown the sequences with high translation

initiation rates, and with lighter color, those with lower rates. If we have a close look into the

Distance Matrix for the Ciandrini dataset 4.4a, we can see that the high and the low values are

scattered. It is very hard to divide the data into low and high initiation rates regions. Similar

behavior is seen in the first image for the Gritsenko dataset 4.4b. However, having a closer look

into the Figure 4.4c, we can observe a gathering of the genes with high initiation rates at the

lower region and those with lower values in the upper region. We can almost say that we can

draw the boundary line, that separates the data into those of high and low translation initiation

rates. The difference between the two Figures for the Gritsenko data, is that in the second case

the four additional features were added.

Lag plots are a nice way to inspect whether the collected data is random or not. If the data is

random, then the Lag plot shows no clear pattern. The Lag plots of the Gritsenko and Ciandrini

dataset are shown in Figures 4.5a and 4.5b. It can be observed that the plot is not completely

random. However, both datasets show a large area with seemingly random behavior.

The Andrews’ Curves for both data sets are shown in Figures 4.6a and 4.6b. It can be observed,

that for both data sets similar behavior occurs, and that both high and low translation initiation

rates are very much overlapping. In the case of the Andrews’ Curves, one can observe that there

is a slight difference among the two classes. For example, the class one is located higher than

the class zero. The colors in those figures, where randomly assigned by the algorithm, so they

are not matching among the two figures. But, we can still observe similar behavior between the
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(a)

(b) (c)

Figure 4.4: (A) The Distance Matrix calculated for the Ciandrini [11] dataset[37] with the
use of the Manhattan distance. (B) The Distance Matrix calculated for the Gritsenko [8]
dataset, with the use of the Manhattan distance. (C) The Distance Matrix calculated for the
Gritsenko [8] dataset. But in this case, are included the extra features: Average mRNA Reads,

Average Ribosome Reads, Fitness and Number of Segments.

(a) (b)

Figure 4.5: (A) Lag Plot of the Gritsenko dataset without the extra four features. (B) Lag
Plot of the Ciandrini dataset.

two data sets. For instance, we can observe that in both the Gritsenko data and the Ciandrini

data, the class one is located higher than the class zero.

RadViz plots plot the records depending on the feature values, each feature becomes a dot
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(a) (b)

Figure 4.6: (A) Andrews’ Curves of the Gritsenko dataset without the extra four features
and (B) for the Ciandrini dataset.

uniformly distributed in a circle. See Figures 4.7a and 4.7b. There are invisible springs between

the feature dot on the circle and the dot that represents the record, if the record has a relative

high value for a certain feature, then the tension in the spring is high. Using these tensions,

the position of the record dot is calculated. In that way, is easier to verify, whether there are

different clusters in the data.

To visualize the Andrews’ Curves and RadViz plots nicely, we can use a class label, to color

the different records. Here we choose to assign two classes to our data sets, 1 and 0 for high

initiation rates and low initiation rates respectively. We do this by looking only at the more

extreme cases in the dataset. All records with a translation initiation rate higher than the mean

plus half standard deviation, (µ + σ
2 ), of the target, receive the class label 1. Similarly, all the

records, with a target below the mean minus the half standard deviation, (µ − σ
2 ), receive the

class label 0. The remaining records were discarded for the sake of those visualizations.

(a) (b)

Figure 4.7: (A) RadViz Plot of the Gritsenko dataset without the extra four features. (B)
RadViz Plot of the Ciandrini dataset.

From these plots, it can be concluded that predicting exact or distinguishing between low and

high translation initiation rates using the selected features is a very difficult task. The data seem

to be not separable in the feature space and even extreme cases are highly overlapping.
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Conditional Entropy

During data exploration, we were interested to see the impact of specific nucleotides on the

translation rates. For that reason we calculated the Conditional Entropy. The conditional

entropy measures how much entropy, which is the lack of predictability, a random variable X

has; remaining if we have already learned the value of a second random variable Y. It is referred

to as the entropy of X conditional on Y, and is written H(X|Y ). In our case the random variables

are the four nucleotides: A,T,G and C. What we are aiming with this experiment is to find a

pattern of nucleotides that occurs at a specific position among the 10% of the sequences with

the highest translation initiation rates.

The Conditional Entropy is calculated by the following formula:

Eset[i,k] = Pset[i,k] ∗ log2(Pset[i,k]/Pback[i,k]) (4.1)

Where Pset[i,k] denotes the probability of a nucleotide i at position k in the 10% of the sequences

with the highest translation initiation rates. Pback[i,k] is the probability of the same nucleotide

at the same position in the remaining 90% of the sequences. The relative height of the nucleotide

bars equals to Eset[i,k]. When this value is positive, leads to enrichment and when negative to

depletion, according to Dvir et al. [3]. At first we used the shortened sequences with length as

defined in our features, Section 3.2, where we cut out the 5’ UTR area above 100bp and we do

use of the first 40bp of coding sequence, and thus we have sequences of maximum 140bp length.

For the calculation of the conditional entropy, is important to align the sequences, in order to

be sure that a specific position is common across all data. However, not all sequences have the

same length in their 5’ UTR. Thus, we have reversed all the sequences in such a way that the

40th base of coding sequence becomes the first base of the sequence, and the last base of 5’

UTR is the end. This can be more clearly seen in the Figure 4.8. What we could conclude from

this figure is that 15% among the 10% of the sequences with the highest initiation rates have a

nucleotide A at 129bp position.

Figure 4.8: The Conditional Entropy calculated for the Gritsenko dataset. The hight of
the bars denote the Eset[i,k] value for each base A,T,G and C. Here, were used only the last
100bp of the 5’UTR sequence. Note that for alignment reasons we have reversed the sequences

starting from the 40 first bp of coding sequence and moving on towards the 5’ UTR.
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The same experiment we tried for all the 3-mers as well (AAA, ATA, ..., CCC). In that case we

were interested to see whether a combination of three bases at a specific position can give us

some distinguishing information for the sequences with the highest initiation rates. Figure 4.9.

Figure 4.9: The Conditional Entropy calculated for the Gritsenko dataset for the trimers.
Here is shown only the first figure of the results. The hight of the bars denoete the Eset[i,k]

value for each trimer eg AAA, ATA, ... , CCC. Here, were used only the last 100bp of the
5’UTR sequence. Note that for alignment reasons we have reversed the sequences starting

from the 40 first bp of coding sequence and moving on towards the 5’ UTR.

As a following step, we considered more useful to use the whole length from the 5’ UTR sequence.

We were also willing to include the calculation of the conditional entropy in our regression

algorithm. In order to achieve this, we summed up the Eset[i,k] values, for all the nucleotides

per sequence, so that every sequence has a score. Thus, we have used this score as another

feature in our prediction model. There was a small normalization problem though. Short and

long sequences might have the same exact score. In order to handle this, we included into our

calculation the spaces as well, that is referred as No-base in Figure 4.10. The results of the

regression experiment are not included in this research, as they were inferior to our final results.

Having a better look at the figure 4.10, one could observe, that sequences with almost no 5’ UTR

sequence seem to be translated more often. We can see that, because short sequences, that are

sequences that have positive values for No-base in the first 40bp are among the 10% of sequences

with the high initiation rates. This verifies our initial assumption about the negative correlation

between the length and the translation initiation rates. Similarly, we can observe an increase of

the CE values for No-base after 200bp too. Which means that sequences with very long 5’ UTR

are also among the 10% of the sequences with high initiation rates.

Sliding Window

In order to maintain the position dependent information across the sequences and to see whether

certain areas are more informative than the whole sequence, we performed a Sliding Window

approach, for the prediction of the translation initiation rates. In other words, we divided every

sequence in sub-sequences. Moving from the 5’ prime end towards the 3’ prime end, we generated

small sequences of 10 base pairs each. We moved along the sequence with 1bp step, which means

9bp overlap between any two consecutive sub-sequences. Our initial sequences were of 140bp

maximum length, which led to 130 windows (n − windowsize). A schematic representation of

the sliding window can be seen in Figure 4.11.
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(a) (b)

Figure 4.10: (A) The Conditional Entropy calculated for the Gritsenko dataset across the
whole length of every sequence. (B) Similarly, the conditional entropy calculated for the
Ciandrini dataset. On the x axis we have the length of the sequences in bp, whereas on the y
axis the values of the Eset[i,k]. Note that for alignment reasons we have reversed the sequences
starting from the 40 first bp of coding sequence and moving on towards the 5’ UTR. In this
Figure it can be seen that sequences with negligible 5’ URT sequence or 5’ UTR length longer

than 160bp are among the 10% of the sequences with the highest initiation rates.

Figure 4.11: sliding window

For every window, we have generated separately, all the aforementioned features: A’s, T’s,

G’s, C’s frequencies, Dimer’s and Trimer’s frequencies. In this manner, we have increased the

dimensionality of our problem. After the generation of the features, we tried the following

experiments:

• Calculate the feature correlation against the translation initiation rates. (Pearson and

Spearman correlation). As well as the feature importances calculated by the Random

Forest regressor [27].

• Performed a double loop 3-fold cross validation for the regression. For the regression, the

following models were evaluated: Random Forest Regressor, Gaussian Process Regression,

Support Vector Regressor, LASSO.

• Applied a Prinicipal Components Analysis using 20, 40 and 80 components as an input to

a Random Forest Regressor.
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Following tables present the results of the sliding window for the two datasets using random

forest regressor 4.6, 4.7, 4.8. All the other results related to the sliding window were omitted as

they were inferior. The features that we feed the regressor with are the MFE and Stress features

per gene as well as the A’s, T’s, G’s, C’s frequencies, Dimer’s and Trimer’s frequencies calculated

for each window. The correlation images, after applying the sliding window, can be found in 6.4,

6.5 and 6.6. Additionally the images for the feature importance as they arise from the random

forest can be found in 6.10, 6.11 and 6.12.

Table 4.6: Results per fold on Gritsenko’s data [8] using all features as they arise from the
sliding window, including the following four features: Avg. norm. mRNA read count, Avg.

norm. Ribosome read count, Fitness, Number of Segments

Algorithm Fold Test R2 Validation R2 Parameters
Random Forest 1 0.76856104 0.76271527 n estimators=100
Random Forest 2 0.76481020 0.78313925 n estimators=100
Random Forest 3 0.79345205 0.76424642 n estimators=100
Random Forest 4 0.80199309 0.75221641 n estimators=100
Random Forest 5 0.76589967 0.75577879 n estimators=100

Table 4.7: Results per fold on Gritsenko’s data [8] using all features as they arise from the
sliding window, excluding the following four features: Avg. norm. mRNA read count, Avg.

norm. Ribosome read count, Fitness, Number of Segments

Algorithm Fold Test R2 Validation R2 Parameters
Random Forest 1 0.02705442 0.02916387 n estimators=100
Random Forest 2 0.03368827 0.03514938 n estimators=100
Random Forest 3 0.03906814 0.01492746 n estimators=100
Random Forest 4 0.00588796 0.00971480 n estimators=100
Random Forest 5 0.01972022 0.01262269 n estimators=100

Table 4.8: Results per fold on Ciandrini’s data [11] using all features as they arise from the
sliding window.

Algorithm Fold Test R2 Validation R2 Parameters
Random Forest 1 0.01477579 0.00822615 n estimators=100
Random Forest 2 0.01011842 0.00080927 n estimators=100
Random Forest 3 0.0043851 0.01592642 n estimators=100
Random Forest 4 0.03176115 -0.01087973 n estimators=100
Random Forest 5 0.01578811 0.02916065 n estimators=100
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Conclusions and Future Research

5.1 Conclusions

Having a more careful look at the results 4.3 & 4.4, one can observe that the scores of all the

chosen methodologies are significantly better with the inclusion of the features Average mRNA

reads, Average Ribosome reads, Fitness and the Number of Segments. The values of which, have

been used for the derivation of the Translation Initiation Rates in the paper Gritsenko et al. [8].

This is quite expected and proves that our algorithms actually work. Unfortunately, this is also

a confirmation that none of the rest of the features happens to be a significant opposer, since

the results from the regression task show results similar to that of a random predictor.

Predicting the exact value of our target, the translation initiation rates, seems to be a hard

task if not impossible. Most likely due to the fact that the initiation rate values are produced

by stochastic models and only partly reflect the real initiation rates in nature. As a next step

we tried to predict, whether the target is either low or high. This is done by transforming our

regression task into a classification task. The results of these classification experiments (Figures

4.1 and 4.2) show us, that this is indeed an easier task than predicting the exact value. However,

as it can be observed from the ROC curves in Section 4.2, the AUC score of the classification

task for both data sets is around 0.6, which is not a very confident score either. When including

the additional features, this AUC score and the accuracy of the predictor goes up to 0.8, showing

again that by using these extra features, the prediction can be made much more reliable. From

the feature importances for both data sets we can see, however, that the MFE seems to play

a role in relation with the translation initiation rates. Unfortunately, it is not clear from those

results on how the MFE influences the initiation rates.

From the Principal Component Analysis experiment, that is shown in Figure 4.3, it can be

observed, that dimensionality reduction does not increase the performance of the classifier. Sim-

ilarly, for the optimized Gradient Boosting Classifier and the Support Vector Classifier, the

results show the same quality and there is no increase of the performance observed.

As it occurs from the Conditional Entropy calculation in our additional experiments, the length

of the 5’UTR sequence seems to play a role in the translation frequency of the sequences as well.
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Is quite interesting to observe in Figure 4.10, that sequences with negligible 5’UTR are among

the 10% of the sequences with the highest translation initiation rates. In the same figure, it can

also be observed that sequences with 5’UTR sequence longer than 160bp, seem to be translated

more frequently than those with smaller.

Lastly, having an additional look in the Correlation Figures 6.1 and 6.3, one can see that the

MFE feature seems to have indeed higher correlation with the target, than other features, as it

has been suggested by Ciandrini et al. [11]. However, this correlation is 0.12 for the Ciandrini

data and 0.06 in the Gritsenko data, and thus is considered insignificant. Additionally, from the

image depicting the feature importances, Figure 6.9, we can again see that the MFE seems to

play a significant role in the Ciandrini data, as it has been mentioned in the relative literature.

Whereas in the Gritsenko’s dataset, Figure 6.7, the MFE comes in the third important position.

Subsequently, we can come to the conclusion, that the two datasets do differ, although there are

many similarities among them.

To sum up, the predicting task of the translation initiation rates out of the 5’UTR sequences

seems not to be a trivial task. The reason to this might be the fact that the data we have used

are products of stochastic models and not actual data [8, 11]. That is because stochastic model’s

data contains noise.

5.2 Future Research

There are still many open questions and possibilities to explore in this area. Additional features

could be used in the predictive algorithms. An example of such an additional feature would

be the presence of a specific pattern in a sequence. Such a pattern could be the consensus of

the Ribosomal Binding Site, which is the AGGAGG. Another interesting feature would be the

investigation of the exact position of such a sequence.

An interesting research area would be the application of motif discovery on sequences with a

high initiation rate, in order to see whether there are specific motifs that might contribute to

the initiation rate. This is something we have already tried for small motifs of three base pairs.

Thus as a future experiment we could try longer motifs.

As a next step one could try different predictive models as well. Perhaps the use of Deep Neural

Networks would be of an advantage since the construction of features would be automated. This

could lead to the improvement of the prediction performance.
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Chapter 6

Appendix A: Correlation and

Feature Importance Plots

Figure 6.1: Correlation Coefficient and P-values for the Gritsenko et al. dataset [8]. With
green color are represented the Pearson’s r values and with red the Spearman’s ρ ones.
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Figure 6.2: Correlation Coefficient and P-values for the Gritsenko et al. dataset [8]. With
green color are represented the Pearson’s r values and with red the Spearman’s ρ ones. This

includes the features avgmRNAreads,avgRibreads,Fitness and noOfSegments.

Figure 6.3: Correlation Coefficient and P-values for the Ciandrini et al. dataset [11]. With
green color are represented the Pearson’s r values and with red the Spearman’s ρ ones.
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Figure 6.4: Correlation Coefficient and P-values for the Gritsenko et al. dataset [8] after
we applied the sliding window method. Here we select the top best 100 features according
to Person’s values. With green color are represented the Pearson’s r values and with red the

Spearman’s ρ ones.

Figure 6.5: Correlation Coefficient and P-values for the Gritsenko et al. dataset [8] after
we applied the sliding window method. Here we select the top best 100 features according
to Person’s values. With green color are represented the Pearson’s r values and with red the

Spearman’s ρ ones.
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Figure 6.6: Correlation Coefficient and P-values for the Ciandrini et al. dataset [11] after we
applied the sliding window method. With green color are represented the Pearson’s r values

and with red the Spearman’s ρ ones.

Figure 6.7: Average feature Importances and their average standard deviation as it occurs
from the 5 fold Cross Validation, calculated by a Random Forest Regressor on the Gritsenko

et al. dataset [8]. Here we select the top best 100 features according to Person’s values.
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Figure 6.8: Average feature Importances and their average standard deviation as it occurs
from the 5 fold Cross Validation, calculated by a Random Forest Regressor on the Gritsenko
et al. dataset [8]. This time were included the four extra features: Average mRNA Reads,

Average Ribosome Reads, Fitness and Number of Segments
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Figure 6.9: Average feature Importances and their average standard deviation as it occurs
from the 5 fold Cross Validation, calculated by a Random Forest Regressor on the Ciandrini

et al. dataset [11].
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Figure 6.10: Average feature Importances and their average standard deviation as it occurs
from the 5 fold Cross Validation, calculated by a Random Forest Regressor on the Gritsenko
et al. dataset [8]. This time were included the four extra features: Average mRNA Reads,
Average Ribosome Reads, Fitness and Number of Segments. For this calculation we have first
applied sliding window which leads to many more features and thus we select only the top 20.
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Figure 6.11: Average feature Importances and their average standard deviation as it occurs
from the 5 fold Cross Validation, calculated by a Random Forest Regressor on the Gritsenko
et al. dataset [8]. For this calculation we have first applied sliding window which leads to

many more features and thus we select only the top 20.



Appendix 45

Figure 6.12: Average feature Importances and their average standard deviation as it occurs
from the 5 fold Cross Validation, calculated by a Random Forest Regressor on the Ciandrini
et al. dataset [11]. For this calculation we have first applied sliding window which leads to

many more features and thus we select only the top 20.
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