
Delft University of Technology
Faculty Electical Engineering, Mathematics and Computer Science

Delft Institute of Applied Mathematics

Power load flow models and their numerical solution

A thesis submitted to the
Delft Institute of Applied Mathematics

as partial fulfillment of the requirements

for the degree of

BACHELOR OF SCIENCE
in

APPLIED MATHEMATICS

by

Stan Jonker

Delft, Netherlands
July 2020

Copyright c© 2020 by Stan Jonker. All rights reserved.





BSc report APPLIED MATHEMATICS

“Power load flow models and their numerical solution”

STAN JONKER

DELFT UNIVERSITY OF TECHNOLOGY

Supervisor

Dr. Domenico Lahaye

Other committee members

Prof. dr. ir. Mark Veraar Dr. ir. Neil Budko

. . . . . .

July, 2020 Delft





Preface

This report is on power load flows and the numerical methods to solve those. It has been written
as my bachelor thesis for the bachelor Applied Mathematics at Delft University of Technology. I
worked on this from February to July 2020.
This project was suggested by dr. Domenico Lahaye. I switched to this project because of another
project involving hydrogen fuel generation I am involved in. Unfortunately, due to difficulties
with obtaining the right data and the relatively short time frame, I was unable to really connect
the two together. Regardless, I gained a lot of experience while working on this project.

First and foremost, I would like to thank dr. Domenico Lahaye for his support and guidance
during this project. Next, I would like to thank Bertz Tourgoutian for helping me with questions
regarding the real-life power grid, as well as all the people that connected me to him and gave
me insights in the world around electrical power distribution. Lastly I would like to thank my
friends and family, who helped me keep on track.

I hope you enjoy your reading.

Stan Jonker

Heemstede, July 4th, 2020

4



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1 Introduction 6

2 The power flow model 8
2.1 Voltage and current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Complex power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Power factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Lumped elements model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Circuit elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Kirchoff’s circuit laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 Nodal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.8 Power system model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.9 Shunts and transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.10 Power flow equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.11 Per unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Power mismatch function 17
3.1 Power mismatch function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Treating different bus types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Jacobian of the power mismatch function . . . . . . . . . . . . . . . . . . . . . . . 19

4 Numerical solvers 20
4.1 Newton-Raphson solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Globally convergent Newton-Raphson methods . . . . . . . . . . . . . . . . . . . . 21

4.2.1 Line search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.2 Trust regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Examples and results 27
5.1 Small examples of load flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Conclusion 36
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5



Chapter 1

Introduction

Our daily lives depend heavily on electricity and electrical appliances. From refrigerators to light-
ing to computers to the machines in hospitals, as a society we consistently need a lot of it. As
such, it is important that we generate enough power and that we distribute it well. Distribution
of electrical power is done with a power grid, a network of electrical cables and stations connected
throughout the land. However, the power demand is not always the same everywhere. For ex-
ample, whenever someone puts their oven on, they briefly increase their demand of electricity.
Yet no one has their oven on all day. This becomes more important when the demand increases
a lot more, such as when a factory turns on huge machinery or when a ship docks and draws
power from the grid rather than its motor. An example to make this more clear can be found in
1.1. It may also be that many points in the grid increase their demand. In the United Kingdom,
electricity companies noticed that the demand went up whenever there was an ad break on the
most popular TV channels, because that is when most people went up to turn their boilers on to
make tea. This phenomenon is now referred to as ’TV pickup’.

To make sure that everybody has power, we may make a model of this grid to try to see how
we can best set up our network and try to predict what happens when demand is increased or
lowered in certain points.

In this report, we firstly look at such a model and the laws that govern it. From this, we derive
a set of equations, after which we discuss 3 algorithms capable of solving those equations, the
Newton-Raphson method, the line-search method and the trust region method. In the literature,
the former is mostly used. However, due to an increase in different elements to the power grid

Figure 1.1: An example of a so-called load profile, which (in blue) shows the power demand at various
times per day (in kilowatts). While the average power consumption is relatively stable, there are some
clear peaks. This image was provided by Bertz Tourgoutian, electrical project engineer with Eneco.

6



such as huge batteries and great power loads, that might not be sufficient. For that reason, we
introduce two methods that converge globally. Lastly, we apply our model and solving methods
to small examples to see what kind of results they give and the behaviour of the solving meth-
ods. We also compare the ’basic’ methods we describe here to a package of minimisation tools
where many people have spent many days on. Ideally, that would have been done with real-life
examples. However, this information is difficult to procure due to privacy and other concerns.
To find the code used in this project, visit https://github.com/Stan−Jonker/BEP.

To read this report, a basic knowledge of complex numbers is required, as well as knowledge
of multi-variable calculus.

7



Chapter 2

The power flow model

To start, we examine the model of a power system. For this, we firstly describe quantities that
one might find in such a system and then state the natural laws that give their relations. Under
certain assumptions, we may then derive our model and the equations that will allow us to
fill in all the quantities. This section is based upon Computational methods in Power System
Analysis[1] , Power System Analysis[2] and Fundamentals of Electric Circuits[3] .

2.1 Voltage and current

Current is a measure of a flow of electrical charge carriers, usually electrons. We denote the
current by i, with amperes (A) as a unit. Voltage is a measure of the work required to move
these carriers in a particular direction. We denote voltage as v, with volts (V).
Usually with power lines there are only two directions current can flow in. If the current always
flows in the same direction, we call this direct current (DC). This is often seen in circuits with
a battery as power source. If the current switches direction over time, we call it alternating
current (AC). This type of current is what comes from our outlets and is generated by electric
generators, which convert mechanical energy into electrical power. The source for the mechanical
energy often consists of a form of turbine. The turbines use some rotating part, that rotates a
powerful magnet between two (or more) coils of wire. The rotation of the magnet and thus of
the magnetic field induces a current in the coils. But, as the magnet rotates, the direction of
the current does too, which is where the alternating in alternating current comes from. As the
current is induced by a rotating part, it described very well by a sinusoid, i.e. i(t) = Imax cos(ωt).
We should note that the voltage is of the same type as the current: if the current is alternating, so
is the voltage and if we have direct current then the voltage is also in just one direction. However,
due to convention, we do not call this ’AV’ or ’DV’ but still refer to this as AC or DC.

To describe the power flow model, we use AC. In this case, we define:

v = v(t) = Vmax cos(ωt+ δV ) = <
(
Vmaxe

iδV eiωt
)

(2.1)

i = i(t) = Imax cos(ωt+ δI) = <
(
Imaxe

iδIeiωt
)

(2.2)

where i is the imaginary unit (i2 = −1) and < is the operator that takes the real part. We focus
on the complex representations. Here, ω is the frequency of the system, which we assume to be
constant. Because this is the same everywhere, the term eiωt is not necessary to describe the
voltage and current. The remaining terms Vmaxe

iδV and Imaxe
iδI are independent of time and

used to represent the voltage. Here, Vmax and Imax are the amplitudes of the voltage and the
current and δV and δI are voltage and current angles. These describe the phase differences of
the sinusoids. We shall discuss these later.

8



In power system theory, we use the effective phasor representation:

V = |V |eiδV , with |V | = Vmax√
2

(2.3)

I = |I|eiδI , with |I| = Imax√
2

(2.4)

This representation is sometimes also called the frequency domain representation, as the fre-
quency is the same everywhere and hence suppressed. Throughout the rest of this document,
any variable V, I, Vj or Ij shall refer to the effective phasor representation of the voltage and
current. Furthermore, if we refer to the voltage as 50000 kV for example, then this means that
|V | = 5 · 107.

2.2 Complex power

We now want to use the voltage and current as defined above to compute the instantaneous
power. This is a measure of expending or absorbing energy, measured in watts (W). Before we
do this, we firstly pick a reference time where the voltage can be written as v(t) = Vmax cos(ωt).
Defining φ = δV − δI then gives us that the current is written as i(t) = Imax cos(ωt + φ). We
shall discuss the quantity φ later on.

Now we may compute the instantaneous power p(t):

p(t) = v(t)i(t)

=
√

2|V | cos(ωt)
√

2|I| cos(ωt− φ)

= 2|V ||I| cos(ωt) [cos(φ) cos(ωt) + sin(φ) sin(ωt)]

= |V ||I|
[
cos(φ)

(
2 cos2(ωt)

)
+ sin(φ) (2 sin(ωt) cos(ωt))

]
= |V ||I| cos(φ) [1 + cos(2ωt)] + |V ||I| sin(φ) [sin(2ωt)]

Now defining P = |V ||I| cosφ,Q = |V ||I| sinφ gives:

p(t) = P [1 + cos(2ωt)] +Q[sin(2ωt)] (2.5)

P is also called the active or average1 power, with Watts (W) as unit. Q is called the reactive
or imaginary power, measured in Volt-Ampéres reactive (VAr). In fact Volt-Ampére reactive
is the same unit as the Watt, but the distinction is made to really keep the active and reactive
power separate.

Note that in fact

P = <(V I), Q = =(V I) (2.6)

Hence, it would make sense for us to define the complex power S of an AC circuit by:

S = P + iQ = V I (2.7)

If we compute S from V and I, we can use equation (2.5) to obtain the instantaneous power as
a function of time. S is sometimes also referred to as the apparent power.

1The reason P is called the average power is because for each period T = 2π
2ω

of p(t), the average instantaneous power

over that period is given by 1
T

∫ T
0 p(t) dt = P . Furthermore, from this we may deduce that in fact lims→∞

1
s

∫ s
0 p(t) dt = P .

9



2.3 Power factor

In the previous section we have briefly seen φ = δV −δI . This quantity is called the power phase
angle. Is gives rise to one of the most important quantities for a network operator, namely the
power factor given by cosφ. The reason this quantity is so important is because it denotes the
ratio between the active and reactive power. The active power is the part of the total power that
does almost all of the work, which is why we usually want a relatively high part of the total power
to be active power. Nonetheless, reactive power is sometimes useful or even required. This is
mostly the case in large electrical motors. However, too much reactive power leads to undesirable
effects such as voltage drops, equipment heating and reduced active power delivery. While this
might not be a problem for the average household, large energy consumers such as skyscrapers
or stadia will often be charged more on their energy bill if they have a (relatively) small power
factor.

2.4 Lumped elements model

Throughout this document we will make a few simplifications for the elements in the circuits we
discuss. For this, we use the lumped elements model.
In reality, as we have seen, power is a flow of electrical charge carriers. These particles flow
through power lines, which consist of many atoms and molecules. Obviously, we do not want to
simulate all interactions between our carriers and those atoms. For this reason, we treat all those
atoms as a single lumped element that behaves as a single entity. What remains is a network
where all elements are seen as idealized electrical components connected through perfectly con-
ducting wires.
There are some assumptions we have to make for this. The first is that there is no change in
the magnetic flux outside conducting elements. The second is that throughout any conducting
elements, we do not lose or gain any charge. Lastly we must assume that the delay caused by
propagation of electromagnetic waves is negligible in the time scale we are working with.

However, we can make some more simplifications. For example, places where power is gen-
erated usually contain multiple generators. However, all this power gets combined later when
it gets put into the power network. Seeing as this is the case, we do not want to consider all
possible generators but rather combine them into one. The same holds for, as an example, entire
neighbourhoods. We do not want to consider every household separately but rather take them all
together. An additional benefit of doing this is that the power consumption of a single household
can vary wildly, but taking all households together gives a reasonably steady power consumption.
Another reason we do this is because otherwise the network we work with become unmanageably
large.

2.5 Circuit elements

Now that we have defined v and i and used them to define the complex power, we now want to
find the relation between them. For this, we use Ohm’s laws.
We begin with discussing resistors. A resistor is a physical passive element that adds electrical
resistance to a circuit to reduce the flow of current.

Electrical resistance R (in ohms Ω) is a measure of opposition the the flow of electric
current 2. If assume the current is of the form i(t) = Imax cos(ωt+ δI), then the voltage across a
resistor R is given by

v(t) = Ri(t) (2.8)

Or, in (effective) phasor representation
V = RI (2.9)

2It should be noted that the resistor is also often referred to as R.

10



Note that by this computation, the current and voltage are actually both in phase (i.e. δV = δI).

R

Figure 2.1: A resistor.

Equation (2.8) is in fact the same for both AC and DC systems. However, with AC systems
another opposition of current plays a crucial role which does not exist in DC systems. Due to
the fact that the current and voltage are fluctuating, we must also consider the reactance. The
reactance X is a measure of the opposition of a circuit element to a change in electric current or
voltage. There are two types of reactance. The first is the inductance. This is a phenomenon
where an inductor, which is typically a coil of wire, opposes a change of current flowing through
it. If we are given the value of the inductor, denoted by L, then the relation between v and i is
given by

v(t) = L
di

dt
(t) = −ωLImax sin(ωt+ δI) (2.10)

Transforming this into phasor representation, we get

V = iωLI (2.11)

This computation shows that the voltage and current are 90◦or π
2 rad out of phase, meaning

that the power factor is 0 for just an inductor.

L

Figure 2.2: An inductance in a circuit.

The second type of reactance is the capacitance. A capacitor is a unit consisting of two
conducting plates separated by an insulator. The ratio between the charge on one plate of the
capacitor and the voltage difference between the two plates is then called the capacitance, denoted
by C and measured in farad (F)3.

Putting that into an equation, we find that

q(t) = Cv(t) (2.12)

where q(t) denotes the charge of the plate. Now note that i is the flow of charge, so d
dtq(t) = i(t).

By differentiating equation (2.12), we obtain

i(t) = C
dv

dt
(t) (2.13)

Transforming this equation into phasor representation nets us the following relation

V =
I

iωC
(2.14)

Now the current leads the voltage by 90◦.

C

Figure 2.3: A capacitance in a circuit.

3Due to the properties of transmission lines, nanofarad is a more common unit.

11



Most lines have both a inductive and capacitive reactance. For this, we may define the reactance
as X = ωL− 1

ωC .
In reality, most elements have a combination of resistance and reactance. For this, we define the
impedance

Z = R+ iX (2.15)

which is a measure of opposition to a sinusoidal current. For our purposes, however, we are more
interested in the inverse of the impedance, called the admittance Y (in siemens S):

Y =
1

Z
=

R

|Z|2
− i

X

|Z|2
= G+ iB (2.16)

Here G is called the conductance and B is called the susceptance. Using Ohm’s law extended
to AC circuits, we find that the relation between V and I is given by

V = ZI, or I = Y V (2.17)

2.6 Kirchoff’s circuit laws

For a lumped element model, we may use two equalities known as Kirchhoff’s circuit laws.
These equalities were described by Gustav Kirchhoff in 1845 and can be derived from Maxwell’s
equations under the assumptions of a steady state and the lumped elements model.

• Kirchhoff’s voltage law: Suppose that we have a closed loop in a circuit with v1, v2, . . . , vn
the voltages on that loop4. Then Kirchhoff’s voltage law states that

∑n
i=1 vi = 0. If

we write each vi = Vmax,i cos(ωt + θi) and Vi =
Vmax,i√

2
eiθi , then from 0 =

∑n
i=1 vi =∑n

i=1 Vmax,i cos(ωt+θi) = <
[(√

2
∑n
i=1 Vi

)
eiωt

]
we may conclude5 that also in the effective

phasor domain the voltage law holds:
∑n
i=1 Vi = 0.

• Kirchhoff’s current law: If i1, i2, . . . in are the currents coming in6 at a point in the
network, then

∑n
j=1 ij = 0. Using a similar computation as above, we may find that∑n

j=1 Ij = 0 also holds in the effective phasor representation.

2.7 Nodal analysis

Before the previous section we have only discussed some basic concepts on single elements. We
now want to go further in depth about how we actually analyse an entire circuit.
We have up to this point seen a voltage as the voltage over an element. However, we want to
use a different kind: nodal voltage. Nodal analysis is a general procedure that uses node voltages
as circuit variables to analyse circuits. Using nodal analysis reduces the number of equations we
have to solve later on.
We index each node with 1, 2, . . . , n and assign each a nodal voltage v1, v2 . . . , vn To obtain node
voltages, we firstly have to select a node as a reference node, usually node 1 7. In general, at
the reference node we have v1 = 0. All other n − 1 nodes will have nodal voltages with respect
to the reference node, which we may obtain by applying Kirchhoff’s circuit laws to each of the
non-reference nodes.
If there is a voltage source connected between the reference node and a non-reference node, we
set the nodal voltage of the non-reference node to the voltage of the source. If there is a voltage
source between two non-reference nodes, we shrink those two together into a ’generalised node’
or ’supernode’, and apply Kirchhoff’s laws to that node. Then if we substitute vab = va − vb for

4We emphasize here that voltage has a direction. If a voltage has a direction not according to the loop (i.e. the other
way around), it is represented as a negative value.

5As eiωt 6= 0 and the fact that <
[(√

2
∑n
i=1 Vi

)
eiωt

]
= 0 must always hold.

6Again note that all currents going out are represented negatively.
7Obviously by interchanging the labels we may call every node ”node 1”

12



the voltage over the element between node a and b, we may create a matrix involving only the
admittances and the nodal voltages.

Note that this also works for the effective phasor representation. Fully worked out examples
can be found in Fundamentals of Electric Circuits[3] .

2.8 Power system model

Now that we have discussed some concepts of electrical engineering, we use this to build a model
of a power system. We model a power system as a network of nodes (called buses) and edges
(called branches), where at each bus there are four electrical quantities we either know or want
to compute. For each bus i:

• |Vi|: the voltage magnitude,

• δi: the voltage phase angle,

• Pi: injected active power,

• Qi: injected reactive power.

We characterize each bus by which of the above quantities are known and which are unknown.
These can be found in the following table.

Bus type Short explanation Known Unknown
Load/PQ bus Active and reactive power

get injected into the net-
work here.

Pi, Qi |Vi|, δi

Generator/PV bus Generates active power,
the voltage magnitude
may be set.

Pi, |Vi| Qi, δi

Slack/swing bus Models system loss. δi, |Vi| Pi, Qi

Figure 2.4: A table of different bus types.

A load bus is a bus with a load attached, which is a demand of active power. It is modelled
as a bus where a injected active power P and injected reactive power Q are known. Often,
the active power a load requires is based upon historical data, predictions and/or measurements
(such as for example figure 1.1). In practice the reactive power is not always known but based
on assumptions of the power factor, which is expected to be 0.85 or higher.

At a physical generator, it is often possible to control the active power it generates and the
voltage magnitude. As such, we presume that these values are known. The reactive power a
generator needs to generate to support the voltage magnitude cannot be known in advance an
can therefore not be specified, which also means that the voltage angle is an unknown quantity.
However, it is not always the case that a generator has voltage magnitude controls. These are
then modelled as loads with positive injected active power.
In almost every system there are power losses, which we also have to model. We do this by
assigning a generator node that, in addition to its normal generation, also has to compensate
for the difference between total generation and total consumption. The bus we assign for this
is called the slack bus or swing bus. Obviously, for this generator we cannot specify P and Q.
However, we can specify the voltage magnitude and the voltage phase angle. Recall that the
voltage phase angle is given as a reference to some node. Since this reference node is not yet
chosen, we may pick the slack bus for this. While it does not necessarily matter which phase
angle is chosen, it is common to set it to 0 for the slack bus.

13



2.9 Shunts and transformers

Before we go on to properly define the power flow equations, we consider two additional parts
of a circuit. Firstly, we examine how to model (electical) shunts. Shunts are circuit elements
that make it possible for current to travel between two points in a circuit via a path with low
resistance. It is used to adjust the voltage level by adding or taking away reactive power. Shunt
capacitors may be used to inject reactive power, which lowers the node voltage, and shunt induc-
tors may do the opposite.
Secondly, let us examine the transformer. Transformers can be put between two points with
different voltage levels. This is necessary between, as an example, the high-voltage (≥ 110kV)
transmission grid and the distribution grid (∼50kV).

Because a shunt has almost no resistance, it is modelled as just its reactance, i.e. Zs = iXs.
Hence, the shunt admittance is given by Ys = 1

Zs
= −iXsX2

s
= iBs. A shunt is modelled by giving

both points an equal amount of the admittance.

Transformers have a transformer ratio T : 1, where |T | determines the change in voltage magni-
tude and arg(T ) determines the shift in voltage phase angle.

i j
Yij

Ys
2

Ys
2

Figure 2.5: Model of a transmission line with a shunt.

i j
T : 1 E Yij

Figure 2.6: Model of a Transformer.

2.10 Power flow equations

We now want to use all previous sections to derive the power flow equations. For this, we
firstly introduce some notation. First, we introduce the admittance matrix Y. If we take I =
(I1, . . . , IN )T and V = (V1, . . . , VN )T , then they are related through

I = YV (2.18)

Which would give us that Ii =
∑N
k=1 YikVk. As of yet, we still need to construct this matrix Y.

For this, firstly note that from Kirchhoff’s equations

Ii =

N∑
k=1

Iij (2.19)

Recall from Ohm’s equations that the current over the line between nodes i and j, i 6= j, is given
by

Iij = Yij(Vi − Vj), Iji = −Iij (2.20)

14



In matrix notation, this may be given by the equation[
Iij
Iji

]
= Yij

[
1 −1
−1 1

] [
Vi
Vj

]
(2.21)

Adding these all together according to (2.19), we would get that Yii =
∑N
k=1
k 6=i

Yij and Yij = −Yij
if j 6= i. However, we have now only taken the lines into consideration. We still need to add
shunts and transformers. Shunts may be connected to a node itself or to a line. In the first case,
we add the shunt admittance Ys to the admittance Yii. In case the shunt is connected to a line
between i and j, it is modelled by adding half of the shunt admittance to both buses (so Ys

2 ) to
both Yii and Yjj . We find[

Iij
Iji

]
=

(
Yij

[
1 −1
−1 1

]
+
Ys
2

[
1 0
0 1

])[
Vi
Vj

]
(2.22)

Up to this point, we can summarize the matrix by

Yij =

{
Yi +

∑N
k=1
k 6=i

Yik i = j

−Yij i 6= j
(2.23)

Adding transformers is a little more difficult. Suppose that E is the voltage induced by the
transformer. Then Vi = TE, where T is the transformer ratio. The current flowing from bus j
to bus i is given by

Iji = Yij(Vj − E) = Yij

(
Vj −

Vi
T

)
(2.24)

Now by conservation of power within the transformer we obtain

ViIij = −EIji (2.25)

From which we can find

Iij = −Iji
T

= Yij

(
Vi
|T |2

− Vj

T

)
(2.26)

The above can be summarised in matrix form:[
Iij
Iji

]
=

(
Yij

[
1
|T |2 − 1

T

− 1
T

1

]
+
Ys
2

[
1 0
0 1

])[
Vi
Vj

]
(2.27)

Where T = 1 if there is no transformer in the line. If there is a transformer, we may now modify
the corresponding entries in equation (2.23) according to the above equation (2.27).

We know that the total complex power is given by Si = ViIi. By the above, we can now
write this as

Si = ViIi = Vi

N∑
k=1

YikVk (2.28)

for every bus i. These are known as the power flow equations.

2.11 Per unit

Electrical grids are often split up in multiple parts with different base voltage levels, separated
by transformers. Rather than specifying the actual voltage levels of the nodes, it is common to
refer to those voltages as the fraction or per unit of the base voltage level. For example, in a 50
kV part of the grid, 45 kV becomes 0.9 per unit. Note that these values apply to the voltage
magnitude, not to the voltage angle. Per unit is abbreviated as p.u..
We do not only want to convert the voltage magnitude into per unit, but all other variables as

15



well. A system in which this is the case is called a per-unit sytem. For this, we need to chose a
base for another quantity, for example P or S. Usually, S is given a base value. All other base
values are then computed by S = V I, P = |S| cosφ,Q = |S| sinφ and I = Y V . Choosing Vbase
and Sbase as base values for V and S, we obtain:

Ibase =
Sbase

Vbase
Pbase = Sbase cosφ

Qbase = Sbase sinφ

Ybase =
Ibase
Vbase

=
Sbase

V 2
base

There are a few reasons to use a per-unit system. The first comes from the engineers building
and using the power grids. In a per-unit system it is easier to spot, as an example, a large voltage
drop. For this, one just has to look at where the voltage is low per unit, whereas normally it
would be required to compare the voltage in a point compared to the base level of the grid. The
second, which is more useful for our purposes, is that it makes it easier to solve the power flow
equations numerically.

16



Chapter 3

Power mismatch function

In this chapter, we want to give a setup for solving the power flow equations (2.28). To do this,
we transform the problem into a root-finding problem by a function referred to as the power
mismatch function. We also discuss the Jacobian of this function and how to modify it when we
take different bus types into account.

3.1 Power mismatch function

In the previous section, we defined the power flow equations, for each bus i given by

Si =

N∑
k=1

ViYikVk (3.1)

It is, unfortunately, quite difficult to solve these equations in their current form. The fact that
this equation consists of only complex numbers plays a big part in the difficulty. For this reason,
we want to do some work on the equations to see if it is possible split the above equation into
its real and imaginary part. Luckily, we can substitute the original forms of Vi = |Vi|eiδi and
Yik = Gik + iBik back to obtain

Si =

N∑
k=1

|Vi|eiδi (Gik − iBik) |Vk|e−iδk (3.2)

=

N∑
k=1

|Vi||Vk|eiδik(Gik − iBik) (3.3)

where δik = δi − δk.
Now recall Euler’s identity eiδik = cos(δik) + i sin(δik). Substituting that in results in

Si =

N∑
k=1

|Vi||Vk| [(Gik cos(δik) +Bik sin(δik)) + i(Gik sin(δik)−Bik cos(δik))] (3.4)

Now define
x = (δ1, . . . , δN , |V1|, . . . , |VN |)T (3.5)

We may split the above equation into its real and imaginary parts Pi(x) and Qi(x), given by

Pi(x) =

N∑
k=1

|Vi||Vk|(Gik cos(δik) +Bik sin(δik))

Qi(x) =

N∑
k=1

|Vi||Vk|(Gik sin(δik)−Bik cos(δik))

17



Now by (3.4), we must have that Pi + iQi = Si = Pi(x) + iQi(x). So we must have that Pi =
Pi(x) andQi = Qi(x) for all buses i. Setting P = (P1, . . . , PN )T ,P(x) = (P1(x), . . . , PN (x))T ,Q =
(Q1, . . . , QN )T and Q(x) = (Q1(x), . . . , QN (x))T , we define the power mismatch function

F(x) =

[
P−P(x)
Q−Q(x)

]
(3.6)

which is a real-valued vector function. This is useful later on when we want to solve the equation

F(x) = 0 (3.7)

which is, in fact, the power flow problem written as a root-finding problem. The reason we have
done this is because there are multiple algorithms to help us find the root of the power mismatch
function.

All algorithms we will discuss are iterative root-finding processes or iteration schemes. These
schemes start with some initial guess x0 for the vector x? that satisfies F(x?) = 0. Then at
each step i, we try to use the current iterate xi to find some update vector si, after which we
make the new iterate xi+1 = xi + si. This process is continued until either ||F(xi)|| < ε for
some pre-specified value of ε, the iteration scheme diverges or until we have reached a maximum
number of iteration steps. This last stopping condition is in place in the case that the scheme
does not converge fast enough or at all, in which case we do not want to keep doing the scheme
forever.

3.2 Treating different bus types

The power mismatch function (3.6) was constructed with the underlying assumption that all
entries in P and Q are known and all values in x unknown. However, this is not the case. Recall
table 2.4. Generators do not have a specified Qi but do have a specified |Vi|, and for slack buses
both the Pi and Qi are unknown whereas the δi and |Vi| are known.
If any Pi or Qi is not known, we can quite easily just remove the entry corresponding to that
quantity from the power mismatch function. In that case, we may simply try to find the root of
the power mismatch function and compute their values from Pi(x) or Qi(x).
Handling the entries in the vector x that are known is somewhat more difficult. Recall that we
work with iteration schemes, for which we have an update vector si such that xi+1 = xi + si. If
we, as an example, have a δj that is known, then the best corresponding entry for si is 0. To
make sure this happens, we may simply drop these entries from the update vector and modify
our scheme to reflect this change.

In total, we remove NG + 2 equations and entries of x, where NG is the number of genera-
tors. This can be seen from the fact that for generators Qi is unknown, and for the slack bus the
Ps and Qs are unknown, which amounts to NG+2 unknowns. Similarly, for generators the |Vi| is
known and both δs and |Vs| is known for the slack bus, resulting in the same number of removed
entries of x. Since this is the case there are now as many equations as there are variables, namely
2N −NG − 2, which should allow for the system to be solved. An additional benefit of reducing
the system is that we also reduce the amount of linear equations that need to be solved, which
should speed up our numerical schemes. We shall refer to the reduced power mismatch function
as F̂(x̂). Going on, we shall not specify if we are talking about F or F̂ unless stated otherwise.
For the analysis this will not matter.

It should be noted that there are other methods for dealing with different bus types, but we
shall not discuss these.

18



3.3 Jacobian of the power mismatch function

As we will see in the next section, for each iteration scheme we need to compute the Jacobian
matrix once per iteration. For this reason, we want to discuss what this matrix looks like. We
get that the Jacobian (see also equation (4.2)) of the power mismatch (3.6) function is given by:

JF = −



∂P1

∂δ1
. . . ∂P1

∂δN
∂P1

∂|V1| . . . ∂P1

∂|VN |
...

. . .
...

...
. . .

...
∂PN
∂δ1

. . . ∂PN
∂δN

∂PN
∂|V1| . . . ∂PN

∂|VN |
∂Q1

∂δ1
. . . ∂Q1

∂δN
∂Q1

∂|V1| . . . ∂Q1

∂|VN |
...

. . .
...

...
. . .

...
∂QN
∂δ1

· · · ∂QN
∂δN

∂QN
∂|V1| · · ·

∂QN
∂|VN |


(x) (3.8)

For the Jacobian of the reduced power mismatch function F̂ as discussed in section 3.2, we may
take the above matrix and remove a corresponding row for each removed Pi or Qi in F̂ and a
corresponding column for each removed δi or |Vi| from x to get x̂. With proper ordering, it is
possible to obtain the Jacobian of F̂ by splicing the Jacobian of F.

Recall the expressions for Pi(x) =
∑N
k=1 |Vi||Vk|(Gik cos(δik) +Bik sin(δik)) and

Qi(x) =
∑N
k=1 |Vi||Vk|(Gik sin(δik)−Bik cos(δik)). It should be quite easy to compute all deriva-

tives, the results are given below. However, when doing this one might notice that all derivatives
are made up form the same ’building blocks’ as the Pi and Qi are. Since every time the Jacobian
needs to be evaluated, the power mismatch function is also evaluated, linking their evaluation
together provides a possible shortcut to speed up the evaluation process. We give the elements
of the Jacobian here.

Define Pij(x) = |Vi||Vj | (Gij cos(δij) +Bij sin(δij)) and
Qij = |Vi||Vj | (Gij sin(δij)−Bij cos(δij))

1. The off-diagonal elements are given by (i 6= j)

∂Pi
∂δj

(x) = Qij(x)
∂Qi
∂δj

(x) = −Pij(x)

∂Pi
∂|Vj |

(x) =
Pij(x)

|Vj |
∂Qi
∂|Vj |

(x) =
Qij(x)

|Vj |

The diagonal elements are given by

∂Pi
∂δi

(x) = −Qi(x)− |Vi|2Bii
∂Qi
∂δi

(x) = −Pi(x)− |Vi|2Gii

∂Pi
∂|Vi|

(x) =
Pi(x) + |Vi|2Gii

|Vi|
∂Qi
∂|Vi|

(x) =
Qi(x)− |Vi|2Bii

|Vi|

1Note that Pi =
∑N
j=1 Pij and Qi =

∑N
j=1Qij .

19



Chapter 4

Numerical solvers

As the zero of the power mismatch function is hard to find analytically, we have to use numerical
solvers to approximate the answer. This approach is often found when dealing with non-linear
equations. In this section we shall first discuss a standard method — the Newton-Raphson solver
— and then discuss two possible methods that improve the convergence.

4.1 Newton-Raphson solver

One of the most-used numerical solvers is the Newton-Raphson method. We shall firstly derive
the method, and then apply it to the power mismatch function.

Suppose we have a function F : Rn → Rn,F = (F1, . . . , Fn)T for which we want to find an
x? such F(x?) = 0. Firstly, let us assume that this x? actually exists. Secondly, we assume that

for all i, j, k = 1, . . . , n, the second partial derivatives ∂2fi
∂xj∂xk

exist and are continuous. In this

case, we may expand F around a certain x as a Taylor polynomial and evaluate that in x?:

F(x?) = F(x) + JF(x) (x? − x) +O
(
||x? − x||2

)
(4.1)

where JF(x) is given by

JF(x) =


∂F1

∂x1
· · · ∂F1

∂xn
...

. . .
...

∂Fn
∂x1

· · · ∂Fn
∂xn

 (4.2)

Now if x is close enough to x?, we may neglect O
(
||x? − x||2

)
to just obtain

0 = F(x?) = F(x) + JF(x) (x? − x) (4.3)

From this, we may derive an iteration scheme (xk)k such that

JF
(
xk
) (

xk+1 − xk
)

= −F(xk) (4.4)

Setting sk = xk+1 − xk, this means that we have to solve the linear system JF(xk)sk = −F(xk)
at each step. We then update the iterate by xk+1 = xk + sk.
If we assume that JF(x?) is continuous, bounded and non-singular, it may be shown that this
scheme converges in a open set around x?. However, it is also true that with a poorly-chosen
initial value, the scheme may not converge. We can take steps to prevent the divergence of the
scheme. The first we have already seen. This is the use of a per-unit system, the use of which
makes it easier to give good initial values and helps with the speed of the convergence. The next
is modifying our scheme. We shall discuss these modifications in the next section.

20



4.2 Globally convergent Newton-Raphson methods

In the previous section, we mentioned that the standard Newton-Raphson method does not
always converge. This section will be dedicated to two methods, which should always converge
to a local minimum.

4.2.1 Line search

We have seen in the previous section that the Newton-Rahpson method does not always converge.
In this section, we want to discuss a method to prevent divergence, at the cost of some additional
computational power. This method is called a line search.
The method still starts with at each iteration solving the linear system Jf (x

k)sk = −f(xk)
until for some K the norm of the power mismatch function drops below a certain tolerance,
i.e. ||F(xK)|| < ε. We assume that we have not found this iterate yet. This method, just like
the Newton method, relies upon the assumption that sk is in the general direction of the root.
Instead of updating with the full sk, we now update our iterate with

xk+1 = xk + λksk (4.5)

Where λk ∈ (0, 1] is a parameter we have yet to determine. Before we discuss how we pick a λk,
we firstly define some functions as groundwork.
Because the coming part of the section only talks about one iteration steps, we shall suppress
the current iterate. That is, we write λ,x and s for λk,xk and sk. This should also help with
readability.

Firstly, let us define a new positive function f given by

f(x) =
1

2
||F(x)||2 =

1

2
F(x)TF(x) (4.6)

Next, define
g(λ) = f(x + λs) (4.7)

It can clearly be seen that if g is minimised, then ||F(x + λs)|| is too. Since we are interested
in finding a zero of F, minimising the norm in this way is a method that should lead us closer
to finding that zero1. However, this minimisation process is difficult if not impossible to do
analytically. For this reason, we try to find a λ that is ’good enough’. Let us examine the way
in which we can find such a λ.
A vector t is called a descent direction of f in x if

∇f(x)T t < 0 (4.8)

We may compute ∇f(x) by

∇f(x) = ∇
n∑
i=1

F 2
i (x) = JF(x)TF(x) (4.9)

Furthermore, recall that we may use s = − (JF(x))
−1

F(x) as JF was non-singular. Then

∇f(x)T s = −F(x)TJF(x)JF(x)−1F(x) = −||F(x)||2 < 0 (4.10)

which gives us that the Newton step is a descent direction.
We now use this property to give a rule, called the Armijo rule, which will dictate if a λ is good
enough. λ is sufficient if it satisfies

f(x + λs) ≤ f(x) + αλ∇f(x)T s (4.11)

1Do note that it might still be possible that we find a local minimum this way, in which case we should pick another
initial value.

21



where α ∈ (0, 1) a constant we can still choose. One might think that just requiring f(x + λs) ≤
f(x) should be sufficient. However, in that case examples may be constructed that do converge,
but not to a zero of the function. A possible choice would be to α = 10−4.[4] Because we know
that ∇f(x)T s < 0, this means that this choice for λ should result in a new iterate for which f is
decreased, which is what we want. If this is not immediately clear, using the definition of f and
equation (4.10) to write the Armijo rule as

||F(x + λs)||2 ≤ (1− 2αλ)||F(x)||2 (4.12)

What we may now do is try multiple values for λ and see if they satisfy the Armijo rule. It is
guaranteed that the method is satisfied when λ is very small2, so trying values of λ close to 0 will
quite often work. However, doing this also makes the next iterate close to the current iterate,
which means that we eventually will need more iterations. This is not beneficial for the speed
of the convergence of our scheme. Hence, we start with values close to 1. This approach is also
called ’backtracking’.
There are multiple ways we can go about this approach. The first would be to start at λ0 = 1
and each time a given λi does not satisfy (4.12), we subtract a fixed small number η to get
λi+1 = λi − η. We then try this until either the Armijo rule is satisfied, or until we get to λ = 0.
In the latter case, we are left with two options. Either we try again with a smaller value of η, or
we just make a standard Newton-Raphson step. This means that we have either ’wasted’ a lot of
computational power, or require a lot more. Either way, it would be more efficient to implement
another method. Another approach would be to each time multiply λ with a set value ρ ∈ (0, 1):
λi+1 = ρλi = ρi+1. Not every value of ρ is acceptable, however. Relatively high values of ρ
results in the need to check more values λi, which in turn results in more function evaluations.
On the other hand, while small values of ρ might result in a very rapid decrease in the iterates
λi, this might also cause the algorithm to often find extremely small values for λ which is not
desirable for the general convergence of the algorithm. For this reason, we pick ρ ∈ [0.1, 0.5].
This is called safeguarding.
We discuss one last method for finding λ. Rather than have ρ be a fixed number, we may change
it per iterate, i.e. λi+1 = ρiλi. We do, pick ρi ∈ [0.1, 0.5] due to the reasons explained above.
To get our choice for ρi, we recall the function g from (4.7). We know two things about this
function:

g(0) = f(x) and g′(0) = ∇f(x)T s = −||F(x)||2 (4.13)

Furthermore, we may also compute g(λi). A possibility would be to make a quadratic model ĝi
of g and try to minimise that for each iteration i. In this case, ĝi would be given by

ĝi(λ) =

(
g(λi)− g(0)

λ2i
− g′(0)

λi

)
λ2 + g′(0)λ+ g(0) (4.14)

This function is minimised at

λ̂i =
−g′(0)

2
[
g(λi)−g(0)

λi
− g′(0)

]λi (4.15)

This means that we want to pick λi+1 = λ̂i, and thus ρi = −g′(0)
2
[
g(λi)−g(0)

λi
−g′(0)

] . However, if it is

the case that now ρi 6∈ [0.1, 0.5], we disregard that value and pick ρi = argminλ∈{0.1,0.5}ĝi(λ) due
to the safeguards imposed on ρi. Namely, this might indicate that g is poorly modelled by ĝi.
This last approach can be implemented in such a way that it only requires one function evaluation
per iteration of λ.

2The Taylor expansion of f around x is given by f(y) = f(x)+∇f(x)T (y−x)+O(||y−x||2). This results in us needing
to show that for some λ, f(x + λs)− f(x)− αλ∇f(x)s = (1− α)λ∇f(x)T s +O(||λs||2) ≤ 0. We may obtain this from the

fact that (1− α)∇f(x)T s < 0 = limλ→0+ O
(

||λs||2
λ

)
. We conclude that such a λ exists (in fact, there is an entire interval

of possible values of λ of the form (0, η) for some small η > 0), but it might be very close to 0.

22



4.2.2 Trust regions

In the previous section, we assumed that we had a good direction for the new iterate, and wanted
to compute the length of the step. In this section, we do the opposite: we give a step length and
then try to find the best direction to go in.

We assume we have a trust region for the update vector of the form of a hypersphere, i.e.

||s|| < δ (4.16)

for some δ > 0. At this point, we would like to find

ŝ = argmin||s||<δ||F (x + s)|| (4.17)

Unfortunately, solving this is just as hard as the original problem. The answer lies with returning
to a quadratic model. For this, we realise that the Newton-Raphson step sN = −JF(x)−1F(x)
is a root of F(x) + JF(x)s, which means that it will also be a root of

m(x + s) =
1

2
||F(x) + JF(x)s||2 = f(x) +∇f(x)T s +

1

2
sTJF(x)TJF(x)s (4.18)

Furthermore, note that sN is in descent direction for m, as the gradients of m and f evaluated
in x are the same 3. The problem we then have to solve is

min m(x + s)

subject to ||s|| ≤ δ

If ||sN || ≤ δ, then this problem is solved by sN . In the case that ||sN || > δ, it has been proven
that this minimisation problem is solved by

ŝ(µ) = −
(
JF(x)TJF(x) + µIn

)−1
JF(x)TF(x) (4.19)

where In is the n × n identity matrix and µ is the (unique) number such that ||ŝ(µ)|| = δ. We
point out that ŝ(0) = sN and that if µ is large, then ŝ(µ) ≈ − 1

µJF(x)TF(x) = 1
µ (−∇f(x)). We

shall use these facts later.

We now need to explore two things: how to find µ if sN does not suffice, and how to update δ
each iteration. We firstly try to find an appropriate µ. For this, we want to solve

χ(µ) = ||s(µ)|| − δ = 0 (4.20)

This is an expensive problem to solve due to the fact that we need to compute an inverse of
a matrix. However, it should be noted that an approximate solution for this problem will also
suffice.

Double dogleg method

There are multiple ways to tackle problem (4.20). In the case that ||s(0)|| ≤ δ, we are already
done. So, we shall assume that this is not the case. We shall highlight a modification of Powell’s
method, called the double dogleg step. In this method, we create a piecewise linear path α(θ), θ ∈
[0, 3] that approximates the curve of s(µ), consisting of 3 pieces. The first part of the curve will be
in the steepest-decent direction, while the last part will be in the direction of the Newton-Raphson
step. The middle piece just connects the ends together. Hence, we already know that α(0) = x
and α(3) = x + sN . We give some additional requirements for the curve. Firstly, the distance
between the curve and the centre of the trust region should increase strictly monotonically, i.e.
||x−α(θ)|| < ||x−α(ϑ)|| if θ < ϑ. The reason we require this is that there can be at most one

3Do note, however, that m is not the quadratic Taylor expansion of f . This can be seen from the fact that JTF JF =
Hm 6= Hf , where H denotes the Hessian matrix.

23



point for which α is exactly δ from x. Secondly, along the curve m should decrease monotonically,
i.e. m(x +α(θ)) ≥ m(x +α(ϑ)) if θ < ϑ.
We create the first piece. For this we need the Cauchy point c. This is the point that minimises
the quadratic model m in the direction of steepest-decent, given by −∇f(x). That is, it can be
found by minimising

m(x− λ∇f(x)) = f(x)− λ||∇f(x)||2 +
λ2

2
∇f(x)TJF(x)TJF(x)∇f(x) (4.21)

over λ ∈ R. This has the solution

λ̂ =
||∇f(x)||2

||JF(x)∇f(x)||2
(4.22)

Therefore the Cauchy point c is given by c = x− λ̂∇f(x). In case that the Cauchy point lies

on the boundary or outside of the trust region, meaning λ̂||∇f(x)|| ≥ δ, then we take a step of
length δ in the steepest-decent direction. That is,

s = δ
−∇f(x)

|| − ∇f(x)||
(4.23)

Regardless of the distance of c from x, our first piece will now be given by the line between
x to c. We may summarise this as α(θ) = (1− θ)x + θc for θ ∈ [0, 1].
Note that this first piece satisfies both the requirements. Clearly, the distance of α increases as
θ increases, and because c is a minimiser of equation (4.21) it satisfies the second requirement.

Our middle piece needs to connect c to the line in the direction of the Newton-Raphson step
sN . For this step to make sense, we do need to make sure that c is not further away from x than
x + sN . This is shown by the following computation:

||c− x|| = ||∇f(x)||3

∇f(x)TJF(x)TJF(x)∇f(x)

≤ ||∇f(x)||3

∇f(x)TJF(x)TJF(x)∇f(x)

||∇f(x)|| ||(JF(x)TJF(x))−1∇f(x)||
∇f(x)T (JF(x)TJF(x))−1∇f(x)

=
||JF(x)TF(x)||4

||JF(x)JF(x)TF(x)||2||F(x)||2
||sN || = γ||sN ||

From ||JF(x)TF(x)||2 = F(x)TJF(x)JF(x)TF(x) ≤ ||F(x)|| ||JF(x)JF(x)TF(x)|| it may be
concluded that γ ≤ 1. Equality only holds if x − c = sN [4] , in which case the construction of
this path is not necessary 4. We therefore exclude this possibility.

Using this, we construct a point N̂ of the form

N̂ = x + ηsN (4.24)

for some η. This η should satify:

• γ ≤ η ≤ 1

• m decreases monotonically along the line between c and N̂.

To show that this holds, parametrise the line segment by yη(τ) = sc+τ
(
ηsN − sc

)
, τ ∈ [0, 1],

where sc = c− x = −λ̂∇f(x). The derivative of m along yη is the given by

4If both are inside, then sN is chosen. Otherwise, we follow equation (4.23).

24



Figure 4.1: A visualisation of the double dogleg curve α(θ) with the points x, c, N̂ and x + sN indicated.
The point where this curve goes outside the trust region is the candidate for our next iterate.

(
∇s m(x + s)|s=y(τ)

)T (
ηsN − sc

)
=
(
∇f(x) + JF(x)TJF(x)

(
sc + τ

(
ηsN − sc

)))T
(ηsN − sc)

=
(
∇f(x) + JF(x)TJF(x)sc

)T
(ηsN − sc) + τ

∣∣∣∣JF(x)(ηsN − sc)
∣∣∣∣2 (4.25)

We must have that (4.25) is negative for all τ . As it is increasing in τ , we only need to verify
τ = 1.

That is, we need to find η that satisfy

0 ≥
(
∇f(x) + JF(x)TJF(x)sc

)T
(ηsN − sc) + τ

∣∣∣∣JF(x)(ηsN − sc)
∣∣∣∣2

= (1− η)
(
∇f(x)T (ηsN − sc

)
= (1− η)(γ − η)||F||2

The above equation is satisfied by η ∈ [γ, 1], meaning that both above requirements for η are

equivalent. As such, N̂ = x+ηsN for some η ∈ [γ, 1]. If η = 1, then we obtain the (single) dogleg
method. The single dogleg method was Powell’s original method. For best performance of the
algorithm, η = 0.8γ + 0.2 is suggested.[10]

The third and last part of α is now just given by the line between N̂ and x + sN . It should be
clear that m does decrease along this line, as m is the quadratic model with root sN .
We may now define α by

α(θ) =


(1− θ)x + θc θ ∈ [0, 1]

(2− θ)c + (θ − 1)N̂ θ ∈ [1, 2]

(3− θ)N̂ + (θ − 2)(x + sN ) θ ∈ [2, 3]

(4.26)

This curve is more for the mathematical properties than for a computer implementation,
however. Once c, N̂ and sN are computed, we may compute α(θ) with relatively little extra
computational expense. Furthermore, note that the points c and N̂ can be computed with just
JF(x) and F(x), which is again relatively cheap as these have already been computed for sN .

25



Updating the trust region

Up to this point, we have not discussed the size of the trust region. We shall do this now.

We always start of with a guess for a good δ. However, this δ is by no means fixed. After we
construct α(θ) as above, we find the new update vector s+ such that ||s+|| ≈ δ. After that, we
simply check if this update vector is good enough, in the sense that it satisfies the Armijo rule
from equation (4.12) modified to our problem:

f(x + s+) ≤ f(x) + αg(x)T s+ (4.27)

where α ∈ (0, 1) and g(x) is given by ∇f(x) = JF(x)F(x) or some approximation thereof.
The approximation is mostly used in the more general problem, but can still be utilised. However,
we shall use g = ∇f . For this section we will just use Just as in the previous section, we pick
α = 10−4. If s+ satisfies the Armijo rule, then that is our new update vector. Otherwise, we
decrease δ similarly to how we updated λ in the line-search algorithm5.
We define the iterates δi for this process. If δi does not satisfy equation (4.27), then we multiply
it with some constant ρi, i.e. δi+1 = ρiδi. We safeguard this ρi ∈

[
1
10 ,

1
2

]
. A first choice would

be to have all ρi be the same number, for example ρi = ρ = 1
2 for all i.

Another choice would be minimise f(x + βs+) for β using a quadratic model. We spare the
details and give the answer, as this is much the same as explained in section 4.2.1.

β̂ =
−∇f(x)T s+

2 [f(x + s+)− f(x)−∇f(x)T s+]
(4.28)

We then pick ρi = β̂ if β̂ ∈
[

1
10 ,

1
2

]
, otherwise we pick ρi to be 1

10 or 1
2 depending on which

minimises the model the most.

4.3 Implementation

Now that we have seen the power flow equations and possible algorithms to solve them, we quickly
discuss how to implement these. As is usual with these types of problems, it is extremely labour
intensive to do them by hand, hence why we implement them with the help of computers. This
was done in python.
There are several notable packages used, which we briefly want to highlight. Firstly, we made
use of PandaPower ,[7] which has data structures in place to model grids, as well as multiple
examples. It makes use of a standard Newton-Raphson algorithm (see section 4.1). For basic
examples, this package was used to verify the implementations of other algorithms.
Next, we made use of SciPy’s [8] fsolve . This function, which is based on the work of many peo-
ple, makes use of the modified Powell algorithm from section 4.2.2. It makes use of many more
algorithms (such as the Levenberg–Marquardt algorithm, Jacobian-approximating schemes), but
discussing all these is not the aim of this document.
Lastly, the power mismatch function and its Jacobian were implemented with the use of SymPy
.[9] This is a library for symbolic mathematics, which allows us to construct the function entirely
symbolically before evaluating it. This was done to prevent having to construct the function
each time we want to evaluate it, to speed up the algorithm. However, it should be noted that
this approach has a significant initial set-up time. As this is the case, it should only be used
on small examples or if the same grid gets examined multiple times with possibly different values.

Lastly, the methods described above are all iterative methods. To ensure that the algorithms
halt, we need to have some stopping condition on the number of iterations. In this case, we may
give the user a warning that the method has not converged, and recommend either choosing a
better initial value or one of the other methods. For solving large problems, it might be that an
increased maximum number of iterations helps but it is often not recommended.

5Do note that the double dogleg curve α does not depend on δ and can be kept the same throughout the whole process
of finding a good δ.

26



Chapter 5

Examples and results

Now that we have our model and methods to solve it, we want to derive some results from small
examples and examine the behaviour of the numerical schemes.

5.1 Small examples of load flows

We start with a very simple grid with just one generating buses and two load buses, all in a row.
This might look something like this:

0

Slack

1

Load 1

2

Load 2

Figure 5.1: A graph representing a grid with one slack bus and two loads, connected in a line.

Now because there is just one generating bus, this is automatically the slack bus. There are no
shunts or transformers. We give some default values for this example. Both lines are 1 kilometre
long and of a standard type called ’NAYY 4x50 SE’1. Both loads ask for P1 = P2 = 1 MW of
active power and Q1 = Q2 = 0.25 MVAr of reactive power (which results in a power factor of
around 0.97). Furthermore, the system frequency is ω = 50 Hz and a grid base voltage level of
50 kV, which are default values for a low voltage grid.
Solving this system, we obtain the values from figure 5.2.

|Vi| (p.u.) δi (rad) Pi (MW) Qi (MVAr)
Bus 0 1.000000 0.000000 2.001309 0.170604
Bus 1 0.999478 -0.000083 -1.000000 -0.250000
Bus 2 0.999215 0.000482 -1.000000 -0.250000

Figure 5.2: A table of the example of the grid from figure 5.1, with P1 = P2 = 1 MW and Q1 = Q2 = 0.25
MVAr.

The results from figure 5.2 were obtained with the standard Newton-Raphson method with a
power mismatch tolerance ε = 10−10. For such small examples, the Newton-Raphson method is
sufficient. In this case, it only took 3 iterations to converge below the required tolerance.
From the results we can see that the voltage drops a bit after each line, as well as a change in
the voltage angle. Furthermore, from P1 we can see that there is a small system loss. Note that
because supplying and absorbing power are opposite, one of the two has a different sign in P
and Q. In this case, the power flow is computed from the perspective of generating buses, so the

1To view its and others’ parameters, visit https://pandapower.readthedocs.io/en/v2.2.2/std types/basic.html.

27



supplied load from the generator is positive.

Now that we have seen a small example, let us see if we can make general predictions for a
network when one of the loads changes. We still use the same grid from figure 5.1. First, let us
see what happens if load 1 suddenly requires different amount of power. We vary P1 between 0
and 20 MW and say Q1 = 0.25P1. This results in figure 5.3.

Figure 5.3: A graph of the example from figure 5.1, increasing the power demand from load 1.

From this figure we can clearly see that the bigger the power demand, the larger the voltage
drop and change in voltage angles are. Furthermore, we can see that the voltage angle of bus 2
stays the same relative to that of bus 1.

We may work out the same example, but this time we change P2 and Q2 = 0.25P2. This
results in figure 5.4. We can observe a greater effect on the voltage magnitude and voltage angle,
interestingly. Furthermore, also note that even though we only change the demand of the second
bus, the first bus is also affected.

28



Figure 5.4: A graph of the example from figure 5.1, increasing the power demand from load 2.

Next, we investigate what happens if only the reactive power is increased (and therefore a
decreased power factor). The results are given in figure 5.5. In this figure, we can clearly see
that again, the voltage drops. This drop is not as significant as for example in figure 5.4, but
for that figure the active power is also increased. Furthermore, from P0 we notice that there
are now measurable system losses. Because this example is extremely small, these losses are not
really impressive. However, keep in mind that these losses really add up in a larger grid. Seeing

Figure 5.5: A graph of the example from figure 5.1, increasing the reactive power demand from load 1.

what happens when the reactive power demand is increased, leads us to investigate what happens
when the power phase angle is changed. For bus 1, we take |S| to be constant and then vary
φ. We pick |S| = 1 MW and then vary P = |S| cos(φ), Q = |S| sin(φ). This results in figure
5.6. Similarly, we may do this for bus 2. We find these results in figure 5.7. Interestingly, the
voltage magnitude actually goes up when φ increases in both cases. One might think that this
contradicts our statement from before, where we said that a low power factor (and hence a larger

29



Figure 5.6: A graph of the example from figure 5.1, increasing power phase angle in load 1.

Figure 5.7: A graph of the example from figure 5.1, increasing power phase angle in load 2.

absolute power phase angle) causes voltage drops. This is not true, however, as assumes that the
required active power is still the same. In the case of figure 5.6 and 5.7, this is not the case.

Lastly, we want to see what happens when we directly connect bus 2 to the slack bus, resulting
in a grid that looks something like figure 5.8. We then increase P1 and Q1 = 0.25P1 as above.
All lines are kept at 1 km for simplicity and symmetry.

When we do this, we get figure ?? as a result. The most important thing we can get from
this picture is that now, the effects of the increased power demands to the voltage magnitudes
and angels is less than we have seen in the previous figures. This leads us to the conclusion that
generally, it is best to keep the amount of loads between one load and a generator as small as
possible, as each load will have an effect on the voltage magnitude and angle of the next.

30



0

Slack

1

Load 1

2

Load 2

Figure 5.8: A graph representing a grid with one slack bus and two loads, both connected to the slack
bus and each other.

Figure 5.9: The result from a grid with two load buses connected to a slack bus and each other, where
we increase the power demand of one of the two.

5.2 Convergence

Let us examine the way these methods converge. To do this we create examples that require
more from our numerical schemes than the simple examples we have seen already. However, we
do have to take care that the examples we create actually have a solution. Namely, it might well
be the case that there is simply no solution to an arbitrarily constructed example.

Firstly, we shall show why we want to formulate our problem in a per-unit system rather than
in the actual units. We look at the convergence of the problem as posed in figure 5.3, using the
standard Newton-Raphson iteration scheme. We vary P1 between 0 and 2 MW in 40 steps, so
P i1 = i

20 MW for i = 0, . . . , 40 and then take Qi1 = 0.25P i1. For each i we check the convergence

31



Figure 5.10: A graph on the number of iterations required for the standard Newton-Raphson iteration
scheme to converge with a tolerance of ε = 10−5 versus i. The blue dots represent the standard problem,
the orange the problem converted to a per-unit system.

of the method, using a tolerance of ε = 10−5. As initial value we take voltage magnitude to be
the base voltage level of the grid, 50 kV, and the voltage angles to be 0. We do this for both
the problem normally as well as converted to a per-unit system. In the per-unit system, we take
Vbase = 50 kV and Sbase = 1 MW. All other base values are computed according to section 2.11.
This results in figure 5.10.

Noteworthy of the figure is that the per-unit system requires only 3 iterations, while the sys-
tem with normal units requires 4. This becomes more apparent when we decrease the tolerance to
ε = 10−7. The results for this can be found in figure 5.11. The per-unit system still consistently
only requires 3 iterations, but the system with the normal units requires a lot more. Some do
not even converge beneath the required tolerance, which caused the algorithm to be stopped by
the maximum number of iterations. This was set to 100. When this happened, the norm of the
power mismatch function F was around the order of 10−6, meaning that the iterates at some
point started to overshoot2 the solution.
However, to say that they diverge would not be accurate. We have already seen that all points
converge with a tolerance of ε = 10−5.

This is important to take into account when implementing the standard Newton-Raphson method.
However, the more essential essential point is that this gives us a reason to believe that formu-
lating our problems in a per-unit system results in more accurate solutions.

If we now use one of the other algorithms described above, we may see that their global
convergence does allow both methods to converge for a tolerance of ε = 10−7. For this example,
we take the line-search algorithm, where we update λi with a quadratic model. However, we may
also look at the number of function evaluations. These are a lot higher than that of the standard
Newton-Raphson solver.

2In figure A.1 (appendix) we have done this exact same procedure, but with a maximum of 10000 iterates.

32



Figure 5.11: A graph on the number of iterations required for the standard Newton-Raphson iteration
scheme to converge with a tolerance of ε = 10−7 versus i. The blue dots represent the standard problem,
the orange the problem converted to a per-unit system.

(a) Iterations of the scheme (b) Function evaluations used

Figure 5.12: Iterations and number of function evaluations used when applying the line-search algorithm
to the same problem as described in figure 5.10 and 5.11. The orange dots represent the results of the
per-unit system, the blue dots that of the standard problem.

33



Secondly, we look at some some examples where the standard Newton-Raphson method really
does diverge. We take the same concept as above, but chain more buses together.

0

Slack

1

Load 1

n

Load n

· · ·

Figure 5.13: A graph representing a grid with one slack bus and n loads, connected in a line.

We will take 0 to be the slack bus, and 1 . . . n to each demand 1 p.u. of active power and 0.1
p.u. of reactive power. Otherwise, all parameters are the same as in figure 5.1.
If we apply the standard Newton-Raphson method for increasing n, eventually n will be so great
that the scheme diverges. Numerical testing shows that this happens at n = 18. This can also
be seen in figure 5.14.

Figure 5.14: The residual norm of the Newton-Raphson scheme after 10000 iterations (or until converged)
versus the number of buses in example 5.13.

If we now use one of the globally convergent methods, we do find a solution. However, this
is only after a large number of iterations and function evaluations (≥ 100.000 in the case of the
line search algorithm).

Lastly, we want to compare our line-search method to the ’professional’ fsolve . We take a
similar setup as in figure 5.13, but decrease the reactive power to 0.01 p.u.. We then test how
many function evaluation each method needs. The results can be found in figure 5.15. In this
figure we can clearly see that fsolve usually requires less function evaluations to converge, as was
to be expected.

34



Figure 5.15: Number of function evaluations needed for the line-search method (blue) and fsolve (based
on trust region, in red).

35



Chapter 6

Conclusion

In this report, we set out to construct a model to help us predict the flow of power throughout
a network and methods to solve these.
For our model, we took several concepts of circuit analysis and electrical engineering to obtain a
set of equations called the power flow equations, which related the power demand or generation
to concepts as the admittance and the voltage. To make this model, we did have to make a few
assumptions such as the ones that allowed us to lump our elements together. These assumptions
are generally accepted as reasonable to make, and this model is widely used. However, any model
may still be improved. As an example for a concept that could be added is three-phase power.
The addition of three-phase power can add a whole new layer to our model, but it does require
quite advanced circuit analysis. In some special cases, however, one might use 3 single phase
grids (as explained in this report) to approximate the three-phase power grid.
The power flow equations are unfortunately non-linear equations, meaning that it is very difficult
— if not impossible in some cases — to find a solution. To still approximate the solutions,
we discussed multiple iteration schemes to help find this solution. We firstly started with the
standard Newton-Raphson method, based upon which we also explained two methods that should
have better convergence, the line search method and the trust region method. The latter two
methods did come at a higher computational cost, however. We then used the model and the
numerical schemes to compute the solution to some small examples. While the chosen examples
are just that — examples — the methods used may be used on any grid to make predictions about
it. Lastly, we examined the convergence of the explained methods. While the expanded methods
did converge better (in the sense that they converge for stricter tolerances in more cases), they
do require a lot more computational power. If one wants to use these methods, they must keep
this into consideration.

36



Bibliography

[1] R. Idema and D.J.P. Lahaye, Compuational Methods in Power System Analysis, Atlantis Press, 2013.

[2] J. J. Grainger and W. D. Stevenson jr. Power System Analysis, McGraw-Hill, 1994.

[3] C. K. Alexander and M.N.O.Sadiku, Fundamentals of Electric Circuits, 6th ed. McGraw-Hill, 2017.

[4] J. E. Dennis jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear
Equations, SIAM, 1996.

[5] A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust-Region methods, SIAM, 2000.

[6] J. van Kan, A. Segal, F. Vermolen, and H. Kraaijevanger, Numerical Methods for Partial Differential Equa-
tions, Delft Academic Press, 2019.

[7] L. Thurner and A. Scheidler and F. Schäfer and J. Menke and J. Dollichon and F. Meier and S. Meinecke
and M. Braun, pandapower — An Open-Source Python Tool for Convenient Modeling, Analysis, and Opti-
mization of Electric Power Systems, IEEE Transactions on Power Systems 33 (2018), no. 6, 6510-6521, DOI
10.1109/TPWRS.2018.2829021.

[8] Pauli and Gommers Virtanen Ralf and Oliphant, SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python, Nature Methods 17 (2020), 261–272, DOI https://doi.org/10.1038/s41592-019-0686-2.

[9] Aaron and Smith Meurer Christopher P. and Paprocki, SymPy: symbolic computing in Python, PeerJ Com-
puter Science 3 (2017), e103, DOI 10.7717/peerj-cs.103.

[10] J. E. Dennis and H. H. W. Mei, Two new unconstrained optimization algorithms which use function
and gradient values, Journal of Optimization Theory and Applications 28 (1979), no. 4, 453-482, DOI
10.1007/BF00932218.

37



Appendix

Figure A.1: A graph on the number of iterations required for the standard Newton-Raphson iteration
scheme to converge with a tolerance of ε = 10−7 versus i. The blue dots represent the standard problem,
the orange the problem converted to a per-unit system. In this figure, the Newton-Raphson iteration
scheme took at most 10000 steps.

38


