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Abstract The next technological breakthrough in millimeter–submillimeter astronomy is three-
dimensional imaging spectrometry with wide instantaneous spectral bandwidths and wide fields
of view. The total optimization of the focal-plane instrument, the telescope, the observing strat-
egy, and the signal-processing software must enable efficient removal of foreground emission
from the Earth’s atmosphere, which is time-dependent and highly nonlinear in frequency. Here,
we present Time-dependent End-to-end Model for Post-process Optimization (TiEMPO) of
the DEep Spectroscopic HIgh-redshift MApper (DESHIMA) spectrometer. TiEMPO utilizes
a dynamical model of the atmosphere and parameterized models of the astronomical source,
the telescope, the instrument, and the detector. The output of TiEMPO is a time stream of sky
brightness temperature and detected power, which can be analyzed by standard signal-processing
software. We first compare TiEMPO simulations with an on-sky measurement by the wideband
DESHIMA spectrometer, and find good agreement in the noise and sensitivity. We then use
TiEMPO to simulate the detection of the line emission spectrum of a high-redshift galaxy using
the DESHIMA 2.0 spectrometer in development. The TiEMPO model is open source. Its modu-
lar and parametrized design enables users to adapt it to optimize the end-to-end performance of
spectroscopic and photometric instruments on existing and future telescopes. © The Authors.
Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or repro-
duction of this work in whole or in part requires full attribution of the original publication, including its
DOI. [DOI: 10.1117/1.JATIS.8.2.028005]
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1 Introduction

The rapidly growing instantaneous bandwidth1–5 and field-of-view6–8 of millimeter–submillim-
eter (mm–submm) astronomical instruments and telescopes are advantageous not only for
collecting more astronomical signal but also for characterizing and removing the foreground
emission of the Earth’s atmosphere.9 Even at the best sites for submm astronomy on the ground,
the brightness temperature of the Earth’s atmosphere in the submm range is ≥20 K, which can be
∼103 to 105 times stronger than the astronomical signal (see Fig. 1). Conventional heterodyne
instruments on single-dish telescopes have a typical instantaneous bandwidth of several GHz,
which is small compared with the atmospheric “windows” (the frequency bands over which the
atmosphere is relatively transparent). In this narrow-band case, the effect of the atmosphere can
often be approximated with a baseline that is linear in frequency. However, the (ultra-)wideband
spectrometers in development, such as the DEep Spectroscopic HIgh-redshift MApper
(DESHIMA),1,2,10 are influenced by the nonlinear frequency dependence of the atmosphere
because they measure across one or even multiple atmospheric windows with strong absorption
bands in between. On the one hand, this poses new challenges on the observation and signal-
processing techniques to remove the nonlinear atmospheric emission.9 On the other hand, the
wideband spectral information of the atmosphere could enable the development and use of
advanced signal processing methods for characterizing and ultimately removing the atmospheric
component to extract the astronomical signal in a better way.11,12 The requirements for applying
such techniques are expected to drive the design of future telescopes and focal-plane instrument
systems.6–8

Here, we present the Time-dependent End-to-end Model for Post-process Optimization
(TiEMPO) of the DESHIMA spectrometer. TiEMPO is a numerical model for simulating
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Fig. 1 Atmospheric transmittance ηatm (a) and sky brightness temperature T sky (b) at zenith
(θ ¼ 90 deg) as functions of frequency, for three values of precipitable water vapor (PWV).
The instantaneous frequency coverage of DESHIMA 1.01 and the future DESHIMA 2.0 (see
Sec. 4) are indicated by the green and blue shades, respectively. The range of DESHIMA 1.0
is an example of one atmospheric “window.” DESHIMA 2.0 spans multiple atmospheric windows
with absorption-bands in between. (c) GalSpec-simulated spectrum of a galaxy with a far-infrared
luminosity of LFIR ¼ 1013.7L⊙, placed at three different redshifts. The spectrum for z ¼ 4.43 is given
as input to TiEMPO in Sec. 4. The right vertical axis is a rough indication of the corresponding
atmosphere-corrected antenna temperature T �

A, assuming a ∅10 m telescope with an aperture
efficiency of 0.6.
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wideband submm astronomical observations through the Earth’s atmosphere; it produces time-
stream data that can be fed to data-analysis software11–13 as if they were taken with a real instru-
ment operated on a telescope. To account for the nonlinear, dynamic, and inhomogeneous
transmittance of the atmosphere, TiEMPO utilizes the Atmospheric Transmission at Microwave
(ATM) model14 to simulate the spectral dependence and the Astronomical Radio Interferometer
Simulator (ARIS) model15–17 to simulate the spatial/temporal variations. Compared with the
Time Ordered Astrophysics Scalable Tools (TOAST)18 package developed independently by
the cosmic microwave background community, TiEMPO is primarily motivated by ultra-wide-
band spectroscopy of astronomical objects and includes a physical noise model of microwave
kinetic inductance detectors (MKIDs). TiEMPO is distributed as an open-source Python pack-
age, and the scripts are available on a public repository19 to encourage further use and develop-
ment by the astronomical community to study cases for different telescope/instrument systems.

2 TiEMPO Model

2.1 Overview

TiEMPO is an end-to-end model, containing models of the astronomical source, the atmosphere,
the telescope, the cryogenic instrument optics, and an integrated superconducting spectrometer
with MKIDs (see Fig. 2). The details of the TiEMPO model can be found in Refs. 21 and 22, and
the source code is publicly available.19 In the following we provide an overview of the modules,
in the order of signal propagation from the astronomical source to the detector.

TiEMPO

Use ARIS DESHIMA-sensitivity

EPL to PWV

Beam sampling

Atmosphere

Optical Chain:
Telescope
Warm Optics
Cold Optics
Spectrometer

Detector:
+ photon noise
+ quasiparticle noise

Skydip calibration

ATM

ARIS

EPL screen

GalSpec

PWV screen
beam-

averaged
PWV

Galaxy spectrum

Tsky

PMKID

PMKID + Noise

PMKID + Noise

Tsky + Noise

(PWV, f) → η

Symbols

Package

Function

Data file

Model coponent

Look up table

De:code

Fig. 2 System diagram of TiEMPO, showing each component with its input and output. TiEMPO
depends on external packages ARIS,15,16 ATM,14 and GalSpec.20 TiEMPO outputs calibrated sky
brightness temperature T sky and detector output PMKID, which contains photon noise, quasiparticle
recombination noise, and atmospheric noise. The output timestream data can be analyzed by
post-processing software such as De:code.13
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2.2 Spectrum of a Dusty High-Redshift Galaxy

The galaxy spectrum was created using the GalSpec package,20 which we distribute as an
open-source Python package that can be used outside of TiEMPO. Our goal is to create a galaxy
template that is similar to the types of galaxies that we will be trying to detect with DESHIMA
and with which we are able to model the potential future science cases. As such, we use an
empirical approach to the creation of a galaxy spectrum, combining the continuum shape and
spectral line luminosities from recent studies of observed local and high-redshift galaxies. The
continuum is based on the two-component modified-black body fit to 24 galaxies at z > 2 with
Herschel (250, 350, and 500 μm) and SCUBA-2 (850 μm) fluxes.23,24 Here, we normalize the
spectrum to the total far-infrared luminosity by integrating the spectrum from 8 to 1000 μm. The
spectral lines are simulated with a more creative approach that can be tailored to specific science
goals. Relatively shallow observations, aimed at detecting atomic lines and CO, are simulated
using spectral line luminosity scaling relations. Here we use the scaling relations from Ref. 25 for
atomic lines and Ref. 26 for both CO and [CI] lines. The scaling relations of Ref. 25 are based on
local star-forming and ultra-luminous infrared galaxies and high-redshift submm galaxies,
whereas the scaling relations of Ref. 26 are based mostly on local galaxies. Deeper observations
might resolve more complex molecular lines in both emission and absorption, such as H2O,
HCN, HCOþ, CHþ, NH, NH2, OHþ, and HF. These species are only incidentally seen at high
redshift (e.g., Refs. 27 and 28), and thus we rely on the line detections in the nearby ULIRG Arp
220 to supplement our spectrum for these molecular species.29 Here, instead of scaling to the
far-infrared luminosity, we scale the line brightness to the observed continuum at the line’s
frequency. For this complete galaxy spectrum, we note that the brightness of these spectral lines
is a probe of the conditions of the interstellar medium. As such, the line brightnesses (and even
the continuum) are known to vary by up to 1 dex from source to source, which must be taken into
account when applying for the necessary observation time or detection limits. Throughout this
study, we assume a uniform line velocity width of 600 km s−1 (full width half maximum), which
is found to be the mean for typical submillimeter galaxy30 and in line with recent observations of
South Pole Telescope and bright Herschel sources.31–33

2.3 Creation of the Atmosphere Screen

Our goal here is to obtain the line-of-sight transmittance of the atmosphere ηatm, which depends
on the time t and telescope pointing angle (θ, ϕ). Here, θ and ϕ are the elevation and azimuth
angles of the telescope pointing, respectively. We start from the observation that the mm–submm
ηatm at zenith (θ ¼ 90 deg) is correlated with chiefly one variable, the precipitable water vapor
(PWV).34 Water vapor not only absorbs the submm waves but also introduces an extra path
length (EPL) that is dependent on the line-of-sight PWV.35 ARIS15,16 uses a set of spatial struc-
ture functions36 to produce a phase screen, i.e., a two-dimensional map of EPL as shown in the
left panel of Fig. 3. Input parameters of ARIS include the inner and outer scales and exponents,
the spatial size and resolution of the screen, and the root-mean-square (RMS) fluctuation of EPL
in combination with a distance. Further details about the parameters can be found in Ref. 16, and
typical values for the Atacama Large Millimeter–Submillimeter Array (ALMA) site are reported
in Ref. 17.

TiEMPO converts an EPL screen to a PWV screen, using the following relation derived from
the Smith–Weintraub constants37 of EPL and the ideal gas law (see Ref. 21 for details), which is
given as

EQ-TARGET;temp:intralink-;e001;116;175dEPL ¼ 10−6ρR

�
k2 þ

k3
T

�
dPWV ∼ 6.587 · dPWV: (1)

Here, k2 ¼ 70.4� 2.2 Kmbar−1 and k3 ¼ ð3.739� 0.012Þ · 105 K2 mbar−1 are the Smith–
Weintraub constants,37 ρ ¼ 55.4 · 103 molm−3 is the number density of molecules in liquid
water, R ¼ 8.314 · 10−2 mbar m3 K−1 mol−1 is the gas constant, and approximately T ¼ 275 K

is the physical temperature of the atmosphere. Note that dEPL and dPWV are differences from
arbitrary mean values of the optical path length and PWV, respectively. In TiEMPO the user can
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specify a mean PWV, around which the PWV fluctuates according to the ARIS-modeled EPL
and Eq. (1). The mean PWV can be set to a constant or a vector that represents a slowly changing
weather condition. The created PWV screen moves spatially in one direction, at the user-
specified wind velocity, assuming that the structure of phase fluctuations is invariant when the
atmosphere moves with the wind.38 See Fig. 3(a) and Video 1 for an example of the moving
atmosphere created in TiEMPO.

2.4 Sampling of the Atmosphere by the Telescope Near-Field Beam

The water vapor in the atmosphere above the Atacama Desert is contained mostly in the layer up
to ∼1 km from ground,39 which is well within the near field of the telescope. Therefore, the beam
pattern at this height has a similar pattern to the power distribution over the primary mirror of
the telescope. In this study, we assumed that the PWV screen is 1 km above the telescope.
For simulating DESHIMA on Atacama Submillimeter Telescope Experiment (ASTE) using
TiEMPO, we assumed a Gaussian power pattern as shown in Fig. 3(b), which drops to −10 dB

at the telescope radius of 5 m. The PWV map created in Sec. 2.3 is filtered with this beam
pattern, so the received power from the atmosphere is a weighted average within the beam.
The user may include an arbitrary beam pattern in TiEMPO when detailed information is
available from the design or measurement.

2.5 Far-Field Beam of the Telescope

The far-field telescope beam is modeled by two properties: the main beam solid angle ΩMB and
the main beam efficiency ηMB.

1,40 ΩMB represents the solid angle of the beam excluding the side
lobes. ηMB is the fraction of the beam contained in the main beam, out of the total reception
pattern. The (total) beam solid angle, with the side lobes included, is then given by

EQ-TARGET;temp:intralink-;e002;116;189ΩA ¼ ΩMB

ηMB

: (2)

We use the beam solid angle to define the effective aperture area as

EQ-TARGET;temp:intralink-;e003;116;133Ae ¼
λ2

ΩA

; (3)

where λ is the wavelength. Now, we express the aperture efficiency ηA as

Fig. 3 (a) Colormap of the output of ARIS for a 32 m × 32 m sky window converted to PWV with
Eq. (1). (b) The truncated Gaussian that is used as the telescope beam shape in the model. The
volume of the Gaussian is normalized to unity, and it is truncated at a radius of 5 m, where its
height is 10% of its peak height (Video 1, Mp4, 1070 KB [URL: https://doi.org/10.1117/1.JATIS
.8.2.028005.1]).
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EQ-TARGET;temp:intralink-;e004;116;735ηA ¼ Ae

Ap

¼ ηMB

ΩMB

λ2

Ap

; (4)

where Ap is the physical area of the telescope primary mirror. From these quantities, the single-
mode power density (in WHz−1) of the astronomical source is calculated as

EQ-TARGET;temp:intralink-;e005;116;673Pf ¼
1

2
FfAe; (5)

where Ff denotes the flux density in Wm−2 Hz−1 (¼ 1026 Jy) and the factor 1∕2 compensates
for the fact that the flux density is calculated using two polarizations, but the power density that
TiEMPO calculates is for single-polarization assuming the coupling of the signal to a single-
mode (on-chip) antenna and transmission line.2

2.6 Radiative Transfer

For calculating the single-mode radiation transfer from the astronomical source to the detector,
a subset of the DESHIMA-sensitivity software41 was used. Each component in the optical
chain is modeled with a black body power density and a transmission factor ηi. The single-
mode power density of a black body is equivalent to the Johnson–Nyquist noise and is given
by

EQ-TARGET;temp:intralink-;e006;116;485Pf ¼ hf

e
hf
kBT − 1

: (6)

Here, h is the Planck constant, f is the frequency, kB is the Boltzmann constant, and T is the
physical temperature of the emitter.42 The spectral power before the detector is computed by
cascading the radiation transfer of each component as

EQ-TARGET;temp:intralink-;e007;116;402Pf;out ¼ ηiPf;in þ ð1 − ηiÞPf;i; (7)

where Pf;out is the power density of the radiation that comes out of the component, Pf;in is the
power density of the radiation going in, ηi is the transmittance of the component, and Pf;i is the
power density of the component.

2.7 Spectrometer

TiEMPO is able to model any direct-detection (imaging-)spectrometer that couples the wideband
input power into one or more spectral channels. Examples include integrated filterbank spec-
trometers that use a filterbank1–3 or an integrated grating4,5 and optical grating spectrometers.
Currently, TiEMPO takes five spatial pixels (a center pixel pointed toward the astronomical
source, and top, bottom, right, and left pixels viewing only the atmosphere) to simulate posi-
tion-switching observations, but the pixel count can be increased to model multi-pixel imaging
arrays. If the number of spectral channels per pixel is set to unity, then the model can represent
a monochromatic imaging camera.

TiEMPO can import the spectral response of each detector, obtained from the design43 or a
measurement.44 Here, we assumed a simple Lorentzian-shaped spectral transmission, which is a
good approximation for a filterbank channel,2 or a detector behind an optical (or substrate-inte-
grated) grating.5 The frequency dependence was implemented by dividing the frequency range of
210 to 450 GHz (10 GHz wider on each side than the nominal DESHIMA 2.0 band, to take into
account power coupling from outside of the band) into 1500 bins. The resulting efficiency is used
to compute the power density with the radiation transfer equation, Eq. (7). Finally, the power in
each bin is calculated as

EQ-TARGET;temp:intralink-;e008;116;104Pbin i ¼ ΔfPf;bin i: (8)
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Note that the Pbin i in Eq. (8) is the expected (i.e., noiseless) value of the power. To calculate
the frequency-integrated power detected by each detector at each moment t, PMKIDðtÞ, we must
consider noise (see Sec. 2.8).

2.8 Detected Power and Noise

The best possible sensitivity of a pair-breaking detector like an MKID is set by the photon noise
and quasiparticle recombination noise. The commonly-used narrow-band approximation for
the noise equivalent power (NEP) limited by photon- and recombination-noise is given by1

EQ-TARGET;temp:intralink-;e009;116;627NEPMKID ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2PMKIDðhf þ PMKID∕ΔfÞ þ 4ΔAlPMKID∕ηpb

q
: (9)

Here, PMKID is the expected value of the power absorbed by the MKID, ΔAl ¼ 188 μeV
(∼91 GHz · h∕2) is the superconducting gap energy of aluminum, and approximately
ηpb ¼ 0.4 is the pair-breaking efficiency.45 In TiEMPO we use the more general, integral form
of the NEP46 to take into account a frequency-dependent optical efficiency over a wide band-
width, for each detector of the spectrometer. This method also accounts for photon-bunching of
the wideband signal. Because the fluctuations in energy in different spectral bins are uncorre-
lated,47 we can calculate the standard deviation in power for each spectral bin per sampling rate
(1∕fsampling) from

EQ-TARGET;temp:intralink-;e010;116;487σ ¼ NEPMKID

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
fsampling

r
; (10)

and add those together to obtain the combined detector output, as given by

EQ-TARGET;temp:intralink-;e011;116;430PMKID ¼
X#bins
i¼1

Pbin i;with noise: (11)

Note that this is equivalent to calculating the detector NEP directly from the integral, which is
expressed as

EQ-TARGET;temp:intralink-;e012;116;355NEP2MKID ¼
Z

2Pfðhf þ PfÞ þ 4ΔAlPf∕ηpbdf: (12)

The integration over a wide bandwidth taking the filter spectral transmission into account is
especially relevant for spectral channels that are near strong emission lines and absorption bands
of the atmosphere.10

2.9 Sky Temperature Calibration

After computing the noise-added power that is measured by the MKIDs, we want to relate this
back to the original signal from the sky. We do this by expressing the received power in sky
brightness temperature Tsky: the physical temperature of a black body that would have the same
intensity as the semitransparent sky.1 To this end we take the Johnson–Nyquist equation, which
is given by

EQ-TARGET;temp:intralink-;e013;116;177Tsky ¼
hf

kB ln
�
hf
Pf

þ 1
� : (13)

To relate the MKID power PMKID to Tsky, TiEMPO internally performs a skydip simulation10

using the DESHIMA-sensitivity41 script. A skydip is a series of measurements in which the
telescope “dips” from a high elevation (pointing at zenith) to a low elevation (pointing almost
horizontally). When the elevation is lower, the telescope looks through a thicker layer of atmos-
phere, increasing the opacity and hence the power and the sky temperature, allowing us to
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construct a relationship between the two. In our simulations, we use elevation values in the range
of θ ¼ 20 deg to 90 deg. The power and sky temperature data are interpolated for each channel
and saved in the model. TiEMPO reuses these interpolation curves, so they only need to be
created once. For further details on the numerical skydip calibration, see Ref. 21.

3 Comparing a TiEMPO Simulation with On-Sky DESHIMA 1.0
Measurements

To verify the TiEMPO model, we made a simulation of an atmosphere observation using input
parameters that resemble a real measurement done with the DESHIMA spectrometer on the
ASTE telescope.48 DESHIMA is an integrated superconducting spectrometer with MKID detec-
tors. The first generation of DESHIMA, which we will hereafter call DESHIMA 1.0,1 has an
instantaneous band of 332 to 377 GHz, with a frequency spacing of f∕Δf ¼ 380 approximately.
(The half-power bandwidth of each filter is f∕Δf ¼ 300 on average.2) ASTE is a 10-m
Cassegrain reflector located on the Pampa la Bola plateau of the Atacama Desert in northern
Chile, at an altitude of 4860 m. DESHIMA 1.0 was operated on ASTE during October to
November 2017.1 The measured response of the MKIDs was converted to sky brightness temper-
ature Tsky using the skydip calibration method explained in detail in Ref. 10.

We use the data taken from a measurement on November 17, 2017, in which the telescope
was pointed close to zenith (θ ¼ 88 deg) for 3000 s. The PWV measured with the radiometer of
the ALMAwas 1.7 mm at the beginning of the measurement, corresponding to a ∼350 GHz sky
brightness temperature of ∼80 K. In Fig. 4, we show the time-evolution of the measured Tsky

taken with the 355 GHz channel of DESHIMA 1.0 (blue curve). The DESHIMA measurement
indicates that the PWV dropped continuously over the course of the measurement, from ∼1.7
to ∼1.3 mm.

We ran a few simulations in TiEMPO to fine-tune the input parameters to achieve good agree-
ment between simulation and measurement in the noise-equivalent-flux-density (NEFD) spec-
trum, which we present in Fig. 5. The resulting TiEMPO-simulated time trace of measured Tsky

for the 355 GHz channel is compared with that of the DESHIMA 1.0 measurement in Fig. 4.
Qualitatively, both curves show two types of fluctuations that are behaving similarly: the
low-frequency and large-amplitude fluctuations are due to atmospheric noise, whereas the high-
frequency and small-amplitude fluctuations are due to photon noise and quasiparticle recombi-
nation noise.

To compare the noise in the simulation and measurement more quantitatively, we take
the noise spectrum of the time traces. Before taking the spectrum, we convert Tsky to flux density
as

EQ-TARGET;temp:intralink-;e014;116;292FfðTskyÞ ¼
2ΩMB

ηMBλ
2ηatm

hf

e
hf

kTsky − 1

: (14)
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Fig. 4 Time stream of the measured T sky at 355 GHz, for a TiEMPO simulation (blue) and
DESHIMA/ASTE observation on the ASTE telescope (orange).
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Subsequently, we calculate the noise equivalent flux density (NEFD) by

EQ-TARGET;temp:intralink-;e015;116;537NEFD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PSDfFfðtÞg

2

r
; (15)

where PSDfg denotes the operation of taking the power spectral density. The factor ffiffiffi
2

p
is intro-

duced because we define the NEFD for an integration time of 1 s. In Fig. 5, we show the resulting
NEFD spectra for the simulation and measurement. At ≲1 Hz, the NEFD curves exhibit the 1∕f-
noise generated by the atmospheric fluctuations. At ≳1 Hz, the spectra flatten out to the white
photon (and recombination) noise level. This form of noise spectra is often seen in mm–submm
observations.49 The simulation agrees well with the measurement for both the photon (and
recombination) noise level and the atmospheric 1∕f-noise. Near the 1∕f knee frequency at
∼1 Hz, the measurement shows a slight excess compared with the TiEMPO simulation.
This is most likely the contribution from the dielectric two-level system noise of the MKIDs,
which can also be included in TiEMPO in the future. Examples of early implementations can be
found in Refs. 12 and 44.

We plot the photon and recombination noise NEFD of all 49 simulated channels in Fig. 6,
together with the measured NEFD of DESHIMA 1.0 on ASTE based on actual measurements of
astronomical lines.1 Considering the above-mentioned simplified filter model, as well as the fact
that the measurements were taken across nights with different atmospheric conditions,1 the
agreement is good. A more detailed analysis taking into account the measured characteristics
of each channel44 finds an even closer agreement.

330 340 350 360 370 380
Frequency (GHz)

10
0

10
1

10
2

N
E

F
D

 (
Jy

s0.
5
)

TiEMPO simulation
(PWV = 1 mm)
VV114
IRC+10216

Fig. 6 NEFD at the flat photon-noise level for a TiEMPO-simulation with the PWV set to 1.0 mm,
compared with the NEFD of DESHIMA 1.0 based on actual detection of astronomical emission
lines, from the luminous infrared galaxy VV 114 and the post-asymptotic giant branch star
IRC+10216.1 The peaks at around 353 and 368 GHz are lines of O3 and O2, respectively.
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Fig. 5 NEFD spectra, derived from the power spectral densities of the time-series data presented
in Fig. 4, for the TiEMPO simulation (blue) and DESHIMA/ASTE observation (orange).
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In summary of this section, the output of TiEMPO resembles the on-sky measurement of
DESHIMA 1.0, in both the time domain and the frequency domain. The end-to-end system
sensitivity inferred from the simulation is in good agreement with the actual measurement of
astronomical sources performed by DESHIMA 1.0 on ASTE.

4 TiEMPO Simulation of Observing a High-Redshift Galaxy with
DESHIMA 2.0 on ASTE

As an example application of TiEMPO, we simulate the observation of a virtual luminous
dusty galaxy (LFIR ¼ 1013.7L⊙) at redshift z ¼ 4.43 and velocity width 600 km s−1 using
the DESHIMA 2.0 spectrometer on the ASTE telescope. DESHIMA 2.0 is an upgrade of
DESHIMA 1.0, which is currently under development.50 The target instantaneous frequency
coverage is 220 to 440 GHz, with a frequency spacing and half-power channel bandwidth of
f∕Δf ¼ 500. The system will include a rotating mirror in the cabin optics that enables position
switching on the sky at a rate of up to 10 Hz. Assuming the use of this beam chopper,
we simulated a so-called ABBA chop-nod observing technique22,51 with a beam-chopping
frequency of 10 Hz between on-source and off-source positions and a nodding cycle of
60 s to subtract the atmospheric emission from the spectrum. The total simulated observation
time was 1 h. The input spectrum of the galaxy was simulated using GalSpec. The telescope
elevation angle was kept constant at 60 deg, and the weather condition was set to mean
PWV ¼ 1.0 mm; RMS fluctuation of the EPL for 1 km distance of σEPL ¼ 50 μm, which
is typical for the ALMA site [see for example Fig. 2(b) in Ref. 17]; and wind velocity ¼
9.6 m s−1.

The resulting spectrum after applying the ABBA atmosphere removal scheme is presented in
Fig. 7. The top panel shows the spectrum in ΔTsky, that is, before correcting for atmospheric
absorption. The spectrum shows the detection of the redshifted [CII] line at 350 GHz and the dust
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Fig. 7 TiEMPO-simulated detection of a high-redshift dusty galaxy with the upcoming DESHIMA
2.0 instrument on ASTE. The galaxy spectrum was simulated using GalSpec, with input param-
eters as follows: far-infrared bolometric luminosity 1013.7L⊙; redshift z ¼ 4.43; and velocity width
600 kms−1. The total observing time was 60 min, out of which half was pointing on-source.
(a) ΔT sky, which is the difference in sky temperature T sky between on-source and off-source
obtained with the ABBA chop-nod method. The blue spectrum is the result of placing a galaxy
at the on-position, and the orange spectrum is the result of no galaxy being present. The dashed
curve is the expected spectrum of the galaxy, multiplied by the atmospheric transmittance ηatm
(gray) and smoothed with a Lorentzian window of f∕Δf ¼ 500 to account for the resolving power
of the spectrometer. (b) The atmosphere-corrected antenna temperature T �

A ¼ ΔT sky∕ηatm. The
blue curve shows the simulated spectrum, and the dashed curve is what is expected directly from
the input galaxy spectrum.
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continuum emission. In the same figure, we show that a reference simulation without a galaxy
yields a zero-centered spectrum as expected. Dividing the ΔTsky-spectrum by the frequency-
dependent atmospheric transmittance ηatm yields the spectrum presented in the bottom panel,
where the scale is now atmosphere-corrected antenna temperature T�

A. In this way, TiEMPO
is able to simulate end-to-end observations of future instruments and forecast their scientific
products. The TiEMPO data can also be used to optimize observing strategies and signal-
processing techniques before the instrument is deployed.

5 Conclusion and Future Prospects

We have presented the TiEMPOmodel and verified its applicability by comparing its output with
on-sky measured data and simulating the operation of a future instrument. The TiEMPOmodel is
highly parametrized and modular, so it can be adjusted to different observation techniques, tele-
scopes, and instruments. This can be done by either simply adjusting the input parameters or by
relatively simple modifications of the Python code. For example, some of the authors have
adapted TiEMPO to simulate scan-mapping observations52 or include excess detector noise.44

TiEMPO can also import arbitrary frequency-dependent transmission curves from models or
measurements to replace the Lorentzian filter transmission used in this article.44 The time-
dependent telescope elevation can be given as a user-specified vector. If the detector is not a
pair-breaking type (e.g., superconducting transition-edge sensors), then the recombination noise
term can be omitted in Eq. (9).

It would seem especially interesting to use TiEMPO for the design and optimization of
large mm–submm telescopes, such as the Large Submillimeter Telescope7 and Atacama Large
Aperture Submillimeter Telescope,6 as well as for optimizing instruments and observing tech-
niques on existing large telescopes like the Large Millimeter Telescope.53 These telescopes have
diameters in the range of 30 to 50 m, so they sample a larger column of atmosphere that contains
a larger number of patches of water vapor that can influence the noise behavior. The combination
of TiEMPO and ARIS can already simulate observations with telescopes of these sizes, in com-
bination with the wideband direct detection imaging spectrometers that are considered to be
candidates for future instruments. Note that the current TiEMPO models only the transmittance
of the atmosphere, and it does not model the wavefront distortion caused by the dynamical and
spatially dependent EPL.54 Because ARIS provides an EPL screen, this would be an interesting
direction for future development.
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