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ABSTRACT

A self-consistent model is applied to predict the creep cavity growth and strain

rates inmetals from the perspective of self-healing. In this model, the creep cavity

growth rate is intricately linked to the strain rate. The self-healing process causes

precipitates to grow inside creep cavities. Due to the Kirkendall effect, a diffu-

sional flux of vacancies is induced in the direction away from the creep cavity

during this selective self-healing precipitation. This process impedes the creep

cavity growth. The critical stress for self-healing can be derived, and an analysis is

made of the efficiency of self-healing elements in binary Fe–Cu, Fe–Au, Fe–Mo,

and Fe–W alloys. Fe–Au is found to be themost efficient self-healing alloy. Fe–Mo

and Fe–W alloys provide good alternatives that have the potential to be employed

at high temperatures.

Introduction

High-temperature deformation and failure mecha-

nisms in metals have attracted considerable academic

and industrial attention since the 1950s [1–4]. The

materials’ response can be complicated since many

processes are at play simultaneously, such as dislo-

cation glide and climb, jog and wall formation,

vacancy formation and annihilation, and creep cavity

nucleation and growth. Sandström and co-workers

developed models which can predict creep rates,

based on the formation and annihilation rates of

dislocations. These models can provide accurate

predictions of the creep rates of various alloys [5–7].

A key damage mechanism is the nucleation of creep

cavities located at the grain boundaries oriented

perpendicular to the applied load at elevated tem-

peratures [8].

After nucleation, these cavities start to grow by the

diffusion of vacancies [9] and eventually they coa-

lesce with neighbouring cavities formed on the same

grain boundary. Taking into account the formation of

the creep cavities as well as the macroscopic strain

rate is a difficult task which can be done by taking a

cohesive zone model [10], or by establishing a link

with strain rate and creep void growth rate through

the model by Sandström [7, 11]. After coalescence, a

rapid damage growth is observed, resulting in
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macroscopic failure. In this failure mechanism, the

creep time is inversely proportional to the creep

strain rate of the alloy. This behaviour is known as

the Monkman–Grant relation. Linking the strain rate

to the cavity growth has been a key subject of interest

[12–21].

Recently, the concept of self-healing has been

explored to extend the lifetime of structural and

functional man-made materials [22]. Autonomous

repair of creep damage has been investigated by Laha

and co-workers for stainless steels [23, 24] and by

Zhang and co-workers for ferritic Fe–Au [25–28] and

Fe–Mo alloys [29]. In these studies, solute elements

are brought in a supersaturated state and thereby

show a strong tendency to segregate. It was found

that up to 80% of the creep damage could be filled by

selective precipitation growth at creep cavity surfaces

[26]. This autonomous repair mechanism is demon-

strated to significantly extend the lifetime and

thereby lead to a more creep-resistant metal. The

current status of these and other approaches for self-

healing alloys are reviewed by van Dijk and van der

Zwaag [30]. Where creep failure is largely controlled

by the diffusion of vacancies, the self-healing of creep

damage largely relies on the diffusion of supersatu-

rated solute. This means that self-healing of creep

damage requires a new theoretical framework to

describe creep damage and healing, based on a del-

icate balance between the simultaneous diffusion of

host atoms (vacancies) and solute atoms. The aim of

this work is to link the transport mechanisms of

excess vacancies, supersaturated solute, and the

macroscopic strain rate in creep-healing high-tem-

perature metal alloys. Recently, we proposed a con-

ceptual model based on the transport of vacancies

between bulk, grain boundary, and creep cavi-

ties [31]. In the present paper, these ideas are applied

to formulate a mathematical model to quantitatively

predict the formation and self-healing of creep

damage in iron-based alloys. This quantitative model

has been used to evaluate critical stress (as a function

of temperature) below which self-healing is possible.

The creep behaviour of the extensively studied binary

Fe–Au (1 at.%) alloy [25–27] is used as an example to

optimise the temperature and stress dependence for

the healing of creep damage. The healing potential of

Fe–Au alloys is compared to that of Fe–Cu, Fe–Mo,

and Fe–W alloys.

Model description

Constrained growth of creep cavities

As is shown in Fig. 1a, a creeping material generally

deforms in three stages: an initial stage when load

and temperature are first applied (stage I), a steady-

state constant creep rate (stage II), and finally an

accelerated creep rate until failure (stage III). Under

the influence of stress, creep cavities form at grain

boundaries oriented perpendicular to the stress

direction, as visualised in Fig. 1b. The geometry of

the stress affected grain boundary with two neigh-

bouring creep cavities is illustrated in Fig. 2.

The damage formation in creeping metals was first

described by Hull and Rimmer [9]. In this model,

creep cavities form on grain boundaries and grow

through the diffusional flux of vacancies, which is

driven by a gradient in chemical potential of a

vacancy between a location far away from the creep

cavity and at the cavity surface. The applied stress r
causes an effective stress rb, on the grain boundary

far away from the cavity, and the stress which results

from the surface energy of the creep void r0 on the tip

of the cavity. For a fraction x of cavitated grain

boundary surface, the gradient in the chemical

potential is [4] (Fig. 2).

r~l
�
�
�

�
�
� ¼ 8prb � ð1� xÞr0

ð�2 lnðxÞ � ð3� xÞð1� xÞÞ : ð1Þ

The gradient of the chemical potential strongly

depends on x. For a small x, and r0\\rb, the

effective chemical potential gradient is close to the

original prediction by Herring [1] and Hull and

Rimmer [9]. The gradient in chemical potential rl
can then be approximated by:

r~l
�
�
�

�
�
� � rX

k
: ð2Þ

Stress r acting on a vacancy with volume X causes an

increase in its chemical potential. At the edge of the

creep cavity, this stress is effectively zero and far

away from the cavity; at distance k, it is equal to the

applied stress. This stress gradient results in a gra-

dient in the chemical potential for a vacancy. The

cavity grows due to a diffusional vacancy flux over

grain boundaries (vacancies are indicated by the

symbol h);

Jh ¼ � 1

X
Dgb

h xgbh
kBT

rl � �Dgb
h xgbh
kBT

r
k
; ð3Þ
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where kB is Boltzmann’s constant and T is the tem-

perature. The flux of vacancies towards the creep

cavity Jh is a function of the vacancy diffusivity over

the grain boundary Dgb
h (which is much faster than

bulk diffusivity Dbulk
h ) and a function of the equilib-

rium vacancy concentration at the grain boundary,

xgbh (in mole fraction). This approach of Hull and

Rimmer [9] provides a diffusional flux, driven only

by applied stress (they introduced a vacancy density

Cgb
h ¼ xgbh =X). This flux contributes to the growth of

the creep cavity by adding a volume X for each

added vacancy. The creep cavity surface connecting

the grain boundary is equal to S ¼ 2pad, where a is

half the opening width of the creep cavity and d is the
grain boundary thickness.

The void growth rate _V ¼ �JhSX can now be

described as:

_V ¼ Dgb
h xgbh
kBT

r
k
2padX: ð4Þ

During typical operating conditions, creep deforma-

tion is dominated by steady-state creep, also known

as stage II creep (see Fig. 1). For these conditions, the

time to failure tf depends directly on the steady-state

strain rate _�ss. This is known as the Monkman–Grant

relation [32]:

_�sstf ¼ CMG; ð5Þ

where CMG is the Monkman–Grant constant. At first

glance, Eqs. 4 and 5 seem to contradict each other

since _�ss is normally related to the bulk diffusivity

and the void growth rate _V to the grain boundary

diffusivity.

The description of creep has been divided into

microscopic damage descriptions [9, 33] and the

macroscopic strain rate description, i.e. the Monk-

man–Grant relationship [4, 32]. In order to explain

the relation between this large-scale deformation

Figure 1 a Strain–time curve of a metal under creep conditions. In stage II, a steady-state strain rate _�ssð Þ is observed. b Formation of

creep cavities at grain boundaries oriented perpendicular to the applied stress direction.

Figure 2 Creep cavity of width 2a on a grain boundary in a metal under a stress r, where the distance 2k indicates the distance to the next
creep cavity. The creep cavities are lens-shaped with a height h and an opening angle w.
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model and the small-scale damage model, the prin-

ciple of constrained creep cavity growth was pro-

posed. This constrained growth was first introduced

by Ishida and McLean [12] to explain discrepancies

between theoretical unconstrained cavity growth and

experimentally observed creep curves. In their

approach, a grain boundary requires the ingress of a

dislocation to form a vacancy. The steady-state creep

strain rate _�ss is thereby coupled to the volumetric

growth rate _V of a creep cavity.

The link between the steady-state strain rate _�ss and

the cavity growth rate _V leads to the Monkman–

Grant relation. Dyson [13] showed that in many cases

the creep cavity growth rate will be limited by the

strain rate of the material;

_�ss ¼
_V

4k2d
; ð6Þ

where d is the grain size and 4k2 is the grain

boundary surface area assigned to a single cavity.

Building on the ideas of Dyson, Rice [19] formu-

lated a model where the rate of opening for creep

cavities is a function of the strain rate by combining

both effects. This was worked out by Needleman and

Rice [20] and Budiansky [34]. Van der Giessen and

co-workers [21] analysed this effect for different

applied load combinations. However, these studies

do not treat the case where the strain rate is a limiting

factor on the diffusional growth rate of a cavity,

which is treated here. Cocks and Ashby [35] reviewed

all different creep regimes and provided maps of the

damage rate as a function of applied stress. Similar to

the model of Rice [19], Riedel developed a model

which links the strain rate with void growth rates [4]

and very recently this was extended by Sand-

ström [11]. In all these models, the growth of creep

cavities and the strain rate are linked to the con-

strained growth. These descriptions can provide

good agreement with experimental data for conven-

tional creep, but they do not describe self-healing

systems. It also does not provide an explanation why

the strain rate and void growth rates are linked.

We follow the ideas of Ishida and McLean and

assume that the ingress of a dislocation to the grain

boundary can cause the formation of a vacancy,

which in turn contributes to the growth of a creep

cavity. If these vacancies are not formed continu-

ously, the void growth rate would come to a stop.

Thereby the growth rate of creep cavities and the

creep strain rate are linked through the movement of

dislocations, where the rate-limiting step is the dis-

location climb in the bulk (leading to an activation

energy similar to the self-diffusion activation energy

in the bulk).

The assumptions used in the proposed model are:

1. Creep cavities form at grain boundaries perpen-

dicular to the loading direction.

2. Cavity growth rate and the steady-state strain

rate are proportional.

3. Continuous formation of vacancies is required in

order to maintain the cavity growth rate, and

these vacancies form predominantly as a result of

dislocation ingress at grain boundaries. This

means that the vacancy formation is the rate-

limiting step for the diffusional growth of creep

cavities.

4. The ingress of dislocations to a grain boundary

can cause excess volume and stress concentra-

tions to accumulate in the grain boundary. The

relaxation of the excess volume and the stress

concentration on the grain boundary can happen

by draining vacancies from the grain boundary to

the creep cavities.

5. Supersaturated solute has a preference for pre-

cipitation at the creep cavity surface.

Dislocation movement and vacancy
transport

In the present models that describe creep cavity

growth [9], the implicit assumption is that the

vacancy concentration remains at equilibrium values

at a characteristic distance from the creep cavity at all

times. It is not a priori obvious that this should be

true. In fact, the concepts of Ishida and co-workers

[12, 36] that a grain boundary requires the ingress of

dislocations in order to be able to slide can be com-

bined with the proposal of Dyson [13, 37] that grain

boundary sliding is a constraint for the growth of

creep cavities.

This means that the movement of dislocations,

which controls the strain rate of metal that deforms

under creep conditions, is also the rate-determining

factor for cavity growth. This sheds some light on the

Monkman–Grant relationship: the strain rate deter-

mines the time to failure by the formation of vacan-

cies on the grain boundaries close to the diffusion

zone of the creep cavities.

J Mater Sci



When a dislocation network has developed and the

steady-state strain rate causes a certain number of

dislocations per second to reach a grain boundary,

each of them carries an open volume [38], part of

which is transferred to the grain boundary when the

dislocation impinges. The vacancy fraction in the

grain boundary xgbh should depend on the rate at

which vacancies are generated due to the influx of

dislocations.

For climb-controlled creep, the strain rate of a

metal depends on the mobile dislocation density.

Using the Orowan equation for these cases [39], with

the dislocation density qdisl, the climb velocity vcl of a

dislocation jog and the Burgers vector b,

_� ¼ bqdislvcl: ð7Þ

The strain rate depends on the stress through the

dislocation density [40] and the climb velocity [41].

The stress dependence of the strain rate is expressed

with a power law as, _� / rn.
The stress dependence of the dislocation climb

velocity [42] can be approximated by:

vcl �
DsdfclX
b2kBT

; ð8Þ

where Dsd is the iron self-diffusivity and fcl the force

acting on a climbing dislocation. During stage II

creep with a constant strain rate, the average collec-

tive dislocation movement is of interest for the

deformation rate. The drift velocity of the dislocation

network can be correlated with the individual

movements of dislocations [43]. The collective

climbing or gliding rate of dislocations in a disloca-

tion network is unknown, but as an approximation

the individual movement can be considered. The

strain rate according to the Orowan equation (Eq. 7)

can be linked to the Dyson equation (Eq. 6), in order

to obtain an equation of the creep cavity growth:

_� ¼ bqdislvcl ¼
_V

4k2d
: ð9Þ

The creep cavity growth rate _V now depends on the

influx of dislocations and the volume associated with

these dislocations. The density of dislocations trans-

ported to the grain boundary is associated with the

creep void by length k. The dislocation density is a

function of the subgrain size [44], for an observed

subgrain size dsubð Þ of 1 lm in Fe–Au [25], the dislo-

cation density qdisl ¼ 1� 10�12m�2. For Fe–Au, it was

found experimentally [25–27] that at 550� and an

applied load of 100 MPa, the strain rate

_� ¼ 2� 10�8s�1. The Burgers vector of bcc iron b ¼ 2:5

Å. The climbing velocity of the collective dislocation

network then vcl ¼ 8� 10�11m s�1. The associated

velocity of the dislocation network is approximately

1 Å/s. This value is of similar magnitude compared

to the values found by Caillard for single dislocation

kink movement, in the presence of solute [41].

When a dislocation impinges on or near a grain

boundary, it will provide a back stress on the fol-

lowing dislocations. The character of a grain bound-

ary is altered by the absorption of a dislocation and

its associated volume [45, 46]. This change in char-

acter, in the form of a stress concentration, provides a

repulsive barrier for the influx of the next dislocation

[47]. The increase in volume in the grain boundary

leads to a more disordered structure and an excess

vacancy concentration. It has been observed that the

formation and growth of creep cavities are highly

dependent on the grain boundary character of the

surrounding grain boundaries [48, 49]. We postulate

that the relaxation of the excess volume and the stress

concentration on certain grain boundaries can hap-

pen by draining vacancies from these grain boundary

to the creep cavities. This flux of vacancies from a

disordered section of grain boundary to the creep

cavities leads to a less disordered grain boundary and

allows new dislocation to ingress into the grain

boundary. This link of the grain deformation rate and

the creep cavity growth rate causes the Monkman–

Grant relation.

Self-healing

Experimentally, it has been observed that the pres-

ence of supersaturated solute can result in an

autonomous filling of creep cavities and a significant

extension of the creep lifetime [25–27]. It is found that

the self-healing mechanism does not significantly

affect the critical strain at rupture, but does reduce

the steady-state strain rate, as schematically illus-

trated in Fig. 3. The solute that segregates at the free

creep cavity surfaces is found to be transported along

the grain boundaries from the supersaturated bulk.

This flux of segregating solute competes with the

vacancy flux and thereby reduces both the cavity

growth rate and the vacancy flux away from grain

boundaries under stress towards the creep cavities.

This process is known as the Kirkendall effect.

J Mater Sci



Solute transport

After nucleation, a diffusional growth of the precip-

itate initiates a flux of solute, driven by a chemical

potential;

J~sol ¼ �Dsol

kBT
r~lsol: ð10Þ

The difference in chemical potential of solute atoms

between precipitation in the bulk and on creep cavity

surface causes a preference for precipitate growth in

the creep cavities. The terms playing a role are the

possibility for the precipitate to reduce the surface

energy of the free surface of bulk material in the

creep cavity, the possibility of reducing the surface

energy of a precipitate, and the reduction in stress

concentration between the precipitate and the bulk

material. The driving force for precipitation is then

given by this chemical potential, but also by the

supersaturated solute which remains in solution

during service life. This is assumed to be the largest

contribution to the self-healing process in metals, and

it is measurable with atom probe tomography [25];

the solute is then depleted from the grain boundary

and neighbouring bulk as a result of the diffusion

towards the precipitate (Fig. 4).

The difference in diffusivity of host and substitu-

tional solute causes a net diffusion of vacancies in the

direction opposite to the faster species. The flux

Figure 3 Evolution of strain

with time for a non-self-

healing and a self-healing

alloy. The non-self-healing

alloy has a shorter creep

lifetime tf;NSH and a higher

steady-state strain rate _�ss. The

time to failure is

predominantly controlled by

the strain rate in stage II.

Figure 4 a Schematic illustration of the vacancy transport near a

creep cavity. The flux of vacancies through a grain boundary

towards a creep cavity during stage II creep causes this creep

cavity to grow. b When precipitation occurs inside the creep

cavity, a solute flux causes the precipitate to grow. The solute flux

Jsolð Þ causes a vacancy flux Jhð Þ in the opposite direction due to

the Kirkendall effect. The net vacancy flux can be zero, preventing

the creep cavity to grow.
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balance of this process can be approximated with the

following Darken equation which, in the dilute limit,

can be simplified to:

J~h;out ¼
1

X
ðDsol �DhostÞr~xsol: ð11Þ

where Dhost is the diffusivity of the host atoms, Dsol is

the diffusivity of the solute, and rxsol is the concen-

tration gradient of the solute. Assuming that the

supersaturated solute Dxgbsol shows a concentration

profile over the grain boundary with a characteristic

length k, the gradient can be approximated by

jr~jxsol ¼ Dxgbsol=k. This approximation is valid in the

dilute limit, with negligible off-diagonal terms of the

Onsager matrix [50].

Flux balance and critical stress

The opposite vacancy fluxes caused by the gradient

in stress-induced chemical potential and by the solute

gradient result in a net vacancy flux, either towards

or from the cavity. Self-healing can be achieved when

Jgbh;out � Jgbh;in; ð12Þ

where the flux of vacancies over the grain boundary

towards the creep cavity Jh;in has to be smaller (or

equal) than the flux of vacancies in the opposite

direction Jh;out. As discussed in the ‘‘Appendix’’, the

outflux of vacancies from the creep cavity is in most

cases controlled by the diffusivity of solute through

the bulk.

When the two fluxes are equal, a critical stress can

be defined below which diffusional creep can be self-

Figure 5 Partial phase diagrams for Fe–Cu, Fe–Au, Fe–Mo, and

Fe–W binary alloys. With the creep temperatures 550� and
650� indicated as dashed lines. The magnetic Curie temperature

(TC) of pure iron is indicated for reference. All fractions indicated

in the figure are in at.%.

J Mater Sci



healed. Combining Eqs. 3 and 11, with 2padJgbh;out ¼
8k2Jbulkh;out (see ‘‘Appendix’’), the flux balance results in

the critical stress for self-healing,

rcrit ¼
kBT

X
4k3

padl

Dbulk
sol �Dbulk

host

� �

Dxbulksol

Dgb
h xgbh

: ð13Þ

The critical stress for self-healing rcritð Þ depends on

the solute diffusivity compared to the host diffusivity

Dbulk
sol �Dbulk

host

� �

, the grain boundary diffusivity Dgb
h

� �

,

the supersaturated solute concentration Dxsolð Þ, and
vacancy concentration xgbh

� �

. The length l is the dif-

fusion length of the supersaturated solute in the bulk

towards the grain boundary. The maximum distance

lmax ¼ p
3

a3

k2Dc0X

� �

can be estimated from mass conser-

vation (see ‘‘Appendix’’).

Cavity growth rate

Creep cavity growth rate can be estimated from the

net vacancy flux integrated over the creep void area

connecting the grain boundary:

_V ¼ 2padJgbhX: ð14Þ

The rate-limiting factor for the void growth is the

formation of vacancies, which is linked to the strain

rate. The solute precipitation in the cavity is quickly

limited by the bulk diffusional flux to the area sur-

rounding the creep cavity 4k2
� �

, see ‘‘Appendix’’. For

stage II creep where the supersaturated solute is

transported exclusively to the creep cavities, it is

possible to write the constrained cavity growth rate

as:

_V ¼ 2pad
Dgb

h xgbh
kBT

Xr
k

� 8k2 Dbulk
sol �Dbulk

host

� �Dxbulksol

l
: ð15Þ

The depletion of supersaturated solute from the bulk

close to the grain boundaries is clearly observed by

Zhang and co-workers [25]. This depleted zone

points to a diffusion-controlled process. This proves

that grain boundary sliding is not rate-limiting to the

deformation.

Using Eq. 9, the strain rate of self-healing creep

steels can be formulated as:

Table 1 Model parameters for self-healing creep steel, for Fe–Au,

Fe–Cu, Fe–Mo, and Fe–W alloys

Variable Value Unit References

Qgb
h

0.58 eV [55]

dDgb
0;h

6.35 10-15 m3s-1 [55]

agb 1.28 – [55]

Qbulk
Fe 2.83 eV [56]

Dbulk
0;Fe 0.35 10-4 m2s-1 [56]

abulkFe
0.16 – [56]

Qbulk
Au

2.37 eV [56]

Dbulk
0;Au

0.68 10-4 m2s-1 [56]

abulkAu
0.10 – [56]

Qbulk
Cu

2.58 eV [56]

Dbulk
0;Cu

0.27 10-4 m2s-1 [56]

abulkCu
0.10 – [56]

Qbulk
Mo

2.65 eV [56]

Dbulk
0;Mo 0.59 10-4 m2s-1 [56]

abulkMo
0.10 – [56]

Qbulk
W

2.70 eV [56]

Dbulk
0;W

0.26 10-4 m2s-1 [56]

abulkW
0.10 – [56]

DHgb
h;form

0.29 eV –

d 0.5 10-9 m –

d 30 10-6 m –

a 0.5 10-6 m –

k 5 10-6 m –

X 11.7 10-30 m3 [57]

Table 2 Supersaturation of different solute containing alloys, at a

temperature of 550� and in brackets (650�)

Alloy Concentration (at.%) Supersaturation (at.%)

Au 0.25 0.10 (0.00)

0.50 0.35 (0.19)

0.75 0.60 (0.44)

1.00 0.85 (0.69)

Cu 0.25 0.19 (0.09)

0.50 0.44 (0.34)

0.75 0.69 (0.59)

1.00 0.94 (0.84)

Mo 1.00 0.00 (0.00)

2.00 0.84 (0.25)

3.00 1.84 (1.25)

4.00 2.84 (2.25)

W 1.00 0.80 (0.67)

2.00 1.80 (1.67)

3.00 2.80 (2.67)

4.00 3.80 (3.67)
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_�ss ¼
pad

2k2d

Dgb
h xgbh
kBT

Xr
k

� 2

d
Dbulk

sol �Dbulk
host

� �Dxbulksol

l
ð16Þ

Model predictions

The model is applied to the critical stress for the

experimentally studied binary alloys: Fe–1at.%Cu

and Fe–1at.%Au alloys [25–27].

The solubility of copper in bcc iron is obtained

from Chen and co-workers [51], the solubility of gold

in bcc iron from Okamota and co-workers [52], the

molybdenum solubility [53], and tungsten solubility

from Landolt–Börnstein [54]. The relevant part of the

phase diagram (between 700 and 1400 K and between

0 and 4 at.% atom fraction of impurity) is presented

in Fig. 5 for Fe–Cu, Fe–Au, Fe–Mo, and Fe–W binary

alloys.

The grain boundary self-diffusivity of iron was

measured over a wide temperature range [55]. The

grain boundary vacancy formation enthalpy DHgb
h;f

� �

is unknown, but a reasonable approximation is to

assume the vacancy formation enthalpy at the grain

boundary to be 50% of the activation energy for dif-

fusion. In bcc iron, there is a magnetic effect on the

diffusivity, which is represented by the factor agb
� �

and the spontaneous magnetisation s. The bulk dif-

fusivities and the influences of magnetic ordering on

their activation energy for the substitutional elements

used in bcc iron are obtained from the manuscript of

Figure 6 Critical stress rcrit for the self-healing of creep damage

as a function of temperature T for different compositions of binary

Fe–Au, Fe–Cu, Fe–Mo, and Fe–W alloys. The nominal solute

concentration (in at.%) is indicated for each curve. Molybdenum

(Mo) and tungsten (W) are more soluble at high temperatures and

therefore analysed for higher solute contents.
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Versteylen and co-workers [56, and references

therein].

The diffusivity parameters, the vacancy concen-

trations, the volume of a vacancy, the thickness of a

grain boundary, the considered creep cavity radius

and spacing, and the applied stress that are used as

modelling parameters to obtain the critical stresses

for self-healing and the efficiency for self-healing are

gathered in Table 1. These model parameters are

used to estimate the critical stress for self-healing of

diffusional creep damage. For reference, the super-

saturations at T ¼ 550� and 650� are listed in Table 2.

The critical stress was calculated for Fe–Au, Fe–Cu,

Fe–Mo, and Fe–W alloys for different solute contents

(Fig. 6) assuming that all supersaturated solute

experiences a driving force for the selective precipita-

tion at the creep cavity surfaces. The self-healing pro-

cess in Fe–1at.%Au is found to be functional up to

relatively high stresses, due to the high diffusivity of

Au in the Fe bulk. At high temperatures, the efficiency

drops quickly, which is caused by: (1) the decrease in

amount of supersaturated solute available for self-

healing and (2) the diffusivities of solute and host are

getting closer to each other at high temperatures. In

addition, the activation energy for grain boundary

diffusion shows a considerable temperature evolution

close to the Curie temperature [55].

The mechanism that reduces the growth rate of the

creep cavities also functions at stresses higher than

the previously determined critical stress for self-

Figure 7 Self-healing efficiency g ¼ 1� _�ðDxsolÞ
_�ð0Þ , as a function of

stress and temperature. The critical stress for complete self-healing

(g ¼ 1) as a function of temperature is indicated by the red line,

and partial self-healing (g\1) is indicated by the other colours.

The Fe–Au healing is indicated as a function of concentration

between 0.25 and 1% of nominal concentration.
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healing. In this range r[ rcrð Þ, the reduction in creep

strain rate can be expressed in a parameter g;

g ¼ 1� _� Dxsolð Þ
_�ð0Þ ¼ kBT

Xr
4k3

padl

Dbulk
sol �Dbulk

host

� �

Dxbulksol

Dgb
h xgbh

:

ð17Þ

The efficiency of the self-healing process goes to zero

at very high stresses and to g ¼ 1 at the critical stress.

In Fig. 7, the efficiency of self-healing is indicated as a

function of stress and temperature at different Au

concentrations. The addition of molybdenum and

tungsten in solid solution is common for creep steels

[58] and is generally related to the formation of

nanoprecipitates in creep steels. In a recent article by

Fedoseeva and co-workers however, it was shown

that a commercial alloy with added tungsten content

loses creep strength after prolonged creep times,

which coincides with the depletion of solute tungsten

[59]. When molybdenum or tungsten is added in

excess, keeping a percentage in solution, the solubil-

ity can extend to high temperatures. The temperature

reach for self-healing can therefore be much higher

than for copper or gold (see Fig. 5). The efficiency of

self-healing is therefore analysed for higher nominal

concentrations or molybdenum and tungsten (see

Fig. 8).

Figure 8 Self-healing efficiency g ¼ 1� _�ðDxsolÞ
_�ð0Þ , as a function of

stress and temperature. The critical stress for complete self-healing

(g ¼ 1) as a function of temperature is indicated by the red line,

and partial self-healing (g\1) is indicated by the other colours.

Fe–Cu and Fe–Au contain 1% nominal concentration of solute,

and Fe–Wand Fe–Mo contain 4% nominal concentration of solute.
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The efficiency and critical stress for self-healing

strongly depend on the relative distance between

cavities compared to the size of the creep cavities, k
a.

The difference in bulk diffusivities between Cu and

Au predicts that the self-healing process will work

much more efficiently for Fe–Au than for Fe–Cu at

the same degree of supersaturation. This is in con-

currence with what was found in experiments [60].

As expected, temperature has a large effect on the

efficiency of self-healing since the self-healing and

damage formation processes are diffusional in

nature.

Self-healing behaviour has potentially been

observed in Al–Mg alloys as well [61], where voids

were filled by segregation of Mg to a void site.

Examples for (partial) self-healing of creep damage

by precipitation may also have been observed in

other aluminium alloys. For instance, Yousefiani and

co-workers [62] presented the creep strain rates of

overheated aluminum alloys. In their samples, the

precipitates of a 7075 aluminum alloy were dissolved

at high temperatures, which caused lower creep

strain rates, and bulky precipitates on the grain

boundaries, which also appear on self-healing creep

cavities in Fe–Au and Fe–Mo alloys [25, 26, 29]. In the

article of Fedoseeva and co-workers [59], the effect

may have been observed in a commercial creep steel,

with bulky grain boundary precipitates and an

increase in creep rate after the depletion of tungsten

from solid solution [59].

Conclusions

A quantitative model was presented to predict how

supersaturated solute can be used to heal creep

damage, strongly reduce stage II creep rates, and

thereby extend creep lifetimes. This process could be

complementary to conventional methods for creep-

resistant metals. The creep cavity growth rate and the

strain rate in metal alloys are closely linked during

steady-state creep. The creep cavities grow through

the drainage of vacancies from grain boundaries on

which the cavities nucleate. The vacancy formation

on the grain boundaries is linked to the rate of ingress

of dislocations to that grain boundary. During the

selective precipitate growth process in the creep

cavities, a transport of solute atoms takes place. The

creep cavities grow by a diffusional flux of vacancies,

driven by the stress on the grain boundary, which is

proportional to the applied stress. This vacancy flux

can be countered by a flux of substitutional solute

towards creep cavities. The growth of precipitates

can thereby reduce growth rates of a creep cavity,

reduce the strain rate, and increase the creep lifetime.

The self-healing efficiency can be described as a

function of the amount of supersaturated solute and

the relative diffusivities, assuming selective precipi-

tation at the free creep cavity surfaces. It is found that

Au is the most efficient solute element for self-healing

of creep damage, and the addition of Au to a creep-

resistant steel is thought to have little effect on other

precipitates and could be implemented in creep-re-

sistant steels. Mo and W provide a good and low-cost

alternative that have potential for self-healing as long

as they remain in supersaturation.
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Appendix: Flow resistance for solute
diffusion
Consider a creep cavity on a grain boundary. The

creep cavity acts as a sink for solute atoms, which can

diffuse through the bulk and through grain bound-

aries (see Fig. 9). The supersaturated solute flows

towards the sink, with a rate dependent on the dif-

fusivity through the bulk and through the grain

boundary. For a more detailed analysis of the relative

influence of the grain boundary and bulk diffusivi-

ties, the authors would like to refer to earlier

work [63]. This problem is analogous to the electric
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current through two resistors in series. The current

depends on both resistors in the same way as the flux

towards the creep cavity will depend on the diffu-

sivity the grain boundary and in the bulk.

Starting from the local flux of solute atoms descri-

bed by Fick’s law,

J~sol ¼ � 1

X
Dsolr~xsol: ðA:1Þ

For a creep cavity, the integrated flux of solute (in

number of atoms per unit of time) can be expressed

as:

I ¼
_V

X
¼

Z

A
J~sol � dS~¼ Dxsol

R
: ðA:2Þ

For a diffusion length L, and cross section A, the flow

resistance can be estimated with:

R ¼ L

ADsol

ðA:3Þ

Assuming that (1) most of the solute that flows to the

creep cavity originates from the bulk (grain boundary

volume is low compared to the creep cavity volume)

and (2) we only consider the timescales where the

bulk diffusion is significant. Under these conditions,

we can approximate the diffusional flow of solute

atoms as a bulk diffusion and a grain boundary dif-

fusion process in series. A generalisation to other

cases was recently presented elsewhere [63].

The flow resistance for the bulk diffusion can be

approximated by assuming that the effective cross

section equals two times the grain boundary surface

available for an individual cavity Abulk ¼ 8k2 (to

account for the bulk diffusion from both sides of the

grain boundary) and that Lbulk � l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pDbulk
sol t

p

is the

diffusion length, resulting in:

Rbulk ¼
L

AbulkDbulk
sol

� l

8k2Dbulk
sol

: ðA:4Þ

The time-dependent diffusion length can be approx-

imated by its maximum value at complete filling of

lmax � pa3=3k2Dxsol. The flow resistance for the grain

boundary diffusion can be approximated by assum-

ing that Agb � 2pad and Lgb � k, resulting in:

Rgb ¼
L

AgbD
gb
sol

� k

2padDgb
sol

: ðA:5Þ

The total flow resistance between the nominal solute

concentration in the bulk and the solute at the creep

cavity surface then corresponds to:

Rtot ¼ Rbulk þ Rgb �
l

8k2Dbulk
sol

þ k

2padDgb
sol

: ðA:6Þ

The total supersaturation of solute is now divided

over the bulk and the grain boundary as: Dxbulksol ¼
DxsolRbulk=ðRbulk þ RgbÞ and Dxgbsol ¼ DxsolRgb=ðRbulkþ
RgbÞ, respectively.

Figure 9 a The creep void, which is formed on a grain boundary,

acts as a sink for supersaturated solute atoms. b The solute

concentration at the edge of the creep void is equal to the

equilibrium, and far away from the creep void, the supersaturation

concentration is maximum. Depending on the diffusivity in the

grain boundary and through the bulk, there will be a concentration

gradient formed.
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For l � lmax, the ratio of bulk and grain boundary

flow resistances is:

Rgb

Rbulk

� aDbulk
sol

dDgb
sol

12k5

p2a5
Dxsol � 1: ðA:7Þ

For the Fe–Au alloy with Dxsol ¼ 0:01, a ¼ 0:5 lm, k ¼
10 lm, d ¼ 0:5 nm, Dbulk

sol ¼ 7:47� 10-21 m2s-1, and

Dgb
sol ¼ 7:43� 10-12 m2s-1 at T ¼ 823 K, (Table 1), we

find Rgb=Rbulk ¼ 0:03 � 1. As a result, we can assume

Rtot � Rbulk and Dxbulksol � Dxsol.
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