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Chapter 31 ®)
Archetypical Patterns in Agent-Based e
Models

Gert Jan Hofstede ® and Emile Chappin

Abstract Complex systems produce recognizable self-organized patterns across
time. This conceptual paper consists of a systematic reflection on what kinds of
archetypical patterns systems can show, and in what kinds of cases these patterns
could occur. Agent-based models are used to exemplify each pattern. We present a
classification of the breadth of typical patterns that agent-based models can show
when one runs them. The patterns fall into three categories: resource use, contagion,
and output patterns. These are pattern archetypes; most real-world systems, and also
most models, could and will show combinations of the patterns. In real systems, the
patterns will occur as phases and building blocks of developments. These are patterns
frequently occurring in real-world systems. The classification is the first of its kind. It
provides a way of thinking and a language to non-mathematicians. This classification
should be beneficial to those researchers who are familiar with a real-world pattern
in their discipline of interest, and try to get a grasp of pattern causation. It can also
serve in education, for giving students from a variety of disciplines an idea of the
possibilities of agent-based models.

Keywords Agent-based model - Pattern - Tragedy of the commons * Fixes that
fail - Power law - Tipping point
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Introduction

In this age of interconnection of local social and economic systems, of human-
induced climate change and of global pandemics, there is an increased need for
recognizing, clustering and exploring (possible) patterns in complex systems. Science
provides many methods to do so. Scientists in various disciplines and policy makers
in many of today’s socio-technical systems need to be able to recognize patterns
and to know whether and how they could intervene to improve the systems they are
part of and govern [1]. Some interventions could be crucial, others futile; and the
difference can be clarified by studying underlying patterns in the behaviour of the
systems that should be managed [2].

A pattern is aregularity in the world that can be observed by the senses or is inferred
from collected data. A pattern can occur in many guises, for instance geometrical
patterns representing mathematical principles, spatial-temporal patterns capturing
developments of systems over time, and abstract patterns that describe conceptual
ideas. This paper aims to identify and summarise archetypical patterns in complex
systems including the mechanisms that form a possible cause for the pattern to come
about. A key method in the complexity science that deals with patterns is agent-based
modelling (ABM) [3]. ABM enables an explicit discussion on how patterns emerge
on the system level out of lower level interactions. We use this key feature of ABM
to define and describe a set of archetypical patterns. The actual patterns shown by
real-world systems may be a combination of archetypical patterns, often containing
recognizable elements of one or more of them. We use ABM for its conceptual
closeness with real systems that consist of elements interacting across space and
time. This will make our classification and examples accessible to practitioners of
complex systems.

The article is structured as follows. Section “Materials and Methods” describes
materials and methods. Section “Agent-Based Models and Patterns” discusses the
elements of agent-based models that make them such prolific reproducers of patterns.
Section “Mechanisms” lists a set of mechanisms by which patterns can be generated
for ABMs. Section “Overview of Patterns” provides an overview of ten archetypical
patterns with examples for all those patterns. We illustrate the patterns with simu-
lation results from Netlogo [4] models from its online model library in more detail.
These examples are accessible to anyone for closer scrutiny. The paper ends with a
discussion and outlook in Sect. “Conclusions and Discussion”.

Materials and Methods

This article derives from the experience of the authors with studying complex systems
in various domains. In particular we have been modelling policy-relevant socio-
technical and socio-ecological systems since many years. For this article, we delib-
erately use example models in the Netlogo models library [4]. This allows any reader
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access to the materials and methods to reproduce the figures and experiment with
the models. We characterize each pattern with an appropriate model, in terms of a
single run or of a set of runs with that model.

Agent-Based Models and Patterns

Agent-based modelling does not model the patterns we observe in complex systems
directly. It models smaller building blocks: actions and interactions of agents and their
environment that make up the system. If the growth of the anthill is the pattern, ABMs
model the individual ants. They do so through agent capabilities such as observation
and various kinds of action. These basic components and possible conceptualizations
in agent-based modelling allow for a myriad of system-level patterns to occur during
model runs. [3]. This is a strength, since systems in the real world also display these
complex patterns [5]. Both in an ABM and in the real world, the patterns we observe
are the result of what one would call in everyday language ““a set of coincidences”.
One thing always leads to another. System elements act, react, and interact, and
over time, self-organize into a pattern without necessarily having any intention of
producing that pattern. In other words, patterns are emergent from the aggregated
behaviour of agents. As a consequence, it is often difficult for developers of ABMs
to understand why their models behave as they do—this is a serious limitation to be
confident that models are actually useful [6].
The reasons why ABMs are so versatile are that:

e ABMs are primarily declared at the level of agent types. Any model run can be
populated by many agents. The processes have a lot of freedom, e.g. in sequence,
and in random differences across model runs.

e ABMs have agents of potentially many types and possible conceptualizations, and
in potentially high numbers [7, 8]. Agents can be linked in a variety of ways. For
instance, they could be neighbours, share characteristics, exchange information,
beget one another, or serve as food to one another. ABM can be spatial and
locations can be conceptualized in many ways.

e ABMs are temporal and model runs show path dependency. Agents can affect,
or can be affected by, other agents, by aspects specific to their location and by
system-wide developments. This latter possibility is often called ‘second-order
causation’, or sometimes, with a term by Rosaria Conte, ‘immergence’, to reflect
the fact that the system pattern that occurs during a run exerts a top-down influence
on the agents [9].

¢ The consequence of the above points is that ABMs simulate patterns that are not
directly coded, but instead emerge as a result of the aggregated actions of agents
while a model runs. These patterns are often recognised by those who know the
real-world systems on which models are based. The ABM thus helps these real-
world system experts to investigate how these patterns are caused: ‘abduction’ is
the methodological term for this.
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Mimicking real-world systems, ABMs can show a huge variety of patterns. The
same ABM can show several different patterns within a run, or across runs, depending
on inputs and settings. Pattern-oriented modelling (POM) is one of the ways of
establishing the validity of an ABM [10, 11]. If a model can be shown to replicate
several patterns occurring in the corresponding real-world system, this increases
confidence in its validity to make claims about real-world systems. These patterns
are often spatio-temporal, by the nature of agent-based models as playing out over
simulated time in a simulated two-dimensional space. In this case they can be visually
observed in the simulated world while the simulation is running. They could also
involve the fluctuation of one or more output variables over time. In that case one
could show them by plotting the variable(s) over simulated time.

The variety of patterns occurring in real-world systems is staggering. A number
of them that occur frequently and have recognizable ‘Gestalt’ have been named and
are recognized in their occurrence, and sometimes in ways to deal with them. For
instance, the ‘tragedy of the commons’ [12]. We can call such patterns ‘archetypical’.
How many of these archetypical patterns exist? It is a very relevant question for
policy makers, researchers and anyone else that considers the possible dynamics of
complex systems. Unfortunately, a systematic overview of the patterns that emerge
from ABMs, in analogy to what has been developed for System Dynamics [13, 14],
is still lacking. We build a systematic analysis for this purpose and provide a first
reflection on what archetypical patterns can result from ABMs.

Mechanisms

Researchers and policy analysts are the architects and builders of ABMs: they concep-
tualize agents and decide what agents ‘can do’. More precisely, they determine and
code what agents perceive and deduce, whether agents and/or their environment are
heterogeneous, how agents move, meet and interact, when they are born, and when
they die. In other words, they build the mechanisms by which the agents—when the
model runs over simulated time—collectively bring about system patterns.

Most of these patterns could be obtained in a variety of ways, employing a variety
of mechanisms. Often, the modeller has some real-world knowledge or relevant
theory about agents from which possible mechanisms can be deduced; in the absence
of knowledge, Occam’s Razor suggests that the simplest possible mechanism may
be preferred on account of sparsity. Actually, one merit of ABM is that they often
show that surprisingly simple agents and mechanisms can cause realistic, recog-
nizable patterns. In other words, they show the multi-level nature of causation in
systems: system-wide behaviours do not require system-wide causes. We give a
rough categorization of mechanisms:

e Direct interaction between agents. Agents affect other agents’ parameters
through some form of direct interaction: killing, eating, taking or providing
resources, communicating. ..
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e Indirect interaction between agents. Agents may coordinate in a decentral
fashion, not by directly interacting or even observing, but by responding to the
same central entity/parameter that they shape together. Alternatively, agents shape
the system developments together through ‘stigmergy’: a form of second-order
causation in which agents do not directly interact, but change their environment
and thus alter the decision-making of those that come after them. This occurs e.g.
when agents form ‘elephant paths’ by being attracted to other agents’ traces.

¢ External drivers may affect agents. These are exogenous to the model, so agents
do not affect these values themselves. Exogenous changes may cause particular
system patterns to emerge.

e Memory. Memory in the system can cause various effects, such as piling up,
lack of responsiveness, or learning. Small effects repeated many times can lead
to piling up, resulting in unanticipated system behaviour. This can happen when
densities matter and are affected by these changes. Lack of responsiveness, also
called myopia, can occur when obsolete information is kept and crowds out new
information. Memory is then substituted for observation. More advanced forms
of relying on memory could be called learning.

Overview of Patterns

This section briefly describes ten patterns, which are numbered below and grouped
in the following classes: resource use (3.2), contagion (3.3), and output pattern (3.4).
Table 31.1 provides an overview. Besides the category and name, it provides six
emergent characteristics of each pattern. All of these occur as a result of the combined
actions of agents.

Two emergent characteristics could occur at some place or time during a model
run:

e Positive feedback loop: does it include self-reinforcing feedback behaviour;
® Balancing loop with delay: does it include self-limiting feedback behaviour.

Four emergent characteristics are properties of an entire model run

Finite: Does it have a definite end;

Asymptotic: if there is a central output variable, does it tend to a fixed value;
Repetitive: does it repeat itself;

Ergodic: does each run, if let go long enough, produce all the possible model
states;

We see the patterns in Table 31.1 as archetypical: each of them is typical for
ABMs, in the sense that they are frequently encountered, and they are also elementary,
in the sense that they are basic and emerge from simple models. The patterns are
not necessarily mutually exclusive and systems/models could show several of these
patterns, or combinations of them, across simulated time.
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Mechanisms are about what agents do to one another, while patterns are the emer-
gent results. Any or all of the mechanisms can occur in a system. Some are indis-
pensable for producing a certain pattern, but most are optional. Their precise nature
and relative strength can vary. There could be mutual influences between mecha-
nisms. Memory could lead to transition from one pattern into another, for instance
through selective reproduction of agents with certain traits. Table 31.1 summarizes
the complexity of pattern causation.

Agent-based models are intrinsically about more than one level of aggregation. In
a running model, or in a real system for that matter, there can be more than two such
levels of aggregation. A mechanism can lead to emergent results that themselves can
serve as a mechanism for higher-level aggregated patterns. For instance, a plague
organism can go through a phase of exponential growth before mechanisms start
to occur that slow down this growth. We call such a phenomenon an ‘emergent
mechanism’ to indicate that it operates not at the level of individual agents but at the
level of collections of agents.

In fact, the distinction between ‘emergent characteristic’ and ‘pattern’ can be
hard to make. ‘Pattern’ is intrinsically a recursive concept. For instance, positive or
balanced loops can be considered patterns in their own right. However, they often
occur for a time in a sequence of patterned elements that have a recognizable name
of their own. Therefore, we consider them to be emergent mechanisms that can occur
during a model run as part of its overall pattern. That is why we list them as columns
in Table 31.1.

Section “Emergent Characteristics: Examples for Feedback Loops” describes
emergent characteristics for feedbacks. Sections “Resource Use Patterns”, “Conta-
gion Patterns”, and “Output Patterns” describes the ten patterns as listed in
Table 31.1. We present these results in the following way:

Title and brief description

Iconic example(s) from the real world with a Netlogo example if available. To
illustrate the ubiquity of each pattern, we give examples from four fields: society,
biology, physics, and man-made technical constructions. We also present typical
simulation results. Note that some patterns are apparent from observing one model
run, e.g. patterns across simulated space/time. Others are apparent from graphs
created based on a model run or even across runs. Making patterns apparent is
one of the necessary skills of modellers.

Emergent Characteristics: Examples for Feedback Loops

We first give examples for feedback loops, which are two important emergent char-
acteristics. All resource use or contagion patterns involve feedbacks. In resource
use, agent behaviour feeds back into resource availability for the next time step. In
contagion, agent behaviours directly feed back into one another. Mutual feedback
loops are thus elements of all the first eight patterns of Table 31.1. These loops can
occur as patterns in their own right, show repeating waves of changes. However, they
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Mechanism
. ; - . Pattern
Direct interaction Agent declaration
: : 3 mE3 In simulation run
Indirect interaction ———p» Initial state —_— R e
External drivers Used to define Behavioral rules Simulations 3 v .p 8
simulation runs
Memory

Fig. 31.1 Mechanisms, agent declarations, and patterns

tend to occur only locally or for a while, in the context of a wider-scale pattern. Both
positive and balanced loops could result from the same model, depending on model
settings as to delay, limits, mutual feedback, and number of variables. Because these
are so simple, and occur as building blocks in the context of the eight other patterns,
we treat them as emergent mechanisms in this overview.

Positive feedback loop. This is a loop the amplitude of which grows indefinitely. The
resulting pattern has the shape of an exponential curve. It is obviously not sustainable
for ever. The mechanism is that in each time step, the current quantity N of a variable
(N > 1) gets multiplied by a factor that is proportional to N. This causes N to grow
ever faster. Examples:

e Society: disease spread in the early phases of an epidemic or pandemic (Netlogo:
epidemics). The start of hype cycles.

e Biology: population size in the absence of size-dependent mortality. In Netlogo,
the sheep population in Netlogo sheep-wolves simulation in a run without grass,
after all wolves have died out (see Fig. 31.1).

Physics: objects falling to the ground without resistance.
Engineering: two microphones circuiting by picking up and reinforcing one
another’s signal.

Balancing loop with delay. A wave pattern that continues indefinitely. A
phenomenon of this category is sometimes called ‘limits to growth’: feedback loops
that self-limit with resource availability, leading to more or less stable oscillations,
whether desired or not.

Many positive feedback loops will balance at some point when other aspects of a
simulation come in effect. As a result, positive feedback loops and balancing loops
can result from the same model, depending on model settings as to delay, limits,
mutual feedback, and number of variables.

Mechanism: a positive feedback is countered by a negative feedback, thereby
providing balance, pushing the system towards a particular equilibrium or towards a
kind of oscillation. Examples:

e Society: market cycles in which quantity produced and price fluctuate. The pork
cycle is the archetype.
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Fig. 31.2 Results from
1,000 runs with Wolf Sheep
Predation model from the
Netlogo 6.1 model library. 20000 -
Not all runs are similar, but
the pattern is that either
wolves (in blue) die out,
which results in exponential
growth of sheep (in red); or 10000 -
alternatively, if sheep die out
first, the wolves die out
afterwards

25000 -

15000 -

turtles.

duration

Fig. 31.3 Results from a
single run with Wolf Sheep
Predation model from the
Netlogo model library with
grass enabled. Not all runs
are similar: this particular
run show balancing loops
with delay, which show as
cyclical behaviour (or a
dynamic equilibrium) of
grass (green), sheep (red) 100 -
and wolves (blue)

400 -

turtles

duration

e Biology: populations that stabilize at similar birth/death rates and without net
migration. In Netlogo: wolf-sheep-grass model, when population variations are
buffered by the availability of grass for the sheep (see Figs. 31.2, 31.3).

Physics: evapotranspiration—rainfall cycles.
Engineering: thermostat of a shower.

Resource Use Patterns

Resources are quantities that agents need for survival, and may exhaust in doing
so. Agents or grid cells (‘patches’) may also generate resources. Typically, agent
motivations include behaviour directed at finding these resources. In the following
patterns, which can contain elements of those mentioned above, an additional element
is that the locations (grid cells, patches) in the model contain resources. Agents use
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Fig. 31.4 Recycling model after a tragedy of the commons has occurred. Green patches are fertile;
yellow ones are degraded; lime ones have been restored by the blue recycler agents. Bottom right
graph: the environment quickly degraded in the first 100 ticks. Top right graph: ‘Recyclers’ first
started to die, exhausted from clearing up; then ‘wastefuls’ followed, not finding any nourishment.
After 100 ticks, the environment starts to recover, but with a much lower population

these, leading to various possible patterns with a spatial component. This means the
agents do not interact with one another other than through shared resource use; the
technical term for such indirect interaction is ‘stigmergy’.

1. Tragedy of the Commons. This is a missing feedback loop between resource
users and resources that leads to resource exhaustion and then death of all resource
users. In the typical case, where resources are supposed to be shared and main-
tained by a commons, but free-riding occurs, it is frequently named ‘Tragedy
of the Commons’. Netlogo: recycling (Fig. 31.4). There are also other cases. A
calamity such as a wildfire is also characterized by a lack of feedback and by
exhaustion of resources, if not resource users. e.g. Netlogo: fire. Examples:

Society: tragedy of the commons. Climate change.

Biology: locust plague.

Physics: mineral exhaustion.

Engineering: the interventions needed to deal with strategies of software using
internet bandwidth for non-crucial processes, while the internet may break
down in times of a crisis.

2. Fixes that fail. Feedbacks are made by agents with an aim in mind that worsen
the system-level predicament they were intended to solve. Examples:

e Society: gun purchase to defend against violence.
e Biology: lemmings taking to the sea. They sacrifice themselves for the good
of the ecosystem, but that is unlikely to be their aim.
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Fig. 31.5 Results from 50,000 runs with the Traffic Basic model from the NetLogo model library,
varying deceleration and acceleration speeds, and varying the number of cars between 18 and 22.
On the left, the average car speed and on the right the standard deviation of speeds between cars,
both at time tick 20,000. Fast deceleration (late braking) is a fix that fails: it leads to traffic jams,
in particular in combination with slow acceleration. The cross-over between jammed traffic and
flowing traffic is surprisingly sharp

e Physics: unstable control of dynamical systems that are too slow or fast in
their response to sensors

e Engineering: Netlogo: traffic basic, where abrupt braking can worsen the
queueing time (Fig. 31.5).

3. Sprawl. A spatially bound process of resource depletion and renewal leads to
spatial patterns. This occurs when positive feedbacks spread slowly. Examples:

Society: urban settlement Netlogo: urban sprawl (Fig. 31.6).

Biology: growth of lichens on stones and trees. Witch circles of mushrooms.
Vegetation in arid landscapes, where roots can improve the capacity of the
soil to retain water, leading to sprawling patches.

Physics: ripples.

Engineering: spread of technical innovations.

4. Coexistence. These are situations where populations coexist that compete for
a resource, creating an ecosystem. Each population creates circumstances that
facilitates the development of another type of agent. This could result in a feed-
back loop akin to sprawl mechanisms, but caused by several types of agents
instead of one. The mutual influences need not be intentionally beneficial; the
populations could be competing. This is for instance the case in Netlogo: coop-
eration (blue and red cows). One species may drive the other to extinction, but
under some parameter settings, coexistence occurs (Fig. 31.7). Examples:
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Fig. 31.6 Snapshot of a run with the Urban Sprawl model from the NetLogo model library. During
the first phase of the simulation run, agents spread slowly from the centre, increasing the fitness
of their environment (lighter patches). Later, the environment collapses (flips to black patches) and
slowly recovers (patches become lighter and are re-colonized)

e Society: economy. Actors complement one another in creating and using
resources.

e Biology: coexistence of different types of animals that use the same resource.
Netlogo: cooperation (Fig. 31.7).
Physics: the effects that gravity has on star systems, keeping planets in orbit.
Engineering: various modes of transport. New ones typically did not supplant
but complement the existing ones.

5. Ecosystem engineering. This is the more general case of which Sprawl is a
special one. The joint activities of agents lead to differentiation of an environment
that is at first undifferentiated. So here, the ‘resource’ is not necessarily in the
patch itself, but in the emergent configuration of patches. Locations randomly
picked thus become endowed with new roles. Social animals do this, e.g. humans
or ants. Examples:

e Society: paths. Netlogo: paths (Fig. 31.8). institutions. Institutions effec-
tively constitute niches that allow certain actions and inhibit others. Informal
institutions can be considered paths in symbolic space.

Biology: beavers, ants and termites. Netlogo: termites.
Physics: star and planet formation.
Engineering: centrifuges.
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Fig. 31.7 ‘cooperative’ (red) cows that leave some grass behind quickly colonize the empty world.
‘Greedy’ (blue) cows finish the food on their patch and then some migrate, the others die out,
after which the patch recovers (light green). When the world is full, a dynamic equilibrium occurs
between the cooperative and the greedy cows. If the cows were quicker (increased stride-length),
the greedy ones would exterminate the cooperative ones with a hit-and-run strategy

Contagion Patterns

These patterns involve mutual observation and adjustment by agents, with an
important role for space, time or other observable attributes.

6. Synchronization. Agents come to synchronize their behaviour in time, leading
to temporal clustering, in other words to a system-level pulsing pattern.
Synchronous collective actions are real-world cases. Netlogo: fireflies (Fig. 31.9).
In human societies, the expectation of future events can lead to temporal
clustering, or in crowd formation. Examples:

Society: pork cycles [15]. Crowd formation. Netlogo: El Farol bar.

Biology: pulsing by fireflies, leading to clearer attraction of potential mates.
Netlogo: fireflies.

Physics: solar cycles.

Engineering: time steps in computer memory.

7. Spatial clustering. Agents orient themselves in space by observing and copying
their neighbours, leading to spatial grouping and patterned movement. This is
also a case of para-synchronization: agents copy one another’s behaviour with
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Fig. 31.8 Paths model. The agents flatten the grass (lighter shade) by walking. Repeated walking
over a patch creates a path (grey). They have walked randomly, creating random paths because they
prefer to walk where others have flattened the grass. Then they were given targets (four red houses).
They keep using their existing paths. These decay only slowly

Flashing Fireflies

1500

Number

0:.n,WJWMJ.WJf\

Time 395

Fig. 31.9 Fireflies model. The agents synchronize flashing only on the basis of individual inter-
actions, by the strategy to delay their next flash. Depending on the settings, the portion of the
population that synchronizes grows during the simulation



31 Archetypical Patterns in Agent-Based Models 327

Fig. 31.10 Birds adapting their movement only to their close neighbours, distributed at random at
the start of a run, end up in flocks

a delay. Where patches copy one another’s attributes rather than agents, this
is called diffusion. A useful property of agent-based models is that the spatial
parameters can be used to symbolize something else. This allows to visualise
abstract issues, e.g. position in some symbolic space. Examples:

Society: creating and keeping walking lanes in busy places.

Biology: path finding by ants. Netlogo: ants. Flocking by birds, herding by
mammals, schooling by fish. Netlogo: flocking (Fig. 31.10).

Physics: magnetism. Structure of crystals. density-dependent clustering of
material around stars into planets.

Engineering: nano-engineering of surfaces.

8. Attribute patterns. Agents adopt the same attributes, typically because deviants
are weeded out. This leads to something one could call ‘attribute value clustering’.
If the attribute is opinion, it is called opinion dynamics. Agents copy values in
binary or higher-order opinion space. This is a much-modelled phenomenon, for
instance in the context of voting. Examples:

Society: opinion dynamics. Netlogo: Rumor Mill (see Fig. 31.11).

Biology: mimicry, where organisms evolved to look like others so that they
can stay out of harm’s way. E.g. cuckoo eggs. Netlogo: mimicry.

Physics: in the physical world, this amounts to the same as clustering.
Engineering: mimicry of artefacts such as bottles and car clutches, so that
their usage or function becomes apparent.
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Fig. 31.11 Rumor Mill showing the spread of a rumor in a typical run. In the final system state,
everyone has heard of the rumor, but not equally frequently, which is shown in the number of times
a rumor was heard. The original sources for the rumor can be seen in the brightest areas

Output Patterns

9. Tipping point in system output. A positive feedback loop which leads to an
irreversible termination condition after which a significantly different pattern
takes over. This may involve processes such as dying or burning. In mathemat-
ical terms, this is a mechanism for bifurcation. In laymen’s terms, a causal chain
that was of little importance in the system now becomes dominant. It could be
argued that a tipping point is not a pattern, but merely a transition from one
pattern into another one. Small deviations in starting conditions may lead to
changes in these effects, causing transitions in system patterns for which it is
hard to predict whether, and at what moment in the simulation, they will occur.
Examples:

e Society: a behaviour dies out. Netlogo: altruism. Or a behaviour starts and
supplants others, as e.g. in hypes or memes for greeting.

¢ Biology: a population dies out, e.g. Cooperation (Fig. 31.7), or Wolf-sheep
(see Fig. 31.1). Or a niche is created that allows a population to settle, as in
ecosystem engineering.
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Fig. 31.12 Results from 50,000 runs with Fire model from the Netlogo model library. The fraction
of the forest that burns shows a tipping point around 59% density. The results show stochasticity—
the actual tipping point depends on the spatial distribution of trees. Below the tipping point the fire
dies out. Above the tipping point the forest burns quickly. The fire moves slower, and hence the
simulation runs take longer, around the tipping point

e Physics: a resource gets depleted. For instance, a forest could burn. In
Netlogo, check the fire model. See also Fig. 31.12, which shows the tipping
point for the fire model.

e Engineering: a buffer is depleted. See e.g. the Netlogo traffic models, that
can be stable for a wide parameter space, until the road is full and one extra
car pushes it into a traffic jam.

10. Power law distribution. A variable acquires a power law distribution of its
frequency during the model run. Typically, this is not obvious during the model
run, but clear from the distributions of output variables. Power law distributions
are caused by the laws of chance affecting the probability of a variable acquiring
certain values. Power laws across agents or patches are often observed. This
means there is an inverse relationship between the value of some variable,
and the frequency with which it occurs. This is relevant because it shows that
nothing but chance is needed to account for inequality in a distribution. Power
law distributions are found in innumerable phenomena. Examples:

e Society: wealth distribution in society. Netlogo: wealth distribution
(Fig. 31.13).
Biology: numerous frequency distribution in biology [16].
Physics: earthquake frequency versus magnitude.
Engineering: number of incoming Web links versus frequency of occurrence.
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Fig. 31.13 Results from wealth distribution. Fire model from the Netlogo model library. Already
with a very simple representation of the economy, a large lower class forms when turtles are assigned
to the lower, middle or upper class based on their wealth in relation to the maximum wealth in the
population

Conclusions and Discussion

The ability to recognize patterns in the behaviours of real-world systems is crucial
in science and in policy. Yet a systematic understanding of archetypical patterns in
complex systems is lacking. Agent-based modelling enable us to chart archetyp-
ical patterns and consider their causation by the mutual influences and interac-
tions of agents such as people, politics, molecules or animals. This article presents
ten archetypical patterns in three classes: resource use with unintended outcomes;
contagion across time, space or symbolic space; output patterns.

Our aim in compiling these patterns is to help practitioners across various scientific
fields. Humans are good at intuitively recognizing patterns, and the article builds on
that strength: the ambition is to provide the concepts to describe typical patterns. This
enables a discussion what simulation results one could expect, whether one already
built a model or not. Scientists in many disciplines, as well as policy makers, can use
them as a reference to ask themselves which of these archetypes occur in the systems
they study. The typology also is an invitation to finding variants and other patterns.
For instance, what about the causation of other fat-tailed distributions than power
laws that are observed in reality? No doubt many other extensions are possible and
indeed desirable.
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This paper can be input to developments for further standardization and promoting
good modelling practices [17]. It could be used when carrying out Pattern-Oriented
Modelling, which measures the quality of an agent-based model by how many of the
patterns from the corresponding real world system the model can produce [10].

The staggering universe of possibilities that agent-based models offer can use
more structure. We envision that scholars new to computational modelling, students,
policy makers, and first-time modellers are encouraged to start modelling equipped
with the variety of examples of mechanisms causing patterns. The typology may
train them as to what behaviour to expect, both in their own models and in those of
others.
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