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Neural Optimal Control for Constrained Visual
Servoing via Learning From Demonstration

Ravi Prakash , Member, IEEE, and Laxmidhar Behera , Senior Member, IEEE

Abstract— This paper proposes a novel optimal control scheme
for constrained image based visual servoing of a robot manipula-
tor. For a robot manipulator with an eye-on-hand configuration,
visibility constraint is an essential requirement to avoid servo
failure, while robot’s actuator limits must also be satisfied.
To ensure this, the constraints are modelled implicitly via learning
the task and defining safe regions using expert human demon-
strations via mixture of Dynamic Movement Primitives (DMPs).
The visual servoing problem is then formulated as a closed-loop
optimal control problem using these constraint model where
a desired target (possibly time-varying) is obtained by acting
upon the feedback from the real-time visual sensors. The visual
servo control loop consists of a single network adaptive critic
optimal tracking control scheme whose weights are tuned using
Lyapunov stability criteria. The stability and the performance of
the proposed control scheme is shown theoretically via Lyapunov
approach and also verified experimentally using a seven degree
of freedom (DOF) Franka Emika and six DOF Universal Robot
(UR) 10 manipulator. The approach is also demonstrated on a
use case scenarios in mock-up convenience store and warehouse
setup.

Note to Practitioners—The applications of robots in busy
warehouses, healthcare sectors and convenience store, has a
big societal impact. The scenarios in these real-world problems
often consist of a dynamic environment. Therefore, sensor-based
localization and planning, along with satisfying robot and task
constraints are needed. These naturally adds up to the pro-
gramming costs in addition to the robot platform and actuation.
However, modern robots need intuitive and easy programming
for more pervasive in a practical societal application. In our
proposed method, this sensor-based planning with environmental
constraints is modelled implicitly using the Programming by
Demonstration framework. The user needs to catch the robot
arm by his hand and teach the task at hand, and the framework
captures the task and robot constraints while generalizing to new
goals. This modelling, along with cost optimal controller, gener-
ates real-time constraint aware robot manipulation trajectories
for the demonstrated task in dynamic environments.
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I. INTRODUCTION

IN THE real world robotics applications, the robot task
space is dynamic and unstructured. Therefore visual servo

control plays an inevitable and a significant role in the real
time planning and manipulation of the robot to achieve the
desired task. Decades of research in this field has resulted
in established methods of visual servo control. They can be
categorized into position based visual servo (PBVS) [1], image
based visual servo (IBVS) [2] and a combination of both [3],
[4], [5]. A nice survey of visual servo control schemes can be
found in [6] and [7]. Robustness to visual sensors noise and
modelling errors make IBVS a popular choice [8], [9].

IBVS consists of finding control input to a robot manip-
ulator such that a set of visual features as 2D parameters
in image plane converges to the desired value of the visual
features that may be a constant in case of a fixed target object
or varying in case of moving target. The ease of implementing
classical IBVS comes with its associated disadvantages of han-
dling visual and kinematic constraints simultaneously causing
undesirable behaviours. Therefore, the problem of visual servo
control via IBVS has been investigated in the literature and
can be categorized among different approaches.

One category of approach aims to design visual features for
optimal visual servo control performances. A comprehensive
analysis of the performance of the IBVS scheme for the choice
of different visual features is shown in [10]. Some of the
notable works in this category include hybrid 2 1

2 features [11],
coordinate transformation [12], image moments [13] and fast
interest points detector [14]. Although under controlled setting
they resulted in improved robot motions, they do not guarantee
constraint satisfaction.

Another category of approach consists of path planning and
trajectory tracking for image based control while ensuring field
of view (FOV) constraints [15], [16], [17], [18], [19], [20],
[21]. On success, it generates optimized trajectories of the
camera in the robot task space with satisfied visual constraints.
However, there may not be any feasible robot tracking solution
leading to failure cases. In another category, IBVS is formu-
lated as a nonlinear optimization problem in the image plane
with different kind of optimization solutions mainly based on
numerical and convex solvers. The notable works include Lin-
ear Matrix Inequality (LMI) based convex optimization [22],
[23], Neural Network (NN) convex optimization [24], safe
numerical optimization using Barrier Function [25] and Model
Predictive Control (MPC) [26], [27], [28].
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Fig. 1. Figure shows a) modelling constraint-aware visual servo task using
expert demonstration and b) execution for novel situations using optimal
control framework.

The numerical solutions are generally not so reliable and
has stability and efficiency issue. Optimum step size needs to
be ensured to avoid failure due to large step divergence. The
convex optimization formulation allows integration of visual
and kinematic constraints which are modeled using rigorous
mathematical formulations. The solutions however assumes
local convexity assumptions and may require computationally
expensive matrix inversion to actuate the robot manipulator.
To simplify the difficulty of complex mathematical modelling
visual and kinematic constraints are modeled via Learning
from Demonstration (LfD) approach [23], [29] in a Lagrangian
based convex optimization setup.

In this paper, we formulate the IBVS as non-linear opti-
mization where we propose a complementary approach by
combining constraints modelling via LfD and Hamilton-
Jacobi-Bellman (HJB) based optimal control solution which
is a necessary and sufficient condition for global optimality
of a control solution with respect to a cost function. Ear-
lier approaches of modelling constraints using LfD employs
statistical model from human demonstrations. Although it is
an interesting way to autonomously extract the important
features of the task from multiple demonstrations, requesting
multiple demonstrations of a single task would annoy the user.
Moreover, this formulation is not robust to perturbations (e.g.
dynamic environment including time varying target object).
Instead, LfD approaches based on dynamical system known
as Dynamic Movement Primitives (DMPs) offer a particularly
interesting solution to model human demonstrations while
being robust to perturbations or dynamical changes in the
environment (e.g. time varying target object) due to its stable
attractor dynamics. This allows them to be suitable visual
servo control for both fixed and time varying image features.
They are so designed that from a single demonstration they can
model the constraint and replay the task trajectories for novel
goals. They support incremental learning approach unlike
statistical approaches and therefore the models can be further
improved on the fly. In the proposed scheme, we model the
visual servo constraints via DMPs by leveraging the user’s
sensory capabilities and the optimization using these models is
then solved using HJB formulation. The stability of the overall
closed loop system is ensured using Lyapunov stability. The
modules of modelling the task and optimal execution of visual
servo task is depicted in Fig. (1).

The novel contributions of this work is summarized next,
1) Visual and Kinematic constraint modelling using

dynamic LfD approach which requires one shot learning

Fig. 2. The figure shows the frame assignment Fb, Fe, Fc and Fo to the robot
base, the robot end-effector, the camera and the target object respectively.

form single demonstration and generalises to static as
well as moving targets.

2) HJB based optimal control solution to constrained visual
servo control with guarenteed stability.

3) Hardware validations of the proposed scheme for both
fixed and time varying target object along with compar-
ative experimental study of the efficacy of the proposed
control w.r.t similar control schemes..

The remainder of this paper is organized as
follows. In Section II, details of the system models are
presented. In Section III, visual servo control problem is
formulated. In Section IV, novel NN optimal control design
is presented along with its stability analysis. In Section V,
experimental results are presented to validate the effectiveness
of the proposed method and its superiority in performance
compared with the existing methods. The paper is concluded
in Section VI.

II. SYSTEM MODELING

Let us assign the following coordinate frames for system
modelling. Figure (2) shows the frames Fb, Fe, Fc and Fo

is attached to the robot base, the robot end effector, the
camera and the target object respectively. 2T1 represents the
homogenous transformation which expresses the coordinates
of the frame F1 in the coordinates of frame F2.

A. Object Model

An object model consists of a number of 3D feature points
whoose coordinates (o X i ,

o Yi ,
o Z i ) are defined in Fo. Object

model for a target with n features is oPi = [
o X i

oYi
o Z i 1]

⊺

i ∈ [1 n].

B. Robot Model

Typically, in a visual servo control applications, a kinematic
robot model suffices due to the slower visual outer loop with
respect to the faster inner control loop of the robot which
stabilizes the dynamics. Therefore, in this work the kinematic
model of an N independent joint actuated robot manipulator
is used which is given by bTe(θ) = f(θ), where θ is the
joint angle vector of the robot manipulator. The derivative of

Authorized licensed use limited to: TU Delft Library. Downloaded on August 09,2024 at 12:25:56 UTC from IEEE Xplore.  Restrictions apply. 
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kinematic model of the robot manipulator with respect to its
joint angle vector is the robot manipulator Jacobian (bJr (θ))

i.e. bJr (θ) =

[
bJv(θ)
bJω(θ)

]
=

df(θ)

dθ
, where, bJv(θ) and bJω(θ)

are linear and rotational components of the robot manipulator
Jacobian. The control input to the robot manipulator is the
joint velocity vector i.e.

u(t) = θ̇(t) (1)

C. Image Feature Model

For visual servo application, a camera is mounted on the
robot end-effector in eye-in-hand configuration. The camera
projected image coordinates (ui , vi ) corresponding to the
object feature points as a function of θ can be modelled
as

si (θ) =

pu i
pv i
1

 = C[I3×3|03×1]
cTe

eTb
bTo

oPi , (2)

where, C =

κu κuv u0
0 κv v0
0 0 1

 is the 3 × 3 camera matrix [30].

Finally, the image coordinate vector s is used for visual
servo control is given by

s = [(s1)
⊺ (s2)

⊺
· · · (sn)

⊺
]
⊺. (3)

D. Image Feature Velocity Model

The image coordinates vector (s) of the feature points have
a Jacobian relationship with θ at the velocity level given
by

ṡ(θ) = Js(θ)θ̇(t) = Js(θ)u(t). (4)

The Jacobian Js(s, θ) has the following form

Js(θ) =

[
κu κuv

0 κv

]
L(x, y, Z)

[
cJv(θ)
cJω(θ)

]
or,

Js(θ) =

[
κu κuv

0 κv

]
L(x, y, Z)

[
cRb(θ) 0

0 cRb(θ)

][
bJv(θ)
bJω(θ)

]
,

(5)

cRb(θ) is the rotation matrix expressing coordinates of Fb in
the coordinates of Fc and L(x, y, Z) is the image interaction
matrix [6]. The sub-matrix Li (xi , yi , Z i ) corresponding to each
feature point (xi , yi ) at a depth of Z i is given by

Li =

−
1
Z i

0
xi

Z i
xi yi −(1 + yi

2) yi

0 −
1
Z i

yi

Z i
(1 + xi

2) −xi yi −xi

,

where, the feature point coordinates [xi yi 1]
⊺ is related to

its image counterparts [pu i pv i 1]
⊺ by the camera matrix C.

E. Task and Constraints Model

In visual servo applications, robot visual and kinematic
constraints are essential requirements. Kinematic constraints
are modelled using lower and upper limits on the robot joint
positions [θmin θmax

] and joint velocities [θ̇min θ̇max
]. Visual

constraints are modelled using camera’s field of view con-
straints for a target object with n features, where [pmin

u pmax
u ]

and [pmin
v pmax

v ] are limits in horizontal and vertical
directions.

In this work, the constraints are modelled implicitly via
learning the task and defining safe regions using expert human
demonstrations or LfD approach. The expert demonstrator’s
knowledge and sensing capabilities are leveraged to model
these constraints in the visual servo control problem. An expert
demonstrator guides the robot via kinesthetic teaching towards
a general target object while ensuring kinematic and visual
constraints. Image space and joint space trajectories are
extracted from the demonstration. These trajectories are used
to train DMPs. The task as well as the constraints are
captured using the learnt shape parameters in the trained
DMPs. In this framework, each degree of freedom (n + N ) in
the demonstrated movement is modelled using the modified
motion model [31].

For the generalization of the generated image and joint
trajectories in novel situations, a single demonstrated trajectory
is not sufficient because of the changing profiles across varying
goals. Therefore, a library of many demonstrated trajectories
along with a decision making skill is needed. Given the start
and goal configuration of the particular signal in new condition
represented by the vector δ, the formulation for optimizing the
policy for trajectory generation is given by

π̄ =

Np∑
i=1

µi (δ)πi (δ)

Np∑
i=1

µ(δ)

, (6)

where, πi is the generated trajectories from DMP correspond-
ing to i th of the total of Np expert demonstration for the
new configuration δ, and µi is the design parameter. The
trajectories generated by following the policy (6) serve as
desired image (sd(θ)) and joint trajectories (θd(t), θ̇d(t)).

III. VISUAL SERVO CONTROL PROBLEM FORMULATION

In this section, the optimal visual servo control of a robot
manipulator is formulated as a non-linear optimal control
problem, and is addressed such that the image feature tracking
error given by

e(θ) = s(θ) − sd(θ) (7)

reduces to zero with time by following an optimal trajectory
obeying visual and kinematic constraints. Here, sd(t) ∈ Rn×1

is the desired image feature points trajectory. For tracking
purpose, we assume that the desired trajectory possesses the
dynamics given by

ṡd(θ) = Js(θ)θ̇d(t) = Js(θ)ud(t). (8)

Authorized licensed use limited to: TU Delft Library. Downloaded on August 09,2024 at 12:25:56 UTC from IEEE Xplore.  Restrictions apply. 
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The time derivative of the image feature tracking error is
given by

ė(θ) = ṡ(θ) − ṡd(θ)

= Js(θ)ue(t), (9)

where ue(t) = u(t) − ud(t).
Considering the above system error dynamics (9) with θ(t)

as the system states, the optimal control law is derived next.
The optimal control problem for the system (9) is to find an
optimal control ue(t) that minimizes a cost-to-go function of
state and control variables.

Then assume that there exists a continuous cost-to-go value
function V (θ(t), ue(t) for the constrained visual servo control
problem defined as

V (θ(t), ue(t) =

∫
∞

t
(e(θ)T Qe(θ) + ue(t)⊺Rue(t))dτ (10)

where Q ∈ Rn×n and R ∈ RN×N are positive definite matrices,
e(θ)T Qe(θ) is a positive semi-definite function and stands
for the state cost, ue(t)⊺Rue(t) is a positive semi-definite
function and stands for the control cost. The control policy
ue(t) is defined to be admissible with respect to a given cost
function (10), such that it stabilizes the system (9) and the
cost function (10) is finite. Let V ∗(e(θ)) be the optimal cost
function defined by

V ∗(θ(t)) = min
ue

{
V (θ(t), u∗

e(t))
}
. (11)

Let H(θ , ue, Vθ ) be the Hamiltonian function corresponding
to the cost function (10) and the admissible control input ue(t)
defined by

H(θ , ue, Vθ ) = e(θ)T Qe(θ) + ue(t)⊺Rue(t) + V ⊺
θ (θ)ė(θ)

H(θ , ue, Vθ ) = e(θ)T Qe(θ) + ue(t)⊺Rue(t)

+ V ⊺
θ (θ)Js(θ)ue(t) (12)

where Vθ (θ) =
∂V (θ)

∂θ
. The optimal control input for the

given problem is obtained by employing the stationarity
condition [32] on the Hamiltonian function and is given by
∂ H(θ ,ue,V ∗

θ )

∂ue
= 0. The optimal control policy then equals

u∗

e(t) = −
1
2

R−1J⊺
s (θ)V ∗⊺

θ (θ) (13)

And correspondingly, the optimal control input to the robot
manipulator is given by

u∗(t) = −
1
2

R−1J⊺
s (θ)V ∗⊺

θ (θ) + ud(t) (14)

The visual servo control of the robot manipulator with visual
and kinematic constraints is solved by providing the optimal
control (14) to the robot manipulator. However, the term V ∗(θ)

or V ∗

θ (θ) is generally unavailable and thus we propose a NN
based estimate to find the corresponding control input.

In the next section, the NN based optimal critic design is
proposed to realize the control input (13).

IV. NN OPTIMAL VISUAL SERVO CONTROLLER

A. NN Critic Design

Owing to the universal approximation property of NN, the
cost function (11) is estimated using a NN as follows,

V ∗(θ) = W⊺φ(θ) + ε(θ) (15)

where, W ∈ RL is the ideal neural network weight vector,
φ(·) : Rn

→ RL is a linearly independent basis vector which
satisfies φ(0) = 0, and ε(θ) is the neural network recon-
struction errors are assumed to be upper bounded according
to ∥ W ∥≤ WM and ∥ ε(θ) ∥≤ εM , respectively [32].
In addition, it will be assumed that the gradient of the
neural network reconstruction error with respect to θ is upper
bounded according to ∥

∂ε(θ)

∂θ
∥=∥ εθ (θ) ∥≤ ε′

M . Moving on,
the gradient of the NN cost function (15) is

∂V ∗(θ)

∂θ
= V ∗

θ (θ) = φ
⊺
θ (θ)W + εθ (θ) (16)

where, φθ (θ) =
∂φ(θ)

∂θ
. Now. using (16), the control (13) is

rewritten as

u∗

e(θ) = −R−1J⊺
s (θ)φ

⊺
θ (θ)W/2 − R−1J⊺

s (θ)εθ (θ)/2 (17)

A NN critic is designed next to approximate the optimal cost
function:

V̂ ∗(θ) = Ŵ⊺φ(θ) (18)

where Ŵ is the estimate of ideal weight W. Therefore, the
NN estimate for the optimal control (17) is given by

û∗

e(θ) = −R−1J⊺
s (θ)φ

⊺
θ (θ)Ŵ/2 (19)

Modified system error dynamics may be obtained by sub-
stituting (19) into the nonlinear system (9) reveals

ė(θ) = −Js(θ)R−1J⊺
s (θ)φ

⊺
θ (θ)Ŵ/2 (20)

Noting the cost function and control law in terms of NN weight
vector, the Hamiltonian is expressed as a function of θ and W
as,

H(θ , W) = e(θ)⊺Qe(θ) −
1
4

W⊺A(θ)W + eε (21)

where A(θ) = φθ (θ)Js(θ)R−1J⊺
s (θ)φ

⊺
θ (θ) and the last term

representing residual error of neural network expression is
given by

eε = −
1
2
ε

⊺
θ (θ)Js(θ)R−1J⊺

s (θ)φ
⊺
θ (θ)W

−
1
4
ε

⊺
θ (θ)Js(θ)R−1J⊺

s (θ)εθ (θ) (22)

Corresponding to the estimated NN weight vector, the
estimated hamiltonian may be obtained as

Ĥ(θ , Ŵ) = e(θ)⊺Qe(θ) −
1
4

Ŵ⊺A(θ)Ŵ (23)

Let us define Hamiltonian error using (21) and (23) as

eH = Ĥ(θ , Ŵ) − H(θ , W)

= −
1
4

W̃⊺A(θ)W̃ +
1
2

W̃⊺A(θ)W − eε (24)
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Fig. 3. Optimal visual servo control scheme.

where, W̃ = W − Ŵ is the error between the target and
estimated weight vectors of the neural network.

Next, we train the critic neural network such that the
hamiltonian error function E =

1
2 e2

H is minimised. The update
law for tuning the NN weights is found by

˙̂W = −αceH
∂eH

∂Ŵ
+

1
2
αeφθ (θ)Js(θ)R−1J⊺

s (θ)e (25)

= −αc

(
−

1
4

W̃⊺A(θ)W̃ +
1
2

W̃⊺A(θ)W − eε

)
×

(
−

1
2

A(θ)W +
1
2

A(θ)W̃
)

+
1
2
αeφθ (θ)Js(θ)R−1J⊺

s (θ)e (26)

The update law consists of two components. The first com-
ponent (25) minimizes the error function E =

1
2 e2

H and the
second component ensures the system error to be bounded
while the critic the optimal cost function. The learning param-
eters αc > 0 is the critic learning rate and αe > 0 is the gain
of the stabilizing term.

B. Stability Analysis

We present following lemmas and assumption needed in the
stability analysis of the controller.

Lemma 1: For the system dynamics represented by (9), with
cost function (10), let J (e) =

1
2 e⊺(θ)e(θ) be a continuously

differentiable Lyapunov function candidate satisfying

J̇ (e) = e⊺(θ)ė∗(θ) < 0, (27)

where ė∗(θ) = Js(θ)u∗
e(t). Then, there exists a positive definite

matrix, M of appropriate dimension ensuring,

e⊺(θ)ė∗(θ) = −e⊺(θ)Me(θ) ≤ −αmin(M)∥e(θ)∥2 (28)
Proof: Please refer to Appendix A. □

Assumption 1: The Jacobian Js(θ) is bounded as ∥Js(θ)∥ ≤

αJs . The terms φθ (θ), εθ (θ), ė∗, A(θ), M are bounded as∥∥φθ (θ)
∥∥ ≤ αφ , ∥εθ (θ)∥ ≤ αε,

∥∥ė∗
∥∥ ≤ αė∗ , ∥A(θ)∥ ≤

αA, ∥M∥ ≤ αM where αJs , αφ, αε, αė∗ , αA, αM are positive
constants. Note: These are standard assumptions in NN based
control of robot manipulators [33], [34].

Theorem 1: For the task of optimal constrained robot
manipulator visual servo control using the proposed control
shown in Fig. (3)) with NN control law given by (19) and
NN weight update law as (26), the error state vector of the
closed-loop system and the critic weight estimation error are
all uniformly ultimately bounded (UUB). The approximate

controller û∗
e(θ) converges to a neighbourhood of the optimal

feedback controller u∗
e(θ) with a finite bound.

Proof: Please refer to Appendix B. The theoretical
maximum bounds on the error state vector of the closed-loop
system and the critic weight error vector can be estimated.
In the current case study of proposed control of 7 DOF robot
manipulator, the calculation of above mentioned bounds is also
summarized in the Appendix. □

V. RESULTS AND DISCUSSION

In this section, the effectiveness of the proposed visual servo
control scheme is demonstrated using real time experiments
on a real 7 DOF Franka Emika and a 6 DOF UR10 robot
manipulator in mock-up convenience and warehouse setups.
Video of the experiments are submitted as supplementary files.
Also available online.1

A. Experimental Setup

The experiments are conducted for constrained visual ser-
voing for a robot manipulator in mock-up convenience store
and warehousing applications.

1) Mock-Up Convenience Store: A mock-up convenience
store is setup at the TU Delft Robotics Institute along with
industry partners.2 This store is equipped with a Franka Emika
robot manipulator mounted with a Intel Realsense RGBD
camera in eye-on-hand configuration. The store stocks a range
of everyday items such as coffee, groceries, snack foods,
confectionery, soft drinks, and replica of fruits. The fruits are
stored in crates on a wooden box and other it on ems are
stored in the racks. The robot is expected to fetch different
items and help in delivery automation. We use this setup to test
our proposed visual servo control scheme. In our experiments,
the robot needs to use visual servo scheme to reach desired
item for a pre-grasp configuration. Each item is attached with
an unique apriltag marker ID of appropriate sizes depending
on the size of the item e.g. a marker on red pepper is of
dimension 2.5 × 2.5 cm while a marker on cracker box is of
dimension 6 × 6 cm for correct pre-grasp configuration. The
open-source ROS package apriltag-ros3 is used for tracking
the realtime apriltag marker for feature extraction. The input
to the algorithm is the desired marker ID and its reference
image (desired visual features sd ) corresponding to an item
to be grasped. The robot outputs the optimal joint velocity
to reach to the target pre-grasp pose only by using real-time
sensory feedback from the markers. Given a list of marker IDs
and its reference image, the robot can sequentially servo to the
pre-grasp configuration to each item. Fig. (4) shows the setup
of the experimental validations in a mock-up convenience store
setup. Fig. (4)(a-d) shows the visual servo experiment setup
for reaching different fruits (attached with unique apriltag
markers) placed in the crates. Fig. (4)(e-h) shows the visual
servo experiment setup for reaching different items placed on
the storage racks.

1https://youtu.be/R93W94G4cnY
2https://icai.ai/airlab-delft/
3http://wiki.ros.org/apriltag_ros
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Fig. 4. Figure shows the experimental setup for validating the proposed visual servo control in a mock-up convenience store. (a,e) Robot scans the current
visual features, (b,f) shows the current camera view, (c,g) robot reaches target pre-grasp pose and (d,h) shows the target camera view.

Fig. 5. Figure shows the experimental setup for validating the proposed visual servo control for tracking an item on moving conveyor belt. (a) The robot
waits for the target object to come in its visual (b) the targets enter the visual field and current visual features are detected (c) robot tracks the moving item
in a pre-grasp pose and (d) shows the target camera view while robot is in motion.

2) Warehousing Application: The task of item sorting in
a dynamic warehouse environment, e.g., on a conveyor belt,
requires time-critical movements of the robot to grasp the
moving items and sort them as per their category. The grasp
the moving item, a stable view (target locking) with respect
to the gripper is critical. A task of item sorting on a moving
conveyor setup to validate the efficacy of the proposed visual
servo control for tracking time varying target visual features
sd(t)). The setup consists of a conveyor belt transporting
different items with unique markers, a 6 DOF UR 10 robot
arm mounted with eye-on-hand Intel Realsense RGBD camera.
Fig. (5) shows the setup of the experimental validations in for
tracking an item in pre-grasp pose on a moving conveyor belt.

B. Modelling Kinematic and Visual Constraints: LfD

The kinesthetic demonstrations are given to the robot in
gravity compensation mode by an expert human demonstrator
for the task of visual servoing. There are a total of 6 demon-
strations for different start and end configurations of the robot
and the target object capturing the kinematic and visual space
sufficiently. These demonstrations are used to train the DMP
model for each degree of freedom corresponding to kinematic
and visual trajectories. Samples from the demonstration and
modeled trajectory using DMP model in [31] are shown in
Fig. (6) for kinematic and visual degree of freedom. The figure
also show how the individual DMPs generalize to a new traget
object location while keeping the same target image. For a
new/undemonstrated target object and its corresponding target
image with visual features, desired visual (sd(t)) and kinematic

(θ(t), θ̇(t)) trajectories are generated from the mixture of DMP
models using the policy in eq. (6).

C. NN Setup

The critic NN is constructed using a radial basis function
network (RBFN) with single hidden layer containing 10 nodes
and the output is linear in terms of NN weights (Ŵ). The
j th radial basis activation function in the hidden layer is

given by σc( j) = 1 − exp
−

∥x−c j∥
2

2ρ2
c ( j) , where x , c j and ρc( j)

are the input vector, center and width of the j th activation
function respectively. The NN weights (Ŵ) is updated using
the update rule (26) derived from the Lyapunov stability.
The input to this network are the terms from the expan-

sion of the polynomial
∑2

β=0

( ∑2n
i=1 ei

)β

. In our application

4 feature points from corners of the apriltag marker sets
the number of n = 4. The input layer is thus given as
[1, e1, e2, · · · e8, e2

1, e2
2, · · · e2

8, e1e2, e1e3, · · · e7e8]
⊺

∈ R81. The
centers c j of the activation functions are chosen as c1 ∈ R81

where c is chosen uniformly from a span of [−0.08, 0.08]

and the width of the radial basis functions ρc( j) were chosen
uniformly from a span of [0.05, 1.05] during numerous real-
time responses to achieve optimal performance. The values
of the critic NN weight vector Ŵ ∈ R10 are intialized with
each element to small random vector between −0.1 and 0.1.
Critic learning rate αc and adjustable rate of the additional
stabilizing term αe are tuning hyperparameters of the NN
controller. The values of these parameters are chosen from
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Fig. 6. Figure shows the modelling of the visual servo task to encode kinematic and visual constraints via LfD. The DMP modelling of demonstrated expert
trajectory corresponding to each visual (top 2 rows) and kinematic (below 4 rows) degree of freedom is shown. — shows the human demonstrated kinematic
and visual trajectory for the visual servo task which is used to train the corresponding DMP model and — represents the generated trajectories using learnt
DMP models for varying goal parameters (the target object pose is changed but the reference feature image of the target object is the same). It is to be noted
that the kinematic and visual trajectories retain their demonstrated shape profiles while generalizing to new goals.
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a sensitivity analysis of the learning rate for the controller,
also called a grid search. This can help to both highlight an
order of magnitude where good learning rates may reside for
satisfactory task performance.

D. Experiments in Mock-Up Convenience Store: Constant
Visual Features sd

Real-time experiments are carried out to test the perfor-
mance of the proposed optimal visual servo control of a
robot manipulator. The experiments is setup as shown in
Fig. 4. For a given marker ID and its reference image (visual
feature sd), the objective is to actuate the robot manipulator
using optimal joint velocities to the individual robot joints
such that the current image features (s) reaches the desired
image features (sd ) in the vision space. Open-source ROS
package is used to detect the four image feature points. The
experimental results generated from a typical run using the
proposed control is shown in the Fig (7)(a-c). Fig 7(a) shows
the feature trajectory generated using the proposed scheme
for the setup shown in Fig. (1))(a-d). Fig (7(b)) shows the
convergence of feature error over time and the corresponding
control velocity input to the robot is shown in Fig (7(c)).
The controller gains diag(Q) and diag(R) in Eq. 19 are
tuned to diag(Q) = [105 105 105 105 105 105 105

] and
diag(R) = [2.5 2.5 2.5 2.5 5 5 5] for a time domain
specification of convergence time ∼ 8s. The difference in
the order of magnitude of weighting matrices Q and R
accomodates unit normalization of individual signals (error
pixels and joint velocity control input). The whole essence of
tuning the controller gain parameters is to achieve a motion
task specifications at hand. The important time domain speci-
fications of a motion task is its error convergence time while
ensuring actuator limits. The critic learning rate αc = 2 and
the stabilizing gain αe = 0.1.

Baselines: The efficacy of the proposed visual servo control
in terms of its cost optimization are demonstrated via a
comparative study against contemporary techniques available
in the literature. The proposed controller is compared against
three other baselines listed below

• SoA1 [23]: In this approach, the visual trajectories are
modeled using statistical LfD approach via multiple
human demonstrations to find a safe camera trajectories.
This motion is back projected to the joint space using
weighted Jacobian based instantaneous optimization for
robot control.

• SoA2 [25]: This approach uses uses a safe transformation
of visual feature dynamics into state constraints to find
safe camera trajectories. The camera trajectories are then
converted to robot joint speed using robot Jacobian based
local optimization.

• SoA3 [24]: This approach uses a NN based convex
optimization to minimize a cost function of feature error
and joint velocity subjected to constraints using Karush–
Kuhn–Tucker based convex solution.

• Proposed: Our approach uses dynamical LfD approach to
model visual and kinematic constraints and employ a NN
optimal control by solving HJB equations.

These state-of-the-art visual servo controllers are employed
to run on the same setup shown in Fig. 4(a-d). The feature
trajectory, error convergence and corresponding control veloc-
ity input to the robot for SoA1, SoA2 and SoA3 are shown
in Fig. 7(d,e,f), Fig. 7(g,h,i) and Fig. 7(j,k,l) respectively.
The controller parameters in all of them were tuned to attain
similar motion task specifications (convergence, accuracy) for
comparison.

From the qualitative analysis of the results in Fig. (7),
it is observed that the proposed controller results in smoother
feature and control trajectory profiles than its counterparts
for the same motion specifications. The proposed approach
and SoA1 both employs LfD modelling for constraints and
optimization of a cost function to obtain velocity control
input to the robot. SoA1 uses statistical method of LfD to
generate desired kinematic and visual trajectories from a single
learnt model, whereas in our proposed approach we use a
mixture of model policy (6) which generalizes well for a
new goal position. The optimization uses instantaneous local
optimization and the solution needs matrix inversion which is
computationally expensive. The SoA2 and SoA3 uses rigorous
mathematical modeling of constraint dynamics by projecting
the motion into safe region. SoA2 uses Jacobian based local
inverse solution which might result in infeasible motion due to
robot singularity and is computationally expensive. SoA3 uses
local convex optimization solution which forces the input to
a manipulator to comply with the constraints which results
in non-smooth trajectory profiles in comparision to SoA1
and the proposed method. However, this has the advantage
of computational efficiency since it does not require matrix
inversions in comparison to SoA1.

E. Experiments in Warehousing Applications: Time Varying
Visual Features sd(t)

The application of the proposed optimal visual servo control
of a robot manipulator for time varying visual feature trajec-
tory is very easily extended due to formulation in this paper.
The performance of the proposed scheme is validated on a
real experimental setup as shown in Fig. 5. The objective is to
actuate the robot manipulator using optimal joint velocities
to the individual robot joints such that the current image
features (s) tracks a desired image features (sd(t)) in the vision
space from any given start pose. The realtime experimental
results generated from a typical run using the proposed control
is shown in Fig (8. Fig (8(a)) shows the feature trajectory
generated using the proposed scheme for the setup shown in
Task (2) (refer Fig. (1)). Fig (8(b)) shows the convergence of
feature error over time and the corresponding control velocity
input to the robot is shown in Fig (8(c)). The controller gains
were tuned as mentioned in the previous case. The extension
of servo schemes in SoA1, SoA2 and SoA3 for tracking a time
varying visual features are not studied in their evaluations and
are not straightforward from their control solutions.

F. Quantitative Test Comparison

The performance of the IBVS using the proposed optimal
control is quantified against the state-of-the-art methods SoA1
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Fig. 7. Figure shows the profiles of feature trajectory, RMS feature error and optimal control velocity input to the Franka Panda robot manipulator for the
task of visual servo as per experimental setup in Fig. 1(a-d). • and • demotes the start and end of the trajectories respectively. The samples from experiments
are shown in the video link [35].

Fig. 8. Figure shows the profiles of feature trajectory, RMS feature error and optimal control velocity input to the Franka Panda robot manipulator for the
task of visual servo as per experimental setup in Fig. 5. • and • demotes the start and end of the trajectories respectively. The samples from experiments are
shown in the video link [35].

SoA2 and SoA3. A set of test pairs of start and target visual
features in different setups of the mock-up convenience store
are generated. The the test items like fruits are placed in more
horizontal and inclined plane while the racks supports items in
vertical plane. Moreover, different sized objects are attached
with different sized markers (2.5 × 2.5cm − 7 × 7cm). These
generates test sets with variance in pose, size and distance.
The four control schemes for image based visual servoing

are then tested and compared. The comparison is done on
a performance metric Average Normalised Trajectory Cost
(ANTC), Integral of Time Absolute Chattering Quantifier
(ITACQ) for control input to real robot and Computational
Complexity (CC).

1) ANTC: The ANTC is defined as average normalised
trajectory cost over all trajectories. The normalized cost for
i th trajectory is given by Ci = C/N , where N is the
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TABLE I
COMPARATIVE STUDY OF THE PROPOSED VISUAL SERVO CONTROL WITH THE STATE-OF-THE-ART CONTROLLERS

number of total time instances until the error converges to
a threshold in case of end pose regulation and total time of
execution in case of trajectory tracking. Hence the average
normalized trajectory cost over all trajectory is given by∑Nt

i Vi

Nt
, where Nt is total number of trajectories. Now we

define the ANTC metric corresponding to trajectory cost
C = e(t)⊺e(t) + u(t)⊺u(t) + u̇(t)⊺u̇(t). This metric is a mea-
sure of accuracy and optimal effort with smooth trajectories.
To ensure fairness in comparison the following methodology
was adopted. First all the algorithms are run for the same prob-
lem setup using best selection of controller gain parameters
until satisfactory task error performance is achieved (e.g. the
RMS regulation error or tracking error converges below 10−3).
Then the controller gain parameter of each of the controller
is tweaked to match the same time domain convergence while
ensuring that the maximum control limits of the individual
joints is not violated in all the cases. So, now for the same
time domain task performance, both the control methods are
compared on a same metric whose physical significance is that
how much control effort is invested for the same accuracy
of the task and also how smooth are the trajectory profiles.
The smaller value of these metrics would imply smooth and
optimal control for the same robot motion tasks. It would also
ensure optimal actuator torque input in the secondary/low level
servo control loop for the same task performance in the real
world applications. For experimentation, 25 pairs of start and
target images were taken for the mock-up convenience store
setup. For each pair, the tests were run 10 times in order to
find the mean (µ) and standard deviation (σ ) of ANTC. The
results of the study is reported in Table I.

2) ITACQ: It is given by Ii = ν
∑Nu

i=1 |ũi × t |, where ũ is
the amplitude of deviation from the mean of the input control,
ν is chattering frequency of input control, Nu is the number
of sampling instants. This quantifier is justified because we
consider the magnitude and frequency along with time instant
which are primarily the most basis for chattering phenomenon.
Average ITACQ (AITACQ) of control input for all joints can

be calculated by
∑N j

i Ii

N j
, where N j is total number of joints.

The lesser the ITACQ, the lesser is the stresses on the joint
actuators and more is the longevity of the robotic hardware.

3) Computational Complexity (CC): The computational
complexity of the control solutions of all the four schemes
are calculated for comparison. It consists of algorithmic and
runtime complexities. Algorithmic complexity is a measure

of number of flops of operation needed to compute control
solution per control loop, and the runtime complexity measures
the actual time elasped on compute platform of the robot for
the same. The multiplication of two matrices, one with the
dimensions of l1 × l2 and the other with the dimensions of
l2×l3, requires l1l3(2l2−1) flops of operations. The summation
of two matrices with the dimensions of l1×l2 requires l1l2 flops
of operations. The inversion of a square matrix with the
dimensions of l1 × l1 requires l3 flops of operations [36].
For our current study of visual servo control using 7 DOF
robot manipulator i.e. N = 7 and image features n = 4, the
total number of flops for operation in each control solutions is
tabulated in Table I. The corresponding runtime on a computer
with 11th Gen Intel® CoreTM i9-11900H @ 2.50GHz ×

16 processor is also shown.
The comparison has been arranged as per their class of

optimization and methodology of solution along with per-
formance metrics. It also shows qualitative and quantitative
performances. In essence the performance of proposed scheme
based on LfD modelling and optimal control theory involving
solution of HJB equation performs better than other servo
schemes. The study reflects that the expert demonstration not
only allows easy modelling of the constraints but also results
in smoother feature trajectories and the non-inversion based
methods are computationally efficient. However, owing to the
usage of NN, the computational cost of the proposed method
is more than those without using NN. Because in the NN
based methods, we often need to have many neurons to ensure
the approximation accuracy and whoose weights are computed
in every iteration. The proposed optimal visual servo control
accommodates easy and better constraint modelling which is
robust to perturbations. And the solution is inversion free, opti-
mal and comparably efficient for real-time implementations.

G. Effect of Environmental Conditions

The real-world environment in which a visually controlled
robot is employed can have varying levels of illumination.
Experiments are conducted to find the influence of such
variations on the performance of the proposed visual servo
control in a mockup convenience store at TU Delft robotics
institute. In this study, three different illumination conditions
based on luminance range measured by a lightmeter are used.
The illumination conditions consists of low (20 - 75 lux),
good (150-250 lux), and bright (350-500 lux) ambient lighting.
The detection of the target objects of varying sizes is realized
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TABLE II
ROBOT CONTROL PERFORMANCE UNDER
VARYING ENVIRONMENTAL CONDITIONS

through markers of appropriate sizes attached to them i.e.,
smaller marker on smaller object and bigger marker on bigger
object. The varying illumination in the environment affects the
detection rate of these markers. In addition, the detection of
the markers are also dependent on its distance from the camera
sensor. For a constant illumination, the detection rate of the
marker decreases for an increasing camera distance. Therefore,
an optimal/minimum size of a marker is determined based
on consistent successful detection from a maximum distance
in the manipulation workspace (i.e., 150 cm in our case).
The minimum size of the marker also limits the minimum
size of the objects that can be used in an environment. Once
the size of the marker is fixed, the effects of the varying
illumination on the robot control performance is studied. It is
observed that the average detection rate drops in low and bright
illumination resulting in some blind frames. In such frame
stamps, a linear prediction for the value of the marker pixels
are obtained based previous two previous measurements to
ensure real time control execution loop. The robot is found
to move with increased velocity during small intervals with
slight shaky/oscillatory behaviour. This can be attributed to the
sudden/temporary vision loss due to varying illuminations. The
robot performance is quantified through the two parameters
ANTC and ITACQ defined earlier. The experimental results
from 15 runs in each illumination condition is analyzed and
the outcome is tabulated in Table II. It is observed that the
mean ANTC increases (27%) due to lesser detection rates in
the low illumination which gives rise to non-optimal robot
behaviour. In the bright illumination case, the detection is
slightly better than that in the low illumination, however due to
the reflection/shining of the markers the measurement is noisy
resulting in increase of mean ITACQ (38%) corresponding to
oscillations/non-smooth behaviour.

VI. CONCLUSION

In conclusion, this paper presents a novel method for visual
servoing based on optimal control formulation, replacing the
cumbersome mathematical modeling of visual and kinematic
constraints with a dynamical system-based LfD approach.
This approach offers several advantages, including robustness
against perturbations, a single demonstration model, and the
ability to improve the framework on the run. The visual ser-
voing problem was then formulated as a closed-loop optimal
control problem and solved using HJB solution, resulting
in cost-optimal trajectory profiles without matrix inversion.
The experimental evaluations show the efficacy of the pro-
posed scheme compared to existing state-of-the-art schemes.
However, the proposed visual servo control scheme assumes
that visual features are extracted robustly, which limits its

application scenario. Future work may include incorporating
obstacle avoidance based constrained optimal visual servo
control and robustness against measurement errors. Overall,
this work focuses on developing an efficient way of modeling
constraints through LfD approach and generating smoother
robot trajectories using optimal control formulation.

APPENDIX A
PROOF OF LEMMA 1

Proof: The optimal control law must ensure the closed-
loop system is asymptotically stable when the dynamics are
known. Therefore, the closed loop system (9) can be shown to
be bounded by a function of the system state after application
of optimal control law (13). Thus, it can be assumed that∥∥ė∗(θ)

∥∥ ≤ η∥e(θ)∥ with η > 0, (29)

which results in ∥∥e⊺(θ)ė∗(θ)
∥∥ ≤ η∥e(θ)∥2 (30)

Therefore combining (27) with the fact that

λmin(M)∥e(θ)∥2
≤ e⊺(θ)Me(θ) ≤ λmax (M)∥e(θ)∥2,

implies Lemma 1. □

APPENDIX B
PROOF OF THEOREM 1

Proof: Consider the Lyapunov candidate,

L(e(θ), W̃) =
αs

2αc
e⊺(θ)e(θ) +

1
2αc

W̃⊺W̃ (31)

where e(θ) is the visual features error vector, W̃ is the NN
critic weight estimation error vector. The time derivative of
the Lyapunov candidate function is given by

L̇(e(θ), W̃) =
αs

αc
e⊺(θ)ė(θ) +

1
αc

W̃⊺ ˙̃W (32)

Observing that, ˙̃W = −
˙̂W and using (25),

L̇ =
αs

αc
e⊺(θ)ė(θ) + W̃⊺

(
−

1
4

W̃⊺A(θ)W̃ +
1
2

W̃⊺A(θ)W

− eε

)(
−

1
2

A(θ)W +
1
2

A(θ)W̃
)

+
αe

αc
φθ (θ)Js(θ)R−1J⊺

s (θ)e(θ) (33)

Noticing (20) and expression of A(θ) the following equality
can be deduced

−
1
2

A(θ)W +
1
2

A(θ)W̃ = φθ (θ)ė(θ) (34)

And then,

L̇ =
αs

αc
e⊺(θ)ė(θ) −

(
W̃⊺φθ (θ)ė(θ) −

1
4

W̃⊺A(θ)W̃ + eε

)
× W̃⊺φθ (θ)ė(θ) −

αs

2αc
W̃⊺φθ (θ)Js(θ)R−1J⊺

s (θ)e(θ)

(35)
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By combining the control law given in (17) and (19), we obtain

u∗

e(θ) − û∗

e(θ) = −
1
2

R−1J⊺
s (θ)(φ

⊺
θ (θ)W̃ + εθ (θ)) (36)

Observing ė∗(θ) = Js(θ)u∗
e(θ) and ė(θ) = Js(θ )̂u∗

e(θ) and the
relation in (36), we obtain the relationship between ė∗(θ) and
ṡ as:

ė∗(θ) − ė(θ) = Js(θ)(u∗

e(θ)) − û∗

e(θ)

= −
1
2

Js(θ)R−1J⊺
s (θ)(φ

⊺
θ (θ))W̃ + εθ (θ))

ė(θ) = ė∗(θ) +
1
2

Js(θ)R−1J⊺
s (θ)φ

⊺
θ (θ))W̃

+
1
2

Js(θ)R−1J⊺
s (θ)εθ (θ) (37)

Using (37) in (35) results in,

L̇ = −

(
W̃⊺φθ (θ)ė∗(θ) +

1
4

W̃⊺A(θ)W̃

+
1
2

W̃⊺φθ (θ)Js(θ)R−1J⊺
s (θ)εθ (θ) + eε

)
×

(
W̃⊺φθ (θ)ė∗(θ) +

1
2

W̃⊺A(θ)W̃ +
1
2

W̃⊺φθ (θ)Js(θ)

× R−1J⊺
s (θ)εθ (θ)

)
−

αs

2αc
W̃⊺φθ (θ)R−1J⊺

s (θ)

× e(θ) +
αs

αc
e⊺(θ)ė(θ)

L̇ = −(W̃⊺φθ (θ)ė∗(θ))2

−
1
2

W̃⊺φθ (θ)ė∗(θ)W̃⊺A(θ)W̃

−
1
2

W̃⊺φθ (θ)ė∗(θ)W̃⊺φθ (θ)Js(θ)R−1J⊺
s (θ)εθ (θ)

−
1
4

W̃⊺A(θ)W̃W̃⊺φθ (θ)ė∗(θ) −
1
8
(W̃⊺A(θ)W̃)2

−
1
2

W̃⊺A(θ)W̃W̃⊺φθ (θ)Js(θ)R−1J⊺
s (θ)εθ (θ)

−
1
2

W̃⊺φθ (θ)Js(θ)R−1J⊺
s (θ)εθ (θ)W̃⊺φθ (θ)ė∗(θ)

−
1
4

W̃⊺φθ (θ)Js(θ)R−1J⊺
s (θ)εθ (θ)W̃⊺A(θ)W̃

−
1
4
(W̃⊺φθ (θ)Js(θ)R−1J⊺

s (θ)εθ (θ))2

− eεW̃⊺φθ (θ)ė∗(θ) −
1
2

eεW̃⊺A(θ)W̃

−
1
2

eεW̃⊺φθ (θ)Js(θ)R−1J⊺
s (θ)εθ (θ)

−
αs

2αc
W̃⊺φθ (θ)R−1J⊺

s (θ)e(θ) +
αs

αc
e⊺(θ)ė(θ) (38)

Next, completing the squares (ab ≤ 1/2(a2
+ b2) or

−ab ≤ 1/2(a2
+ b2)) with respect to W̃⊺A(θ)W̃ in

terms with cubic occurrence of W̃ and W̃⊺φθ (θ)ė∗(θ),
W̃⊺φθ (θ)Js(θ)R−1J⊺

s (θ)εθ (θ) with single occurrence of W̃
and taking upper bounds as per Assumption 1 results in,

L̇ < −α2
φα2

ė∗

∥∥W̃
∥∥2

+
1

16
α2

A
∥∥W̃

∥∥4
+ α2

φα2
ė∗

×
∥∥W̃

∥∥2
+

1
2
αAαė∗αε

∥∥W̃
∥∥2

+
1

32
α2

A
∥∥W̃

∥∥4
+

1
2
α2

φα2
ė∗

×
∥∥W̃

∥∥2
−

1
8
α2

A
∥∥W̃

∥∥4
+

1
64

α2
A
∥∥W̃

∥∥4
+ 4α2

φα4
Js

∥∥R−1
∥∥

× αε

∥∥W̃
∥∥2

+
1
2
αAαė∗αε

∥∥W̃
∥∥2

+
1

128
α2

A
∥∥W̃

∥∥4
+ 2α2

φα4
Js

×
∥∥R−1

∥∥αε

∥∥W̃
∥∥2

−
1
4
α2

φα4
Js

∥∥R−1
∥∥αε

∥∥W̃
∥∥2

+
1
2
α2

φα2
ė∗

×
∥∥W̃

∥∥2
+

1
2
α2

ε +
1
2
αεαA

∥∥W̃
∥∥2

+
1
4
α2

φα4
Js

∥∥R−1
∥∥αε

×
∥∥W̃

∥∥2
+

1
4
α2

ε −
αs

2αc
W̃⊺φθ (θ)R−1J⊺

s (θ)e(θ)

+
αs

αc
e⊺(θ)ė(θ)

L̇ < −α1
∥∥W̃

∥∥4
+ α2

∥∥W̃
∥∥2

+ α2
3

−
αs

2αc
W̃⊺φθ (θ)R−1J⊺

s (θ)e(θ) +
αs

αc
e⊺(θ)ė(θ) (39)

where α1, α2, α3 are positive constants given by,

α1 =
5

128
α2

A

α2 =
1
2
α2

φα2
ė∗ + αAαė∗αε + 6α2

φα4
Js

∥∥R−1
∥∥αε +

1
2
αεαA

α3 =

√
3

2
αε

Now using the expression (37) in (39) results in

L̇ < −α1
∥∥W̃

∥∥4
+ α2

∥∥W̃
∥∥2

+ α2
3

−
αs

2αc
W̃⊺φθ (θ)R−1J⊺

s (θ)e(θ) +
αs

αc
e⊺(θ)ė(θ)∗

+
αs

2αc
e⊺(θ)Js(θ)R−1J⊺

s (θ)φ
⊺
θ (θ))W̃

+
αs

2αc
e⊺(θ)Js(θ)R−1J⊺

s (θ)εθ (θ)

< −α1
∥∥W̃

∥∥4
+ α2

∥∥W̃
∥∥2

+ α2
3

+
αs

αc
e⊺(θ)ė∗(θ)

+
αs

2αc
e⊺(θ)Js(θ)R−1J⊺

s (θ)εθ (θ) (40)

Now substituting ė∗(θ) = Js(θ)u∗
e(θ) in (40)

L̇ < −α1
∥∥W̃

∥∥4
+ α2

∥∥W̃
∥∥2

+ α2
3

+
αs

αc
e⊺(θ)ė∗(θ)

+
αs

2αc
e⊺(θ)Js(θ)R−1J⊺

s (θ)εθ (θ) (41)

Observing Assumption 1 and Lemma 1 we get

L̇ < −α1
∥∥W̃

∥∥4
+ α2

∥∥W̃
∥∥2

+ α2
3

−
αs

αc
αmin(M)∥e(θ)∥2

+
αs

2αc
∥e(θ)∥α2

Js

∥∥R−1
∥∥αε (42)

And on further arrangements in (42) results in

L̇ < −α1

(∥∥W̃
∥∥2

−
α2

2α1

)2

+
α2

2

4α1
+ α2

3

−
αs

αc
αmin(M)

(
∥e(θ)∥ −

α2
Js

∥∥R−1
∥∥αε

4αmin(M)

)2
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+
αsα

4
Js

∥∥R−1
∥∥2

α2
ε

16αcαmin(M)

< −α1

(∥∥W̃
∥∥2

−
α2

2α1

)2

+ α4

−
αs

αc
αmin(M)

(
∥e(θ)∥ − α5

)2

(43)

where

α4 =
α2

2

4α1
+ α2

3 +
αsα

4
Js

∥∥R−1
∥∥2

α2
ε

16αcαmin(M)

α5 =
α2

Js

∥∥R−1
∥∥αε

4αmin(M)

Therefore from (43), L̇(e(θ), W̃) < 0 can be shown, provided
any one of the following inequalities

∥e(θ)∥ > α5 +

√
αcα4

αsαmin(M)
≜ αJs , (44)

∥∥W̃
∥∥ >

√
α2

2α1
+

√
α4

α1
≜ αW̃ (45)

holds, and therefore according to the standard Lyapunov
extension theorem, it can be concluded that he error state
vector of the closed-loop system consisting of visual feature
error and the critic weight error are all UUB. According to
(45), note that

∥∥W̃
∥∥ < αW̃. Furthermore, considering (36) and

Assumption 1, it is observed that the approximate controller
û∗

e(θ) given by (19) converges to a neighbourhood of the
optimal feedback controller u∗

e(θ) with a finite bound as,∥∥u∗
e(θ) − û∗

e(θ)
∥∥ ≤

1
2

∥∥R−1
∥∥αJs

(
αφαW̃ + αε

)
≜ αu □

Estimation of Theoretical Bounds: The estimation of the
theoretical maximum bound in Equations (44) and (45) along
with others can be found using bound information on indi-
vidual terms. In the current case study of NN visual servo
control of 7 DOF robot manipulator, the calculation of above
mentioned bounds will be summarized next. Since the NN
activation function is radial basis function, the gradient of
activation function is bounded by maximum value of αφ =
exp−0.5

ρc
. The minimum ρc used in our experiments is 0.5,

therefore αφ = 1.2. The minimum and maximum eigen value
of the image Jacobian matrix Js of is αmin(Js) = 0.1 and
αmax (Js) = 1. The NN approximation error is assumed
to be slowly varying with respect to the state and hence
the bound on its gradient is chosen as ε′

M = 0.01. The
minimum and maximum eigenvalue of design matrix R is
2.5 and 5 respectively and hence minimum and maximum
eigenvalue of R−1 is 0.2 and 0.4 respectively. The minimum
and maximum eigenvalue of design matrix Q is 105 each. The
controller hyperparameters values are αc = 0.1, αe = 5. Using
these values and the relations derived earlier the following
bounds can be computed,

αA = 2.5, αε = 10−3, α1 = 0.2, α2 = 0.0013, α3 = 10−3,

α4 = 6 × 10−5, α5 = 0.1, αW̃ = 0.1, αM = 0.5,

αe = 0.03, αu = 0.05.

The value αe = 0.03 shows that the closed loop error
dynamics is always bounded and the maximum value is 0.03.

The norm of critic weight error dynamics is bounded by
αW̃ = 0.1 where the average norm of the converged NN critic
weight is of the order 2. The approximate optimal controller
converges to optimal feedback controller and is bounded by
αu = 0.25 where the average norm of the approximate optimal
control is of the order 3.
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