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Abstract

Recent developments in neuroscience research, mainly introduced by neuroscientist Karl J.
Friston, have resulted in a concept called the Free Energy Principle (FEP). The FEP is
a brain theory unifying action, perception and learning. An important observation is that
autonomous robots have to perform similar tasks to the human brain. Therefore, these
developments are very interesting from a control engineering perspective.

A lot of research is going on in the direction of Active Inference (AI), which includes the
perception and action parts of the FEP used for filtering and control on physical systems.
However, a research gap exists for the theory describing the complex mathematical backbone
of perception and learning, called Dynamic Expectation Maximization (DEM). DEM is a
parameter estimation algorithm that can be used to perform filtering as well as system iden-
tification. This thesis is part of the research aiming to evaluate the performance of DEM as a
filtering as well as system identification technique. To be more specific, this thesis considers
the filtering part.

In general, a filter is meant to derive the states of a system using a system model and sensor
measurements. The system model is often not perfect, resulting in process noise, and the
sensors provide noisy data, resulting in measurement noise. Many existing filtering techniques,
including the conventional Kalman filter, assume these noises to be white. However, the
process noise contains unmodelled system dynamics that introduce correlation. Therefore,
by definition, the process noise is not white, but coloured. The main advantage of using the
DEM filter is the ability to extract information from the correlation in the measurements and
the noises to construct a better state estimate.

Simulation results in previous work indicated the potential of DEM as a filter. The next
step is to prove the usefulness of the DEM filter on a physical system. In order to do so,
this thesis describes the design of an experimental setup with a quadrotor Unmanned Aerial
Vehicle (UAV) used to evaluate the performance of the DEM filter. The recorded flight
data is used to analyze the process and measurement noises. Furthermore, the DEM filter is
compared with the conventional Kalman filter. It turns out that for a relatively big subspace
of DEM tuning parameters, the DEM filter is able to outperform the Kalman filter, which
proves the potential of this filtering algorithm in a practical robotics setting.
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List of Acronyms

AI Active Inference
ASL Autonomous Systems Lab
CAD Computer-Aided Design
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DAQ Data AcQuisition
DC Direct Current
DCM Dynamic Causal Model
DCSC Delft Center for Systems and Control
DEM Dynamic Expectation Maximization
DOF Degrees Of Freedom
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IR InfraRed
KL Kullback-Leibler
LOS Line Of Sight
LTI Linear and Time-Invariant
MAP Maximum A Posteriori
MoCap Motion Capture
MSE Mean Squared Error
NERDlab Networked Embedded Robotics lab in Delft
PDF Probability Density Function
PWM Pulse Width Modulation
ROS Robot Operating System
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SSE Sum of Squares Error
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List of Symbols

α0 Initial rotation angle in bifilar pendulum experiment

ε =
[
εy
εx

]
Vector containing the state and output prediction error

ηu Prior expectation of input
λ Hyperparameters
µ Mean/mode (subscript indicates the quantity considered)
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xv

ω White noise signal, used to construct a coloured noise signal by filtering
with a Gaussian filter (subscript indicates the quantity considered)

τ =

τr1τr2
τr3

+

τg1τg2
τg3

 Torque resulting from the quadrotor rotor blade rotations, expressed in

the body frame. First vector relates to the direct torques generated by
the rotors. Second vector relates to the quadrotor gyroscopic effects. By

neglecting gyroscopic effects, the following holds: τ =

τr1τr2
τr3

 =

τφτθ
τψ


θ Model parameters
ϑ Without subscript: complete parameter set (ϑ = {X,θ,λ})

With subscript: specific parameter subset (subscript indicates the pa-
rameter set considered)

ψ̇c Commanded yaw rate
κ Learning rate, used in DEM state estimation
ω Disturbance term, used in nonlinear quadrotor model

Ω =

pq
r

 Quadrotor rotational/angular velocity, expressed with respect to the

body frame
ωi Rotational velocity of rotor i
ωr Rotor rotational velocity (used to denote rotor rotational velocity in

general, in contrast to ωi, which is rotor-specific)
φ Euler roll angle
φc Commanded roll angle
Π Precision matrix (inverse covariance matrix: Σ−1; subscript indicates the

quantity considered)
ψ Euler yaw angle
Σ Covariance matrix (subscript indicates the quantity considered)
σ Standard deviation (subscript indicates the quantity considered)
τ Time lag in autocorrelation calculation
θ Euler pitch angle
θc Commanded pitch angle
U(ϑ,y) Internal energy

cA Vector containing two coefficients, used to translate pwmAi to ωi
cM Vector containing two coefficients, used to translate pwmMi to ωi
cQ Vector containing two coefficients, used to translate ωi to τr3. As op-

posed to cQ (scalar), cQ (vector) better fits the identification experiment
data

cT Vector containing two coefficients, used to translate ωi to T , τr1 and
τr2. As opposed to cT (scalar), cT (vector) better fits the identification
experiment data
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cPφ Vector containing three coefficients, used to directly translate pwmAi to
τr1

cPψ Vector containing three coefficients, used to directly translate pwmAi to
τr3

cPθ Vector containing three coefficients, used to directly translate pwmAi to
τr2

cPT Vector containing three coefficients, used to directly translate pwmAi to
T

f =

0
0
T

 Force resulting from the quadrotor rotor blade rotations, expressed in

the body frame
f = f(x,u) State update function (dynamic model)
fs = fs(u) State update function (static model)
g = g(x,u) Output update function (dynamic model)
gs = gs(x,u) Output update function (static model)

p =

xy
z

 Position, expressed in the inertial frame

u Inputs

ue =


pwmAeq
pwmAeq
pwmAeq
pwmAeq

 Input equilibrium

v =

uv
w

 Velocity, expressed in a frame with the same orientation as the body

frame
w Process noise
x States

xe =



xe
ye
ze
ẋe
ẏe
że
φe
θe
ψe
φ̇e
θ̇e
ψ̇e



State equilibrium

y Outputs
yn Part of output containing noise dynamics
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xvii

z Measurement noise
∆t Sampling time
żc Commanded vertical speed
B = {b̂x, b̂y, b̂z} Body frame
D Derivative operator
F(ϑ,y) Variational Free Energy
I = {îx, îy, îz} Inertial frame
N (µ,Σ) Gaussian/normal distribution with mode µ and covariance matrix Σ
BRI = I

RTB Rotation matrix to convert coordinates expressed in the inertial frame
to coordinates expressed in the body frame

IRB Rotation matrix to convert coordinates expressed in the body frame to
coordinates expressed in the inertial frame

IRr,B Rotation matrix to convert angles expressed in the body frame to angles
expressed in the inertial frame

IRX,B Rotation matrix used to rotate coordinates around the x-axis
IRY,B Rotation matrix used to rotate coordinates around the y-axis
IRZ,B Rotation matrix used to rotate coordinates around the z-axis
τi Torque generated by rotor i
pwmAi Motor PWM value given to motor of rotor i, according to the convention

in the AR.Drone 2.0 software
pwmAeq AR.Drone 2.0 motor PWM value in hovering equilibrium
pwmMi Motor PWM value given to motor of rotor i, according to the convention

in the MATLAB/Simulink toolbox
A State matrix
Ad Discretized state matrix
B Input matrix
Bd Discretized input matrix
C Output matrix
Cd Discretized output matrix
cQ Torque coefficient
cT Thrust coefficient
Cu Covariance matrix of input prior
cBφ Constant in B, used to translate pwmAi to φ̈
cBψ Constant in B, used to translate pwmAi to ψ̈
cBθ Constant in B, used to translate pwmAi to θ̈
cBz Constant in B, used to translate pwmAi to z̈
d Input embedding order
D1 Damping parameter 1 in bifilar pendulum experiment
D2 Damping parameter 2 in bifilar pendulum experiment
dw Distance between wires in bifilar pendulum experiment
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xviii Glossary

DKL(·) KL divergence, indicating how well one distribution approximates an-
other distribution (DKL(·) = 0 means that both distributions are iden-
tical)

E Finite differences matrix
g Gravitational acceleration
G(ϑ,y) Internal energy, expected under the recognition density
H(ϑ) Entropy of recognition density
h(t) Gaussian filter (subscript indicates the quantity considered)
I Without subscript: inertia matrix

With subscript: identity matrix (subscript indicates matrix size)
Ir Rotor inertia
Ixx Mass moment of inertia around x-axis
Ixy = Iyx Products of inertia around x- and y-axis (assuming a symmetric quadro-

tor)
Ixz = Izx Products of inertia around x- and z-axis (assuming a symmetric quadro-

tor)
Iyy Mass moment of inertia around y-axis
Iyz = Izy Products of inertia around y- and z-axis (assuming a symmetric quadro-

tor)
Izz Mass moment of inertia around z-axis
K Scaling factor of Gaussian filter (in this thesis equal to

√
∆t

σh
√
π
)

l Rotor arm length
lw Wire length in bifilar pendulum experiment
ln(p(y)) Model log-evidence
m Quadrotor mass
n Dimension (subscript indicates the parameter set considered)
p State and output embedding order (do not confuse with p (angular ve-

locity), which is always used as part of a vector, in contrast to this
embedding order)

p(ϑ) Posterior density of generative model
p(ϑ,y) Joint density of generative model
p(y) Marginal likelihood of generative model
q(ϑ) Recognition/ensemble density
s Smoothness (subscript indicates quantity considered; using Gaussian fil-

ter assumption: s = σ)
S(s2) Temporal correlation matrix with smoothness parameter s
T Total thrust generated by all four rotors
t Time
Ti Thrust generated by rotor i
To Period of damped oscillation in bifilar pendulum experiment
V (ϑ) Variational energy
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xix

w1 = wφ Roll angle process noise
w2 = wφ̇ Roll rate process noise
w2,res Residual after fitting a Fourier series to w2

X Parameter set containing states and inputs
x1 Quadrotor rotation angle in bifilar pendulum experiment
x2 Quadrotor rotational velocity in bifilar pendulum experiment
Z Normalization constant (subscript indicates the parameter set consid-

ered)
z Roll angle measurement noise (do not confuse with z position, which is

always used as part of a vector, in contrast to this measurement noise)
z0 Quadrotor height in hovering equilibrium, expressed in I
batA Akku-King battery (has more charge capacity than original Parrot bat-

tery)
batP Original Parrot battery
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“The difference between theory and practice is in theory somewhat smaller than
in practice.”
— Frank Westphal





Chapter 1

Introduction

In this introductory chapter, Section 1-1 elaborates on the context and motivation of the
research in this thesis. Based on the context, Section 1-2 states the main research question
and thesis outlook, based on the research sub-goals. Section 1-3 provides an overview of the
conventions used in mathematical expressions throughout this thesis. Finally, Section 1-4
shortly indicates which software is used in this thesis and where it can be found.

1-1 Context and motivation

In the world we are living in, humans continuously try to make processes more efficient in
order to save time to focus on things that we think are important. This has resulted in the
usage of machines and engines (consider important inventions, such as the steam engine).
After these inventions, already quite some time ago, chips were invented and processes got
electrified. Systems were able to execute a pre-determined physical action using their own
sensor feedback (e.g. manipulators as part of assembly lines). We have now arrived at the
point where machines are becoming more intelligent and can autonomously make decisions
about the action they need to perform. These machines are called robots. Examples include,
but are certainly not limited to, autonomous underwater vehicles, autonomously flying robots
and self-driving cars. This development has led to people trying to define what a robot actually
is. An example of the definition of a robot is [1]:

A robot is an autonomous machine capable of sensing its environment, carrying out
computations to make decisions, and performing actions in the real world.

In the definition, you may recognize three main tasks that a robot should be capable of:
sensing, making decisions and performing actions. In control engineering terms this can
also be expressed as filtering and controlling. The filtering part ensures that the desired
information is extracted from the sensory signals. The controlling part performs calculations
to decide what control action should be performed next, based on this information.
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2 Introduction

This thesis considers the filtering part of robots. A filter often contains a model with the
important dynamics of the physical system concerned and how the sensory inputs are gener-
ated from the physical quantities describing the system. These physical quantities are called
states. As mentioned above, robots are becoming so complex that the model does not pro-
vide all details necessary to describe how the robot states evolve over time. This results in a
modelling error. The modelling error will be referred to as process noise. Furthermore, the
robot sensors are non-ideal and therefore contain fluctuations in the values they provide to
represent the states. These fluctuations are not not important for describing the robot states,
resulting in a measurement error. The measurement error will be referred to as measurement
noise. The goal of a filter is to remove the measurement noise as much as possible and be
able to infer the states in the real world, despite the presence of process noise.

A lot of filtering solutions assume the process and measurement noises to have completely
random effects over time, which is called white noise. However, if the model is not perfect,
the process noise will contain non-modelled system dynamics. By definition, these system
dynamics cannot change infinitely fast, so the process noise is not white, but coloured. The
difference between white and coloured noise is the fact that white noise is not differentiable by
definition, while coloured noise is. We can exploit the fact that process noise is differentiable
to better infer the system states.

Recently, the neuroscientist Karl J. Friston has developed a theory that makes use of coloured
noise, called the Free Energy Principle (FEP). Originally, FEP is a theory trying to explain
the functionality of the brain [2], thereby unifying action, perception and learning [3]. It turns
out that neuroscientists use a so-called Dynamic Causal Model (DCM) to describe processes
in the brain, whereas control engineers use these same type of model to describe the dynamics
of physical systems. Therefore, we can say that perception corresponds to filtering, action
to controlling and learning to system identification. The FEP has led Friston to come up
with a parameter estimation algorithm, called Dynamic Expectation Maximization (DEM)
[4]. DEM includes perception and learning. This thesis focuses on the state estimation part
of DEM perception (also referred to as the DEM filter).

As far as we are aware of in our research group, DEM state estimation has never been applied
to a physical robotics system. Previous work has already shown promising simulation results
of the DEM filter outperforming the conventional Kalman filter [5] in the presence of coloured
noise using synthetic data [4], [6]. There is still a lack of evidence that the DEM filter will also
outperform the Kalman filter using data recorded in a physical experimental setup. The main
contribution of this thesis is to show the performance of the DEM filter using experimental
data.

The physical system chosen to evaluate the filter performance is a quadrotor Unmanned Aerial
Vehicle (UAV). The choice for a quadrotor UAV is based on two arguments. First of all, the
quadrotor is a nonlinear system. Aspects like blade geometry as well as existing air flows
around the quadrotor have impact on the quadrotor movements. Therefore, it is difficult to
model all quadrotor dynamics and coloured process noise will always exist. Secondly, UAVs in
general are becoming more important in our society, since they are a cheap solution to a wide
variety of problems, including law enforcement, search and rescue operations, exploration of
environments that pose a potential danger to humans, packet delivery, aerial photography,
etcetera. Having a state estimation algorithm that is proven to work on UAVs will help in
developing more stable and robust control algorithms and stimulates the usage of UAVs.
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1-2 Research objective and thesis outlook 3

1-2 Research objective and thesis outlook

The main contribution of this thesis is to provide an answer to the following research question:

How does the DEM filter perform on experimental data of a quadrotor flight?

To answer this research question, several sub-goals are defined:

1) Provide the fundamental ideas behind DEM and derive the DEM filter equations.
DEM itself is a parameter estimation algorithm. It is able to do more than just state
estimation: it can also estimate inputs, model parameters and hyperparameters. This
estimation process is based on the minimization of Free Energy (FE). Chapter 2 will
describe what free energy actually is and how it can be used to derive the DEM state
estimation equations.

2) Define the quadrotor dynamical model used in the DEM filter.
As Chapter 2 will show, the DEM filter needs a model of the quadrotor in order to
estimate the states, based on input-output data. To have a better understanding of
how the state estimation works, the model that will be considered is a relatively simple
Linear and Time-Invariant (LTI) state-space model. The definition of this model will
be given in Chapter 3.

3) Design the experimental setup used to record experiment data.
Before being able to record data that can be used to perform state estimation using
the DEM filter, suitable hardware and software platforms need to be chosen. The
Parrot AR.Drone 2.0 and OptiTrack system will be used as hardware platform. Robot
Operating System (ROS) packages for AR.Drone 2.0 and OptiTrack support will be
used as software. Chapter 4 will elaborate on the design choices made to select the
hardware and software and explain how the experiment is conducted.

4) Identify the model parameters for the AR.Drone 2.0.
The quadrotor model as provided in Chapter 3 contains several parameters that are
quadrotor-specific. Therefore, their values need to be identified for the AR.Drone 2.0.
Chapter 5 will describe the identification experiment design and results.

5) Analyze the process and measurement noise.
An important characteristic of the DEM filter is the fact that it can deal with coloured
noise. Chapter 6 will show the presence of coloured noise and analyze corresponding
noise characteristics to show whether or not the assumptions made in the DEM filter
derivation are valid.

6) Provide the filter results and discuss and draw conclusions from the results.
After characterizing the noises, it is time to run the filter and evaluate its performance.
Chapter 7 will provide the filter results and show in which tuning parameter subspace
the DEM filter outperforms its benchmark, the conventional Kalman filter.
Based on the results, Chapter 8 will draw the main conclusions of this research, answer
the research question, list the thesis contributions, discuss possible research improve-
ments and define future work.
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1-3 Notation conventions

A lot of different mathematical notations are used in the literature describing DEM and
quadrotor modelling approaches. Therefore, this section gives an overview of the notation
conventions followed in this thesis:

• The following conventions apply to the way quantities are denoted:

– Vectors are written in bold (e.g. x).
– All matrices are written in capital letters (e.g. A). Take care: capital letters do

not only denote matrices, but also coordinate frames, functions and scalars.
– All time-variant quantities are defined in continuous time. Therefore, their explicit

dependency on time is omitted for notional convenience (e.g. x(t) is written as
x). A quantity value in discrete-time is denoted by using a subscript with time
indication (e.g. xk and yt+∆t).

• The following conventions apply to the mathematical accents used:

– Optimal value is indicated with an asterisk (e.g. Σ∗).
– Temporal derivative value is indicated with a dot or superscript (e.g. ẋ and x(p)).
– Estimated value is indicated with a hat (e.g. x̂).
– Belief of value (in the brain/agent), including its derivatives, is indicated with a

tilde (e.g. x̃).

• The following conventions apply to the mathematical operators used:

– Partial derivatives are written using a fraction, possibly with evaluation condition
(e.g. ẋ = ∂x

∂t ,
∂2U(µi,y)

∂ϑ2
i

and ∂f
∂x |(x=xe,u=ue)).

– The ceil (d·e) and floor (b·c) operators are used to round up and down to the
nearest integer, respectively (e.g. dp2e and b

p
2c).

– The Kronecker tensor product is used to multiply the complete quantity on the
right-hand side with each element of the quantity on the left-hand side (e.g. S(s2

w)⊗
Σw)

• The following convention applies to the coordinate frames used:

– The body frame, B, and inertial frame, I, are used as superscript and subscript to
indicate the direction of a coordinate rotation using a rotation matrix (e.g. IRB
is the rotation matrix used to convert coordinates expressed in B to coordinates
expressed in I).

1-4 Software

All results presented in this thesis are obtained using several ROS and MATLAB packages.
Appendix F indicates where these packages can be found and how they can be installed in
order to provide the ability to reproduce the results and to stimulate future research.
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Chapter 2

Dynamic Expectation Maximization

This chapter describes the main algorithm discussed in this thesis: the DEM filter. The goal
of this chapter is to give a mathematical derivation, together with an intuitive explanation,
of the filter. The derivation starts in Section 2-1 by explaining the basic principle underlying
DEM: the FEP. Using the FEP, it can be shown that the DEM filter is a biologically plausible
filter in the sense that it should maximize VFE to get a proper state estimate (the same as
what biological systems are assumed to do to survive). Maximizing VFE is a non-trivial
and mathematically complex problem. Therefore, Section 2-2 will show how to maximize
VFE in case of a static model by making two important approximations: the mean-field and
Laplace approximation. Section 2-3 will extend the result for static models to hold for dynamic
models as well. This involves taking derivatives of all system quantities and assuming the
system noises to be coloured. Finally, Section 2-4 will show how the maximization of VFE
for dynamic models leads to the state update rule of the DEM filter and what parameters are
involved.

2-1 The Free Energy Principle

The FEP is based on the nature of biological systems. It is a theory providing a compu-
tationally tractable solution to the optimization of the so-called FE that tries to explain
what biological systems drives to survive. This section will shortly touch upon the existence
of biological systems and their need to have a model of their environment (Section 2-1-1),
show what this model looks like (Section 2-1-2) and explain why and how we can use FE
to mathematically describe the behaviour of biological systems (Section 2-1-3). In the end,
Section 2-1-4 will provide a short summary of this section by connecting the ideas behind
biological systems to the described mathematics.

2-1-1 The nature of biological systems

As Friston states in [2], biological systems are their own proof of existence. They can only
survive if they are able to adapt to their environment (e.g. avoid extreme temperatures
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6 Dynamic Expectation Maximization

by moving to an area with lower temperatures). This is explainable from a Darwinist or
selectionist point of view: if a system is not able to adapt to the environment, it will make
decisions that become fatal at some point. As a result, the surviving biological systems are
the ones able to adapt to the environment.

In order to adapt to the environment, Von Helmholtz came up with the idea that a biologi-
cal system should have some kind of environment representation (called a generative model
[7]). Using the generative model, a system (also called agent) is able to forecast how the
environment and its own internal milieu (also called generative process) is changing and what
influence the actions of the agent will have on itself and the environment. For an agent to
survive, it should find itself in a limited amount of states in this model. In order to do so, it
is said to resist a tendency to disorder [3], [8]. Therefore, an agent that successfully adapts
often finds itself in this limited amount of states. These states thus have a high probability
of occurrence, while the remaining states have low probability. Equivalently, the agent is
searching for states that have low entropy. Since entropy is the long-term average of sensory
surprisal, it is equivalent to saying that an agent is trying to ensure that the environment and
its internal milieu are in a state, such that it can predict what it will observe via its sensors.
The states for which this holds are the states with low entropy that ensure that the agent is
able to survive.

Evolution ensures that the generative model keeps improving over generations. Each gener-
ation passes its knowledge on to the next generation in the form of prior knowledge. It is
therefore called innate value [3]. As mentioned, within a generation, each agent tries to find
states with low entropy. However, sitting in a dark room and completely shielding yourself
from reality for forever is not very helpful to survive. Therefore, an agent has to interact with
the environment [9]. It turns out that an agent performs several tasks simultaneously. These
tasks are taking place at four different time scales and are listed from long-term to short-term
tasks below:

1. Updating prior knowledge: an agent inherits prior knowledge from the previous gen-
eration, but due to a changing environment and new insights, this knowledge expands
during the lifetime of an agent and is updated via a hierarchical structure and the
updating of the processes described below.

2. Learning: an agent tries to understand how the environment and its internal milieu are
functioning and tries to derive causal relations from it in the form of the generative
model. In control engineering, learning corresponds to finding the model parameters
via system identification.

3. Attention: on a shorter time scale than learning the model, an agent tries to find out
how much its predictions deviate from what is really happening in the world in the
form of “probabilistic contingencies” [2]. In control engineering, attention corresponds
to finding the process and measurement noise parameters.

4. Action and perception: an agent is acting on and perceiving sensory information from
the environment and its internal milieu in real-time. There exists well-established re-
search showing that the two tasks happen simultaneously [10]. In control engineering,
action corresponds to control and perception to filtering.
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2-1 The Free Energy Principle 7

In the rest of this chapter, we consider only one agent having prior knowledge and an environ-
ment representation. In theory, DEM includes the other tasks (except for action): learning
(model parameter estimation), attention (hyperparameter estimation) and perception (state
and input estimation).

2-1-2 The generative model

One can make the generative model as complex as desired. In the context of this thesis, the
generative model follows the DCM convention, which is used by Friston to explain neurosci-
entific phenomena, as well as by control engineers to describe physical system behaviour. In
general, a DCM is given by the following state and output equation:

ẋ = f(x,u) +w (2-1)
y = g(x,u) + z (2-2)

The state equation describes how the states x ∈ Rnx evolve over time as a function of states
and inputs/actions u ∈ Rnu . An agent can only infer the environmental states, based on
its sensory inputs y ∈ Rny . The sensory inputs do not necessarily capture all states. The
state and output function f ∈ Rnx and g ∈ Rny are parameterized by model parameters θ.
The sensors of the agent are not perfect, thereby introducing measurement noise z ∈ Rny .
Furthermore, the generative model of the agent does not fully represent the environment
dynamics, causing the existence of process noise w ∈ Rnx .

In general, the agent knows the structure of the state and output functions, as well as the
definition of the states, inputs and outputs. It is also acknowledged that an agent (or a brain,
more specifically) acts as an Bayesian inference machine [11], [12]. This means that both state
and output equation are represented by a conditional Probability Density Function (PDF):

ẋ = f(x,u) +w → p(x|ϑ) (2-3)
y = g(x,u) + z → p(y|ϑ) (2-4)

in which:

ϑ =


X =

[
x
u

]
θ
λ

(2-5)

where ϑ forms the complete set of parameters to be estimated, including states and inputs
(combined represented by X), model parameters θ and hyperparameters λ [4].
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2-1-3 Variational Free Energy

In general, the generative model of the agent does not exactly resemble the generative process.
Therefore, the agent has to derive the parameters in the generative model using its sensory
observations in order to match the two as closely as possible. Deriving parameters from
observations is equivalent to calculating the posterior density p(ϑ|y). In machine learning,
this is done using Bayes’ theorem:

p(ϑ|y) = p(ϑ,y)
p(y) = p(y|ϑ)p(ϑ)

p(y) (2-6)

However, calculating the likelihood p(y) is intractable, since it requires taking the integral
over all states in the generative process: p(y) =

∫
p(y|ϑ)p(ϑ)dϑ [13]. Therefore, it is proposed

to approximate the posterior density with the so-called recognition density q(ϑ) [14]:

q(ϑ) ≈ p(ϑ|y) (2-7)

This is also referred to as Variational Bayesian Inference (VBI) [15] and forms the basis for
the FEP.

The metric used to assess the goodness of approximation using q(ϑ) is the (reverse) Kullback-
Leibler (KL) divergence [16]:

DKL(q(ϑ)||p(ϑ|y)) =
∫ ∞
−∞

q(ϑ)ln
(
q(ϑ)
p(ϑ|y)

)
dϑ (2-8)

An important property of the KL divergence is that it is a non-negative measure [17]. In the
ideal case, q(ϑ) = p(ϑ|y), the integrand of the KL divergence equals 0, and so does the KL
divergence itself. The more the recognition density and posterior density differ in likeliness
of one (or multiple) parameters, the higher the value of the KL divergence becomes.

Writing out the KL divergence expression (and taking the integral only over the domain
in which ϑ has non-zero values, thereby leaving out the −∞ and ∞ bounds for notational
convenience) gives:

DKL(q(ϑ)||p(ϑ|y)) =
∫
q(ϑ)ln

(
q(ϑ)
p(ϑ|y)

)
dϑ

=
∫
q(ϑ)ln

(
q(ϑ)p(y)
p(ϑ,y)

)
dϑ

=
∫
q(ϑ)ln

(
q(ϑ)
p(ϑ,y)

)
dϑ+ ln(p(y))

=
∫
q(ϑ)ln(q(ϑ))dϑ−

∫
q(ϑ)ln(p(ϑ,y))dϑ+ ln(p(y))

(2-9)
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2-2 Maximizing VFE for static models 9

This expression can be rearranged as:

ln(p(y))︸ ︷︷ ︸
log−evidence

=
∫
q(ϑ)ln(p(ϑ,y))dϑ−

∫
q(ϑ)ln(q(ϑ))dϑ︸ ︷︷ ︸

F(ϑ,y)
ELBO
V FE

+DKL(q(ϑ)||p(ϑ|y))︸ ︷︷ ︸
≥0

KL−divergence

(2-10)

This equation tells us that the model log-evidence ln(p(y)) is lower-bounded by the FE
F(ϑ,y), since the KL divergence is non-negative. Therefore, another name for FE is Evidence
Lower BOund (ELBO) [18]. However, to stay in words related to the FEP and to avoid
confusion with the concept of FE in physics (where energy is defined opposite to energies as
defined here [19]), the FE will be called Variational Free Energy (VFE), thereby following
the convention in [20].

2-1-4 Intermediate summary

In summary, and to relate the mathematics to the agent representing a biological system: an
agent needs to have a generative model that properly represents the generative process in order
to survive. By having a good generative model, the agent is able to execute actions in such a
way that it minimizes its sensory surprisal. A measure of correctness of its generative model
is the model log-evidence, equal to the negative of sensory surprisal. Therefore, minimizing
sensory surprisal is equivalent to maximizing model log-evidence. VFE forms a lower bound
on model log-evidence, so the agent can maximize model log-evidence by maximizing VFE.
In control engineering, this corresponds to system identification. In this section it is shown
that system identification can be performed in a biologically plausible way by maximizing one
quantity: VFE.
The next section will show how to maximize VFE for static models. The result is then
extended to hold for dynamics models as well, which can be used to derive the DEM filter
equations.

2-2 Maximizing VFE for static models

Before being able to maximize VFE, we have to gain more understanding of what the VFE
looks like. The integral expressions in Eq. (2-8) until (2-10) are represented as single integrals.
However, following Eq. (2-5), ϑ contains 3 types of parameters: states and inputs, model
parameters and hyperparameters. Therefore, the VFE is actually defined as a triple integral
expression over all parameter sets:

F(ϑ,y) =
∫ ∫ ∫

q(ϑ)ln(p(ϑ,y))dϑ1dϑ2dϑ3︸ ︷︷ ︸
G

−
∫ ∫ ∫

q(ϑ)ln(q(ϑ))dϑ1dϑ2dϑ3︸ ︷︷ ︸
H

(2-11)

where ϑ1 = ϑX , ϑ2 = ϑθ and ϑ3 = ϑλ denote the parameter subsets for states and inputs,
model parameters and hyperparameters, respectively. Furthermore, G(ϑ,y) and H(ϑ) repre-
sent the Gibb’s, or internal, energy (U(ϑ,y) = ln(p(ϑ,y))) expectation under the recognition
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10 Dynamic Expectation Maximization

density and the recognition density entropy, respectively [4]. As we will see later, the internal
energy plays an important role in maximizing the VFE.

Finding q(ϑ) that directly maximizes the VFE in Eq. (2-11) is again an intractable problem.
Therefore, DEM considers 2 approximations:

• The mean-field approximation

• The Laplace approximation

Each of these approximations will be described in the following sections.

2-2-1 Mean-field approximation

As mentioned in Section 2-1-1, the parameters in the different subsets are optimized in pro-
cesses that run at different temporal scales. The mean-field approximation uses this fact to
factorize the recognition density into parts that belong to different subsets [4]:

q(ϑ) =
3∏
i=1

q(ϑi) (2-12)

Using this approximation and the fundamental lemma of variational calculus, it can be proven
that each q(ϑi) can be written as [4]:

q(ϑi) = 1
Zi
eV (ϑi) (2-13)

where Zi is a normalization constant and V (ϑi) is called variational energy.

Finding q(ϑi) is still intractable, except for the case where conjugate priors are used [13].
Two alternatives exist.

The most general approach assumes a free-form approximation for q(ϑi) and finds the sta-
tionary (i.e. time-invariant) solution for q(ϑi) using ensemble dynamics. It turns out that
the stationary solution of q(ϑi) is the same as presented in Eq. (2-13). In ensemble dynamics,
each particle in the ensemble corresponding to parameter subset i is moving uphill on the
variational energy manifold corresponding to parameter subset i and meanwhile exposed to
random fluctuations. Furthermore, the movement of all particles is influenced by the mean-
field effect of the other parameter subsets. The combination of these effects and a big enough
ensemble of particles ensure that the average of all particles coincides with the peak, or mode,
of the variational energy manifold (and thus of the ensemble density q(ϑi)), while the disper-
sion of particles indicates the variance of q(ϑi). In order to find the ensemble density mode
and variance, the path of each particle in the ensemble needs to be calculated. A form of
filtering (thus not including model parameter and hyperparameter estimation) that makes
use of ensemble dynamics is variational filtering [21].

A simpler approach assumes a fixed-form approximation for q(ϑi): a Gaussian distribution.
This is called the Laplace approximation. It can be shown that a particle subject to the
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2-2 Maximizing VFE for static models 11

same effects as before, except for the random fluctuations, will converge to the mode over
time [4]. Since the variance of q(ϑi) can be calculated in an exact way (as the next section
will show), we can reduce the optimization problem to only finding the path of one particle
without random fluctuations, instead of having to calculate the path for every particle. The
details of the Laplace approximation are described in the next section.

2-2-2 Laplace approximation

The Laplace assumption entails assuming that the posterior density p(ϑ|y) has a Gaussian
shape and should therefore be approximated with a Gaussian recognition density. As a result,
q(ϑi) is written as:

q(ϑi) = 1√
(2π)ni |Σi|︸ ︷︷ ︸

1
Zi

e−
1
2 (ϑi−µi)TΣ−1

i (ϑi−µi)

︸ ︷︷ ︸
eV (ϑi)

(2-14)

where ni indicates the parameter subset dimension of ϑi.

As [22] states: “A Gaussian approximation is motivated by the fact that, in the large data
limit and given some regularity conditions, the posterior approaches a Gaussian around the
MAP”, where ‘MAP’ stands for Maximum A Posteriori and indicates the mode estimation of
the posterior density p(ϑ|y).

Using the Laplace approximation, it can be shown that G can be simplified to [4]:

G =
∫ ∫ ∫

q(ϑ)U(ϑ,y)dϑ1dϑ2dϑ3

≈
∫ ∫ ∫

q(ϑ)

U(µ,y) + (ϑ− µ)T ∂2U(ϑ,y)
∂ϑ2

∣∣∣∣∣
ϑ=µ

(ϑ− µ)

 dϑ1dϑ2dϑ3

= U(µ,y) + 1
2

3∑
i=1

tr

(
Σi
∂2U(µi,y)

∂ϑ2
i

) (2-15)

where ∂2U(µi,y)
∂ϑ2

i
is the called the Hessian and is evaluated at the mode of parameter subset i.

To simplify H, we first write out ln(q(ϑ)):

ln(q(ϑ)) = ln

( 1
Z
eV (ϑ)

)
= −ln(Z) + V (ϑ)

(2-16)
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12 Dynamic Expectation Maximization

Now, H can be simplified to [4]:

H =
∫ ∫ ∫

q(ϑ)ln(q(ϑ))dϑ1dϑ2dϑ3

=
∫ ∫ ∫

q(ϑ) (−ln(Z) + V (ϑ)) dϑ1dϑ2dϑ3

= 1
2

3∑
i=1

(niln(2πe) + ln(|Σi|))

(2-17)

Therefore, the VFE can be written as:

F(ϑ,y) ≈ U(µ,y) + 1
2

3∑
i=1

(
tr

(
Σi
∂2U(µi,y)

∂ϑ2
i

)
+ niln(2πe) + ln(|Σi|)

)
(2-18)

One can find the exact optimal solution for Σi, Σ∗i , by differentiating F(ϑ,y) with respect to
Σi and setting equal to zero. The solution is found as [4]:

Σ∗i = −
(
∂2U(µi,y)

∂ϑ2
i

)−1

(2-19)

The VFE can now be simplified and becomes:

F(ϑ,y) ≈ U(µ,y) + 1
2

3∑
i=1

(niln(2π) + ln(|Σi|)) (2-20)

Except for the internal energy evaluated at its mode, U(µ,y), all quantities in this expression
are constant. Therefore, maximizing VFE boils down to maximizing U(µ,y):

F(ϑ,y) ∝ U(µ,y) (2-21)

The internal energy is described in more detail in the next section.

2-2-3 Internal energy

So far, the derivation of DEM holds for state and input, model parameter and hyperparameter
estimation. In the end, we are only interested in the DEM state estimation equations. We
therefore assume the model parameters and hyperparameters to be constant, i.e.:

ϑ = X (2-22)
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2-2 Maximizing VFE for static models 13

Using this assumption, the internal energy can be written as:

U(X,y) = ln(p(X,y))
= ln(p(y|X)p(X))
= ln(p(y|X)) + ln(p(X))
= ln(p(y|X)) + ln(p(x,u))
= ln(p(y|X)) + ln(p(x|u)p(u))
= ln(p(y|X)) + ln(p(x|u)) + ln(p(u))

(2-23)

Given a static model with constant model parameters and hyperparameters, Eq. (2-3) and
(2-4) become:

x = fs(u) +w → p(x|u) (2-24)
y = gs(x,u) + z→ p(y|X) (2-25)

Of course, these equations can be merged into a single equation, but they are written this
way to have the same format as used for dynamic models in Section 2-3. The distinction
is made using subscript s. The terms in the equation above exactly correspond to the ones
constructing part of the internal energy and will be evaluated below.
ln(p(y|X)) is the likelihood derived from Eq. (2-25). Under the Laplace approximation, we
can model it as a Gaussian distribution, i.e.:

p(y|X) ∼ N (gs,Σz) (2-26)

where the mode is given by output function gs(x,u) and the covariance is caused by the
Gaussian distributed measurement noise p(z) ∼ N (0,Σz).
Similarly, ln(p(x|u)) is the likelihood from Eq. (2-24) and is also Gaussian distributed:

p(x|u) ∼ N (fs,Σw) (2-27)

where the mode is given by state function fs(u) and the covariance is caused by the Gaussian
distributed process noise p(w) ∼ N (0,Σw).
The input prior p(u) also follows a Gaussian distribution and is given by:

p(u) ∼ N (ηu, Cu) (2-28)

where ηu represents the expectation and Cu the covariance matrix of the input prior.
With this information, all terms in Eq. (2-23) can be written as:

ln(p(y|X)) = ln

(
1√

(2π)ny |Σz|
e−

1
2 (y−gs)TΠz(y−gs)

)

= 1
2
(
−nyln(2π) + ln(Πz)− (y − gs)TΠz(y − gs)

) (2-29)
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14 Dynamic Expectation Maximization

ln(p(x|u)) = ln

(
1√

(2π)nx |Σw|
e−

1
2 (x−fs)TΠw(x−fs)

)

= 1
2
(
−nxln(2π) + ln(Πw)− (x− fs)TΠw(x− fs)

) (2-30)

ln(p(u)) = ln

(
1√

(2π)nu |Cu|
e−

1
2 (u−ηu)TΠu(u−ηu)

)

= 1
2
(
−nuln(2π) + ln(Πu)− (u− ηu)TΠu(u− ηu)

) (2-31)

The internal energy is constructed by the summation of these terms. Since we are only
interested in maximizing the internal energy, we can ignore the constant terms. Furthermore,
we are only interested in the state estimation equations of DEM. Therefore, we can also
disregard the ln(p(u)) term (no uncertainty regarding the input exists) and be left with:

U(X,y) ∝ −1
2
(
(y − gs)TΠz(y − gs) + (x− fs)TΠw(x− fs)

)
(2-32)

The internal energy is thus maximized by optimizing a cost function consisting of state and
output error terms, weighted by the precision (inverse covariance) matrices of process and
measurement noise respectively (i.e. a quadratic, precision weighted, cost function). In
shorthand notation, this expression is written as:

U(X,y) ∝ −1
2ε

TΠε (2-33)

where ε =
[
y − gs
x− fs

]
∈ Rny+nx and Π =

[
Πz 0
0 Πw

]
∈ R(ny+nx)×(ny+nx).

As mentioned before, this expression should be evaluated at its mode. The internal energy
mode equals the current state value x. By iteratively optimizing these quantities to find the
variational energy that maximizes VFE, the mode starts converging towards its true value.
Given the fact that a single particle (corresponding to the current mode) will converge to the
true mode in a finite amount of time, the true values for x can be found in a finite amount
of time, which is exactly the purpose of state estimation.

2-2-4 Intermediate summary

In the previous sections, we have seen that an agent should maximize its VFE in order to end
up in generative process states in which it can survive. This section has shown that the VFE
is maximized by finding the correct form of the recognition density for each parameter subset
q(ϑi), given in Eq. (2-13), under the mean-field approximation. Using the Laplace approxi-
mation, maximizing VFE boils down to maximizing the internal energy. The internal energy
was defined by assuming constant model parameters and hyperparameters. Maximizing in-
ternal energy then turned into an optimization problem of maximizing a quadratic, precision
weighted, cost function involving the state and output error and process and measurement
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2-3 Maximizing VFE for dynamic models 15

noise precision matrices. It is shown that by maximizing the internal energy, we can estimate
the system states. Therefore, we have derived a biologically plausible implementation of state
estimation.

The result in this section holds for static models. However, a quadrotor is a dynamic system.
Therefore, the result is extended to hold for dynamic models as well in the next section.

2-3 Maximizing VFE for dynamic models

Maximizing VFE for dynamic models is very similar to maximizing VFE for static models.
The mean-field and Laplace approximation still apply. The same holds for the assumption
of constant model parameters and hyperparameters. However, there are a few conceptual
differences. First of all, the states vary over time in a dynamic model. As a result, the
optimal variational energy mode also changes over time. Therefore, generalized coordinates
of motion are introduced. Section 2-3-1 describes the adjusted generative model in which
each quantity is replaced by its generalized version. Secondly, generalized coordinates of
motion imply that both process and measurement noise should be differentiable. As a result,
they cannot be white, but should be coloured instead. Details on coloured noise are given in
Section 2-3-2. Finally, maximizing VFE for dynamic models also boils down to maximizing
the internal energy. Therefore, Section 2-3-3 will derive the internal energy for dynamic
models in a similar way as for the static case.

2-3-1 Adjusted generative model

From now on, it is assumed that the generative process can be described using an LTI gener-
ative model in order to simplify filter analysis. This assumption turns the dynamic state and
output equations of Eq. (2-1) and (2-2) into the following form:

ẋ = Ax+Bu+w (2-34)
y = Cx+ z (2-35)

This dynamic model describes varying states, inputs and outputs over time. This implies
that the posterior density also changes over time. As a result, the recognition density and the
variational energy should vary over time. Therefore, instead of having particles on a constant
variational energy manifold, we now have to deal with particles on a moving variational
energy manifold. Under the mean-field approximation, Section 2-2-1 showed that one particle
climbing uphill on the variational energy manifold and being influenced by mean-field effects
of the model parameters and hyperparameters is able to reach the variational energy mode
in a finite amount of time, thereby maximizing VFE. It can be shown using linear stability
theory that one particle is also able to track the mode of a time-varying variational energy
manifold once it knows how the manifold is changing over time (i.e. it knows its derivatives
up to a limited order) [4].

Given this result, we are interested in the derivative information of the quantities in the
dynamic model, including states, inputs, outputs, process noises and measurement noises.
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16 Dynamic Expectation Maximization

The dynamic model can be extended to include the derivatives of these quantities in the form
of generalized coordinates of motion. For example, the generalized states vector is now given
by:

x̃ =


x
x′

x′′

...
x(p)

 (2-36)

where x′, x′′ and x(p) indicate the 1st-, 2nd- and pth-order derivatives of x, respectively.
p ∈ Z is called the state embedding order. In the DEM filter, a different embedding order is
assigned to the inputs. The input embedding order is denoted by d ∈ Z. [4] concludes that
taking care of derivatives up to and including order p = 6 and d = 2 still provide sufficient
information, whereas the amount of information drops beyond these embedding orders. This
statement is confirmed in Section 7-2.

Rewriting Eq. (2-1) and (2-2) in generalized coordinates with embedding orders d = p− 1 (to
provide an example for different embedding orders) gives [4]:

x′ = f +w

x′′ = ∂f

∂x
x′ + ∂f

∂u
u′ +w′

...

x(p−1) = ∂f

∂x
x(p−2) + ∂f

∂u
u(d−1) +w(p−2)

xp = ∂f

∂x
x(p−1) + ∂f

∂u
ud +w(p−1)

(2-37)

y = g + z

y′ = ∂g

∂x
x′ + ∂g

∂u
u′ + z′

...

y(p−1) = ∂g

∂x
x(p−1) + ∂g

∂u
ud + z(p−1)

yp = ∂g

∂x
xp + zp

(2-38)

where ∂g
∂u = 0 as there is no direct coupling between input and output.
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2-3 Maximizing VFE for dynamic models 17

The generalized LTI state-space model (with d = p− 1) is thus given by:


x′

x′′

...
x(p)

0


︸ ︷︷ ︸
Dx̃

=


A 0 . . . 0 0
0 A . . . 0 0
...

... . . . ...
...

0 0 . . . A 0
0 0 . . . 0 A


︸ ︷︷ ︸

Ã


x
x′

...
x(p−1)

x(p)


︸ ︷︷ ︸

x̃

+


B 0 . . . 0
0 B . . . 0
...

... . . . ...
0 0 . . . B
0 0 . . . 0


︸ ︷︷ ︸

B̃


u
u′

...
u(d−1)

u(d)


︸ ︷︷ ︸

ũ

+


w
w′

...
w(p−1)

w(p)


︸ ︷︷ ︸

w̃

(2-39)
y
y′

...
y(p−1)

y(p)


︸ ︷︷ ︸

ỹ

=


C 0 . . . 0 0
0 C . . . 0 0
...

... . . . ...
...

0 0 . . . C 0
0 0 . . . 0 C


︸ ︷︷ ︸

C̃


x
x′

...
x(p−1)

x(p)


︸ ︷︷ ︸

x̃

+


z
z′

...
z(p−1)

z(p)


︸ ︷︷ ︸

z̃

(2-40)

where x̃ ∈ Rnx·(p+1), ũ ∈ Rnu·(d+1), ỹ ∈ Rny ·(p+1), w̃ ∈ Rnx·(p+1) and z̃ ∈ Rny ·(p+1) are the
generalized states, inputs, outputs, process noises and measurement noises, respectively. Ã ∈
R(nx·(p+1))×(nx·(p+1)), B̃ ∈ R(nx·(p+1))×(nu·(d+1)) and C̃ ∈ R(ny ·(p+1))×(nx·(p+1)) represent the
generalized state, input and output matrices. D ∈ R(nx·(p+1))×(nx·(p+1)) denotes a derivative
operator that implements the derivative operation in the original dynamic model with a simple
shift of higher-order derivatives. It is defined by:

D =


0 1

0 . . .
. . . 1

0

⊗ Inx (2-41)

where ⊗ represents the Kronecker tensor product.

In order to make Eq. (2-39) and (2-40) physically realistic, the states, inputs, outputs and
noises should be differentiable. Since every physical system has a finite eigenfrequency and
inputs given by a controller have a finite frequency too, states, inputs and outputs are differ-
entiable by definition. The generalized inputs and outputs are constructed using an inverse
Taylor expansion. For example, for y this yields [4]:
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18 Dynamic Expectation Maximization

ỹt = Ẽ−1



yt−d p2 e∆t...
yt
...

yt+b p2 c∆t


Ẽ = E ⊗ Iny

Eij =

(
(i− p+1

2 ∆t)
)(j−1)

(j − 1)!

(2-42)

where yt−∆t, yt and yt+∆t indicate the system output samples at the previous, current and
next time instance, respectively, and E is called the finite differences matrix. The exact theory
behind generating generalized coordinates of motion is beyond the scope of this thesis. For
more information, please consult [23].

Using the generalized inputs and outputs, the generalized state is estimated. In a lot of
existing filters, the process and measurement noise are assumed to be white. In a white noise
signal, each sample is independent from the previous sample and therefore the noise is not
differentiable by definition. Instead of white noise, DEM assumes the noises to be coloured,
such that the noise derivatives can be constructed. The next section will elaborate on the
definition of coloured noise and how it is characterized.

2-3-2 Coloured noise

As indicated in [4], coloured noise can be constructed by filtering a Gaussian distributed white
noise signal with a Gaussian filter1. For example, for a 1D process noise signal this yields:

w = ωw ∗ hw(t) (2-43)

where ωw is the white noise signal being convoluted with the Gaussian filter hw(t). In general,
a Gaussian filter is given by the following equation [24]:

h(t) = Ke
− t2

2σ2
h (2-44)

where K is a scaling factor, t denotes the time instance and σh represents the Gaussian stan-
dard deviation (also called kernel width). In this case, K can be determined by constraining
the coloured noise to have the same variance as the original white noise out of which it is
constructed. The resulting Gaussian filter becomes [24]:

h(t) =
√

∆t
σh
√
π
e
− t2

2σ2
h (2-45)

1It should be noted that the Gaussian filter is only a method to generate coloured noise. Other methods
may also exist, but are not considered in this thesis. Section 6-3 will discuss the Gaussian filter assumption.
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2-3 Maximizing VFE for dynamic models 19

Figure 2-1: Gaussian distributed white noise with σ2
ω = 4 and coloured noise with σ2

ω = 4 and
s = 5 · 10−2 s.

Figure 2-1 shows a white noise signal and the result of the convolution of this white noise
signal with a Gaussian filter. The figure clearly shows that the white noise signal contains
random behaviour, while the coloured noise signal contains structure. Due to this structure,
we are able to take derivatives of the noise, which will be leveraged by the DEM filter.

Noises with structure are also called smooth noises. The so-called smoothness of these noises
is denoted by s. Logically, the higher s, the more structure the noise contains. In case of
the Gaussian filter, it holds that s = σh. The smoothness turns out to be an important
noise parameter when considering the covariance matrix of generalized noise signals (called
the generalized covariance matrix). The generalized covariance matrix for generalized process
noise w̃ with embedding order p, for example, is given by [23], [24]:

Σ̃w =



C(w1, w1) . . . C(w1, wnx)
... . . . ...

C(wnx , w1) . . . C(wnx , wnx)
. . .

C(w1, w
(p)
1 ) . . . C(w1, w

(p)
nx )

... . . . ...
C(wnx , w

(p)
1 ) . . . C(wnx , w

(p)
nx )

... . . . ...
C(w(p)

1 , w1) . . . C(w(p)
1 , wnx)

... . . . ...
C(w(p)

nx , w1) . . . C(w(p)
nx , wnx)

. . .

C(w(p)
1 , w

(p)
1 ) . . . C(w(p)

1 , w
(p)
nx )

... . . . ...
C(w(p)

nx , w
(p)
1 ) . . . C(w(p)

nx , w
(p)
nx )


(2-46)

where C(a, b) denotes the covariance of a and b.
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Under the assumption that coloured noise is generated using white noise and a Gaussian filter,
it turns out that noise derivatives are correlated to each other as a function of the Gaussian
filter autocorrelation, evaluated as zero. As a result, the generalized process noise covariance
matrix can be written in terms of sw (assuming p = 6) as [23]:

Σ̃w = S(s2
w)⊗ Σw

=



1 0 − 1
2s2
w

0 3
(2s2

w)2 0 − 15
(2s2

w)3

0 1
2s2
w

0 − 3
(2s2

w)2 0 15
(2s2

w)3 0
− 1

2s2
w

0 3
(2s2

w)2 0 − 15
(2s2

w)3 0 105
(2s2

w)4

0 − 3
(2s2

w)2 0 15
(2s2

w)3 0 − 105
(2s2

w)4 0
3

(2s2
w)2 0 − 15

(2s2
w)3 0 105

(2s2
w)4 0 − 945

(2s2
w)5

0 15
(2s2

w)3 0 − 105
(2s2

w)4 0 945
(2s2

w)5 0
− 15

(2s2
w)3 0 105

(2s2
w)4 0 − 945

(2s2
w)5 0 10,395

(2sw)6


⊗ Σw

(2-47)

where S(s2
w) is called the temporal correlation matrix [4] and Σw is the process noise covariance

matrix.

Similarly, the generalized process noise precision matrix can be calculated as:

Π̃w = Σ̃−1
w

=
(
S(s2

w)⊗ Σw

)−1

= S(s2
w)−1 ⊗ Σ−1

w

= S(s2
w)−1 ⊗Πw

(2-48)

As shown in Section 2-2-3, the process and measurement noise covariance matrices are needed
to be able to maximize VFE. If process and measurement noises are coloured, a smoothness
value is required besides the covariance matrices.

A method to derive the smoothness value of a coloured noise signal is to fit the autocorre-
lation of a Gaussian filter to the noise autocorrelation. In theory, a white noise signal does
not contain correlation. Therefore, its autocorrelation is given by a delta function. Given
this fact and the fact that the autocorrelation of a convolution equals the convolution of the
autocorrelations, the autocorrelation of the coloured noise signal, generated by convoluting a
white noise signal with a Gaussian filter, is equal to the Gaussian filter autocorrelation. In
practice, the white noise autocorrelation is not an ideal delta function, causing the generated
coloured noise autocorrelation to not exactly equal the Gaussian filter autocorrelation (as
Figure 2-2a will show). However, fitting the Gaussian filter autocorrelation to the coloured
noise autocorrelation peak around zero time lag gives an indication of the local noise smooth-
ness leveraged by the DEM filter. An example of determining the smoothness of a coloured
noise signal is given below.

The autocorrelation of a Gaussian filter is given by [24]:

ρh(τ) = e
− τ2

2·2σ2
h = e

− τ2
2σ2
ρ (2-49)
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(a) Autocorrelation (b) SSE

Figure 2-2: The Gaussian filter of which the autocorrelation best fits the autocorrelation of the
coloured noise in terms of SSE has kernel width s = 4.69 · 10−2 s. This value is very close to the
kernel width of the Gaussian filter that was used to generate the coloured noise signal, having a
value of s = 5 · 10−2 s.

Therefore, the kernel width of the Gaussian filter, or smoothness, is related to the Gaussian
autocorrelation via:

2 · 2σ2
h = 2σ2

ρ

σ2
h =

σ2
ρ

2
σh = σρ√

2

(2-50)

The smoothness value for a noise signal can thus be obtained by dividing the kernel width of
the best Gaussian autocorrelation fit by

√
2.

Figure 2-2a shows the autocorrelation of the coloured noise signal displayed in Figure 2-1,
together with its best Gaussian autocorrelation fit in terms of Sum of Squares Error (SSE).
Furthermore, Figure 2-2b shows the Gaussian filter smoothness value corresponding to the
best Gaussian autocorrelation fit. The purpose of these figures it to show that it is possible
to derive the kernel width, or smoothness, of the Gaussian filter, using which the randomly
generated coloured noise signal is created, by fitting a Gaussian autocorrelation to the coloured
noise autocorrelation and dividing its kernel width by

√
2.

Coloured noises can thus be characterized by a covariance matrix and a smoothness value.
Chapter 6 will analyze the noises of the experiment data and derive the corresponding co-
variance matrices and smoothness values.

It should be noted that DEM uses one smoothness value for all noises [4]. Chapter 7 will show
for which smoothness values the DEM filter performs well. Section 6-3 will compare these
values to the ones obtained in Section 6-2-1 and 6-2-2 to see whether the above mentioned
method works properly with experiment data (i.e. whether the Gaussian filter assumption is
useful for deriving the noise smoothness value).
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2-3-3 Internal energy

The goal of this section is to construct the internal energy for dynamic models. This can be
achieved in a very similar way to presented in Section 2-2-3.

Previously, the internal energy was defined as U(X,y) = ln(p(X,y)). For the dynamic case,
we have to replace X and y by their generalized versions. By following the same derivation
as in Eq. (2-23), the internal energy for dynamic models becomes:

U(X̃, ỹ) = ln(p(ỹ|X̃)) + ln(p(x̃|ũ)) + ln(p(ũ)) (2-51)

Using the dynamic model definition from Eq. (2-39) and (2-40), we can redefine Eq. (2-3) and
(2-4) for a dynamic model:

Dx̃ = Ãx̃+ B̃ũ+ w̃ → p(x̃|ũ) (2-52)
ỹ = C̃x̃+ z̃ → p(ỹ|X̃) (2-53)

Similar to the PDFs in Section 2-2-3, the PDFs in this section are also Gaussian distributed
and therefore given by:

p(ỹ|X̃) ∼ N (C̃x̃, Σ̃z) (2-54)
p(x̃|ũ) ∼ N (Ãx̃+ B̃ũ, Σ̃w) (2-55)
p(ũ) ∼ N (η̃u, C̃u) (2-56)

The uncertainties in state and output equation, Σ̃w and Σ̃z, follow the structure outlined in
Eq. (2-47). They are caused by the generalized Gaussian distributed process noise p(w̃) ∼
N (0, Σ̃w) and measurement noise p(z̃) ∼ N (0, Σ̃z), respectively. Furthermore, η̃u and C̃u
represent the generalized input expectation and covariance matrix.

The internal energy for dynamic models can now be written as:

ln(p(ỹ|X̃)) = ln

 1√
(2π)ny ·(p+1)

∣∣∣Σ̃z

∣∣∣e
− 1

2 (ỹ−C̃x̃)T Π̃z(ỹ−C̃x̃)


= 1

2
(
− (ny · (p+ 1)) ln(2π) + ln(Π̃z)− (ỹ − C̃x̃)T Π̃z(ỹ − C̃x̃)

) (2-57)

ln(p(x̃|ũ)) = ln

 1√
(2π)nx·(p+1)

∣∣∣Σ̃w

∣∣∣e
− 1

2 (Dx̃−Ãx̃−B̃ũ)T Π̃w(Dx̃−Ãx̃−B̃ũ)


= 1

2
(
− (nx · (p+ 1)) ln(2π) + ln(Π̃w)− (Dx̃− Ãx̃− B̃ũ)T Π̃w(Dx̃− Ãx̃− B̃ũ)

)
(2-58)
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ln(p(ũ)) = ln

 1√
(2π)nu·(d+1)

∣∣∣C̃u∣∣∣e
− 1

2 (ũ−η̃u)T Π̃u(ũ−η̃u)


= 1

2
(
− (nu · (d+ 1)) ln(2π) + ln(Π̃u)− (ũ− η̃u)T Π̃u(ũ− η̃u)

) (2-59)

Again, we are only interested in state estimation, not input estimation. Therefore, we can
define the part of the internal energy that can be maximized as:

U(X̃, ỹ) ∝ −1
2
(
(ỹ − C̃x̃)T Π̃z(ỹ − C̃x̃) + (Dx̃− Ãx̃− B̃ũ)T Π̃w(Dx̃− Ãx̃− B̃ũ)

)
(2-60)

In shorthand notation given by:

U(X̃, ỹ) ∝ −1
2 ε̃

T Π̃ε̃ (2-61)

where ε̃ =
[

ỹ − C̃x̃
Dx̃− Ãx̃− B̃ũ

]
∈ R(ny+nx)·(p+1) and Π̃ =

[
Π̃z 0
0 Π̃w

]
∈ R(ny+nx)·(p+1)×(ny+nx)·(p+1).

Again, this expression should be evaluated at its mode. In this case, the internal energy mode
equals the current generalized state value x̃. Using generalized coordinates of motion, we can
make sure that a single particle is able to track the mode of the time-varying variational
energy manifold in finite time. We can thus find the true values for x̃ in a finite amount of
time, meaning that we are able to perform generalized state estimation.

2-3-4 Intermediate summary

Section 2-2 has shown how we can implement state estimation in a biologically plausible
way. This section has extended the result for dynamic models. In dynamic models, system
quantities change over time and so does the VFE. Whereas in the static it was shown that a
particle is able to converge to the variational energy mode in finite time, it does not hold true in
the dynamic case. Therefore, we need to add extra information. By including the variational
energy manifold movement information and letting the particle follow this movement, the
particle is actually able to find the mode in finite time.

The movement information is given by the derivatives of system quantities. Therefore, it
is assumed that all system signals are smooth, such that we are able to calculate these
derivatives. This should also hold for the process and measurement noises. Whereas most
filtering techniques assume these noises to be white, DEM assumes them to be coloured.
Section 2-3-2 has given the characteristics of coloured noises: the covariance matrix and
smoothness value. This information is used for deriving the internal energy for dynamic
models. It turns out that maximizing the internal energy also maximizes the VFE for dynamic
models. The only difference in internal energy definition with respect to the static case, is
the replacement of quantities by their generalized version. As a result, maximizing internal
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energy for dynamic models entails maximizing a generalized, quadratic, precision weighted,
error cost function.

The next section shows that this cost function can be maximized using gradient ascent to
derive the DEM filter equation.

2-4 DEM filter

The goal of this section is to arrive at a state update equation that can be implemented in
order to determine the performance of the DEM filter using experiment data. This is done
by following a similar reasoning as presented in [6].

Since the actual state, including its derivatives, is unknown by the filter, x̃ is replaced by its
estimate, ˆ̃x, in this section.

As can be derived from the previous section, the state update can be written as:

˙̃̂x = κ
∂V (t)
∂ ˆ̃x

+D ˆ̃x (2-62)

where ˙̃̂x indicates the time-derivative of the estimate of the generalized state. κ∂V (t)
∂ ˆ̃x rep-

resents the gradient ascent optimization algorithm with learning rate κ and gradient ∂V (t)
∂ ˆ̃x ,

applied to the variational energy manifold. The variational energy is written as V (t) to indi-
cate that the it depends on time. D ˆ̃x denotes the movement of the states in order to follow
their changing behaviour over time.

It turns out that ∂V (t)
∂ ˆ̃x is equal to the state-derivative of the cost function defined using

internal energy [4]:

∂V (t)
∂ ˆ̃x

= −∂ε̃(t)
T

∂ ˆ̃x
Π̃ε̃(t) (2-63)

where ε̃(t) ,
[
ε̃y
ε̃x

]
=
[

ỹ − C̃ ˆ̃x
D ˆ̃x− Ã ˆ̃x− B̃ũ

]
and ∂ε̃(t)T

∂ ˆ̃x =
[
∂ε̃y
∂ ˆ̃x
∂ε̃x
∂ ˆ̃x

]T
=
[
−C̃
D − Ã

]T
.
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Writing out the gradient gives:

∂V (t)
∂ ˆ̃x

= −∂ε̃
T

∂ ˆ̃x
Π̃ε̃

= −
[
−C̃
D − Ã

]T [
Π̃z 0
0 Π̃w

] [
ỹ − C̃ ˆ̃x

D ˆ̃x− Ã ˆ̃x− B̃ũ

]

= −
[
−C̃T (D − Ã)T

] [Π̃z 0
0 Π̃w

] [
ỹ − C̃ ˆ̃x

D ˆ̃x− Ã ˆ̃x− B̃ũ

]

= −
[
−C̃T Π̃z (D − Ã)T Π̃w

] [ ỹ − C̃ ˆ̃x
D ˆ̃x− Ã ˆ̃x− B̃ũ

]

=
[
C̃T Π̃z −(D − Ã)T Π̃w

] [ ỹ − C̃ ˆ̃x
(D − Ã)ˆ̃x− B̃ũ

]
=
(
−C̃T Π̃zC̃ − (D − Ã)T Π̃w(D − Ã)

)
ˆ̃x+ C̃T Π̃zỹ + (D − Ã)T Π̃wB̃ũ

(2-64)

Using the final expression for ∂V (t)
∂ ˆ̃x , the state update rule given in Eq. (2-62) can be written

as [6]:

˙̃̂x =
(
D − κC̃T Π̃zC̃ − κ(D − Ã)T Π̃w(D − Ã)

)
ˆ̃x+ κ

[
C̃T Π̃z (D − Ã)T Π̃wB̃

] [ỹ
ũ

]
(2-65)

It can be concluded that the filter contains several parameters. The parameters and their
meaning are summarized below:

• Smoothness (s): indicating how smooth the process and measurement noises are, as
explained in Section 2-3-2. The higher s, the higher the values in the noise precision
matrices (Π̃w and Π̃z), the more the derivatives of the states, inputs and outputs are
weighted in the state update rule. The impact of this parameter is analyzed in Chapter 7.

• States and outputs embedding order (p): indicating how much derivatives are taken
into account to represent the motion of the states and outputs. The impact of this
parameter is also analyzed in Chapter 7.

• Inputs embedding order (d): indicating how much derivatives are taken into account to
represent the motion of the inputs. The impact of this parameter is also analyzed in
Chapter 7.

• Process noise covariance matrix (Σw): indicating how much the process noises (co)vary.
The same matrix should be used in the Kalman filter for a fair comparison between the
two filters. This matrix is constructed in Chapter 6.

• Measurement noise covariance matrix (Σz): indicating how much the measurement
noises (co)vary. The same matrix should be used in the Kalman filter for a fair com-
parison between the two filters. This matrix is also constructed in Chapter 6.
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• Learning rate (κ): indicating how quickly the state will climb uphill towards it true
value, based on the variational energy manifold. The higher this value, the faster the
state converges to its true value. However, a value being too high results in filter
instability. This parameter is not analyzed in this thesis. However, attention is paid to
the stability of the filter result. It can be concluded from Chapter 7 that none of the
filter results exploded, thereby verifying this assumption.

In order to analyze the filter results in Chapter 7, the update rule from Eq. (2-65) is im-
plemented in MATLAB by creating an LTI system using MATLAB command ss with the
following system matrices:

A =
(
D − κC̃T Π̃zC̃ − κ(D − Ã)T Π̃w(D − Ã)

)
∈ R(nx·(p+1))×(nx·(p+1))

B = κ
[
C̃T Π̃z (D − Ã)T Π̃wB̃

]
∈ R(nx·(p+1))×(ny ·(p+1)+nu·(d+1))

C = 0 ∈ R1×(nx·(p+1))

D = 0 ∈ R1×((ny ·(p+1)+nu·(d+1))

In order to run the filter for every new input-output pair, this system is discretized with
MATLAB command c2d using the ‘zero-order-hold’ method.
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Chapter 3

Quadrotor model

Both the DEM and Kalman filter need a model of the quadrotor dynamics. Therefore, the
goal of this chapter is to derive a useful, as simple as possible, quadrotor model that can be
used in both filters. First of all, modelling conventions regarding reference frames, orientation
and rotation and the modelling formalism are described in Section 3-1. These conventions
are used in Section 3-2 to construct a six DOF quadrotor model consisting of linear position
and velocity, orientation and angular velocity states in 3D. The model inputs are chosen
according to the available sensors in the lab setup. Since we are interested in a relatively simple
linear model, Section 3-3 describes some simplifications and gives the resulting linear model.
Appendix A-3 provides the model linearization. Finally, to not unnecessarily complicate the
filter results, the 12-state linear model is reduced to two states in Section 3-4.

3-1 Modelling conventions

Before defining the quadrotor model in detail, it is important to know in what frame quantities
are defined. Figure 3-1 shows the frame conventions of the inertial frame (corresponding to the
frame of the camera system, as explained in Chapter 4) and the body frame (corresponding
to the quadrotor frame).

Besides the reference frames, we need to choose an orientation representation in a 3D space.
Orientations for a 3D rigid body can be parameterized using quaternions and using Eu-
ler angles (used to construct rotation matrices). Although quaternions have been used for
quadrotor modelling [27], [28], they cannot provide a unique representation of a 3D orienta-
tion [29]. Euler angles have the disadvantage that they result in a gimbal lock (singularity for
θ = π

2 rad) [29], [30]. However, given the fact that a gimbal lock will never happen according
to the experimental setup described in Section 4-2 and the fact that rotation matrices are
commonly used, they will be chosen to define the models below.

Appendices A-1 and A-2 give the derivation of the rotation matrix for translational dynamics
(used to translate coordinates expressed in B into I) as well as the rotation matrix for
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Figure 3-1: Reference frames: the inertial frame I coincides with the East-North-Up (ENU)
standard frame as defined in ROS REP 103 [25]. The body frame B aligns with the Front-
Left-Up (FLU) frame of the quadrotor, such that the origin coincides with the quadrotor Centre
Of Mass (COM). The body frame origin is found by translating the inertial frame origin by
p = [x y z]T . Adapted from [26].

rotational dynamics (used to translate angular velocities expressed in B into Euler angle
rates). These matrices are summarized below, respectively [31]:

IRB =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

 (3-1)

IRr,B =

1 sφtθ cφtθ
0 cφ −sφ
0 sφsecθ cφsecθ

 (3-2)

As Appendix A-2 shows, the angular rotations approximate the Euler angle rates if the Euler
angles φ, θ and ψ are relatively small, meaning that the Euler angles represent the quadrotor
attitude in the body frame. This is indicated in Figure 3-2.

The last modelling convention considers the formalism used to define the quadrotor model.
This could either be the Euler-Lagrange or the Newton-Euler formalism. In most cases, the
Newton-Euler formalism is used. Although it is less general [32], it is more intuitive to read.
Therefore, the model provided below will follow the Newton-Euler formalism.
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Figure 3-2: Roll (φ), pitch (θ) and yaw (ψ) Euler angles that are used to translate coordinates
expressed in B into coordinates expressed in I. If these angles are small, they approximate the
angles around the body frame x-, y- and z-axis, respectively (as shown in this figure) and therefore
express the quadrotor attitude. Adapted from [26].

3-2 Nonlinear model

This section provides a six Degrees Of Freedom (DOF) nonlinear quadrotor model. Before
providing the nonlinear state-space model in Section 3-2-3, Section 3-2-1 and 3-2-2 derive the
model equations via Newton-Euler Equations Of Motion (EOM) and quadrotor dynamics,
respectively.

It is important to note that when modelling a quadrotor, the following assumptions are usually
made [31], [33]:

1. The quadrotor structure is rigid.

2. The quadrotor structure is symmetrical around all three axes.

3. The quadrotor CoM coincides with the body frame origin.

4. The propellers are rigid.

5. The thrust and drag produced by the rotors are proportional to the square of the rotor
rotational velocity.

The same assumptions apply to the model presented below.

3-2-1 Newton-Euler Equations Of Motion

The Newton-Euler EOM, applied to the quadrotor in the body frame, are given by:

f = mv̇ + Ω×mv (3-3)
τ = IΩ̇ + Ω× IΩ (3-4)
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where:

• f ∈ R3 is the force in the body frame, generated by the rotating rotors and gravity.

• τ ∈ R3 is the torque in the body frame, generated by the rotating rotors.

• m is the quadrotor mass.

• I ∈ R3×3 is the quadrotor inertia matrix. Due to the quadrotor symmetry, it has only
non-zero elements on its diagonal.

• v ∈ R3 is the quadrotor velocity with respect to the body frame orientation.

• v̇ ∈ R3 is the quadrotor acceleration with respect to the body frame orientation.

• Ω ∈ R3 is the quadrotor rotational velocity with respect to the body frame orientation.

• Ω̇ ∈ R3 is the quadrotor rotational acceleration with respect to the body frame orien-
tation.

By setting v =

uv
w

 and Ω =

pq
r

 to rewrite Eq. (3-3) and Eq. (3-4) and by using the

rotation matrices IRB and IRr,B, we can construct the quadrotor model equations in six
DOF (position and orientation are defined in I, linear and angular velocities are defined in
B) [31]:

ẋẏ
ż

 = IRB

uv
w

+

 0
0
−g


u̇v̇
ẇ

 =

rv − qwpw − ru
qu− pv

+ 1
m
f

φ̇θ̇
ψ̇

 = IRr,B

pq
r


ṗq̇
ṙ

 =


Iyy−Izz
Ixx

qr
Izz−Ixx
Iyy

pr
Ixx−Iyy
Izz

pq

+


1
Ixx1
Iyy
1
izz

 τ

(3-5)

where g represents the gravitional acceleration and Ixx, Iyy and Izz are the diagonal elements
of the inertia matrix I.

Since f and τ cannot be directly measured during flight, they cannot serve as model inputs.
Therefore, the next section will describe how the model inputs relate to the the thrust and
torque values using quadrotor dynamics.
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3-2-2 Quadrotor dynamics

Figure 3-3 shows the quadrotor free-body diagram. It can be concluded that each rotor has
its own contribution to the total force and torque acting on the quadrotor rigid-body. In
order to derive the force and torque, the following assumptions are made [34], [35]:

1. Each rotor is oriented, such that the thrust it generates is directed along b̂z.

2. Each rotor has exactly the same geometry (with mirrored geometry for rotors mounted
next to each other).

3. There are no other air flow effects in the neighbourhood of the rotors than only the air
flow generated by the rotors themselves.

Figure 3-3: Quadrotor free body diagram: rotor 1 and 3 rotate in ClockWise (CW) direction and
therefore generate an upward force (red) in b̂z direction and a torque (orange) causing a rotation
in CounterClockWise (CCW) direction. Rotor 2 and 4 rotate in CCW direction and therefore
generate an upward force in b̂z direction and a torque causing a rotation in CW direction. In
general, the rotors generate a torque having a value being around a factor 40 smaller than the
force value. Adapted from [26].

The total force in the body frame, caused by rotor rotations, is given by:

f =

0
0
T

 (3-6)

Theoretically, the thrust T is described by [36]:

T =
4∑
i=1

Ti =
4∑
i=1

cTω
2
i (3-7)

where cT is the so-called thrust coefficient with the purpose of creating a lumped parameter
model of the thrust generation. For a specific quadrotor, this parameter can be identified to
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give a proper relation between rotor velocity and generated thrust. This is one of the main
contributions of Section 5-4.

The total torque is given by the following relation:

τ =

τr1τr2
τr3

+

τg1τg2
τg3

 (3-8)

First of all, the velocities may be configured in such a way that the quadrotor starts rolling,
pitching and/or yawing. This is represented by the following torques for an X-type quadrotor
[36], [37]:

τr1τr2
τr3

 =


√

2
2 lcT (ω2

1 − ω2
2 − ω2

3 + ω2
4)√

2
2 lcT (−ω2

1 − ω2
2 + ω2

3 + ω2
4)

cQ(ω2
1 − ω2

2 + ω2
3 − ω2

4)

 (3-9)

where l denotes the rotor arm length. cQ is a lumped parameter used to model the torque
τr3 around the b̂z axis [38] and can be determined in a similar way as cT .

Furthermore, a difference in rotational velocities also results in a gyroscopic effect. This effect
actually entails a roll-inducing torque for nonzero angular velocity in pitch direction and a
pitch-inducing torque for nonzero angular velocity in roll direction, which can be mathemat-
ically represented as [39]:

τg1τg2
τg3

 = −IrΩ× b̂z(ω2 + ω4 − ω1 − ω3)

= Ir

−qp
0

ω
(3-10)

where Ir represents the rotor inertia and ω = ω2 +ω4−ω1−ω3 acts like a disturbance on the
system. In this case, the generated torque is linearly dependent on the rotational velocities,
instead of quadratically dependent as is the case for the torques given in (3-9).

As can be concluded, f and

τr1τr2
τr3

 can be calculated using the quadratic rotor rotational

velocities. However, as Section 4-1 will show, no sensors are available to measure the rotor
rotational velocities during flight. Instead, the motor Pulse Width Modulation (PWM) values
can be used as model inputs to relate to the rotor rotational velocities and thus to f andτr1τr2
τr3

.
As Section 5-4 will describe, the system identification experiments, used to relate motor
PWM values to force and torque values, make use of a MATLAB/Simulink toolbox [40]. This
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3-2 Nonlinear model 33

toolbox can directly control the motor PWM values. As a result, the rotors start rotating
and their speed is measured using an optical Revolutions Per Minute (RPM) counter. This
way, the rotor rotational velocity can be related to the motor PWM values as well as the
generated thrust. However, the PWM scale of this toolbox is different from the scale used by
the quadrotor software. Therefore, the rotor rotational velocity is given by:

ωi = cM (1) · pwmMi + cM (2)

= cM (1) · pwmAi
2.55 + cM (2)

= cA(1) · pwmAi + cA(2)

(3-11)

where cM and cA are 2D constant vectors containing the coefficients to translate motor PWM
values of the MATLAB/Simulink toolbox (pwmM) and the quadrotor software (pwmA) to
rotor rotational velocity, respectively. The values for these coefficients are given in Section 5-
4-1. Eq. (3-11) holds for pwmMi ≥ 0.2.

The rotational velocity squared is thus given by:

ω2
i = (cA(1) · pwmAi + cA(2))2

= (cA(1) · pwmAi + cA(2)) (cA(1) · pwmAi + cA(2))
= cA(1)2 · pwmA2

i + 2 · cA(1) · cA(2) · pwmAi + cA(2)2
(3-12)

As Section 5-4-2 will describe, the thrust results are better explained by a 2nd-order poly-
nomial without constant term (cT is a 2D vector). This holds for the torque coefficients
too.

The thrust can now be expressed in motor PWM values as follows:

T = cT (1)
4∑
i=1

ω2
i + cT (2)

4∑
i=1

ωi

= cT (1)
4∑
i=1

(
cA(1)2 · pwmA2

i + 2 · cA(1) · cA(2) · pwmAi + cA(2)2
)

+ cT (2)
4∑
i=1

(cA(1) · pwmAi + cA(2))

=
(
cT (1) · cA(1)2

) 4∑
i=1

pwmA2
i

+ (2 · cT (1) · cA(1) · cA(2) + cT (2) · cA(1))
4∑
i=1

pwmAi

+ 4 ·
(
cT (1) · cA(2)2 + cT (2) · cA(2)

)
= cPT (1)

4∑
i=1

pwmA2
i + cPT (2)

4∑
i=1

pwmAi + cPT (3)

(3-13)
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The torque in roll direction can be expressed as:

τr1 =
√

2
2 l

cT (1)
4∑

i=1,i 6=2,3
ω2
i + cT (2)

4∑
i=1,i 6=2,3

ωi − cT (1)
3∑
i=2

ω2
i − cT (2)

3∑
i=2

ωi


=
√

2
2 l

cT (1)
4∑

i=1,i 6=2,3

(
cA(1)2 · pwmA2

i + 2 · cA(1) · cA(2) · pwmAi + cA(2)2
)

+cT (2)
4∑

i=1,i 6=2,3
(cA(1) · pwmAi + cA(2))

−cT (1)
3∑
i=2

(
cA(1)2 · pwmA2

i + 2 · cA(1) · cA(2) · pwmAi + cA(2)2
)

−cT (2)
3∑
i=2

(cA(1) · pwmAi + cA(2))
]

=
√

2
2 l

cT (1) · cA(1)2
4∑

i=1,i 6=2,3
pwmA2

i + (2 · cT (1) · cA(1) · cA(2) + cT (2) · cA(1))
4∑

i=1,i 6=2,3
pwmAi

−cT (1) · cA(1)2
3∑
i=2

pwmA2
i − (2 · cT (1) · cA(1) · cA(2) + cT (2) · cA(1))

3∑
i=2

pwmAi

]

=
√

2
2 l

cT (1) · cA(1)2

 4∑
i=1,i 6=2,3

pwmA2
i −

3∑
i=2

pwmA2
i


+ (2 · cT (1) · cA(1) · cA(2) + cT (2) · cA(1))

 4∑
i=1,i 6=2,3

pwmAi −
3∑
i=2

pwmAi


= cPφ(1)

 4∑
i=1,i 6=2,3

pwmA2
i −

3∑
i=2

pwmA2
i

+ cPφ(2)

 4∑
i=1,i 6=2,3

pwmAi −
3∑
i=2

pwmAi


(3-14)

Similarly, the torque in pitch direction can be expressed as:

τr2 =
√

2
2 l

[
cT (1) · cA(1)2

( 4∑
i=3

pwmA2
i −

2∑
i=1

pwmA2
i

)

+ (2 · cT (1) · cA(1) · cA(2) + cT (2) · cA(1))
( 4∑
i=3

pwmAi −
2∑
i=1

pwmAi

)]

= cPθ(1)
( 4∑
i=3

pwmA2
i −

2∑
i=1

pwmA2
i

)
+ cPθ(2)

( 4∑
i=3

pwmAi −
2∑
i=1

pwmAi

)
(3-15)
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Similarly, the torque in yaw direction can be expressed as:

τr3 = cQ(1) · cA(1)2

 3∑
i=1,i 6=2

pwmA2
i −

4∑
i=2,i 6=3

pwmA2
i


+ (2cQ(1) · cA(1) · cA(2) + cQ(2) · cA(1))

 3∑
i=1,i 6=2

pwmAi −
4∑

i=2,i 6=3
pwmAi


= cPψ(1)

 3∑
i=1,i 6=2

pwmA2
i −

4∑
i=2,i 6=3

pwmA2
i

+ cPψ(2)

 3∑
i=1,i 6=2

pwmAi −
4∑

i=2,i 6=3
pwmAi


(3-16)

For the rest of this chapter, the model input is defined as
[
pwmA1 pwmA2 pwmA3 pwmA4

]T
.

However, in most equations T , τr1, τr2 and τr3 are used for notational convenience.

3-2-3 Nonlinear state-space model

Using derivations from the previous sections, we can rewrite Eq. (3-5) and express the com-
plete nonlinear quadrotor state-space model as [31], [39]:

ẍÿ
ż

 = IRB

u̇v̇
ẇ

+

 0
0
−g


u̇v̇
ẇ

 =

rv − qwpw − ru
qu− pv

+

 0
0

1
mT


φ̈θ̈
ψ̈

 = IRr,B

ṗq̇
ṙ


ṗq̇
ṙ

 =


Iyy−Izz
Ixx

qr
Izz−Ixx
Iyy

pr
Ixx−Iyy
Izz

pq

+

−
Ir
Ixx
q

Ir
Iyy
p

0

ω +


1
Ixx
τr1

1
Iyy
τr2

1
Izz
τr3



(3-17)

3-3 Linear model

Before linearizing the nonlinear model, first some simplifications are made. These simplifi-
cations rely on the assumption that the quadrotor is following non-aggressive and smooth
trajectories. This causes the quadrotor rigid-body angles as well as the rotational velocities
to be small. Small angles imply that the body frame orientation is approximately equal to
the inertial frame orientation. Therefore, IRr,B becomes an identity matrix and the following
relation holds: φ̈θ̈

ψ̈

 ≈
ṗq̇
ṙ

 (3-18)
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Furthermore, small angles imply that all rotors are rotating at approximately the same speed.
Therefore, the disturbance term ω disappears. This means that the moment introduced by
an individual rotating rotor is cancelled by the rotor next to it, so the role of rotor inertia
vanishes. The torques acting on the quadrotor rigid-body can now be written as:

τ =

τr1τr2
τr3

 =

τφτθ
τψ

 (3-19)

Small rotational velocities of the quadrotor imply negligible Coriolis terms, so these terms are
also removed from the model equations.

These simplifications render Eq. (3-17) in the following form (all states are now expressed in
the inertial frame):



ẋ
ẏ
ż
ẍ
ÿ
ż

φ̇

θ̇

ψ̇

φ̈

θ̈

ψ̈



=



ẋ
ẏ
ż

(cφsθcψ + sφsψ) 1
mT

(cφsθsψ − sφcψ) 1
mT

cφcθ 1
mT − g
φ̇

θ̇

ψ̇
1
Ixx
τφ

1
Iyy
τθ

1
Izz
τψ



(3-20)

The linear model is derived in Appendix A-3 and given by the following state equation:



ẋ
ẏ
ż
ẍ
ÿ
z̈

φ̇

θ̇

ψ̇

φ̈

θ̈

ψ̈



=



0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 g 0 0 0 0
0 0 0 0 0 0 −g 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0





x
y
z
ẋ
ẏ
ż
φ
θ
ψ

φ̇

θ̇

ψ̇



+



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1
mcBz

1
mcBz

1
mcBz

1
mcBz

0 0 0 0
0 0 0 0
0 0 0 0

1
Ixx
cBφ − 1

Ixx
cBφ − 1

Ixx
cBφ

1
Ixx
cBφ

− 1
Iyy
cBθ − 1

Iyy
cBθ

1
Iyy
cBθ

1
Iyy
cBθ

1
Izz
cBψ − 1

Izz
cBψ

1
Izz
cBψ − 1

Izz
cBψ




pwmA1
pwmA2
pwmA3
pwmA4



(3-21)

where cBz, cBφ, cBθ and cBψ are given by Eq. (A-22) until (A-25) in Appendix A-3.
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3-4 Reduced model

The goal of this section is to simplify the linear state-space model in Eq. (3-21) as much as
possible to not unncessarily complicate the filtering results, but still be able to draw useful
conclusions regarding filtering performance. Eq. (3-21) clearly indicates that the total state-
space consists of four independent linear systems. These subsystems include the following
states:

1. φ̇, φ, ẏ and y

2. θ̇, θ, ẋ and x

3. ż and z

4. ψ̇ and ψ

The experiment description in Section 4-2 indicates that the quadrotor will hover a few metres
away from a wind source. The quadrotor is oriented in such a way that the roll rate (and
therefore also the roll angle, linear y velocity and y position) is directly influenced by the air
flow coming from the wind source. Therefore, subsystem 1 is selected.
This subsystem can be even further reduced by only including states φ̇ and φ. Therefore, the
following model will be used in the filters:

[
φ̇

φ̈

]
=
[
0 1
0 0

] [
φ

φ̇

]
+
[

0 0 0 0
1
Ixx
cBφ − 1

Ixx
cBφ − 1

Ixx
cBφ

1
Ixx
cBφ

]
pwmA1
pwmA2
pwmA3
pwmA4

 (3-22)

To make the filter model complete, the following output equation is chosen:

y =
[
1 0

] [φ
φ̇

]
+
[
0 0 0 0

] 
pwmA1
pwmA2
pwmA3
pwmA4

 (3-23)

The argument for choosing this output equation is twofold: first of all, we could choose
to measure both states, because sensors are available for both quantities (see Section 4-1).
However, estimating a hidden state is much more interesting than estimating an observed
state from a filtering perspective. Therefore, it is chosen to measure one state. Secondly,
choosing to measure φ̇ would mean that the system is not completely observable (the system
has one unobservable mode: φ, since we try to construct the value of a quantity of which only
the derivative is measured). This implies that we have to add an extra state to the system: ẏ.
It is not preferred to include ẏ, because there is no sensor present that can properly measure
ẏ (it is only estimated on the quadrotor, see Section 4-1) and it makes the system more
complex than necessary. Therefore, it is chosen to measure φ. This choice makes the system
observable and the hidden state, φ̇, is influenced by the output as well as the inputs, both
of which are present in the state update rule of the DEM filter. The filter should be able to
come up with a proper state estimate, despite a mismatch in these measurements.
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Chapter 4

Experimental setup

This chapter describes the experimental setup used to gather data for filter analysis. It does so
by first giving an overview of the lab hardware and software setup in Section 4-1. The lab setup
includes the OptiTrack MoCap system, the Parrot AR.Drone 2.0 quadrotor, a TUD desktop,
a user-dependent laptop and two routers. The AR.Drone 2.0 and OptiTrack MoCap system
are described in Sections 4-1-1 and 4-1-2, respectively. Furthermore, the software platform
ROS is used to interconnect the different systems, as described in Section 4-1-3. Secondly,
Section 4-2 describes how this hardware and software setup is used, together with a wind
source to constitute the total setup used for the experiment considered in this thesis. Finally,
Appendix C gives some extra details regarding the quadrotor simulator and the experiment
plan corresponding to the content of this chapter.

4-1 Lab hardware and software setup

Figure 4-1 shows the Networked Embedded Robotics lab in Delft (NERDlab) within Delft
Center for Systems and Control (DCSC) used to conduct all quadrotor flight experiments
during this thesis. During the experiments, the lab consisted of several components. Figure 4-
2 gives an overview of these components and how they are interconnected.

The lab room contains 9 × 4 × 3 m free space [41], which is perfectly suited for conducting
the experiment described in Section 4-2. To perform an experiment in a safe way, the lab
provides the possibility to enclose the whole lab with a protective net cage, as can also be
seen in Figure 4-1.

The lab is equipped with an OptiTrack Motion Capture (MoCap) system able to measure the
quadrotor position and orientation in 3D space. As Figure 4-2 shows, this information is as-
sembled in the Motive:Tracker program, installed on a TU Delft (TUD) desktop present in the
lab. See Section 4-1-2 for more information about the OptiTrack system and Motive:Tracker.
Via Motive:Tracker, the quadrotor position and orientation are multicasted via a Netgear
Nighthawk AC1900 router. This router is connected with an Ethernet cable to a laptop run-
ning ROS packages that interpret the OptiTrack data and control the quadrotor. Section 4-1-3
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Figure 4-1: NERDlab with protective netting and Parrot AR.Drone 2.0 placed inside.

gives more information about the ROS packages used. The control commands are converted
to User Datagram Protocol (UDP) packets and sent via a Wireless Fidelity (Wi-Fi) network
to the quadrotor (see Section 4-1-1 for more information about the quadrotor) [42]. This
Wi-Fi network is established by connecting both laptop and quadrotor to another Netgear
Nighthawk AC1900 router that is not connected to the World Wide Web (WWW) to avoid
communication overhead. During the flight experiment, data is recorded in a ROS bag file.
In post-processing stage, this data is read out in MATLAB and processed for proper analysis.

Figure 4-2: Symbolic overview of lab components, including 10 OptiTrack Prime 17W cameras,
a TUD desktop computer (with Motive:Tracker installed), a user-dependent laptop (with ROS
and MATLAB installed), two Netgear Nighthawk AC1900 routers and a Parrot AR.Drone 2.0.
Images sources: [26], [43]-[49].
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4-1-1 Parrot AR.Drone 2.0 quadrotor

For the experiment in this thesis, the Parrot AR.Drone 2.0 quadrotor (as shown in Figure 4-3)
is chosen to be used. The Parrot AR.Drone 2.0 is a very popular quadrotor among researchers
[50]. This is no surprise, since Parrot has been able to deliver a product with relatively low
Time To Value (TTV) (i.e. the product owner quickly gets value out of the quadrotor). A low
TTV is caused by the fact that the AR.Drone 2.0 is inexpensive, light-weight and contains
internal control software to be able to hover, perform fast forward flight and ensure a safe
flight [50], [51].

Figure 4-3: Parrot AR.Drone 2.0 with Parrot battery attached and indoor hull detached.

Parrot also offers a software development guide and Software Development Kit (SDK), which
enables others to send high-level commands to the quadrotor from their own software package
[42]. The availability of the SDK has caused the Autonomy Lab group of the Simon Fraser
University (SFU) in Canada to make the AR.Drone 2.0 communication compatible with ROS
by implementing the ardrone_autonomy package [52]. This package is used by the Technical
University of Munich (TUM) vision group to create the tum_ardrone ROS package imple-
menting a quadrotor position controller [53]. Besides the position controller, this package also
offers a Graphical User Interface (GUI) giving the possibility to choose between controlling
the quadrotor automatically (using the position controller), using keyboard or using joystick.
The experiment in this thesis only considers joystick control (see Section 4-2).
The advantage of using ROS to control the quadrotor is the fact that the control software
can remain the same for simulation as for physical flights: the tum_ardrone package is also
compatible with the tum_simulator package. Therefore, the software development time is
reduced. Although simulation is not considered in this thesis, time has been spent on getting
the simulation environment running and therefore it will be the topic of Appendix C-1. This
appendix also proposes another possible simulator and indicates the preferred one for future
research.
Using the ardrone_autonomy package, the following sensor information can be received from
the quadrotor [42]:

• Attitude (neither in B, nor in I, but in a quadrotor-specific frame out of scope)

• Angular velocities in B
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• Altitude in I

• Linear velocities in B

• Linear accelerations in B

• Magnetic field intensity

• Pressure of the medium the drone is flying in

• Imagery of forward (and downward) view as seen from the drone

• Motor PWM values

This information can be received in real-time at two frequencies: either 15 Hz or 200 Hz [54].
200 Hz is chosen as update frequency, because it provides more accurate information about
the quadrotor movements.

4-1-2 OptiTrack MoCap system

As Figure 4-2 shows, the lab is equipped with 10 OptiTrack Prime 17W cameras. Each camera
has a horizontal Field Of View (FOV) of 70° and a vertical FOV of 49° [55]. Together, these
cameras span a volume of 9 × 4 × 2.2 m in which they are able to detect the 3D position of
reflective markers by making use of 850 nm InfraRed (IR) technology [41], [55]. A total of four
reflective markers are attached to the quadrotor (see Figure 4-4), such that the OptiTrack
system is able to construct a unique 3D quadrotor rigid-body representation at all time during
flight. The marker positions are communicated from the OptiTrack cameras via Ethernet
cables to the TUD desktop with running Motive:Tracker software [56]. The Motive:Tracker
program shows the reflective markers in space, calculates the 3D rigid-body position and
orientation and multicasts this information to the first Netgear router (as shown in Figure 4-
2). With a camera frame rate of 360 Frames Per Second (FPS) and a latency of 2.8 ms [55],
the complete OptiTrack system is able to provide the 3D rigid-body position and orientation
at a rate of 120 Hz.

The mocap_optitrack ROS package [57] is developed, such that the 3D position and orienta-
tion information multicasted by the Motive:Tracker can be properly interpreted and recorded
in a ROS bag file for post-processing.

Since the AR.Drone 2.0 update frequency is set to 200 Hz, the OptiTrack update frequency is
the limiting factor in the system. Therefore, all data is (sub)sampled at 120 Hz using linear
interpolation and the system equations are discretized with sampling time 1

120 s.

4-1-3 Robot Operating System

ROS is a robot software platform designed to encourage collaborations in the robotics area
between a significant amount of experts in different areas. By using standardized interfaces
and libraries, ROS aims to bridge the gap between the expert groups with different expertise
to allow for quickly building an interconnected and robust robotics software platform [58].
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Figure 4-4: Parrot AR.Drone 2.0 with indoor hull and OptiTrack markers attached.

As mentioned before, ROS is used in this thesis, due to the compatibility of simulation and
physical flight. The most important ROS packages that have been used to fly the AR.Drone
2.0 in the lab are listed below:

• ardrone_autonomy

• tum_ardrone

• mocap_optitrack

These packages are compatible with ROS Kinetic and Ubuntu 16.04 and run on the user-
dependent laptop in Figure 4-2. Using the GUI from the tum_ardrone package and the
AR.Drone 2.0 communication layer from ardrone_autonomy, the quadrotor is controlled using
joystick. The data is recorded during flight using the ardrone_autonomy andmocap_optitrack
packages to allow for post-processing. Figure 4-5 shows the most important ROS nodes and
topics used to collect flight data.

Figure 4-5: ROS node and topic interconnections to record data during flight.

The ardrone2/pose topic contains the quadrotor 3D position and orientation in the OptiTrack
system coordinate frame, thereby including the system output as defined in Section 3-4 (i.e.
the roll angle φ). The model inputs are given through the ardrone/navdata topic from the
quadrotor. This includes the motor PWM values for each motor separately. Finally, the
hidden state reference φ̇ (used to benchmark the DEM filter) is obtained by collecting the
angular velocity data from the ardrone/imu topic.
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4-2 Experiment description

Figure 4-6 shows the initial setup of the quadrotor experiment discussed in this thesis. The
setup consists of the above described OptiTrack MoCap system and the Parrot AR.Drone
2.0, and a wind source [59]. The wind source is a drum fan used to create smooth air flows
in the lab, such that the quadrotor movements will also be smooth and the resulting system
noises (as discussed in Section 2-3-2) will be smooth too.

Before the experiment, the quadrotor was positioned at the origin of the OptiTrack MoCap
system, indicated by the tape cross on the ground. The quadrotor was visually aligned with
this cross after which the small OptiTrack position and orientation values were set to zero in
Motive:Tracker. When aligned with the OptiTack axes, the quadrotor was turned on in order
to have the same coordinate frame as the OptiTrack MoCap system.

After initialization, the software was run and the quadrotor was manually controlled with a
joystick to hover at approximately 6 m from the wind source. The wind source was turned
on and kept on for a period of time that allowed to take data for 30 s while the wind was
constant.

The procedure described above was repeated a few times using different modes and orienta-
tions of the wind source. From these experiments, the one with the smoothest and cleanest
data was taken to be analyzed in Chapters 6 and 7.

Appendix C-2 provides an extensive universal experiment plan, as well as the exact details of
the experiment considered in this thesis.

During the experiment, it was observed that the quadrotor exhibited periodic behaviour as
a result of the air flows present in the lab. These air flows were caused by the rotor blade
movements of the quadrotor itself, as well as the air flows coming from the wind source. Walls
and other objects in the lab space caused the air flows to circulate. The air flow circulation is
the most probable cause of the periodic quadrotor movements. Section 6-2-2 shows that this
affects the roll rate process noise and gives possible explanations for this result.

Figure 4-6: Initial setup of the experiment considered in this thesis.
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Chapter 5

System identification

The main goal of this chapter is to elaborate on the experiments conducted to find the model
parameter values corresponding to the Parrot AR.Drone 2.0 to use in the quadrotor model.
These parameters include the mass (Section 5-1), arm length (Section 5-2), moment of inertia
(Section 5-3) and thrust and torque coefficients (Section 5-4). Background information on
the measurements is given in Appendix B.

5-1 Mass m

The mass to be used in the model consists of the mass of the quadrotor body with indoor hull
and the battery attached to it. These masses are all determined by measuring the mass three
times using a weighing scale with an accuracy of 1 g and averaging the values. The results
are given in Table 5-1.

Table 5-1: Mass values of different quadrotor components.

Component Mass
(kg)

Quadrotor frame with indoor hull 0.362
Parrot battery 0.119

Akku-King battery 0.135

5-2 Rotor arm length l

The arm length of a rotor is the distance between rotor axle and quadrotor COM. It is
determined by measuring the arm between two diagonally located rotors and dividing it by
two. This yields an arm length of 0.178 m for all rotors. This length is validated by also
measuring the distance between two neighbouring rotors and using the Pythagorean theorem.
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5-3 Inertia matrix I

This section derives the values in the quadrotor inertia matrix. In general, this matrix is
given by:

I =

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 (5-1)

Due to the assumption of a symmetric quadrotor, as explained in Section 3-2, all non-diagonal
terms become zero and we are left with:

I =

Ixx 0 0
0 Iyy 0
0 0 Izz

 (5-2)

There are different methods to determine the mass moment of inertia around the three prin-
ciple axes of the quadrotor. First of all, it can be determined geometrically by modelling
all parts of the quadrotor as uniform mass distributions with their COM being located at a
certain distance from the quadrotor COM (e.g. [60]-[62]). The disadvantage of these methods
is the simplifying assumption of the mass distribution and shapes of the different quadrotor
parts. A better approach may be to use Computer-Aided Design (CAD) tools that can auto-
matically calculate these values (e.g. [35]). However, CAD models often face the same kind of
simplifying assumptions. These assumptions can be overcome by doing an experiment, such
as the bifilar pendulum experiment (e.g. [63]). The disadvantage of this method is the fact
that it can be subject to measurement noise.
In this case, the bifilar pendulum experiment is chosen to be used, because it is a relatively
easy way of obtaining the moment of inertia of the complete AR.Drone 2.0, including indoor
hull. Furthermore, it is preferred not to decompose the quadrotor into all its separable parts
and a CAD model was not available.
Figure 5-1 shows a schematic view of this experiment. The wires are separated by distance
dw and have a length lw (in the figure indicated by D and h, respectively). In this case
the quadrotor is the test object that needs to be attached to some horizontal frame using
two parallel (thin) wires of equal length. The quadrotor is then rotated by an initial angle
α0 (in the figure indicated as θ) and released. This will introduce a damped quadrotor
oscillation around the axis parallel to the wires. During this experiment, the rotational
velocity of the quadrotor body is measured by collecting data from its own gyroscope using a
MATLAB/Simulink toolbox specifically designed for the AR.Drone 2.0 [40]. After collecting
this data, a simulation of the theoretical bifilar pendulum is run and the resulting rotational
velocity is fitted to the measured rotational velocity by adjusting three variables, including
the moment of inertia.
The resulting experiment values of the inertia components around the three axes are shown
in Table 5-2.
The inertia values around the x- and y-axis do not differ much, since the mass distributions
around these axes are approximately equal (except for the front camera and the slightly non-
symmetric shape of the indoor hull). When regarding the z-axis, the quadrotor has more mass
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Figure 5-1: Schematic view of bifilar pendulum experiment.

Table 5-2: Results of mass moment of inertia experiments.

Inertia component Value Value
(kg m2) (kg m2)
(batP) (batA)

Ixx 3.4 · 10−3 3.5 · 10−3

Iyy 4.0 · 10−3 4.1 · 10−3

Izz 6.9 · 10−3 6.9 · 10−3

distributed with a larger distance to the quadrotor COM, causing a higher inertia value. It
should be noted that the Akku-King battery is slightly heavier than the Parrot battery, which
introduces a slightly higher inertia value. See Appendix B-1 for more information about these
experiments.

It turns out to be difficult to verify these values based on other literature, since the values
found in the literature are varying (compare the values provided in [34], [64], [65] and [66]).
For the experiments presented here, only [64] and [66] can be used to compare with, because
[65] uses a simplified CAD model without indoor hull and [34] calculates the inertia values for
the AR.Drone 2.0 with outdoor hull. [64] actually uses the same experiment setup, but the
value for the moment of inertia is optimized using the MATLAB function fminsearch. This
function needs a proper loss function that drives the solution in the right direction. [64] uses
the L1 loss function, which calculates the absolute difference between two signals. However,
this loss function will return similar errors for inertia values that may differ 1 · 10−3 kg m2

from each other, which is a significant amount compared to the number given in Table 5-2.
Therefore, the method as described in Appendix B-1-3 seems to better fit the experiment
purpose. Furthermore, [66] provides similar inertia values as presented above, indicating that
these values can be used.

5-4 Aerodynamic thrust and torque coefficients cT and cQ

This section derives the values of the thrust and torque coefficients. The coefficient values
for the AR.Drone 2.0 have already been determined by others (see [34] and [64]). In [64],
the experiments were performed by mounting the quadrotor on a torque and force sensor just
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Figure 5-2: System overview controller inputs to rotor thrust and torque generated by rotor i.

above a table without indoor hull and by powering the quadrotor using a lab power supply. In
[34], the experiments were performed by mounting the quadrotor without indoor hull to dif-
ferent setups that were attached to a weighing scale and by powering the quadrotor using the
original Parrot batteries. Involving a weighing scale in the experiments possibly introduced
fluctuating values, causing the authors to execute a significant number of experiments and
average them. In conclusion, in both sources the quadrotor was located near a table surface
without indoor hull, possibly influencing the air flow through the rotors. Furthermore, the
voltage dependency of the rotor rotational velocity was not investigated. These aspects will
be the main contributions of the results presented in this thesis.

In order to determine the aerodynamic coefficients, it is important to understand the sys-
tem and flow of signals between high-level control inputs provided to the quadrotor and the
resulting thrusts and torques introduced by the rotating rotors. This system is displayed
in Figure 5-2. The figure shows that the quadrotor receives the commanded roll and pitch
angle, φc and θc, vertical speed, żc, and yaw rate, ψ̇c. Depending on the current quadrotor
state, these are translated into 4 PWM signals that are provided to the Electronic Speed
Controller (ESC) of each motor-rotor combination. The ESC controls the power to the mo-
tor, causing the rotors to rotate with a certain rotational velocity ωr that should come close
to the desired rotational velocity. Due to the blade geometry, the rotors generate a certain
thrust and torque, causing the quadrotor to move.

In the coefficient determination experiments, the Parrot control software is omitted, because
the behaviour of this block is not completely known and can only be described by a high-level
model. Instead, the aforementioned MATLAB/Simulink toolbox is used to immediately send
a certain PWM value to each individual ESC, as illustrated in Figure 5-2.

It is thus important to determine the relation between PWM value and resulting thrust and
torque. As the figure shows, this translation actually consists of two steps: PWM to rotational
velocity and rotational velocity to generated thrust/torque (characterized by the thrust and
torque coefficient, respectively). The first step will be described in Section 5-4-1. The second
step is the main topic of Sections 5-4-2 and 5-4-3, in which two different setups are used to
create the rotational velocity to thrust and torque characteristic, respectively. All datasets
used to construct the results in this section are given in Appendices B-2, B-3 and B-4.
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5-4-1 Relation between PWM and rotor rotational velocity

To characterize the relation between PWM value and rotor speed, the following aspects are
taken into account:

1. In theory, the ESC-motor-rotor combinations are exactly the same, but in practice they
will have slightly different characteristics.

2. The ESC-motor combination depends on the battery voltage, unless actively compen-
sated for.

3. The PWM values used in the MATLAB/Simulink toolbox differ from the PWM values
given by the AR.Drone 2.0.

It turns out that each ESC-motor-rotor combination is slightly different. The most deviating
rotor speeds (from rotor 1 and rotor 2) still deviate less than 1% from each other. This
reproduces very well at different PWM values, so this effect is ignored. However, this effect
is taken into account in the experiments by measuring the rotational velocities of either rotor
3 or 4, thereby giving an approximate average rotor velocity value.

Figure 5-3 and 5-4 provide the rotational velocity of rotor 4 given different battery voltages
and different PWM values (5-40 and 45-80, respectively). These figures are constructed using
eight experiments with a gradually increasing PWM value with steps of 5 from 0 to 100 and
back (in order to check on hysteresis effects). Each PWM value is kept constant for 10 s in
order to be able to average the battery voltage and to have enough time to manually measure
the rotational velocity of rotor 4. In total, this gives eight measurement points per rotational
velocity. See Appendix B-2-1 for the corresponding datasets.

After collecting the data points, a 1st-order polynomial fit is constructed that optimally fits
the measurement points per rotational velocity. The purpose of this fit is to show that the
PWM-ωr relation is battery-independent. Visually, these fits seem to be horizontal. However,
this is not completely true. To prove this, Figure 5-5 shows the percentage of the difference
between end and begin point of the fits with respect to their means per PWM setpoint. It
turns out that these percentages are less than 0.25%, indicating that the battery-dependency
of the rotational velocity for a certain PWM setpoint can be ignored. These experiments
are conducted using two types of batteries that are also used in the lab experiments: the
original Parrot batteries (indicated with batP) and somewhat bigger Akku-King batteries
(indicated with batA). Appendix B-2-2 shows the same figures, but with a distinction in
battery type. From these figures can be concluded that for each battery the fits can also be
regarded horizontal, so battery-dependence is not an issue in this system. Apparently, the
ESC actively controls the motor speed depending on the battery voltage. Furthermore, it can
be concluded that no hysteresis effect is present in the battery-dependent control of the ESC.

The attentive reader may notice that these plots are only created for PWM setpoints 5-80,
not for 5-100. This is caused by the fact that the rotational velocity measurements are highly
variable for PWM setpoints of 85 and higher, as will be shown below in Figure 5-6. This will
only introduce uncertainty in the measurements with very little practical usefulness, since the
rotors will reach those rotational velocities only for approximately 0.1 s during takeoff and in
case of aggressive manoeuvres. Both reach beyond the scope of this thesis.
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Figure 5-3: Battery dependency of rotor 4 velocity for PWM values ranging from 5 to 40.

Figure 5-4: Battery dependency of rotor 4 velocity for PWM values ranging from 45 to 80.
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Figure 5-5: Horizontality indication of fits.

Since rotor rotational velocity is independent of battery voltage, the PWM-ωr relation can
be constructed using a single line, which is shown in Figure 5-6. The figure shows a clear
linear relationship between PWM and rotational velocity. The relation for rotor i is given
in Eq. (5-3). The rotors start turning from 0.2 PWM on, so the relation clearly holds from
PWM 0.2 to 80. After 80, the rotational velocities are varying, as mentioned above. Figure 5-
6 shows that the rotational velocity starts deviating from the linear fit from PWM 85 to 100.
For these PWM setpoints the battery voltage dropped too much for the ESCs to compensate
for it. In theory, the linear relationship should hold until PWM 100 with constant battery
voltage. Given the unavailability of a lab power supply, a fully charged Akku-King battery
is used to quickly go to PWM 100 and reduce to PWM 80 with steps of 5. This way, the
battery is not loaded too much during the rest of the experiment and the battery is better able
to keep a constant voltage at its output. The resulting measurements are called ‘maxSpeed
batA’ and ‘maxSpeed batA 2’ in the figure and prove that the relationship between PWM
and rotational velocity is linear for the whole PWM range when disregarding battery voltage.
As mentioned, PWM values of 85 and higher are not important for the research goal in this
project, so the fact that the battery voltage will drop for PWM values of 85 and higher does
not require further consideration.

ωi = 3.7 · pwmMi + 130.9, for pwmMi ≥ 0.2 (5-3)

The previous results are all created using the aforementioned MATLAB/Simulink toolbox.
The toolbox actually provides a percentage (0-100) of the maximum PWM value that can
be given to the motors. It scales the percentage linearly to a range of 9 bits (0-511) being
required by the ESC software. However, the AR.Drone 2.0 reads out and provides the motor
PWM values on the ardrone/navdata topic as an 8-bit number (0-255). Given the fact that
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Figure 5-6: (Linear) relation between PWM setpoints and rotational velocity.

both methods use the same hardware, the assumption is that the provided PWM values are
the eight most significant bits of the 9-bit control signal (giving half of the resolution) and
thus the relation of PWM values would be a linear scaling. Using eight bits would make sense,
because a uint8 is a standard datatype and can easily be used to construct the message to
be published on the ardrone/navdata topic.

Constructing the relation between both ways of representing the PWM value is performed by
simultaneously measuring the rotational velocity of rotor 4 during hover flight and recording
the PWM values on the ardrone/navdata topic. Using the experiments performed above, the
rotor rotational velocity can be related to the PWM value the toolbox would give. This way,
the PWM value on the ardrone/navdata topic is related to the toolbox PWM value. These
measurements are performed on three points along the AR.Drone 2.0 PWM range by adding
two times an equal mass to each of the four quadrotor landing gears. The measurements
cover a range from 66% to 73% of maximum PWM. The region of operation in the considered
experiment in this thesis is roughly between 50% and 80% PWM, of which the maximum and
minimum values are very difficult to measure, because they rarely occur during non-aggressive
flight. Figure 5-7 shows the theoretical relation between the two PWM values, together with
the measured points. The points are located within 1% of the theoretical relation, so we can
conclude that the PWM values are linearly related to each other and the assumption made
above is valid.

The rotor rotational velocity can thus be obtained by recording the ardrone/navdata topic,
reading out the motor PWM values and using the scaling in Eq. (5-4) to obtain the rotational
velocity of rotor i.

pwmAi = 2.55 · pwmMi (5-4)
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Figure 5-7: Relation between AR.Drone 2.0 and toolbox PWM values.

5-4-2 Thrust coefficient cT

As given in Section 3-2-2, the relation between rotational velocity and generated thrust of
rotor i can be described by the following quadratic relation:

Ti = cT · ω2
i (5-5)

Figure 5-8 shows the physical test setup used to quantize the thrust coefficient. As mentioned
in [34], better methods exist to determine the coefficient. The same holds for the torque
coefficient. However, due to limited resources, the setup in Figure 5-8 is built for this purpose.
See Appendix B-3-1 for the setup design. To use this setup for thrust measurements, the
quadrotor with indoor hull and fully charged battery was placed on the aluminium lever arm
besides the table, such that the rotors can rotate in free air.

During the experiments, all motors receive increasing PWM setpoints from 0 to 100 and back
in steps of 5. The rotational velocity of rotor 4 is read from the hand-tachometer in RPM
and converted to rad s−1. The force sensor values are logged using a Data AcQuisition (DAQ)
system and a Virtual Instrument (VI) in LabView 2018 and divided by four to obtain the
generated thrust of one rotor. See Appendix B-3-2 for the complete measurement plan.

Using the experiment datasets given in Appendix B-3-3, Figure 5-9 is constructed. This figure
shows the measured force values for the rotational velocities of rotor 4 belonging to PWM in
the operating range 5-80 of three different experiments.

The figure indicates three different fits through the measurement points. The first fit is a
quadratic fit, which is in accordance with the theory as shown above. However, we can
clearly see the deviation from the experiment data. Therefore, a 2nd-order polynomial fit is
created that better fits the data. However, this fit does not go through the point (0, 0), which
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Figure 5-8: Setup to determine thrust coefficient cT .

Figure 5-9: Relation between rotational velocity and thrust.
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is more physically realistic, because the rotors will not generate thrust at all when standing
still. Therefore, a third fit is constructed: a 2nd-order polynomial fit without constant term.
This fit goes trough (0, 0) and is still able to properly represent the experiment data.

The fits are given by Eq. (5-6) until (5-8), respectively:

Ti,1 = 7.7 · 10−6 · ω2
i (5-6)

Ti,2 = 9.0 · 10−6 · ω2
i − 5.6 · 10−4 · ωi + 3.2 · 10−2 (5-7)

Ti,3 = 8.6 · 10−6 · ω2
i − 3.2 · 10−4 · ωi (5-8)

Table 5-3 provides the Mean Squared Error (MSE) of the three fits. The 2nd-order polynomial
fits indeed better represent the experiment data with respect to the quadratic fit. The MSE
of the 2nd-order polynomial fit without constant term is a bit higher than the 2nd-order
polynomial fit, but it makes physically much more sense, so this fit is chosen to be used.
It should be noted that the thrust is thus not described using a single thrust coefficient,
but using two coefficients that constitute a 2nd-order polynomial fit without constant term:
Eq. (5-8).

Table 5-3: MSE of thrust fit 1, 2 and 3.

Fit MSE
1 5.8 · 10−4

2 1.2 · 10−4

3 1.3 · 10−4

Validation

As can be concluded from Section 3-2-2, the ωi-thrust relation in Eq. (5-8) can be rewritten as
a 2nd-order polynomial PWM-thrust relation given in Eq. (3-13). By hovering the quadrotor
several times and recording the PWM values for the Parrot as well as the Akku-King batteries,
two operating points (caused by the different masses of each battery) can be constructed.

Figure 5-10 shows the PWM-thrust hovering operating points for both Parrot and Akku-
King battery, as well as the PWM-thrust relation of this work and the work presented in
[34] and [64]. The figure clearly indicates that none of the experimentally-determined PWM-
thrust relations goes through the operating points. The deviation of the relation in this
work is probably caused by the fact that the sensors were calibrated one month before the
experiments took place, due to COVID-19 circumstances. The limitations of the relations
from [34] and [64] have already been discussed above.

To overcome the deviations in the hovering operating points, the PWM-thrust relation is
estimated, based on the two operating points. The fourth relation in Figure 5-10 represents
the corresponding fit. Since this fit goes exactly through both operating points, while having
a similar form of PWM-thrust relation as given before, this fit is going to be used to construct
the noise and filter results in Chapters 6 and 7.
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Figure 5-10: PWM-thrust hovering operating points and PWM-thrust relation from this section
(Own work), [34] (Delft thesis), [64] (Eindhoven thesis) and fitted (Fit) using both operating
points. The data used to construct this figure is presented in Appendix B-3-4. This appendix
also shows the same figure with linearizations of these relations around the operating points.

5-4-3 Torque coefficient cQ

As can be concluded from Section 3-4, the torque coefficient is not necessary for analyzing
the noise and filter results in Chapters 6 and 7. However, for the sake of completeness and
the possibility to use this value in future research, this section describes the determination of
the torque coefficient.

The relation between rotational velocity and generated torque of rotor i can be described by
the following quadratic relation:

τi = cQ · ω2
i (5-9)

For determining the torque coefficient a similar approach is taken as for determining the
thrust coefficient. Figure 5-11 shows the setup used to estimate the torque coefficient. The
design of this setup is explained in Appendix B-4-1. Using this setup, the quadrotor is also
placed above free air.

For the AR.Drone 2.0 holds that rotor 1 and 3 (diagonally located rotors) produce a torque
in the same direction, being opposite to the torque produced by rotor 2 and 4. Therefore,
separate torque experiments are conducted for rotor 1 and 3 and for rotor 2 and 4. In these
experiments, two rotors turn at the same time in order to let the total torque be directed
around the theoretical COM of the quadrotor, which is desired with this torque setup. Both
motors receive the same PWM setpoints as in case of the thrust setup (i.e. 0 to 100 and back
in steps of 5). The data is logged in the same way as for determining the thrust coefficient,
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Figure 5-11: Setup to determine torque coefficient cQ.

except that the measured force value is now divided by two, not by four, and multiplied by
the arm length to get the corresponding torque value. The complete measurement plan is
given in Appendix B-4-2.

Using the data in Table B-7, Figure 5-12 is created. This figure contains exactly the same
content as Figure 5-9, but now for the torque coefficient using four different experiments: two
using rotor 1 and 3 and two using rotor 2 and 4.

Again, three fits are constructed: a quadratic fit (given by Eq. (5-10)), a 2nd-order polynomial
fit (given by Eq. (5-11)) and a 2nd-order polynomial fit without constant term (given by Eq. (5-
12)). Their respective MSE values are reported in Table 5-4. In this case, the quadratic fit
represents the data well too and the 2nd-order polynomial fit without constant term even has
a lower MSE value than the 2nd-order polynomial fit. Eq. (5-12) is thus chosen to be used to
describe the torque production of the rotors.

τi,1 = 2.2 · 10−7 · ω2
i (5-10)

τi,2 = 2.6 · 10−7 · ω2
i − 2.3 · 10−5 · ωi + 1.8 · 10−3 (5-11)

τi,3 = 2.4 · 10−7 · ω2
i − 9.9 · 10−6ωi (5-12)
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Figure 5-12: Relation between rotational velocity and torque.

Table 5-4: MSE of torque fit 1, 2 and 3.

Fit MSE
1 1.1 · 10−6

2 7.3 · 10−7

3 7.2 · 10−7
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Chapter 6

Noise analysis

As discussed in Chapter 2, the nature of the noises plays an important role in the performance
of the DEM filter. So before presenting the filter results in the next chapter, this chapter
analyzes the noises to check whether the coloured noise assumption made in Chapter 2 is
correct. This section firstly gives the definition of process noise and measurement noise in
Section 6-1. Secondly, in order to determine the coloured noise properties (i.e. the covariance
matrix and smoothness) of the noises, the noise signals should be known. However, it will
be shown that in practice these signals cannot be determined. Therefore, an assumption on
the measurement noise is made in Section 6-2. Thirdly, the coloured noise properties of
both measurement and process noise are constructed in Sections 6-2-1 and 6-2-2, respectively.
These sections also validate the Laplace approximation from Chapter 2 by showing that the
noise signals are Gaussian distributed. Fourthly, Section 6-3 discusses the assumption that
coloured noise is produced by filtering a white noise sequence with a Gaussian filter. Finally,
the idea and validation of another smoothness estimation method is presented. This method
will shortly be described in Section 6-4 and needs further research.

6-1 Noise definition

The general LTI dynamic model description is given by Eq. (2-34) and (2-35) in Section 2-3-1
in which w and z represent the process and measurement noise, respectively. In discrete
form, these equations yield:

xk+1 = Adxk +Bduk +wk

yk = Cdxk + zk
(6-1)

where xk, uk, yk, wk and zk represent the state, input, output, process noise and measure-
ment noise values at time instance k, and Ad, Bd and Cd denote the discretized state, input
and output matrices, respectively. As mentioned in Section 4-1-2, the sampling frequency for
discretization is chosen to be 120 Hz.
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The process noise accounts for the error made in modelling the states. For a discretized LTI
model in general, this error consists of the following elements [67]:

• Mis-modelled system dynamics
For the model considered in this thesis, the mis-modelled dynamics include the non-
ideal relation between PWM value and generated thrust as well as other (nonlinear)
effects that are not captured in the LTI model.

• The existence of a hidden state that is not captured in the model
The model considered in this thesis does not capture motor dynamics and their influence
on rotor dynamics. The dynamics of brushless Direct Current (DC) motors are often
modelled by a 1st-order system [68], thereby adding an extra state to the system.

• The approximations made to simplify the model (e.g. using a Taylor expansion to de-
scribe the dynamics in a linear form)
Several approximations are used to construct the LTI model from Chapter 3. These
include neglecting Coriolis terms and the disturbance term and setting the rotation
matrix for rotational dynamics equal to identity (by the small angle assumption).

• The discretization of time
Time discretization introduces a finite accuracy to the state and input values and thus
to the process noise value.

The measurement noise accounts for mis-modelled measurement dynamics (i.e. sensor inac-
curacies and electrical non-idealities on data transport wires).

In the characterization of the noises in the next section, these individual aspects are not
taken into account. They are listed here for the sake of completeness and to understand what
components the noises consist of.

6-2 Noise characterization

In contrast to the information provided to the filters, enough sensor information is available
to calculate the noises. Given an initial state and writing out the discrete state equation for
the first few samples, we obtain:

x1 = Adx0 +Bdu+w0 (6-2)
x2 = Adx1 +Bdu1 +w1 (6-3)

= A2
dx0 +AdBdu0 +Adw0 +Bdu1 +w1 (6-4)

x3 = Adx2 +Bdu2 +w2 (6-5)
= A3

dx0 +A2
dBdu0 +A2

dw0 +AdBdu1 +Adw1 +Bdu2 +w2 (6-6)
...
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The previous expression can be written in compact form as:

xk = Akdx0 +
k−1∑
i=0

Ak−i−1
d Bdui +

k−1∑
i=0

Ak−i−1
d wi (6-7)

The compact form of the discrete state equation can be trivially converted to the compact,
discrete form of the output equation:

yk = CdA
k
dx0 + Cd

k−1∑
i=0

Ak−i−1
d Bdui + Cd

k−1∑
i=0

Ak−i−1
d wi + zk (6-8)

Given the fact that the initial state is known and the evolving state and input values over
time can be calculated using the model, the first two terms in Eq. (6-8) are known and we
are left with the noise dynamics. The complete observed noise dynamics yn can be derived
from the above equation and equals:

yn,k = Cd

k−1∑
i=0

Ak−i−1
d wi + zk (6-9)

Writing out above equation for the first five samples in matrix form, one obtains:


yn,1
yn,2
yn,3
yn,4
yn,5

 =


Cd 0 0 0 0
CdAd Cd 0 0 0
CdA

2
d CdAd Cd 0 0

CdA
3
d CdA

2
d CdAd Cd 0

CdA
4
d CdA

3
d CdA

2
d CdAd Cd




w0
w1
w2
w3
w4

+


z1
z2
z3
z4
z5

 (6-10)

As can be seen, the above equation does not allow to trivially retrieve w and z as separate
noise signals, since it is an underdetermined set of equations.

In literature, there are existing methods to estimate the the noise covariance matrices (see
e.g. [69] and [70]). However, in this case we also need a smoothness value representing the
colouredness of the noises. Since we have little experience with the smoothness value in our
research group, we want to gain more insight in this value. Therefore, the next sections will
take another approach to construct the process and measurement noise covariance matrices
and derive a smoothness value for each of the noise signals. These smoothness values will be
discussed in Chapter 7.

6-2-1 Measurement noise

The measurement noise characteristics can be obtained relatively easily by measuring the
output signal when the quadrotor is standing on the ground. Here, we make use of the
assumption that the measurement noise characteristics are the same for the case where the
quadrotor is standing on the ground and the case where the quadrotor is flying in the air.

Since the output is defined as the roll angle measured by the OptiTrack system, the assumption
is verified by looking at the error in marker position estimation by the system as reported in
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Figure 6-1: Measurement noise, recorded during first six seconds of experiment. This signal has
a standard deviation of σz = 9.92 · 10−5 rad.

Motive:Tracker. This error stays the same in aforementioned cases, so we can assume that
the characteristics of the noise present on the roll angle data also stay the same in both cases.

In order to improve the measurement noise characteristics calculation, the experiment is
designed in such a way that the quadrotor was first standing a few seconds on the ground
before taking off. This way, the roll angle data could be recorded using exactly the same
experiment setup as used to record the flight data used in the next section. The characteristics
of the measurement noise thus properly represent the measurement noise characteristics of
the output as used in the next section.

Figure 6-1 shows the roll angle data during the first six seconds of the experiment. Take care
of the scaling of amplitude values. Using the MATLAB function std the standard deviation
of this signal is determined to be 9.92 · 10−5 rad. The measurement noise covariance matrix
equals the measurement variance and thus is given by:

Σz = σ2
z = 9.83 · 10−9 (6-11)

The measurement noise is approximately three orders of magnitude smaller than the peak
values of the output itself (which are in the order of 10−1 rad). This fact will be used in the
next section to derive the process noise characteristics.

Figure 6-2 shows the measurement noise distribution. Furthermore, it shows a Gaussian fit
on this distribution. The same is displayed for the 1st- and 2nd-order derivatives of the
measurement noise. From this figure can be concluded that the measurement noise and
its derivatives are Gaussian distributed, thereby validating the Laplace approximation in
Section 2-2-2. Appendix D-1 shows that the same holds for the higher-order derivatives until
at least order 6 (as used in the DEM filter in the next chapter).

Dennis Benders Master of Science Thesis



6-2 Noise characterization 63

Figure 6-2: Distributions of z and its first two derivatives, together with their corresponding
Gaussian fit.

As both process and measurement noise are described as coloured noise, we want to know
the smoothness value of the measurement noise. As explained in Section 2-3-2, the smooth-
ness value can be obtained by fitting the Gaussian filter autocorrelation to the measurement
noise autocorrelation. Figure 6-3a shows the autocorrelation function of the measurement
noise with a fitted Gaussian filter autocorrelation. The smoothness, or kernel width, of the
Gaussian filter that makes the Gaussian filter autocorrelation approximate the measurement
noise autocorrelation the best is shown in Figure 6-3b and equals:

sz = 7.10 · 10−3 (6-12)

As indicated in Section 2-3-2, the lower the smoothness value, the more the Gaussian fil-
ter autocorrelation approximates a delta function, the less correlation can be found in the
measurement noise and thus the less coloured the noise is.

6-2-2 Process noise

In contrast to the measurement noise, the process noise only takes non-zero values if the
quadrotor is actually moving. Therefore, we cannot take a zero measurement to derive its
characteristics. Furthermore, as explained in Section 6-2, we cannot directly compute the
process noise from the output samples we get during flight. Therefore, this section will show
that we can calculate the process noise using the following equation:

wk = xk+1 −Adxk −Bduk (6-13)
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(a) Autocorrelation (b) SSE

Figure 6-3: The optimal Gaussian filter of which the autocorrelation fits the autocorrelation of
z in terms of SSE has kernel width sz = 7.10 · 10−3 s.

So in order to calculate w, we need state values xk+1 and xk and input values uk. The inputs
are directly measured. For the states, we can use the best sensor sources in our experimental
setup. The most reliable roll angle source is the OptiTrack system. The only source for the
roll rate is the quadrotor gyroscope. It will be shown that the noise of both sensors is very
small compared to the state values, such that we can use these signals to calculate the process
noise.

The noise of the measured roll angle has already been discussed in the previous section. The
measurement noise is three orders of magnitude smaller than the measured output during the
experiment: z � y. It means that we can take the output to represent the roll angle. Since
we are mainly interested in the hidden state estimate of the filters, we can safely use this
value measurement to derive the process noise characteristics.

The noise of the roll rate measured by the quadrotor gyroscope is given in Figure 6-4. We can
draw a similar conclusion as for the roll angle measurement, based on data recorded when
the quadrotor is standing on the ground. The measured values during the experiment are
in the order of 100, whereas the noise values are in the order of 10−4, meaning that also in
this case the noise is three orders of magnitude smaller than the measured values during the
experiment. Therefore, we will use the roll rate measurement of the quadrotor gyroscope to
derive the process noise characteristics.

Figure 6-5 shows the process noise signals. The figure shows that w1 = wφ has a relatively
low value with respect to the roll angle values in the experiment, while w2 = wφ̇ is given
in the same order of magnitude as the roll rate during the experiment. The process noise
covariance matrix is calculated using the MATLAB command cov and equals:

Σw =
[
σ2
w1 σ2

w1w2
σ2
w2w1 σ2

w2

]
=
[
9.10 · 10−7 3.62 · 10−5

3.62 · 10−5 1.43 · 10−2

]
(6-14)

Figure 6-6 and 6-7 show the distribution of w1 and w2 and their 1st- and 2nd-order derivatives.
The Gaussian fit in the figures shows that w1 and its 1st- and 2nd-order derivatives and
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Figure 6-4: AR.Drone 2.0 gyroscope roll rate noise, recorded when drone was standing on the
ground in the experiment. This signal has a standard deviation of σφ̇ = 6.73 · 10−4 rad s−1.

Figure 6-5: Process noise, calculated using OptiTrack roll angle, AR.Drone 2.0 gyroscope roll
rate and AR.Drone 2.0 PWM values recorded during the experiment.
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Figure 6-6: Distributions of w1 and its first two derivatives, together with their corresponding
Gaussian fit.

the 1st- and 2nd-order derivatives of w2 are Gaussian distributed, thereby validating the
Laplace approximation made in Section 2-2-2. However, w2 itself does not follow a Gaussian
distribution and seems to have two peak values around w2 = 0.04 rad s−1 and w2 = 0.18
rad s−1. The first peak value is introduced by the fact that w2 does not follow a perfect sine
wave. This is caused by the fact that, instead of a minimum, a small peak occurs around
t = 2.3 s. Furthermore, w2 stays at that value for a while at the end. The second peak
in the distribution is caused by the fact that the second peak in w2 is relatively low and
approximately equal to 0.18 rad s−1. Appendix D-2 shows that the Laplace approximation is
also valid for the higher-order derivatives up to and including at least order 6.

The periodic behaviour in w2 can be related to different causes. Since w2 is calculated using
the gyroscope roll rate and the motor PWM values, it can be concluded that the motor PWM
values do not properly reflect the thrust generated by each rotor to induce the measured
roll rate. This mismatch is caused by the air flows around the quadrotor. The air flows
around the quadrotor are produced by rotor blade movements as well as the external wind
source and influenced by the lab environment (including walls and other objects). When
looking at the experiment video, the air flows cause the quadrotor to make relatively big
movements (including movements in positive and negative roll direction) with a periodicity
of approximately 1 s. This corresponds to the periodicity of the process noise in Figure 6-5.

The effect of these air flows can be explained by four different phenomena. Firstly, air flows
perpendicular to the plane in which each rotor is rotating have impact on the generated thrust
by that rotor [71]. This is not accounted for in the system model. Secondly, a PWM value
does not directly represent a rotor rotational velocity. Therefore, the system model would be
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Figure 6-7: Distributions of w2 and its first two derivatives, together with their corresponding
Gaussian fit.

more accurate when including the motor and rotor dynamics. In theory, this should be done
for each motor-rotor combination separately, since each combination has slightly different
characteristics. Thirdly, the rotor blades are not exactly the same, so it would be better to
include a thrust coefficient for each rotor separately. Finally, system linearization causes the
PWM-thrust curve to lie below the nonlinear PWM-thrust curve. The error between the two
curves is bigger for the lowest PWM values than for the highest PWM values measured, as
shown in Figure B-10 in Appendix B-3-4. To track down the influence of each phenomenon
described above would be a complex task, which is outside the scope of this thesis. It is
therefore considered as future work.

In order to determine the smoothness of w2, the noise aspect described above is not desired,
since the kind of smoothness defined above is acting on a whole different time frame than the
smoothness leveraged by the DEM filter. Therefore, we would like to remove this behaviour
by fitting a function to this ‘global’ behaviour and calculating the residual. This is shown in
Figure 6-8.

Using w1 and the residual of w2, w2,res, we can fit a Gaussian filter autocorrelation on the
process noise autocorrelations and derive their smoothness values by minimizing the SSE
between the autocorrelations.

Figures 6-9a and 6-9b show the result for w1. The smoothness for which the Gaussian filter
autocorrelation best fits the autocorrelation of w1 is given by:

sw1 = 9.30 · 10−3 (6-15)
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Figure 6-8: Process noise w2, together with its Fourier fit and residuals after fitting.

(a) Autocorrelation (b) SSE

Figure 6-9: The optimal Gaussian filter of which the autocorrelation fits the autocorrelation of
w1 in terms of SSE has kernel width sw1 = 9.30 · 10−3 s.
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(a) Autocorrelation (b) SSE

Figure 6-10: The optimal Gaussian filter of which the autocorrelation fits the autocorrelation of
w2,res in terms of SSE has kernel width sw2,res

= 3.80 · 10−3 s.

The result for w2,res is shown in Figures 6-10a and 6-10b. The smoothness value for w2,res is
thus given by:

sw2,res = 3.80 · 10−3 (6-16)

As mentioned before, we would expect the process noise (containing unmodelled system dy-
namics) to have higher smoothness values than the measurement noise (only containing sensor
noise). However, it can be concluded that w1 and w2,res have smoothness values in the same
range as z. w1 is defined as the system output and therefore contains a very limited amount
of unmodelled system dynamics (mostly related to linearization and discretization of time).
w2 contains a lot of smoothness, but this smoothness is acting on a larger timescale and not
giving useful information about the noise derivatives and can therefore be ignored. It is thus
recommended to design an experiment in which w2 has smoothness on a timescale that can
be leveraged by the DEM filter.

Despite these facts, the next chapter proves that higher-order derivatives exist and contain
information that can be used to construct a proper state estimate by showing the DEM filter
results.

6-3 Gaussian filter validity

The goal of this section is to draw a conclusion on the validity of the Gaussian filter assumption
(i.e. coloured noise is generated by convoluting a white noise sequence with a Gaussian filter).

Figures 6-11, 6-12 and 6-13 show the measurement and process noises, together with a white
noise signal generated using the same mean and variance of the original noise, and a coloured
noise signal generated by convoluting the white noise signal with a Gaussian filter with the
smoothness values found above as kernel widths. The figures indicate that all noises are
more comparable to the generated coloured noise than to the white noise signal. The figures
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also indicate that z and w2,res are comparable in smoothness to the corresponding generated
coloured noise signals. w1 is only comparable in smoothness in limited time frames. Sec-
tion 7-2 will confirm these observations by showing that the DEM filter always outperforms
Kalman for smoothness values corresponding to z and w2,res, while it requires tuning for the
smoothness value corresponding to w1.
The figures also indicate that the smoother the noise, the more stable the smoothness in the
generated coloured noise signal over the whole time frame is. However, this effect is not visible
in the experiment data.
In conclusion, the Gaussian filter validity depends on the purpose. If we want to have an
accurate description of the measurement and process noise during an experiment, the Gaussian
filter is too optimistic regarding stability of the smoothness over time and should not be used.
On the other hand, if one is interested in estimating the smoothness value, the Gaussian
filter approach will result in proper values. However, care has to be taken for relatively high
smoothness values, as indicated by the filter results for the smoothness value obtained for w1.

Figure 6-11: From top to bottom: white noise with same distribution as z, coloured noise
generated by convoluting the white noise with a Gaussian filter with kernel width equal to sz, and
z itself.

6-4 Another smoothness estimation method

Until now, this chapter has focused on estimating the smoothness values sz, sw1 and sw2,res

using the Gaussian filter assumption. These smoothness values are meant to be an educated
guess for the single smoothness value giving the best DEM filter results with respect to using
other smoothness values. As described in Chapter 2, the smoothness value is used in the
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Figure 6-12: From top to bottom: white noise with same distribution as w1, coloured noise
generated by convoluting the white noise with a Gaussian filter with kernel width equal to sw1 ,
and w1 itself.

Figure 6-13: From top to bottom: white noise with same distribution as w2,res, coloured noise
generated by convoluting the white noise with a Gaussian filter with kernel width equal to sw2,res

,
and w2,res itself.
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theoretical representation of the covariance matrix of generalized motions. This would mean
that the covariance matrix of the generalized system output should have the same form as
the theoretical covariance matrix of a generalized signal in case the generalized system output
does not contain an error and perfectly represents the roll angle measurement dynamics. So by
calculating the covariance matrix of the generalized system output and relating the elements
to the elements in theoretical covariance matrix, the smoothness value can be calculated.

The theoretical covariance matrix of z̃ (with p = 6) is given by [23]:

Σ̃z =



σ2
z 0 − σ2

z
2s2 0 3σ2

z
4s4 0 −15σ2

z
8s6

0 σ2
z

2s2 0 −3σ2
z

4s4 0 15σ2
z

8s6 0
− σ2

z
2s2 0 3σ2

z
4s4 0 −15σ2

z
8s6 0 105σ2

z
16s8

0 −3σ2
z

4s4 0 15σ2
z

8s6 0 −105σ2
z

16s8 0
3σ2
z

4s4 0 −15σ2
z

8s6 0 105σ2
z

16s8 0 −945σ2
z

32s10

0 15σ2
z

8s6 0 −105σ2
z

16s8 0 945σ2
z

32s10 0
−15σ2

z
8s6 0 105σ2

z
16s8 0 −945σ2

z
32s10 0 10,395σ2

z
64s12


(6-17)

This matrix contains six different expressions involving s: σ2
z

2s2 , 3σ2
z

4s4 , 15σ2
z

8s6 , 105σ2
z

16s8 , 945σ2
z

32s10 and
10,395σ2

z
64s12 . By equating each element involving one of these expressions to the corresponding

element in the covariance matrix of the generalized output, different values for the smoothness
can be calculated. The result is shown in Table 6-1.

Table 6-1: Smoothness values calculated using each element in Σ̃z that should theoretically
be calculated with an expression involving s. The first value corresponds to calculation using
elements on the diagonal, the next terms correspond to a calculation using elements further away
from the diagonal.

σ2
z

2s2
3σ2
z

4s4
15σ2

z
8s6

105σ2
z

16s8
945σ2

z
32s10

10,395σ2
z

64s12

1.22 · 10−4 1.94 · 10−3 4.26 · 10−3 3.74 · 10−3 6.59 · 10−3 5.55 · 10−3

1.15 · 10−4 2.86 · 10−3 2.94 · 10−3 5.53 · 10−3 4.70 · 10−3 -
1.15 · 10−4 2.86 · 10−3 2.94 · 10−3 5.53 · 10−3 4.70 · 10−3 -

- 2.09 · 10−3 4.61 · 10−3 4.03 · 10−3 - -
- 2.09 · 10−3 4.61 · 10−3 4.03 · 10−3 - -
- - 3.43 · 10−3 - - -
- - 3.43 · 10−3 - - -

In theory, all calculated smoothness values should be same. In practice, they differ from each
other, as becomes clear in Table 6-1. This is caused by the fact that the generalized output
covariance matrix does not match the theoretical covariance matrix exactly. Despite the
different smoothness values, the smoothness values calculated using the higher-order elements
are in the same region as calculated earlier in this chapter. As the next section will show,
the smoothness values are also in the range of the ‘optimal’ smoothness for which DEM
outperforms Kalman. Given this promising result, calculating the smoothness values this
way is certainly worth further investigation and will therefore be considered future work.
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Chapter 7

Filter results

This chapter shows the DEM filter performance results on recorded experimental quadrotor
flight data. First of all, Section 7-1 will show the usefulness of generalized coordinates (for
states, output and inputs) for state estimation with DEM. Secondly, Section 7-2 will prove
that DEM outperforms the Kalman filter, as well as show the values for tuning parameters
p, d and s for which the outperformance of Kalman holds. Appendix E provides the complete
filter results dataset, based on which the figures in this chapter are constructed.

7-1 The impact of generalized motions on state estimation

Chapter 2 has shown that the main power of the DEM filter is the fact that it leverages
the information contained in (smooth) noises for state estimation. This information comes
in the form of different orders of derivatives of the states, outputs and inputs, weighted by
precision matrices. This section will show the importance of the derivatives for the DEM
state estimation performance on recorded quadrotor flight data.

Figure 7-1 shows the DEM state estimation results with and without generalized states. When
using generalized states, there is a very slight increase in error for the observed state, but
this is orders of magnitude lower than the error decrease on the hidden state. Clearly, using
generalized states has a positive influence on the DEM filter state estimation performance.

Figure 7-2 shows the DEM state estimation results with and without generalized output.
Similar to generalized states, generalized output introduces a very slight error increase for the
observed state and orders of magnitude higher error decrease for the hidden state. Therefore,
including generalized output also has a positive influence on the DEM filter state estimation
performance.

Figure 7-3 shows the DEM state estimation results with and without generalized inputs.
In contrast to generalized states and generalized output, generalized inputs do not have a
significant impact on the observed as well as hidden state estimation error.
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Figure 7-1: Impact of using generalized states on DEM state estimation. The following parameter
values are used: p ∈ {0, 2}, d = 2 and s = 0.005 s.

Figure 7-2: Impact of using generalized output on DEM state estimation. The following param-
eter values are used: p = 2, d = 2 and s = 0.005 s. p = 2 is used to have access to generalized
states, but all output derivatives are set to zero.
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Figure 7-3: Impact of using generalized inputs on DEM state estimation. Take care that both
DEM estimates are overlapping. The following parameter values are used: p = 2, d ∈ {0, 2} and
s = 0.005 s.

7-2 Benchmarking DEM

Figure 7-4 shows one of the main results in this thesis: the DEM filter is able to outperform
the Kalman filter in estimating the hidden state as the SSE of the DEM estimate is lower
than the SSE of the Kalman estimate.

This result is valid for specific values of tuning parameters p, d and s. However, the result can
be extended to bigger tuning spaces of p, d and s values. Figure 7-5 shows the varying SSE
values of the DEM filter for all combinations of p and d in the range 1 to 6 per smoothness
value as well as the constant SSE for the Kalman filter. Since the error bars indicate minimum
and maximum performance of all combinations of p and d values, the figure clearly shows that
there is a big design space of parameters p, d and s in which DEM will always outperform
Kalman. This holds for smoothness values s = 9 · 10−4 s up to and including s = 8 · 10−3 s.

If the noise analysis, similar to the work in the previous chapter, returns smoothness values
in the range of 9 · 10−4 s, the left-hand side of the figure tells us that, on an average for all
p and d combinations, a small adjustment in s will significantly change the filter results. It
is still possible to outperform Kalman, but it requires more tuning of p and d. Therefore, s
becomes a critical tuning parameter in this case. This is expected, since a low smoothness
value corresponds to less smooth noise, meaning that derivatives provide less information and
the advantage of the DEM filter with respect to Kalman disappears. The right-hand side of
the figure indicates that for bigger s values, it is still possible to outperform Kalman, but it
differs per combination of p and d. In this case p and d become the critical tuning parameters.
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Figure 7-4: Comparison of measured roll rate and DEM and Kalman roll rate estimates for p = 2,
d = 2 and s = 0.005 s.

The figure also displays the estimated smoothness values from the previous section. These
smoothness values are located in the tuning subspace that results in outperformance of the
Kalman filter in almost all cases. Only a few combinations of p and d for s = 9.0 · 10−3 s
result in a higher SSE value than the SSE of Kalman. This result indicates that the Gaussian
filter assumption provides us with proper smoothness values that, regardless of the p and d
values, will almost always result in outperformance of the Kalman filter.

As is stated in [4], embedding orders of p > 6 and d > 2 will not contribute much to the filter
results. The dataset provided in Appendix E-1 confirms this statement by showing that for
embedding orders p = 7 and d ∈ {3, 4, 5, 6, 7} and non-critical smoothness values the results
are comparable to the results using lower embedding orders. However, care must be taken
when using p = 7 and/or d = 7 for smoothness values of 9 · 10−3 and higher, since the SSE
starts increasing relatively fast at that point. Therefore, especially when considering smooth
noise signals, taking a maximum embedding order of 6 for both p and d is considered a proper
practical rule of thumb.

As displayed in Section 7-1, the SSE of the DEM filter roll angle estimate with generalized
states and output is slightly higher than the SSE without generalized states and output. This
phenomenon is caused by the usage of non-ideal smoothness and derivative information. The
higher the smoothness, the more the derivatives are weighted, the more the errors in non-
ideal derivatives are weighted, the bigger the error becomes. This error has the same order
of magnitude as the Kalman error up to and including s = 9 · 10−3 s. Thereafter, the error
starts increasing up to the order of 10−2 for s = 1.5 · 10−2 s and most embedding orders. It
can be concluded that the DEM filter allows to make a trade-off in state estimation for the
error of observed and hidden states. However, this trade-off is very limited, for the observed
state error is orders of magnitude lower than the hidden state error. However, to ensure the
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total error is taken into account, above analysis is based on the sum of observed and hidden
state SSE.

Figure 7-5: Comparison of DEM and Kalman filter SSE values for p, d ∈ {1, 2, 3, 4, 5, 6} and s
ranging from 4 · 10−4 until 10−3 in steps of 10−4 and from 10−3 until 13 · 10−3 in steps of 10−3.
For each smoothness value, the mean SSE of the results of all p and d combinations is given. The
error bars indicate the minimum and maximum SSE of all p and d combinations per smoothness
value.
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Chapter 8

Conclusions

This conclusive chapter will provide a summary of the research findings in this thesis in
Section 8-1. Based on this information, Section 8-2 gives an answer to the main research
question. Furthermore, to provide an overview of the work done, Section 8-3 will list all
thesis contributions. Finally, Section 8-4 provides a discussion of the quadrotor modelling
approach, experimental setup and filter results and addresses the main limitations of this
work and corresponding future work.

8-1 Summary

This thesis is part of the research aiming to provide an elaborate discussion on the performance
of DEM. DEM is a neuroscientific parameter estimation algorithm that should be capable
of solving the filtering and system identification problems in the control engineering domain.
In this thesis, the performance of the filtering, or state estimation, part of DEM is evaluated
using experimental quadrotor flight data.

In order to be able to assess the performance of the DEM filter, the filter needs a dynamic
system model. A quadrotor model that involves the quadrotor roll angle and rate as states
and the roll angle as output is chosen. The system inputs are defined as motor PWM values.
The parameters in the model, including mass, arm length, mass moment of inertia and thrust
coefficients, are identified using several identification experiments. The data used to run the
filter is obtained by hovering the quadrotor at a few meters away from a wind source. The
quadrotor blade rotations and the wind source will produce air flows in the lab environment
causing the drone to move smoothly.

The advantage of state estimation using DEM is the fact that it can derive extra information
from the derivatives of the system inputs and outputs to better infer the states, given that
the process and measurement noises are coloured. The smooth motions of the quadrotor
cause the system inputs and output to be smooth signals, such that their derivatives exist.
Furthermore, since a quadrotor is a highly nonlinear system and it is modelled using an LTI
model, unmodelled system dynamics, among other effects, are present and appear in the
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process noise. By definition, the unmodelled system dynamics are not changing infinitely
fast, thereby introducing coloured noise.
One of the main research contributions of this thesis is the analysis of the measurement
and process noises. In general, coloured noise is characterized by a covariance matrix and a
smoothness value. These values are derived for both process and measurement noise. Fur-
thermore, it has been shown that the noises are Gaussian distributed, thereby validating the
Laplace approximation used to derive the DEM filter. The Gaussian filter assumption, com-
monly made to construct coloured noise in simulation, is validated as an assumption used to
derive the noise smoothness values. However, it is shown that the coloured noise created by
a Gaussian filter looks different than the derived noise signals using the experimental data.
Finally, another smoothness estimation method is proposed that seems to provide reasonable
smoothness estimates. Further research is needed to investigate the strengths and pitfalls of
this method and to ensure a consistent smoothness estimate.
Another main research contribution is the DEM filter performance evaluation. It is shown that
the DEM filter heavily relies on the generalized motions of states, outputs and inputs. The
DEM filter is compared with the conventional Kalman filter to benchmark its performance.
It can be concluded that DEM is able to outperform Kalman. Furthermore, it is shown that
this result holds for a relatively big subspace of the tuning parameters p, d and s.

8-2 Answering the main research question

Based on the information above, we are able to answer the main research question in this
thesis:
How does the DEM filter perform on experimental data of a quadrotor flight?
To give a direct and quantitative answer: DEM is able to outperform the Kalman filter
with an SSE value of 3.68 against 12.7 by setting p = 2, d = 2 and s = 0.005 s. These
parameter values are not the only ones for which DEM outperforms Kalman. The result can
be extended to a relatively big subspace of parameters values (1 ≤ p ≤ 6, 1 ≤ d ≤ 6 and
9 · 10−4 ≤ s ≤ 8 · 10−3 s). Other combinations of p, d and s will also work, but this requires
parameter tuning. Using this information we can also conclude that the DEM filter fits the
purpose of state estimation on quadrotor UAVs.

8-3 Thesis contributions

This thesis contributed by:

1. Giving a mathematical and intuitive explanation of the principles underlying DEM and
how they are used to derive the DEM state update equation.

2. Selecting a quadrotor dynamic model used in the DEM and Kalman filter to perform
state estimation, based on the information available in the hardware/software platform.

3. Designing the experimental setup by selecting a hardware/software platform suitable to
record data, based on which the performance of DEM can be evaluated.
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4. Performing system identification experiments to determine the model parameters val-
ues specific to the Parrot AR.Drone 2.0 quadrotor (including mass, arm length, mass
moment of inertia, thrust and torque coefficients).

5. Analyzing the noises:

(a) Deriving the covariance matrices.
(b) Deriving the smoothness values.
(c) Validating the Laplace approximation used to derive the DEM filter equations.
(d) Discussing the Gaussian filter assumption used to generate coloured noise using

white noise.
(e) Introducing a new method to estimate the noise smoothness.

6. Analyzing the filter results:

(a) Showing the importance of including generalized motions for states, outputs and
inputs.

(b) Comparing the DEM filter with the conventional Kalman filter.
(c) Showing in which tuning parameter subspace the DEM filter outperforms the

Kalman filter.

8-4 Future work and recommendations

The research conducted in this thesis has several limitations. These limitations can be divided
into four categories: one concerning the statistical significance of the presented results, a sec-
ond one concerning the quadrotor modelling approach and lab setup, a third one concerning
DEM-specific features and a fourth one concerning the filter benchmarking. These limitations
are discussed below and corresponding future research directions are pointed out.

Statistical significance
The results presented in this thesis are based on a single quadrotor flight experiment. This
single experiment immediately indicates the potential of DEM. However, it is strongly rec-
ommended to make the result more significant from a statistical point of view. This means
conducting the same experiment several times and showing how DEM performs with respect
to Kalman for each experiment.

Quadrotor modelling approach and lab setup
Besides increasing the amount of experiments (quantitative improvement), the data collected
during the experiment could also be improved (qualitative improvement). As explained in
Section 6-2-2, the smoothness of w2 arises in a different time frame than useful for the DEM
filter. It is recommended to conduct an experiment that results in process noise w2 having
smoothness in a time frame that can be leveraged by the DEM filter. Before designing such
an experiment, it is recommended to first reveal the effect of each of the four phenomena
(as described in Section 6-2-2) by conducting experiments with reduced air flow circulation
and/or with linear quadrotor movements without external wind source, for example.
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Another qualitative improvement related to the quadrotor modelling is including more (hid-
den) states to be estimated. For proper quadrotor control, only estimating the roll rate is
not enough. Future work might consider the filter results for other hidden states as well. By
including more hidden states, care has to be taken regarding the observability of the system.

Improving DEM filter
Other possible qualitative improvements relate to specific features of DEM.

First of all, the process noises are derived using the assumption that we can perfectly measure
the states (roll angle and rate). Although the sensor noise is relatively low compared to the
measured values, it is unclear what impact this assumption has on the final results. The goal
of this assumption was to be able to calculate the process noise in order to derive the precision
matrix and smoothness values. To avoid making this assumption, the process noise precision
matrix can be tuned manually, which could potentially lead to even better DEM filter results.
Therefore, given the current results, future work could focus on the range of precision values
for which the results still hold.

Secondly, as pointed out in Section 6-4, besides the Gaussian filter approach, the smooth-
ness values of the noises can possibly be determined by evaluating specific elements in the
covariance matrix of the generalized output. It is shown that for higher embedding orders,
the calculated smoothness values using this approach come close to the region of smoothness
values for which the DEM filter outperforms Kalman. This thesis has only indicated the
potential and leaves a more rigid understanding as future work.

Thirdly, the current implementation of DEM uses one smoothness value for all noises. Al-
though the smoothness values are shown to have the same order of magnitude, future exper-
iment (as indicated above) might give higher process noise smoothness values. Therefore, it
would be interesting to see the impact of using different smoothness values for different noises
on the filter results.

Fourthly, the results presented in this thesis are based on recorded data and post-processing.
In general, however, filtering is used to construct a proper state estimate to improve control,
which should be performed real-time. Therefore, another possible research direction is to
run the filter online. The problem of generating the generalized motions can be solved by
subsampling the sensor signals for each filter update, such that intermediate sensor values
can be used to construct the derivatives.

Benchmarking DEM filter
In this thesis the conventional Kalman filter has been used to evaluate the performance of
the DEM filter. However, the Kalman filter assumes white noise, while the DEM filter is
built to derive extra information from coloured noise. In this respect, the comparison is a
bit unfair. Therefore, an important part of future work should consider a ‘fair’ comparison
between DEM and another type of filter able to handle coloured noises.
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Appendix A

Quadrotor model

Sections A-1 and A-2 below give the derivation of the rotation matrix used to translate coor-
dinates from B into I and vice versa, as well as the derivation of the rotation matrix used
to translate body frame angular velocities into Euler angle rates and vice versa. Section A-3
describes the quadrotor model linearization.

A-1 Derivation of rotation matrix for translational dynamics

The rotation matrix for translational dynamics is constructed using ZYX Euler angles. These
Euler angles indicate that one obtains the body frame B coordinate axes by first rotating the
inertial frame I axes with yaw angle ψ around the z-axis to obtain the so-called vehicle-1
frame. The vehicle-1 frame is rotated with pitch angle θ around the y-axis of this frame to
get the vehicle-2 frame. Finally, the vehicle-2 frame is rotated with roll angle φ around the
x-axis of this frame to arrive at frame B [31].

The rotations around the z-, y- and x-axis, respectively, are given by the following 3D rotation
matrices:

IRZ,B =

cψ −sψ 0
sψ cψ 0
0 0 1

 (A-1)

IRY,B =

 cθ 0 sθ
0 1 0
−sθ 0 cθ

 (A-2)

IRX,B =

1 0 0
0 cφ −sφ
0 sφ cφ

 (A-3)
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where cφ = cos(φ) and sφ = sin(φ).
The complete rotation matrix is constructed as follows:

IRB = IRZY X,B = IRZ,B
IRY,B

IRX,B

=

cψ −sψ 0
sψ cψ 0
0 0 1


 cθ 0 sθ

0 1 0
−sθ 0 cθ


1 0 0

0 cφ −sφ
0 sφ cφ


=

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ


(A-4)

This matrix allows to translate coordinates expressed in B into coordinates expressed in I.
Vice versa, IRTB = BRI can be used to translate coordinates expressed in I into coordinates
expressed in B. Its time derivative is given by the following equation [72]:

I
ṘB = IRBΩ× (A-5)

A-2 Derivation of rotation matrix for rotational dynamics

The rotation matrix for rotational dynamics can be constructed in a similar fashion. Since
the roll angle φ is used to convert the vehicle-2 frame to B, its time derivative is equal to the
angular velocity p in B. However, the pitch angle is defined in the vehicle-2 frame, not in
B. Therefore, its time derivative has to be translated from the vehicle-2 frame into B. Since
IRX,B can convert coordinates expressed in B to coordinates expressed in the vehicle-2 frame,
its inverse changes coordinates the other way around. Given that IRX,B is part of the SO(3)
group, its inverse is equal to its transpose. IRTX,B is thus used in the conversion from pitch
angle rate θ̇ to angular velocity q. Finally, in a similar way, the angular velocity r is obtained
by transforming the yaw angle rate ψ̇ to the vehicle-2 frame and B by pre-multiplying with
I
RTY,B and IRTX,B, respectively. This results in the following conversion from Euler angle rates

to body frame angular velocities [31]:

pq
r

 =

φ̇0
0

+ IRTX,B

0
θ̇
0

+ IRTX,B
I
RTY,B

0
0
ψ̇


=

φ̇0
0

+

1 0 0
0 cφsφ
0 −sφcφ


0
θ̇
0


+

1 0 0
0 cφsφ
0 −sφcφ


cθ 0 −sθ

0 1 0
sθ 0 cθ


0

0
ψ̇


=

1 0 −sθ
0 cφ sφcθ
0 −sφ cφcθ


φ̇θ̇
ψ̇



(A-6)
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In general, however, quadrotors often contain an Inertial Measurement Unit (IMU) sensor
with a gyroscope measuring p, q and r, not Euler angle rates φ̇, θ̇ and ψ̇. Reversing this
equation (and thus taking the inverse of the rotation matrix) results in [31]:

φ̇θ̇
ψ̇

 =

1 sφtθ cφtθ
0 cφ −sφ
0 sφsecθ cφsecθ


pq
r

 (A-7)

where tθ = tan(θ) and secθ = sec(θ) = 1
cos(θ) . This matrix will be referred to as IRr,B. The

gimbal lock, as mentioned in Section 3-1 becomes clear from this equation, because the matrix
is non-invertible for θ = π

2 , caused by the secθ terms.

If φ and θ are small enough, Equation (A-7) can be written as [31]:

φ̇θ̇
ψ̇

 =

pq
r

 (A-8)

A-3 Model linearization

The goal of linearization is to derive the state equation in the following form:

ẋ = Ax+Bu (A-9)

where A ∈ Rnx×nx , B ∈ Rnx×nu .

This linear form is obtained by taking the Taylor expansion of the state equation up to and
including the 1st-order derivative term, which can be written as:

f(x,u) = f(xe,ue) + ∂f

∂x
|(x=xe,u=ue)(x− xe) + ∂f

∂u
|(x=xe,u=ue)(u− ue) (A-10)

where:

A = ∂f

∂x
|(x=xe,u=ue) =


∂f1
∂x1
|(x=xe,u=ue)

∂f1
∂x2
|(x=xe,u=ue) . . . ∂f1

∂x12
|(x=xe,u=ue)

∂f2
∂x1
|(x=xe,u=ue)

∂f2
∂x2
|(x=xe,u=ue) . . . ∂f2

∂x12
|(x=xe,u=ue)

...
... . . . ...

∂f12
∂x1
|(x=xe,u=ue)

∂f12
∂x2
|(x=xe,u=ue) . . . ∂f12

∂x12
|(x=xe,u=ue)

 (A-11)

B = ∂f

∂u
|(x=xe,u=ue) =


∂f1
∂u1
|(x=xe,u=ue)

∂f1
∂u2
|(x=xe,u=ue) . . . ∂f1

∂u4
|(x=xe,u=ue)

∂f2
∂u1
|(x=xe,u=ue)

∂f2
∂u2
|(x=xe,u=ue) . . . ∂f2

∂u4
|(x=xe,u=ue)

...
... . . . ...

∂f12
∂u1
|(x=xe,u=ue)

∂f12
∂u2
|(x=xe,u=ue) . . . ∂f12

∂u4
|(x=xe,u=ue)

 (A-12)
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In this case the model is linearized around the hovering equilibrium point, meaning that xe
and ue equal:

xe =
[
xe ye ze ẋe ẏe że φe θe ψe φ̇e θ̇e ψ̇e

]T
=
[
0 0 z0 0 0 0 0 0 0 0 0 0

]T (A-13)

ue =


pwmAeq
pwmAeq
pwmAeq
pwmAeq

 (A-14)

where z0 indicates the height of the quadrotor while hovering. It is only listed for the sake
of completeness, because it does not appear in the linearized state-space equations. pwmAeq
is determined using hovering experiments and equals 169.1 (using the Parrot battery). More
information about the hovering experiments can be found in Section 5-4-2 and Appendix B-
3-4.

Assuming that the total thrust equals mg when the rotor at PWM value pwmAeq, the A
matrix is not influenced by the input and becomes:

A =



0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 g[−s0s0c0 + c0s0] g[c0c0c0] g[c0s0s0 + s0c0] 0 0 0
0 0 0 0 0 0 g[−s0s0s0− c0c0] g[c0c0s0] g[c0s0c0 + s0s0] 0 0 0
0 0 0 0 0 0 g[−s0c0] g[−c0s0] 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



=



0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 g 0 0 0 0
0 0 0 0 0 0 −g 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0


(A-15)
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The B matrix depends on the inputs and is therefore given by:

B =



0 0 0 0
0 0 0 0
0 0 0 0

c1
m

∂T
∂pwmA1

∣∣∣pwmA1=
pwmAeq

c1
m

∂T
∂pwmA2

∣∣∣pwmA2=
pwmAeq

c1
m

∂T
∂pwmA3

∣∣∣pwmA3=
pwmAeq

c1
m

∂T
∂pwmA4

∣∣∣pwmA4=
pwmAeq

c2
m

∂T
∂pwmA1

∣∣∣pwmA1=
pwmAeq

c2
m

∂T
∂pwmA2

∣∣∣pwmA2=
pwmAeq

c2
m

∂T
∂pwmA3

∣∣∣pwmA3=
pwmAeq

c2
m

∂T
∂pwmA4

∣∣∣pwmA4=
pwmAeq

c3
m

∂T
∂pwmA1

∣∣∣pwmA1=
pwmAeq

c3
m

∂T
∂pwmA2

∣∣∣pwmA2=
pwmAeq

c3
m

∂T
∂pwmA3

∣∣∣pwmA3=
pwmAeq

c3
m

∂T
∂pwmA4

∣∣∣pwmA4=
pwmAeq

0 0 0 0
0 0 0 0
0 0 0 0

1
Ixx

∂τφ
∂pwmA1

∣∣∣pwmA1=
pwmAeq

1
Ixx

∂τφ
∂pwmA2

∣∣∣pwmA2=
pwmAeq

1
Ixx

∂τφ
∂pwmA3

∣∣∣pwmA3=
pwmAeq

1
Ixx

∂τφ
∂pwmA4

∣∣∣pwmA4=
pwmAeq

1
Iyy

∂τθ
∂pwmA1

∣∣∣pwmA1=
pwmAeq

1
Iyy

∂τθ
∂pwmA2

∣∣∣pwmA2=
pwmAeq

1
Iyy

∂τθ
∂pwmA3

∣∣∣pwmA3=
pwmAeq

1
Iyy

∂τθ
∂pwmA4

∣∣∣pwmA4=
pwmAeq

1
Izz

∂τψ
∂pwmA1

∣∣∣pwmA1=
pwmAeq

1
Izz

∂τψ
∂pwmA2

∣∣∣pwmA2=
pwmAeq

1
Izz

∂τψ
∂pwmA3

∣∣∣pwmA3=
pwmAeq

1
Izz

∂τψ
∂pwmA4

∣∣∣pwmA4=
pwmAeq


(A-16)

In this expression, c1 = c0s0c0 + s0s0 = 0, c2 = c0s0s0 − s0c0 = 0 and c3 = c0c0 = 1.
Furthermore, we have to take derivatives of the thrust and torque values with respect to each
individual motor PWM value. Using the final expressions in Eq. (3-13) until (3-16), this gives:

∂T

∂pwmAi
= 2 · cPT (1) · pwmAi + cPT (2) ∀i ∈ {1, 2, 3, 4} (A-17)

∂τφ
∂pwmAi

=
{

2 · cPφ(1) · pwmAi + cPφ(2) ∀i ∈ {1, 4}
−2 · cPφ(1) · pwmAi − cPφ(2) ∀i ∈ {2, 3} (A-18)

∂τθ
∂pwmAi

=
{

2 · cPθ(1) · pwmAi + cPθ(2) ∀i ∈ {3, 4}
−2 · cPθ(1) · pwmAi − cPθ(2) ∀i ∈ {1, 2} (A-19)

∂τψ
∂pwmAi

=
{

2 · cPψ(1) · pwmAi + cPψ(2) ∀i ∈ {1, 3}
−2 · cPψ(1) · pwmAi − cPψ(2) ∀i ∈ {2, 4} (A-20)
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The B matrix now becomes:

B =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1
mcBz

1
mcBz

1
mcBz

1
mcBz

0 0 0 0
0 0 0 0
0 0 0 0

1
Ixx
cBφ − 1

Ixx
cBφ − 1

Ixx
cBφ

1
Ixx
cBφ

− 1
Iyy
cBθ − 1

Iyy
cBθ

1
Iyy
cBθ

1
Iyy
cBθ

1
Izz
cBψ − 1

Izz
cBψ

1
Izz
cBψ − 1

Izz
cBψ



(A-21)

where:

cBz = 2 · cT (1) · cA(1)2 · pwmAeq + 2 · cT (1) · cA(1) · cA(2) + cT (2) · cA(1) (A-22)

cBφ =
√

2
2 · l ·

(
2 · cT (1) · cA(1)2 · pwmAeq + 2 · cT (1) · cA(1) · cA(2) + cT (2) · cA(1)

)
(A-23)

cBθ = cBφ (A-24)
cBψ = 2 · cQ(1) · cA(1)2 · pwmAeq + 2 · cQ(1) · cA(1) · cA(2) + cQ(2) · cA(1) (A-25)
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Appendix B

System identification

This appendix provides the additional background information used to obtain the system iden-
tification results in Chapter 5.

B-1 Inertia matrix I

This section provides the design of the bifilar pendulum experiment (as described in Section 5-
3) in Section B-1-1 as well as the measurement plan in Section B-1-2 and the experiment
datasets in Section B-1-3.

B-1-1 Bifilar pendulum setup

Figure 5-1 shows the theoretical setup that is used for this experiment. This setup is imple-
mented as given in Figure B-1. It is important to note that the quadrotor as well as the frame
to which it is attached should be horizontal in order to get realistic gyroscope data around the
desired axis. This is checked using a spirit level. Furthermore, it is practical to use relatively
long and thin wires. Long wires ensure a stable rotation, because the quadrotor does not rise
much when initially turning it, and therefore has less chance to introduce movement in trans-
lational x- and y-direction (which would cause less accurate yaw rate values). Thin wires are
more flexible and thus have less impact on the rotational dynamics of the quadrotor. Finally,
a stroke of tape is stuck on the ground to align the quadrotor with and ensure a certain initial
angle. In this case, the angle is chosen to be 32°. As we will see later, the inertia value is
mostly determined by the period of oscillation, not by the initial angle.

B-1-2 Measurement plan

The following steps need to be taken in order to be able to perform moment of inertia exper-
iments:
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(a) Quadrotor is rotating around roll axis. (b) Quadrotor attached to frame for rotations around yaw axis.

Figure B-1: Bifilar pendulum experiment setup for rotations around two different axes.

1. Attach wooden frame to table with glue clamp.

2. Put soft surface below AR.Drone 2.0 to prevent damage.

3. Place fully charged battery in AR.Drone 2.0.

4. Connect with laptop to AR.Drone 2.0 Wi-Fi network.

5. Check connection with AR.Drone 2.0 in MATLAB.

6. Put indoor hull around basic AR.Drone 2.0 frame.

7. Attach long, thin wire to one of the rotors (yaw)/rotor hulls (roll/pitch) and to one of
the attachment points on the wooden frame.

8. Measure wire length.

9. Ensure the other wire (made of exactly the same material as the first wire) is also
attached to both AR.Drone 2.0 and frame with exactly the same length.

10. Slowly remove soft surface below AR.Drone 2.0.

11. Build desired Simulink model (read out IMU data) and connect to target.

12. Start running the Simulink model in External mode.

13. Repeat three times:

(a) Rotate AR.Drone 2.0 to initial angle α0 and take care that the COM position only
moves in vertical direction.

(b) Release AR.Drone 2.0 and read simulation time in Simulink.
(c) Let AR.Drone 2.0 execute damped oscillation for at least 60 s.
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14. Stop running the Simulink model in External mode.

15. Process and save logged IMU data in a .mat file.

16. Replace the battery to determine the inertia value for different batteries and start from
step 3.

17. Change the configuration to determine the inertia value around another axis and start
from step 7.

B-1-3 Datasets

Table B-1 gives the moment of inertia values around the three principle axes of the quadrotor
for the two types of batteries. The experiments to determine Ixx and Iyy are performed with
a distance dw = 0.252 m between the wires and a wire length lw = 0.668 m. Izz is determined
using dw = 0.340 m and lw = 0.655 m. These values are based on 60 s of gyroscope (roll,
pitch or yaw rate) data per experiment.

The values in this table are determined using two different methods. The first method entails
calculating the average period of the damped oscillation and using it to calculate the mass
moment of inertia around the corresponding principle axis [73], [74]:

I = mgd2
wT

2
o

16hπ2 (B-1)

where:

• I is the mass moment of inertia around the corresponding principle axis.

• m is the quadrotor mass, including indoor hull and either Parrot or Akku-King battery.

• g is the gravitational acceleration.

• dw is the distance between the wires.

• To is the period of the damped oscillation around the corresponding principle axis.

• lw is the wire length.

The second method entails simulating the theoretical response of the test object in the bifilar
pendulum experiment using the following set of differential equations [63], [64]:

ẋ1 = x2

ẋ2 = −
(
D1
I
x2 + D2

I

)
− mgd2

w

4Ilw
sin(x1)√

1− 1
2

(
dw
lw

)
(1− cos(x1))

(B-2)

where:

• x1 is the angle of rotation of the quadrotor.
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Table B-1: Mass moment of inertia values around three principal axes with two batteries in three
different experiments.

Inertia component
Ixx Iyy Izz

(kg m2) (kg m2) (kg m2)
batP batA batP batA batP batA

Experiment number
1 3.4 · 10−3 3.5 · 10−3 4.0 · 10−3 4.1 · 10−3 6.9 · 10−3 6.9 · 10−3

2 3.4 · 10−3 3.5 · 10−3 4.0 · 10−3 4.1 · 10−3 6.9 · 10−3 6.9 · 10−3

3 3.4 · 10−3 3.5 · 10−3 4.0 · 10−3 4.1 · 10−3 6.9 · 10−3 6.9 · 10−3

Average 3.4 · 10−3 3.5 · 10−3 4.0 · 10−3 4.1 · 10−3 6.9 · 10−3 6.9 · 10−3

• x2 is the quadrotor rotational velocity.

• D1 is a damping parameter.

• D2 is another damping parameter.

The simulated rotational velocity is plotted against the measured rotational velocity over
time and the free parameters (D1, D2 and I) are tuned manually by taking an initial value
for I given by the first method. Both methods result in the same values with one decimal
accuracy. One decimal accuracy is chosen, because a test object mass difference of 1 g results
in a different value using two decimals, while the weighing scale used to measure the quadrotor
has an accuracy of 1 g.

It can thus be concluded that the mass moment of inertia value is approximately the same for
both methods. Furthermore, the inertia values reproduce very well over the three different
experiments. Moreover, a validation experiment for Izz with a Parrot battery is executed
in which lw differs in value. The result lies within 1% of the indicated averaged value in
Table B-1, thereby validating the values in Table B-1.

B-2 Relation between PWM and rotor rotational velocity

This section provides the datasets in Section B-2-1 that are used to visualize the results in
Section 5-4-1 as well as additional figures giving extra information about the experiments.

B-2-1 Datasets

Table B-2 provides the battery (type and voltage) and rotational velocity data per PWM
setpoint for eight experiments as displayed in Figures 5-3 and 5-4. Each PWM setpoint
contains two sets of battery voltage and rotational velocity values, because this data is coming
from thrust and torque experiments in which the PWM was varied from 0 to 100 and back,
of which only the PWM values 5-80 are taken, as explained in Section 5-4-1.
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Table B-2: Battery dependency of rotational velocity for PWM setpoints 5-80 in eight different
experiments.

Experiment number
1 2 3 4 5 6 7 8

(batP) (batP) (batP) (batP) (batA) (batA) (batA) (batA)
vbat ωr vbat ωr vbat ωr vbat ωr vbat ωr vbat ωr vbat ωr vbat ωr
(V) (RPM) (V) (RPM) (V) (RPM) (V) (RPM) (V) (RPM) (V) (RPM) (V) (RPM) (V) (RPM)

P
W

M

5 12.19 1418 11.40 1424 12.22 1411 11.65 1422 12.48 1428 11.60 1425 12.45 1429 11.93 1419
11.36 1423 10.75 1426 11.66 1421 11.35 1425 11.63 1426 11.17 1426 11.92 1426 11.57 1423

10 12.15 1602 11.36 1608 12.20 1596 11.64 1607 12.47 1611 11.59 1608 12.44 1612 11.92 1603
11.31 1604 10.75 1608 11.65 1603 11.33 1607 11.62 1608 11.16 1608 11.92 1608 11.56 1605

15 12.09 1779 11.32 1785 12.18 1774 11.62 1783 12.44 1787 11.56 1785 12.43 1788 11.91 1780
11.26 1779 10.74 1784 11.63 1778 11.31 1783 11.61 1783 11.15 1783 11.91 1783 11.56 1780

20 12.01 1962 12.27 1968 12.15 1957 11.60 1966 12.41 1970 11.54 1967 12.41 1970 11.89 1963
11.20 1961 10.74 1966 11.62 1960 11.29 1964 11.59 1965 11.14 1965 11.90 1965 11.55 1962

25 11.94 2137 11.22 2143 12.12 2133 11.57 2141 12.38 2145 11.51 2143 12.40 2145 11.87 2138
11.11 2136 10.72 2141 11.60 2134 11.27 2139 11.57 2140 11.12 2140 11.89 2140 11.54 2136

30 11.84 2320 11.15 2325 12.09 2315 11.54 2323 12.34 2327 11.49 2325 12.37 2327 11.85 2321
11.18 2317 10.70 2323 11.57 2315 11.24 2321 11.56 2322 11.11 2322 11.88 2322 11.53 2317

35 11.73 2494 11.08 2500 12.05 2490 11.51 2498 12.30 2501 11.46 2500 12.35 2502 11.83 2496
11.11 2491 10.68 2497 11.55 2490 11.21 2495 11.54 2495 11.09 2497 11.86 2496 11.52 2491

40 11.65 2676 10.99 2683 12.00 2672 11.48 2680 12.25 2683 11.42 2682 12.33 2685 11.81 2678
11.04 2674 10.64 2679 11.52 2671 11.19 2677 11.52 2678 11.06 2678 11.86 2678 11.51 2673

45 11.53 2850 10.91 2856 11.95 2845 11.43 2854 12.20 2858 11.39 2856 12.30 2858 11.78 2851
11.00 2847 10.61 2853 11.49 2845 11.15 2852 11.50 2853 11.05 2853 11.84 2853 11.49 2847

50 11.43 3032 10.79 3038 11.89 3026 11.39 3034 12.15 3038 11.34 3038 12.27 3038 11.75 3031
10.93 3028 10.55 3035 11.45 3026 11.11 3032 11.47 3035 11.02 3033 11.83 3033 11.48 3028

55 11.35 3212 10.73 3219 11.83 3207 11.34 3215 12.09 3219 11.29 3218 12.24 3219 11.72 3212
10.90 3208 10.50 3214 11.41 3205 11.07 3212 11.44 3215 11.01 3216 11.82 3214 11.47 3209

60 11.26 3386 10.61 3391 11.75 3382 11.28 3390 12.01 3392 11.24 3392 12.19 3393 11.69 3386
10.80 3382 10.43 3388 11.38 3379 11.03 3387 11.42 3387 10.97 3388 11.80 3388 11.45 3381

65 11.11 3565 10.55 3572 11.67 3561 11.22 3570 11.94 3574 11.19 3573 12.15 3574 11.65 3566
10.76 3562 10.37 3569 11.33 3560 10.98 3568 11.39 3570 10.95 3570 11.79 3569 11.43 3563

70 10.99 3738 10.47 3745 11.54 3734 11.16 3742 11.88 3747 11.14 3746 12.11 3749 11.61 3740
10.69 3735 10.30 3742 11.27 3732 10.93 3740 11.36 3743 10.93 3741 11.79 3741 11.42 3735

75 10.88 3918 10.37 3925 11.41 3914 11.08 3923 11.80 3926 11.07 3926 12.06 3928 11.57 3919
10.59 3915 10.20 3924 11.25 3913 10.86 3920 11.34 3922 10.89 3924 11.78 3922 11.40 3915

80 10.76 4090 10.30 4098 11.30 4088 11.01 4096 11.70 4100 10.99 4099 12.00 4100 11.52 4092
10.53 4088 10.11 4096 11.19 4085 10.81 4094 11.31 4097 10.84 4097 11.77 4096 11.39 4088

The data in the Table B-2, together with the data in Table B-3 is used to construct the PWM-
rotational velocity relationship indicated in Figure 5-6. The data in Table B-3 is generated
by only controlling rotor 4 with high PWM setpoints, such that the battery voltage is high
enough to let the rotor reach the high rotational velocities.

B-2-2 Additional figures

Figures B-2 and B-3 show the battery-dependency of the rotational velocity per PWM setpoint
in the range of 5-80. In general, the Parrot batteries operate at a lower voltage than the Akku-
King batteries. However, since the ESC of each motor is actively controlling the battery
voltage, the difference in battery voltage operating region does not introduce a significant
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Table B-3: Data of rotational velocities for high PWM setpoints in two different experiments.

Experiment number
1 2

(batA) (batA)
ω4 ω4

(RPM) (RPM)

P
W

M

100 4813 4798
95 4634 4620
90 4454 4444
85 4281 4272
80 4100 4091

Figure B-2: Battery dependency of rotor 4 velocity for PWM values ranging from 5 to 40.

battery-dependency of the rotational velocity. The error values of the fits, as explained in
Section 5-4-1 and shown in Figure B-4, remain below 1% and are therefore ignored.

B-3 Thrust coefficient cT

This section provides the design of the thrust setup in Section B-3-1, together with the
measurement plan in Section B-3-2, used to obtain the datasets in Section B-3-3 that are
used to visualize the thrust coefficient results in Section 5-4-2. Finally, Section B-3-4 provides
the validation data for the thrust coefficient.
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Figure B-3: Battery dependency of rotor 4 velocity for PWM values ranging from 45 to 80.

Figure B-4: Horizontality indication of fits per battery type.
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Figure B-5: Thrust setup with important elements highlighted.

B-3-1 Thrust coefficient setup design

Figure B-5 is a copy of Figure 5-8 and shows the thrust setup with important elements in the
setup highlighted, which will be elaborated on below.

The basis of the thrust setup consists of a wooden shelf. This shelf is attached to a solid table
using glue clamps in order to make sure that the setup cannot move during the experiments.

One of the contributions of these experiments with respect to the experiments performed by
[34] and [64] is the fact that the quadrotor is placed in free air. Therefore, a lever arm is used
with enough length to let the quadrotor be placed without overlap with the table, including
some extra space. The lever arm is constructed using a hollow, rectangular, aluminium profile
that, together with the pivot point, ensures stiffness in all directions, except for the rotating
direction being leveraged during the experiments. The pivot point splits the complete lever
arm into two arms of equal length. The upward force generated by the quadrotor thus equals
the downward force exerted on the force sensor.

A disadvantage of constructing the pivot point this way is the extra space needed in the L-
profile holes to be able to push a bolt through it and let it rotate with negligible friction. This
extra space introduces clearance in vertical direction, resulting in nonlinear behaviour of the
force sensor data. Therefore, an extra spring is inserted between pivot point and quadrotor
mounting point. This spring ensures that the lever arm is always in the most upward part of
the L-profile holes, even when the quadrotor is attached to the lever arm. An extra function
of this spring is to ensure that the force on the sensor is always pointing downward, thereby
avoiding the need to create a setup that is able to measure positive as well as negative forces.
The spring is mounted on another hollow, rectangular, aluminium profile that counteracts
the downward force the spring is exposed to when pushing against the lever arm.
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(a) COM and lever markers on
backside of AR.Drone 2.0.

(b) AR.Drone 2.0 mounted on the lever arm using cable ties with aluminium
bar in between.

Figure B-6: Images to show what is needed to properly mount the quadrotor on the lever arm.

With these experiments it is important that the quadrotor is exactly aligned with the lever
arm. Therefore, the theoretical COM (determined by taking the crossing of the rotor arms)
and the resulting lever arm form are marked on the backside of the quadrotor as shown in
Figure B-6a. Using these markers it is possible to mount the quadrotor accurately on the
lever arm. The mounting is done using reusable cable ties that turned out to fix the quadrotor
enough and avoid quadrotor movement on the arm when the rotors were rotating at relatively
high velocities. Because of the fact that the AR.Drone 2.0 backside is a bit compressible, a
flat aluminium bar (with a length somewhat larger than the quadrotor backside) is used
between the arm and the quadrotor in order to be able to mount the quadrotor horizontally.
Figure B-6b shows the quadrotor mounting in a close-up image.

Next to the quadrotor mounting, the most important setup part is the force sensor. The
sensor used is an ME KD24s ±100 N force sensor. It is calibrated using calibrated weights at
40 N, which is a proper value compared to the measured force values in Table B-4. Using the
rule of thumb saying that the sensor resolution equals the calibrated force divided by 1000,
the sensor resolution boils down to a value of 0.04 N. When comparing this value to the
force values given in Table B-4, it can be concluded that it is enough resolution to construct
a proper relation between rotor rotational velocity and generated thrust. The force sensor
data signal goes through Scaime’s CPJ measuring amplifier and National Instrument’s NI
USB-6008 DAQ device to arrive at the VI created in LabView 2018 where it can be read out
and saved to a text file (see Figure B-7).

Furthermore, it is important to have axial loading of the sensor, meaning that the force should
ideally only have a vertical component and it should be exerted on the middle of the sensor.
Due to the relatively long lever arm, the force can be considered vertical. The force is exerted
on the sensor centre by making use of 2 triangular aluminium profiles that are oriented 90°
with respect to each other (see Figure B-8a).

Moreover, the force range limit of the sensor (before it breaks mechanically) is 200 N [75].
To prevent the setup from accidentally being loaded too much, a wooden block, being higher
than the force sensor, is placed besides the sensor to ensure that the lever arm will never
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Figure B-7: Sensor data recording using measuring amplifier, data acquisition system and VI in
LabView 2018. Special attention is paid to preventing electrical interference for the wires carrying
analog force signals by separating the power and force data wires as much as possible.

touch the sensor, except during the experiments (see Figure B-8b).

Important to note is the fact that this thrust setup is based on the principle of relative force
measurements. Therefore, the force value measured without any rotating rotor averaged over
10 s is subtracted from all force values measured in the experiment, thereby giving the force
the rotating rotors generate. Linearity of the sensor is thus very important. Therefore, a
quick check is performed using a spring and a digital kitchen weighing scale that showed a
linear relationship between measured weight and force values.

(a) Axially loaded force sensor. (b) Wooden block to prevent sensor overloading.

Figure B-8: Aspects of the sensor that require attention: axial loading and overloading preven-
tion.

Dennis Benders Master of Science Thesis



B-3 Thrust coefficient cT 99

B-3-2 Measurement plan

The following steps need to be taken in order to be able to perform proper thrust coefficient
measurements using the thrust setup:

1. Put wooden block next to sensor to prevent overloading.

2. Attach setup to table with glue clamps.

3. Connect force sensor via measuring amplifier and DAQ to VI and ensure that VI can
properly read out sensor values.

4. Place fully charged battery in AR.Drone 2.0.

5. Connect with laptop to AR.Drone 2.0 Wi-Fi network.

6. Check connection with AR.Drone 2.0 in MATLAB.

7. Put indoor hull around AR.Drone 2.0 frame.

8. Mount AR.Drone 2.0 on lever arm using the reusable cable ties and put aluminium bar
in between. The front camera should point away from the pivot point, according to the
lever arm marker on the backside of the quadrotor.

9. Put digital hand-tachometer on tripod and ensure that the red light points to the
reflective marker on rotor 4 (see Figure B-9).

10. Put camera on tripod, turn it on and ensure that the hand-tachometer display is clearly
visible (see Figure B-9).

11. Create a column space on paper with PWM values 0-100-0 on it to write down the
corresponding rotor rotational velocities next to it during the experiment.

12. Build desired Simulink model (let all rotors turn at the same velocity from 0 to 100
PWM and back in steps of 5) and connect to target.

13. Remove wooden block.

14. Start camera recording.

15. Give unique information about the experiment, such that it can be recognized later on.

16. Start running the Simulink model in External mode and simultaneously start logging
the force sensor data in the VI.

The experiments are conducted by two persons. One person reads the PWM value for the
current 10 s and writes down the corresponding rotational velocity (in RPM) that the other
person reads from the hand-tachometer display. These values could be checked later on using
the video recording.

Once the 10 s of the last PWM signal have expired, do the following:
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Figure B-9: Digital hand-tachometer mounted on tripod with a camera pointing to the tachome-
ter.

1. Simultaneously stop running the Simulink model in External mode and logging the force
sensor data.

2. Stop the camera recording.

3. Place the wooden block next to the sensor.

4. Send the sensor data to the laptop running MATLAB.

5. Process and save the logged force sensor (using VI), PWM, battery (using Simulink)
and rotational velocity (manually) data in a .mat file.

6. Possibly detach the AR.Drone 2.0 from the lever arm, replace the battery and attach it
again to the arm as indicated above.

B-3-3 Datasets

As indicated in Section 5-4-1, only PWM values 5-80 are taken into account in the thrust
experiments. Table B-4 provides the resulting dataset.

B-3-4 Validation

Figure B-10 shows each PWM-thrust relation with its linearizations around the two hovering
operating points corresponding to a different battery type. As can be seen, the linearization
has a larger error for PWM values below the operating point than for PWM values above the
operating point. This is one of the causes for the shape of the hidden state process noise, as
discussed in Section 6-2-2.

The data used to construct Figure 5-10 and Figure B-10 is recorded during 10 hovering
experiments per battery type. For each experiment, a time interval is selected in which the
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Table B-4: Data from three experiments to relate generated thrust to rotational velocity. The
force values reported here are the result of the total measured force when four rotors are turning,
divided by four.

Experiment number
1 2 3

(batA) (batP) (batP)
ω4 F ω4 F ω4 F

(RPM) (N) (RPM) (N) (RPM) (N)

P
W

M

5 1425 0.147 1418 0.149 1424 0.149
1426 0.150 1423 0.149 1426 0.148

10 1608 0.191 1602 0.192 1608 0.193
1608 0.194 1604 0.194 1608 0.187

15 1785 0.242 1779 0.237 1785 0.239
1783 0.238 1779 0.250 1784 0.242

20 1967 0.298 1962 0.295 1968 0.295
1965 0.294 1961 0.303 1966 0.293

25 2143 0.355 2137 0.358 2143 0.352
2140 0.350 2136 0.356 2141 0.363

30 2325 0.428 2320 0.424 2325 0.425
2322 0.421 2317 0.427 2323 0.420

35 2500 0.504 2494 0.495 2500 0.496
2497 0.513 2491 0.500 2497 0.494

40 2682 0.584 2676 0.580 2683 0.573
2678 0.608 2674 0.577 2679 0.586

45 2856 0.664 2850 0.656 2856 0.663
2853 0.666 2847 0.672 2853 0.662

50 3038 0.759 3032 0.764 3038 0.745
3033 0.778 3028 0.764 3035 0.767

55 3218 0.868 3212 0.857 3219 0.822
3216 0.835 3208 0.865 3214 0.852

60 3392 0.989 3386 0.980 3391 0.977
3388 0.961 3382 0.960 3388 0.960

65 3573 1.069 3565 1.083 3572 1.069
3570 1.079 3562 1.086 3569 1.086

70 3746 1.180 3738 1.191 3745 1.195
3741 1.153 3735 1.199 3742 1.171

75 3926 1.304 3918 1.309 3925 1.313
3924 1.290 3915 1.319 3924 1.310

80 4099 1.444 4090 1.457 4098 1.424
4097 1.467 4088 1.449 4096 1.443
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Figure B-10: PWM-thrust hovering operating points and PWM-thrust relation determined in
Section 5-4-2 (Own work), [34] (Delft thesis), [64] (Eindhoven thesis) and fitted (Fit) using both
operating points, as explained in Section 5-4-2. This figure also adds the linearizations around
the batP and batA operating points per PWM-thrust relation.

s

PWM values were approximately constant. Given the fact that air flow circulations and thus
low-frequency quadrotor vibrations took place after a constant period of time (first time after
approximately 15 s of hovering, second time after 23 s of hovering, caused by the rotating
rotor blades and the limited lab space), the averages are taken over maximum time intervals
of 15 s. From the 10 experiments, the seven most reliable values (with least PWM variation)
were chosen to be used. The thrust values per rotor in the operating points are calculated
using Ti = mg

4 , with m derived from Table 5-1 and g the gravitational acceleration. Table B-5
shows the average PWM values for each operating point.

Table B-5: Average PWM value for each hovering experiment per battery type.

PWM
(batP) (batA)

E
xp
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1 169.5 172.8
2 169.5 172.6
3 169.6 173.1
4 168.2 173.3
5 168.6 173.1
6 169.2 173.1
7 168.8 172.4

Average 169.1 172.9
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Figure B-11: Torque setup with important elements highlighted.

B-4 Torque coefficient cQ

This section provides the design of the torque setup in Section B-4-1, together with the
measurement plan in Section B-4-2 used to obtain the datasets in Section B-4-3 that are used
to visualize the torque coefficient results in Section 5-4-3.

B-4-1 Torque coefficient setup design

Figure B-11 is a copy of Figure 5-11 and shows the torque setup with the important elements
highlighted, which will be elaborated on below. The contact point of arm and sensor is
displayed in more detail in Figure B-12.

In this case only a wooden bar is needed to serve as basis for the setup, in contrast to the
thrust setup. This bar is mounted on the same solid table using a glue clamp.

The AR.Drone 2.0 is mounted on a wooden bar that covers the whole backside of the quadrotor
(to avoid compression of the backside and to ensure horizontal alignment of the quadrotor)
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Figure B-12: Sensor contact point in torque setup.

using two cable ties. The wooden block is then mounted on an aluminium bar (serving as arm
to generate a force on the sensor) that is stiff in the rotation direction, except for the direction
of desired rotation. The block-bar combination is then mounted on the wooden basis of the
setup via the ball bearing of an inline skate wheel. This way, the torque generated by the
turning rotors translate into a rotating movement of the arm against the force sensor. Using
the force value and arm length, the exerted torque can be calculated.

The force values as a result of torque generation by the quadrotor are smaller than the force
values in the thrust experiments (compare the values in Table B-4 and Table B-7), so a force
sensor with a smaller range (FUTEK FSH02664) is used. This sensor has a mechanical 10x
overloading protection [76]. Furthermore, it has a nominal force range of 100 g (corresponding
to 1 N), but is calibrated at 30 g (corresponding to 0.3 N). Using the same rule of thumb
as before, this would give us a resolution of 3 · 10−4 N. Both force range and resolution are
sufficient for the measured force values provided in Table B-7.

As in the case of the thrust setup, the small force sensor should also be axially loaded. This is
ensured by mounting it to an L-profile that is mounted on the wooden setup basis and can be
rotated in the right way to ensure a right angle with the L-profile with triangular aluminium
bar that is mounted on the arm (see Figure B-12). Similar to the thrust experiments, the
triangular bar ensures that the sensor is axially loaded.

During torque measurements, the quadrotor introduces vibrations in the direction of rotation.
To reduce the impact of vibrations on the experiment results, sticky foam is placed on both
sides of the contact point of arm and sensor (see Figure B-12). This will damp the vibrations
and lower the vibration frequency. When averaging the force data over 10 s, the vibrations
are assumed to be filtered out.

To read out the force values of this sensor, the same type of measuring amplifier, the same
DAQ and the same VI are used as for the thrust experiments.

The torque experiments are conducted by providing the same PWM signal as used for the
thrust experiments to one pair of diagonally located rotors (either rotor 1 and 3, or rotor 2
and 4). This way, the total torque is generated around the theoretical COM of the quadrotor,
which is exactly where it is mounted on the ball bearing. The total measured torque can
be divided by two to get the torque for each individual rotor. The good thing about this
setup is the fact that the L-profile can be turned 180°. This way, both sets of rotors (each set
generating a torque in the opposite direction) can be used to validate the torque coefficient
results. As shown in Table B-7, this experiment is conducted for both sets of rotors.
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Figure B-13: Setup to determine friction of ball bearing.

Finally, the friction of the ball bearing is taken into account, because it is an unknown quantity
that may possibly not be neglected. The setup is created by mounting an aluminium L-profile
bar on the ball bearing, such that it has equal lengths (10 cm) on both sides of the bearing,
as shown in Figure B-13. Equal lengths ensure that the effect of gravity is reduced in case
the setup is not exactly mounted horizontally. A relatively short bar is chosen to reduce the
inertia effects. To prevent from bouncing effects that will otherwise occur, a foam layer is
attached to the bar on the point of contact with the sensor. In order to determine friction, the
sensor is slowly pushed against the bar until the point that it has just started to move. This
is performed eight times. The absence of a clear initial peak in the force data indicates that
static friction is negligible and only the dynamic friction should be taken into account. Since
the sensor data in the torque setup is vibrating, it is reasonable to assume that only dynamic
friction needs to be taken into account. The average force measured during movement of
the bar is shown in Table B-6 for all eight measurements. The average force value of all
experiments is taken to calculate the torque that is subtracted from the torque measurement
data from the torque experiments with the AR.Drone 2.0.

Table B-6: Results of ball bearing friction experiments.
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1 0.0021
2 0.0018
3 0.0018
4 0.0018
5 0.0019
6 0.0018
7 0.0019
8 0.0020

Average 0.0019
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B-4-2 Measurement plan

The following steps need to be taken in order to be able to perform proper torque coefficient
measurements using the torque setup (quite similar to the steps for the thrust setup, but
listed here for the sake of completeness):

1. Attach setup to table with glue clamps.

2. Mount force sensor on L-profile and rotate 180°, such that it cannot be loaded acciden-
tally when mounting the quadrotor.

3. Connect force sensor via measuring amplifier and DAQ to VI and ensure that VI can
properly read out sensor values.

4. Place fully charged battery in AR.Drone 2.0.

5. Connect with laptop to AR.Drone 2.0 Wi-Fi network.

6. Check connection with AR.Drone 2.0 in MATLAB.

7. Put indoor hull around AR.Drone 2.0 frame.

8. Mount AR.Drone 2.0 on wooden block and aluminium arm using the reusable cable ties
and several screws. Mount this part on the ball bearing of the inline skate wheel. Check
if the front camera points away from the sensor contact point.

9. Put digital hand-tachometer on tripod and ensure that the red light points to the
reflective marker on rotor 4. For easiness, ensure that the red light remains on by fixing
a plastic spoon that pushes the ‘on’-button of the hand-tachometer (see Figure B-11).

10. Put camera on tripod, turn it on and ensure that the hand-tachometer display is clearly
visible (see Figure B-11).

11. Create a column space on paper with PWM values 0-100-0 on it to write down the
corresponding rotor rotational velocities next to it during the experiment.

12. Build desired Simulink model (let rotor 1 and 3 or rotor 2 and 4 turn at the same
velocity from 0 to 100 PWM and back in steps of 5) and connect to target.

13. Rotate force sensor back, such that it makes a 90° angle with the arm.

14. Start camera recording.

15. Give unique information about the experiment, such that it can be recognized later on.

16. Start running the Simulink model in External mode and simultaneously start logging
the force sensor data in the VI.

The experiments are conducted by two persons. One person reads the PWM value for the
current 10 s and writes down the corresponding rotational velocity (in RPM) that the other
person reads from the hand-tachometer display. These values could be checked later on using
the video recording.
Once the 10 s of the last PWM signal have expired, do the following:
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1. Simultaneously stop running the Simulink model in External mode and logging the force
sensor data.

2. Stop the camera recording.

3. Rotate the sensor 180°.

4. Remove plastic spoon from hand-tachometer.

5. Send the sensor data to the laptop running MATLAB.

6. Process and save the logged force sensor (using VI), PWM, battery (using Simulink)
and rotational velocity (manually) data in a .mat file.

7. Possibly detach the AR.Drone 2.0 from the arm, replace the battery and attach it again
to the arm as indicated above.

B-4-3 Datasets

As indicated in Section 5-4-1, only PWM values 5-80 are taken into account in the torque
experiments. Table B-7 provides the resulting dataset.
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Table B-7: Data from four experiments to relate generated torque to rotational velocity. The
torque values reported here are the result of the total measured torque when two rotors are
turning, minus torque caused by dynamic friction, divided by two.

Experiment number
1 2 3 4

(batP) (batP) (batP) (batP)
ω4 τ ω4 τ ω3 τ ω3 τ

(RPM) (N m) (RPM) (N m) (RPM) (N m) (RPM) (N m)

P
W

M

5 1411 0.0040 1429 0.0039 1422 0.0039 1420 0.0042
1421 0.0040 1426 0.0049 1420 0.0040 1424 0.0040

10 1596 0.0052 1612 0.0050 1605 0.0054 1604 0.0055
1603 0.0050 1608 0.0063 1602 0.0051 1605 0.0055

15 1774 0.0066 1788 0.0066 1781 0.0068 1781 0.0067
1778 0.0064 1783 0.0077 1777 0.0064 1781 0.0065

20 1957 0.0081 1970 0.0079 1963 0.0082 1964 0.0079
1960 0.0082 1965 0.0095 2958 0.0083 1962 0.0080

25 2133 0.0095 2145 0.0096 2138 0.0102 2140 0.0102
2134 0.0097 2140 0.0108 3132 0.0100 2137 0.0095

30 2315 0.0110 2327 0.0110 2319 0.0121 2322 0.0123
2315 0.0117 2322 0.0134 2313 0.0114 2318 0.0120

35 2490 0.0132 2502 0.0127 2495 0.0138 2496 0.0149
2490 0.0135 2496 0.0150 2487 0.0136 2492 0.0135

40 2672 0.0148 2685 0.0142 2676 0.0163 2679 0.0168
2671 0.0159 2678 0.0171 2669 0.0166 2674 0.0161

45 2845 0.0171 2858 0.0164 2850 0.0190 2853 0.0193
2845 0.0178 2853 0.0195 2842 0.0196 2849 0.0187

50 3026 0.0195 3038 0.0190 3029 0.0221 3033 0.0222
3026 0.0205 3033 0.0225 3024 0.0211 3030 0.0218

55 3207 0.0226 3219 0.0230 3209 0.0244 3213 0.0250
3205 0.0263 3214 0.0257 3204 0.0252 3210 0.0242

60 3382 0.0266 3393 0.0270 3382 0.0270 3387 0.0271
3379 0.0258 3388 0.0286 3377 0.0290 3384 0.0274

65 3561 0.0293 3574 0.0287 3560 0.0315 3567 0.0305
3560 0.0303 3569 0.0324 3558 0.0299 3564 0.0306

70 3734 0.0341 3749 0.0337 3733 0.0341 3740 0.0335
3732 0.0345 3741 0.0339 3730 0.0332 3737 0.0344

75 3914 0.0361 3928 0.0361 3913 0.0367 3920 0.0376
3913 0.0363 3922 0.0368 3910 0.0366 3917 0.0370

80 4088 0.0398 4100 0.0388 4086 0.0409 4093 0.0403
4085 0.0389 4096 0.0413 4083 0.0399 4091 0.0404
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Appendix C

Experimental setup

In this appendix, Section C-1 shows two different simulators that could be used to simulate
the Parrot AR.Drone 2.0 in future research and Section C-2 gives the experiment plan used
in this thesis to ensure consistent and well-documented lab data.

C-1 Parrot AR.Drone 2.0 Gazebo simulators

For the Parrot AR.Drone 2.0, two different Gazebo simulators could be used.

The first simulator is called the tum_simulator [77]. Figure C-1a shows the hovering AR.Drone
2.0 in simulation. The main advantage of this simulator is the fact that it can be used by
the tum_ardrone package and directly substitutes the ardrone_autonomy package (used to
communicate with the real AR.Drone 2.0) without interfacing problems. Another advantage
is the fact that the wind plugin of the rotors_simulator simulator (described below) is made
compatible with this simulator in this thesis, thereby being able to simulate the quadrotor
with influence of wind. The disadvantage of this simulator is the fact that it is meant for re-
search in the area of computer vision. Therefore, the simulator movements are based on forces
and torques acting on the simulated quadrotor rigid-body. These forces and torques could
be used as alternative model inputs for the model described in Section 3-4. However, these
signals appear to contain very spiky behaviour. An example of spiky torque data is shown in
Figure C-2. Therefore, it is recommended not to use this simulator for future research, unless
a completely different quadrotor model is used that does not involve the rigid-body thrust
and torques and/or motor PWM values.

The other simulator is called the rotors_simulator [78] and is shown in Figure C-1b. The
rotors_simulator is one of a diversity of ROS packages built by the Autonomous Systems
Lab (ASL) in Eidgenössische Technische Hochschule (ETH) Zürich. The main advantage of
this simulator is the fact that it simulates quadrotor movement based on the rotor velocities
(instead of directly using thrust and torques on a rigid-body as described above). This
gives more realistic quadrotor behaviour. Another advantage of this package is the fact
that it is not limited to simulation of the Parrot AR.Drone 2.0, but can also simulate other
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(a) tum_simulator. (b) rotors_simulator.

Figure C-1: View on quadrotor hovering at position (x = 0, y = 0, z = 1) in tum_simulator and
rotors_simulator.

Figure C-2: Spiky torque data using tum_simulator.
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quadrotors. This makes the simulator suitable for future research with potentially different
quadrotors. This package also has disadvantages. First of all, it contains a lot of quadrotor
parameters that should all be known in order to simulate it properly. In itself, this is not a
real disadvantage, but the fact that the package simulates a quadrotor called ‘ardrone’, not
‘ardrone2’, makes it more difficult. One should find out whether the quadrotor behaviour
between AR.Drone and AR.Drone 2.0 differs much and in what respect in order to properly
adjust the simulation model parameters of the quadrotor. Another disadvantage is the fact
that this simulator contains an AR.Drone model without indoor hull, which could possibly
introduce a significant discrepancy between simulation physical flight. The indoor hull could
possibly be taken from a file defining the indoor hull mesh in the tum_simulator package.

It can be concluded that both simulators have their own advantages and disadvantages.
However, the spiky data coming from the tum_simulator introduces such an issue to state
estimation that the rotors_simulator is the preferred simulator to use for future research.

C-2 Experiment plan

This section describes a universal experiment plan that can be used to conduct flight experi-
ments with the AR.Drone 2.0 in the NERDlab using the experimental setup as described in
Chapter 4.

First of all, the following materials should be taken to the lab:

1. Laptop with software installed

2. Parrot AR.Drone 2.0

3. Batteries

4. Battery charger(s)

5. Joystick

6. Universal Serial Bus (USB) extension cable (to always have the joystick controller in
Line Of Sight (LOS) with its USB receiver)

7. USB Wi-Fi adapter

8. Video camera with sufficient storage space

9. Tripod for video camera

10. OptiTrack markers

11. Double-sided tape

12. Black tape

13. Scissors

14. Spare parts:
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(a) Parrot AR.Drone 2.0
(b) Batteries

The following steps need to be taken before going to the lab:

1. Reserve time slot in lab using online booking system and inform lab supervisor if needed.

2. Charge all batteries.

3. Pack all items needed in the lab as given above.

4. Prepare software for direct usage.

The following steps need to be taken once before going to the lab:

1. Ensure that quadrotor can be powered on when aligned with OptiTrack coordinate axes
(using replaceable part of the indoor hull shown in Figure C-3).

The following steps need to be taken once in the lab before being able to retrieve usable data
from the flight experiments:

1. Set up network connection with quadrotor via routers to significantly reduce the amount
of reconnection timeouts with AR.Drone 2.0 (see Figure C-4).

2. Set up Motive:Tracker program using a dedicated manual [79].

3. Determine origin and orientation of OptiTrack coordinate axes, configure OptiTrack
with this setting and put tapes on the ground with indication of x- and y-axis and with
indication of quadrotor leg positions.

The following steps need to be taken before conducting flight experiments in the lab:

1. Put the window screens down (to avoid ground reflections for better optical flow velocity
estimation).

2. Put clear markers on the ground to improve optical flow velocity estimation.

3. Place the quadrotor with markers in the OptiTrack camera FOV.

4. Start Motive:Tracker on TUD desktop and check whether the recognized rigid-body is
vibrating or not. If it is vibrating, consult the average marker position error as indicated
in the program. If this value is small, continue. Otherwise, consider recreating the rigid-
body with the markers.

5. Set up the lab network according to Figure C-4 by connecting router 1 and router 2 via
Ethernet cables to the laptop.

6. Turn on the quadrotor and make sure it connects with router 2.

7. Check connection using joystick control.
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8. Perform a test flight to ensure that a ROS bag file is saved with at least data from the
the ROS topics listed below and to check if the data looks as expected (i.e. properly
represents the quadrotor movement and has expected sampling frequency).

• ardrone/imu
• ardrone/navdata
• ardrone/odometry
• ardrone2/pose
• cmd_vel
• tf

9. Set up the camera on the tripod in a useful location and turn it on.

Steps to take for every flight experiment (outlined for the experiment considered in this thesis
below):

1. Place quadrotor at the origin of the OptiTrack system (tape cross on the ground) with
correct orientation.

2. If OptiTrack position and orientation are not zero: set these quantities to zero in Mo-
tive:Tracker.

3. Turn on the quadrotor and make sure it connects with router 2.

4. Place wind source in lab and power on.

5. Start camera recording and indicate which experiment will take place.

6. Perform experiment:

(a) Take off and fly quadrotor to a position approximately 6 m away from the wind
source and keep it hovering at that position.

(b) Turn on the wind source to mode 2.
(c) Wait until the air flow coming from the wind source is stable.
(d) Keep the experiment setting constant for a desired duration (e.g. at least 30 s).
(e) Turn off the wind source to mode 0.
(f) Wait until the quadrotor movement is stable again.
(g) Land quadrotor.

7. Stop video recording.

8. Note the experiment number, goal and whether or not it was successful.

9. Rename the ROS bag file according to the following naming convention:
ardrone2_exp_yyyy-mm-dd_expnumber_bat#.bag
(‘ardrone2’ to indicate which quadrotor is flying, ‘exp’ to indicate that it is an experi-
ment and not a simulation, replace ‘yyyy-mm-dd’ with the year, month and day, replace
‘expnumber’ with the number of the experiment during that specific lab session, replace
‘bat#’ with the battery type and number (e.g. batP1 or batA2).
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Figure C-3: Replaceable part of indoor hull to be able to power on the quadrotor when aligned
with OptiTrack coordinate axes.

Figure C-4: Lab network configuration.
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Appendix D

Noise analysis

This appendix provides figures supporting the statements in Chapter 6.

D-1 Distribution of higher-order derivatives of measurement noise

Figure D-1 and Figure D-2 show the distribution of the 3rd- and 4th-order and 5th- and
6th-order derivatives of measurement noise z, respectively.

D-2 Distribution of higher-order derivatives of process noises

Figure D-3 and Figure D-3 show the distribution of the 3rd- and 4th-order and 5th- and
6th-order derivatives of process noise w1, respectively.

Figure D-5 and Figure D-5 show the distribution of the 3rd- and 4th-order and 5th- and
6th-order derivatives of process noise w2, respectively.

Master of Science Thesis Dennis Benders



116 Noise analysis

Figure D-1: Distributions of 3rd- and 4th-order derivatives of z, together with their corresponding
Gaussian fit.

Figure D-2: Distributions of 5th- and 6th-order derivatives of z, together with their corresponding
Gaussian fit.
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Figure D-3: Distributions of 3rd- and 4th-order derivatives of w1, together with their corre-
sponding Gaussian fit.

Figure D-4: Distributions of 5th- and 6th-order derivatives of w1, together with their corre-
sponding Gaussian fit.
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Figure D-5: Distributions of 3rd- and 4th-order derivatives of w2, together with their corre-
sponding Gaussian fit.

Figure D-6: Distributions of 5th- and 6th-order derivatives of w2, together with their corre-
sponding Gaussian fit.
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Appendix E

Filter results

This appendix provides the data supporting the main conclusions drawn in Chapter 7 regarding
the performance of the DEM filter.

E-1 DEM filter results for different p, d and s values

Table E-1 until E-24 show the SSE values of the DEM filter for each combination of embedding
orders p and d, ranging from 0 up to and including 7 per smoothness value.

Table E-1: SSE of DEM filter for p, d ∈ {0, 1, 2, 3, 4, 5, 6, 7} and s = 1 · 10−4 s.

d
0 1 2 3 4 5 6 7

p

0 134 134 134 134 134 134 134 134
1 6.31 · 103 6.31 · 103 6.32 · 103 1.55 · 103 1.55 · 103 637 638 329
2 6.81 · 103 6.81 · 103 6.81 · 103 1.83 · 103 1.83 · 103 808 809 445
3 1.83 · 103 1.83 · 103 1.83 · 103 1.83 · 103 1.83 · 103 809 810 446
4 1.83 · 103 1.83 · 103 1.83 · 103 1.83 · 103 1.83 · 103 810 811 447
5 812 812 812 812 812 812 812 448
6 815 814 814 814 814 814 814 450
7 452 452 452 452 452 452 452 452

Master of Science Thesis Dennis Benders



120 Filter results

Table E-2: SSE of DEM filter for p, d ∈ {0, 1, 2, 3, 4, 5, 6, 7} and s = 2 · 10−4 s.

d
0 1 2 3 4 5 6 7

p

0 134 134 134 134 134 134 134 134
1 733 733 735 160 161 59.8 60.0 29.1
2 921 920 920 236 236 101 101 54.1
3 237 237 237 237 237 101 101 54.5
4 238 238 238 238 238 101 102 54.9
5 102 102 102 102 102 102 102 55.5
6 103 103 103 103 103 103 103 56.2
7 57.2 57.1 57.1 57.1 57.1 57.1 57.1 57.1

Table E-3: SSE of DEM filter for p, d ∈ {0, 1, 2, 3, 4, 5, 6, 7} and s = 3 · 10−4 s.

d
0 1 2 3 4 5 6 7

p

0 134 134 134 134 134 134 134 134
1 191 191 192 38.0 38.2 14.7 14.7 8.25
2 277 277 277 68.2 68.4 29.6 29.6 17.2
3 68.7 68.6 68.7 68.6 68.8 30.0 30.0 17.6
4 69.3 69.2 69.2 69.2 69.2 30.3 30.3 17.8
5 30.8 30.8 30.8 30.8 30.8 30.8 30.8 18.3
6 31.5 31.5 31.5 31.5 31.5 31.5 31.5 18.8
7 19.6 19.5 19.5 19.5 19.5 19.5 19.5 19.5

Table E-4: SSE of DEM filter for p, d ∈ {0, 1, 2, 3, 4, 5, 6, 7} and s = 4 · 10−4 s.

d
0 1 2 3 4 5 6 7

p

0 134 134 134 134 134 134 134 134
1 69.4 69.4 70.0 14.2 14.3 6.83 6.84 5.11
2 115 115 115 28.9 28.9 14.1 14.1 9.64
3 29.3 29.3 29.3 29.3 29.3 14.5 14.5 10.2
4 29.7 29.6 29.6 29.6 29.6 14.7 14.7 10.2
5 15.2 15.1 15.1 15.1 15.1 15.1 15.2 10.7
6 15.7 15.6 15.6 15.6 15.6 15.6 15.6 11.0
7 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7
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Table E-5: SSE of DEM filter for p, d ∈ {0, 1, 2, 3, 4, 5, 6, 7} and s = 5 · 10−4 s.

d
0 1 2 3 4 5 6 7

p

0 134 134 134 134 134 134 134 134
1 31.3 31.3 31.6 7.69 7.71 5.02 5.02 4.64
2 58.2 58.1 58.1 16.0 16.0 9.34 9.35 7.26
3 16.5 16.4 16.4 16.4 16.5 9.88 9.89 7.97
4 16.7 16.7 16.7 16.7 16.7 9.93 9.94 7.88
5 10.4 10.4 10.4 10.4 10.4 10.4 10.4 8.37
6 10.8 10.7 10.7 10.7 10.7 10.7 10.7 8.62
7 9.28 9.27 9.27 9.27 9.27 9.27 9.27 9.27

Table E-6: SSE of DEM filter for p, d ∈ {0, 1, 2, 3, 4, 5, 6, 7} and s = 6 · 10−4 s.

d
0 1 2 3 4 5 6 7

p

0 134 134 134 134 134 134 134 134
1 16.7 16.7 16.9 5.55 5.55 4.65 4.65 4.74
2 33.7 33.6 33.6 10.9 11.0 7.41 7.41 6.15
3 11.5 11.4 11.4 11.4 11.4 8.10 8.11 7.04
4 11.6 11.6 11.6 11.6 11.6 8.03 8.04 6.82
5 8.52 8.51 8.51 8.51 8.51 8.51 8.52 7.39
6 8.79 8.78 8.78 8.78 8.78 8.78 8.78 7.54
7 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22

Table E-7: SSE of DEM filter for p, d ∈ {0, 1, 2, 3, 4, 5, 6, 7} and s = 7 · 10−4 s.

d
0 1 2 3 4 5 6 7

p

0 134 134 134 134 134 134 134 134
1 10.4 10.4 10.5 4.83 4.83 4.70 4.70 4.92
2 21.8 21.8 21.8 8.60 8.61 6.39 6.40 5.47
3 9.20 9.18 9.18 9.18 9.20 7.24 7.25 6.50
4 9.23 9.21 9.22 9.22 9.22 7.05 7.06 6.18
5 7.61 7.60 7.60 7.60 7.60 7.60 7.61 6.82
6 7.79 7.78 7.78 7.78 7.78 7.78 7.78 6.90
7 7.60 7.60 7.60 7.60 7.60 7.60 7.60 7.60
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Table E-8: SSE of DEM filter for p, d ∈ {0, 1, 2, 3, 4, 5, 6, 7} and s = 8 · 10−4 s.

d
0 1 2 3 4 5 6 7

p

0 134 134 134 134 134 134 134 134
1 7.45 7.45 7.49 4.64 4.64 4.85 4.84 5.04
2 15.6 15.6 15.6 7.33 7.34 5.75 5.75 5.01
3 8.04 8.03 8.03 8.03 8.05 6.72 6.73 6.11
4 7.98 7.97 7.97 7.97 7.97 6.44 6.44 5.73
5 7.06 7.05 7.05 7.05 7.05 7.05 7.06 6.40
6 7.17 7.17 7.17 7.17 7.17 7.17 7.17 6.46
7 7.16 7.16 7.16 7.16 7.16 7.16 7.16 7.16

Table E-9: SSE of DEM filter for p, d ∈ {0, 1, 2, 3, 4, 5, 6, 7} and s = 9 · 10−4 s.

d
0 1 2 3 4 5 6 7

p

0 134 134 134 134 134 134 134 134
1 5.96 5.96 5.98 4.67 4.67 4.98 4.97 5.08
2 12.1 12.1 12.1 6.54 6.55 5.29 5.29 4.67
3 7.37 7.36 7.36 7.36 7.38 6.35 6.35 5.79
4 7.21 7.21 7.21 7.21 7.21 6.00 6.00 5.39
5 6.66 6.66 6.66 6.66 6.66 6.66 6.66 6.07
6 6.73 6.73 6.73 6.73 6.73 6.73 6.73 6.12
7 6.81 6.81 6.81 6.81 6.81 6.81 6.81 6.81

Table E-10: SSE of DEM filter for p, d ∈ {0, 1, 2, 3, 4, 5, 6, 7} and s = 1 · 10−3 s.

d
0 1 2 3 4 5 6 7

p

0 134 134 134 134 134 134 134 134
1 5.21 5.21 5.22 4.78 4.78 5.05 5.05 5.08
2 10.0 10.0 10.0 5.99 6.00 4.94 4.94 4.43
3 6.93 6.92 6.92 6.92 6.93 6.05 6.05 5.53
4 6.69 6.68 6.68 6.68 6.68 5.66 5.66 5.14
5 6.34 6.34 6.34 6.34 6.34 6.34 6.34 5.81
6 6.39 6.39 6.39 6.39 6.39 6.39 6.39 5.86
7 6.54 6.54 6.54 6.54 6.54 6.54 6.54 6.54
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Table E-11: SSE of DEM filter for p, d ∈ {0, 1, 2, 3, 4, 5, 6, 7} and s = 2 · 10−3 s.

d
0 1 2 3 4 5 6 7

p

0 134 134 134 134 134 134 134 134
1 5.04 5.04 5.03 5.07 5.05 5.04 5.03 5.05
2 5.07 5.07 5.07 4.06 4.06 3.80 3.80 3.69
3 5.11 5.11 5.11 5.11 5.12 4.64 4.64 4.36
4 4.76 4.76 4.76 4.76 4.76 4.42 4.43 4.26
5 4.92 4.92 4.92 4.92 4.92 4.92 4.93 4.66
6 5.08 5.08 5.08 5.08 5.08 5.08 5.08 4.87
7 5.35 5.35 5.35 5.35 5.35 5.35 5.35 5.35

Table E-12: SSE of DEM filter for p, d ∈ {0, 1, 2, 3, 4, 5, 6, 7} and s = 3 · 10−3 s.

d
0 1 2 3 4 5 6 7

p

0 134 134 134 134 134 134 134 134
1 5.11 5.11 5.07 5.10 5.06 5.14 5.11 5.19
2 4.13 4.13 4.13 3.71 3.72 3.62 3.63 3.59
3 4.51 4.51 4.51 4.51 4.52 4.06 4.07 3.81
4 4.33 4.33 4.33 4.33 4.33 4.10 4.10 3.94
5 4.38 4.38 4.38 4.38 4.38 4.38 4.38 4.14
6 4.67 4.67 4.66 4.66 4.66 4.66 4.66 4.45
7 4.81 4.81 4.81 4.81 4.81 4.81 4.81 4.81

Table E-13: SSE of DEM filter for p, d ∈ {0, 1, 2, 3, 4, 5, 6, 7} and s = 4 · 10−3 s.

d
0 1 2 3 4 5 6 7

p

0 134 134 134 134 134 134 134 134
1 5.13 5.13 5.07 5.20 5.15 5.28 5.24 5.35
2 3.82 3.82 3.82 3.61 3.62 3.57 3.57 3.55
3 4.12 4.12 4.12 4.12 4.13 3.72 3.72 3.76
4 4.13 4.13 4.12 4.12 4.12 3.85 3.86 3.66
5 4.05 4.05 4.04 4.04 4.04 4.04 4.05 3.90
6 4.36 4.36 4.35 4.35 4.35 4.35 4.35 4.13
7 4.53 4.53 4.52 4.52 4.52 4.52 4.52 4.52
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Table E-14: SSE of DEM filter for p, d ∈ {0, 1, 2, 3, 4, 5, 6, 7} and s = 5 · 10−3 s.

d
0 1 2 3 4 5 6 7

p

0 134 134 134 134 134 134 134 134
1 5.20 5.20 5.11 5.31 5.25 5.41 5.36 5.49
2 3.69 3.69 3.68 3.56 3.57 3.54 3.55 3.54
3 3.82 3.82 3.82 3.82 3.83 3.79 3.79 4.78
4 3.96 3.96 3.95 3.95 3.95 3.63 3.64 3.42
5 3.95 3.95 3.94 3.94 3.94 3.94 3.95 3.89
6 4.11 4.11 4.10 4.10 4.10 4.10 4.10 3.93
7 4.41 4.40 4.39 4.39 4.39 4.39 4.39 4.39

Table E-15: SSE of DEM filter for p, d ∈ {0, 1, 2, 3, 4, 5, 6, 7} and s = 6 · 10−3 s.

d
0 1 2 3 4 5 6 7

p

0 134 134 134 134 134 134 134 134
1 5.28 5.28 5.18 5.42 5.35 5.53 5.48 5.60
2 3.62 3.62 3.62 3.54 3.55 3.53 3.53 3.52
3 3.67 3.67 3.66 3.66 3.67 4.60 4.60 7.65
4 3.80 3.80 3.79 3.79 3.79 3.43 3.44 3.29
5 4.11 4.10 4.09 4.09 4.09 4.09 4.10 3.82
6 3.96 3.96 3.93 3.94 3.94 3.94 3.94 3.86
7 4.29 4.29 4.26 4.27 4.27 4.27 4.27 4.27

Table E-16: SSE of DEM filter for p, d ∈ {0, 1, 2, 3, 4, 5, 6, 7} and s = 7 · 10−3 s.

d
0 1 2 3 4 5 6 7

p

0 134 134 134 134 134 134 134 134
1 5.36 5.37 5.25 5.52 5.45 5.62 5.57 5.68
2 3.59 3.59 3.58 3.52 3.53 3.52 3.52 3.51
3 3.76 3.76 3.75 3.75 3.75 6.58 6.58 13.3
4 3.65 3.64 3.63 3.63 3.63 3.30 3.32 3.34
5 4.39 4.39 4.37 4.37 4.37 4.37 4.39 3.61
6 3.93 3.93 3.89 3.90 3.91 3.91 3.91 3.90
7 4.38 4.38 4.34 4.35 4.36 4.36 4.36 4.36
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Table E-17: SSE of DEM filter for p, d ∈ {0, 1, 2, 3, 4, 5, 6, 7} and s = 8 · 10−3 s.

d
0 1 2 3 4 5 6 7

p

0 134 134 134 134 134 134 134 134
1 5.44 5.45 5.32 5.60 5.53 5.69 5.65 5.75
2 3.57 3.57 3.56 3.51 3.52 3.51 3.51 3.50
3 4.21 4.21 4.19 4.20 4.19 10.2 10.2 22.9
4 3.51 3.51 3.48 3.48 3.49 3.27 3.30 3.69
5 4.59 4.58 4.55 4.55 4.56 4.56 4.60 4.38
6 4.03 4.03 3.98 3.98 4.01 4.01 4.01 3.92
7 5.88 5.88 5.83 5.83 5.86 5.86 5.87 5.87

Table E-18: SSE of DEM filter for p, d ∈ {0, 1, 2, 3, 4, 5, 6, 7} and s = 9 · 10−3 s.

d
0 1 2 3 4 5 6 7

p

0 134 134 134 134 134 134 134 134
1 5.51 5.52 5.39 5.66 5.60 5.75 5.71 5.80
2 3.56 3.55 3.54 3.50 3.51 3.50 3.50 3.50
3 5.17 5.16 5.15 5.15 5.14 16.2 16.1 37.8
4 3.40 3.39 3.36 3.36 3.37 3.41 3.46 4.46
5 4.50 4.50 4.46 4.46 4.47 4.47 4.55 10.7
6 4.23 4.23 4.16 4.17 4.22 4.22 4.22 3.83
7 11.5 11.5 11.4 11.4 11.5 11.5 11.5 11.5

Table E-19: SSE of DEM filter for p, d ∈ {0, 1, 2, 3, 4, 5, 6, 7} and s = 1 · 10−2 s.

d
0 1 2 3 4 5 6 7

p

0 134 134 134 134 134 134 134 134
1 5.57 5.58 5.46 5.72 5.66 5.79 5.76 5.84
2 3.55 3.55 3.53 3.50 3.50 3.49 3.50 3.50
3 6.79 6.79 6.77 6.77 6.75 25.0 24.9 59.4
4 3.32 3.32 3.28 3.28 3.30 3.76 3.85 5.79
5 4.24 4.23 4.18 4.18 4.20 4.20 4.33 34.0
6 4.48 4.47 4.39 4.39 4.48 4.48 4.48 3.63
7 25.2 25.2 25.1 25.1 25.2 25.2 25.2 25.2

Master of Science Thesis Dennis Benders



126 Filter results

Table E-20: SSE of DEM filter for p, d ∈ {0, 1, 2, 3, 4, 5, 6, 7} and s = 1.1 · 10−2 s.

d
0 1 2 3 4 5 6 7

p

0 134 134 134 134 134 134 134 134
1 5.63 5.63 5.52 5.76 5.71 5.83 5.80 5.87
2 3.54 3.54 3.52 3.49 3.50 3.49 3.50 3.50
3 9.27 9.27 9.24 9.24 9.21 37.5 37.4 89.4
4 3.31 3.30 3.25 3.25 3.28 4.39 4.57 7.84
5 4.68 4.67 4.59 4.60 4.64 4.64 4.80 98.4
6 4.67 4.66 4.56 4.57 4.71 4.71 4.70 3.67
7 50.2 50.2 50.1 50.1 50.3 50.3 50.3 50.3

Table E-21: SSE of DEM filter for p, d ∈ {0, 1, 2, 3, 4, 5, 6, 7} and s = 1.2 · 10−2 s.

d
0 1 2 3 4 5 6 7

p

0 134 134 134 134 134 134 134 134
1 5.67 5.68 5.57 5.80 5.75 5.86 5.83 5.89
2 3.54 3.54 3.51 3.49 3.49 3.49 3.51 3.50
3 12.8 12.8 12.8 12.8 12.7 54.4 54.2 130
4 3.37 3.36 3.30 3.30 3.34 5.39 5.70 10.8
5 8.22 8.21 8.11 8.12 8.19 8.19 8.28 249
6 4.73 4.71 4.60 4.60 4.83 4.82 4.79 5.05
7 86.1 86.1 86.0 86.0 86.3 86.2 86.2 86.2

Table E-22: SSE of DEM filter for p, d ∈ {0, 1, 2, 3, 4, 5, 6, 7} and s = 1.3 · 10−2 s.

d
0 1 2 3 4 5 6 7

p

0 134 134 134 134 134 134 134 134
1 5.71 5.72 5.62 5.83 5.79 5.88 5.86 5.91
2 3.54 3.54 3.50 3.48 3.49 3.49 3.52 3.51
3 17.6 17.6 17.6 17.6 17.5 76.7 76.4 182
4 3.52 3.51 3.43 3.43 3.50 6.83 7.36 14.9
5 19.9 19.9 19.7 19.8 19.9 19.9 19.5 562
6 4.59 4.57 4.44 4.45 4.78 4.77 4.68 10.1
7 124 124 124 124 125 124 124 124
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Table E-23: SSE of DEM filter for p, d ∈ {0, 1, 2, 3, 4, 5, 6, 7} and s = 1.4 · 10−2 s.

d
0 1 2 3 4 5 6 7

p

0 134 134 134 134 134 134 134 134
1 5.70 5.70 5.70 5.80 5.80 5.90 5.90 5.90
2 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50
3 24.0 24.0 23.9 23.9 23.8 105 105 248
4 3.80 3.80 3.70 3.70 3.80 8.80 9.70 20.4
5 48.7 48.7 48.6 48.6 48.8 48.8 47.2 1.16 · 103

6 4.30 4.30 4.10 4.10 4.60 4.60 4.40 23.1
7 148 147 147 147 148 148 148 148

Table E-24: SSE of DEM filter for p, d ∈ {0, 1, 2, 3, 4, 5, 6, 7} and s = 1.5 · 10−2 s.

d
0 1 2 3 4 5 6 7

p

0 134 134 134 134 134 134 134 134
1 5.80 5.80 5.70 5.90 5.80 5.90 5.90 5.90
2 3.50 3.50 3.50 3.50 3.50 3.50 3.60 3.50
3 32.1 32.1 32.1 32.0 31.8 141 140 332
4 4.20 4.20 4.10 4.10 4.20 11.4 12.9 27.7
5 110 110 110 110 110 110 106 2.24 · 103

6 4.00 4.00 3.80 3.90 4.60 4.50 4.10 51.4
7 139 139 139 139 139 139 139 139
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Appendix F

Software

This appendix provides the references to the different software packages used in this thesis.
Section F-1 gives some information about the ROS package developed in thesis. This ROS
package is used to fly the AR.Drone 2.0 in simulation and in the NERDlab. Section F-2
provides the source and installation instructions of the MATLAB/Simulink toolbox used to
conduct the system identification experiments.

F-1 AR.Drone 2.0 flight and simulation analysis

The ROS package constructed in this thesis is given in [80]. This package contains the
ROS launch file to fly the AR.Drone 2.0 in simulation and physically in the lab, as well as the
MATLAB files used to analyze the experiment and evaluate the filter results. The installation
instructions for this package are given in the README file of the repository.

F-2 AR.Drone 2.0 support from MATLAB Embedded Coder

The software used to conduct the experiments is given in [40] and runs on the Windows
operating system. A few more steps than mentioned on the GitHub page are required to
install this package properly. Therefore, the complete installation procedure is listed below:

1. Download and install MATLAB R2016b or newer for Windows. The software is tested
using the following installed MATLAB packages:

• Aerospace Blockset 3.18
• Aerospace Toolbox 2.18
• Computer Vision System Toolbox 7.2
• Control System Toolbox 10.1
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• Embedded Coder 6.11
• Image Processing Toolbox 9.5
• Instrument Control Toolbox 3.10
• MATLAB 9.1
• MATLAB Coder 3.2
• Robotics System Toolbox 1.3
• Simulink 3D animation 7.6
• Simulink 8.8
• Simulink Coder 8.11
• Stateflow 8.8
• System Identification Toolbox 9.5

2. Install a C compiler. Run the command mex -setup c in the MATLAB Command
Window to check if the computer has a C compiler installed. If not, the free MinGW64
compiler can be installed from the MATLAB Add-Ons Explorer.

3. Download and install the Code Sourcery ARM compiler. This is a free compiler which
can be downloaded using the following link: https://sourcery.mentor.com/sgpp/
lite/arm/portal/package8738/public/arm-none-linux-gnueabi/arm-2011.03-41-
arm-none-linux-gnueabi.exe.

4. In Windows 8 or newer the installer needs to be run in Windows 7 compatibility mode
(right-click on .exe, go to Properties, go to Compatibility tab, check the Run this
program in compatibility mode box and select Windows 7 in the drop-down menu).

In case the FTP connection with the AR.Drone 2.0 gives trouble, try the following steps:

1. Download the Passive Mode FTP in MATLAB package using the following link: https:
//nl.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/6626/
versions/2/download/zip).

2. Follow the README instructions included in this zip file.

3. Ensure that the computer is only connected to the AR.Drone 2.0 network.
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