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a b s t r a c t 

In this paper, a modelling method and an accurate numerical procedure are presented to 

simulate the dynamical responses of a multi-cable driven parallel suspension platform sys- 

tem. For such systems, the cables might become slack due to external excitations and due 

to the fact that cables can become tensionless when been pushed in longitudinal direction. 

In lateral and torsional directions, the constraint forces between the cables and platform 

can be positive as well as negative. This paper will deal with the non-smooth cable vibra- 

tions (in longitudinal, lateral and torsional directions) by taking into account the slackness 

of the cables. Firstly, the Lagrange equation with constraints is used to derive the equa- 

tions of motion of the multi-cable suspension platform. Then, by expressing the equations 

of motion and constraint equations at velocity level, a non-smooth algorithm is used to nu- 

merically solve the equations. Finally, the numerical results are compared with an ADAMS 

simulation, and the two results agree well with each other. Moreover, the results in this 

paper significantly improve the numerical results used in the analysis of the dynamics for 

multi-cable systems which usually neglect the lateral properties of the cables. 

© 2018 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

A multi-cable driven parallel suspension platform, which acts as a working platform for workers and carries machines

when constructing vertical shafts, mainly consists of three components: a platform, several suspension cables and winding

winches [1] , as shown in Fig. 1 . Due to the flexibility of the suspension cables and their interactions, complicated dynamical

phenomena can occur when the platform is lifted up or lowered down. When the cable length is not perfectly controlled,

for example, one of the cables can become longer due to the driving error of its drum, and then this cable may become

slack because of its unilateral bearing property (can only be pulled) in axial direction [2] . And, when it becomes tensioned

again, a shock will be acting on the platform due to the cable state change. 

When investigating cable vibrations in single-cable hoisting systems, usually the cable is modelled as a continuum and

the governing equations of the system are derived mostly by Hamilton’s principle [3,4] . By using various spatial discretiza-

tion methods, such as a single-mode approximation [5] , a Rayleigh–Ritz procedure [6] , a Galerkin’s method [7,8] , the as-

sumed mode method [9] , and the method of Lagrange equations [10,11] , the derived governing equations can be discretized

into ordinary differential equations (ODEs) or differential algebraic equations (DAEs) [12,13] , which then can be solved with
∗ Corresponding author. 
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Fig. 1. Multi-cable driven parallel suspension platform system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

numerical methods. Single cable vibration problems can also be solved analytically. Sandilo and van Horssen [14,15] em-

ployed a multiple-timescales perturbation method to construct formal asymptotic approximations to the solutions. Gaiko 

and van Horssen [16] and Akkaya and van Horssen [17] used the method of d’Alembert to obtain the exact lateral response

of travelling strings. Laplace transform methods [18,19] can also be used to solve cable vibration problems analytically. 

When investigating the dynamics of multi-cable-driven parallel mechanisms, cables in such systems are often simplified

as linear [20] or nonlinear [21] springs, or just represented by force vectors [22] , while the mechanical properties of the

cables are ignored, which implies that the interaction between the cable and the suspended subject cannot be analysed cor-

rectly. When considering the unilateral bearing properties of the cables, Shao et al. [2] established a dynamic model of the

shaft construction platform by treating the cables as massless, undamped, and perfectly stiff. He transformed the dynamic

equations to a linear complementary problem (LCP) and derived the non-smooth dynamical response of the system by solv-

ing this LCP based on Lemke’s algorithm [23] . However, since only the longitudinal character of the cables is considered, the

dynamic responses of the system are not accurately simulated, especially in torsional direction. Moreover, when the cable

is relatively long, the lateral oscillations of the cables will have a great effect on the platform (and sometimes called end

effector in robotics) [1] . So, the lateral properties of the cables should also be included when investigating the dynamic

responses of those systems. 

For the multibody systems, when studying the contact behaviour between two rigid bodies, non-smooth time integration

methods together with the help of an impact law can be used to deal with the impacts and velocity jumps due to the unilat-

eral constraints [24–26] . Here, we can use those ideas to treat the cable state change (slack versus tensioned) as a “contact”

problem and solve it numerically with the non-smooth dynamic theory. In this paper, the non-smooth dynamical model

of the multi-cable parallel suspension platform is established. By including the longitudinal, in-plane and the out-of-plane

lateral, torsional and longitudinal-torsional coupled mechanical character of the cable, as well as its slackness, the equa-

tions of motion are derived using Lagrange’s principle. Then, by modifying the complementary condition of a non-smooth

generalized- α scheme [25] and, by using this in the derived differential algebraic equations, the non-smooth responses of

the system are obtained numerically. Finally, the numerical results of the modified algorithm are compared with an ADAMS

simulation. The two results agree well with each other, which confirms the validity of the presented numerical method. The

method presented in this paper provides a more accurate way to simulate the dynamic responses of multi-cable driven ma-

nipulators, such as a multi-crane lifting system, or a parallel cable robot, etc. The presented method also shows in general

how cable non-smooth dynamical responses can accurately be investigated. 

2. Dynamic model and equations of motion 

2.1. Description of the system 

First of all, several assumptions are made here to restrict the analysis: 

- Since the cable bending stiffness is quite small [7] , it is neglected in this paper. 

- Due to the slowly varying cable length, low longitudinal excitation frequencies and the large longitudinal stiffness of the

catenary part, it is assumed that the catenary will always behave like a rigid body. So the catenary has no influence on

the vertical part and is neglected in this paper, as well as the motion of the head-sheave; 
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Fig. 2. Four-cable driven parallel suspension platform. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- The mass per unit length (in kg/m) is denoted by ρ , and J c the moment of inertia per unit length (in kg m) of the cable.

Both are assumed to be uniform. 

By the assumptions made above, the diagram of a four-cable driven parallel suspension platform system is simplified and

shown in Fig. 2 , where A i is the tangent point between cable i and head sheave i , and B i is the connecting point between

cable i and the platform, where i = 1, 2, 3, 4. The cables are arranged symmetrically and the tangent points form a square

A 1 A 2 A 3 A 4 , whose centroid point o is used to define the coordinate frame oxyz . Similarly, the centroid of the square B 1 B 2 B 3 B 4
is denoted by O , and the length of OB i is d . A local frame O’XYZ is defined at the platform mass centre O ’. The prescribed

length of all the cables is denoted by l ( t ), and the displacement excitations of cable i at point A i in three directions are

given by e x 
i 
(t) , e y 

i 
(t) and e z 

i 
(t) , respectively, where t is time. The prescribed velocity and acceleration will be denoted by v ( t )

and a ( t ), respectively. The longitudinal and torsional dynamic displacement of cable i at position y and at time t is u i ( y, t )

and θ i ( y, t ), respectively, and the lateral dynamic displacement of cable i in x- and z- directions are w 

x 
i 
( y, t ) and w 

z 
i 
( y, t ) ,

respectively. The real length of cable i can be expressed as 

l i ( t ) = l ( t ) + e y 
i ( t ) + u i ( l ( t ) , t ) , (1)

and the position and the angle of the platform are given by [
w 

x 
p ( t ) l ( t ) + u p ( t ) w 

z 
p ( t ) θ x 

p ( t ) θ y 
p ( t ) θ z 

p ( t ) 
]
, (2)

where u p ( t ), w 

x 
p (t) and w 

z 
p (t) are the dynamical displacements of the platform in y -, x - and z -directions, while θ x 

p (t) , θ y 
p (t)

and θ z 
p (t) are the orientation angles of the platform about the X -, Y - and Z -axis at time t . 

In the longitudinal direction, since the cable length of cable i is always larger or equal to | A i B i |, which is the distance

between A i and B i , the constraint for the cable i and the platform will be 

ψ 

u 
i ( t ) = l i ( t ) − | A i B i | ≥ 0 . (3)

Since the lateral and the torsional displacement of the platform are quite small compared to the cable length, | A i B i | can

be approximated by the y coordinate value of B i . In the lateral and torsional direction, the dynamic displacement of the

lower end of the cable will always be equal to its connecting point to the platform. With those notations, the constraint

equations between the cables and the platform can be expressed as 

ψ = 

[ (
ψ 

u 
)T (

ψ 

b 
)T 

] T 
, (4)

where the constraint equations are 

ψ 

u ( t ) = 

⎡ 

⎢ ⎢ ⎣ 

u 1 ( l ( t ) , t ) + e y 
1 ( t ) −

(
u p ( t ) + d · sin 

(
θ z 

p ( t ) 
))

≥ 0 

u 2 ( l ( t ) , t ) + e y 
2 ( t ) −

(
u p ( t ) − d · sin 

(
θ x 

p ( t ) 
))

≥ 0 

u 3 ( l ( t ) , t ) + e y 
3 ( t ) −

(
u p ( t ) − d · sin 

(
θ z 

p ( t ) 
))

≥ 0 

u 4 ( l ( t ) , t ) + e y 
4 ( t ) −

(
u p ( t ) + d · sin 

(
θ x 

p ( t ) 
))

≥ 0 

⎤ 

⎥ ⎥ ⎦ 

, (5)
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and where the constraints for the cables and the platform in torsional and lateral directions are 

ψ 

b ( t ) = 

[ (
ψ 

b 
T ( t ) 

)T (
ψ 

b 
L ( t ) 

)T 
] T 

, (6) 

in which 

ψ 

b 
T ,i ( t ) = θi ( l ( t ) , t ) − θ y 

p ( t ) = 0 , 

ψ 

b 
L , 1 ( t ) = 

[
w 

x 
1 ( l ( t ) , t ) − w 

x 
p ( t ) − c · θ z 

p = 0 

w 

z 
1 ( l ( t ) , t ) − w 

z 
p ( t ) + c · θ x 

p + d · θ y 
p = 0 

]
, 

ψ 

b 
L , 2 ( t ) = 

[
w 

x 
2 ( l ( t ) , t ) − w 

x 
p ( t ) − c · θ z 

p − d · θ y 
p = 0 

w 

z 
2 ( l ( t ) , t ) − w 

z 
p ( t ) + c · θ x 

p = 0 

]
, 

ψ 

b 
L , 3 ( t ) = 

[
w 

x 
3 ( l ( t ) , t ) − w 

x 
p ( t ) − c · θ z 

p = 0 

w 

z 
3 ( l ( t ) , t ) − w 

z 
p ( t ) + c · θ x 

p − d · θ y 
p = 0 

]
, 

ψ 

b 
L , 4 ( t ) = 

[
w 

x 
4 ( l ( t ) , t ) − w 

x 
p ( t ) − c · θ z 

p + d · θ y 
p = 0 

w 

z 
4 ( l ( t ) , t ) − w 

z 
p ( t ) + c · θ x 

p = 0 

]
, (7) 

where c is the distance measured from the barycentre of the platform to its top. 

Denoting the mass of the platform by m p , the moment of inertia of the platform about the three axes by J x p , J 
y 
p and J z p ,

respectively, the kinetic energy of the system can be expressed as 

K = 

4 ∑ 

i =1 

∫ l ( t ) 

0 

1 

2 

ρ
[ 
v i ( t ) + 

D u i ( y, t ) 

Dt 

] 2 
d y + 

4 ∑ 

i =1 

∫ l ( t ) 

0 

1 

2 

J c 

[
D θi ( y, t ) 

Dt 

]2 

d y 

+ . . . 

4 ∑ 

i =1 

1 

2 

ρ

∫ l ( t ) 

0 

[ (
Dw 

x 
i ( y, t ) 

Dt 

)2 

+ 

(
Dw 

z 
i ( y, t ) 

Dt 

)2 
] 

d y + . . . 

× 1 

2 

m p 

[ 
( v ( t ) + 

˙ u p ( t ) ) 
2 + 

(
˙ w 

x 
p ( t ) 

)2 + 

(
˙ w 

z 
p ( t ) 

)2 
] 

+ . . . 
1 

2 

J x p 

(
˙ θ x 
p ( t ) 

)2 + 

1 

2 

J y p 

(
˙ θ y 
p ( t ) 

)2 + 

1 

2 

J z p 
(

˙ θ z 
p ( t ) 

)2 
, (8) 

where an over dot denotes the derivative with respect to t , and the operator D 
Dt is defined by 

D 

Dt 
= 

∂ 

∂t 
+ v ( t ) 

∂ 

∂y 
. (9) 

Taking the longitudinal-torsional coupled mechanical properties of the cables into consideration, the potential energy of

the system is 

U = 

4 ∑ 

i =1 

∫ l(t) 

0 

[(
T c ,i (y, t) + 

1 

2 

T d ,i (y, t) 
)
∂ u i (y, t) 

∂y 
+ 

(
M c ,i (y, t) + 

1 

2 

M d ,i (y, t) 
)
∂ θi (y, t) 

∂y 

]
d y + . . . 

×
4 ∑ 

i =1 

[ ∫ l(t) 

0 

1 

2 

T c ,i 

[ (
∂w 

x 
i 
(y, t) 

∂y 

)2 

+ 

(
∂w 

z 
i 
(y, t) 

∂y 

)2 
] 

d y − ρg ( y + u i ( y, t ) ) 

] 

+ . . . − m p g ( l ( t ) + u c ( t ) ) , (10) 

where g is the gravitational acceleration, T c ,i (y, t) = m p g/ 4 + ρ(l(t) − y ) g and T d ,i (y, t) = Q 1 · ∂ u i (y, t) /∂y + Q 2 ,i · ∂ θi (y, t) /∂y

are the static and dynamic axial tension of cable i at position y at time t , M c ,i (y, t) = Q 3 ,i / Q 1 · T c ,i (y, t) and M d ,i (y, t) =
Q 3 ,i · ∂ u i ( y, t ) /∂y + Q 4 · ∂ θi ( y, t ) /∂y are the static and dynamic torque of cable i at position y at time t. Q 1 and Q 4 are the

longitudinal and torsional stiffness of the cables, respectively, Q 2, i and Q 3, i are the longitudinal-torsional coupled stiffness

of cable i (see also [27] ), respectively. Since Q 2, i approximates Q 3, i , a new parameter Q 23, i is introduced to represent those

two parameters. 

2.2. Equation of motion 

The transformation ξ = y/l(t) is used to transform the time-varying domain [0, l ( t )] for y to a fixed one [0, 1] for ξ . The

new dependent variables can be expressed as 

ū i ( ξ , t ) = u i ( y, t ) , w̄ 

x 
i ( ξ , t ) = w 

x 
i ( y, t ) , w̄ 

z 
i ( ξ , t ) = w 

z 
i ( y, t ) , θ̄i ( ξ , t ) = θi ( y, t ) , (11) 

and their partial derivatives with respect to ξ and t will become 

∂ V O ( y, t ) 

∂y 
= 

1 

l ( t ) 

∂ V N ( ξ , t ) 

∂ξ
, 

∂ V O ( y, t ) 

∂t 
= 

∂ V N ( ξ , t ) 

∂t 
+ 

v ( t ) ξ
l ( t ) 

∂ V N ( ξ , t ) 

∂ξ
, (12) 

in which V ( x, t ) denotes the old variables and V ( ξ , t ) denotes the new ones. 
O N 
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By using the assumed mode method (see also [28] ), the dynamic displacements can be approximated by 

ū i, j ( ξ , t ) = 

n ∑ 

j=1 

q i, j ( t ) η j ( ξ ) , 

w̄ 

x 
i ( ξ , t ) = ( 1 − ξ ) e x i ( t ) + 

n ∑ 

j=1 

p x i, j ( t ) η j ( ξ ) , 

w̄ 

z 
i ( ξ , t ) = ( 1 − ξ ) e z i ( t ) + 

n ∑ 

j=1 

p z i, j ( t ) η j ( ξ ) , 

θ̄i ( ξ , t ) = 

n ∑ 

j=1 

ϕ i, j ( t ) η j ( ξ ) , (13)

where q i, j ( t ), p x 
i, j 

(t) , p z 
i, j 

(t) and ϕi, j ( t ) are the generalized coordinates, ηi ( ξ ) are the corresponding trial functions, and n is

the number of included modes. Because the bending stiffness of the cable is neglected, the cable model in this paper will

be a string (wave)-like model. The platform is suspended freely in the shaft, which means that the suspension cable has a

free end (in all three directions). So, the eigenfunctions of a fixed-free string with unit length are used as trial functions for

the approximation in all three directions. The trial function for the model shown in Fig. 2 is 

ηi ( ξ ) = 

√ 

2 sin 

(
2 i − 1 

2 

πξ

)
. (14)

Let 

r = 

[
h 

T 
1 h 

T 
2 h 

T 
3 h 

T 
4 q 

T 
p 

]T 
, (15)

where h i = [ q 

T 
i 

(p 

x 
i 
) T (p 

z 
i 
) T ϕ 

T 
i 
] T are the generalized coordinates of cable i and q p = [ w 

x 
p u p w 

z 
p θ x 

p θ y 
p θ z 

p ] 
T

are the generalized coordinates of the platform. By using the Eqs. (11) –(15) and by substituting the Eqs. (4) , (8) and (10) into

the Lagrange’s equation with constraints (see also [29] ) 

d 

d t 

(
∂L 

∂ ̇ r j 

)
− ∂L 

∂ r j 
= Q j + 

n ∑ 

i =1 

λi 

∂ ψ i 

∂ r j 
, (16)

we obtain the following equations of motion for the platform system 

M ̈r + C ̇ r + Kr + 

(
ψ 

b 
r 

)T 
λb = f + 

(
ψ 

u 
r 

)T 
λu , (17)

ψ 

b ( r ) = 0 , (18)

ψ 

u ( r ) ⊥ λu , ψ 

u ( r ) ≥ 0 , λu ≥ 0 , (19)

where 

• M, C and K are the mass, damping and stiffness matrices; 
• f is the generalized force vector. The entries of the matrices and force vector can be found in Appendix A . 
• ψ 

b 
r = ∂ ψ 

b /∂r is the Jacobian of the lateral and torsional constraint equations; 
• ψ 

u 
r = ∂ ψ 

u /∂r is the Jacobian of the longitudinal constraint equations; 
• λb and λu are the vector-valued Lagrangian multipliers, which are also the corresponding constraint forces. 

The complementary condition in Eq. (19) can also be expressed as ψ 

u (r ) · λu = 0 with both ψ 

u ( r ) and λu being non-

negative. 

3. Numerical solution 

3.1. Equation of motion at the velocity level 

In this section, a non-smooth generalized- α algorithm [25] will be used to solve the derived equations of motion. Firstly,

by multiplying Eq. (17) with the Lebesgue measure d t , it can be rewritten at velocity level in the following form: 

M ̇

 R d t + 

(
ψ 

b 
r 

)T 
λb d t = F ( r , R , t ) d t + 

(
ψ 

u 
r 

)T 
λu d t, (20)

where R = ˙ r , F ( r , R , t ) = f − CR − Kr , or more briefly 

M d R + 

(
ψ 

b 
r 

)T 
d i b = F ( r , R , t ) d t + 

(
ψ 

u 
r 

)T 
d i u , (21)



334 Y. Wang et al. / Mechanism and Machine Theory 126 (2018) 329–343 

 

 

 

 

 

 

 

 

 

in which d i b and d i u are the impulse measure of the corresponding constraint forces. 

As for the constraint equations, in most researches on multibody contact problems, these equations are expressed at

velocity level in the form expressed in Eq. (22) by using the Newton impact law: 

if ψ 

u ( q ) ≤ 0 then 0 ≤ ψ 

u 
r R 

(
t + 

)
+ e ψ 

u 
r R 

(
t −

)
⊥ d i u ≥ 0 , (22) 

where the term ψ 

u ( q ) ≤ 0 indicates that there is a collision between two objects, e is the coefficient of restitution, R ( t −) and

R ( t + ) are the velocities before and after the collision, respectively, and d i u is the impulse measure of the contact reactions.

In the cable case, when ψ 

u ( q ) ≤ 0 , cable is tensioned and moves together with the platform. So, the velocity after “collision”

is 0, which means e in this case is 0. Since the constraint equations in this case contain both time-implicit terms and

time-explicit terms, their time-differentiation can be obtained and expressed as 

d ψ 

d t 
= ψ r ̇ r + 

∂ψ 

∂t 
. (23) 

Then, the Eqs. (18) and (19) can be rewritten at the velocity level and can be expressed as 

ψ 

b 
r R + ∂ ψ 

b /∂t = 0 , (24) 

if ψ 

u ( q ) ≤ 0 then 

(
ψ 

u 
r R + ∂ ψ r /∂t 

)
⊥ d i u , 

(
ψ 

u 
r R + ∂ ψ r /∂t 

)
≥ 0 , d i u ≥ 0 . (25) 

3.2. Time integration by the non-smooth generalized- α method 

In order to solve the equations numerically (following the solving procedure as given in [25] ), we firstly separate the

contribution of the constraint forces from the contribution of the smooth forces such that 

d R = 

˙ R̄ d t + d w , (26) 

with 

M ̇

 R̄ = F , (27) 

M d w + 

(
ψ 

b 
r 

)T 
d i b = 

(
ψ 

u 
r 

)T 
d i u . (28) 

Secondly, defining the set A as the active constraint of ψ 

u satisfying ψ 

u = 0 , and λA as the corresponding Lagrangian

multiplier, and with the initial values at time t N given by R ( t N ) = R̄ ( t N ) , where N indicates the N -th time step, the discretized

form of the equations of motion of the system can be expressed in the following form by integrating Eq. (28) over a small

finite time interval �t = t N+1 − t N 

M ̇

 R̄ N+1 = F N+1 , (29) 

M N+1 W N+1 + 

(
ψ 

b 
r ,N+1 

)T 
λb 

N+1 = 

(
ψ 

A 
r ,N+1 

)T 
λA 

N+1 , (30) 

ψ 

b 
r ,N+1 R N+1 + ∂ ψ 

b 
N+1 /∂ t = 0 , (31) 

(
ψ 

A 
r ,N+1 R N+1 + ∂ ψ 

A 
r ,N+1 /∂ t 

)
⊥ λA 

N+1 , ψ 

A 
r ,N+1 R N+1 + ∂ ψ 

A 
r ,N+1 /∂ t ≥ 0 , λA 

N+1 ≥ 0 , (32) 

Finally, following the non-smooth generalized- α method, the difference equations will be given by 

r̄ N+1 = r N + h R N + h 

2 ( 1 / 2 − β) a N + h 

2 βa N+1 , (33) 

R̄ N+1 = R N + h ( 1 − γ ) a N + hγ βa N+1 , (34) 

( 1 − αm 

) a N+1 + αm 

a N = 

(
1 − α f 

)
˙ R̄ N+1 + α f ( 1 − γ ) ̇ R̄ N , (35) 

R N+1 = R̄ N+1 + W N+1 , (36) 

r N+1 = r̄ N+1 + 

1 

2 

h W N+1 , (37) 

where r̄ and R̄ are the variables related to the smooth positions and velocities respectively, and where a is an acceleration-

like variable and h is the time step size. The parameters for the generalized- α method are defined as in [30] : 

αm 

= 

2 ρ∞ 

− 1 

ρ∞ 

+ 1 

, α f = 

ρ∞ 

ρ∞ 

+ 1 

, γ = 

1 

2 

+ α f − αm 

, β = 

1 

4 

(
γ + 

1 

2 

)2 

, (38) 
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where ρ∞ 

= 0 . 8 in this paper. Treating R̄ , R and λb as the sets of unknowns, the equations for the Newton iterations become:

S t �x = −res + b 

(
λA 

N+1 − λA ∗
N+1 

)
, (39)

where 

S t = 

⎡ 

⎣ 

γt M 

∗ + βt K 

∗ C 

∗ + 1 / 2 h K 

∗ 0 

−M 

∗ + βt K 

con ∗
t M 

∗ + 1 / 2 h K 

con ∗
t 

(
ψ 

b∗
r 

)T 

βt ψ 

b ∗
r 2 ψ 

b∗
r + 1 / 2 h ψ 

b ∗
r 2 0 

⎤ 

⎦ , �x = 

[ 

�R̄ 

�R 

�λb 

] 

, (40)

res = 

⎡ 

⎢ ⎣ 

M 

∗
N+1 

˙ R̄ 

∗
N+1 − F ∗N+1 

M 

∗
N+1 W 

∗
N+1 + 

(
ψ 

b∗
q 

)T 
λb∗

N+1 −
(
ψ 

u ∗
q 

)T 
λA ∗

N+1 

ψ 

b ∗
r R 

∗
N+1 + ∂ ψ 

b ∗/∂t 

⎤ 

⎥ ⎦ 

, b = 

⎡ 

⎣ 

0 (
ψ 

A ∗
r 

)T 

0 

⎤ 

⎦ , (41)

in which 

• γt = (1 − αm 

) / [(1 − α f ) γ h ] and βt = βh/γ − 1 / 2 h , the superscript ∗ denotes the value of a variable at the k th Newton

iteration; 
• K 

con 
t = ∂ ( MW + (ψ 

b 
q ) 

T λb − (ψ 

A 
q ) 

T λA ) /∂ r ; 

• ψ 

b 
r 2 

= ∂ (ψ 

b 
r ,N+1 

R N+1 ) /∂ r N+1 

The complementary condition can also be linearized as 

0 ≤ ψ 

A 
r R + ∂ ψ 

A 
r /∂ t + c �x , (42)

where 

c = 

[
βt ψ 

A ∗
r 2 ,N+1 ψ 

A ∗
r ,N+1 + 1 / 2 h ψ 

A ∗
r 2 ,N+1 0 

]
, (43)

in which ψ 

A ∗
r 2 ,N+1 

= ∂ (ψ 

A 
r ,N+1 

R N+1 + ∂ ψ 

A 
r ,N+1 

/∂ t) /∂ r N+1 . By substituting Eq. (39) into Eq. (43) , one can derive the standard

form of the linear complimentary problem (LCP): (
M̄ �

A 

n +1 + ̄f 

)
⊥ λA 

n +1 , M̄ �
A 

n +1 + ̄f ≥ 0 , λA 
n +1 ≥ 0 , (44)

with {
M̄ = cS −1 

t b , 

f̄ = ψ 

A ∗
r ,N+1 R 

∗
N+1 − cS −1 

t res − cS −1 
t b�A ∗

N+1 + ∂ ψ 

A 
r /∂ t. 

(45)

λA 
N+1 can then be obtained by solving this LCP based on Lemke’s algorithm [23] . This solving procedure by the non-

smooth generalized- α method is given in detail in Appendix B . 

3.3. ADAMS simulation 

ADAMS simulation is an alternative way in investigating the non-smooth dynamics of the multi-cable suspension system.

Based on the finite element modelling method, each cable is discretized into finite rigid cylinder elements with the same

length (1 m in this paper), as shown in Fig. 3 . Adjacent cylinders of the same cable are connected by the force field which

is a flexible connecting procedure provided by ADAMS, which also contains all the mechanical parameters, especially the

longitudinal-torsional stiffness of the cable. All the cables are connected to the platform by the spherical joint and each

cable is connected to its corresponding winch by fixed joint. It should to be noticed, that when the internal damping of

the cable is set equal to zero, then the simulation may fail due to “unknown reasons” (may be the poor performance of

the ADAMS’s numerical algorithm when dealing with systems with quantities of components and constraints). So, a small

damping value is introduced to let the simulation work. The critical damping coefficient for the longitudinal vibration of a

cable with unit length is 2 
√ 

ρQ 1 /L = 4 . 65 × 10 4 , while in our model and in the ADAMS simulation, the damping coefficient

is 20 in longitudinal vibration and 2 in both lateral and torsional vibrations. In the numerical simulation, the damping is

introduced by using the Rayleigh’s dissipation function. However, the damping coefficient we use in the paper is not a

typical parameter for the hoisting cables (which should be obtained by accurate experiments), it is only used for letting the

ADAMS simulation run. 

In order to model the releasing process of the cables, an accurate and time-saving simulation strategy is used here to

carry out the simulation. The strategy can be summarized as follows (see also Fig. 4 ). Firstly, a base line is defined, and to

each cylinder a displacement sensor is attached. Since the cylinders are fixed to the winch, they will follow the movement

of their winch, and the force field will not work during this stage. When a sensor detects that the upper side of its cylinder

reaches the base line, a subprogram will be activated to deactivate the fixed joint between this cylinder and its winch. After

that, the force field is activated. 
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Fig. 3. ADAMS simulation model. 

Fig. 4. Schematic of the ADAMS Driving Strategy. 

 

 

 

 

4. Numerical simulation 

The typical parameters for a multi-cable driven parallel suspension platform system are as follows: ρ = 6 kg / m , J c =
1 . 5 × 10 −4 kgm , Q 1 = 9 × 10 7 N , Q 4 = 3 × 10 3 N m 

2 , Q 23 , 1 = Q 23 , 3 = 3 × 10 5 Nm , Q 23 , 2 = Q 23 , 4 = −3 × 10 5 Nm , m p = 80 0 0 kg ,

J 
y 
p = 3 . 6 × 10 4 kg m 

2 , J x p = J z p = 3 . 8 × 10 4 kg m 

2 . The prescribed movement curves of the platform are shown in Fig. 5 . In order

to simulate the slack cable, the longitudinal excitations of cables are assumed in Eqs. (47) and (48) , and the lateral excitation

is given in Eq. (46) . 

e z 1 ( t ) = 0 . 02 × sin ( πt ) , (46) 

e y ( t ) = 0 . 1 × sin ( 2 / 15 × πt ) , (47) 

3 
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Fig. 5. Prescribed movement of the platform. 

Fig. 6. Dynamical displacements of the platform versus time t : Non-smooth generalized- α method (solid line) and ADAMS simulation (dashed line). 

 

 

 

 

 

 

 

e y 
4 ( t ) = 0 . 1 × sin ( 0 . 1 πt ) . (48)

The numerical simulations are carried out with time step size �t = 0 . 001 s , and number of included modes n = 20. The

results are shown in Figs. 6–8 . 

From Figs. 6–8 , it can be seen that the numerical results agree well with the ADAMS simulations. It can also be observed

in Fig. 7 that negative cable tension values occurred in the ADAMS simulations during some periods. This can be explained

as follows. In the ADAMS simulation, the cable is discretised into finite rigid cylinders. The adjacent cylinders are connected

by a force field, which works like springs, and contains all the cable stiffness parameters, so that it can act like a cable.

By measuring the relative displacement between two adjacent cylinders, ADAMS can give the force relations between them,
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Fig. 7. Axial tension of the suspension cables versus time t : Non-smooth generalized- α method (solid line) and ADAMS simulation (dashed line). 

Fig. 8. Axial torque of the suspension cables versus time t : Non-smooth generalized- α method (solid line) and ADAMS simulation (dashed line). 

 

 

 

 

which will be the tension, torque and bending moment of the cable. Thus, when the cable modelled in ADAMS is pushed,

its tension will become negative before it bends, and this is also the main reason for the differences between the ADAMS

simulation and the other two numerical results. For example, Fig. 7 (b) has shown that there is a relatively large negative

tension of cable 2 at around 22 s. This “pushing force” has greatly influenced the rotation of the platform about X - axis, so,

a dent appeared in the ADAMS simulation result in Fig. 6 (d) at around 22 s. 
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Fig. 9. The longitudinal and lateral natural frequency. 

Fig. 10. Comparison of the platform dynamic displacements with (solid line) and without (dashed line) considering the lateral characters of the cables. 

 

 

 

 

 

 

Fig. 6 shows the dynamic displacements of the platform. It can be seen that there are velocity jumps in y direction, which

is caused by the non-smooth tension behaviour in the cables, as shown in Fig. 7 . When the tension of a cable becomes 0 N,

this cable will be slack. The state of the cables alters between slack and tensioned, this will introduce shocks to the system.

Since the platform suspends all kinds of construction machines and also carries workers, those shocks may cause severe

accidents. The maximal rotation of the platform around the y axis is about 0.2 rad, which is relatively small, however, since

the radius of the platform is 3 m, the displacement of the edge of the platform will be a considerable 0.6 m, which is also
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a potential risk to the objects on the platform. From Fig. 9 (a), Eqs. (47) and (48) , one can see that the first longitudinal

natural frequency is always much larger than the longitudinal excitation frequencies, which are 2 π /15 rad/s and 0.1 π rad/s,

respectively. So, no resonance will occur even for a very long cable length (the first longitudinal natural frequency will be

5.23 rad/s when the cable length is 10 0 0 m). As shown in Fig. 9 (b), the lateral excitation in z - direction is π rad/s, which

is always close or equal to the third lateral natural frequency of the system, and is also close to the second and fourth

lateral frequency. So, the lateral vibration amplitude of the platform in z - direction is increasing throughout the simulation,

as shown in Fig. 6 (c). Fig. 8 shows that the torque of a cable is mainly caused by its axial tension. 

In most research work on this subject [2,20–22] the lateral properties of the cable are not taken into account.

Fig. 10 shows the dynamic responses of the platform obtained by the non-smooth generalized- α method with and with-

out considering the lateral properties of the cable, from which it can be seen that the lateral and torsional responses of the

platform are inaccurate. This can be explained as follows: while the torsional displacement of the platform will induce the

lateral vibrations of the cables, the lateral movement of the cables will in turn affect the rotation of the platform. Thus, it

is essential to include the lateral properties of the cables to accurately simulate their dynamic responses. 

5. Conclusions 

The equations of motion for a multi-cable driven parallel suspension platform system are derived using Lagrange’s prin-

ciple with constraints. The longitudinal, in-plane and out-of-plane lateral, torsional and longitudinal-torsional coupled dy- 

namic behaviours of the suspension cables, and the dynamic behaviours of the platform in all directions are included, as

well as the slackness property of the cables. 

A non-smooth generalized- α method is applied to obtain numerically the non-smooth dynamic responses of the system.

The results are in good agreement with an ADAMS simulation. The numerical results clearly indicate that a change in tension

in the suspension cables may lead to dynamic velocity jumps of the platform in y- direction, which may cause severe

accidents. The rotation of the platform about the Y- axis may also lead to additional and significant forces acting on the

objects on the platform that are suspended close to the edge of the platform. 

The lateral properties of the cables have a great effect on the dynamic responses of the system investigated in this paper.

So, controlling the lateral vibrations of the cables is an essential part in achieving a steady movement of the platform.

For the dynamical modelling of the multi-cable driven manipulators, it is recommended to include the mass, longitudinal,

torsional, in-plane and out-of-plane lateral and longitudinal-torsional properties of the cables, so as to achieve accurate

modelling results. Experiments on accurately obtaining those cable parameters (including damping) are also very important,

as well as a better understanding of the numerical algorithm damping. 

Acknowledgements 

This work is supported by the National Key Research and Development Program (2016YFC0600901) and the National

Natural Science Foundation of China (51475456). The first and second author also thank the China Scholarship Council for

providing a scholarship to perform the research as presented in this paper at the Delft Institute of Applied Mathematics of

the Delft University of Technology. 

Appendix A 

The entries of the matrices and force vector in Eq. (17) are defined as follows: 

M = diag 
(
M 

c 
1 M 

c 
2 M 

c 
3 M 

c 
4 M p 

)
, (A.1) 

C = diag 
(
C 

c 
1 C 

c 
2 C 

c 
3 C 

c 
4 C p 

)
, (A.2) 

K = diag 
(
K 

c 
1 K 

c 
2 K 

c 
3 K 

c 
4 K p 

)
, (A.3) 

Q = 

[ (
Q 

c 
1 

)T (
Q 

c 
2 

)T (
Q 

c 
3 

)T (
Q 

c 
4 

)T 
( Q p ) 

T 

] T 
, (A.4) 

where 

M 

c 
i = diag 

(
M 

L 
i 

M 

ϕ 
i 

M 

x 
i 

M 

z 
i 

)
, (A.5) 

C 

c 
i = diag 

(
C 

L 
i 

C 

ϕ 
i 

C 

x 
i 

C 

z 
i 

)
, (A.6) 

K 

c 
i = 

⎡ 

⎢ ⎣ 

K 

L 
i 

K 

Lϕ 
i 

K 

T ϕ 
i 

K 

ϕ 
i 

0 

0 

K 

x 
i 

K 

z 
i 

⎤ 

⎥ ⎦ 

, (A.7) 
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Q 

c 
i = 

[ (
Q 

L 
i 

)T (
Q 

ϕ 
i 

)T (
Q 

x 
i 

)T (
Q 

z 
i 

)T 
] T 

, (A.8)

M p = diag 
(
m p m p m p J x p J y p J z p 

)
, (A.9)

C p = 0 , K p = 0 , (A.10)

Q p = 

[
0 m p ( g − a ( t ) ) 0 0 0 0 

]T 
, (A.11)

in which 

M 

L 
i,k j = ρl i ( t ) 

∫ 1 

0 

η j ηk d ξ , (A.12)

M 

ϕ 
i,k j 

= J c l i ( t ) 

∫ 1 

0 

η j ηk d ξ , (A.13)

M 

x 
i,k j = M 

z 
i,k j = ρl i ( t ) 

∫ 1 

0 

η j ηk d ξ , (A.14)

C 

L 
i,k j = ρv i ( t ) 

∫ 1 

0 

η j ( ξ ) ηk ( ξ ) d ξ + ρv i ( t ) 
∫ 1 

0 
( 1 − ξ ) η′ 

j ( ξ ) ηk ( ξ ) d ξ + . . . 

−ρv i ( t ) 
∫ 1 

0 
( 1 −ξ ) η j ( ξ ) η′ 

k ( ξ ) d ξ , (A.15)

C 

ϕ 
i,k j 

= J c v i ( t ) 
∫ 1 

0 

η j ( ξ ) ηk ( ξ ) d ξ + J c v i ( t ) 
∫ 1 

0 
( 1 −ξ ) η′ 

j ( ξ ) ηk ( ξ ) d ξ + . . . 

− J c v i ( t ) 
∫ 1 

0 
( 1 −ξ ) η j ( ξ ) η′ 

k ( ξ ) d ξ , (A.16)

C 

x 
i,k j = C 

z 
i,k j = ρv i ( t ) 

∫ 1 

0 

η j ( ξ ) ηk ( ξ ) d ξ + ρv i ( t ) 
∫ 1 

0 
( 1 − ξ ) η′ 

j ( ξ ) ηk ( ξ ) d ξ + . . . 

−ρv i ( t ) 
∫ 1 

0 
( 1 − ξ ) η j ( ξ ) η′ 

k ( ξ ) d ξ , (A.17)

K 

L 
i,k j = 

Q 1 

l i ( t ) 

∫ 1 

0 

η′ 
j ( ξ ) η′ 

k ( ξ ) d ξ + 

ρv 2 
i ( t ) 

l i ( t ) 

∫ 1 

0 

ξη′ 
j ( ξ ) ηk ( ξ ) d ξ + . . . 

ρa i ( t ) 

∫ 1 

0 
( 1 − ξ ) η′ 

j ( ξ ) ηk ( ξ ) d ξ − ρv 2 
i 

l i ( t ) 

∫ 1 

0 
( 1 − ξ ) 

2 η′ 
j ( ξ ) η′ 

k ( ξ ) d ξ , (A.18)

K 

ϕ 
i,k j 

= 

Q 4 

l i ( t ) 

∫ 1 

0 

η′ 
j ( ξ ) η′ 

k ( ξ ) d ξ + 

Jv 2 
i ( t ) 

l i ( t ) 

∫ 1 

0 

ξη′ 
j ( ξ ) ηk ( ξ ) d ξ + . . . 

× J a i ( t ) 

∫ 1 

0 
( 1 − ξ ) η′ 

j ( ξ ) ηk ( ξ ) d ξ − Jv 2 
i ( t ) 

l i ( t ) 

∫ 1 

0 
( 1 − ξ ) 

2 η′ 
j ( ξ ) η′ 

k ( ξ ) d ξ , 

(A.19)

K 

Lϕ 
i,k j 

= 

∫ 1 

0 

Q 23 ,i 

l i ( t ) 
η′ 

j ( ξ ) η′ 
k ( ξ ) d ξ , K 

ϕL 

i,k j 
= 

∫ 1 

0 

Q 23 ,i 

l i ( t ) 
η′ 

j ( ξ ) η′ 
k ( ξ ) d ξ , (A.20)

K 

x 
i,k j = K 

z 
i,k j = 

∫ 1 

0 

ρa i ( t ) ( 1 − ξ ) η′ 
j ( ξ ) ηk ( ξ ) d ξ −

∫ 1 

0 

ρv 2 
i 

l i 
( 1 − ξ ) 

2 η′ 
j ( ξ ) η′ 

k ( ξ ) d ξ + . . . 

×
∫ 1 

0 

m ( g − a i ) 

4 l i 
η′ 

j ( ξ ) η′ 
k ( ξ ) d ξ + 

∫ 1 

0 

ρ( g − a i ( t ) ) ( 1 − ξ ) η′ 
j ( ξ ) η′ 

k ( ξ ) d ξ + . . . 

∫ 1 

0 

ρv 2 
i ( t ) 

l i ( t ) 
ξη′ 

j ( ξ ) η′ 
k ( ξ ) d ξ , 

(A.21)
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Q 

L 
i,k = −

∫ 1 

0 

ρ
(
l i ( t ) a i ( t ) + v 2 i ( t ) − l i ( t ) g 

)
ηk ( ξ ) d ξ + . . . −

∫ 1 

0 

(
ρg l i ( t ) −ρv 2 i ( t ) 

)
( 1 − ξ ) η′ 

k ( ξ ) d ξ −
∫ 1 

0 

1 

4 

mg η′ 
k ( ξ ) d ξ, 

(A.22) 

Q 

ϕ 
i, j 

= −mg 
Q 2 ,i 

Q 1 ,i 

∫ 1 

0 

η′ 
k ( ξ ) d ξ − ρl i ( t ) g 

Q 2 ,i 

Q 1 ,i 

∫ 1 

0 
( 1 − ξ ) η′ 

k ( ξ ) d ξ , (A.23) 

Q 

x 
i,k = 

∫ 1 

0 

ρv i ( t ) 
(

˙ e x i ( t ) −
v i ( t ) 
l ( t ) 

e x i ( t ) 

)
( 1 − ξ ) 

2 η′ 
k ( ξ ) d ξ + . . . 

×
∫ 1 

0 

ρv 2 
i ( t ) 

l i ( t ) 
e x i ( t ) ξ ( 1 − ξ ) η′ 

k ( ξ ) d ξ + . . . 

×
∫ 1 

0 

ρ( g − a i ( t ) ) e 
x 
i ( t ) ( 1 − ξ ) η′ 

k ( ξ ) d ξ + . . . 

×
∫ 1 

0 

ρ
(
a i ( t ) e 

x 
i ( t ) − l i ( t ) ̈e 

x 
i ( t ) 

)
( 1 − ξ ) ηk ( ξ ) d ξ + . . . 

×
∫ 1 

0 

ρ

(
2 v 2 

i ( t ) 

l i ( t ) 
e x i ( t ) − a i ( t ) e 

x 
i ( t ) − 2 v i ( t ) ̇ e x i ( t ) 

)
ξηk ( ξ ) d ξ + . . . 

×
∫ 1 

0 

m ( g − a i ( t ) ) 

l i ( t ) 
e x i ( t ) η

′ 
k ( ξ ) d ξ, (A.24) 

Q 

z 
i,k = 

∫ 1 

0 

ρv i ( t ) 
(

˙ e z i ( t ) −
v i ( t ) 
l ( t ) 

e z i ( t ) 

)
( 1 − ξ ) 

2 η′ 
k ( ξ ) d ξ + . . . 

×
∫ 1 

0 

ρv 2 
i ( t ) 

l i ( t ) 
e z i ( t ) ξ ( 1 − ξ ) η′ 

k ( ξ ) d ξ + . . . 

×
∫ 1 

0 

ρ( g − a i ( t ) ) e 
z 
i ( t ) ( 1 − ξ ) η′ 

k ( ξ ) d ξ + . . . 

×
∫ 1 

0 

ρ
(
a i ( t ) e 

z 
i ( t ) − l i ( t ) ̈e 

z 
i ( t ) 

)
( 1 − ξ ) ηk ( ξ ) d ξ + . . . 

×
∫ 1 

0 

ρ

(
2 v 2 

i ( t ) 

l i ( t ) 
e z i ( t ) − a i ( t ) e 

z 
i ( t ) − 2 v i ( t ) ̇ e z i ( t ) 

)
ξηk ( ξ ) d ξ + . . . 

×
∫ 1 

0 

m ( g − a i ( t ) ) 

l i ( t ) 
e z i ( t ) η

′ 
k ( ξ ) d ξ . 

. (A.25) 

Appendix B 

The solution procedure in the non-smooth generalized- α algorithm. 

Function [ r N+1 , R N+1 , 
˙ R̄ N+1 , a N+1 ] = Non_smooth_alpha( r N , R N , 

˙ R̄ N , a N ) 
˙ R̄ N+1 = 0 ; 

a N+1 = 1 / ( 1 − αm 

)( α f 
˙ R̄ N − αm 

a N ) ; 

R̄ N+1 = R N + h ( 1 − γ ) a N + hγ a N+1 ; 

R N+1 = R̄ N+1 ; 

r N+1 = r N + h R N + h 2 ( 1 / 2 − β) a N + h 2 βa N+1 

λb 
N+1 

= 0 ; 

Define the active set as: A = { i | ψ 

b 
i 

≤ 0 } ; 
λA 

N+1 = 0 ; 

for i = 1: i max 

Compute res 

if ‖ res ‖ ≤ tol 

break 

end if 

λA ∗
N+1 

= λA 
N+1 

; 

Compute S t , b, res , M̄ and f̄ ; 

[ ∼, λA 
N+1 

] = LCPSolver( ̄M , f̄ ); 
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�x = S −1 
t [ −res + b ( λA 

N+1 − λA ∗
N+1 ) ] ; 

R̄ N+1 = R̄ N+1 + �R̄ ; 

R N+1 = R N+1 + �R ; 

r N+1 = r N+1 + βt �R̄ + 1 / 2 · h · �R ; 
˙ R̄ N+1 = 

˙ R̄ N+1 + γt �R̄ ; 

λb 
N+1 

= λb 
N+1 

+ �λb ; 

end for 

a N+1 = a N+1 + ( 1 − α f ) / ( 1 − αm 

) ̇ R̄ N+1 ; 

λb = λb 
N+1 

/h ; λu = λu 
N+1 

/h ;
end function 
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