<]
TUDelft

Delft University of Technology

Out of Sight, Out of Mind: Detecting Orphaned Web Pages at Internet-Scale

Pletinckx, S.R.G.; Borgolte, K.; Fiebig, T.

DOI
10.1145/3460120.3485367

Publication date
2021

Document Version
Final published version

Citation (APA)

Pletinckx, S. R. G., Borgolte, K., & Fiebig, T. (2021). Out of Sight, Out of Mind: Detecting Orphaned Web
Pages at Internet-Scale. 21-35. Paper presented at ACM Conference on Computer and Communications
Security (CCS). https://doi.org/10.1145/3460120.3485367

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1145/3460120.3485367
https://doi.org/10.1145/3460120.3485367

Out of Sight, Out of Mind:
Detecting Orphaned Web Pages at Internet-Scale

Stijn Pletinckx Kevin Borgolte Tobias Fiebig
TU Delft Ruhr University Bochum TU Delft
S.R.G.Pletinckx@student.tudelft.nl kevin.borgolte@rub.de T Fiebig@tudelft.nl

Abstract adminior Adminiimtor
Security misconfigurations and neglected updates commonly lead
to systems being vulnerable. Especially in the context of websites, e Public part of e
we often find pages that were forgotten, that is, they were left on- 2
line after they served their purpose and never updated thereafter. 3f4

In this paper, we introduce new methodology to detect such for- Mok Intemal part of e
gotten or orphaned web pages. We combine historic data from the

Internet Archive with active measurements to identify pages no
longer reachable via a path from the index page, yet stay accessible
through their specific URL. We show the efficacy of our approach
and the real-world relevance of orphaned web-pages by applying
it to a sample of 100,000 domains from the Tranco Top 1M.
Leveraging our methodology, we find 1,953 pages on 907 unique
domains that are orphaned, some of which are 20 years old. Ana-
lyzing their security posture, we find that these pages are signifi-
cantly (p < 0.01 using y?) more likely to be vulnerable to cross-
site scripting (XSS) and SQL injection (SQLi) vulnerabilities than
maintained pages. In fact, orphaned pages are almost ten times as
likely to suffer from XSS (19.3%) than maintained pages from a ran-
dom Internet crawl (2.0%), and maintained pages of websites with
some orphans are almost three times as vulnerable (5.9%). Con-
cerning SQLi, maintained pages on websites with some orphans
are almost as vulnerable (9.5%) as orphans (10.8%), and both are
significantly more likely to be vulnerable than other maintained
pages (2.7%). Overall, we see a clear hierarchy: Orphaned pages
are the most vulnerable, followed by maintained pages on websites
with orphans, with fully maintained sites being least vulnerable.
We share an open source implementation of our methodology to
enable the reproduction and application of our results in practice.

CCS Concepts

« Security and privacy — Web application security.

Keywords
Orphaned resources; web security; measurement;

ACM Reference Format:

Stijn Pletinckx, Kevin Borgolte, and Tobias Fiebig. 2021. Out of Sight, Out
of Mind: Detecting Orphaned Web Pages at Internet-Scale. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Secu-
rity (CCS "21), November 15-19, 2021, Virtual Event, Republic of Korea. ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3460120.3485367

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first p age. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s).

CCS 21, November 15-19, 2021, Virtual Event, Republic of Korea.

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8454-4/21/11.

https://doi.org/10.1145/3460120.3485367

Figure 1: Matrix of known and unknown pages on a web-
site. Columns differentiate between pages that are known,
and pages that are not known by the administrator (called
“administrator” for simplicity, this can be a team). Rows dif-
ferentiate between the public’s knowledge.

1 Introduction

The World Wide Web is an ever-changing landscape. When op-
erating a website, keeping it updated is imperative for ensuring
that it is free of bugs and vulnerabilities. However, keeping a web-
site updated and secure is a cumbersome endeavor that is rarely
achieved fully and often not at all [23]. Common causes are de-
laying or ignoring critical security updates [24] and other security
misconfigurations, often rooted in human error [12, 32].

A recent example of a security misconfiguration that led to a
compromise is Deloitte’s “Test your Hacker IQ” campaign [7]. This
advertisement campaign ran in 2015 and made use of a promo-
tional website that remained online long after the actual campaign
ended. In November 2020, an IT consultant discovered the old do-
main and managed to retrieve the database credentials.

This example highlights that administrators can lose track of
the state of their website and lead to an old and unmaintained
domain exposing data for years. Finding such no-longer-used do-
mains is feasible by, for example, tracking certificate transparency
logs to identify hosts that stop renewing their certificates but re-
main reachable, or by using passive DNS traces to identify domains
that, over time, receive significantly less traffic. However, these
techniques do not allow to identify URLs of abandoned content on
a single domain but at a different path, like a discontinued web
applications hosted at example.com/web-app while example.com re-
mains actively being maintained and used. In this paper, we aim
to shine light on this blind spot and we develop a methodology to
identify orphaned URLs of single domains in the wild and at-scale.

We express what it means for pages (and the URL pointing to
them) to be orphaned in terms of who knows about them (adminis-
trators vs. the public). This leads to four quadrants (Figure 1) that,
much like a Johari window [26], characterize the pages of a website
as known and unknown to the administrator and the public.

Most websites have pages that are intended for and known to
the public. At the same time, some pages are usually not known

https://doi.org/10.1145/3460120.3485369
https://doi.org/10.1145/3460120.3485367

to the public or even intended to be accessed by the public, such as
administrative interfaces, content management, but also internal
pages, like a company’s intranet. In general, administrators should
“know” about both types of pages. However, they may become un-
aware of them and then these pages become orphaned. Eventually,
these pages will be unmaintained, and, for example, may not re-
ceive security updates that address existing vulnerabilities. In our
work, we identify these orphaned pages, with a specific focus on
Quadrant 1 of Figure 1, that is, pages that were once intended for
public access but have since been forgotten by the administrators.

One way how a page can become forgotten and unmaintained
is by misconfiguration when removing a web page. Successful re-
moval of a web page requires two steps: first, removing it from the
webserver, and, second, making sure no other page on the website
links to it. If only the second step is performed, then the page only
appears to be removed because it is no longer accessible by navi-
gating on the website. However, since the page itself has not been
removed, it remains accessible by navigating to its URL directly.
We classify these pages as “orphaned” pages (see Section 2).

In this paper, we develop new methodology to detect orphaned
web pages on a website. We make use of archived data to compare
the current sitemap of a domain against its historic versions, and
extract unlisted pages that are still accessible. We further scruti-
nize this list by filtering out purposely archived pages, and perform
fingerprint comparisons and copyright checks to validate their un-
maintained status. We evaluate our implementation through a
large-scale measurement study, and confirm its efficacy for find-
ing orphaned web pages in the wild. To investigate the security
impact of orphaned web pages, we compare their security posture
to non-orphaned pages on a variety of metrics.

In summary, we make the following contributions:

e We create the first methodology for detecting orphaned web
pages on a single domain, only using public information.

o We perform the first large-scale detection of orphaned web
pages in the wild, and report a lower bound on the preva-
lence of them. On a sample of 100,000 websites, we observe
that at least 1,953 pages, spread over 907 domains, are or-
phaned, with some of the pages being as old as 20 years.

e We compare the security posture of orphaned pages to a
control group of non-orphaned pages, and we find that or-
phaned pages are more prone to vulnerabilities. For exam-
ple, we find 19.3% of the orphaned pages processing user
input are vulnerable to cross-site scripting (XSS) attacks,
which differs substantially to 2.0% of the maintained con-
trol group being vulnerable (p < 0.01 using y2).

e We share an open source implementation of our methodol-
ogy to be used for further research, and by administrators
and security professionals to audit websites.

2 Background

While we are, to the best of our knowledge, the first first to com-
prehensively study orphaned resources within the context of web
pages, the general concept has been studied before (Section 7). Fol-
lowing, we briefly describe the necessary background.

example.com/ —y sub.example.com/

A7ndex.$m \Amal¢ tml

example.com/ —y.sub.example.com/

7index.1ﬂnl \Amalf |

example.c example.com) example.com) example.com/ example.com/ example.com/
page.html page2.html page3.html page1.html page2.html page3.html
example.com/ example.com/ example.com/ example.com/ example.com/ example.com/
page1/pagel_1.html page2/page2_1.html page3/page3_1.html pagel/page1_1.html|page2/page2_1.html|page3/page3_1.html

(a) Site referenced (b) Link removed

Figure 2: Sitemap example for a website at example.com.
When /page2.html stops linking to /page2/page2_1.html, then
the latter becomes orphaned.

2.1 Definition of Orphaned Web Pages

We define an orphaned web page based on the sitemap of a website.
Figure 2 shows a simplified example of such a sitemap graph: a
starting node, called root or index (example.com/index.html), with
edges (links) to children nodes (pages at example.com/pagel.html,
example.com/page2.html, etc. and further descendants. A page
becomes orphaned when all links (edges) to a page (node) are re-
moved, and no other page (node) links to that page (see Figure 2b,
where the page at example. com/page2/page2_1.html has no inbound
link). However, although there is no path from the root, the page
remains accessible via its URL. That is, a page is orphaned if it can-
not be reached through graph traversal from the website’s entry
points, with a typical entry point being the website’s index page.

2.2 Types of Orphaned Web Pages

We can divide orphaned web pages into two categories: unmain-
tained orphaned pages and maintained orphaned pages.

2.2.1 Unmaintained Orphaned Web Pages Unmaintained orphaned
web pages are those where the administrators are no longer aware
of their existence (or do not care), and, consequently, do not ap-
ply (security) updates to the underlying application(s) providing
the page. For example, this can happen if a team runs uses a web-
site for a limited time (e.g., a product promotion or recruitment
campaign, as the Deloitte example in Section 1 illustrated) or if the
person responsible for maintaing a website leaves the company.
With the lack of updates, the orphaned web page might become
outdated, possibly making it prone to vulnerabilities over time.
Coming back to the quadrants of Figure 1, we can classify un-
maintained orphan pages on the right side (quadrants 1 and 4). In
quadrant 1, a user still knows the URL of the orphaned page, and
can access it directly. This means that these web pages are de-
tectable as their URL is known by someone or recorded somewhere,
like, for example, in old messaging board post or in archival data.
Pages in quadrant 4 are much more challenging to detect. These
pages are orphaned and unmaintained, but they were never in-
tended to be used by the public. This means that their specific
URL may never have been referenced on a publicly accessible site,
or that the page is hidden behind (simple) authentication. In the
former case, the page could theoretically be accessed if one could
guess the URL or brute-force it, but this is no small feat and akin
to searching for the needle in the haystack, when there might not
even be a needle in the first place. Correspondingly, we focus on
orphaned pages previously known to the public (quadrant 1), and
we consider pages unknown to the public (quadrant 4) out of scope.

2.2.2 Maintained Orphaned Web Pages Web pages may also be or-
phaned without becoming unmaintained. This can be the case if a
link is unintentionally removed. In this case, the orphaned page is
unreachable if one only follows links from an entry point on the
website. However, the administrator is still aware of the pages and
maintains them along the same care as other pages. This is also the
case if the orphaned page utilizes the same framework or content
management system as the main site.

Maintained orphaned pages correspond to the left quadrants of
Figure 1 (quadrants 2 and 3). These pages are generally less of an
issue in terms of security vulnerabilities, although they can lead
be inconvenient to users or cause confusion.

2.3 Security by Obscurity

In addition to accidentally orphaned pages, whether maintained or
not, a page might become orphaned by design, with the intention
of “protecting” the page against various attack vectors. Operators
may chose to “hide” a page by removing links to it, excluding it
from public search (using robots. txt) to reduce the attack surface,
and only sharing it’s URL with a select group of (trusted) people.
This may happen for publicly available internal applications, or
for pages for which a vulnerability was discovered. Although this
might result in less exposure and less traffic to the vulnerable page,
security by obscurity is known to be largely ineffective, and the site
actually remains vulnerable to exploitation by adversaries. While
one could consider these sites as “maintained” orphaned pages, we
argue that if they are hidden with the goal of security by obscu-
rity, and administrators are not actually applying other security
updates, then they provide additional attack surface (unlike other
maintained orphaned pages), and they are actually unmaintained.

2.4 Security Impact of Orphaned Pages

We expect that unmaintained orphaned web pages are more prone
to vulnerabilities, due to delayed updates (or not receiving them
at all) and pre-dating modern defenses. While the main infras-
tructure of the website is likely maintained, such as the under-
lying operating system or webserver (e.g., nginx or Apache), we
see no reason to assume that administrators are patching vulnera-
bilities of orphaned web pages hosted on the infrastructure. This
also holds true for server-side applications only used by the or-
phaned pages, as the administrator expects that the functionality
is not reachable anyways, and, thus, they have no incentive to ex-
pend time and resources to apply security patches. Naturally, this
differs for systems applying automatic updating, though these au-
tomatic updates may break over time or are only partially applied
(e.g., configuration files are part of software packages on Linux dis-
tributions, but they are rarely updated by automatic updates, and
misconfigurations and insecure configurations remain even with
automatic updates enabled).

Moreover, a website administrator can easily build up a false
sense of security. If a technology stack is changed because it used
to be vulnerable, the administrator might consider the website safe
from specific classes of vulnerabilities. For example, a website
might migrate from pages generated dynamically on the server-
side to statically-generated pages, with the dynamically-generated
pages becoming unmaintained orphaned. The administrator may

then think the website is secure from server-side code injection at-
tacks or path traversal vulnerabilities because no code is being ex-
ecuted on the server-side anymore. However, as these pages have
only been orphaned and not truly removed, this assumption would
be a mistake. Consequently, an unmaintained orphaned web page
can become the Achilles’ heel of the entire website.

2.5 Threat Model

In this paper, we assume an external attacker with no special ac-
cess to the target infrastructure or resources exceeding those of
an average Internet user (broadband network connection, off-the-
shelf PC, no special threat intelligence feeds). Hence, as they lack
inside knowledge, if an attacker approaches a target domain, they
face the challenge of identifying potentially orphaned domains for
further vulnerability scanning [35]. We demonstrate in Section 4.8
that traditional approaches, e.g., google dorks, are not effective
at identifying orphaned pages. Hence, we develop a toolchain
that utilizes the Internet Archive to detect (potentially) orphaned
web page on any domain archived. We describe the design of our
framework in Section 3 and demonstrate its efficacy at detecting
orphaned pages at scale in Section 4. Please note that if the ob-
jective of the attacker is to find a vulnerable orphan page on a spe-
cific domain, heuristics we use for the large-scale evaluation can be
omitted for a per-domain attack, widening the range of detectable
URLs beyond the lower-bound we provide in our study. Finally,
we also work on the assumption that such an attacker does not
have to be familiar with advanced exploitation techniques, as or-
phaned websites are—on average—more prone to straight-forward
vulnerabilities. We confirm this assumption in Section 5.

3 Methodology

Following, we introduce our methodology for identifying orphaned
pages, and detail our large-scale measurement.

3.1 Orphaned Page Identification Methodology

We define orphaned web pages as pages with no ancestry links
in the domain’s sitemap (see Section 2). That is, when embarking
from the root and following links, no path exists to reach the or-
phaned page. Consequently, this means we cannot rely on any in-
formation on the domain/website to identify orphaned pages. For
a historic perspective on which sites used to be reachable via the
root, we thus leverage the Internet Archive (IA) [2], which pro-
vides access to a time-stamped history of websites.

Leveraging this archived data, we learn how a domain used to
look like throughout the years, not only in terms of content, but
also in terms of its structure, that is, its sitemap. This allows us to
compare previous versions of a website to its current version, and
see whether any of the paths in its sitemap have been removed.

Correspondingly, we can identify potential candidate orphan
pages by investigating pages that were once part of a domain’s
sitemap, but are not part of it anymore. We can then probe these
candidate pages to determine if they are still accessible, and whether
their content is different from the last archived version. Using this
methodology, we detect pages from quadrant 1 of Figure 1.

A website administrator might advertise (part of) a website’s
structure in an XML file called sitemap.xml. This provides a list of

pages on the domain that a search engine can crawl and index. Un-
fortunately, not every website makes their sitemap.xml available.
Some that do might have them excluded from the Internet Archive
(see Section 3.2). Therefore, we cannot rely on a pre-constructed
sitemap, but instead need to reconstruct it by retrieving the full
list of archived pages from the Internet Archive, and using it to
determine which URLs might contain potentially orphaned pages.

3.1.1 Gathering Candidate Orphan Pages First, see Figure 3, we
utilize the Wayback CDX to retrieve the archived data [19]. It al-
lows us to query a domain, after which the CDX Server returns the
list of archived pages for that domain, including subdomains. From
this list, we collect two sets: a current set, and a past set. The cur-
rent set contains all the pages encountered by the crawler in 2020,
the past set all pages last encountered before 2020. Because the In-
ternet Archive makes use of crawls, that is, traverses the website
from the root or inspects the domain’s sitemap.xml, we know that
each page is reached via a path starting from the root or it is listed
in the sitemap. If a page was listed before, but is not present in
the 2020 crawls, it has either been removed, was ignored by a later
crawl, or got orphaned. We identify orphaned pages by liveness
probing after pre-filtering candidates locally (see Section 3.1.4).
We have to account for the fact that the Internet Archive also
stores pages that caused redirects, server errors, or client errors
during the initial crawl. Given that we are only interested in reach-
able pages, we query the API to only return web pages that re-
sponded with a HT TP status code OK (200) in their original crawl.

3.1.2 Discarding Resource Files We focus our analysis of orphaned
pages on actual web pages. However, domains may host additional
resources, such as documents, pictures, JavaScript code, stylesheets
etc., which are of no interest to us. Thus, we filter the list of candi-
date orphan pages by removing URLs ending in a known resource-
related file extension (see Appendix B for the full list).

3.1.3 Dynamic URL Detection (DUDe) URLs that are dynamically
generated are a common challenge to identifying any kind of re-
source on the Internet. They can occur when news sites make arti-
cles available under unique URLSs, but they are only reachable from
the index page while they are recent. For example, for archived
news articles, some form of (chronological) structure may be used,
like https://example.com/articles/1997/January/name-of-the-ar
ticle.html. This results in many URLs sharing a similar prefix
with a (possibly generated) suffix. Probing all these URLs would
put unnecessary load on webservices. Moreover, it would signifi-
cantly extend the runtime of our approach, while these URLs are
not actually as interesting to us as they are likely not truly unmain-
tained orphaned, but are likely actually maintained.

Therefore, we use a heuristic to identify the common prefixes
of these URLs and remove them from our list before probing for
liveness. If a page contains many long links, we try to identify a
common prefix based on character frequency. We do so by count-
ing the frequency of each character at an index of the URLs, and
generating a prefix based on the most frequent character for each
position (in case of a tie, the first one encountered will be used).
We then shorten the prefix, one character at a time, until it is gen-
eral enough (see below), or until we consider it too short to be a
valid prefix. We repeat this process until we can detect no more

5

Algorithm 1 Dynamic URL Detection

1: max_len < 0

2: avg_len <0

3: large_links « {}

4:

5: for link in page do

6: // Check the length, 8 represents len(“https://”)

7: if len(link) > (LT + len(dom_name) + 8) then
8: large_links.append (link)

9: Find average and max length of all links in sitemap
10: if len(large_links) < LC then return

11: for link in large_links do

12: for ¢ in link do

13: Count character frequency at each position

14:

15: generated_link < «”

16: for i = 0...max_len do

17: Append most occurring character at position i to generated_link
18: prefix « generated_link|: avg_len]

19:
20: blocklist «— {}
21: allowlist « {}
22: do
23: for link in page do
24: if prefix in link then
25: blocklist.append(link)
26: else
27: allowlist.append (link)
28: prefix « prefix[: —1]
29: while len(blocklist) < PC - len(sitemap)
30:
31: // Check the length, 8 represents len(“https://”)
32: if len(prefix) < (len(domain_name) + 8 + ST) then
33: Restart procedure, ignoring links containing prefix
34: else
35: Write out allowlist and blocklist
36: Start procedure again on allowlist

prefixes. Naturally, this approach limits the number of dynamic
orphan pages we can observe. Nevertheless, following our obser-
vation on not putting unnecessary strain on networks and systems,
we consider it crucial to exclude dynamic URLs.

Algorithm 1 describes our heuristic, it has four parameters:

(1) Popularity cutoff (PC): the percentage of URLs on a do-
main that need to contain the prefix.

(2) Short-link threshold (ST): the amount of characters a link
needs to have to be considered short.

(3) Long-link threshold (LT): the amount of characters a link
needs to have to be considered long.

(4) Long-link cutoff (LC): the amount of links on a domain
that need to be long for the heuristic to run.

We determine these parameters from a random sample of 1,000 do-
mains, taken from our input data (see Section 3.2). We evaluate
the following values: [5%, 10%, 15%, 20%, 25%, 30%] for the popu-
larity cutoff, [5, 10, 15, 20] for the short-link threshold, [20, 25, 30,
35, 40] for the long-link threshold, and [0, 3, 5] for the long-link
cutoff. We optimize for the highest percentage of reduction. After
evaluating all permutations, we obtain 5% for the popularity cutoff,
15 for the short-link threshold, 20 for the long-link threshold, and 0
for the long-link cutoff, as the optimal input parameters. This con-
figuration reduces the number of URLs per domain by 67%, with a
standard deviation of +30 percentage points and median of 73%.

Optimizing for the highest reduction percentages may filter out
unintentionally orphaned web pages by error. We consciously
choose this optimization to provide a lower bound on the preva-
lence of unintentionally orphaned pages in the wild.

Next, we illustrate how our algorithm removes dynamic URLs
for an example domain, see the set of URLs in Listing 1. Here, we

https://example.com/articles/1997/January/articlel.html
https://example.com/articles/1997/February/articlel.html
https://example.com/articles/2002/May/articlel.html
https://example.com/articles/2002/May/article2.html
https://example.com/contact.html
https://example.com/login.html

Listing 1: URL list before Dynamic URL Detection.

https://example.com/contact.html
https://example.com/login.html

Listing 2: URL list after Dynamic URL Detection.

first check for long links. We continue by counting the character
frequency at each position, followed by generating a URL with at
each position the most encountered character of that position. In
our example, this becomes https://example.com/articles/1997/
May/articlei.htmlhtmll. We then shorten the URL to the average
URL size among the URLs on the domain, which we use as a prefix.
This prefix URL is https://example.com/articles/1997/May/arti
clei. Since no URL matches this prefix, we shorten it one character
at a time until at least 5% match the prefix, or until the prefix is
too short. In our example 5% corresponds to 0.45 pages, which
is rounded up to 1 page. In practice, this will be a (much) higher
threshold as websites typically have more than nine pages.

We shorten the prefix until it becomes https://example.com/ar
ticles/1997/, which is present in three URLs. We then remove the
URLs containing the prefix and repeat the process on the remain-
ing URLs. The second generated prefix is https://example.com/ar
ticles/2002/May/arti, which does not require further shortening
as it is matched by three of our URLs. These URLs are removed,
after which the algorithm stops since no further long links are
present in our set, resulting in three URLs remaining (see Listing 2).

3.1.4 Probing Liveliness of Candidate Orphan Pages After filtering
the list of potential orphan pages with DUDe, we analyze the pages
by probing them. This allows us to exclude pages that were actu-
ally taken down after their links have been removed. We perform a
HTTP HEAD request to retrieve the HTTP status code of the web
page. We discard pages producing error responses (4xx and 5xx
status codes), as well as any page that does not return the HTTP
status code OK (200).

3.1.5 Open Source Implementation We provide a dockerized open
source implementation of our methodology at https://github.com/

OrphanDetection/orphan-detection (anonmymized for submission).

It implements our methodology for running it against a single web-
site (see Figure 3), making large-scale studies embarassingly paral-
lel and enabling them to scale horizontally across machines easily.

The open source nature of our implementation also allows se-
curity professionals and researchers to tailor our methodology to
their needs. For our large-scale measurement study, we chose cut-
off and threshold parameters that led to a high reduction rate to
obtain a lower bound with our measurements. However, when
used on a single domain, security professionals may prefer a more
lenient Dynamic URL Detection, or even omit this module from the
procedure entirely, to apply additional context-aware filters on the
list of potential orphans. We expand on use cases of our technique
later (see Section 6).

Download,, Extract Filter !
x ko (EE core

Optional
DUDe £ Probe

| <@ Data :
Get 200 4 - ' % Adustable !

Figure 3: Overview of our implementation.

3.2 Large-Scale Dataset

We evaluate the efficacy of our method through large-scale mea-
surements, detecting orphaned pages in the wild. Following, we
discuss the data set that we used for our study, and report on the
timeline and implementation of our measurements. We deploy our
methodology on 20 servers within our university network, and
split our study into two phases: downloading and processing.

3.2.1 Input Data Sets We rely on two different data sets for our
measurements: First, a random sample of 100,000 domains from
the Tranco Domain List, and, second, the archived data for these
domains from the Internet Archive (see Section 3.1.1).

Tranco Domain List: Research has shown that traditional Top 1M
lists are less reliable than initially thought [22, 28, 29]. They are not
stable, contain unresponsive websites, and are vulnerable to ma-
nipulations, such as promoting one’s domain. Additionally, most
of them actually disagree on the exact list and order of domains,
with one study showing a meager 2.4% overlap among the agreed
order of the four Top 1M lists [22].

To counter the existing issues with Top 1M sets, we use the
Tranco list [22]. It averages the ranks of domains, as listed by
Alexa, Cisco Umbrella, Majestic, and Quantcast. In turn, the list
is more resilient to manipulations and exhibits less fluctuations.

For this study, we use the Tranco list from 14 December 2020.1

We evaluate our methodology on a subset of the Tranco list, con-
sisting of a random sample of 100,000 domains taken from the top
500,000 ranked domains. The exact list of domains is available at
our open source repository.?
Internet Archive: To detect orphan pages, we make use of the In-
ternet Archive, which is an online digital library, archiving and
providing access to various resources including websites [2] (see
Section 3.1.1). We query the Internet Archive’s Wayback Machine
using the CDX API [19]. It stores a URL key, timestamp, full URL,
media type (MIME), status code received during crawl, a message
digest, and the length. However, we only retrieve the timestamp
and full URL, and do this only for pages that returned a status code
of OK (200) upon their initial crawl (see Section 3; this makes our
approach lightwight in terms of archive data).

3.2.2 Downloading Phase For the downloading phase, we take our
input domains and retrieve the archive file for each domain. We re-
trieved the archives between December 16, 2020 and December 20,
2020, with ten downloads in parallel on each of our servers, with
a delay of one minute between each batch. We do so to reduce the
load on the web archive in consultation with the Internet Archive.

When fetching the archive data for a domain, we encountered
four different issues: (1) the server throws an error, (2) the server is
temporarily offline, (3) the server sends back 0 bytes, and (4) we hit

! Available at https://tranco-list.eu/list/5Q3N.
2 Available at https://github.com/OrphanDetection/orphan-detection.

https://github.com/OrphanDetection/orphan-detection
https://github.com/OrphanDetection/orphan-detection
https://tranco-list.eu/list/5Q3N
https://github.com/OrphanDetection/orphan-detection

the rate limit. On each issue, we move the corresponding domain
to the back of our queue and attempt to retrieve it again later. We
repeat this process until we retrieved all archival data, or are left
with cases only returning 0 bytes or an error (for which we then
assume the data is not available in the Internet Archive).

Overall, we retrieved sitemaps for 96,537 domains from our sam-
ple of 100,000 domains (with the remaining domains not being in-
dexed), for a total of 6,092,214,431 URLSs, that is, on average 60,922
pages per domain (median: 6,955, standard deviation: 126,094).

3.2.3 Processing Phase We then apply our methodology on the
pages from the 96,537 domain archives. Table 1 shows an overview
of timeframe and results of our large-scale measurement, which
we discuss next. Filtering the pages on our list of file extensions,
we first obtain a total of 4,033,539,860 potential orphan pages. Af-
ter removing dynamic URLS with DUDe, we reduce the list to
924,190,351 URLSs (a reduction of 77%).

We then probe the remaining URLs to determine which pages
still return a status code of OK (200). To avoid overloading the do-
mains with our probes, we shuffle the list of URLs and split them
over our deployment. This ensures that, on average, we did not ex-
ceed 87 requests per domain per hour. Moreover, our probes used
a customized User-Agent that allowed administrators to easily opt-
out from our study at any time (see also our ethics discussion, Sec-
tion 6.2).> We probed candidate orphaned pages from January 1,
2021 to January 29, 2021. After probing and removing pages that
did not respond with a HTTP status code OK (200), we are left with
36,442,679 candidate pages (a reduction of 96%), see Table 1.

3.24 Identifying Custom Error Pages Unfortunately, not every un-
available web page returns a status code of Not Found (404), or
Redirect (301/302). Instead they might return a custom error page
stating the page was not found, while the HT TP status code is actu-
ally OK (200). In fact, while probing pages, we regularly encounter
discarded pages (i.e., web pages displaying a standard HTML stat-
ing a similar message to “This page no longer exists”) returning a
status code of OK (200). To remove these false positives at scale, we
retrieve the size of each page and remove pages from the same do-
main with a similar size (e.g., within 5 bytes of difference). Lever-
aging size-based filtering, we remove pages that should have re-
turned an error response, but responded with status code OK, and
we reduce the set to 1,821,682 URLSs (a reduction of 95%).

We may remove some pages with genuine content that is simi-
lar among multiple pages, such as login portals. However, in this
paper, we aim to determine a lower bound on the prevalence of
orphaned pages, and, thus, we believe that omitting some pages
and duplicates is an acceptable trade-off (see also Section 6.3).

3.25 Removing Invalid Pages Finally, we discard 564,619 invalid
pages because of a bad file encoding or because we actually re-
ceived a non-HTML file, leading to 1,257,063 pages (a reduction of
30%) that we need to analyze in more depth.

4 Analysis
Here, we analyze and report on the results of our measurement

study, and evaluate the validity of our candidate orphan pages.

3During probing, we received two requests from administrators to remove their
website from our study. Correspondingly, we excluded some links from probing.

Table 1: Summary of our large-scale measurement.

Step Timeframe Result

December 16, 2020 —
December 20, 2020
December 20, 2020
December 29, 2020

Downloading archive data 96,537 Domains

Filtering file extensions
Dynamic URL Detection

4,033,539,860 Pages
924,190,351 Pages

Probing and extracting pages with January 1, 2021 - Janu- 36,442,679 Pages
HTTP 200 response ary 29, 2021

Size-based filtering February 14, 2021 1,821,682 Pages
Removing Invalid Pages February 23, 2021 1,257,063 Pages

4.1 Data Set Overview

A summary of the data set from our large-scale measurement can
be found Table 1. After processing the archive data, filtering them,
removing dynamic URLs, probing, filtering based on size, and re-
moving invalid pages, we are left with 1,257,063 candidate orphan
pages that we need to analyze in more depth (see Section 3.2.3).

4.2 Archive Data Analysis

After collecting the archive data for the domains in our data set, we
can investigate how domains evolve over time. Figure 4a shows the
mean amount of pages per domain for each year between 2000 and
2020. Here, we see a clear increasing trend throughout the years,
suggesting that websites grow. To account for bias inflicted by rel-
atively young websites, since these would have zero pages before
their first appearance online, we also show the growth for all do-
mains that had at least one page archived in 2000. We observe that
accounting for age still shows an increasing trend for the number
of pages on a domain. This is also true for the median (see Fig-
ure 4b). Additionally, Figure 4c shows a boxplot for the amount of
pages per domain per year. Apart from confirming the increase in
the number of pages per domain over time, the latter two graphs
also show the high variance in pages per domain. Especially from
the boxplots, we can detect a significant difference between the
first quartile and the third quartile.

We described earlier that the 2020 sitemaps function as the bases
for gathering the candidate orphan pages (see Section 3). We now
take a look at how, and specifically when, the 2020 sitemaps came
to be. Figure 4d depicts two Cumulative Distribution Functions
(CDFs) of when a page of a 2020 sitemap was first seen in the
archive data. The non-normalized CDF is calculated by summing
the pages across all domains for each year and constructing a CDF
of the sum, the normalized CDF is calculated by taken the average
of the CDF percentages for each year across all domains. Both are
only calculated for pages that were last seen in the archive in 2020.

Interestingly, both CDFs suggests that old pages indeed get re-
moved from a domain eventually. However, the other plots of Fig-
ure 4 also indicate that sitemaps are growing over the years. This
then means that the older a page is, the less likely it is meant to be
online. We will leverage this observation later on in our analysis.

Note that the trends of the graphs rely on the Internet Archive’s
operations throughout the years. For example, sitemap growth is
naturally influenced by the Internet Archive’s crawl scale.

4.3 Page Similarity

We identified a first parameter that can provide an indication of
whether a page is unintentionally orphaned: its last seen date. Al-
beit not sufficient on its own, there is another intuitive indicator of

Domains with 2500 Domains with
g pages in 2000 n ~*~ pages in 2000
& All domains $2000 Al domains
£ 10000 3
5 %5 1500
g g 1000
a 3
£ 5000 g
E 3 500
0 0
2000 2005 2010 2015 2020 2000 2005 2010 2015 2020
Year Year
(a) Mean (b) Median
510 vl w10 Not normalized
2 I“ul‘l“ 95| — Normalized
$10° T
o I 11 AHLH
3
<102 H
s}
< I
2100 H
€
E}
21000 4 0.0
2000 2005 2010 2015 2020 2000 2005 2010 2015 2020
Year Year
(c) Boxplot (d) CDF

Figure 4: Analysis of the archive data. (a) and (b) show
the number of pages on a domain, (c) shows it as boxplots
(yellow markers represent the mean). (d) depicts a normal-
ized and non-normalized CDF of which percentages of pages
from the current sitemap were present in a specific year.

whether a page was intentionally orphaned: its similarity to other
pages of the same domain. Thus, to check whether a page has ac-
tually become unmaintained orphaned since its last listing on the
Internet Archive, we compare the fingerprint of a page’s current
version to its last archived version.

Detecting (near-)duplicates among web pages and other types
of documents has been extensively studied before. Henzinger [18]
compared the two state of the art approaches for near-duplicate de-
tection of web-pages (Broder et al. [8] and Charikar [9]), and con-
cluded that Charikar’s simhash performs better, which also has a
small memory footprint [27]. Thus, we base our similarity detec-
tion on it. Our comparison works by first creating a fingerprint of
the two pages and comparing them.

Creating Fingerprints using simhash: We create the fingerprint of
a web page by first removing all HTML tags and extracting only
the content of the page. We then divide the extracted content into
n-grams of n = 8. For each n-gram, we construct a 64-bit hash
using the FNV-1a hashing algorithm. To construct the fingerprint,
we sum each hash over the same index in the following way: If the
hash of the n-gram has the value 1 at index i, we add 1 to index i in
the fingerprint. If the hash has the value 0, subtract 1 from index
i in the fingerprint. For each index in the fingerprint, convert the
value to 1 if its positive, and to 0 if its negative. The result is a
64-bit fingerprint of the web page.

Comparing Fingerprints using Hamming Distance: For each URL
in our data set, we retrieve its current version and its latest archived
version, and we create fingerprints for both pages. We then com-
pare the 64-bit fingerprints using the Hamming distance, which is
the number of bits that need to be changed for the two fingerprints
to produce two equal strings. The inverse gives us the similarity.

Figure 5 shows the distribution of the similarity scores of the
candidate orphaned pages. We observe a clear Gaussian distribu-
tion around 0.5 with an increase at 1. Indeed, it follows our expecta-
tions that, although pages change over the years (e.g., their design),
core content often remains unchanged. The left tail of the curve

125000

100000

75000

Number of Pages

J
.
.
50000 .
.
25000 .
.
o

0
0.25 0.5 0.75 1
Similarity Score

Figure 5: Distribution of the calculated similarity scores.

represents pages that have changed more drastically throughout
the years, while the right tail of the curve shows the pages that
have remained unchanged, with a spike at 1 for the pages that ap-
pear to have not changed at all. The latter are of high interest to
us, as they might be unmaintained orphaned pages.

4.4 Orphan Likelihood Score

Leveraging the two parameters that can provide an indication of
whether a page is intentionally or unintentionally orphaned, its
last seen date and its similarity score, we can derive a metric for the
likelihood of a page being orphaned. As a starting point, we take
a domain’s sitemap from 2020 and we subtract the year in which
a page was last encountered from 2020 to get the page’s age. The
oldest page in our data set is from 1997, and, hence, the maximum
age a page in our data set can have is 23 years. The similarity score
is normalized to [0-1], and we can easily scale it to [0-23]. As such,
we combine the parameters to the orphan score O = %.
Here, S is the similarity score, A is the age (calculated by subtract-
ing the last-seen year from 2020), and ws and w, are weights of
the similarity score and the age. We normalize to [0-1].

We evaluate different values between 0 and 1 in increments of
0.1 for wg and wg. Figure 6 depicts the results. With each incre-
ment the distribution of the orphan score slowly excludes a set
of links (on the right side of the graph) until it converges to the
normal distribution of Figure 5 at ws = 1 and wg = 0. The graph
becomes split in two: a normal distribution on the left (low orphan
score), and a set of outliers on the right of the bell (higher than av-
erage orphan score), allowing us to study the set of links that got
“detached” from the greater chunk in the graph.

We use a weight allocation of wg = 0.9 and wg = 0.1, along
with a cutoff of 0.9. Meaning, we discard all pages with an orphan
score lower than 0.9. This reduces our set of pages to 26,756 URLs.

4.5 Classifying the Type of Pages

Following, we classify the identified 26,756 URLs and determine
whether they are truly orphaned. We look for specific indicators,
in the source code or content, that provides insight into the orphan
status. We divide them up in three classes: likely orphaned, not
orphaned, and uncertain. With likely orphaned, we identify clear
indicators that the page is orphaned, such as outdated copyright
statements or incomplete/boilerplate code. Second, we label a page
as non-orphaned when we detect that the copyright on the page
is at least from 2020. Note, that this will mislabel pages with a
dynamically generated copyright, which is in line with our goal
of providing a lower bound. Finally, we label a page as uncertain
when there is no a clear indicator for it to be likely orphaned or
for the page to be non-orphaned. Our indicators are:

108 ws: 0.0, Wo: 1.0 108 ws: 0.1, wy: 0.9 108 ws: 02, w,: 0.8 108 ws: 0.3, wo: 0.7 108 ws: 0.4, wy: 0.6 108 Wsi 0.5, Wo: 0.5
- L . -
81051 * e 810° g10°
$10° SCene 810 g 10
g e g 8 g
%108 L 2 10° 13 £10°
5 5 5
310? | g0ty 3 10
£ o | E o] mebsds £ 101] *es ;?5'33
510 H P 5
z z z P T, %,

100 1001 ¢ woetmceemm 1000 ¢ ="

000 025 050 075 100 000 025 050 0.75 1..00 000 025 050 075 100 000 025 050 075 1.00 0 025 050 075 1.00
Orphan Score Orphan Score Orphan Score Orphan Score Orphan Score Orphan Score
108 wg: 0.6, wy: 0.4 106 Wi 0.7, Wy 0.3 106 Wy 0.8, Wy: 0.2 106 Ws: 0.9, we: 0.1 106 ws: 1.0, wy: 0.0
3108 N

$10%
)
& 108
k]
5 10%
K]
£10t

2
10°
0.

.00 025 050 0.5 100
Orphan Score

Orphan Score
Figure 6: Empirical evaluation of the weights in the Orphan Score formula. We see that a higher weight for the similarity score
leads to the exclusion of a specific set of links. Chosing the extremes (w; = 1 or wg = 1) leads to a more discrete clustering of
the orphan score, thereby increasing the per-score-max.

4.5.1 Copyright Statements Copyright statements, often at the bot-
tom of a page, can give insight into when a page was last up-
dated. To capture these statements, we scan for the word “copy-
right” (case insensitive) and the copyright symbol (©). If present,
we examine the 50 characters before and after the copyright, and
try to detect a date. If the year is 2020 or 2021, we assume the page
is up-to-date. If the year is older, we label it as likely orphaned.

4.5.2 Boilerplate Code Websites often use “boilerplate code” to
speed up the development process. They can function as a template
complying with the general setup of the website, or as a test page
to confirm successful functionality or deployment. This boilerplate
code, when rendered, may display an empty page, or a generic
(small) set of words. The code itself, however, may be filled with
boilerplate HTML tags or JavaScript code blocks, assuring compli-
ance with the general template of the website.

Boilerplate code that is not further developed with content can
be an indication of an orphaned web page, presumably because
there was intention of deploying an endpoint, which was then later
not further pursued, although without removing the page.

We identify those pages as boilerplate that result in an empty
page or one with less than 5 words after we strip all HTML-tags
and script blocks from the source.

4.5.3 Error Pages We already removed pages that respond with
a status code OK, yet display an error message (see Section 3.2).
However, such pages might still be present in our data because
on our heuristic to filter at-scale might not be perfectly accurate.
Therefore, on this pre-filtered data set, we now utilize a more ex-
pensive and more accurate additional analysis step. To detect these
pages, we look for common phrases, such as “Page Not Found.” The
full list of key-phrases can be found in Appendix A.

4.5.4 Following Redirects and Loading Frames Earlier, we removed
all pages that responded with a status code different than OK (200).
While effective at-scale, this approach misses specific redirects, for
example in JavaScript or HTML meta tags. We detect these redi-
rects by comparing them against a list of known in-page redirect
techniques (see Appendix A). Similarly, we can use a list of HTML
tags used for loading frames to detect these types of pages. Albeit
pages making use of redirects or frames can be classified as such,
they might still be unmaintained or forgotten.

000 025 050 075 1.00
Orphan Score

2

025 050 075 1.00
Orphan Score

000 025 050 075 100 0.00
Orphan Score

For both types, we attempt to detect the resource referenced
by the redirect or frame. In case multiple frames are loaded, we
only analyze the first one we encounter. Once resolved, we apply
the same classification as we did initially. For redirects, we might
encounter a loop, that is a page redirects to another redirecting
page, possibly resulting in an infinite redirect loop. Like modern
browsers, we limit the number of consecutive redirects. In our
case, we follow a maximum of 20 redirects.

4.6 Removing One Domain Name

When analyzing our remaining 26,756 pages we notice one domain
name evading DUDe as it was spread over multiple TLDs, biasing
our results with a little over 20,000 entries. We missed these cases
as the pages are spread over multiple TLDs (.my, .hk, .tw, .net,
.ie, .ae, and .id), and our heuristic functions on a fully-qualified
domain name basis.

Remarkably, the TLDs of the domain are primarily Asia-oriented,
with the exception of .net and .ie. We manually filter out the
pages using this SLD to have a more diverse set of domains that
gives a better depiction of the accuracy of our methods. Doing so
leaves us with 5,914 pages.

4.7 Analyzing Types of Pages

For all links left in our set, we download their latest version as of
March 14, 2021 and analyze them for the type of pages (redirects,
boilerplate, etc.). Figure 7 shows a Sankey diagram of the results.
On the left we see our initial classification and on the right after
following redirects and loading frames.

The most common pages we encounter are in-page redirects via
HTML or JavaScript (2,093 pages). Although redirecting can be a
mechanism to divert traffic from orphaned pages, our results indi-
cate that many of these redirects tend to be misconfigured (45%),
of which the majority seems to cause an endless loop of redirects
(65% of the misconfigured redirects). From the redirecting links
that end up at a page with a copyright statement, we see around
an equal amount with a recent timestamp and without (both 17%).

Second most common, we see the boilerplate pages (1,612 ini-
tial pages, 1,752 after redirects and frames). We believe these are
forgotten. We assume there was initial intent to deploy content,

Redirect: 2,093
Connection Error: 27
Not Found: 28
Undefined: 912

Boilerplate: 1,612

Recent Copyright: 559
No-date Copyright: 199
0Old Copyright: 154
Frame: 330

Total Undefined: 1,163

I Total Boilerplate: 1,752

~——————— Total Error: 65

Total Not Found: 385
. Redirect Overflow: 612
- - ~mm Total Redirect: 184

I Total Recent Copyright: 951

— Total Frame: 64

. Total No-date Copyright: 534
—— No Source: 3
mm Total Old Copyright: 201

Figure 7: Sankey diagram of the detected page types. On the left we have the initial classification. The flows in the diagram
depict the result of following redirects and loading frames, which leads to the results of our classification shown on the right.

Table 2: Summary of the most important types of pages. We
observe that our method is capable of detecting web pages
that are likely to be orphaned, and we can say that 951 pages
are in fact not orphaned. We also see a large group of pages
for which the determination is not clear.

Type Count Orphan Status Total
Old Copyright 201 .

Boilerplate 1752 Likely Orphaned 1,953
Copyright without date 534 .
Undefined 1,163 Uncertain 1,706
Recent Copyright 951 Not Orphaned 951

but it was not further pursued. This could be due to a myriad of
reasons, such as simply forgetting about it or refactoring.

Particularly interesting are the pages that contain a copyright
statement. In total, we found 1,686 such statements, with the ma-
jority of the pages actually having an up-to-date timestamp (56%).
While these might be dynamically generated, we consider these
pages maintained in the spirit of identifying a lower bound. The
ones that do not have an up-to-date timestamp are divided into two
groups: statements with a timestamp (12%), and statements with-
out any timestamp (32%). When a timestamp is present, we assume
the page was last maintained during that year. Figure 8 depicts
the distribution of the years extracted from copyright statements.
These pages are likely orphaned, while the copyright statements
without a timestamp could be orphaned, but might not.

Table 2 summarizes the types of pages and their orphaned status.
For at least 1,953 URLs, the pages appear forgotten, unmaintained,
and therefore likely orphaned. These pages are spread over 907
domains, with one domain having as many as 142 likely orphaned
pages. For 1,706 pages, the decision is not as clear. While we could
not detect any clear sign of being maintained, we also do not know
if they are not. Lastly, we identify 951 pages which appear main-
tained and not orphaned.

4.8 Google Visibility of Orphaned URLs

We also make use of Google’s Programmable Search Engine [15] to
determine how many of our pages are indexed by Google. We con-
struct a simple query that searches for “site:<url>” and count the
number of results returned by Google. If no results are returned,
we assume the page is not indexed. This gives insights into how
“easily” reachable these pages are on the web.

102
= nitial
From Redirects
== From Frames

10t _I I
-

Number of Pages (log)

Figure 8: Extracted copyright years from copyright state-
ments on pages that are not considered to be up-to-date. The
majority of the pages were last touched at some point in the
past 5-10 years, although we also observe pages which ap-
pear to be unmaintained for much longer.

We perform the lookups between March 10, 2021 and March 12,
2021 (over 3 days due to rate limiting) on all 5,914 URLs. We find
that only 16% of the pages were indexed by Google. This shows
that many of our (likely) orphaned web pages are not (easily) reach-
able through the web, and hence difficult to find without making
use of archived databases, highlighting the need for our technique.

We observe no correlation between any of the identified types
and the indexed status of a page, neither between any of the or-
phaned statuses and Google’s indexing. Only pages for which we
detected an old copyright statement we see that the more recent
a page, the more chance of it being indexed. However, we expect
this is just following the general distribution from Figure 8, or that
they will soon be removed by Google.

5 Security Evaluation

Next, we investigate if orphaned pages actually have any security
implications. That is, we try to answer the question: Are orphaned
pages (on average) more vulnerable than non-orphaned pages?

5.1 Methodology

Following, we assess the vulnerability of orphaned pages compared
to non-orphaned pages with two control groups.

5.1.1 Control Groups First, we compare orphaned pages to a con-
trol group from the general population. Specifically, we compare
the orphaned pages to recent non-orphaned pages sampled at ran-
dom from our data set. These random recent non-orphaned pages
were all crawled by the Internet Archive in 2020. This means that
our first control group (Control 1) is a sample similar to a random

Internet crawl, and provides insight into whether the security pos-
ture of orphaned pages differs from the general Internet.

Second, we instead compare orphaned pages to non-orphaned
pages from the same website. That is, we investigate the hypothe-
sis that all pages on websites that have orphaned pages in the first
place, including the non-orphaned pages on these websites, are
more likely to suffer from vulnerabilities than the general Inter-
net. This follows from the intuition that websites with orphaned
pages are likely not maintained properly (or they would not have
orphaned pages), and thus they might also be less likely to de-
ploy other measures to improve security, resulting in being over-
all more vulnerable than the general Internet. Our second con-
trol group (Control 2) consists of one random non-orphaned page
for each website with an orphaned page. Again, all pages are re-
cent, that is, they were part of the Internet Archive in 2020. Cor-
respondingly, with our second control group, we can test whether
the amount of vulnerabilities is “internally consistent” for websites
with orphaned pages, that is, whether they have (in general) a low-
er/higher security level than the general Internet.

5.1.2 Security Analysis We analyze the security posture of all three
groups (Orphaned, Control 1, and Control 2) by scanning them
with Wapiti [31] for cross-site scripting (XSS) vulnerabilities, SQL
injection (SQLi) vulnerabilities, and their security configuration.

Wapiti is a black-box web-application vulnerability scanner that
we chose because it is actively maintained and it allows us to limit
the scope of the scan to the specific URL (including all query pa-
rameters, that is, only modifying existing query parameter values,
nor removing them, nor adding new ones; e.g., for an orphaned
page with a form that is posted to the same URL without any
query parameter modifications) and page (allowing query param-
eters to be added, and removed; e.g., adding a new pagination
parameter ?page=3, or submitting a form that sets the parameter
?form=submit). These scope restrictions to URL and page are par-
ticularly important to prevent accidental scope-creep beyond the
orphaned pages we detected, that is, scanning, identifying, and re-
porting vulnerabilities in other non-orphaned pages that are reach-
able from the orphaned pages themselves by following links. More-
over, Wapiti provides a Proof of Concept (PoC) for each found vul-
nerability, which aids us in verifying the reliability of our scans
and assess the accuracy of our findings.

We investigate XSS and SQLi vulnerabilities because they pose
significant risks to website operators and website users. SQLi at-
tacks allow adversaries to execute SQL queries on a web applica-
tion’s database, which can lead to sensitive user information being
leaked (e.g., personally identifiable information (PII)), privileges
being escalated, or access control being bypassed (e.g., SQLi for a
login form). Similarly, cross-site scripting (XSS) attacks can allow
attackers to inject and execute arbitrary JavaScript code within the
user’s browsers in the scope of the website, which can allow the
attacker to steal user data and login tokens; worse, depending on
involved URLSs, domain, and scopes for cookies, an orphaned page
might have access to cookies set by non-orphaned pages of a web-
site. Last, we study their security configuration to get insights into
how security is being handled. See Section 6.2 for a discussion of
the ethics of our security analysis, that is, how we minimized harm
and performed responsible disclosure.

5.1.3 Requirements Minimization We also minimize our data set
to not scan pages that cannot be vulnerable because they do not
satisfy the requirements for the specific vulnerability. This is im-
portant from an ethical perspective, to reduce network load and to
not cause website operators to expend resources to serve requests
that have no purpose.Notably, XSS and SQLi vulnerabilities require
that the website processes user input in some form. Hence, for XSS
and SQLi, we limit us to pages allowing user input.

To establish whether a page allows user input, we err on the side
of caution and include all pages having any indicator that they
might process input. We consider the presence of any query pa-
rameter and the presence of formand input tags within the HTML
code of a page as an indicator of user input. When only including
such pages, we find 636 Orphaned pages, 997 pages from Control 1,
and 1007 pages from Control 2 that might allow for user input.
Please note that this filter was applied after group selection.

Furthermore, albeit first released in 1995, JavaScript only be-
came widely adopted with more available libraries, like the promi-
nent jQuery library, first released in late 2006 and still being widely
used today, and the use of AJAX. In turn, encountering it, and
therefore XSS vulnerabilities, in pages from before 2007 is unlikely,
which is why we limit our XSS tests to pages newer than 2007.

5.2 Results

Following, we present the results of our security scans. Please see
Table 3 and Table 4 for an overview of our results.

5.2.1 Cross-Site Scripting (XSS) Limiting our security scan for XSS
vulnerabilities to the exact URL, we find that 128 orphan pages suf-
fer from XSS vulnerabilities (20.1%). This stands in stark contrast
to the general Internet (Control 1) with 17 vulnerable pages (1.7%)
and also the non-orphaned pages on the same websites themselves
(Control 2) with 64 pages (6.3%) vulnerable to XSS, with both dif-
ferences being statistically significant at p < 0.01 in 2.

Broadening the scope to the page, that is, allowing query pa-
rameters to be added and removed, these numbers only change
slightly: 123 orphaned pages (19.3%) are vulnerable to XSS, com-
pared to 20 pages (2.0%) of the general Internet sample (Control 1)
and 59 pages (5.9%) for the non-orphaned pages of the websites
(Control 2), statistically significant at p < 0.01 in y2.

Naturally, one would expect to find more vulnerable pages when
broadening the scope from URL to page. However, this is not the
case for orphaned pages (128 pages and 123 pages respectively)
and for Control 2 (64 pages, and 59 pages respectively). The rea-
son is simple: We first performed our URL scope scans, then no-
tified the operators in a first round about the vulnerabilities we
found, and then proceeded by broadening the scope of our scans
to page. Correspondingly, to understand the differences between
both scans, we need to analyze the set differences between our
scans and manually investigate. We found that our page-scoped
scan discovered one additional orphaned page with a XSS vulnera-
bility, while it could not reproduce six vulnerabilities on orphaned
pages because they were already remedied by the affected parties
after our first notification. Results in the other two control groups
are similar: We found nine new XSS vulnerabilities for our gen-
eral sample (Control 1), and nine new XSS vulnerabilities for the
same-website non-orphaned pages (Control 2).

To assess the accuracy of our findings, we also manually veri-
fied a random sample of the XSS PoCs by Wapiti. Unfortunately,
our manual verification took place after notifications were already
sent out to the operators, which means that our true positive rate
is a lower bound, and the actual number of real vulnerabilities we
identified might be higher. In our manual verification of a random
sample of 25% of the found XSS per group (105 total, 10 Control 1,
32 Control 2, 63 Orphaned), we found the Wapiti provided PoCs to
be true positives in 92.4% (97 total, 6 Control 1, 28 Control 2, 63 Or-
phan) of the cases. However, for the four samples from Control 1
and one sample from Control 2, the affected pages have been re-
moved, now delivering Forbidden (403) or not Found (404) errors,
suggesting that they were addressed by the operators. This leaves
only three potential false positives in Control 2.

A noteworthy vulnerable orphan page we encountered is an on-
line sports betting site example.bet. For this website, an old login
page has remained active after the website migrated to a new login
mechanism at example.bet/login. This endpoint is vulnerable to
a simple query parameter XSS of the form “/login?ref="><ScRi
Pt>alert(’ VULNERABLE')</sCrIpT>." We also verified that it is no
longer the current login page, that is, it is indeed orphaned.

Overall, we find that orphaned pages are more likely to be vul-
nerable to XSS than a general sample of pages (Control 1) and non-
orphaned pages on websites that have orphans (Control 2), statis-
tically significant at p < 0.01 in y2. Interestingly, websites that
have orphaned pages (Control 2) also have a worse security pos-
ture than pages for which we identified no orphans (Control 1),
also statistically significant at p < 0.01 in y2.

5.2.2 SQL Injections (SQLi) Considering SQLi vulnerabilities, we
find 25 orphan pages (3.9%), 22 general pages (1.7%, Control 1, dif-
ference significant at p < 0.05 in y2), and 81 non-orphaned pages
for websites with orphans (8.0%, Control 2, significant at p < 0.01
in y2) are vulnerable to SQLi when scoping our scan to the exact
URL. This is interesting: Orphan pages themselves are only slightly
more vulnerable than general pages, but non-orphaned pages on
website with orphans are almost five times as likely to be vulnera-
ble to SQLi than general pages (significant at p < 0.01 in y2).

Broadening our measurement scope from the URL to the page,
however, these results change. Here, we see a significant increase
to 69 vulnerable orphan pages (10.8%), and slight increases to 27
general pages (2.7%, Control 1, significant at p < 0.05in y2) as well
as 96 pages for Control 2 (9.5%, p ~ 0.39 in y2). This highlights
that restricting scans to the exact URL is insufficient, for exam-
ple, because of SQLi on some parameters that were not part of the
original URL, such as a pagination parameter. Similar to our XSS
scans, our page-scoped scans were performed after our first round
of notifications and some vulnerabilities have been remedied be-
fore our page-scoped scan. Overall, by broadening the scope of our
scan, we found 53 new vulnerable orphan pages, 18 new vulnerable
pages for our general sample (Control 1), and 43 new vulnerable
non-orphaned pages for websites with orphans (Control 2).

We manually validated the PoCs to assess our accuracy for SQLi
vulnerabilities. We find that 122 (38.1%) pages can be readily ver-
ified to be vulnerable with the PoCs. A further 73 (22.8%) pages
have been taken down by their operators since, possibly in re-
sponse to our notifications. Sixty-five (65, 20.3%) pages adopted

Table 3: Number of Cross-Site Scripting (XSS) and SQL Injec-
tion (SQLi) vulnerabilities among pages that allow for user
input. p-values are relative to the Orphan group in y2.

Control1 Control2 Orphaned

Scope Vuln. n=997 1n=1007 n=636 Pel Pe2
orL XSS 17(17%) 64(63%) 128(201%) <001 <0.01
SQLi 22(22%) 81(80%) 25(39%) <005 <001

e XSS 20 (20%) 59(59%) 123(193%) <001 <001
8 SQL 27(27%) 96(95%) 69(10.8%) <001 ~039

other mitigations after our notification, leaving 60 (18.8%) PoCs
that require manual in-depth analysis. Unfortunately, we have
been unable to assess whether they are truly false positives: They
are blind SQLi that rely on the sleep function, and, while the pages
do behave differently for the generated PoCs and the original URL,
we did not find any correlation to the value provided to the sleep
function. For some cases sampled at random, we could determine
that the sleep function was unsupported by the databases (e.g.,
MSSQL), resulting in the database query failing, the page load never
completing, and no response being sent to the user. Accordingly,
while we believe that these cases are true positive injections due
to their behavioral differences, we refrained from further manual
in-depth analysis to not cause undue harm.

A noteworthy SQLi example is an orphaned page of a govern-
ment organization that is responsible for entrance exams for edu-
cation in medical professions, which still provides access to old in-
stances of applicant handling systems via example.med/index.php/
applicants/applicants-2008/apps@8prospective?tmpl=index\&pri
nt=1\&page=1. Here, the tmpl parameter is vulnerable to SQLI, such
as, 1+or+sleep(10)#. After our notifications, this page was removed
without providing a reply back to us.

Overall, for SQLi, we find orphaned pages to be significantly
more likely to be vulnerable than a random sample on the web
(Control 1), statistically significant at p < 0.05 in y? for our URL-
scoped scan and at p < 0.01 in y?2 for our page-scoped scan. More-
over, for the broader page-scoped scan, there is no longer a signifi-
cant difference between pages that are orphaned and non-orphaned
for websites that have orphans (Control 2). In fact, all pages on
websites with orphans have a comparable share of SQLi vulner-
abilities (9.5% and 10.8% respectively), which is also significantly
higher than that of general pages (2.7%) with p < 0.01 in y2.

5.2.3 Security Configuration Issues Finally, in addition to XSS and
SQLIi, we also assess if sites set a Content Security Policy (CSP)
or HTTP Security Headers, as well as if they use the Secure or
HttpOnly flags for cookies. We only report URL-scoped results
as the scan scope does not affect these issues. Although we en-
counter a similar trend as to our XSS evaluation, the effect sizes
(even though significant in y2) are too small to allow for conclusive
statements. Similarly, we only found a limited number of cases of
Open Redirects and Path Traversal vulnerabilities (0 to 7), prevent-
ing us from drawing conclusions regarding their differences.

6 Discussion

In this section, we discuss the applied and scientific use cases for
our methodology. Furthermore, we discuss ethical implications
of our approach, how we addressed these, and the limitations our
methodology and measurements have.

Table 4: Comparison of found security configuration issues.
We omit some p-values (y2) due to small effect size.

Issue Control 1 Control 2 Orphaned pet pe2
n=1875 n=1944 n=1953
No Content Security Policy 1758 (93.8%) 1838 (94.5%) 1896 (97.1%) <0.01 <0.01
No HTTP Security Headers 1660 (88.6%) 1751 (90.1%) 1859 (95.2%) <0.01 <0.01
No Secure Flag Cookie 738 (39.4%) 755 (38.8%) 644 (33.0%) <0.01 <0.01
No HttpOnly Flag Cookie 545(29.1%) 713 (36.7%) 578 (29.6%) =072 <0.01
Path Traversal 0 (0%) 7 (<1%) 2 (<1%) - -
Open Redirect 1(<1%) 0(0%) 1(<1%) - -

6.1 Applications and Future Research

Our methodology holds practical applications for network defense
and vulnerability assessments, and potential for future research.

6.1.1 Use by Network Defenders In Section 2, we have shown var-
ious scenarios in which a web page can become orphaned. Here,
our implementation can assist defenders by automating discovery
for outdated page and web resources in general. Instead of (solely)
relying on the Internet Archive as a baseline, administrators can
also make use of internally stored sitemaps of the website, allow-
ing pages outside of web crawls to be evaluated as well.
Additionally, instead of looking at orphaned pages with an HT TP
OK (200) status code, other responses might be interesting, such
as status code 50x responses indicating applications that still exist,
but, for example, lost access to their backend database. The filter-
ing of file extensions can also be adjusted, or omitted, allowing the
detection of other orphaned resources like (exposed) documents.

6.1.2 Use by Red Teams Security professionals, like pentesters,
can also benefit from using our technique. Common tools like Dir-
Buster or Gobuster can detect (unintentionally) accessible pages
on a domain, but rely on the use of wordlists and enumeration.
Our technique is complementary: it provides a targeted-search on
a domain. It identifies specific end points potentially not included
in common word-lists and provides an indication of pages that are
not maintained anymore, meaning they are likely more vulnerable.
Similarly, Google Dorks [33] are commonly used for identifying or-
phaned or hidden sites. However, as we have shown in Section 4.8,
our approach largely covers pages not indexed by Google.

6.1.3 Future Research Our technique provides the first baseline
for studying the prevalence of orphaned web-pages on the web.
Further research should refine our technique to also provide an
upper bound of orphaned resources. Similarly, we do not inves-
tigate the impact of other resources, such as images, videos, PDF
files, etc. Such (forgotten) resources can potentially expose private
data, especially when encountering PDF or Excel (XLS) files that
are not meant to be accessible online (anymore).

While our technique for detecting orphaned web page is effec-
tive, we believe different approaches in detecting these pages are
worthy of exploring. For example, old blogs, forum posts, or Twit-
ter tweets, can potentially contain orphaned URLs. Extracting those
from social media platforms could be more robust against the lim-
itations (crawl heuristics and depth) of web archives. In addition,
other historic information sources may be valuable in identifying
orphaned non-web resources, that is, forgotten servers, virtual ma-
chines, and services. Specifically, we believe that Certificate Trans-
parency (CT) logs and passive DNS data sets offer an opportunity
to identify further types of orphaned resources.

Finally, orphaned web pages are a form of misconfigurations
(see Section 7). Surveying website administrators after they used
our technique can also yield interesting insights into the preva-
lence (on a per-domain basis) and root-causes of orphaned resources.

6.2 Ethics

Our work uses active measurements. As such, we are following es-
tablished best practices as outlined in the Menlo report [4, 13]. We
took precautions to limit the operational impact of our work on the
web archive in coordination with the operators, and on the mea-
sured sites by limiting and randomizing the number of requests
a site receives (see Section 3.2.3). We also included contact infor-
mation in the user agent of all web requests that we made. Two
parties opted-out of our research, and we excluded them from it.

Our HREC (Human Research-Subject Ethics Council) does cur-
rently not accept applications for ethical evaluations or waivers for
research that does not directly involve human subjects. Hence, for
the automated security scans we carefully considered the trade-off
between the utility of our research vs. the potential harm we cause.
As we made sure to only detect vulnerabilities and did not exploit
them, we consider our approach ethical.

We disclosed all XSS and SQLi vulnerabilities we found on or-
phan pages or pages in our control groups to the responsible ad-
ministrators, or to the respective CERT when no direct contact in-
formation was available. We were able to identify points of contact
for 327 vulnerable pages, with some contacts covering multiple
pages (i.e. from the same website). Our email for contacting the
respective administrators can be found in Appendix C. We received
one response from a national CERT, who did not share further in-
formation about how they remediated the vulnerabilities, and one
response from an operator, who informed us that the affected site
was indeed orphaned, and would be taken offline. Furthermore,
there was one response from an operator with an affected site in
the non-orphaned control group, who reported to apply mitiga-
tions within a month from notification.

6.3 Limitations

Our study has several limitations which are important to note for
correctly assess the impact of our results. Specifically, we are try-
ing to establish a lower bound for orphaned web-pages. We be-
lieve it is important to state a lower bound to prevent an alarmist
response and alert fatigue. Our implementation provides an acces-
sible aid for users to assess the severity of this problem on their do-
main, while simultaneously inviting further research. This means
that all heuristics employed in our study (Dynamic URL Detec-
tion heuristic and fingerprint comparison) are configured conser-
vatively to reduce the chance of over-matching. However, it also
inevitably causes us to miss potentially orphaned web pages, mean-
ing orphaned web resources are like more prevalent.

The same holds for our methods for detecting copyrights, fol-
lowing redirects, and loading frames. Developing more ways of
following redirects and frames can provide additional depth to our
page type analysis. Similarly, detecting more copyright statements
(for example, different copyright standards, or in-code construc-
tion) can improve accuracy. Especially the detection of dynamic
copyright statements can contribute to expanding our results.

Finally, we conducted our study on a sample of 100,000 domains
from the top 500,000 entries of the Tranco Top 1M. The prevalence
of orphaned pages may differ for less prominent domains.

7 Related Work

Two areas of research are closely related: work on orphaned Inter-
net resources (beyond the web) and use-after-free attacks on them,
and work on maintenance and security misconfigurations.

7.1 Orphaned Resources

Khalafut et al. studied the prevalence of orphaned DNS servers on
the Internet [20], with orphaned DNS servers being those with a
DNS record pointing to them, but with no delegation from a parent
zone. Overall, 1.7% of records belong to orphaned DNS servers.
Liu et al. [25] demonstrate how through “Dangling DNS Records”
domains can be hijacked for malicious purposes. Borgolte et al. [6]
investigated how DNS records pointing to cloud IP addresses can
lead to domain takeover attacks because IP address use-after-free
attacks on cloud infrastructure and they show that these attacks
are practical and cost effective to execute on public clouds. Stale
NS record types have been studied by Alowaisheq et al. [1], who
show how they can be exploited via DNS hosting providers, possi-
bly allowing domain hijacking for 628 domains of the Alexa’s 1M.
Beyond DNS, Gruss et al. [16] show that use-after-free attacks can
also apply to email addresses.

Related to the web, Aturban et al. examine the existence of or-
phaned annotations in Hypothes.is, a tool to annotate websites [3].
An annotation is orphaned when it can no longer be attached to
its target page, because the page does not exist anymore, or be-
cause the annotated content on the web page has been removed.
They found that 27% of annotations are orphaned, and 3% could
be reattached to archived versions of the target page by making use
of web archives. This indicates the potential of using web archives
to obtain orphaned data; a concept we also leverage in this paper.

7.1.1 Orphaned Resources vs. Use-After-Free Related work on or-
phaned resources focuses on resources that are no longer allocated
themselves, but still are delegated from another service. Terminol-
ogy for this situation ranges from stale, dangling, use-after-free, to
orphaned, with the underlying concept being the same. In contrast
to these broader concepts, we focus on resources and services that
lost their delegation, while continuing to exist, that is, the inverse
kind of orphaned resources. In our work, the orphaned resource
(web pages) cannot be re-used or hijacked when an attacker takes
over an orphaned delegation. Instead, the resource itself becomes
the liability, for example, due to its vulnerabilities. Orphaned web
pages are, however, still under the original owner’s control. Other
terms, such as use-after-free, signify that control has been relin-
quished and the resource can be taken over for exploitation.

7.2 Update Behavior and Misconfigurations

Orphaned web pages may be a form of security misconfigurations,
which have been extensively studied in the human factors in com-
puter security community [21]. Dietrich et al. studied the perspec-
tive of system administrators on security misconfigurations [12].

We see parallels between the issues they uncovered and poten-
tial causes for orphaned pages, such as a lack of documentation
(non-updated sitemaps), lack of responsibility (who controls which
page), and unclear processes and procedures (unplanned changes
of pages). The work of Li et al. also suggests that orphaned pages
might be an issue of misconfiguration [24]. Albeit we confirmed
the prevalence of orphaned pages, future work needs to confirm if
its origin is in misconfigurations.

Security misconfigurations are regularly studied with at-scale
measurements. For example, Continella et al. measured miscon-
figurations around Amazon S3 cloud storage services [10], find-
ing 14% S3 storage buckets being public. Ferrari et al. similarly
studied misconfigured NoSQL services [14]. Earlier, Springall et
al. measured misconfigured FTP servers, with 8% of 13.8M FTP
servers allowing for anonymous access [30]. A study by Bijmans
et al. finds over 1M unmaintained MikroTik routers vulnerable to
embedding cryptomining code in user traffic [5]. Also DNS(SEC)
misconfigurations have been shown to cause unavailability and se-
curity issues [11, 17, 34].

These studies underline how misconfigurations are still a fre-
quent cause for security issues, and are occurring in the wild.

8 Conclusion

In this paper, we introduce the concept of orphaned web pages as a
security risk and develop a novel methodology to detect them. Us-
ing a sample of 100,000 websites, stemming from the 500,00 highest
ranked sites in the Tranco Top 1M, we found 1,953 pages that are
likely orphaned, spread across 907 domains, with some of these
pages being as old as 20 years.

We find that orphaned pages are significantly (p < 0.01 using
x?2) more likely to be vulnerable to XSS (19.3%) and SQLi (10.8%)
vulnerabilities than maintained pages (2.0% for XSS and 2.7%). Fur-
thermore, maintained pages on sites that host orphans are also
more likely to contain XSS (5.9%) and SQLi (9.5%) than maintained
pages, leading to a clear hierarchy: Orphaned pages are the most
vulnerable, followed by maintained pages on websites with some
orphans, and least vulnerable are other maintained pages.

Acknowledgments

We thank the Internet Archive for providing open access to their
data, which made our measurements possible.

This material is based on research supported by the European
Commission (EC) under grant CyberSecurity4Europe (#830929), the
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Dutch
Research Council, NWO) under grants RAPID (CS.007) and INTER-
SECT (NWA.1160.18.301), the Deutsche Forschungsgemeinschaft
(German Research Foundation, DFG) under Germany’s Excellence
Strategy (EXC 2092 CASA 390781972), and the Wiener Wissen-
schafts-, Forschungs-, und Technologie Fund (Vienna Science and
Technology Fund, WWTF) under grant IoTIO (ICT19-056).

Any views, opinions, findings, recommendations, or conclusions
contained or expressed herein are those of the authors and do not
necessarily reflect the position, official policies, or endorsements,
either expressed or implied of their host institutions, the Internet
Archive, or those of the EC, NWO, DFG, or WWTF.

References

(1]

(2]

(6]

(9]

(10]

(11]

(12]

(13]

E. Alowaisheq, S. Tang, Z. Wang, F. Alharbi, X. Liao, and
X. Wang. “Zombie Awakening: Stealthy Hijacking of Active
Domains through DNS Hosting Referral” In: Proceedings of
the 27th ACM SIGSAC Conference on Computer and Com-
munications Security (CCS). 11/2020. por: 10.1145/3372297.
3417864.

L. Archive. About the Internet Archvie. URL: https://archive.
org/about/ (visited on 04/15/2021).

M. Aturban, M. Nelson, and M. Weigle. “Quantifying Or-
phaned Annotations in Hypothes.is” In: Proceedings of the
19th International Conference on Theory and Practice of Digi-
tal Libraries (TPDL). 09/2015. po1: 10.1007/978-3-319-24592-
8_2.

M. Bailey, D. Dittrich, E. Kenneally, and D. Maughan. “The
Menlo Report.” In: IEEE Security & Privacy 10.2 (03/2012),
pp- 71-75. por: 10.1109/MSP.2012.52.

H. L. Bijmans, T. M. Booij, and C. Doerr. “Just the Tip of the
Iceberg: Internet-Scale Exploitation of Routers for Crypto-
jacking”” In: Proceedings of the 25th ACM SIGSAC Conference
on Computer and Communications Security (CCS). 10/2018.
DOI: 10.1145/3319535.3354230.

K. Borgolte, T. Fiebig, S. Hao, C. Kruegel, and G. Vigna. “Cloud
Strife: Mitigating the Security Risks of Domain-Validated
Certificates” In: Proceedings of the 25th Network and Dis-
tributed System Security Symposium (NDSS). 02/2018. Dpor:
10.14722/ndss.2018.23327.

G. Born. Deloitte-Seite ‘Test your Hacker IQ’ legt Benutzer-
daten offen. 11/06/2020. URL: https://www .borncity.com/
blog/2020/11/06/deloitte- seite- test- your-hacker-iq-legt-
benutzerdaten-offen/ (visited on 03/31/2021).

A. Broder, S. Glassman, M. Manasse, and G. Zweig. “Syn-
tactic Clustering of the Web.” In: Comput. Networks 29.8-13
(1997), pp. 1157-1166. por: 10.1016/S0169-7552(97)00031-7.
M. Charikar. “Similarity estimation techniques from round-
ing algorithms” In: Proceedings of the 34th Symposium on
Theory of Computing). 05/2002. poI: 10.1145/509907.509965.
A. Continella, M. Polino, M. Pogliani, and S. Zanero. “There’s
a Hole in that Bucket!: A Large-scale Analysis of Miscon-
figured S3 Buckets.” In: Proceedings of the 34th Annual Com-
puter Security Applications Conference (ACSAC). 12/2018. por:
10.1145/3274694.3274736.

T. Dai, H. Shulman, and M. Waidner. “DNSSEC Misconfigu-
rations in Popular Domains.” In: Proceedings of the 15th In-
ternational Conference on Cryptology and Network Security.
11/2016. por: 10.1007/978-3-319-48965-0_43.

C. Dietrich, K. Krombholz, K. Borgolte, and T. Fiebig. “Inves-
tigating System Operators’ Perspective on Security Miscon-
figurations.” In: Proceedings of the 25th ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS). 10/2018.
DOI: 10.1145/3243734.3243794.

D. Dittrich and E. Kenneally. The Menlo Report: Ethical Prin-
ciples Guiding Information and Communication Technology
Research. Tech. rep. U.S. Department of Homeland Security,
08/2012. URL: https://www .dhs.gov/sites/default/ files/
publications/CSD-MenloPrinciplesCORE-20120803_1.pdf.

(17]

(25]

D. Ferrari, M. Carminati, M. Polino, and S. Zanero. “NoSQL
Breakdown: A Large-scale Analysis of Misconfigured NoSQL
Services.” In: Proceedings of the 36th Annual Computer Secu-
rity Applications Conference (ACSAC). 12/2020. por: 10.1145/
3427228.3427260.

Google. Programmable Search Engine. 11/10/2020. URL: https:
//developers. google.com/custom - search/docs/ overview
(visited on 04/13/2021).

D. Gruss, M. Schwarz, M. Wiibbeling, S. Guggi, T. Malderle,
S. More, and M. Lipp. “Use-After-FreeMail: Generalizing the
Use-After-Free Problem and Applying it to Email Services.”
In: Proceedings of the 27th ACM SIGSAC Conference on Com-
puter and Communications Security (CCS). 11/2020. por: 10.
1145/3196494.3196514.

L. Hendriks, P.-T. de Boer, and A. Pras. “IPv6-specific mis-
configurations in the DNS” In: Proceedings of the 13th In-
ternational Conference on Network and Service Management
(CNSM). 11/2017. pot: 10.23919/CNSM.2017.8256036.

M. R. Henzinger. “Finding near-duplicate web pages: a large-
scale evaluation of algorithms” In: Proceedings of the 29th
Conference on Research and Development in Information Re-
trieval). 08/2006. DOT: 10.1145/1148170.1148222.
internetarchive. Wayback CDX Server API - BETA. 08/07/2013.
URL: https://github.com/internetarchive/wayback/tree/
master/wayback-cdx-server (visited on 04/13/2021).

A. Kalafut, M. Gupta, C. Cole, L. Chen, and N. Myers. “An
empirical study of orphan DNS servers in the internet.” In:
Proceedings of the 10th Internet Measurement Conference (IMC).
11/2010. po1: 10.1145/1879141.1879182.

M. Kaur, M. van Eeten, M. Janssen, K. Borgolte, and T. Fiebig.
“Human Factors in Security Research: Lessons Learned from
2008-2018” In: arXiv preprint arXiv:2103.13287 (2021).

V. Le Pochat, T. van Goethem, S. Tajalizadehkhoob, M. Kor-
czynski, and W. Joosen. “Tranco: A Research-Oriented Top
Sites Ranking Hardened Against Manipulation.” In: Proceed-
ings of the 26th Network and Distributed System Security Sym-
posium (NDSS). 02/2019. por: 10.14722/ndss.2019.23386.

F. Li and V. Paxson. “A Large-Scale Empirical Study of Se-
curity Patches” In: login Usenix Mag. 43.1 (2018).

F. Li, L. Rogers, A. Mathur, N. Malkin, and M. Chetty. “Keep-
ers of the Machines: Examining How System Administra-
tors Manage Software Updates For Multiple Machines.” In:
Proceedings of the 15th Symposium On Usable Privacy and
Security (SOUPS). 08/2019.

D. Liu, S. Hao, and H. Wang. “All Your DNS Records Point
to Us: Understanding the Security Threats of Dangling DNS
Records.” In: Proceedings of the 23rd ACM SIGSAC Conference
on Computer and Communications Security (CCS). 10/2016.
DOI: 10.1145/2976749.2978387.

J. Luft and H. Ingham. “The Johari Window: a graphic model
of awareness in interpersonal relations.” In: Human relations
training news 5.9 (1961), pp. 6-7.

G.Manku, A. Jain, and A. Sarma. “Detecting near-duplicates
for web crawling” In: Proceedings of the 16th World Wide
Web Conference (WWW). 06/2007. po1: 10.1145/1242572.124
2592.

https://doi.org/10.1145/3372297.3417864
https://doi.org/10.1145/3372297.3417864
https://archive.org/about/
https://archive.org/about/
https://doi.org/10.1007/978-3-319-24592-8_2
https://doi.org/10.1007/978-3-319-24592-8_2
https://doi.org/10.1109/MSP.2012.52
https://doi.org/10.1145/3319535.3354230
https://doi.org/10.14722/ndss.2018.23327
https://www.borncity.com/blog/2020/11/06/deloitte-seite-test-your-hacker-iq-legt-benutzerdaten-offen/
https://www.borncity.com/blog/2020/11/06/deloitte-seite-test-your-hacker-iq-legt-benutzerdaten-offen/
https://www.borncity.com/blog/2020/11/06/deloitte-seite-test-your-hacker-iq-legt-benutzerdaten-offen/
https://doi.org/10.1016/S0169-7552(97)00031-7
https://doi.org/10.1145/509907.509965
https://doi.org/10.1145/3274694.3274736
https://doi.org/10.1007/978-3-319-48965-0_43
https://doi.org/10.1145/3243734.3243794
https://www.dhs.gov/sites/default/files/publications/CSD-MenloPrinciplesCORE-20120803_1.pdf
https://www.dhs.gov/sites/default/files/publications/CSD-MenloPrinciplesCORE-20120803_1.pdf
https://doi.org/10.1145/3427228.3427260
https://doi.org/10.1145/3427228.3427260
https://developers.google.com/custom-search/docs/overview
https://developers.google.com/custom-search/docs/overview
https://doi.org/10.1145/3196494.3196514
https://doi.org/10.1145/3196494.3196514
https://doi.org/10.23919/CNSM.2017.8256036
https://doi.org/10.1145/1148170.1148222
https://github.com/internetarchive/wayback/tree/master/wayback-cdx-server
https://github.com/internetarchive/wayback/tree/master/wayback-cdx-server
https://doi.org/10.1145/1879141.1879182
https://doi.org/10.14722/ndss.2019.23386
https://doi.org/10.1145/2976749.2978387
https://doi.org/10.1145/1242572.1242592
https://doi.org/10.1145/1242572.1242592

[28] W.Rweyemamu, T. Lauinger, C. Wilson, W. Robertson, and
E.Kirda. “Clustering and the Weekend Effect: Recommenda-
tions for the Use of Top Domain Lists in Security Research.”
In: Proceedings of the 20th Passive and Active Measurement
(PAM). 03/2019. por: 10.1007/978-3-030-15986-3_11.

[29] Q. Scheitle, O. Hohlfeld, J. Gamba, J. Jelten, T. Zimmermann,
S. Strowes, and N. Vallina-Rodriguez. “A Long Way to the
Top: Significance, Structure, and Stability of Internet Top
Lists” In: Proceedings of the 18th Internet Measurement Con-
ference (IMC). 11/2018. por: 10.1145/3278532.3278574.

[30] D. Springall, Z. Durumeric, and J. A. Halderman. “FTP: The
Forgotten Cloud” In: Proceedings of the 46th IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks
(DSN). 06/2016. po1: 10.1109/DSN.2016.52.

[31] N. Surribas. Wapiti: The Web Application Vulnerability Scan-
ner. 02/20/2021. URL: https://wapiti.sourceforge.io/ (visited
on 04/30/2021).

[32] C.Tiefenau, M. Hiring, K. Krombholz, and E. von Zezschwitz.

“Security, Availability, and Multiple Information Sources: Ex-
ploring Update Behavior of System Administrators.” In: Pro-
ceedings of the 16th Symposium On Usable Privacy and Secu-
rity (SOUPS). 08/2020.

[33] F. Toffalini, M. Abbi, D. Carra, and D. Balzarotti. “Google
Dorks: Analysis, Creation, and New Defenses.” In: Proceed-
ings of the 13th International Conference on Detection of In-
trusions and Malware, and Vulnerability Assessment. 07/2016.
DOI: 10.1007/978-3-319-40667-1_13.

[34] N.L.M. Van Adrichem, A. R. Lua, X. Wang, M. Wasif, F. Fat-
turrahman, and F. A. Kuipers. “DNSSEC Misconfigurations:
How Incorrectly Configured Security Leads to Unreachabil-
ity” In: Proceedings of the 3rd Joint Intelligence and Security
Informatics Conference. 09/2014. por: 10.1109/JISIC.2014.12.

[35] M. Vermeer, J. West, A. Cuevas, S. Niu, N. Christin, M. van
Eeten, T. Fiebig, C. Hernandez Ganan, and T. Moore. “SoK:
A Framework for Asset Discovery: Systematizing Advances
in Network Measurements for Protecting Organizations.” In:
Proceedings of the 6th IEEE European Symposium on Security
& Privacy (EuroS&P). 09/2021.

A List of Keywords for Classifying Types of
Web Pages
A.1 Redirects

® window.location ® Redirect(
® top.location e Object moved to
® http-equiv=""refresh”

A.2 Page Not Found

® 404 Not Found e Page Not Found
® 404 Error

A.3 Frames

e <iframe e <frameset
e <frame

B List of File Extension Excluded from Probing

o 3g2 o j2k e .mpeg
* .3gp o jfi ¢ .mpg
o .3gp2 o jfif e .mpv
® .3gpp o jif ® .oga
* .3gpp2 * .jp2 e .ogg
e ai ® jpe ® .ogv
e .avi ® jpeg e .0gx
e .bmp o jpf o pdf
® css * jpg e png
e dib * jpm e psd
e eot ® jpx e qt

® .eps ® js e svg
o f4a e .mda ® svgz
o f4b e .m4b o swf
o f4v e .mdp o tif

o flv e .mdr o tiff
o gif o .mdv o ttf

e heic e .mj2 e .webm
o _heif e .mov e .webp
e .ico e .mp2 e .wma
e .ind e .mp3 o .wmv
e .indd e .mp4 o .woff
e .indt e .mpe

C Vulnerability Disclosure Email

Dear Sir/Madam,

I am contacting you because you are the closest security contact
that could be found for <Affected Domain>. I am a researcher at <IN-
STITUTION>, and we recently performed a measurement study, using
100,000 domains taken from the Tranco top 1M list, on the prevalence of
orphaned web pages in the wild.

During this study, some pages from your domain <DOMAIN> were
identified as orphaned. To understand the security implications of these
types of pages, we ran a rudimentary vulnerability scan (using Wapiti) on
the found orphan pages, including the ones on your domain.

During the scan, potential vulnerabilities were detected on the fol-
lowing pages:

######### XSS
http://....

sassppaany SQL
http://....

At no point in our study did we try to exploit the vulnerability on
your domain, neither did we share this data with any third party. Through
this email, we hope to make you aware of this potential vulnerability such
that adequate measures from your side can be taken to investigate it.

If you have any further questions, please feel free to reach out.

Kind regards,
<Authors>

https://doi.org/10.1007/978-3-030-15986-3_11
https://doi.org/10.1145/3278532.3278574
https://doi.org/10.1109/DSN.2016.52
https://wapiti.sourceforge.io/
https://doi.org/10.1007/978-3-319-40667-1_13
https://doi.org/10.1109/JISIC.2014.12

	Abstract
	1 Introduction
	2 Background
	2.1 Definition of Orphaned Web Pages
	2.2 Types of Orphaned Web Pages
	2.3 Security by Obscurity
	2.4 Security Impact of Orphaned Pages
	2.5 Threat Model

	3 Methodology
	3.1 Orphaned Page Identification Methodology
	3.2 Large-Scale Dataset

	4 Analysis
	4.1 Data Set Overview
	4.2 Archive Data Analysis
	4.3 Page Similarity
	4.4 Orphan Likelihood Score
	4.5 Classifying the Type of Pages
	4.6 Removing One Domain Name
	4.7 Analyzing Types of Pages
	4.8 Google Visibility of Orphaned URLs

	5 Security Evaluation
	5.1 Methodology
	5.2 Results

	6 Discussion
	6.1 Applications and Future Research
	6.2 Ethics
	6.3 Limitations

	7 Related Work
	7.1 Orphaned Resources
	7.2 Update Behavior and Misconfigurations

	8 Conclusion
	Acknowledgments
	A List of Keywords for Classifying Types of Web Pages
	A.1 Redirects
	A.2 Page Not Found
	A.3 Frames

	B List of File Extension Excluded from Probing
	C Vulnerability Disclosure Email

